WorldWideScience

Sample records for nuclear laboratory progress

  1. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1994--31 August 1995

    International Nuclear Information System (INIS)

    Ludwig, E.J.

    1995-01-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers the second year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas of nuclear physics: parity violation in neutron and charged-particle resonances--the mass and energy dependence of the weak interaction spreading width; chaotic behavior in 30 P from studies of eigenvalue fluctuations in nuclear level schemes; studies of few-body systems; nuclear astrophysics; nuclear data evaluation for A = 3--20, for which TUNL is now the international center; high-spin spectroscopy and superdeformation in nuclei, involving collaborations at Argonne National Laboratory. Developments in technology and instrumentation have been vital to the research and training program. In this progress report the author describes: a proposed polarized γ-beam facility at the Duke Free Electron Laser Laboratory; cryogenic systems and microcalorimeter development; continuing development of the Low Energy Beam Facility. The research summaries presented in this progress report are preliminary

  2. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1994--31 August 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, E.J.

    1995-09-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers the second year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas of nuclear physics: parity violation in neutron and charged-particle resonances--the mass and energy dependence of the weak interaction spreading width; chaotic behavior in {sup 30}P from studies of eigenvalue fluctuations in nuclear level schemes; studies of few-body systems; nuclear astrophysics; nuclear data evaluation for A = 3--20, for which TUNL is now the international center; high-spin spectroscopy and superdeformation in nuclei, involving collaborations at Argonne National Laboratory. Developments in technology and instrumentation have been vital to the research and training program. In this progress report the author describes: a proposed polarized {gamma}-beam facility at the Duke Free Electron Laser Laboratory; cryogenic systems and microcalorimeter development; continuing development of the Low Energy Beam Facility. The research summaries presented in this progress report are preliminary.

  3. University of Colorado at Boulder Nuclear Physics Laboratory technical progress report

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1991-01-01

    This report summarizes experimental work carried out between October 1, 1990, the closing of our Progress Report, and August 14, 1991 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under contract DE-FG02-ER40269 with the United States Department of Energy. This contract supports broadly based experimental work in intermediate energy nuclear physics. The program includes pion-nucleon studies at TRIUMF and LAMPF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/NTOF. The first results of spin-transfer observables in the isovector (rvec p,rvec n) reaction are included in this report. Our data confirm the tentative result from (rvec p,rvec p') reactions that the nuclear isovector spin response shows neither longitudinal enhancement nor transverse queching. Our program in quasifree scattering of high energy pions shows solid evidence of isoscalar enhancement of the nuclear nonspin response. We include several comparisons of the quasifree scattering of different probes. Results from our efforts in the design of accelerator RF cavities are also included in this report

  4. Progress report for (1974-1984) of Nuclear Research Laboratory, Srinagar, Kashmir

    International Nuclear Information System (INIS)

    Kaul, P.K.; Razdan, H.

    1985-01-01

    The Nuclear Research Laboratory, established at Srinagar in 1974, serves as a base laboratory to organise research activities at the High Altitude Research Laboratory at Gulmarg. Space physics, nuclear physics, radiation and atmospheric chemistry, and technical physics: are the fields in which the research facilities are established at the Laboratory, over the past ten years. The highlights of the various research programmes undertaken at the Laboratory during the period 1974-1984 are presented in the form of summaries. A list of papers published in various journals and presented at different conferences, symposia etc. is given at the end. (M.G.B.)

  5. Van de Graaff Laboratory progress report [1974

    International Nuclear Information System (INIS)

    Bhatia, M.S.

    1977-01-01

    Research and development work carried out in the Van de Graaff Laboratory of the Bhabha Atomic Research Centre, Bombay, India during 1974 has been reported. Research programmes in the field of nuclear reactions and activities of the Indian Nuclear Data Group are described. Progress of developmental work on the low energy horizontal tandem accelerator, Dumas mass separator and ion implantation facility is reported. (K.M.)

  6. US-Russian laboratory-to-laboratory cooperation in nuclear materials protection, control, and accounting

    International Nuclear Information System (INIS)

    Mullen, M.; Augustson, R.; Horton, R.

    1995-01-01

    Under the guidance of the Department of Energy (DOE), six DOE laboratories have initiated a new program of cooperation with the Russian Federation's nuclear institutes. The purpose of the program is to accelerate progress toward a common goal shared by both the US and Russia--to reduce the risks of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials, by strengthening systems of nuclear materials protection, control, and accounting. This new program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting (Lab-to-Lab MPC and A) Program. It is designed to complement other US-Russian MPC and A programs such as the government-to-government (Nunn-Lugar) programs. The Lab-to-Lab MPC and A program began in 1994 with pilot projects at two sites: Arzamas-16 and the Kurchitov Institute. This paper presents an overview of the Laboratory-to-Laboratory MPC and A Program. It describes the background and need for the program; the objectives and strategy; the participating US and Russian laboratories, institutes and enterprises; highlights of the technical work; and plans for the next several years

  7. U.K. nuclear data progress report January-December 1986

    International Nuclear Information System (INIS)

    Sene, M.R.; Cookson, J.A.

    1987-06-01

    The paper is the United Kingdom Nuclear Data (UKND) progress report, and summarises nuclear data research in the UK between January and December 1986. The contents of the report contains nuclear data work presented by:- UKAEA Harwell, UKAEA Winfrith, National Physical Laboratory, and the Universities of Birmingham, Edinburgh and Oxford. Included in these contributions are collaborative studies involving institutions in Holland, Italy, West Germany and the United States. The report also contains contributions on Chemical Nuclear Data, as well as the summaries of three invited lectures presented at the 19th UK Nuclear Data Form, Harwell Laboratory, 1986. (U.K.)

  8. Status report on US-Russian laboratory-to-laboratory cooperation in nuclear materials protection, control and accounting

    International Nuclear Information System (INIS)

    Mullen, M.

    1996-01-01

    In April 1994, a new program of cooperation on nuclear materials protection, control, and accounting (MPC and A) was initiated between (1) the US Department of Energy and its laboratories and (2) nuclear institutes and enterprises of the Russian Federation. The program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting Program (Lab-to-Lab MPC and A Program); it is one of several, complementary US-Russian MPC and A programs. The purpose of the Lab-to-Lab MPC and A Program is to accelerate progress toward a goal that is vital to the national security interests of both countries: reducing the risk of nuclear weapons proliferation by strengthening MPC and A systems. In its first two years, the program has made significant progress and has expanded to include many additional Russian participants. It has also fostered a spirit of mutual understanding, partnership, and respect between US and Russian nuclear specialists, which has paved the way for advances in other MPC and A and nuclear security cooperative efforts. This paper reviews the current status of the program. In addition to summarizing the background and objectives of the program, the paper describes highlights of recent work and outlines future directions for Lab-to-Lab MPC and A cooperation

  9. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1988-01-01

    This progress report presents the research programs and the technical developments carried out at the Nuclear Physics Department of Saclay from October 1, 1986 to September 30, 1987. The research programs concern the structure of nuclei and the general study of nuclear reaction mechanisms. Experiments use electromagnetic probes of the 700 Mev Saclay linear electron accelerator and hadronic probes, light polarised particles and heavy ions of the National Laboratories SATURNE and GANIL. The Nuclear Physics Department is also involved in development of accelerator technologies, especially in the field of superconducting cavities [fr

  10. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    International Nuclear Information System (INIS)

    Johnson, L.J.

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed

  11. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.J. (comp.)

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed.

  12. The 1989 progress report: High Energy Nuclear Physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1989-01-01

    The 1989 progress report of the laboratory of High-Energy Nuclear Physics, of the Polytechnic School (France) is presented. The investigations are performed in the fields of: bosons (W + , W - , Z 0 gauge and Higgs), supersymmetrical particles, new quarks and leptons, quark-gluon plasma, nucleon instability, the neutrino's mass. The 1989 most important event was the LEP start-up. New techniques for accelerating charged particles are studied. The published papers, the conferences and the Laboratory staff are listed [fr

  13. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  14. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  15. Nuclear spectroscopic studies. Progress report

    International Nuclear Information System (INIS)

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-01

    This report describes progress in the experimental nuclear physics program of the University of Tennessee, Knoxville. It presents findings related to properties of high-spin states, low-energy levels of nuclei far from stability, and high-energy heavy-ion physics, as well as a brief description of the Joint Institute of Heavy Ion Research (a collaboration between the University of Tennessee, Vanderbilt University, and Oak Ridge National Laboratory) and its activities (particularly those of the last few years), and a list of publications. 89 refs., 18 figs., 5 tabs

  16. Neutron Physics Laboratory. Annual Progress Report October 1, 1967-September 30, 1968

    International Nuclear Information System (INIS)

    Wiedling, T.

    1969-04-01

    The present progress report gives some short descriptions of experiments going on in the neutron physics branch at the Studsvik laboratories. The main program concerns fast neutron physics at the Van de Graaff laboratory with a strong emphasis on neutron scattering cross section data of elements of interest for reactor calculations. Since the Van de Graaff accelerator is still the one in Sweden giving the highest potential, it has been quite natural to use the machine also for some nuclear physics experiments with charged particles, though in some cases related to the neutron physics program. In connection with the use of the reactors at Studsvik for physics experiments, research programs have been in progress for several years concerning the use of reactor neutrons for production of isotopes for a systematic study of short lived nuclear isomeric states as well as for the study of the gamma emission in the fission process

  17. Neutron Physics Laboratory. Annual Progress Report October 1, 1967-September 30, 1968

    Energy Technology Data Exchange (ETDEWEB)

    Wiedling, T

    1969-04-15

    The present progress report gives some short descriptions of experiments going on in the neutron physics branch at the Studsvik laboratories. The main program concerns fast neutron physics at the Van de Graaff laboratory with a strong emphasis on neutron scattering cross section data of elements of interest for reactor calculations. Since the Van de Graaff accelerator is still the one in Sweden giving the highest potential, it has been quite natural to use the machine also for some nuclear physics experiments with charged particles, though in some cases related to the neutron physics program. In connection with the use of the reactors at Studsvik for physics experiments, research programs have been in progress for several years concerning the use of reactor neutrons for production of isotopes for a systematic study of short lived nuclear isomeric states as well as for the study of the gamma emission in the fission process.

  18. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  19. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  20. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  1. Decommissioning of AECL Whiteshell Laboratories: progress from first five years of legacy funding

    International Nuclear Information System (INIS)

    Swartz, R.S.; Bilinsky, D.M.; Harding, J.W.; Ridgway, W.R.

    2011-01-01

    In 2006, the Government of Canada adopted a new long-term strategy to deal with the nuclear legacy liabilities and initiated a five-year start-up phase. The objective is to safely and cost-effectively reduce these liabilities, and associated risks, based on sound waste management and environmental principles in the best interests of Canadians. AECL's Whiteshell Laboratories is part of the long-term strategy and decommissioning activities are underway. Several redundant non-nuclear buildings have been removed/decommissioned, and redundant nuclear facilities (hot cell facilities, radiochemical laboratories) are being decontaminated and prepared for demolition. This paper describes the progress in the first five-year funding period (2006 April to 2011 March). (author)

  2. Progress report of the Nuclear Physics Department

    International Nuclear Information System (INIS)

    1981-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1979 to September 30, 1980. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MV tandem Van de Graaff, with the 600 MeV electron linac, at the synchrotron SATURNE and with different accelerators belonging to other laboratories [fr

  3. Nuclear Plant Analyzer development at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Laats, E.T.

    1986-10-01

    The Nuclear Plant Analyzer (NPA) is a state-of-the-art safety analysis and engineering tool being used to address key nuclear power plant safety issues. Under the sponsorship of the US Nuclear Regulatory Commission (NRC), the NPA has been developed to integrate the NRC's computerized reactor behavior simulation codes such as RELAP5, TRAC-BWR and TRAC-PWR, with well-developed computer color graphics programs and large repositories of reactor design and experimental data. An important feature of the NPA is the capability to allow an analyst to redirect a RELAP5 or TRAC calculation as it progresses through its simulated scenario. The analyst can have the same power plant control capabilities as the operator of an actual plant. The NPA resides on the dual Control Data Corporation Cyber 176 mainframe computers at the Idaho National Engineering Laboratory and Cray-1S computers at the Los Alamos National Laboratory (LANL) and Kirtland Air Force Weapons Laboratory (KAFWL)

  4. Space nuclear safety program: Progress report, April-June 1987

    Energy Technology Data Exchange (ETDEWEB)

    George, T.G. (comp.)

    1988-07-01

    This quarterly report describes studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems, carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed are ongoing; the results and conclusions described may change as the work progresses.

  5. Nuclear Physics Laboratory technical progress report, [August 15, 1991--October 1, 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes work carried out between August 15, 1991 and October 1, 1992 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under contracts DE-FG02-86ER-40269 and DE-FG02-87ER-40335 with the United States Department of Energy. These contracts support experimental and theoretical work in intermediate energy nuclear physics. The experimental program is very broadly based; it includes pion-nucleon and pion-nucleus studies at Los Alamos and TRIUMF inelastic pion scattering and charge exchange reactions at LAMPF, kaon-nucleus scattering at the AGS, and nucleon charge exchange at LAMPF/NTOF

  6. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA

    Directory of Open Access Journals (Sweden)

    Liu WeiPing

    2016-01-01

    Full Text Available Jinping Underground lab for Nuclear Astrophysics (JUNA will take the advantage of the ultralow background in Jinping underground lab, high current accelerator based on an ECR source and highly sensitive detector to study directly a number of crucial reactions to the hydrostatic stellar evolution for the first time at their relevant stellar energies. In its first phase, JUNA aims at the direct measurements of 25Mg(p,γ26Al, 19F(p,α16O, 13C(α,n16O and 12C(α,γ16O. The experimental setup, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  7. Space Nuclear Safety Program: Progress report, January-March 1987

    Energy Technology Data Exchange (ETDEWEB)

    Lewin, R. (ed.); George, T.G. (comp.)

    1988-07-01

    This quarterly report describes studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems, which were carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed are ongoing; the results and conclusions described may change as the work progresses.

  8. Space nuclear safety program: Progress report, July--September 1987

    Energy Technology Data Exchange (ETDEWEB)

    George, T.G. (comp.)

    1989-02-01

    This quarterly report describes studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems, carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. The studies discussed are ongoing; the results and conclusions described may change as the work progresses. 20 figs., 4 tabs.

  9. Nuclear Physics Laboratory technical progress report

    International Nuclear Information System (INIS)

    1991-01-01

    This contract supports broadly based experimental work in intermediate energy nuclear physics. The program includes pion- nucleon studies at TRIUMF and LAMPF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/NTOF. The first results of spin-transfer observables in the isovector (rvec p,rvec n) reaction are included in this report. Our data confirm the tentative result from (rvec p,rvec p) reactions that the nuclear isovector spin response shows neither longitudinal enhancement nor transverse quenching. Our program in quasifree scattering of high energy pions shows solid evidence of isoscalar enhancement of the nuclear nonspin response. We include several comparisons of the quasifree scattering of different probes. Results from our efforts in the design of accelerator RF cavities are also included in this report

  10. Nuclear-waste management semiannual progress report, April 1982-September 1982

    International Nuclear Information System (INIS)

    Chikalla, T.D.; Powell, J.A.

    1982-12-01

    This document is one of a series of technical progress reports designed to report on radioactive waste management programs at Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste treatment; nuclear waste Materials Characterization Center (MCC); airborne waste management; low-level waste management; waste isolation; remedial actions; and supporting studies

  11. Laboratory approaches of nuclear reactions involved in primordial and stellar nucleosynthesis

    International Nuclear Information System (INIS)

    Rolfs, C.; California Inst. of Tech., Pasadena

    1986-01-01

    Laboratory-based studies of primordial and stellar nucleosynthesis are reviewed, with emphasis on the nuclear reactions induced by charged particles. The analytical approach used to investigate nuclear reactions associated with stellar reactions is described, as well as the experimental details and procedures used to investigate nuclear reactions induced by charged particles. The present knowledge of some of the key reactions involved in primordial nucleosynthesis is discussed, along with the progress and problems of nuclear reactions involved in the hydrogen and helium burning phases of a star. Finally, a description is given of new experimental techniques which might be useful for future experiments in the field of nuclear astrophysics. (U.K.)

  12. Decommissioning three nuclear reactors at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Montoya, G.M.; Salazar, M.

    1992-01-01

    Three nuclear reactors, including the historic water boiler reactor, were decommissioned at Los Alamos National Laboratory (LANL). The decommissioning of the facilities involved removing the reactors and their associated components. Planning for the decommissioning operation included characterizing the facilities, estimating the costs of decommissioning operations, preparing environmental documentation, establishing systems to track costs and work progress, and preplanning to correct health and safety concerns in each facility

  13. Aircraft Nuclear Propulsion Project Quarterly Progress Report for Period Ending December 31, 1956

    Energy Technology Data Exchange (ETDEWEB)

    NA, NA [ORNL

    1957-03-12

    This quarterly progress report of the Aircraft Nuclear Propulsion Project at ORNL records the technical progress of research on circulating-fuel reactors and other ANP research at the Laboratory. The report is divided into five major parts: 1) Aircraft Reactor Engineering, 2) Chemistry, and 3) Metallurgy, 4) Heat Transfer and Physical Properties, Radiation Damage, and Fuel Recovery and Reprocessing, and 5) Reactor Shielding.

  14. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1978-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  15. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1979-01-01

    The report summarizes the main activities of the Linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission. 2. Photonuclear reactions. 3. Nuclear spectroscopy and positron annihilation. 4. Dosimetry. 5. Theoretical studies. (MDC)

  16. Nuclear physics laboratory

    International Nuclear Information System (INIS)

    Deruytter, A.J.

    1980-01-01

    The report summarizes the main activities of the linear Electron Accelerator Section of the Physics Laboratory of the State University of Ghent. The research fields are relative to: 1. Nuclear fission 2. Photonuclear reactions 3. Nuclear spectroscopy and positron annihilation 4. Dosimetry 5. Theoretical studies. (MDC)

  17. Pennsylvania State University Breazeale Nuclear Reactor. Thirtieth annual progress report, July 1, 1984-June 30, 1985

    International Nuclear Information System (INIS)

    Levine, S.H.; Totenbier, R.E.

    1985-08-01

    This report is the thirtieth annual progress report of the Pennsylvania State University Breazeale Nuclear Reactor and covers such topics as: personnel; reactor facility; cobalt-60 facility; education and training; Radionuclear Application Laboratory; Low Level Radiation Monitoring Laboratory; and facility research utilization

  18. Nuclear Physics Laboratory, University of Colorado technical progress report, 1976 and proposal for continuation of contract

    International Nuclear Information System (INIS)

    1976-01-01

    This report summarizes the work carried out at the Nuclear Physics Laboratory of the University of Colorado during the period November 1, 1975 to November 1, 1976. The low energy nuclear physics section is dominated by light-ion reaction studies which span a wide range. These include both two-neutron and two-proton transfer reactions, charge exchange and inelastic scattering, as well as single nucleon transfer reactions. The nuclei studied vary widely in their mass and characteristics. These reaction studies have been aided by the multi-use scattering chamber which now allows the energy-loss-spectrometer beam preparation system (beam swinger) to shift from charged particle studies to neutron time-of-flight studies with a minimum loss of time. The intermediate energy section reflects the increase in activity accompanying the arrival of LAMPF data and the initiation of (p,d) studies at the Indiana separated-sector cyclotron. The nucleon removal results provided by the π beam at EPICS previous to completion of the spectrometer have shown that nuclear effects dominate this process, so that the widely used free interaction picture is inadequate. The section entitled ''Other Activities'' reveals continuing activities in new applications of nuclear techniques to problems in medicine and biology. Reactions important to astrophysics continue to be investigated and our trace-element program remains at a high level of activity. The theoretical section reports new progress in understanding magnitudes of two-step reactions by inclusion of finite-range effects. A new finite-range program which is fast and economical has been completed. Intermediate energy results include calculations of π-γ angular correlations, low energy π-nucleus interactions, as well as (p,d) and nucleon scattering calculations for intermediate energies

  19. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--June 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J W; Boccio, J L; Diamond, D; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Hall, R E; Higgins, J C; Weiss, A J [comp.

    1988-12-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1987.

  20. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, October 1--December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A J; Azarm, A; Baum, J W; Boccio, J L; Carew, J; Diamond, D J; Fitzpatrick, R; Ginsberg, T; Greene, G A; Guppy, J G; Haber, S B

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988.

  1. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--June 30, 1988

    International Nuclear Information System (INIS)

    Baum, J.W.; Boccio, J.L.; Diamond, D.

    1988-12-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1987

  2. Ab Initio Nuclear Theory - Progress and Prospects from Quarks to the Cosmos

    International Nuclear Information System (INIS)

    Vary, J.P.

    2011-01-01

    The vision of solving the nuclear many-body problem with fundamental interactions tied to QCD appears to approach reality. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex nuclear phenomena. Recent progress includes the derivation, within chiral perturbation theory (ChPT), of the leading terms of the nucleon-nucleon (NN), three-nucleon (3N) and four nucleon (4N) potentials. Additional substantial progress includes solving nuclear structure and reactions in nuclei up to mass 16 and selected heavier nuclei around closed shells using these ChPT interactions. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory simulations that will yield valuable insights into origins of nuclear shell structure, collective phenomena and complex reaction dynamics. I outline some recent achievements and present ambitious consensus plans for a coming decade of research that will strengthen the links between nuclear theory and nuclear experiment, between nuclear physics and astrophysics, and between nuclear physics and nuclear energy applications. (author)

  3. Impact of Nuclear Laboratory Personnel Credentials & Continuing Education on Nuclear Cardiology Laboratory Quality Operations.

    Science.gov (United States)

    Malhotra, Saurabh; Sobieraj, Diana M; Mann, April; Parker, Matthew W

    2017-12-22

    Background/Objectives: The specific credentials and continuing education (CME/CE) of nuclear cardiology laboratory medical and technical staff are important factors in the delivery of quality imaging services that have not been systematically evaluated. Methods: Nuclear cardiology accreditation application data from the Intersocietal Accreditation Commission (IAC) was used to characterize facilities performing myocardial perfusion imaging by setting, size, previous accreditation and credentials of the medical and technical staff. Credentials and CME/CE were compared against initial accreditation decisions (grant or delay) using multivariable logistic regression. Results: Complete data were available for 1913 nuclear cardiology laboratories from 2011-2014. Laboratories with initial positive accreditation decisions had a greater prevalence of Certification Board in Nuclear Cardiology (CBNC) certified medical directors and specialty credentialed technical directors. Certification and credentials of the medical and technical directors, respectively, staff CME/CE compliance, and assistance of a consultant with the application were positively associated with accreditation decisions. Conclusion: Nuclear cardiology laboratories directed by CBNC-certified physicians and NCT- or PET-credentialed technologists were less likely to receive delay decisions for MPI. CME/CE compliance of both the medical and technical directors was associated with accreditation decision. Medical and technical directors' years of experience were not associated with accreditation decision. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  4. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, July 1--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A J [comp.

    1989-02-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through June 30, 1988. 71 figs., 24 tabs.

  5. Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, July 1--September 30, 1988

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1989-02-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through June 30, 1988. 71 figs., 24 tabs

  6. Nuclear Physics Division progress report

    International Nuclear Information System (INIS)

    West, D.; Cookson, J.A.; Findlay, D.J.S.

    1984-06-01

    The 1983 progress report of the Nuclear Physics Division, UKAEA Harwell, is divided into four main topics. These are a) nuclear data and technology for nuclear power; b) nuclear studies; c) applications of nuclear and associated techniques, including ion beam techniques and moessbauer spectroscopy; and d) accelerator operation, maintenance and development. (U.K.)

  7. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    In a joint effort with the Argonne National Laboratory - West (ANL-W), the Idaho National Engineering and Environmental Laboratory (INEEL) has assumed the lead role for nuclear energy reactor research for the United States Government. In 2005, these two laboratories will be combined into one entity, the Idaho National Laboratory (INL). There are two objectives for the INL: (1) to act as the lead systems integrator for the Department of Energy's Office of Nuclear Energy Science and Technology and, (2) to establish a Center for Advanced Energy Studies. Focusing on the Center for Advanced Energy Studies, this paper presents a Human Resources Pipeline Model outlining a nuclear educational pathway that leads to university and industry research partnerships. The pathway progresses from education to employment and into retirement. Key to the model is research and mentoring and their impact upon each stage. The Center's success will be the result of effective and advanced communications, faculty/student involvement, industry support, inclusive broadbased involvement, effective long-term partnering, and increased federal and state support. (author)

  8. Annual report of Laboratory of Nuclear Studies, Osaka University, 1980

    International Nuclear Information System (INIS)

    1981-01-01

    This is the progress report of the research activities in the Laboratory of Nuclear Studies during the period from April, 1980, to March, 1981. The activities were carried out by the OULNS staffs and also by outsiders at the OULNS. In this period, the X-ray astrophysics group, the radiation physics group and the high energy physics group joined the OULNS. The main accelerators in the OULNS are a 110 cm variable energy cyclotron and a 4.7 MeV Van de Graaff machine. The detailed experimental studies on inbeam e-gamma spectroscopy and beta-decay were carried out at two accelerator laboratories. The radiochemistry facility and a mass spectrometer were fully used. The research activities extended to high energy physics by utilizing national facilities, such as a 230 cm cyclotron in the Research Center for Nuclear Physics and a proton synchrotron in the National Laboratory for High Energy Physics. The theoretical studies on elementary particles and nuclear physics were carried out also. It is important that the facilities in the OULNS were used by the outsiders in Osaka University, such as solid state physics group and particle-induced X-ray group. The activities of the divisions of cyclotron, Van de Graaff, high energy physics, accelerator development and nuclear instrumentation, mass spectroscopy, radioisotope, solid state and theoretical physics are reported. (Kako, I.)

  9. Progress on radiochemical analysis for nuclear waste management in decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X. (Technical Univ. of Denmark. Center for Nuclear Technologies (NuTech), Roskilde (Denmark))

    2012-01-15

    This report summarized the progress in the development and improvement of radioanalytical methods for decommissioning and waste management completed in the NKS-B RadWaste 2011 project. Based on the overview information of the analytical methods in Nordic laboratories and requirement from the nuclear industry provided in the first phase of the RadWaste project (2010), some methods were improved and developed. A method for efficiently separation of Nb from nuclear waste especially metals for measurement of long-lived 94Nb by gamma spectrometry was developed. By systematic investigation of behaviours of technetium in sample treatment and chromatographic separation process, an effective method was developed for the determination of low level 99Tc in waste samples. An AMS approachment was investigated to measure ultra low level 237Np using 242Pu for AMS normalization, the preliminary results show a high potential of this method. Some progress on characterization of waste for decommissioning of Danish DR3 is also presented. (Author)

  10. Progress on radiochemical analysis for nuclear waste management in decommissioning

    International Nuclear Information System (INIS)

    Hou, X.

    2012-01-01

    This report summarized the progress in the development and improvement of radioanalytical methods for decommissioning and waste management completed in the NKS-B RadWaste 2011 project. Based on the overview information of the analytical methods in Nordic laboratories and requirement from the nuclear industry provided in the first phase of the RadWaste project (2010), some methods were improved and developed. A method for efficiently separation of Nb from nuclear waste especially metals for measurement of long-lived 94Nb by gamma spectrometry was developed. By systematic investigation of behaviours of technetium in sample treatment and chromatographic separation process, an effective method was developed for the determination of low level 99Tc in waste samples. An AMS approachment was investigated to measure ultra low level 237Np using 242Pu for AMS normalization, the preliminary results show a high potential of this method. Some progress on characterization of waste for decommissioning of Danish DR3 is also presented. (Author)

  11. Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996

    International Nuclear Information System (INIS)

    None

    1997-01-01

    OAK A271 Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996. The Rockwell International Hot Laboratory (RIHL) is one of a number of former nuclear facilities undergoing decontamination and decommissioning (D and D) at the Santa Susana Field Laboratory (SSFL). The RIHL facility is in the later stages of dismantlement, with the final objective of returning the site location to its original natural state. This report documents the decontamination and dismantlement activities performed at the facility over the time period 1988 through 1996. At this time, the support buildings, all equipment associated with the facility, and the entire above-ground structure of the primary facility building (Building 020) have been removed. The basement portion of this building and the outside yard areas (primarily asphalt and soil) are scheduled for D and D activities beginning in 1997

  12. Communication of nuclear data progress

    International Nuclear Information System (INIS)

    2006-07-01

    This is the 30th issue of Communication of Nuclear Data Progress (CNDP), in which the progress and achievements in nuclear data field in China during 2004 are carried. It includes the evaluations and model calculations of neutron data for n+ 31 P, 59 Co, 92-106 Mo, Nat-116 Cd, 233 U and the covariance data evaluation of experimental data for 27 Al, update the decay data for radionuclide 7 Be. Some results of studies for nuclear evaluation tool and model are also included in this issue, i.e. reaction mechanism studies of 5 He, a new method of evaluating the discrepant data, linear fit of correlative data by least squared method et al. (authors)

  13. Nuclear Physics Laboratory 1976 annual report. [Nuclear Physics Laboratory, Univ. of Washington

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-01

    Laboratory activities for the period spring, 1975 to spring, 1976 are described. The emphasis of the work can be discerned from the chapter headings: accelerator development; ion source development; instrumentation, detectors, research techniques; computer and computing; atomic physics; nuclear astrophysics; fundamental symmetries in nuclei; nuclear structure; radiative capture measurements and calculations; scattering and reactions; reactions with polarized protons and deuterons; heavy-ion elastic and inelastic scattering; heavy-ion deeply inelastic and fusion reactions; heavy ion transfer and intermediate structure reactions; medium-energy physics; and energy studies. Research by users and visitors is also described; and laboratory personnel, degrees granted, and publications are listed. Those summaries having significant amounts of information are indexed individually. (RWR)

  14. Communication of nuclear data progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-15

    This is the 30th issue of Communication of Nuclear Data Progress (CNDP), in which the progress and achievements in nuclear data field in China during 2004 are carried. It includes the evaluations and model calculations of neutron data for n+{sup 31}P, {sup 59}Co, {sup 92-106}Mo, {sup Nat-116}Cd, {sup 233}U and the covariance data evaluation of experimental data for {sup 27}Al, update the decay data for radionuclide {sup 7}Be. Some results of studies for nuclear evaluation tool and model are also included in this issue, i.e. reaction mechanism studies of {sup 5}He, a new method of evaluating the discrepant data, linear fit of correlative data by least squared method et al. (authors)

  15. National Laboratory of Hydraulics. 1996 progress report

    International Nuclear Information System (INIS)

    1996-01-01

    This progress report of the National Laboratory of Hydraulics (LNH) of Electricite de France (EdF) summarizes, first, the research and development studies carried out in 1996 for the development of research tools for industrial fluid mechanics and environmental hydraulics and for the development of computer tools (computer codes and softwares for fluid mechanics modeling, modeling of reactive, compressible, two-phase and turbulent flows and of complex chemical kinetics using finite elements and finite volume methods). A second parts describes the research studies performed for other services of EdF, concerning: the functioning of nuclear reactors (thermohydraulic studies of the reactor vessel and of the primary coolant circuit, gas flows following severe accidents, fluid-structure thermal coupling etc...), fossil fuel power plants, the equipment and operation of thermal power plants and hydraulic power plants, the use of electric power. A third part summarizes the river and marine hydraulic studies carried out for other companies. (J.S.)

  16. Nuclear forensics: a comprehensive model action plan for Nuclear Forensics Laboratory in India

    International Nuclear Information System (INIS)

    Deshmukh, A.V.; Nyati, S.; Fatangre, N.M.; Raghav, N.K.; Reddy, P.G.

    2013-01-01

    Nuclear forensic is an emerging and highly specialized discipline which deals with nuclear investigation and analysis of nuclear or radiological/radioactive materials. Nuclear Forensic analysis includes various methodology and analytical methods along with morphology, physical, chemical, elemental and isotopic analysis to characterize and develop nuclear database for the identification of unknown nuclear or radiological/radioactive material. The origin, source history, pathway and attribution of unknown radioactive/nuclear material is possible with certainty through Nuclear Forensics. Establishment of Nuclear Forensic Laboratory and development of expertise for nuclear investigation under one roof by developing the nuclear data base and laboratory network is need of the hour to ably address the problems of all the law enforcement and nuclear agencies. The present study provides insight in Nuclear Forensics and focuses on an urgent need for a comprehensive plan to set up Nuclear Forensic Laboratory across India. (author)

  17. A program in medium energy nuclear physics. Progress report and continuation proposal October 1, 1995

    International Nuclear Information System (INIS)

    Berman, B.L.; Dhuga, K.S.

    1995-01-01

    This progress report and continuation proposal summarizes our achievements for the period from July 1, 1994 to September 30, 1995 and requests continued funding for our program in experimental medium-energy nuclear physics. The focus of our program remains the understanding of the short-range part of the strong interaction in the nuclear medium. In the past year we have focused our attention ever more sharply on experiments with real tagged photons, and we have successfully defended two new experimental proposals: Photofission of Actinide and Preactinide Nuclei at SAL and Photoproduction of the ρ Meson from the Proton with Linearly Polarized Photons at CEBAF. (We are co-spokespersons on two previously approved Hall-B experiments at CEBAF, Photoreactions on 3 He and Photoabsorption and Photofission of Nuclei.) As part of the team that is instrumenting the Photon Tagger for Hall B; we report excellent progress on the focal-plane detector array that is being built at our Nuclear Detector Laboratory, as well as progress on our plans for instrumentation of a tagged polarized-photon beam using coherent bremsstrahlung. Also, we shall soon receive a large computer system (from the SSC) which will form the basis for our new Data Analysis Center, which, like the Nuclear Detector Laboratory, will be operated under the auspices of The George Washington University Center for Nuclear Studies. Finally, during the past year we have published six more papers on the results of our measurements of pion scattering at LAMPF and of electron scattering at NIKHEF and Bates, and we can report that nearly all of the remaining papers documenting this long series of measurements are in the pipeline

  18. Progress report of the Neutron and Nuclear Physics Division for the year 1981

    International Nuclear Information System (INIS)

    1982-05-01

    This progress report gives a presentation of the nuclear physics work carried out in the Service de Physique Neutronique et Nucleaire (C.E. Bruyeres-le-Chatel) during the year 1981. It comprises a part about technical work and equipments and a second part on experiments and their interpretations. The third part is devoted to nuclear data evaluations and processing along with theoretical work. At the end of the report a list is given of the documents issued during the year 1981 and a list of talks given in the laboratory [fr

  19. Communication of nuclear data progress

    International Nuclear Information System (INIS)

    2001-01-01

    This is the 26th issue of Communication of Nuclear Data Progress (CNDP), in which the progress and achievements in nuclear data field from the last year up to now in China are carried. It includes the measurements of 71 Ga, 94 Zn, 191 Ir, 174 Hf(n, γ) and 114 Cd(n, 2n) cross sections, fission product yields of n + 235,238 U, DPA cross section calculated with UNF code, fission barrier parameter evaluation of some nuclides, production and transmission of covariance in the evaluation processing of fission yield data and transition analysis of Ne-like Ge XXIII

  20. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1995--31 August 1996

    International Nuclear Information System (INIS)

    Ludwig, E.J.

    1996-01-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers parts of the second and third year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas: precision test of parity-invariance violation in resonance neutron scattering at LANSCE/LANL; parity violation measurements using charged-particle resonances in A = 20--40 targets and the A = 4 system at TUNL; chaotic behavior in the nuclei 30 P and 34 Cl from studies of eigenvalue fluctuations in nuclear level schemes; search for anomalies in the level density (pairing phase transition) in 1f-2p shell nuclei using GEANIE at LANSCE/LANL; parity-conserving time-reversal noninvariance tests using 166 Ho resonances at Geel, ORELA, or LANSCE/LANL; nuclear astrophysics; few-body nuclear systems; Nuclear Data evaluation for A = 3--20 for which TUNL is now the international center. Developments in technology and instrumentation are vital to the research and training program. Innovative work was continued in: polarized beam development; polarized target development; designing new cryogenic systems; designing new detectors; improving high-resolution beams for the KN and FN accelerators; development of an unpolarized Low-Energy Beam Facility for radiative capture studies of astrophysical interest. Preliminary research summaries are presented

  1. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1995--31 August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, E.J.

    1996-09-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers parts of the second and third year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas: precision test of parity-invariance violation in resonance neutron scattering at LANSCE/LANL; parity violation measurements using charged-particle resonances in A = 20--40 targets and the A = 4 system at TUNL; chaotic behavior in the nuclei {sup 30}P and {sup 34}Cl from studies of eigenvalue fluctuations in nuclear level schemes; search for anomalies in the level density (pairing phase transition) in 1f-2p shell nuclei using GEANIE at LANSCE/LANL; parity-conserving time-reversal noninvariance tests using {sup 166}Ho resonances at Geel, ORELA, or LANSCE/LANL; nuclear astrophysics; few-body nuclear systems; Nuclear Data evaluation for A = 3--20 for which TUNL is now the international center. Developments in technology and instrumentation are vital to the research and training program. Innovative work was continued in: polarized beam development; polarized target development; designing new cryogenic systems; designing new detectors; improving high-resolution beams for the KN and FN accelerators; development of an unpolarized Low-Energy Beam Facility for radiative capture studies of astrophysical interest. Preliminary research summaries are presented.

  2. Nuclear Physics Laboratory annual report 1982

    International Nuclear Information System (INIS)

    1982-06-01

    This Annual Report describes the activities of the Nuclear Physics Laboratory of the University of Washington for the year ending approximately April 30, 1982. As in previous years we report here on a strong nuclear physics research program based upon use of the Laboratory's principal facility, an FN tandem and injector accelerator system. Other major elements of the Laboratory's current program include the hydrogen parity mixing experiment, intermediate-energy experiments conducted at Los Alamos and elsewhere, an accelerator mass spectrometry program emphasizing 10 Be and 14 C measurements on environmental materials, and a number of researches carried out by Laboratory members working collaboratively at other institutions both in this country and abroad

  3. Annual report of Laboratory of Nuclear Studies, Osaka University, for fiscal 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is the progress report of the research activities carried out by the members of the Osaka University Laboratory of Nuclear Studies (OULNS) in fiscal year 1995. Some groups carried out their experimental researches using the major research facilities at the OULNS, that include 4.75 MV Van de Graaff, a mass spectrograph, and an M360 Computer. Other groups intensively carried out all or part of their researches outside Osaka University including the facilities in foreign countries. In short the reader will enjoy a whole spectrum of research fields studied by nuclear and particle techniques. To expand and enrich the studies in the interdisciplinary region between nuclear physics and solid state physics investigated by use of nuclear technologies, especially by use of unstable nuclear beams, OULNS is now planning a small Radioactive-Nuclear-Beam Facility which consists of an AVF cyclotron of K = 30 with high intensity beams of light ions and a post accelerator, a radio-frequency-quadrupole accelerator (RFQ). (J.P.N.)

  4. Communication of nuclear data progress: No.1 (1989)

    International Nuclear Information System (INIS)

    1989-05-01

    Communication of Nuclear Data Progress (CNDP) in English is set up by Chinese Nuclear Data Committee and Chinese Nuclear Data Center, one issue every half a year. The motivation of CNDP is to encourage nuclear data exchange and cooperation at home and abroad. Commprehensive progresses in various nuclear data fields, communication and reports of new achievements, and other related nuclear information will be carried out in CNDP. The first issue covers the work carried out in 1987 and 1988, which includes experimental measurement, theoretical calculation, data evaluation, data processing, data library, multigroup constant generating and benchmark testing and international cooperation

  5. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    Trainor, T.A.; Weitkamp, W.G.

    1985-04-01

    Progress is reported in these areas: nuclear physics relevant to astrophysics and cosmology; nuclear structure of 14 N; the Cabibbo angle in Fermi matrix elements of high j states; giant resonances; heavy ion reactions; 0 + - 0 - isoscalar parity mixing in 14 N; parity mixing in hydrogen and deuterium; medium energy physics; and accelerator mass spectrometry. Accelerators and ion sources, nuclear instrumentation, and computer systems at the university are discussed, including the booster linac project

  6. Memphis State University Center for Nuclear Studies progress report

    International Nuclear Information System (INIS)

    1975-11-01

    Progress made on the development of specialized education programs for the nuclear industry through the month of October, 1975, is outlined. The survey of the nuclear industry includes manpower resources and requirements of nuclear industry, annual training requirements of nuclear plants, and the educational curriculum for nuclear plant operational staff. Also discussed are the general organization of the project, student enrollment and progress and industrial participation

  7. Twenty years of an international nuclear laboratory

    International Nuclear Information System (INIS)

    Suschny, O.

    1982-01-01

    The laboratories of the International Atomic Energy Agency were started in 1959 with a physics laboratory, a chemistry laboratory and an electronics workshop. Early work centred on absolute radionuclide calibrations and on assessments of the consequences of radioactive fallout from atomic weapons testing on the health of the people in Member States. Subsequently, work was started on the use of radioactive and stable isotopes in agriculture, in hydrology, in medical applications, in pest and insect control and with the entry into force of the Nuclear Non-Proliferation Treaty a Safeguard Analytical Laboratory was established to provide support for the Agency's safeguards inspection responsibilities. Together with WHO a network of 43 Secondary Standard Dosimetry Laboratories were set up in Member States to improve dosimetric accuracy in medicine and radiation protection worldwide. Throughout their history, the laboratories of the IAEA have lent great importance on their training programmes that have enabled many workers in nuclear or nuclear related research to gain experience. This emphasis on training has been stressed particularly to benefit research workers from developing countries

  8. USDOE Laboratory views on U.S.-Russian partnership for nuclear security

    International Nuclear Information System (INIS)

    Kempf, C.R.

    1998-01-01

    This paper summarizes an analysis of the US-Russian Nuclear Material Protection, Control and Accounting (MPC and A) Program, developed on the basis of extensive discussions with US laboratory participants as well as personal experience. Results of the discussions have been organized into three main areas: Technical/MPC and A Progress; Programmatic and Administrative Issues; and Professional Aspects, Implications for MPC and A effectiveness, for MPC and A sustainability, and for future relations and collaboration are derived. Suggested next steps are given

  9. Research and development related to the Nevada Nuclear Waste Storage Investigations. Progress report, July 1-September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, W R; Wolfsberg, K; Vaniman, D T; Erdal, B R [comps.

    1982-01-01

    This report summarizes the contribution of the Los Alamos National Laboratory to the Nevada Nuclear Waste Storage Investigations for the fourth quarter of FY-81. Progress reports are presented for the following tasks: waste package development; nuclide migration experiments in G tunnel-laboratory studies; geochemistry of tuff; mineralogy-petrology of tuff; volcanism studies; rock physics studies; exploratory shaft; and quality assurance.

  10. New Brunswick Laboratory progress report, October 1994--September 1995

    International Nuclear Information System (INIS)

    1996-03-01

    The mission of the New Brunswick Laboratory (NBL) of the A. S. Department of Energy (DOE) is to serve as the National Certifying Authority for nuclear reference materials and to provide an independent Federal technical staff and laboratory resource performing nuclear material measurement, safeguards, and non-proliferation functions in support of multiple program sponsors. This annual report describes accomplishments achieved in carrying out NBL's assigned missions

  11. Communication of nuclear data progress: No.15 (1996)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    Communication of Nuclear Data Progress (CNDP) is set up by Chinese Nuclear DATA Center. This is the 15th issue. The nuclear data achievements and progress in China during the last year are presented. It mainly includes: the measurements of the energy spectrum and angular distributions of protons from stainless steel bombarded by 14.6 MeV neutrons, theoretical calculations of {sup 59}Co and {sup 90}Zr neutron reaction data, the method and program CABEI for adjusting consistency between natural and its isotope data, {sup 58,60,61,62,64,Nat}Ni(n, p), {sup 59}Co, {sup 90}Zr(n,x) and {sup 84}Rb decay data, the status of CENDL-2.1 and progress on Chinese Evaluated Nuclear Parameter Library.

  12. Progressive Finland sees progress with nuclear projects

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, David [NucNet, Brussels (Belgium)

    2016-02-15

    The Finnish Hanhikivi-1 reactor project is firmly on track and a licence has been granted for construction of a final disposal facility for spent nuclear fuel - the first final repository in the world to enter the construction phase. Significant progress has been made with plans for Finland to build its sixth nuclear reactor unit at Hanhikivi. Fennovoima's licensing manager Janne Liuko said the company expects to receive the construction licence for the Generation III+ Hanhikivi-1 plant in late 2017. The application was submitted to the Finnish Ministry of Employment and the Economy in June 2015.

  13. U.K. nuclear data progress report

    International Nuclear Information System (INIS)

    Findlay, D.J.S.; Cookson, J.A.

    1984-06-01

    The report summarises nuclear data research in the United Kingdom between January and December 1984. The nuclear data presented includes contributions from government research laboratories and Universities, as well as from various collaborations. The section on nuclear data forum includes three individual papers (being processed separately), these are: the DIMPLE criticality experiments, the potential use of criticality benchmark experiments in nuclear data evaluation, and the use of benchmark experiments for the validation of nuclear data. (U.K.)

  14. Progress report of the Nuclear Physics Department (1 Oct 1978 - 30 Sep 1979)

    International Nuclear Information System (INIS)

    1980-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1978 to September 30, 1979. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8,5 MV tandem Van de Graaff, with the 600 MeV electron linac, and with different accelerators belonging to other laboratories [fr

  15. Yucca Mountain Project - Argonne National Laboratory annual progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.K.; Fortner, J.A.; Finn, P.A.; Wronkiewicz, D.J.; Hoh, J.C.; Emery, J.W.; Buck, E.C.; Wolf, S.F.

    1995-02-01

    This document reports on the work done by the Nuclear Waste Management Section of the Chemical Technology Division (CMT), Argonne National Laboratory, in the period October 1993-September 1994. Studies have been performed to evaluate the performance of nuclear waste glass and spent fuel samples under unsaturated conditions (low volume water contact) that are likely to exist in the Yucca Mountain environment being considered as a potential site for a high-level waste repository. Tests with simulated waste glasses have been in progress for over eight years and demonstrate that actinides from initially fresh glass surfaces will be released as a result of the spallation of reacted glass layers from the surface, as the small volume of water passes over the waste form. Studies are also underway to evaluate the performance of spent fuel samples and unirradiated UO{sub 2} in projected repository conditions. Tests with UO{sub 2} have been ongoing for nine years and show that the oxidation of UO{sub 2} occurs rapidly, and the resulting paragenetic sequence of secondary phases that form on the sample surface is similar to that observed in natural analogues. The reaction of spent fuel samples under conditions similar to those used with UO{sub 2} have been in progress for nearly two years, and the results suggest that spent fuel follows the same reaction progress as UO{sub 2}. The release of individual fission products and transuranic elements was not congruent, with the release being controlled by the formation of small particles or colloids that are suspended in solution and transported away from the waste form. The reaction progress depends on the composition of the spent fuel samples used and, likely, on the composition of the groundwater that contacts the waste form.

  16. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  17. Progress report of the Nuclear Physics Department (1.10.1980-30.9.1981)

    International Nuclear Information System (INIS)

    1982-04-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1980 to September 30, 1981. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MV tandem Van de Graaff, with the 600 MeV electron linac, at the synchrotron SATURNE and with different accelerators belonging to other laboratories [fr

  18. Nuclear Physics Laboratory. Annual report no.21

    International Nuclear Information System (INIS)

    1986-11-01

    The annual report of the Nuclear Physics Laboratory covers the following subjects: 1) the accelerators; 2) work in experimental nuclear physics; 3) research in particle physics: experiments at TRIUMF and CERN; 4) work in applied nuclear physics; and 5) work in theoretical physics

  19. Nuclear Physics Laboratory. Annual report no.22

    International Nuclear Information System (INIS)

    1987-11-01

    The annual report of the Nuclear Physics Laboratory covers the following subjects: 1) the accelerators; 2) work in experimental nuclear physics; 3) research in particle physics: experiments at TRIUMF and CERN; 4) work in applied nuclear physics; and 5) work in theoretical physics

  20. Theoretical nuclear structure. Progress report for 1997

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Strayer, M.R.

    1997-01-01

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma-ray spectroscopy, and the interface between nuclear structure and nuclear astrophysics. The authors report substantial progress in all these areas. One measure of progress is publications and invited material. The research described here has led to more than 25 papers that are published, accepted, or submitted to refereed journals, and to 25 invited presentations at conferences and workshops

  1. Nuclear electronics laboratory manual

    International Nuclear Information System (INIS)

    1984-05-01

    The Nuclear Electronics Laboratory Manual is a joint product of several electronics experts who have been associated with IAEA activity in this field for many years. The manual does not include experiments of a basic nature, such as characteristics of different active electronics components. It starts by introducing small electronics blocks, employing one or more active components. The most demanding exercises instruct a student in the design and construction of complete circuits, as used in commercial nuclear instruments. It is expected that a student who completes all the experiments in the manual should be in a position to design nuclear electronics units and also to understand the functions of advanced commercial instruments which need to be repaired or maintained. The future tasks of nuclear electronics engineers will be increasingly oriented towards designing and building the interfaces between a nuclear experiment and a computer. The manual pays tribute to this development by introducing a number of experiments which illustrate the principles and the technology of interfacing

  2. Progress on development of nuclear power in Japan

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Since three Laws on the nuclear power were published 45 years has passed. Now, development on nuclear power in Japan is at an emergent state. In Japan, 51 units of commercial nuclear reactors with 44.917 GW are in operation, occupy about 37% of total electric power generation, and is positioned at an essential basic energy source supporting economical society in Japan. However, an accident occurred at Tokai Works of the JCO Co., Ltd., one of the uranium reconversion company, on September 30, 1999, was the first critical accident in Japan, and became the worst case in history on development of nuclear power in Japan, because of forming three heavy radiation disabled persons (One of them was dead) in its operators. This was a big crisis with relation to existence on development of nuclear power in Japan, by which anxiety and distrust of the Japanese against the nuclear power were amplified rapidly. On the other side, for Japan short in energy sources and of a big energy consumption, in order to intend for a long term to carry out energy security, global environmental conservation, and sustainable maintenance of essential growth, it remains to be one of important optional methods to further promote nuclear power generation and to establish nuclear fuel cycle. Here were described on progress on peaceful applications of nuclear power in Japan, progress on the field of nuclear power in Japan (from 1955 to 1999), progress on Tokai nuclear power station, introduction of nuclear power generation and effort on its domestic production. (G.K.)

  3. Re-Development of Radiocarbon Dating Laboratory in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Norfaizal Mohamed; Nita Salina Abu Bakar; Phillip, E.

    2015-01-01

    Nuclear Dating Laboratory, formerly known as Radiocarbon Laboratory was established in Malaysian Nuclear Agency (Nuclear Malaysia) since 1983. A benzene synthesis line for radiocarbon (carbon-14) dating was installed in this laboratory by Australian Atomic Energy Commission (AAEC) under the Hydrology Isotope Project, a collaboration project between IAEA, AAEC and PUSPATI (former name for Nuclear Malaysia). Determining the age of samples could be performed using this facility throughout two main processes, namely the production of benzene containing C-14 isotopes and activity determination of C-14 using Liquid Scintillation Counter. Realizing the need and importance of Nuclear Dating Laboratory for the nations science and technology development, the Top Management of Nuclear Malaysia was agreed to hand over this laboratory and its facilities to Waste Technology and Environmental Division (BAS) started in June 2013 for the redevelopment. Hence, this paper will highlight the weaknesses and problems that need to be addressed and improved to enable it to be used in providing a good service. (author)

  4. Nuclear Reactor Engineering Analysis Laboratory

    International Nuclear Information System (INIS)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-01-01

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels

  5. Communication of nuclear data progress: No.7 (1992)

    International Nuclear Information System (INIS)

    1992-06-01

    This is the seventh issue of communication of Nuclear Data Progress (CNDP), in which the nuclear data progress in china during the last year is presented. It includes 14 MeV neutron activation cross section nuclear decay data inelastic angular distribution integral prompt spontaneous fission neutron spectrum and α spectrum measurements of reaction 40 Ca(n, α); programs UNF-for fast neutron data calculation of structural materials, APCOM and APOM for searching optimal charged particle and neutron optical potential parameters respectively; P + 63 Cu reaction calculation in energy region 3 ∼ 55 MeV; evaluation of 197 Au (n, Zn) 196 Au cross section, progress on nuclear structure and decay data evaluation for A-chain a database on ion-atom collision processes, and evaluation of trapping and desorption data, systematics calculation of nuclear data for radiation damage assessment and related safety aspects, and systematics of (n, t) and (n, 3 He) reaction cross sections at 14 MeV, construction of covariance matrix for experimental data, Spline fit for multi-sets of correlative data etc

  6. Nuclear data progress in China (1987 ∼ 1990)

    International Nuclear Information System (INIS)

    Cai Dunjiu; Yuan Hanrong

    1991-01-01

    The nuclear data progress from 1987 to 1990 in China were described. It includes nuclear data evaluations and nuclear data library development, development of theory method and code used for nuclear data calculation and evaluation, group constant generating and benchmark testing, nuclear data measurement; international activities and co-operations. These works were carried out by the Chinese Nuclear Data Center and the chinese Nuclear Data Coordination Network

  7. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  8. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    1983-04-01

    Progress is described in the following areas: astrophysics and cosmology, nuclear structure and light ion reactions, giant resonances in radiative capture, heavy ion reations, nuclear tests of fundamental symmetries, parity violation in hydrogen, medium energy physics, accelerator mass spectrometry (C-14 and Be-10 radiochronology programs), accelerators and ion sources, magnetic spectrograph/momentum filter, instrumentation and experimental techniques, computers and computing, and the superconducting booster for the University of Washington tandem accelerator. Publications are listed

  9. Nuclear Structure Group annual progress report June 1974 -May 1975

    International Nuclear Information System (INIS)

    1975-06-01

    This is the first annual progress report of the Nuclear Structure Group of the University of Birmingham. The introduction lists the main fields of study of the Group as: polarisation penomena and optical model studies using 3 He and 4 He probes; photonuclear physics; heavy-ion physics; and K- meson physics. The programme is related to particle accelerators at Birmingham, Oxford, Harwell and the Rutherford Laboratory. The body of the report consists of summaries of 38 experiments undertaken by members of the Group. The third section contains 10 notes on instrumentation topics. Appendices contain lists of (a) personnel, (b) papers published or submitted during the period. (U.K.)

  10. Renal diagnostic nuclear medicine procedures in progressive systemic scleroderma (PSS)

    Energy Technology Data Exchange (ETDEWEB)

    Ammari, B.; Hotze, A.; Gruenwald, F.; Biersack, H.J.; Blitz, H.; Kuester, W.; Kreysel, H.W.

    1989-02-01

    The involvement of kidneys in progressive systemic scleroderma (PSS) is one of the most frequent causes of death in this disease. Using clinical criteria and laboratory tests only the frequency of kidney involvement would be clearly underestimated. Invasive diagnostic procedures such as biopsy and angiography can not be applied in those patients. Nuclear medicine techniques (hippurate clearance, DMSA-scan), however, offer non invasive and sensitive methods in the diagnosis of renal involvement in PSS patients. In our study 46 of 76 patients (60%) revealed pathologic findings. The mentioned diagnostic techniques show a high sensitivity and are in agreement with pathological findings described in PSS.

  11. Renal diagnostic nuclear medicine procedures in progressive systemic scleroderma (PSS)

    International Nuclear Information System (INIS)

    Ammari, B.; Hotze, A.; Gruenwald, F.; Biersack, H.J.; Blitz, H.; Kuester, W.; Kreysel, H.W.

    1989-01-01

    The involvement of kidneys in progressive systemic scleroderma (PSS) is one of the most frequent causes of death in this disease. Using clinical criteria and laboratory tests only the frequency of kidney involvement would be clearly underestimated. Invasive diagnostic procedures such as biopsy and angiography can not be applied in those patients. Nuclear medicine techniques (hippurate clearance, DMSA-scan), however, offer non invasive and sensitive methods in the diagnosis of renal involvement in PSS patients. In our study 46 of 76 patients (60%) revealed pathologic findings. The mentioned diagnostic techniques show a high sensitivity and are in agreement with pathological findings described in PSS. (orig.) [de

  12. New Brunswick Laboratory. Progress report, October 1995--September 1996

    International Nuclear Information System (INIS)

    1997-04-01

    Fiscal year (FY) 1996 was a very good year for New Brunswick Laboratory (NBL), whose major sponsor is the Office of Safeguards and Security (NN-51) in the US Department of Energy (DOE), Office of Nonproliferation and National Security, Office of Security Affairs. Several projects pertinent to the NBL mission were completed, and NBL's interactions with partners and customers were encouraging. Among the partners with which NBL interacted in this report period were the International Atomic Energy Agency (IAEA), NN-51. Environmental Program Group of the DOE Chicago Operations Office, International Safeguards Project Office, Waste Isolation Pilot Plant (WIPP), Ukraine Working Group, Fissile Materials Assurance Working Group, National Institute of Standards and Technology (NIST), Nuclear Regulatory Commission (NRC), Institute for Reference Materials and Measurements (IRMM) in Belgium, Brazilian/Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), Lockheed Idaho Technologies Company, and other DOE facilities and laboratories. NBL staff publications, participation in safeguards assistance and other nuclear programs, development of new reference materials, involvement in the updating and refinement of DOE documents, service in enhancing the science education of others, and other related activities enhanced NBL's status among DOE laboratories and facilities. Noteworthy are the facts that NBL's small inventory of nuclear materials is accurately accounted for, and, as in past years, its materials and human resources were used in peaceful nuclear activities worldwide

  13. New Brunswick Laboratory. Progress report, October 1995--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Fiscal year (FY) 1996 was a very good year for New Brunswick Laboratory (NBL), whose major sponsor is the Office of Safeguards and Security (NN-51) in the US Department of Energy (DOE), Office of Nonproliferation and National Security, Office of Security Affairs. Several projects pertinent to the NBL mission were completed, and NBL`s interactions with partners and customers were encouraging. Among the partners with which NBL interacted in this report period were the International Atomic Energy Agency (IAEA), NN-51. Environmental Program Group of the DOE Chicago Operations Office, International Safeguards Project Office, Waste Isolation Pilot Plant (WIPP), Ukraine Working Group, Fissile Materials Assurance Working Group, National Institute of Standards and Technology (NIST), Nuclear Regulatory Commission (NRC), Institute for Reference Materials and Measurements (IRMM) in Belgium, Brazilian/Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), Lockheed Idaho Technologies Company, and other DOE facilities and laboratories. NBL staff publications, participation in safeguards assistance and other nuclear programs, development of new reference materials, involvement in the updating and refinement of DOE documents, service in enhancing the science education of others, and other related activities enhanced NBL`s status among DOE laboratories and facilities. Noteworthy are the facts that NBL`s small inventory of nuclear materials is accurately accounted for, and, as in past years, its materials and human resources were used in peaceful nuclear activities worldwide.

  14. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1998 mid-year progress report

    International Nuclear Information System (INIS)

    1998-05-01

    Pacific Northwest National Laboratory was awarded ten (10) Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996 and six (6) in Fiscal Year 1997. This section summarizes how each grant addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in four areas: Tank Waste Remediation, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Cleanup, and Health Effects

  15. Science to support DOE site cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program awards. Fiscal year 1998 mid-year progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Pacific Northwest National Laboratory was awarded ten (10) Environmental Management Science Program (EMSP) research grants in Fiscal Year 1996 and six (6) in Fiscal Year 1997. This section summarizes how each grant addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in four areas: Tank Waste Remediation, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Cleanup, and Health Effects.

  16. Nuclear power 1984: Progressive normalisation

    International Nuclear Information System (INIS)

    Popp, M.

    1984-01-01

    The peaceful use of nuclear power is being integrated into the overall concept of a safe long-term power supply in West Germany. The progress of normalisation is shown particularly in the takeover of all stations of the nuclear fuel circuit by the economy, with the exception of the final storage of radioactive waste, which is the responsibility of the West German Government. Normalisation also means the withdrawal of the state from financing projects after completion of the two prototypes SNR-300 and THTR-300 and the German uranium enrichment plant. The state will, however, support future research and development projects in the nuclear field. The expansion of nuclear power capacity is at present being slowed down by the state of the economy, i.e. only nuclear power projects being built are proceeding. (orig./HP) [de

  17. Analytical Chemistry Laboratory progress report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

    2000-06-15

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  18. Analytical Chemistry Laboratory progress report for FY 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-03-29

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  19. Analytical Chemistry Laboratory progress report for FY 1998

    International Nuclear Information System (INIS)

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-01-01

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL

  20. Communication of nuclear data progress: No.3(1990)

    International Nuclear Information System (INIS)

    1990-05-01

    Communication of Nuclear Data Progress (CNDP) in English is set up by Chinese nuclear committee and Chinese nuclear data center (CNDC). This is the third issue. It includes experimental measurement, theoretical calculation, data evaluation and compilation, atomic and molecular data, data library, multigroup constant generating and benchmark testing, nuclear data news in 1989

  1. Universities and national laboratory roles in nuclear engineering

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1991-01-01

    Nuclear Engineering Education is being significantly challenged in the United States. The decline in enrollment generally and the reduction of the number of nuclear engineering departments has been well documented. These declines parallel a lack of new construction for nuclear power plants and a decline in research and development to support new plant design. Precisely at a time when innovation is is needed to deal with many issues facing nuclear power, the number of qualified people to do so is being reduced. It is important that the University and National Laboratory Communities cooperate to address these issues. The Universities must increasingly identify challenges facing nuclear power that demand innovative solutions and pursue them. To be drawn into the technology the best students must see a future, a need and identify challenges that they can meet. The University community can provide that vision with help from the National Laboratories. It has been a major goal within the reactor development program at Argonne National Laboratory to establish the kind of program that can help accomplish this

  2. Nuclear Physics Laboratory 1981 annual report

    International Nuclear Information System (INIS)

    1981-06-01

    Research progress is reported in the following areas: astrophysics and cosmology, nuclear tests of fundamental symmetries, parity mixing in the hydrogen atom, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, final design and construction of the magnetic momentum filter, instrumentation and experimental techniques, and computers and computing. Publications are listed

  3. The 1989 progress report: Polytechnic school laboratories' Direction

    International Nuclear Information System (INIS)

    1989-01-01

    The 1989 progress report of the laboratories' Direction of the Polytechnic School (France) is presented. The research activities carried out in each laboratory are summarized. Scientific and technical cooperation, financial and employement aspects are included. The main fields of research are: biochemistry, chemistry, reaction mechanisms, organic synthesis, mechanics of solids, meteorology, irradiated solids, optics, physics, biophysics, lasers, mathematics, econometrics, epistemology, management and computer science [fr

  4. Analytical chemistry laboratory. Progress report for FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1997-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1997 (October 1996 through September 1997). This annual progress report is the fourteenth in this series for the ACL, and it describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  5. Argonne National Laboratory: An example of a US nuclear research centre

    International Nuclear Information System (INIS)

    Bhattacharyya, S.

    2001-01-01

    The nuclear era was ushered in 1942 with the demonstration of a sustained nuclear chain reaction in Chicago Pile 1 facility. The USA then set up five large national multi disciplinary laboratories for developing nuclear technology for civilian use and three national laboratories for military applications. Reactor development, including prototype construction, was the main focus of the Argonne National Laboratory. More than 100 power reactors operating in the USA have benefited from R and D in the national laboratories. However, currently the support for nuclear power has waned. With the end of the cold war there has also been a need to change the mission of laboratories involved in military applications. For all laboratories of the Department of Energy (DOE) the mission, which was clearly focused earlier on high risk, high payoff long term R and D has now become quite diffused with a number of near term programmes. Cost and mission considerations have resulted in shutting down of many large facilities as well as auxiliary facilities. Erosion of infrastructure has also resulted in reduced opportunities for research which means dwindling of interest in nuclear science and engineering among the younger generation. The current focus of nuclear R and D in the DOE laboratories is on plant life extension, deactivation and decommissioning, spent fuel management and waste management. Advanced aspects include space nuclear applications and nuclear fusion R and D. At the Argonne National Laboratory, major initiatives for the future would be in the areas of science, energy, environment and non-proliferation technologies. International collaboration would be useful mechanisms to achieve cost effective solutions for major developmental areas. These include reactor operation and safety, repositories for high level nuclear waste, reactor system decommissioning, large projects like a nuclear fusion reactor and advanced power reactors. The IAEA could have a positive role in these

  6. Communication of nuclear data progress (No.29)

    International Nuclear Information System (INIS)

    2003-01-01

    This is the 29th issue of Communication of Nuclear Data Progress (CNDP), in which the progress and achievements in nuclear data field in 2002 in China are carried. It includes the evaluations of complete neutron data for n+ 55,58 Mn, 99,100 Mo and covariance data evaluation for 63,65,Nat Cu; the evaluations of mass distribution data from 252 Cf spontaneous fission, prompt and delayed neutron yields for 233 U; the studies for level width broaden effect; benchmark testing calculation for 232 Th; establishment of file-6 of n+ 12 C for CENDL-3 et al. (authors)

  7. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards-Fiscal Year 1999 Mid-Year Progress Report

    International Nuclear Information System (INIS)

    Peurrung, L.M.

    1999-05-01

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, and eight in fiscal year 1998. This section summarizes how each grant addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in five areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Clean Up, and Health Effects

  8. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards-Fiscal Year 1999 Mid-Year Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, L.M.

    1999-06-30

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, and eight in fiscal year 1998. This section summarizes how each grant addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in five areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Clean Up, and Health Effects.

  9. The Swedish Research Councils' Laboratory progress report for 1975

    International Nuclear Information System (INIS)

    Rudstam, G.

    1976-01-01

    The Swedish Research Councils' Laboratory herewith presents its progress report for 1975. The report summarizes the current projects carried out by the research groups working at the laboratory. The very efficient assistance of the staff of the laboratory is greatfully acknowledged. The laboratory has been financially supported by the Atomic Research Council, the Medical Research Council, the Natural Science Research Council, and the Board of Technical Development. Valuable support in various ways has also been given by the Atomic Energy Company (AB Atomenergi). (author)

  10. Pacific Northwest Laboratory: Annual report for 1986 to the Assistant Secretary for Environment, Safety and Health: Part 5, Nuclear and operational safety

    International Nuclear Information System (INIS)

    Faust, L.G.; Kennedy, W.E.; Steelman, B.L.; Selby, J.M.

    1987-02-01

    Part 5 of the 1986 Annual Report to the Department of Energy's Assistant Secretary for Environment, Safety and Health presents Pacific Northwest Laboratory's progress on work performed for the Office of Nuclear Safety, the Office of Operational Safety, and for the Office of Environmental Analysis. For each project, as identified by the Field Task Proposal/Agreement, articles describe progress made during fiscal year 1986. Authors of these articles represent a broad spectrum of capabilities derived from three of the seven research departments of the Laboratory, reflecting the interdisciplinary nature of the work

  11. Nuclear physics and heavy element research at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Mark A; Ahle, L E; Becker, J A; Bernshein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, Jacqueline M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J [Lawrence Livermore National Laboratory, University of California, Livermore (United States)

    2009-12-31

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  12. Nuclear Structure Committee annual report 1976-1977, nuclear structure grants and laboratory agreements

    International Nuclear Information System (INIS)

    1977-01-01

    The Annual Report for the period 1 August 1976 to 31 July 1977 of the Nuclear Structure Committee of the Nuclear Physics Board, under the (United Kingdom) Science Research Council, is presented. Details are given of nuclear structure grants and laboratory agreements. (U.K.)

  13. New horizons for nuclear and radioanalytical chemistry laboratories

    International Nuclear Information System (INIS)

    Bode, P.

    2005-01-01

    Nuclear and radiochemistry are reported to suffer from a worldwide depression in support in the academic curriculum. The visibility of nuclear research groups is weak in general as can be illustrated by the low citation impact factors of the nuclear science related journals. Moreover, the use of nuclear techniques over other techniques is often insufficiently justified. Although in many countries a shortage in radiochemists is forecasted to occur by the end of this decade -and ample jobs becoming available-, students in chemistry and physics seem to prefer a career in contemporary sciences such as biotechnology, nanotechnology and genomics. Much of the research in these sciences is related to organic compounds and biomolecules or deals with elements that seemingly have little or no opportunities to be studied using radionuclides and (nuclear) radiation. Laboratories operating nuclear analytical techniques therefore need to use their creativity finding ways for participation in the scientific areas that are booming at the beginning of the 21st century. It requires an open mind on the strengths and weaknesses of existing techniques, and a departure from traditional views on measurement, analysis and even sources for activation. The unique features of using radiotracers and activatable tracers need again to be explored. Some radiochemistry laboratories at large (national) research centers have already converted their traditional technique-oriented research into more problem-oriented research, combining nuclear and complimentary non-nuclear techniques. Smaller laboratories have fewer opportunities for such holistic approaches but there are still a variety of nuclear and radiochemical techniques that fruitfully can be applied in these sciences and which also may turn attention towards the potentials of nuclear research reactor facilities, (nuclear) radiation and radionuclides, contributing to the sustainability of nuclear analytical groups. Advances in radiation

  14. Nuclear electricity - a progress report

    International Nuclear Information System (INIS)

    England, G.

    1980-01-01

    A survey of the progress of nuclear power over the past three years reveals three major features: (i) the continued operation of the first generation of commercial nuclear power stations, based on the Magnox gas-cooled reactor; (ii) the introduction and operation of the first of the second-generation stations, based on the advanced gas-cooled reactor (AGR); and (iii) the commitment of two successive Governments to a flexible thermal reactor strategy. Each of these features is considered and a number of related issues, including the safety record and cost savings to the electricity consumer, are discussed. (author)

  15. Bibliography of Connecticut Advanced Nuclear Engineering Laboratory reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-01

    This report, published in two volumes, is a bibliography of the reports published at the Connecticut Advanced Nuclear Engineering Laboratory (CANEL). The reports cover the period 1952 through 1965 and include the Aircraft Nuclear Propulsion program, the Advanced Liquid Metal Cooled Reactor program, the Advanced Reactor Materials program and the SNAP-50 program. The bibliography contains the report number, title, author, date published, and classification. In some cases where the writing of a report was a group effort, and in some reports containing compilations of certain types of data, the author column is not applicable. This is indicated by a {open_quotes}n.a.{close_quotes} in the author column. The following types of reports are included: PWAC`s, TIM`s, CNLM`s, FXM`s and miscellaneous reports. PWAC and TIM reports conform to the requirements of AEC Manual Chapter 3202-041 and 3202-042, respectively. Most of the technical information of interest generated by this project is documented in these reports. CNLM and FXM reports were written primarily for internal distribution. However, these reports contain enough information of technical interest to warrant their inclusion. All CNLM`s and those FXM`s considered to be of interest are included in this bibliography. The MPR`s (Monthly Progress Reports) are the most important of the miscellaneous categories of reports. The other miscellaneous categories relate primarily to equipment and reactor specifications. The Division of Technical Information Extension (DTIE) at Oak Ridge, Tennessee has been designated as the primary recipient of the reports in the CANEL library. When more than one copy of a report was available, the additional copies were delivered to the Lawrence Radiation Laboratory, Livermore, California.

  16. Bibliography of Connecticut Advanced Nuclear Engineering Laboratory reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-01

    This report, published in two, volumes, is a bibliography of the reports published at the Connecticut Advanced Nuclear Engineering Laboratory (CANEL). The reports cover the period 1952 through 1965 and include the Aircraft Nuclear Propulsion program, the Advanced Liquid Metal Cooled Reactor program, the Advanced Reactor Materials program and the SNAP-50 program. The bibliography contains the report number, title, author, date published, and classification. In some cases where the writing of a report was a group effort, and in some reports containing compilations of certain types of data, the author column is not applicable. This is indicated by a {open_quotes}n.a.{close_quotes} in the author column. The following types of reports are included: PWAC`s, TIM`s, CNLM`s. FXM`s and miscellaneous reports. PWAC and TIM reports conform to the requirements of AEC Manual Chapter 3202-041 and 3202-042, respectively. Most of the technical information of interest generated by this project is documented in these reports, CNLM and FXM reports were written primarily for internal distribution. However, these reports contain enough information of technical interest to warrant their inclusion. All CNLM`s and those FXM`s considered to be of interest are included in this bibliography. The MPR`s (Monthly Progress Reports) are the most important of the miscellaneous categories of reports. The other miscellaneous categories relate primarily to equipment and reactor specifications. The Division of Technical Information Extension (DTIE) at Oak Ridge, Tennessee has been designated as the primary recipient of the reports in the CANEL library. When more than one copy of a report was available, the additional copies were delivered to the Lawrence Radiation Laboratory, Livermore, California.

  17. Presentation of the Nuclear Material Metrology Laboratory (LAMMAN)

    International Nuclear Information System (INIS)

    Arpigny, S.; Biscarrat, C.; Ruas, A.; Viallesoubranne, C.; Hanssens, A.; Roche, C.

    2008-01-01

    The EQRAIN Uranium or Plutonium programmes (Evaluation of the Quality of Analysis Results in the Nuclear Industry) have led to the creation of round-robins, which require reference solutions of uranyl nitrate or of plutonium nitrate to be made available. The samples are fabricated and packaged, and their benchmark values determined, by the Nuclear Material Metrology Laboratory in the Atalante facility. All the operations are carried out by highly precise weighing, including correction for air buoyancy. In order to guarantee the preservation of reference samples, a laser-sealing apparatus is used to condition the final solutions in ampoules. Random tests to check the concentration of uranium or plutonium are carried out on a certain number of ampoules after the sealing step. The analysis are performed on a photo-gravimetric analysis line (in glove box for Pu) based on the titanium potentiometric analysis method. The ampoules are then packaged and delivered to the participating laboratories. The French nuclear laboratories participating in the EQRAIN programs belong to the Cea and to the AREVA Group, with activities covering the entire fuel cycle. They have been joined by new participants from European, Japanese and South American laboratories

  18. Presentation of the Nuclear Material Metrology Laboratory (LAMMAN)

    Energy Technology Data Exchange (ETDEWEB)

    Arpigny, S.; Biscarrat, C.; Ruas, A.; Viallesoubranne, C. [CEA/DEN/DRCP/SE2A/LAMM, Marcoule, BP 17171, 30207 Bagnols sur Ceze (France); Hanssens, A.; Roche, C. [CEA/DEN/DRCP/CETAMA Marcoule, BP 17171, 30207 Bagnols sur Ceze (France)

    2008-07-01

    The EQRAIN Uranium or Plutonium programmes (Evaluation of the Quality of Analysis Results in the Nuclear Industry) have led to the creation of round-robins, which require reference solutions of uranyl nitrate or of plutonium nitrate to be made available. The samples are fabricated and packaged, and their benchmark values determined, by the Nuclear Material Metrology Laboratory in the Atalante facility. All the operations are carried out by highly precise weighing, including correction for air buoyancy. In order to guarantee the preservation of reference samples, a laser-sealing apparatus is used to condition the final solutions in ampoules. Random tests to check the concentration of uranium or plutonium are carried out on a certain number of ampoules after the sealing step. The analysis are performed on a photo-gravimetric analysis line (in glove box for Pu) based on the titanium potentiometric analysis method. The ampoules are then packaged and delivered to the participating laboratories. The French nuclear laboratories participating in the EQRAIN programs belong to the Cea and to the AREVA Group, with activities covering the entire fuel cycle. They have been joined by new participants from European, Japanese and South American laboratories.

  19. Progress toward generating a ferret model of cystic fibrosis by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Engelhardt John F

    2003-11-01

    Full Text Available Abstract Mammalian cloning by nuclear transfer from somatic cells has created new opportunities to generate animal models of genetic diseases in species other than mice. Although genetic mouse models play a critical role in basic and applied research for numerous diseases, often mouse models do not adequately reproduce the human disease phenotype. Cystic fibrosis (CF is one such disease. Targeted ablation of the cystic fibrosis transmembrane conductance regulator (CFTR gene in mice does not adequately replicate spontaneous bacterial infections observed in the human CF lung. Hence, several laboratories are pursuing alternative animal models of CF in larger species such as the pig, sheep, rabbits, and ferrets. Our laboratory has focused on developing the ferret as a CF animal model. Over the past few years, we have investigated several experimental parameters required for gene targeting and nuclear transfer (NT cloning in the ferret using somatic cells. In this review, we will discuss our progress and the hurdles to NT cloning and gene-targeting that accompany efforts to generate animal models of genetic diseases in species such as the ferret.

  20. Safety guide for protection in nuclear medicine laboratories

    International Nuclear Information System (INIS)

    1995-01-01

    The regulations that must be taken into account during constructing the nuclear medicine laboratories to meet the requirements of radiation protection and the specifications of equipment in the laboratory, quality control, radioactive monitoring, protective procedures, personnel qualifications are given

  1. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.; Kinman, William Scott; LaMont, Stephen Philip; Podlesak, David; Tandon, Lav

    2016-01-01

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  2. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dion, Heather M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dry, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaMont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Podlesak, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-22

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  3. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    International Nuclear Information System (INIS)

    1996-08-01

    This is an annual report prepared on research education action, operation state of research instruments and others in FY 1995 at Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The laboratory has four large instruments such as high speed neutron source reactor, 'Yayoi', electron linac, fundamentally experimental equipment for blanket design of nuclear fusion reactor, and heavy radiation research equipment (HIT), of which former two are used for cooperative research with universities in Japan, and the next blanket and the last HIT are also presented for cooperative researches in Faculty of Engineering and in University of Tokyo, respectively. FY 1995 was the beginning year of earnest discussion on future planning of this facility with concentrated effort. These four large research instruments are all in their active use. And, their further improvement is under preparation. In this report, the progress in FY 1995 on operation and management of the four large instruments are described at first, and on next, research actions, contents of theses for degree and graduation of students as well as research results of laboratory stuffs are summarized. These researches are constituted mainly using these large instruments in the facility, aiming at development of advanced and new field of atomic energy engineering and relates to nuclear reactor first wall engineering, nuclear reactor fuel cycle engineering, electromagnetic structure engineering, thermal-liquid engineering, mathematical information engineering, quantum beam engineering, new type reactor design and so on. (G.K.)

  4. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This is an annual report prepared on research education action, operation state of research instruments and others in FY 1995 at Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The laboratory has four large instruments such as high speed neutron source reactor, `Yayoi`, electron linac, fundamentally experimental equipment for blanket design of nuclear fusion reactor, and heavy radiation research equipment (HIT), of which former two are used for cooperative research with universities in Japan, and the next blanket and the last HIT are also presented for cooperative researches in Faculty of Engineering and in University of Tokyo, respectively. FY 1995 was the beginning year of earnest discussion on future planning of this facility with concentrated effort. These four large research instruments are all in their active use. And, their further improvement is under preparation. In this report, the progress in FY 1995 on operation and management of the four large instruments are described at first, and on next, research actions, contents of theses for degree and graduation of students as well as research results of laboratory stuffs are summarized. These researches are constituted mainly using these large instruments in the facility, aiming at development of advanced and new field of atomic energy engineering and relates to nuclear reactor first wall engineering, nuclear reactor fuel cycle engineering, electromagnetic structure engineering, thermal-liquid engineering, mathematical information engineering, quantum beam engineering, new type reactor design and so on. (G.K.)

  5. Memphis State University Center for Nuclear Studies progress report

    International Nuclear Information System (INIS)

    1976-01-01

    This quarterly report outlines the progress made by the Center for Nuclear Studies at Memphis State University in the development of specialized educational programs for the nuclear industry through the month of February, 1976

  6. Laboratory neutrons - a breakthrough in non-nuclear disciplines

    International Nuclear Information System (INIS)

    Jervis, R.E.

    1983-01-01

    The availability of laboratory neutrons at SLOWPOKE Nuclear reactor facility, has greatly facilitated interdisciplinary applied research there. Examples of the uses of the laboratory neutrons include those involved with environmental dispersal of inorganic pollutants, and those associated with public health investigations. (UK)

  7. How the Nuclear Applications Laboratories Help in Strengthening Emergency Response

    International Nuclear Information System (INIS)

    2014-01-01

    Safety is one of the most important considerations when engaging in highly advanced scientific and technological activities. In this respect, utilizing the potential of nuclear technology for peaceful purposes also involves risks, and nuclear techniques themselves can be useful in strengthening emergency response measures related to the use of nuclear technology. In the case of a nuclear incident, the rapid measurement and subsequent monitoring of radiation levels are top priorities as they help to determine the degree of risk faced by emergency responders and the general public. Instruments for the remote measurement of radioactivity are particularly important when there are potential health risks associated with entering areas with elevated radiation levels. The Nuclear Science and Instrumentation Laboratory (NSIL) — one of the eight laboratories of the Department of Nuclear Sciences and Applications (NA) in Seibersdorf, Austria — focuses on developing a variety of specialized analytical and diagnostic instruments and methods, and transferring knowledge to IAEA Member States. These include instruments capable of carrying out remote measurements. This emergency response work carried out by the NA laboratories supports health and safety in Member States and supports the IAEA’s mandate to promote the safe and peaceful use of nuclear energy

  8. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1987-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1985 to September 30, 1986. These studies concern the structure of nuclei, the nuclear reaction mechanisms and, more and more, mesic processes in nuclear dynamics. The experiments have been carried at the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble. An important technical activity has been devoted to the construction of the supraconducting booster of the 9 MV tandem [fr

  9. Nuclear air cleaning programs in progress in France

    International Nuclear Information System (INIS)

    Mulcey, P.

    1991-01-01

    A short presentation is given of the nuclear air cleaning programs in progress in France with respect to pressurized water reactors, fuel reprocessing plants, radioactive waste management facilities, and the dismantling of nuclear facilities. The effects of fires in rooms and ventilation ducts in all nuclear facilities is being studied and computer simulation codes are being developed. A brief review of filter development and filter testing is also presented

  10. Institute for Radiation Research and Nuclear Physics. Progress report 1990

    International Nuclear Information System (INIS)

    Strohmaier, B.

    1990-01-01

    In this progress report all of the abstracts - except two - are of INIS interest. The topics of the branch sessions are (1) theoretical particle physics (2) nuclear reactions (3) evaluation of nuclear data (4) radionuclide metrology (5) applications of nuclear methods and (6) nuclear information processing. (botek)

  11. Institute for Radiation Research and Nuclear Physics. Progress report 1990

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, B [comp.

    1991-12-31

    In this progress report all of the abstracts - except two - are of INIS interest. The topics of the branch sessions are (1) theoretical particle physics (2) nuclear reactions (3) evaluation of nuclear data (4) radionuclide metrology (5) applications of nuclear methods and (6) nuclear information processing. (botek).

  12. Progress on chinese evaluated nuclear parameter library: Pt.5

    Energy Technology Data Exchange (ETDEWEB)

    Zongdi, Su; Zhongfu, Huang; Jianfeng, Liu [and others

    1996-06-01

    The progress on chinese evaluated nuclear parameter library (v) was introduced. Six sub-libraries, MCC, DLS, NLD, GDP, FBP and OMP, including their data files and management-retrieval code systems have all been finished. All six sub-libraries have been used in nuclear model calculations, nuclear data evaluations and other fields in China. The applied results show that our evaluated nuclear parameter library is satisfactory and convenient.

  13. Nuclear Physics Laboratory 1979 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E.G. (ed.)

    1979-07-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure, radiative capture, medium energy physics, heavy ion reactions, research by users and visitors, accelerator and ion source development, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  14. Nuclear Physics Laboratory 1980 annual report

    International Nuclear Information System (INIS)

    Adelberger, E.G.

    1980-09-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, instrumentation and experimental techniques, and computers and computing. Publications are listed

  15. Nuclear Physics Laboratory 1980 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E.G. (ed.)

    1980-09-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  16. Research Laboratory of Electronics Progress Report Number 133

    Science.gov (United States)

    1991-08-01

    The substantial labora- ZnSe tory renovation was completed in February; the CBE system hardware was delivered in March and Sponsors installed...laboratories of E.N.E.A. ( Energia ceedings of the International Sherwood Theory Nucleare e Energie Alternative), as well as in- Meeting, Williamsburg, Virginia

  17. Build of virtual instrument laboratory related to nuclear species specialized

    International Nuclear Information System (INIS)

    Shan Jian; Zhao Guizhi; Zhao Xiuliang; Tang Lingzhi

    2009-01-01

    As rapid development of specialized related to nuclear science,the requirement of laboratory construct is analyzed in this article at first, One total conceive, One scheme deploy soft and hardware,three concrete characteristics targets and five different phases of put in practice of virtual instrument laboratory of specialized related to nuclear science are suggest in the paper,the concrete hardware structure and the headway of build of virtual instrument laboratory are described,and the first step effect is introduced.Lastly,the forward target and the further deliberateness that the virtual instrument laboratory construct are set forth in the thesis. (authors)

  18. Nuclear theory research. Technical progress report

    International Nuclear Information System (INIS)

    1982-01-01

    Progress is briefly described on the following studies: (1) Dirac phenomenology for deuteron elastic scattering, (2) Dirac wave functions in nuclear distorted wave calculations, (3) impulse approximation for p→p → dπ + reaction above the 3-3 resonance, (4) coherent π production, (5) nuclear potentials from Dirac bound state wavefunctions, (6) nonlocality effects in nuclear reactions, (7) unhappiness factors in DWBA description of (t,p) and (p,t) reactions, (8) absolute normalization of three-nucleon transfer reactions, (9) formulation of a finite-range CCBA computer program, (10) crossing symmetric solutions of the low equations, (11) pion scattering from quark bags, (12) study of the p 11 channel in the delta model, (13) isovector corrections in pion-nucleus scattering, (14) pionic excitation of nuclear giant resonances, and (15) isospin dependence of the second-order pion-nucleus optical potential

  19. The Los Alamos National Laboratory Nuclear Vision Project

    International Nuclear Information System (INIS)

    Arthur, E.D.; Wagner, R.L. Jr.

    1996-01-01

    Los Alamos National Laboratory has initiated a project to examine possible futures associated with the global nuclear enterprise over the course of the next 50 years. All major components are included in this study--weapons, nonproliferation, nuclear power, nuclear materials, and institutional and public factors. To examine key issues, the project has been organized around three main activity areas--workshops, research and analyses, and development of linkages with other synergistic world efforts. This paper describes the effort--its current and planned activities--as well as provides discussion of project perspectives on nuclear weapons, nonproliferation, nuclear energy, and nuclear materials focus areas

  20. Progress report of the IAEA Nuclear Data Section, 2000-2001

    International Nuclear Information System (INIS)

    2002-01-01

    This paper is the progress report of the IAEA Nuclear Data Section for the years 2000-2001. The paper comprises the following topics: Budget and staff summary, nuclear data compilations, nuclear data services, development of new generation databases, the network co-ordination of the nuclear reaction data centres and of the nuclear structure and decay data evaluators. (a.n.)

  1. Technology transfer from Canadian nuclear laboratories

    International Nuclear Information System (INIS)

    MacDonald, R.D.; Evans, W.; MacEwan, J.R.; Melvin, J.G.

    1985-09-01

    Canada has developed a unique nuclear power system, the CANDU reactor. AECL - Research Company (AECL-RC) has played a key role in the CANDU program by supplying its technology to the reactor's designers, constructors and operators. This technology was transferred from our laboratories to our sister AECL companies and to domestic industries and utilities. As CANDUs were built overseas, AECL-RC made its technology available to foreign utilities and agencies. Recently the company has embarked on a new transfer program, commercial R and D for nuclear and non-nuclear customers. During the years of CANDU development, AECL-RC has acquired the skills and technology that are especially valuable to other countries embarking on their own nuclear programs. This report describes AECL-RC's thirty years' experience with the transfer of technology

  2. Computer-based nuclear radiation detection and instrumentation teaching laboratory system

    International Nuclear Information System (INIS)

    Ellis, W.H.; He, Q.

    1993-01-01

    The integration of computers into the University of Florida's Nuclear Engineering Sciences teaching laboratories is based on the innovative use of MacIntosh 2 microcomputers, IEEE-488 (GPIB) communication and control bus system and protocol, compatible modular nuclear instrumentation (NIM) and test equipment, LabVIEW graphics and applications software, with locally prepared, interactive, menu-driven, HyperCard based multi-exercise laboratory instruction sets and procedures. Results thus far have been highly successful with the majority of the laboratory exercises having been implemented

  3. Activities of IPEN Nuclear Metrology Laboratory

    International Nuclear Information System (INIS)

    Dias, M.S.; Koskinas, M.F.; Pocobi, E.; Silva, C.A.M.; Machado, R.R.

    1987-01-01

    The activities of IPEN Nuclear Metrology Laboratory, which the principal objective is radionuclides activities determination for supplying sources and standard radioactive solutions in activity are presented. The systems installed, the activity bands and some of standards radionuclides are shown. (C.G.C.) [pt

  4. Research in theoretical nuclear physics: Progress report

    International Nuclear Information System (INIS)

    1988-08-01

    In April 1988 we, along with the nuclear theory groups of Brookhaven and MIT, submitted a proposal to the Department of Energy for a national Institute of Theoretical Nuclear Physics. The primary areas of investigation proposed for this Institute are: Strong Interaction Physics--including (1) The physics of hadrons, (2) QCD and the nucleus, (3) QCD at finite temperatures and high density; nuclear astrophysics; nuclear structure and nuclear many-body theory; and nuclear tests of fundamental interactions. It is, of course, no coincidence that these are the main areas of activity of the three groups involved in this proposal and of our group in particular. Here, we will organize an outline of the progress made at Stony Brook during the past year along these lines. These four areas do not cover all of the activities of our group

  5. Institute for Radiation Research and Nuclear Physics. Progress report 1991

    International Nuclear Information System (INIS)

    Strohmaier, B.

    1991-01-01

    In this progress report all of the abstracts are of INIS interest. The topics of the branch sessions are (1) theoretical particle physics (2) nuclear reactions (3) evaluation of nuclear data (4) applications of nuclear methods and (5) environmental investigations. (botek)

  6. Institute for Radiation Research and Nuclear Physics. Progress report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, B [comp.

    1992-12-31

    In this progress report all of the abstracts are of INIS interest. The topics of the branch sessions are (1) theoretical particle physics (2) nuclear reactions (3) evaluation of nuclear data (4) applications of nuclear methods and (5) environmental investigations. (botek).

  7. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  8. ReNuAL: Renovation of the Nuclear Applications Laboratories

    International Nuclear Information System (INIS)

    Harman, Ruzanna

    2014-01-01

    The IAEA Department of Nuclear Sciences and Applications (NA) operates eight laboratories in Seibersdorf, near Vienna. Each of these laboratories performs unique functions that include supporting research and training for improving animal production and health, ensuring the effective and safe use of radiotherapy equipment, reinforcing food safety and developing hardier and higher-yielding food crops. They also contribute to protecting the global environment, enhancing countries’ capabilities in using nuclear instrumentation and analytical techniques, eliminating insect pests and managing soil and water sustainably. These are essential contributions to the IAEA’s mission of supporting the peaceful use of nuclear technologies to help meet global development challenges

  9. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1986-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1984 to September 30, 1985. These studies concern the structure of nuclei, the nuclear reaction mechanisms and, more and more, mesic processes in nuclear dynamics. The experiments have been carried at the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble, and the antiproton beams at CERN. An important technical activity has been devoted to the construction of the supraconducting booster of the 9 MV tandem [fr

  10. Progression in nuclear classification

    International Nuclear Information System (INIS)

    Wang Yuying

    1999-01-01

    In this book, summarize the author's achievements of nuclear classification by new method in latest 30 years, new foundational law of nuclear layer in matter world is found. It is explained with a hypothesis of a nucleus which it is made up of two nucleon's clusters with deuteron and triton. Its concrete content is: to advance a new method which analyze data of nuclei with natural abundance using relationship between the numbers of proton and neutron. The relationship of each nucleus increases to 4 sets: S+H=Z H+Z=N Z+N=A and S-H=K. To expand the similarity between proton and neutron to the similarity among p,n, deuteron, triton, and He-5 clusters. According to the distribution law of same kind of nuclei, it obtains that the upper limits of stable region both should be '44s'. New foundational law of nuclear system is 1,2,4,8,16,8,4,2,1. In order to explain new law, a hypothesis which nucleus is made up of deuteron and triton is developing and nuclear field of whole number is built up. And it relates that unity of matter motion, which is the most foundational form atomic nuclear systematic is similar to the most first-class form chromosome numbers of mankind. These achievements will shake the foundations of traditional nuclear science. These achievements will supply new tasks in developing nuclear theory. And shake the ground of which magic number is the basic of nuclear science. It opens up a new field on foundational research. The book will supply new knowledge for researcher, teachers and students in universities and polytechnic schools. Scientific workers read in works of research and technical exploit. It can be stored up for library and laboratory of society and universities. In nowadays of prosperity our nation by science and education, the book is readable for workers of scientific technology and amateurs of natural science

  11. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.

  12. U.K. nuclear data progress report for the period January - December 1980

    International Nuclear Information System (INIS)

    Lees, E.W.

    1981-06-01

    This report was prepared at the request of the United Kingdom Nuclear Data Committee and presents contributions from the Harwell and Winfrith laboratories of the UKAEA, the National Physical Laboratory, the National Radiological Protection Board, the University of Birmingham and the University of Edinburgh. Work is included from various collaborations between laboratories of Harwell, Dounreay, Winfrith, Windscale, MOD Aldermaston, Imperial College and Manchester University. Contributions on Chemical Nuclear Data gathered by the Chemical Nuclear Data Committee are grouped under that heading. (U.K.)

  13. Communication of nuclear data progress: No.13 (1995)

    International Nuclear Information System (INIS)

    1995-06-01

    C ommunication of nuclear data progress ( CNDP) is set up by Chinese Nuclear Data Center. This is the thirteen issue. It includes the measurements of Fe, Ni(n,xp), 58 Ni(n,α), 106,110,116 Cd(n,2n), 111 Cd(n,p), 196,198,199 Hg(n,p), 196 Hg(n,x) 195 Au reaction cross sections, Be(n,n), 58 Ni(n,α) angular distributions, and Fe, Ni(n,xp) DDCS; the theoretical calculations of P+ 11 C, d+ 11 C and n+ 63,65 Cu reaction cross sections; nuclear data evaluation method and evaluation system, the Q-value for natural element, the revision of inelastic scattering cross section of 238 U for CENDL-2.1, the evaluations of neutron monitor cross sections for 54,56∼58,Nat Fe(n,x) 51 Cr, 52,54,56 Mn and 63,65,Nat Cu(n,x) 56∼58,60 Co reactions; the benchmark testing of CENDL-2 for homogeneous fast reactor and U-fuel thermal reactor; modification and improvement of CENDL-2, progress on Chinese Evaluated Nuclear Parameter Library (CENPL) (IV); radiative loss for carbon plasma impurity; and activities and cooperation on nuclear data in China in 1994

  14. A report on recent progress of Central Analytical Laboratory (NRI Rez plc.) for upgrading capabilities for identification of illicit nuclear materials

    International Nuclear Information System (INIS)

    Malek, Z.; Sus, F.

    2002-01-01

    Full text: In the first half of the 90's, the State Office for Nuclear Safety (SONS) -- in close co-operation with other state organizations and following the IAEA's extended safeguards system - strengthened its attention to the development of procedures for the characterization of unknown nuclear materials. This problem become important in the context of increasing danger of illicit trafficking of nuclear material which emerged with the political changes in former 'Comecon' countries during late 80's and 90's. Particular attention has been drawn to the upgrade of the counter-potential in possible transit countries situated in Central Europe. The Central Analytical Laboratory as the main Czech institution working in the field of nuclear material analytical chemistry participated in the development and upgrading of analytical procedures for detailed identification and characterization of nuclear material samples. The special methods for the determination of uranium content, isotopic composition, swipe sample analysis, determination of age and long-lived radioisotopes were developed. In second half of the 90's within the IAEA Project entitled 'Special Analytical Methods for Determination of Traces Radioactivity and Detection of Undeclared Nuclear Activities' basic procedures were prepared for the determination of: - selected isotopes of the natural disintegration series in the samples of water, sediments and technological waste solutions after termination of the uranium ores mining, - age of uranium and plutonium materials based on the 230 Th/ 234 Th, 226 Ra/ 234 U and 241 Am/ 241 Pu pairs, studies on the application of the 231 Pa/ 235 U pair were started. In 1998 PHARE PH5.01/95 project, 'Assistance in setting up special analytical services including a data bank for analysis of radioactive substances and nuclear materials of unknown origin' was started. The project was funded from the European Commission's PHARE Programme. The activities were performed at the

  15. Polarized targets at triangle universities nuclear laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Seely, M.L. [North Carolina State Univ., Raleigh, NC (United States); Gould, C.R. [North Carolina State Univ., Raleigh, NC (United States); Haase, D.G. [North Carolina State Univ., Raleigh, NC (United States); Huffman, P.R. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Keith, C.D. [North Carolina State Univ., Raleigh, NC (United States); Roberson, N.R. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Tornow, W. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Wilburn, W.S. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    1995-03-01

    A summary of the polarized and aligned nuclear targets which have been constructed and used at the Triangle Universities Nuclear Laboratory is given. Statically polarized targets, typically operating at a temperature of 12 mK and a magnetic field of 7 T, have provided significant nuclear polarization in {sup 1}H, {sup 3}He, {sup 27}Al, {sup 93}Nb and {sup 165}Ho. A rotating, aligned {sup 165}Ho target is also in use. A {sup 3}He melting curve thermometer has been developed for use in statically polarized targets. A dynamically polarized proton target is under construction. ((orig.))

  16. Progress report: nuclear safety and radiation protection in France in 2005

    International Nuclear Information System (INIS)

    2007-01-01

    The Asn (Nuclear safety authority) considers that 2005 was a satisfactory year in terms of nuclear safety and radiation protection. However, further progress can and must be made. 2005 was a year of great progress for the Asn as it consolidated its organisation and working methods, in accordance with the 2005-2007 strategic plan it set for itself. The Asn continued progress in the field of radiation protection has given rise to various new regulations to improve the legislative and regulatory framework in this area. 2005 was marked by significant progress in the process of harmonizing national nuclear safety policies Against a backdrop of the preparation of a bill on management of radioactive materials and waste, to be presented to Parliament in March 2006, 2005 was a year of important milestones. The Asn control activities encompass the following seven areas: development of general regulations for nuclear safety and radiation protection; management of individual authorization requests and receipt of declarations; inspection of nuclear activities; organisation of radiological surveillance of individuals and of the environment; preparation for management of emergency situations and implementation if necessary; contribution to public information on nuclear safety and radiation protection; determination of the French position within international community. Main topics in 2005: government bill on transparency and security in the nuclear field; the challenges and ambitions of the Asn; controlling exposure to radon; EPR Reactor Project Safety; working towards a law on radioactive waste in 2006; I.R.R.T.: an international audit of Asn in 2006; harmonization of nuclear safety in Europe; Chernobyl: what has been achieved over the past 20 years; informing the Public; internal authorizations. (N.C.)

  17. Development of a new virtual nuclear reactor laboratory

    International Nuclear Information System (INIS)

    Ahmad Abrishami; Ali Pazirandeh

    2009-01-01

    Full text: Nowadays the education industry benefits from computer programs and software in various ways as well as many other industries. Here the e-learning technology uses some forms of software platform to present its contents. Virtual laboratories are superior tools in this technology. A virtual laboratory is interactive graphical user interface software that is based on known scientific laws of its virtual elements, which responses to user acts as desired in the real case. There are some known commercial and non-commercial ones. There are also some simulation software in the field of nuclear industry that has some uses in operator learning and some other applications such as analyzing the effects of human mistakes on plant safety. In this paper we discuss more about the ways to develop a virtual nuclear reactor laboratory and propose our first release of such tool. Our target reactor is Tehran Research Reactor (TRR), which is a pool type reactor. We used WIMS and COSTANZA to develop the simulator kernel of virtual laboratory. (Author)

  18. Progress on Chinese evaluated nuclear parameters library (CENPL). Pt. 3

    International Nuclear Information System (INIS)

    Su Zongdi; Ge Zhigang; Zhou Chunmei

    1994-01-01

    The progress on Chinese evaluated nuclear parameters library (CENPL) is introduced. The setting up work of each sub-library of CENPL has got some new progresses at the past period. These sub-libraries are atomic mass and characteristic constant for nuclear ground state sub-library, discrete level scheme and batch ratio of γ decay sub-library, level density parameter sub-library, giant dipole resonance parameter for γ-ray strength function sub-library and optical model parameter sub-library

  19. Nuclear chemistry progress report

    International Nuclear Information System (INIS)

    1984-09-01

    The activities of the nuclear chemistry group at Indiana University during the period September 1, 1983 to August 31, 1984, are summarized. The primary thrust of our research program has continued to be the investigation of damped collision mechanisms at near-barrier energies and of linear momentum and energy transfer in the low-to-intermediate energy regime. In addition, during the past year we have initiated studies of complex fragment emission from highly excited nuclei and have also completed measurements relevant to understanding the origin and propagation of galactic cosmic rays. Equipment development efforts have resulted in significantly improving the resolution and solid-angle acceptance of our detector systems. The experimental program has been carried out at several accelerators including the Indiana University Cyclotron Facility, the Lawrence Berkeley Laboratory SuperHILAC, the Holifield Heavy-Ion Research Facility and the National Superconducting Cyclotron Laboratory at Michigan State University. Publications and activities are listed

  20. Progress in theoretical calculation of transactinium isotope nuclear data

    International Nuclear Information System (INIS)

    Salvy, J.

    1984-05-01

    Considerable progress has been made in effective use of nuclear theory for evaluation purposes. During the past few years, a number of basic improvements have developed in nuclear models commonly used for data evaluation. Actinide data evaluation can also use such improvements, but in the actinide region a further complication arises from the presence of fission competition. Nevertheless, systematic prescriptions for calculating even predicting neutron cross sections within an extended actinide region are available. Many efforts in several laboratorie are currently devoted to improving nuclear codes to be used for evaluation purposes. However at the present time numerous basic parameters associated with the neutron-induced fission process as well as neutron and gamma-ray competition have to be predetermined as input. Systematic studies of the behaviour of these parameters have been initiated with the aim of finding general trends hopefully useful for extrapolation in cases where direct information is lacking. Such trends can emerge from suitable examination of a large number of coherent experimental data, coherent theoretical results, or a combination these. This seems at the present time to be the most promising means for improving the actinide data evaluation. The aim of this paper is only to review briefly some of the main improvements either achieved or under way. The concern will be theoretical aspects useful for evaluating actinide data in the restricted incident neutron energy range from 10 KeV to 20 MeV. It is intended to focus on examples of systematics and on some improvements expected from microscopic methods under development

  1. Progress towards a global nuclear liability regime

    International Nuclear Information System (INIS)

    2014-01-01

    During its April 2014 meeting, the Steering Committee for Nuclear Energy held a policy debate on 'Progress towards a Global Nuclear Liability Regime'. The Steering Committee heard presentations from several experts on nuclear liability issues. To prepare the delegates to the Steering Committee for the policy debate, the NEA Secretariat prepared a background note on the status of the nuclear liability regimes, as well as on current issues and challenges in implementing the regimes. This article is based on the background note and is intended to provide basic information on the relevant international conventions and an overview of recent developments to enhance the understanding of the legal framework in which policy-makers and practitioners are engaging to respond to the call for broader adherence to the international liability instruments. (authors)

  2. University of Washington, Nuclear Physics Laboratory annual report, 1995

    International Nuclear Information System (INIS)

    1995-04-01

    The Nuclear Physics Laboratory of the University of Washington supports a broad program of experimental physics research. The current program includes in-house research using the local tandem Van de Graff and superconducting linac accelerators and non-accelerator research in double beta decay and gravitation as well as user-mode research at large accelerator and reactor facilities around the world. This book is divided into the following areas: nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; fundamental symmetries and weak interactions; accelerator mass spectrometry; atomic and molecular clusters; ultra-relativistic heavy ion collisions; external users; electronics, computing, and detector infrastructure; Van de Graff, superconducting booster and ion sources; nuclear physics laboratory personnel; degrees granted for 1994--1995; and list of publications from 1994--1995

  3. Activities of the IPEN laboratory (CNEN/SP - Brazil) of nuclear metrology

    International Nuclear Information System (INIS)

    Dias, M.S.; Koskinas, M.F.; Pocobi, E.; Silva, C.A.M.; Machado, R.R.

    1987-01-01

    The determination of radionuclide activity for radioactive sources and standardized solutions is reported as the main purpose of the IPEN laboratory of nuclear metrology. The measurement systems installed in the laboratory, the measurable activity intervals and some of the standardized radionuclides (emphasizing the ones used in nuclear medicine) are presented. (M.A.C.) [pt

  4. Nuclear-chemistry research and spectroscopy with radioactive sources. Eighteenth annual progress report

    International Nuclear Information System (INIS)

    Fink, R.W.

    1982-01-01

    Progress is reported on nuclear spectroscopy studies including lifetimes of the g/sub 7/2/ shell-model intruder states in 107 109 Ag, lifetime of the new /sup 187m/Au isomer, the decay of 187 Au - 187 Pt, decay of /sup 201m,g/Po, 203 At, and 125 Ba, and L-shell orbital EC probability and decay energy in 207 Bi decay. Also progress on nuclear model calculations of nuclear structure is reported

  5. Progress on nuclear data work at Nankai University in 1995

    Energy Technology Data Exchange (ETDEWEB)

    Chonghai, Cai; Ziqiang, Yu; Yixin, Zuo [Nankai Univ., Tianjin (China)

    1996-06-01

    The research work on nuclear model programs and QMD theory are reported. Two nuclear models programs CCRMN and OMHF have finished in 1995. The theoretical research on quantum molecular dynamics (QMD) have made significant progress in 1995.

  6. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards - Fiscal Year 2000 Mid-Year Progress Report

    International Nuclear Information System (INIS)

    CD Carlson; SQ Bennett

    2000-01-01

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, eight in fiscal year 1998, and seven in fiscal year 1999. All of the fiscal year 1996 award projects have been completed and will publish final reports, so their annual updates will not be included in this document. This section summarizes how each of the currently funded grants addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research performed at PNNL is focused primarily in four areas: Tank Waste Remediation; Decontamination and Decommissioning; Spent Nuclear Fuel and Nuclear Materials; and Soil and Groundwater Cleanup

  7. Experimental nuclear and radiochemistry. Progress report, 1981

    International Nuclear Information System (INIS)

    Karol, P.J.

    1981-09-01

    Research progress is reported on the following topics: (1) the importance of classical nucleon-nucleon spatial correlations on nuclear interactions; (2) mathematical development of properly behaved skewed Gaussian function; (3) cluster interactions and true pion absorption; and (4) anomalous relativistic heavy-ion projectile fragments

  8. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards - Fiscal Year 2000 Mid-Year Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Clark D.; Bennett, Sheila Q.

    2000-07-25

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, eight in fiscal year 1998 and seven in fiscal year 1999.(a) All of the fiscal year 1996 awards have been completed and the Principal Investigators are writing final reports, so their summaries will not be included in this document. This section summarizes how each of the currently funded grants addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research performed at PNNL is focused primarily in four areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, and Soil and Groundwater Cleanup.

  9. Science to Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards - Fiscal Year 2000 Mid-Year Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    CD Carlson; SQ Bennett

    2000-07-25

    Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, eight in fiscal year 1998, and seven in fiscal year 1999. All of the fiscal year 1996 award projects have been completed and will publish final reports, so their annual updates will not be included in this document. This section summarizes how each of the currently funded grants addresses significant US Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research performed at PNNL is focused primarily in four areas: Tank Waste Remediation; Decontamination and Decommissioning; Spent Nuclear Fuel and Nuclear Materials; and Soil and Groundwater Cleanup.

  10. Communication of nuclear data progress: No.13 (1995)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    {sup C}ommunication of nuclear data progress{sup (}CNDP) is set up by Chinese Nuclear Data Center. This is the thirteen issue. It includes the measurements of Fe, Ni(n,xp), {sup 58}Ni(n,{alpha}), {sup 106,110,116}Cd(n,2n), {sup 111}Cd(n,p), {sup 196,198,199}Hg(n,p), {sup 196}Hg(n,x){sup 195}Au reaction cross sections, Be(n,n), {sup 58}Ni(n,{alpha}) angular distributions, and Fe, Ni(n,xp) DDCS; the theoretical calculations of P+{sup 11}C, d+{sup 11}C and n+{sup 63,65}Cu reaction cross sections; nuclear data evaluation method and evaluation system, the Q-value for natural element, the revision of inelastic scattering cross section of {sup 238}U for CENDL-2.1, the evaluations of neutron monitor cross sections for {sup 54,56{approx}58,Nat}Fe(n,x){sup 51}Cr, {sup 52,54,56}Mn and {sup 63,65,Nat}Cu(n,x){sup 56{approx}58,60}Co reactions; the benchmark testing of CENDL-2 for homogeneous fast reactor and U-fuel thermal reactor; modification and improvement of CENDL-2, progress on Chinese Evaluated Nuclear Parameter Library (CENPL) (IV); radiative loss for carbon plasma impurity; and activities and cooperation on nuclear data in China in 1994.

  11. North Carolina State University Nuclear Structure Research at the Triangle Universities Nuclear Laboratory. Progress report

    International Nuclear Information System (INIS)

    Seagondollar, L.W.; Waltner, A.W.; Mitchell, G.E.; Tilley, D.R.; Gould, C.R.

    1975-01-01

    A summary is presented of nuclear structure research completed at the Triangle Universities Nuclear Lab for the period 9/1/74 to 8/31/75. Included are abstracts and titles for studies of electromagnetic transitions in low-medium mass nuclei, high resolution studies, accelerator induced x-ray investigations, and energy related neutron and charged particle cross section measurements. (U.S.)

  12. Progress report from the Studsvik Neutron Research Laboratory 1990-91

    International Nuclear Information System (INIS)

    Dahlborg, U.; Ebbsjoe, I.; Holmqvist, B.

    1992-01-01

    The Studsvik Neutron Research Laboratory (NFL) is the base for the research activities at the Studsvik reactors. It is administrated by the University of Uppsala and is established to facilitate reactor based research. The laboratory is intended to, in co-operation with institutes and department at universities in Sweden, develop, construct and maintain experimental equipment for this kind of research and to make it available for scientists at Swedish universities and, if possible, also to scientists outside the universities. The research at the Studsvik facilities has during 1990 and 1991 been performed by groups form Uppsala University, Royal Institute of Technology, Stockholm, Chalmers Technical University, Gothenburg, and by scientists at NFL. The research programme of the groups is divided into three main areas, scattering of thermal neutrons, nuclear chemistry/nuclear physics, and neutron capture radiography

  13. PSI nuclear energy research progress report 1988

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-07-01

    The progress report at hand deals with nuclear energy research at PSI. The collection of articles covers a large number of topics: different reactor systems, part of the fuel cycle, the behaviour of structural materials. Examples of the state of knowledege in different disciplines are given: reactor physics, thermal-hydraulics, heat transfer, fracture mechanics, instrumental analysis, mathematical modelling. The purpose of this collection is to give a fair account of nuclear energy research at PSI. It should demonstrate that nuclear energy research is a central activity also in the new institute, the scientific basis for the continuing exploitation of nuclear power in Switzerland is preserved, work has continued not only along established lines but also new research topics were tackled, the quality of work corresponds to international standards and in selected areas is in the forefront, the expertise acquired also finds applications in non-nuclear research tasks. (author) 92 figs., 18 tabs., 316 refs

  14. Progress report 1986. Laboratory of high energy nuclear physics

    International Nuclear Information System (INIS)

    1987-01-01

    A study of hadron structure using neutrino interactions; high energy photon interactions; a search for gluinos; a spectrometer for the study of quark fusion and structure functions; measurement of the real part of the pp - scattering amplitude at 546 GeV; measurement of photon production in the fragmentation region of pp - interactions at 630 GeV; investigation of very high energy nucleus-nucleus interactions: the quagma; an experience on nucleon stability; as well as high energy nuclear physics research facilities are described [fr

  15. Progress in standards for nuclear air and gas treatment

    International Nuclear Information System (INIS)

    Burchsted, C.A.

    1978-01-01

    Standardization in nuclear air and gas treatment spans a period of more than 25 years, starting with military specifications for HEPA filters and filter media, and now progressing to the development of a formal code analogous to the ASME Boiler and Pressure Vessel Code. Whereas the current standard for components and installation of nuclear air cleaning systems is limited to safety related facilities for nuclear power plants, the proposed code will cover all types of critical ventilation and air and gas treatment installations for all types of nuclear facilities

  16. From dripline to dripline: Nuclear astrophysics in the laboratory

    International Nuclear Information System (INIS)

    Meisel, Zach

    2016-01-01

    For the better part of a century the field of nuclear astrophysics has aimed to answer fundamental questions about nature, such as the origin of the elements and the behavior of high-density, low-temperature matter. Sustained and concerted efforts in nuclear experiment have been key to achieving progress in these areas and will continue to be so. Here I will briefly review recent accomplishments and open questions in experimental nuclear astrophysics. (paper)

  17. Progress in organizing national and international comparisons for nuclear medicine measurements

    International Nuclear Information System (INIS)

    Sahagia, Maria; Waetjen, Anamaria C.; Ivan, Constantin

    2008-01-01

    The paper presents the progress registered by the Radionuclide Metrology Laboratory (RML) from IFIN-HH, in improvement of the quality of radiopharmaceuticals activity measurement, and assurance of the whole traceability chain from international level to the national users. The progress in organization of comparisons for radiopharmaceuticals activity measurement is analyzed. A detailed description of two recent national comparisons, and an international one, regarding 131 I solutions, within the frame of the IAEA's CRP E2.10.05 'Harmonization of quality practices for nuclear medicine radioactivity measurements' is done, with the analysis of the strong and week points in measurements. The most important outcome of the paper is the analysis of the evolution in quality of comparisons since a previously reported one. At the RML level, the improvements are: demonstration of the international equivalence of primary Romanian activity standard, improvement of the secondary standard, relevance of the comparison within the IAEA frame, implementation of a quality system in standardization and in comparisons, and implication of the RML in calibrations and metrological checks. The participants' reported improvements refer to growing of the awareness in quality of measurement and improvement of the measurement equipment. Reasons for future comparisons organization are presented. (author)

  18. Personal nuclear accident dosimetry at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Ward, D.C.; Mohagheghi, A.H.; Burrows, R.

    1996-09-01

    DOE installations possessing sufficient quantities of fissile material to potentially constitute a critical mass, such that the excessive exposure of personnel to radiation from a nuclear accident is possible, are required to provide nuclear accident dosimetry services. This document describes the personal nuclear accident dosimeter (PNAD) used by SNL and prescribes methodologies to initially screen, and to process PNAD results. In addition, this report describes PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study (NAD23), held during 12-16 June 1995, at Los Alamos National Laboratories. Biases for reported neutron doses ranged from -6% to +36% with an average bias of +12%

  19. Progress in high energy physics and nuclear safety : Proceedings of the NATO Advanced Research Workshop on Safe Nuclear Energy

    CERN Document Server

    Polański, Aleksander; Begun, Viktor

    2009-01-01

    The book contains recent results on the progress in high-energy physics, accelerator, detection and nuclear technologies, as well as nuclear safety in high-energy experimentation and in nuclear industry, covered by leading experts in the field. The forthcoming experiments at the Large Hadron Collider (LHC) at CERN and cosmic-ray experiments are highlighted. Most of the current high-energy experiments and their physical motivation are analyzed. Various nuclear energy safety aspects, including progress in the production of new radiation-resistant materials, new and safe nuclear reactor designs, such as the slowly-burning reactor, as well as the use of coal-nuclear symbiotic methods of energy production can be found in the book.

  20. Development of an in vitro laboratory manual for nuclear medicine technology students

    International Nuclear Information System (INIS)

    Meyers, A.

    1989-01-01

    This study evaluated existing in vitro education materials in qualitative and quantitative parameters that currently exist to educate potential clinicians of nationally accredited nuclear medicine programs. A review of over 300 articles, texts, and manuals pertaining to in vitro nuclear medicine procedures clearly demonstrated that no in vitro laboratory manual for undergraduate students presently exited. Every nuclear medicine program director in the United States was surveyed. They were asked for their overall philosophy in terms of developing an in vitro manual and requested to evaluate the significant of 22 general principles/concepts and 34 specific laboratory testing procedures. From the response to the survey, an in vitro nuclear medicine manual was created and appended to the study. The manual consists of lecture and study material, chapter reviews, and laboratory assignments and exercises

  1. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    International Nuclear Information System (INIS)

    1997-01-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel

  2. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  3. Termination of past nuclear activities at the nuclear research institute

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2006-01-01

    Many countries, particularly in Europe, started with nuclear programs in the fifties of the last century. As a consequence nuclear research institutes were established, among them also the Institute Jozef Stefan (IJS) in Slovenia. The nuclear activities at the IJS were related to the development of uranium ore processing technology and technologies comprising uranium oxide and hexafluoride. After very intensive period of nuclear activities the decline began step by step due to different reasons. Various approaches of the termination and decommissioning of facilities were used. The inspectors of the Slovenian Nuclear Safety Administration (SNSA), the responsible authority, started intensive activities at the IJS at the end of 2004. All together 22 research laboratories or research units were included in the inspection program and around 50 researchers of the IJS were involved into the inspection procedures. The inspection was very intensive in the laboratories and storages where past nuclear activities took place and were later on abandoned. As a result several contaminated equipments and sites in addition to around 200 unregistered sources were found. The majority of these sources is related to past nuclear activities. The inspection program related to the terminated research activities is still in progress. The IJS immediately started with the remediation activities including the development of methodology related to decontamination of radioactive liquids. The decontamination of two nuclear laboratories and three different storages of radioactive waste at its sites is in progress. Sixty of the above mentioned sources have been already stored in the Central Interim Storage for Radioactive Waste. (author)

  4. Nuclear astrophysics at Gran Sasso Laboratory: the LUNA experiment

    Science.gov (United States)

    Cavanna, Francesca

    2018-05-01

    LUNA is an experimental approach for the study of nuclear fusion reactions based on an underground accelerator laboratory. Aim of the experiment is the direct measurement of the cross section of nuclear reactions relevant for stellar and primordial nucleosynthesis. In the following the latest results and the future goals will be presented.

  5. Genetic variants in nuclear-encoded mitochondrial genes influence AIDS progression.

    Directory of Open Access Journals (Sweden)

    Sher L Hendrickson

    2010-09-01

    Full Text Available The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression.Here we explore whether single nucleotide polymorphisms (SNPs within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4 on chromosome 12 and peroxisomal D3,D2-enoyl-CoA isomerase (PECI on chromosome 6.Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclear-encoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis.

  6. Communication of nuclear data progress: No.9 (1993)

    International Nuclear Information System (INIS)

    1993-06-01

    The is the ninth issue of > (CNDP), in which the nuclear data progress in China during the passed year is carried. It includes optical model parameters for both small angles and larger angles elastic scattering, n-T phase shift analyses, forbidden angular region of secondary particle emission, introduction to codes CMUP2 and CFUP1, diffusion process of nuclear fission, techniques used for charged particle evaluation at CNDC, evaluation of neutron nuclear data for 7 Li and revision on recommended data of 238 U for CENDL-2, Chinese Evaluated Nuclear Parameter Library (CENPL) (II) and computer program library at CNDC, covariance data evaluation for experimental data and several examples of least squares combination for derived data, and calculation of thermal neutron scattering law for anisotropic microcrystals etc

  7. U.K. nuclear data progress report for the period January-December 1982

    International Nuclear Information System (INIS)

    Findlay, D.J.S.

    1983-04-01

    This report was prepared at the request of the United Kingdom Nuclear data Committee and presents contributions from the Harwell and Winfrith Laboratories of the UKAEA, the National Physical Laboratory, the Birmingham Radiation Centre, the University of Birmingham, the University of Aston in Birmingham, the University of Edinburgh, and the University of Liverpool. The report includes work from various collaborations between Harwell, Winfrith, the Universities of Birmingham, Manchester and Guelph (Canada) and the Bureau International des Poids et Mesures, and between the National Physical Laboratory, the Institut fuer Radiumforschung und Kernphysik (Vienna) and the Institute of Atomic Energy (Beijing). Contributions on ''Chemical Nuclear Data'' gathered by the Chemical Nuclear Data Committee are grouped under that heading. (author)

  8. Progress on study of nuclear data theory and related fields at the Theory Group of CNDC

    Energy Technology Data Exchange (ETDEWEB)

    Zhigang, Ge [China Nuclear Data Center, CIAE (China)

    1996-06-01

    The Theory Group of CNDC (China Nuclear Data Center) has made a lot of progress in nuclear reaction theory and its application as well as many other related fields in 1995. The recent progress in nuclear reaction theory study and its applications, the recent progress in the nuclear data calculation and related code development are introduced. The production rate of radioactive nuclear beam induced by 70 MeV protons on {sup 72}Ge target were calculated. The calculated results are presented.

  9. Group fellowship training in nuclear spectroscopy instrumentation maintenance at the Seibersdorf Laboratories

    International Nuclear Information System (INIS)

    Xie, Y.; Abdel-Rassoul, A.A.

    1989-01-01

    Nuclear spectroscopy instruments are important tools for nuclear research and applications. Several types of nuclear spectrometers are being sent to numerous laboratories in developing countries through technical co-operation projects. These are mostly sophisticated systems based on different radiation detectors, analogue and digital circuitry. In most cases, they use microprocessor or computer techniques involving software and hardware. Maintenance service and repair of these systems is a major problem in many developing countries because suppliers do not set up service stations. The Agency's Laboratories at Seibersdorf started conducting group fellowship training on nuclear spectroscopy instrumentation maintenance in 1987. This article describes the training programme

  10. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    Science.gov (United States)

    Bemmerer, D.; Cowan, T. E.; Gohl, S.; Ilgner, C.; Junghans, A. R.; Reinhardt, T. P.; Rimarzig, B.; Reinicke, S.; Röder, M.; Schmidt, K.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M.; Wagner, A.; Wagner, L.; Zuber, K.

    2015-05-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, proteced from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise has been carried out using the same HPGe detector in a typical nuclear astrophysics setup at several sites, including the Dresden Felsenkeller underground laboratory. It was found that its rock overburden of 45m rock, together with an active veto against the remaining muon flux, reduces the background to a level that is similar to the deep underground scenario. Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  11. Progress report on nuclear data research in the Federal Republic of Germany for the period April 1, 1992 to March 31, 1993

    International Nuclear Information System (INIS)

    Qaim, S.M.

    1993-07-01

    This report has been prepared to promote the exchange of nuclear data research information between the Federal Republic of Germany and other member states of OECD/NEA and IAEA. It covers progress reports from KfK Karlsruhe, KFA Juelich, the universities of Dresden, Hannover, Koeln, Mainz, Marburg as well as from PTB Braunschweig and FIZ Karlsruhe. The emphasis in the work reported here is on measurement, compilation and evaluation of nuclear data for pure and applied science programmes, such as those relevant to fission- and fusion-reactor technology, radioactive waste management, accelerator shielding and development, astrophysics research, cosmogenic and meteoritic investigations, production of medically important radioisotopes, etc. Each contribution is presented under the laboratory heading from where the work is reported. The names of other participating laboratories are also mentioned. When the work is relevant to the World Request List for Nuclear Data, WRENDA 87/88 (INDC(SEC)-095/URSF), the corresponding identification numbers are given. (orig.)

  12. Progress report to the Nuclear Analysis Subcomittee for Nuclear Technology and Radiation for the period 1 January 1977 to 31 December 1977

    International Nuclear Information System (INIS)

    This report covers the activities of the Activation Analysis Research Group (AARG) in the Nuclear Physics Research Unit of the University of the Witwatersrand. This Group has components from the Atomic Energy Board, the National Institute of Metallurgy, and receives support also from the Chamber of Mines Research Organization, the National Cancer Association, Diamond Research Laboratory and the University of the Witwatersrand. In this report the major emphasis is given to those projects carried out by the Atomic Energy Board-seconded scientific staff, but all other projects are listed with a brief note on progress, for completeness and in the interest of obviating unnecessary duplication

  13. Communication of nuclear data progress: No.4(1990)

    International Nuclear Information System (INIS)

    1990-12-01

    Communication of Nuclear Data Progress (CNDP) in English is set up by Chinese Nuclear Committee and Chinese Nuclear Data Center (CNDC). This is the fourth issue. It includes measurements of neutron smaee angle scattering cross sections for Fe, Ni and Cr; n-D scattering phase-shift and 17 O R-matrix analyses; calculations of neutron elastic and inclastic scattering from 7 Li; evaluations of 2 H(n,2n), 23 Na, 59 Co(n, γ), 235,238 U, 239 Pu(n,f) and (n, γ) cross sections; and a fitting code of corrected SLBW with multlievel effect (CBNFIT); R-matrix analysis code (RAC) etc

  14. Progress report 2005-2007 - Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2008-01-01

    This progress report presents the results of the R and D center of IPEN in accordance with the main programs: Radiopharmacy; Application of Ionizing Radiations; Nuclear Science and Technology; Nuclear Reactors and Fuel Cycle; Environmental Science and Technology; Renewable Energies; Materials and Nanotechnology; Biotechnology; Lasers Technology and Education

  15. Progress report on nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions

  16. Development and Manufacture of the Nuclear Laboratory Equipment

    International Nuclear Information System (INIS)

    Youm, Ki Un; Kim, J. K.; Kim, K. S.; Lee, I. B.; Youm, J. H.; Park, I. W.

    2008-12-01

    This report on development and manufacture of the nuclear laboratory equipment contains the work scope and contents performed for supporting the researches and the developments projects efficiently. And also, the records for the principal production design, the manufacture contents, the working drawings and the CNC program are described in it. Most of works are to support the successful and convenient performance of the R and D projects by development and manufacturing the requested laboratory equipment

  17. Development and Manufacture of the Nuclear Laboratory Equipment

    International Nuclear Information System (INIS)

    Youm, Ki Un; Moon, J. S.; Lee, I. B.; Youn, J. H.

    2010-12-01

    This report on development and manufacture of the nuclear laboratory equipment contains the work scope and contents performed for supporting the researches and the developments projects efficiently. And also, the records for the principal production design, the manufacture contents, the working drawings and the CNC program are described in it. Most of works are to support the successful and convenient performance of the R and D projects by development and manufacturing the requested laboratory equipment

  18. Development and Manufacture of the Nuclear laboratory equipment

    International Nuclear Information System (INIS)

    Youm, Ki Un; Lee, I. B.; Youm, J. H.

    2009-12-01

    This report on development and manufacture of the nuclear laboratory equipment contains the work scope and contents performed for supporting the researches and the developments projects efficiently. And also, the records for the principal production design, the manufacture contents, the working drawings and the CNC program are described in it. Most of works are to support the successful and convenient performance of the R and D projects by development and manufacturing the requested laboratory equipment

  19. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    International Nuclear Information System (INIS)

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor's Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced

  20. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  1. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  2. Progress on Chinese evaluated nuclear parameter library (CENPL) (II)

    International Nuclear Information System (INIS)

    Su Zhongdi; Ge Zhigang; Zhou Chunmei

    1993-01-01

    CENPL collected, evaluated and compiled nuclear basic constants and model parameters. CENPL-1 contain six sub-libraries, they are: (1) Atomic masses and characteristic constants for nuclear ground states; (2) discrete level schemes and branch ratios of γ decay; (3) level density parameters; (4) giant dipole resonance parameters for γ-ray strength function (5) fission barrier parameter; (6) optical model parameters. Their progresses are introduced

  3. Testing times: A nuclear weapons laboratory at the end of the Cold War

    International Nuclear Information System (INIS)

    Gusterson, H.

    1992-01-01

    This dissertation focuses on the role of discursive and other practices in the construction of two alternative regimes of truth in regard to nuclear weapons, and in the cultural production of persons at the Livermore Laboratory and in the local anti-nuclear movement. In the 1980s the scientists' regime of truth was challenged by a heterogeneous anti-nuclear movement recruited largely from the humanistic middle class - a class fragment profoundly hostile to the policies of the Reagan Administration. The movement attacked the Laboratory in a number of ways, ranging from local ballot initiatives and lobbying in Washington to civil disobedience at the Laboratory. By the end of the 1980s this movement, in combination with Gorbachev's reforms in the Soviet Union and a decade of internal scandals at the Laboratory, left the Laboratory weakened - though Laboratory scientists and managers are currently working to adapt the system of ideas and practices evolved during the Cold War to legitimate continued weapons work in a post-Cold War environment

  4. Space nuclear safety program. Progress report, October 1983

    International Nuclear Information System (INIS)

    Bronisz, S.E.

    1984-03-01

    This technical monthly report covers studies related to the use of 238 PuO 2 in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory

  5. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    Full text: In 2002, the US Department of Energy (US DOE) transferred sponsorship of the INEEL and ANL-W to the DOE Office of Nuclear Energy, Science and Technology and designated the INEEL and ANL-W as the nation's lead laboratories for nuclear reactor and nuclear fuel cycle research and development. This transfer acknowledged the laboratories' history, infrastructure, expertise and commitment to collaborate broadly in order to fulfill its assigned role as the nation's center for nuclear energy research and development. Key to this role is the availability of well-educated and trained nuclear engineers, professionals from other disciplines of engineering, nuclear scientists, and others with advanced degrees in supporting disciplines such as physics, chemistry, and math. In 2005 the INEEL and ANL-W will be combined into the Idaho National Laboratory (INL). One of US DOE's objectives for the INL will be for it to take a strong role in the revitalization of nuclear engineering and nuclear science education in the US. Responding to this objective for the INL and the national need to rejuvenate nuclear engineering and nuclear science research and education, ISU, University of Idaho (UI), Boise State University, the INEEL, and ANL-W are all supporting a new Institute of Nuclear Science and Engineering (INSE), initially proposed by and to be administered by ISU. The Institute will rely on the resources of both universities and the INL to create a US center for reactor and fuel cycle research to development and attract outstanding faculty and students to Idaho and to the INL. The Institute and other university based education development efforts represent only one component of a viable Human Resources Pipeline from university to leading edge laboratory researcher. Another critical component is the successful integration of new graduates into the laboratory research environment, the transfer of knowledge from senior researchers, and the development of these individuals into

  6. Materials characterization capabilities at DOE Nuclear Weapons Laboratories and Production Plants

    International Nuclear Information System (INIS)

    Pyper, J.W.

    1984-06-01

    The materials characterization and analytical chemistry capabilities at the 11 DOE Nuclear Weapons Laboratories or Production Plants have been surveyed and compared. In general, all laboratories have similar capabilities and equipment. Facilities or capabilities that are unique or that exist at only a few laboratories are described in detail

  7. Progress report 2011-2013 - Brazilian Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2014-01-01

    This progress report presents the results of the R&D center of IPEN in accordance with the main programs: Lasers Technology, Applications of Ionizing Radiations, Biotechnology, Renewable Energies, Radiopharmacy, Nuclear Science and Technology, Environmental Science and Technology, Nuclear Reactors and Fuel Cycle, Materials and Nanotechnology, Nuclear Safety, Education, Brazilian Multipurpose Reactor and Scientific and Technical Production

  8. Progress report 2008-2010 - Brazilian Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2011-01-01

    This progress report presents the results of the R and D center of IPEN in the areas of: Lasers Technology; Renewable Energies; Nuclear Reactors and Fuel Cycle; Applications of Ionizing Radiations; Nuclear Science and Technology; Materials and Nanotechnology; Environmental Science and Technology; Radiopharmacy; Nuclear Safety; and Education. Also presents the Technical and Scientific Production od the center

  9. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    Energy Technology Data Exchange (ETDEWEB)

    McAlpine, Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  10. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    International Nuclear Information System (INIS)

    McAlpine, Bradley

    2015-01-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  11. The Development of a Human Systems Simulation Laboratory at Idaho National Laoboratory: Progress, Requirements and Lessons Learned

    International Nuclear Information System (INIS)

    Gertman, David I.; LeBlanc, Katya L.; Phoenix, William; Mecham, Alan R.

    2010-01-01

    Next generation nuclear power plants and digital upgrades to the existing nuclear fleet introduce potential human performance issues in the control room. Safe application of new technologies calls for a thorough understanding of how those technologies affect human performance and in turn, plant safety. In support of advancing human factors for small modular reactors and light water reactor sustainability, the Idaho National Laboratory (INL) has developed a reconfigurable simulation laboratory capable of testing human performance in multiple nuclear power plant (NPP) control room simulations. This paper discusses the laboratory infrastructure and capabilities, the laboratory's staffing requirements, lessons learned, and the researcher's approach to measuring human performance in the simulation lab.

  12. Progress in resolving construction issues on nuclear projects

    International Nuclear Information System (INIS)

    Reedy, R.F.

    1985-01-01

    The cost of nuclear plant construction in the United States can be drastically reduced. Progress is being made in the reduction of construction costs and with continuing effort much more can be done. The easiest way to attack high costs is to eliminate the unnecessary repairs and rework in construction, along with the time consuming evaluations and dispositions, and to use common sense in design practices. By doing this, millions of dollars could easily be cut from the cost of construction of nuclear powerplants

  13. Exploring hypothetical learning progressions for the chemistry of nitrogen and nuclear processes

    Science.gov (United States)

    Henry, Deborah McKern

    Chemistry is a bridge that connects a number of scientific disciplines. High school students should be able to determine whether scientific information is accurate, how chemistry applies to daily life, and the mechanism by which systems operate (NRC, 2012). This research focuses on describing hypothetical learning progressions for student understanding of the chemical reactions of nitrogen and nuclear processes and examines whether there is consistency in scientific reasoning between these two distinct conceptual areas. The constant comparative method was used to analyze the written products of students including homework, formative and summative tests, laboratory notebooks, reflective journals, written presentations, and discussion board contributions via Edmodo (an online program). The ten participants were 15 and 16 year old students enrolled in a general high school chemistry course. Instruction took place over a ten week period. The learning progression levels ranged from 0 to 4 and were described as missing, novice, intermediate, proficient, and expert. The results were compared to the standards set by the NRC with a lower anchor (expectations for grade 8) and upper anchor (expectations for grade 12). The results indicate that, on average, students were able to reach an intermediate level of understanding for these concepts.

  14. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    International Nuclear Information System (INIS)

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-01-01

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL)

  15. Laboratory directed research and development. FY 1995 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  16. Laboratory-directed research and development

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Caughran, A.B.

    1992-05-01

    This report summarizes progress from the Laboratory-Directed Research and Development (LDRD) program during fiscal year 1991. In addition to a programmatic and financial overview, the report includes progress reports from 230 individual R ampersand D projects in 9 scientific categories: atomic and molecular physics; biosciences; chemistry; engineering and base technologies; geosciences; space sciences, and astrophysics; materials sciences; mathematics and computational sciences; nuclear and particle physics; and plasmas, fluids, and particle beams

  17. Annual Continuation And Progress Report For Nuclear Theory At Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ormand, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Quaglioni, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schunck, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vranas, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Nuclear Theory research under the auspices of the Department of Energy (DOE) Office of Nuclear Physics (NP) is conducted within several funding sources and projects. These include base funding, and early career award, and a collaborative SciDAC-­3 award that is jointly funded by DOE/NP and the Advanced Simulations and Computations (ASC) effort within the National Nuclear Security Agency (NNSA). Therefore, this annual report is organized within the three primary sections covering these projects.

  18. MIT nuclear reactor laboratory high school teaching program

    International Nuclear Information System (INIS)

    Olmez, I.

    1991-01-01

    For the last 6 years, the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory's academic and scientific staff a have been conducting evening seminars for precollege science teachers, parents, and high school students from the New England area. These seminars, as outlined in this paper, are intended to give general information on nuclear technologies with specific emphasis on radiation physics, nuclear medicine, nuclear chemistry, and ongoing research activities at the MIT research reactor. The ultimate goal is to create interest or build on the already existing interest in science and technology by, for example, special student projects. Several small projects have already been completed ranging from environmental research to biological reactions with direct student involvement. Another outcome of these seminars was the change in attitudes of science teachers toward nuclear technology. Numerous letters have been received from the teachers and parents stating their previous lack of knowledge on the beneficial aspects of nuclear technologies and the subsequent inclusion of programs in their curriculum for educating students so that they may also develop a more positive attitude toward nuclear power

  19. Nuclear physics group report

    International Nuclear Information System (INIS)

    1982-04-01

    A brief description is given of the operation and maintenance of the cyclotron. The computors and data collection system are also briefly described, as is the nuclear instrumentation at the cyclotron laboratory. A number of experiments in nuclear reactions and nuclear structure which are in progress or soon to be reported are presented. Projects in theoretical nuclear physics and radiation physics are also described. Lists of seminars, lectures, visitors, conferences and publications are given. (RF)

  20. Research and service capabilities of the National Nuclear Forensic Research Laboratory

    International Nuclear Information System (INIS)

    Romero G, E. T.; Hernandez M, H.; Flores C, J.; Paredes G, L. C.

    2016-09-01

    According to the recommendations of the International Atomic Energy Agency, Mexico is taking steps to combat illicit trafficking in nuclear material. The creation of a National Nuclear Forensic Research Laboratory (Lanafonu, acronym in Spanish) has been assigned to the Instituto Nacional de Investigaciones Nucleares (ININ, Mexico) in 2014. The objectives of this Laboratory are: to combat illicit trafficking in nuclear materials, to optimize scientific processes and techniques used to analyze nuclear materials (orphans or radioactive sources), environmental and potential biological sources as a result of the handling, transport and final storage. At present, the Lanafonu facilities are focused on the optimization of emergency and routine protocols for measuring radioisotopes in environmental and biological samples using inductive coupling mass spectrometer with magnetic sector. The main activities are: i) optimization of the methods for measuring the isotopes of Pu by alpha-spectrometry, Icp-SFMS and AMS (accelerator mass spectrometry), ii) development or radiochemical methods for routine situations and nuclear emergencies, iii) participation in the scientific technical commission on nuclear forensic science, iv) participation in international intercomparison exercises to optimize and validate methods, and v) consolidation of Lanafonu in Mexico and the IAEA. (Author)

  1. Design of steel energy-absorbing restrainers and their incorporation into nuclear power plants for enhanced safety. Progress report

    International Nuclear Information System (INIS)

    1980-03-01

    This program for the development of steel energy-absorbing restrainers originated as a five year multi-institutional, interdisciplinary program. The resources of the University of California, Berkeley (UCB), the Earthquake Engineering Research Center, Richmond (EERC), Massachusetts Institute of Technology (MIT), and Battelle Pacific Northwestern Laboratories (BPNL) are utilized as well as advisors from industry, the utilities and the US Nuclear Regulatory Commission. The present progress report involves the areas of experimental testing on the shaking table at the EERC, restrainer device design and testing, structural analyses and materials testing

  2. Summer school in nuclear and radiochemistry at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Kolsky, K.L.

    2005-01-01

    The U.S. Department of Energy supports 24 fellowships for students to attend six-week programs at either San Jose State University in California, or Brookhaven National Laboratory (BNL) in New York. The American Chemical Society through the Division of Nuclear Science and Technology operates both schools. The twelve students at the BNL program are enrolled in the State University of New York at Stony Brook (SUNYSB) and receive 3 college credits for the lecture course (CHE-361) and 3 additional credits for the laboratory course (CHE-362). In addition to lectures and laboratories, students tour various nuclear facilities offsite, at BNL, and at SUNYSB. Opportunities are given the students to interact with faculty and scientists within the profession through the Guest Lecture Program. Further details are discussed along with results of student surveys for the years 1999 through 2002. (author)

  3. Cyclotron based nuclear science. Progress report, April 1, 1985-March 31, 1986

    International Nuclear Information System (INIS)

    Youngblood, D.H.

    1986-08-01

    Progress report for cyclotron based nuclear science cyclotron facility are summarized. Research is described under the headings heavy ion reactions, nuclear theory, atomic studies and activation analysis, superconducting cyclotron and instrumentation. Publications are listed

  4. Retrospect over past 25 years at Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Aoki, Shigebumi

    1983-01-01

    Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, was established on April 1, 1956, with the aims of the investigation on the peaceful use of nuclear energy and of the education of scientists and engineers in this field. This report reviews the history of the Laboratory during 25 years and traces the process of growth concerning research divisions, buildings, large-scale experimental facilities and the education in the graduate course for nuclear engineering. In addition, considering what the Laboratory has to be and what the future plan will be, it is mentioned that the research interest should be extended to the field of nuclear fusion reactor, especially the blanket engineering, as a long-term future project of the Research Laboratory. (author)

  5. Progress report on nuclear data activities in Sweden for 1980

    International Nuclear Information System (INIS)

    Conde, H.

    1981-04-01

    The report contains information from laboratories in Sweden about measurements and compilations which are relevant to obtain nuclear data for research and development in different applied fields of nuclear physics. The report also contains short information about changes of existing experimental facilities. Reports relevant to the nuclear energy field are given of neutron cross section measurements and studies of the fission process. Reports are also given of nuclear structure and decay data measurements especially fission product nuclear data measurements of importance for the research on reactor safety and nuclear waste handling. Charged particle and photonuclear cross section measurements with applications in e.g. activation analysis and the production of radioisotopes for medical use are reported as well.(author)

  6. Theoretical nuclear structure and astrophysics. Progress report for 1993-1995

    International Nuclear Information System (INIS)

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1995-01-01

    This research effort is directed toward theoretical support and guidance for the developing fields of radioactive ion beam (RIB) physics, computational and nuclear astrophysics, and the interface between these disciplines. The authors are concerned both with the application of existing technologies and concepts to guide the initial RIB program, and the development of new ideas and new technologies to influence the longer-term future of nuclear structure physics and astrophysics. The authors report substantial progress in both areas. One measure of progress is publications and invited material. The research described here has led to more than 70 papers that are published, accepted, or submitted to refereed journals, and to 46 invited presentations at conferences and workshops

  7. Nuclear Physics Laboratory, University of Washington annual report

    International Nuclear Information System (INIS)

    1998-04-01

    The Nuclear Physics Laboratory at the University of Washington in Seattle pursues a broad program of nuclear physics. These activities are conducted locally and at remote sites. The current programs include in-house research using the local tandem Van de Graaff and superconducting linac accelerators and non-accelerator research in solar neutrino physics at the Sudbury Neutrino Observatory in Canada and at SAGE in Russia, and gravitation as well as user-mode research at large accelerators and reactor facilities around the world. Summaries of the individual research projects are included. Areas of research covered are: fundamental symmetries, weak interactions and nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; ultra-relativistic heavy ions; and atomic and molecular clusters

  8. Nuclear spectroscopic studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  9. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, J.L.; Powell, J.A. (comps.)

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

  10. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    International Nuclear Information System (INIS)

    McElroy, J.L.; Powell, J.A.

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs

  11. A program in medium-energy nuclear physics

    International Nuclear Information System (INIS)

    Berman, B.L.; Dhuga, K.S.

    1992-01-01

    This report reviews progress on our nuclear-physics program for the last year, and includes as well copies of our publications and other reports for that time period. The structure of this report follows that of our 1991 Renewal Proposal and Progress Report: Sec. II outlines our research activities aimed at future experiments at CEBAF, NIKHEF, and Bates; Sec. III gives results of our recent research activities at NIKHEF, LAMPF, and elsewhere; Sec. IV provides an update of our laboratory activities at GWU, including the acquisition of our new Nuclear Detector Laboratory at our new Virginia Campus; and Sec. V is a list of our publications, proposals, and other reports. copies of those on medium-energy nuclear physics are reproduced in the Appendix

  12. Theoretical nuclear structure and astrophysics. Progress report for 1996

    International Nuclear Information System (INIS)

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1996-01-01

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma ray spectroscopy, computational and nuclear astrophysics, and the interface between these disciplines. The authors report substantial progress in all those areas. One measure of progress is publications and invited material. The research described here has led to more than 43 papers that are published, accepted, or submitted to refereed journals, and to 15 invited presentations at conferences and workshops

  13. The 1988 progress report of the Nuclear Safety and Protection Institut

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The 1988 progress report of the Nuclear Safety and Protection Institut (CEA, France). The Institute's fields of action involve: The activities and technical safety of the nuclear power plants, the environmental and human radiation protection which includes technical, health and medical aspects, the nuclear materials compatibility and control and the accident intervention actions. The 1988 Institute activities are characterized by the continuity of the previous technical safety directives, by the improvement of the nuclear risk communication and of the international cooperation [fr

  14. Nuclear theory. 1998 progress report

    International Nuclear Information System (INIS)

    1998-01-01

    Summaries of progress made on the following topics are given: (1) nonresonant contributions to inelastic N→Δ(1232) parity violation; (2) neutron distribution effects in elastic nuclear parity violation; (3) Wilson RG for scalar-plus-fermion field theories at finite density; (4) Perturbation theory for spin ladders using angular momentum coupled bases; (5) mean-field theory for spin ladders using angular momentum density; (6) finite temperature renormalization group effective potentials for the linear Sigma model; (7) negative-parity baryon resonances from lattice QCD; (8) the N→Δ electromagnetic transition amplitudes from QCD sum rules; and (9) higher nucleon resonances in exclusive reactions (γ, πN) on nuclei

  15. Nuclear fuel cycle safety research at Sandia Laboratories

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.

    1978-11-01

    This paper provides a brief introduction to Sandia Laboratories and an overview of Nuclear Regulatory Commission sponsored safety research with particular emphasis on light water reactor related activities. Several experimental and analytical programs are highlighted and the range of activities of a typical staff member illustrated

  16. Progress report on nuclear spectroscopic studies, June 1, 1977--May 31, 1978

    International Nuclear Information System (INIS)

    Bingham, C.R.; Riedinger, L.L.; Guidry, M.W.

    1978-01-01

    Research progress is summarized for activities of the University of Tennessee department of physics and astronomy in the following areas: (1) in-beam spectroscopy of high-spin state, (2) Coulomb-nuclear interference and inelastic heavy ion scattering (3) Coulomb excitation, nuclear theory, (4) nuclear structure studies with alpha-induced direct reactions, and (5) developmental activities

  17. Communication of nuclear data progress (No.27)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    This is the 27th issue of Communication of Nuclear Data Progress (CNDP), in which the achievements in nuclear data field for the last year in China are carried. It includes the measurements of {sup 6}Li(n, t){sup 4}He differential cross section at 1.85, 2.67 MeV, and {sup 197}Au(n, 2n) {sup 196m2}Au reaction cross sections at around 14 MeV, theoretical calculations of n + {sup 112,120}Sn cross section and spectra, BAR-MOM code and its application, a testing of RIPL with UNF code calculation in energy region 0.1-20 MeV, and the comparison of two level density models calculation in energy region 0-20 MeV; evaluations of prompt and delayed neutron yields for {sup 239}Pu, {sup 197}Au(n, 2n) {sup 196}Au cross section, the effect of the decay data on activation cross section. Also the activities and cooperation on nuclear data in China are summarized.

  18. Communication of nuclear data progress: No.8 (1992)

    International Nuclear Information System (INIS)

    1992-12-01

    Communication of nuclear data progress (CNDP) in English is set up by Chinese Nuclear Data Center (CNDC). This is the eighth issue. It includes the measurements of secondary neutron spectra on 9 Be, the cross section and angular distribution of 40 Ca(n, α) reaction, 54 V decay data and 107 Ag(α, n) cross section; the theoretical calculations of neutron induced reaction data on 56 Fe, 238 U and proton induced reaction data on 89 Y and 241 Am; the charged particle data evaluation of 235 U; and some papers on atomic and molecular data and data processing

  19. Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report

    International Nuclear Information System (INIS)

    Markham, O.D.

    1983-06-01

    Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports

  20. Progress in direct-drive inertial confinement fusion research at the Laboratory for Laser Energetics

    International Nuclear Information System (INIS)

    McCrory, R.L.

    2002-01-01

    Significant theoretical and experimental progress towards the validation of direct-drive inertial confinement fusion (ICF) has been recently made at the Laboratory for Laser Energetics (LLE). Direct-drive ICF offers the potential for high-gain implosions and is a leading candidate for an inertial fusion energy power plant. LLE's base-line direct-drive ignition design for NIF is an 'all-DT' design that has a 1-D gain of ∼45. Recent calculations show that targets composed of foam shells, wicked with DT, can potentially achieve 1-D gains of ∼100. LLE experiments are conducted on the OMEGA 60-beam, 30-kJ, UV laser system. Beam smoothing of OMEGA includes 1-THz, 2-D SSD and polarization smoothing. Cryogenic D2 and plastic shell (warm) spherical targets and a comprehensive suite of x-ray, nuclear, charged particle and optical diagnostics are used in these experiments. Future experiments will use cryogenic DT targets. (author)

  1. Technical progress report

    International Nuclear Information System (INIS)

    1996-01-01

    This report summarizes experimental and theoretical work in basic nuclear physics carried out between October 1, 1995, the closing of our last Progress Report, and September 30, 1996 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under contracts DE-FG03-93ER-40774 and DE-FG03-95ER-40913 with the United States Department of Energy. The experimental contract supports broadly-based experimental research in intermediate energy nuclear physics. This report includes results from studies of Elementary Systems involving the study of the structure of the nucleon via polarized high-energy positron scattering (the HERMES experiment) and lower energy pion scattering from both polarized and unpolarized nucleon targets. Results from pion- and kaon-induced reactions in a variety of nuclear systems are reported under the section heading Meson Reactions; the impact of these and other results on understanding the nucleus is presented in the Nuclear Structure section. In addition, new results from scattering of high-energy electrons (from CEBAF/TJNAF) and pions (from KEK) from a broad range of nuclei are reported in the section on Incoherent Reactions. Finally, the development and performance of detectors produced by the laboratory are described in the section titled Instrumentation

  2. Communication of nuclear data progress: No.11 (1994)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    Communication of Nuclear Data Progress (CNDP) is set up by Chinese Nuclear Data Center. This is the eleventh issue. It includes the measurements of {sup 64,67}Zn(n,p), {sup 199}Ir(n,2n) and {sup 151,153}Eu (n, {gamma}) activation cross sections, the level structure of {sup 154}Gd and {sup 182}W; photonuclear data calculation of {sup 27}Al, {sup 54}Fe and {sup 209}Bi, introduction to the codes SPEC and DDCS, the evaluations and calculations of reactions {sup 54,56,Nat}Fe(n,x){sup 51}Cr, {sup 52,54}Mn, {sup 197}Au(n,3n) and (n,4n), and open problem on photon production calculation, intermediate-high energy nuclear reaction kinetic simulation and QMD, systematics of H(n,n); the evaluation of neutron induced data on {sup 56}Fe, nuclear data sheets update for A = 52,54,195, level spin assignment of superdeformed bands; Chinese Evaluated Nuclear Parameter Library (CENPL) (III), an auxiliary plotting code of UNF code, management program system of Chinese evaluated nuclear decay database; a method for evaluation of uncertainties for DDX, the Spline fitting for multi-set of correlative data; and activities and cooperation on nuclear data in China during 1993.

  3. Triangle Universities Nuclear Laboratory. Annual report, 1 September 1981-1 October 1982

    International Nuclear Information System (INIS)

    Seagondollar, L.W.

    1982-01-01

    The varied research programs described reflect a decision by TUNL to devote its major resources to the study of the multiple facets of nuclear structure which can be probed through light ion induced nuclear reactions. Particular emphasis is placed on reactions induced by polarized protons, deuterons, and neutrons. We also continue a major commitment to the study of the statistical properties of nuclear structure revealed by elastic and inelastic scattering experiments using ultra high resolution beams. A third major laboratory commitment involves measurements of fast neutron cross sections required by the Department of Energy's program to produce controlled thermonuclear fusion. The major accelerator facilities of the laboratory include a model FN tandem Van de Graaff accelerator and a 15 MeV fixed energy negative ion cyclotron injector. The laboratory has two additional single ended Van de Graaff accelerators with terminal energies of 4 MV and 3 MV, respectively

  4. Progress on nuclear modifications of structure functions

    Directory of Open Access Journals (Sweden)

    Kumano S.

    2016-01-01

    Full Text Available We report progress on nuclear structure functions, especially on their nuclear modifications and a new tensor structure function for the deuteron. To understand nuclear structure functions is an important step toward describing nuclei and QCD matters from low to high densities and from low to high energies in terms of fundamental quark and gluon degrees of freedom beyond conventional hadron and nuclear physics. It is also practically important for understanding new phenomena in high-energy heavy-ion collisions at RHIC and LHC. Furthermore, since systematic errors of current neutrinooscillation experiments are dominated by uncertainties of neutrino-nucleus interactions, such studies are valuable for finding new physics beyond current framework. Next, a new tensor-polarized structure function b1 is discussed for the deuteron. There was a measurement by HERMES; however, its data are inconsistent with the conventional convolution estimate based on the standard deuteron model with D-state admixture. This fact suggests that a new hadronic phenomenon should exist in the tensor-polarized deuteron at high energies, and it will be experimentally investigated at JLab from the end of 2010’s.

  5. Underground laboratories in Asia

    International Nuclear Information System (INIS)

    Lin, Shin Ted; Yue, Qian

    2015-01-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed

  6. Underground laboratories in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shin Ted, E-mail: linst@mails.phys.sinica.edu.tw [College of Physical Science and Technology, Sichuan University, Chengdu 610064 China (China); Yue, Qian, E-mail: yueq@mail.tsinghua.edu.cn [Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084 China (China)

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  7. Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Markham, O. D. [ed.

    1983-06-01

    Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports. (ACR)

  8. Radiotracer laboratory for agricultural research at the Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Nashriyah Mat; Misman Sumin; Maizatul Akmam Mhd Nasir

    2007-01-01

    Radiotracer Laboratory for agricultural research at the Malaysian Nuclear Agency was established since 1990. It accommodates three laboratories, three chemical temporary storage compartments plus one compartment for storage of pressurized gas. This facility is situated in ground floor of Block 44, Agrotechnology and Biosciences Division, Dengkil Complex. Currently it houses a liquid scintillation counter, sample oxidizer, gas liquid chromatography, high performance liquid chromatography and auxiliary equipments. A road map for this laboratory will be discussed in relation with present scenario i.e. R and D service, training and consultancy provided by this laboratory; and future requirements and direction. (Author)

  9. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.7--nuclear fusion

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear electronics, nuclear detecting technology, pulse power technology, nuclear fusion and plasma

  10. Progress report, October 1 to December 31, 1959. Physics Division

    International Nuclear Information System (INIS)

    1959-01-01

    This is a progress report of the Physics Division at Chalk River Nuclear Laboratories from October 1, to December 31, 1959. It describes the research in nuclear physics, general physics, theoretical physics and electronics. The research areas covered in this report include nuclear structure, the tandem accelerator, particle detector development, developments in electronics, neutron decay, beta ray spectrometer, fission studies, electronics development and neutron transport theory.

  11. Progress of Nuclear Hydrogen Program in Korea

    International Nuclear Information System (INIS)

    Lee, Won Jae

    2009-01-01

    To cope with dwindling fossil fuels and climate change, it is clear that a clean alternative energy that can replace fossil fuels is required. Hydrogen is considered a promising future energy solution because it is clean, abundant and storable and has a high energy density. As other advanced countries, the Korean government had established a long-term vision for transition to the hydrogen economy in 2005. One of the major challenges in establishing a hydrogen economy is how to produce massive quantities of hydrogen in a clean, safe and economical way. Among various hydrogen production methods, the massive, safe and economic production of hydrogen by water splitting using a very high temperature gas-cooled reactor (VHTR) can provide a success path to the hydrogen economy. Particularly in Korea, where usable land is limited, the nuclear production of hydrogen is deemed a practical solution due to its high energy density. To meet the expected demand for hydrogen, the Korea Atomic Energy Institute (KAERI) launched a nuclear hydrogen program in 2004 together with Korea Institute of Energy Research (KIER) and Korea Institute of Science and Technology (KIST). Then, the nuclear hydrogen key technologies development program was launched in 2006, which aims at the development and validation of key and challenging technologies required for the realization of the nuclear hydrogen production demonstration system. In 2008, Korean Atomic Energy Commission officially approved a long-term development plan of the nuclear hydrogen system technologies as in the figure below and now the nuclear hydrogen program became the national agenda. This presentation introduces the current status of nuclear hydrogen projects in Korea and the progress of the nuclear hydrogen key technologies development. Perspectives of nuclear process heat applications are also addressed

  12. Analytical methods for fissionable materials in the nuclear fuel cycle. Progress report, July 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    Waterbury, G.R.

    1976-12-01

    Progress continued on development of dissolution techniques for difficult-to-dissolve nuclear materials, development of methods and automated instruments for determinations of plutonium and uranium, preparation of plutonium-containing materials for the Safeguards Analytical Laboratory Evaluation (SALE) program, analysis of SALE uranium materials, and measurement of plutonium isotope half-lives. Gas-solid reactions at elevated temperatures using reactive gases such as chlorine continue to show promise for separating uranium from refractory materials. An extensive study of nonaqueous solvents for the dissolution of refractory materials is in progress. An extraction-separation procedure, highly specific for microgram amounts of uranium, has been developed, and its adaptation to the Los Alamos Scientific Laboratory (LASL) automated spectrophotometer is being evaluated. Development of an electrometric analysis method for plutonium is nearing completion, and design of an automated instrument using the method has been started. Batches of plutonium oxide and mixed uranium--plutonium, intended for issue as Secondary Reference and Calibration Test Materials, are being recharacterized for assay and isotopic contents. The half-life of 239 Pu has been determined by isotope-dilution mass-spectrometric measurement of 235 U grow-in as a function of time

  13. Analytical methods for fissionable materials in the nuclear fuel cycle. Progress report, July 1, 1975--September 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Waterbury, G.R. (comp.)

    1976-12-01

    Progress continued on development of dissolution techniques for difficult-to-dissolve nuclear materials, development of methods and automated instruments for determinations of plutonium and uranium, preparation of plutonium-containing materials for the Safeguards Analytical Laboratory Evaluation (SALE) program, analysis of SALE uranium materials, and measurement of plutonium isotope half-lives. Gas-solid reactions at elevated temperatures using reactive gases such as chlorine continue to show promise for separating uranium from refractory materials. An extensive study of nonaqueous solvents for the dissolution of refractory materials is in progress. An extraction-separation procedure, highly specific for microgram amounts of uranium, has been developed, and its adaptation to the Los Alamos Scientific Laboratory (LASL) automated spectrophotometer is being evaluated. Development of an electrometric analysis method for plutonium is nearing completion, and design of an automated instrument using the method has been started. Batches of plutonium oxide and mixed uranium--plutonium, intended for issue as Secondary Reference and Calibration Test Materials, are being recharacterized for assay and isotopic contents. The half-life of /sup 239/Pu has been determined by isotope-dilution mass-spectrometric measurement of /sup 235/U grow-in as a function of time.

  14. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.4--nuclear material

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally.This is the fourth one, the content is about nuclear materials, isotope separation, nuclear chemistry and radiological chemistry.

  15. The Development of a Human Systems Simulation Laboratory at Idaho National Laoboratory: Progress, Requirements and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    David I Gertman; Katya L. LeBlanc; William phoenix; Alan R Mecham

    2010-11-01

    Next generation nuclear power plants and digital upgrades to the existing nuclear fleet introduce potential human performance issues in the control room. Safe application of new technologies calls for a thorough understanding of how those technologies affect human performance and in turn, plant safety. In support of advancing human factors for small modular reactors and light water reactor sustainability, the Idaho National Laboratory (INL) has developed a reconfigurable simulation laboratory capable of testing human performance in multiple nuclear power plant (NPP) control room simulations. This paper discusses the laboratory infrastructure and capabilities, the laboratory’ s staffing requirements, lessons learned, and the researcher’s approach to measuring human performance in the simulation lab.

  16. Nuclear plant aging research program

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, has established the Nuclear Plant Aging Research (NPAR) program in its Division of Engineering Technology. Principal contractors for this program include Oak Ridge National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, and Pacific Northwest Laboratory. The program goals are: to identify and characterize time-dependent degradation (aging) of nuclear plant safety-related electrical and mechanical components which could lead to loss of safety function; to identify and recommend methods for detecting and trending aging effects prior to loss of safety function so that timely maintenance can be implemented; and to recommend maintenance practices for mitigating the effects of aging. Research activities include prioritization of system and component aging in nuclear plants, characterization of aging degradation of specific components including identification of functional indicators useful for trending degradation, and testing of practical methods and devices for measuring the functional indicators. Aging assessments have been completed on electric motors, snubbers, motor-operated valves, and check valves. Testing of trending methods and devices for motor-operated valves and check valves is in progress

  17. Nuclear chemistry progress report

    International Nuclear Information System (INIS)

    1983-09-01

    The activities of the nuclear chemistry program at Indiana University during the period September 1, 1982 to August 31, 1983 are reviewed. As in the past, these investigations have focused on understanding the properties of nucleus-nucleus collisions at low-to-intermediate energies. During the past year new programs have been initiated at the National Superconducting Cyclotron Laboratory at Michigan State University and the Hollifield Heavy-Ion Research Facility at Oak Ridge. With the unique beams provided by these accelerators we have extended our previous studies of energy dissipation phenomena into new energy regimes. The MSU measurements, performed with E/A = 15 to 30 MeV 14 N beams, combined with recent results we have obtained at IUCF, have indicated the existence of a saturation in the average amount of linear momentum that can be transferred in nucleus-nucleus collisions. This saturation value is about 140 (MeV/C)/A and occurs at beam energies in the E/A approx. 30 to 50 MeV range for 3 He- to 20 Ne-projectiles. At HHIRF, studies of the 56 Fe + 56 Fe reaction at E/A = 14.6 MeV have provided additional evidence for structure in the energy spectra of projectile-like fragments formed in symmetric collisions. Studies of near-barrier 56 Fe-induced reactions have continued at the Lawrence Berkeley Laboratory SuperHILAC

  18. Development of incident progress prediction technologies for nuclear emergency preparedness. Current status and future subjects

    International Nuclear Information System (INIS)

    Yoshida, Yoshitaka; Yamamoto, Yasunori; Kusunoki, Takayoshi; Kawasaki, Ikuo; Yanagi, Chihiro; Kinoshita, Ikuo; Iwasaki, Yoshito

    2014-01-01

    Nuclear licensees are required to maintain a prediction system during normal condition for using a nuclear emergency by the Basic Plan for Disaster Prevention of government. With prediction of the incident progress, if the present condition of nuclear power plant is understood appropriately and it grows more serious with keeping the present situation, it is in predicting what kind of situation will be occurred in the near future, choosing the effective countermeasures against the coming threat, and understanding the time available of intervention time. Following the accident on September 30 1999 in the nuclear fuel fabrication facility in Tokai Village of Ibaraki Prefecture, the Institute of Nuclear Safety System started development of incident progress prediction technologies for nuclear emergency preparedness. We have performed technical applications and made improvements in nuclear emergency exercises and verified the developed systems using the observed values of the Fukushima Daiichi Nuclear Power Plant accident. As a result, our developed Incident Progress Prediction System was applied to nuclear emergency exercises and we accumulated knowledge and experience by which we improved the system to make predictions more rapidly and more precisely, including for example, the development of a prediction method for leak size of reactor coolant. On the other hand, if a rapidly progressing incident occurs, since end users need simple and quick predictions about the public's protection and evacuation areas, we developed the Radioactive Materials Release, Radiation Dose and Radiological Protection Area Prediction System which changed solving an inverse problem into a forward problem solution. In view of the water-level-decline incident of the spent fuel storage facility at the Fukushima Daiichi Nuclear Power Plant, the spent fuel storage facility water level and the water temperature evaluation tool were improved. Such incident progress prediction technologies were

  19. Annual report of Laboratory of Nuclear Studies, Osaka University, for fiscal 1979

    International Nuclear Information System (INIS)

    1980-01-01

    This annual report presents the research activities carried out by the members of the Laboratory and the users of the facilities. The major facilities of the Laboratory are a 110 cm variable energy cyclotron and a 4.7 MeV Van de Graaff. The cyclotron division has made extensive studies on nuclear physics, such as the pre-equilibrium process of neutron emission, inelastic proton scattering, He-3 induced reactions, and polarization experiments. The Van de Graaff division reports about the works on hyperfine interaction, mirror beta-decay, heavy element ion source, and nuclear spin alignment. Model magnet study on the future project has also been developed at the Laboratory. Other divisions of the Laboratory are the mass spectroscopy division, the radioisotope division, and the theoretical physics division. The works of the mass spectroscopy division concern the on-line mass separation of radioisotopes, the field desorption of mass spectra, and instrumentation. The works of the radioisotope division spread widely on the field of nuclear chemistry. At the end of this report, various works, which have been made by the theoretical physics division, are introduced. (Kato, T.)

  20. Progress report from the Studsvik Neutron Research Laboratory 1987-89

    International Nuclear Information System (INIS)

    Dahlborg, U.; Ebbsjoe, I.; Holmqvist, B.

    1993-01-01

    The present publication contains information from activities at the Studsvik Neutron Research Laboratory (NFL) and the Department of Neutron Research. NFL is the base for the research activities at the Studvik reactors. It is administrated by the University of Uppsala and is established to facilitate reactor based research. The laboratory is intended to, in co-operation with institutes and departments at universities in Sweden, develop, construct and maintain experimental equipment for this kind of research and to make it available for scientists at Swedish universitites and, if possible, also to scientists outside the universities. The research at the Studsvik facilities has during 1989 been performed by groups from Uppsala University, Royal Institute of Technology in Stockholm, Chalmers Technical University, Gothenburg, and by scientists at NFL. The research program of the groups is divided into three main areas, scattering of thermal neutrons, nuclear chemistry and nuclear physics, and neutron capture radiography. The program for subatomic physics, especially neutron physics, at the Department for Neutron Research, Uppsala University has also staff permanently placed at NFL but they are in their research using the facilities at the The Svedberg Laboratory, Uppsala. In addition to supporting research NFL has also put substantial efforts on creating facilities for training of undergraduate students. Thus a facility for practical exercises in neutron physics, activation analysis and radiography has recently been installed at the R2-0 reactor as a collaboration between NFL, Dept. of Neutron Research, Upppsala and Department for Reactor Physics, KTH

  1. The Dresden Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics - Status and first physics program

    Energy Technology Data Exchange (ETDEWEB)

    Ilgner, Ch. [Nuclear Astrophysics group, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany)

    2015-07-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, protected from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise using the same High-Purity Ge detector at several sites has shown that, with a combination of 45 m rock overburden, as can be found in the Felsenkeller underground site in Dresden, and an active veto against the remaining muon flux, in a typical nuclear astrophysics setup a background level can be achieved that is similar to the deep underground scenario as in the Gran- Sasso underground laboratory, for instance. Recently, a muon background study and geodetic measurements were carried out by the REGARD group. It was estimated that the rock overburden at the place of the future ion accelerator is equivalent to 130 m of water. The maximum muon flux measured was 2.5 m{sup -2} sr{sup -1} s{sup -1}, in the direction of the tunnel entrance. Based on this finding, a used 5 MV pelletron tandem accelerator with 250 μA up-charge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is in progress and far advanced. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the

  2. Secondary standard dosimetry laboratory Saraykoy Nuclear Research and Training Center Ankara, Turkey

    International Nuclear Information System (INIS)

    Okruhlica, P.

    2014-01-01

    Turkish Saraykoy Nuclear Research and Training Center (SANA) was founded in 2005. In 2014 the company PTW Freiburg in cooperation with VF Cerna Hora started the construction of a comprehensive national metrology laboratories of ionizing radiation 'Secondary Standard Dosimetry Laboratory' (SSDL). The laboratory will be located in the area of 'Saraykoy Nuclear Research and Training Center' in Ankara in Turkey. SSDL will be equipped with metrology departments for calibration and measurement of standard required quantities of metrology of ionizing radiation: - Neutron workplace; Gamma workplace (low-energy X-ray, gamma Standard Cs-137 and high dose rate, Co-60); - Beta workplace; - Control system of metrology laboratories and irradiation VF DARS; - Radiation monitoring system VF RMS; - Camera and security system; - Measuring instruments (ionization chambers, electrometers, monitors for environmental measurements ...) with the appropriate phantoms and other systems.

  3. The 1989 progress report: Physics of the condensed matter

    International Nuclear Information System (INIS)

    Sapoval, B.

    1989-01-01

    The 1989 progress report of the laboratory of Condensed Matter Physics of the Polytechnic School (France) is presented. The laboratory research fields are the physics of semiconductors and the physics of disordered states. The 1989 main results were the determination of the fractal dimension of silicon aerogels by means of nuclear magnetic resonance and the observation of local vibrations of a fractal drum. The published papers, the conferences and Laboratory staff are listed [fr

  4. University of Colorado, Nuclear Physics Laboratory technical progress report, November 1, 1978-October 31, 1979. Report NPL-845

    International Nuclear Information System (INIS)

    1979-01-01

    This report summarizes work carried out at the Nuclear Physics Laboratory of the University of Colorado from November 1, 1978 to October 31, 1979, under contract EY-76-C-02-0535.A003 between the University of Colorado and the United States Department of Energy. Experimental studies of light ion-induced reactions were performed with the AVF cyclotron, which continues each year to produce beams of yet higher quality. Charged-particle studies continued to emphasize use of the high-resolution spectrometer system, but some return to broad-range spectroscopic studies using solid state detectors also occurred. Neutron time-of-flight experiments used 9-meter and 30-meter flight paths. Neutron-gamma ray coincidence studies developed into a new and promising field. The new PDP 11/34 data acquisition system was of great value in allowing such multiparameter experiments. Smaller programs in nuclear astrophysics, plasma diagnostic development, and medical physics were also undertaken. Research activities based at other accelerators grew. Studies of future directions for light-ion accelerators, including work on intense pulsed ion sources, orbit dynamics, and storage rings, were greatly enlarged. 19 of the articles in this report were abstracted and indexed individually. Lists of publications and personnel conclude this report

  5. Space nuclear-safety program, November 1982. Progress report

    International Nuclear Information System (INIS)

    Bronisz, S.E.

    1983-05-01

    This technical monthly report covers studies related to the use of 238 PuO 2 in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues

  6. Space nuclear safety program. Progress report, July 1983

    International Nuclear Information System (INIS)

    Bronisz, S.E.

    1983-11-01

    This technical monthly report covers studies related to the use of 238 PuO 2 in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues

  7. Space nuclear-safety program. Progress report, January 1983

    International Nuclear Information System (INIS)

    Bronisz, S.E.

    1983-06-01

    This technical monthly report covers studies related to the use of 238 PuO 2 in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed here are ongoing. Results and conclusions described may change as the work continues

  8. Space Nuclear Safety Program. Progress report, March 1984

    International Nuclear Information System (INIS)

    Zocher, R.W.; George, T.G.

    1985-08-01

    This technical monthly report covers studies related to the use of 238 PuO 2 in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos Laboratory. They are divided into: general-purpose heat source, lightweight radioisotope heater unit, and safety technology program. 43 figs., 2 tabs

  9. Van de Graaff Laboratory progress report [for 1973

    International Nuclear Information System (INIS)

    Bhatia, M.S.

    1975-01-01

    Research and development activities of the Van de Graaff Laboratory of the Bhabha Atomic Research Centre, Bombay, during 1973 are reported. Brief account of the research experiments carried out with the 5.5 Mev and 400 kV Van de Graaff accelerator is given. A heavy ion source for ion implantation has been fabricated from indigenous raw materials. Progress and testing of its various components such as duo-plasmatron ion source, inverted motor, resistors, glass rings, stripper for 2 MV tandem accelerator, now under construction is reported. Various components for dual mass separator (DUMAS) are being fabricated and tested. (M.G.B.)

  10. Progress report on nuclear data activities in Sweden for 1980

    International Nuclear Information System (INIS)

    Conde, H.

    1981-04-01

    This report contains information from laboratories in Sweden about measurements and compilations which are relevant to obtain nuclear data for research and development in different applied fields of nuclear physics. Reports relevant to the nuclear energy field are given of neutron cross section measurements and studies of the fission process. Reports are also given of nuclear structure and decay data measurements especially fission product nuclear data measurements of importance for the research on reactor safety and nuclear waste handling. Charged particle and photonuclear cross section measurements with applications in e.g. activation analysis and the production of radioisotopes for medical use are reported as well. In some cases reports are also given of measurements aiming to test nuclear models which are commonly used for the calculation of the above type of data. The report also contains short information about changes of existing experimental facilities. (Auth.)

  11. Communication of nuclear data progress: No.6 Supplement (1992)

    International Nuclear Information System (INIS)

    1992-10-01

    This is a supplement to No.6 of Communication of Nuclear Data Progress (CNDP), in which the second and final part of the papers of CENDL-2 (Chinese Evaluated Nuclear Data Library, Version 2.0) is published. It includes the evaluation reports of 17 elements and isotopes with incident neutron energy from 10 -5 eV to 20 MeV, they are 16 O, 23 Na, 31 P, Ca, Zn, Mn, 59 Co, Cd, In, Hf, 232 Th, 235 U, 239 Pu, 240 Pu, 241 Am, 249 Bk, 249 Cf

  12. Progress report April 1, to June 30, 1956. Physics Division

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1956-07-01

    This is a progress report of the Physics Division at Chalk River Nuclear Laboratories from April 1, to June 30, 1956. It describes the research in nuclear physics, general physics; theoretical physics and electronics. The research areas covered in this report include nuclear reactions, nuclear decay, neutron capture gamma ray spectra, NRX production of plutonium and its higher isotopes, slow neutron spectrometry, neutron diffraction, gamma ray crystal spectrometry, theory of binary fission and analysis of neutron scattering data.

  13. Progress report April 1, to June 30, 1956. Physics Division

    International Nuclear Information System (INIS)

    1956-01-01

    This is a progress report of the Physics Division at Chalk River Nuclear Laboratories from April 1, to June 30, 1956. It describes the research in nuclear physics, general physics; theoretical physics and electronics. The research areas covered in this report include nuclear reactions, nuclear decay, neutron capture gamma ray spectra, NRX production of plutonium and its higher isotopes, slow neutron spectrometry, neutron diffraction, gamma ray crystal spectrometry, theory of binary fission and analysis of neutron scattering data.

  14. Communication of nuclear data progress: No.16 (1996)

    International Nuclear Information System (INIS)

    1996-12-01

    'Communication of Nuclear Data Progress' (CNDP) in English is set up by Chinese Nuclear Data Center. This is the 16th issue. The nuclear data achievements and progress in China during the last year are presented. It includes the measurements of neutron activation cross section for 193 Ir(n,2n) 192m2 Ir reaction at 14.7 MeV and fragment angular distributions in the fission of 197 Au, 207 Pb and 209 Bi induced by alpha particles up to 70 MeV; discrete level effect on spectrum calculations of secondary particles, calculations of n + 235 U (E n = 5 MeV) scattering angle distribution by ECIS95 and various cross sections for n + 169 Tm and 103 Rh reactions up to 100 MeV and 25 MeV respectively, and p + 52 Cr reactions up to 30 MeV; evaluations of H total neutron cross section from 20 MeV to 2 GeV and 169 Tm(n,xn) 168,167,166,165 Tm reactions from threshold to 100 MeV, evaluation and calculation of production cross sections for 11 C, 13 N and 15 O medical radioisotopes from 11 B, 13 C, 15 N(p,n) and 16 O(p,x) 13 N reactions up to 80 MeV; an approach of systematic description of gamma-ray spectra from (n,xγ) reactions induced by fast neutron; data files of optical model parameter and level density sub-libraries

  15. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  16. LMFBR aerosol release and transport program. Quarterly progress report, July-September 1981

    International Nuclear Information System (INIS)

    Kress, T.S.; Tobias, M.L.

    1982-01-01

    This report summarizes progress for the Aerosol Release and Transport Program sponsored by the Office of Nuclear Regulatory Research, Division of Accident Evaluation of the Nuclear Regulatory Commission for the period July-September 1981. Topics discussed include (1) preparations for under-sodium tests at the Fast Aerosol Simulant Test Facility, (2) progress in interpretation of Oak Ridge National Laboratory-Sandia Laboratory normalization test results, (3) U 3 O 8 in steam (light-water reactor accident) aerosol experiments conducted in the Nuclear Safety Power Plant, (4) experiments on B 2 O 3 and SiO 2 aerosols at the Containment Research Installation-II Facility, (5) fuel-melting tests in small-scale experimental facilities for the core-melt aerosol program, (6) analytical comparison of simple adiabatic nonlinear and linear analytical models of bubble oscillation phenomena with experimental data

  17. Nuclear structure theory. Technical progress report, September 1, 1982-August 31, 1984

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1984-01-01

    Research progress is reported. Spectral Averaging studies are outlined including the theory of level densities for interacting nucleons, the properties of single-particle nuclear excitations, spectral distributions for fixed symmetries, and applications to the secular behavior of fluctuation measures in complex nuclei. Collective States research is described, in particular the boson-fermion symmetries which are related to the U(5) limit of the interacting boson model. Nuclear Reaction studies are described including the statistical theory of pion absorption, direct reactions at intermediate energies, and the properties of the off-shell πN t-matrix. Progress is reported on the quark theory of nuclear matter and the construction of models for a Fermi fluid which, near the nuclear ground state, is a fluid of nucleons composed of quarks, and, at high densities or temperatures, is a quark fluid. Applications of formal scattering theory to the study of phase-conjugate optics are discussed. Publications are listed

  18. Nuclear physics group report

    International Nuclear Information System (INIS)

    A brief description is given of the new cyclotron tested and inaugurated during the period under review, and its main specifications are presented. Preliminary beam measurements are reported. The computers and data collection system are also briefly described, as is the nuclear instrumentation at the cyclotron laboratory. A number of experiments in nuclear structure and nuclear reactions which are in progress, or soon to be reported are presented. Projects in theoretical nuclear physics are also described. Lists of seminars and lectures and of publications are given. (JIW)

  19. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1992

    International Nuclear Information System (INIS)

    1993-07-01

    In this annual report, the activities of education and research, the state of operation of research facilities and others in Nuclear Engineering Research Laboratory, University of Tokyo in fiscal year 1992 are summarized. In this Laboratory, there are four large research facilities, that are, the fast neutron source reactor 'Yayoi', the electron beam linac, the nuclear fusion reactor blanket experiment facility and the heavy irradiation research facility. Those are used for carrying out education and research in the wide fields of nuclear engineering, and are offered also for joint utilization. The results of research by using respective research facilities have been summarized in separate reports. The course of the management and operation of each research facility is described, and the research activities, the theses for doctorate and graduation these of teachers, personnel and graduate students in the Laboratory are summarized. (J.P.N.)

  20. Assistance to high schools: A mobile Nuclear Physics Laboratory. Final report, 1991--1992 activities

    International Nuclear Information System (INIS)

    Kerlin, T.W.; Dean, C.H.

    1992-01-01

    The Nuclear Engineering Department of the University of Tennessee was awarded a grant from DOE to expand and improve a program of assisting high school physics teachers in their coverage of nuclear physics. Nuclear physics has routinely been handled poorly in high school classes. There are several reasons for this: nuclear physics is usually near the end of high school physics texts and teachers often fail to get to it, many teachers are unfamiliar with nuclear physics and are reluctant to cover it, and laboratories are a problem because equipment is expensive, teachers often do not know how to use the equipment and schools often do not want to store radioactive sources. The assistance program encourages teachers to cover nuclear physics and overcomes the problems associated with laboratories

  1. Aircraft Nuclear Propulsion Program: Quarterly Progress Report for Period Ending December 31, 1956, Part 1 - 5

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W. H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cramer, S. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, A. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1957-03-12

    This quarterly progress report of the Aircraft Nuclear Propulsion Project at ORNL records the technical progress of the research on circulating-fuel reactors and other ANP research at the Laboratory under its Contract W-7405-eng-26. The report is divided into five major parts: 1. Aircraft Reactor Engineering, 2. Chemistry, 3. Metallurgy, 4. Heat Transfer and Physical Properties, Radiation Damage, and Fuel Recovery and Reprocessing, and 5. Reactor Shielding. The ANP Project is comprised of about 550 technical and scientific personnel engaged in many phases of research directed toward the achievement of nuclear propulsion of aircraft. A considerable portion of this research is performed in support of the work of other organizations participating in the national ANP effort. However, the bulk of the ANP research at ORNL is directed toward the development of a circulating-fuel type of reactor. The design, construction, and operation of the Aircraft Reactor Test (ART), with the cooperation of the Pratt & Whitney Aircraft Division, are the current objectives of the project. The ART is to be a power plant system that will include a 60-Mw circulating fuel reflector-moderator reactor and adequate means for heat disposal. Operation of the system will be for the purpose of determining feasibility and for studying the problems associated with the design, construction, and operation of a high-power circulating-fuel refIector-moderated aircraft reactor system.

  2. Nuclear scanning microprobe: state of the art, applications and progress trends

    International Nuclear Information System (INIS)

    Ponomarev, A.G.

    2011-01-01

    The physical principles of nuclear scanning microprobe are considered. The analysis of state of the art of the microprobe setup from point of view of its spatial resolution and sensitivity of microanalysis techniques is given. The regions of nuclear microprobe applications are reviewed. The ways of spatial resolution and data acquisition system improvement under consideration of microprobe setup progress trends are considered. (authors)

  3. In-situ measurement of environment radioactivity by mobile nuclear field laboratory (MNFL)

    International Nuclear Information System (INIS)

    Gopalani, Deepak; Mathur, A.P.; Rawat, D.K.; Barala, S.S.; Singhal, K.P.; Singh, G.P.; Samant, R.P.

    2008-01-01

    In-situ measurement of environment radioactivity is useful tool for determine the unusual increase of radioactivity at any place due to any nuclear eventuality take place. A mobile nuclear field laboratory has been designed and developed for in-situ measurement of environment radioactivity at any desired location. This vehicle is equipped with different monitoring and analysis instruments. These equipment can be operated while vehicle is moving. The measured data can be stored in computer. This vehicle has the space for storage of various environmental matrices of affected area and these can analysis in laboratory. (author)

  4. Progress in radiation protection techniques for workers in the nuclear industry

    International Nuclear Information System (INIS)

    Pradel, J.; Zettwoog, P.; Rouyer, J.L.

    1982-01-01

    The increasingly stringent safety requirements of workers and the general public in the face of occupational and in particular nuclear risks call for continual improvements in radiation protection techniques. The Institute of Protection and Nuclear Safety (IPSN), especially the Technical Protection Services belonging to the Protection Department, and also the various radiation protection services of the French Atomic Energy Commission's nuclear centres and Electricite de France (EDF) are carrying out substantial research and development programmes on the subject. For this reason, IPSN organized a specialists' meeting to take stock of the efforts being made and to try to identify what steps seem most promising or should have priority at the national level. The authors summarize the presentations and discussions on three topics: (1) Progress in the analysis of the mechanism of exposure of workers; (2) Progress achieved from the radiation protection standpoint in the field of facility design and instrumentation; and (3) Application of the optimization principle

  5. Commercial Alpha Waste Program. Quarterly progress report, January--March, 1975

    International Nuclear Information System (INIS)

    Cooley, C.R.

    1975-10-01

    This is the fourth quarterly progress report on the Commercial Alpha Waste Program being conducted at the Hanford Engineering Development Laboratory (HEDL) for the Division of Nuclear Fuel Cycle and Production, U. S. Energy Research and Development Administration. Data on waste composition for fuel reprocessing operations are discussed as well as information on radwaste generation at nuclear power reactors. Progress to date on development of the acid digestion process for treating combustible waste is discussed including initial studies using a critically safe tray digester. Data on alpha waste generation and product storage are also presented

  6. Communication of nuclear data progress: No.10 (1993)

    International Nuclear Information System (INIS)

    1993-12-01

    Communication of Nuclear Data Progress (CNDP) is set up by Chinese Nuclear Data Center. This is the tenth issue. It includes the measurements of 54 Fe(d,α), 56 Fe(d,2n), 58 Ni(d,α), (d,αn), (d,x) 57 Ni, 182∼184 W(d,2n), 186 W(d,p), (d 2n) and 58 Ni(n,α) reactions; theoretical calculations on n + 16 O and 197 Au, 10 B(n,n) and (n,n') reactions, channel theory of fission with diffusive dynamics; the evaluations of intermediate energy nuclear data for 56 Fe, 63 Cu, 65 Cu(p,n) monitor reactions, and of 180 Hf, 181 Ta(n,2n) reactions, revision on recommended data of 235 U and 238 U for CENDL-2, fission barrier parameters sublibrary, a PC software of EXFOR compilation, some reports on atomic and molecular data and covariance research

  7. National Laboratory of Hydraulics. 1996 progress report; Laboratoire National d`Hydraulique. Rapport d`activite 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This progress report of the National Laboratory of Hydraulics (LNH) of Electricite de France (EdF) summarizes, first, the research and development studies carried out in 1996 for the development of research tools for industrial fluid mechanics and environmental hydraulics and for the development of computer tools (computer codes and softwares for fluid mechanics modeling, modeling of reactive, compressible, two-phase and turbulent flows and of complex chemical kinetics using finite elements and finite volume methods). A second parts describes the research studies performed for other services of EdF, concerning: the functioning of nuclear reactors (thermohydraulic studies of the reactor vessel and of the primary coolant circuit, gas flows following severe accidents, fluid-structure thermal coupling etc...), fossil fuel power plants, the equipment and operation of thermal power plants and hydraulic power plants, the use of electric power. A third part summarizes the river and marine hydraulic studies carried out for other companies. (J.S.) 63 refs.

  8. Nuclear excitations and reaction mechanisms. Progress report, 1 August-31 July 1984

    International Nuclear Information System (INIS)

    Fallieros, S.; Levin, F.S.

    1984-01-01

    This progress report describes activities of the Nuclear Theory group at Brown University during the period 1 August 1983 to 31 July 1984. Completed and ongoing research include various theoretical and numerical studies of few-particle systems, nuclear reaction models, nuclear electroexcitation and photon scattering from nuclei. In addition, research on atomic and molecular structure has essentially been concluded and no further DOE-supported research in this area is anticipated

  9. Progress report on nuclear science and technology in China (Vol.2). Proceedings of academic annual meeting of China Nuclear Society in 2011, No.7--Nuclear electronics and nuclear detection technology sub-volume

    International Nuclear Information System (INIS)

    2012-10-01

    Progress report on nuclear science and technology in China (Vol. 2) includes 698 articles which are communicated on the second national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about Nuclear electronics and nuclear detection technology

  10. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. Technical progress report, November 1, 1978-October 31, 1979

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1979-01-01

    Experimental research on nuclear structure and reactions both published and in progress is summarized. Included are fusion reactions, strongly damped heavy ion collisions, and nuclear structure at high angular momentum. A list of publications is included

  11. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    Energy Technology Data Exchange (ETDEWEB)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the

  12. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    International Nuclear Information System (INIS)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-01-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning

  13. Nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Clark, J.S.; Miller, T.J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for Space Exploration Initiative (SEI) human and robotic missions to the Moon and to Mars. An Interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. This paper summarizes the activities of the project planning team in FY 1990 and FY 1991, discusses the progress to date, and reviews the project plan. Critical technology issues have been identified and include: nuclear fuel temperature, life, and reliability; nuclear system ground test; safety; autonomous system operation and health monitoring; minimum mass and high specific impulse

  14. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.7--Nuclear electronics and nuclear detection technology sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 57 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about Nuclear electronics and nuclear detection technology sub-volume

  15. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.6--nuclear physics

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the sixth one, the content is about nuclear physics, computational physics and particle accelerator

  16. Annual progress report on nuclear data 1983 of the Central Bureau for Nuclear Measurements, Geel (Belgium)

    International Nuclear Information System (INIS)

    1984-05-01

    In this progress report of the Central Bureau for Nuclear Measurements at Geel (Belgium) researches related to neutron data and to non-neutron nuclear data are gathered. Neutron data are essentially related to cross-section measurements: for instance, concerning actinides, structural materials as Cr and Fe, fission products. Some studies are classified as concerning standard neutron data. Underlying physics is no forgotten neither than equipment (linear accelerator). Non-neutron nuclear data is concerned essentially with decay studies. Some compilations and evaluations are also given. Improvement of measurement and source preparation techniques is a part of this section

  17. The LLNL [Lawrence Livermore National Laboratory] ICF [Inertial Confinement Fusion] Program: Progress toward ignition in the Laboratory

    International Nuclear Information System (INIS)

    Storm, E.; Batha, S.H.; Bernat, T.P.; Bibeau, C.; Cable, M.D.; Caird, J.A.; Campbell, E.M.; Campbell, J.H.; Coleman, L.W.; Cook, R.C.; Correll, D.L.; Darrow, C.B.; Davis, J.I.; Drake, R.P.; Ehrlich, R.B.; Ellis, R.J.; Glendinning, S.G.; Haan, S.W.; Haendler, B.L.; Hatcher, C.W.; Hatchett, S.P.; Hermes, G.L.; Hunt, J.P.; Kania, D.R.; Kauffman, R.L.; Kilkenny, J.D.; Kornblum, H.N.; Kruer, W.L.; Kyrazis, D.T.; Lane, S.M.; Laumann, C.W.; Lerche, R.A.; Letts, S.A.; Lindl, J.D.; Lowdermilk, W.H.; Mauger, G.J.; Montgomery, D.S.; Munro, D.H.; Murray, J.R.; Phillion, D.W.; Powell, H.T.; Remington, B.R.; Ress, D.B.; Speck, D.R.; Suter, L.J.; Tietbohl, G.L.; Thiessen, A.R.; Trebes, J.E.; Trenholme, J.B.; Turner, R.E.; Upadhye, R.S.; Wallace, R.J.; Wiedwald, J.D.; Woodworth, J.G.; Young, P.M.; Ze, F.

    1990-01-01

    The Inertial Confinement Fusion (ICF) Program at the Lawrence Livermore National Laboratory (LLNL) has made substantial progress in target physics, target diagnostics, and laser science and technology. In each area, progress required the development of experimental techniques and computational modeling. The objectives of the target physics experiments in the Nova laser facility are to address and understand critical physics issues that determine the conditions required to achieve ignition and gain in an ICF capsule. The LLNL experimental program primarily addresses indirect-drive implosions, in which the capsule is driven by x rays produced by the interaction of the laser light with a high-Z plasma. Experiments address both the physics of generating the radiation environment in a laser-driven hohlraum and the physics associated with imploding ICF capsules to ignition and high-gain conditions in the absence of alpha deposition. Recent experiments and modeling have established much of the physics necessary to validate the basic concept of ignition and ICF target gain in the laboratory. The rapid progress made in the past several years, and in particular, recent results showing higher radiation drive temperatures and implosion velocities than previously obtained and assumed for high-gain target designs, has led LLNL to propose an upgrade of the Nova laser to 1.5 to 2 MJ (at 0.35 μm) to demonstrate ignition and energy gains of 10 to 20 -- the Nova Upgrade

  18. The 1989 progress report: Laboratory for the Utilization of High-Intensity Laser

    International Nuclear Information System (INIS)

    Fabre, E.

    1989-01-01

    The 1989 progress report of the laboratory for the Utilization of High-Intensity Lasers of the Polytechnic School (France) is presented. The investigations reported were performed in the following fields: laser-matter interactions in fusion experiments, particles' laser acceleration, picoseconds and femtoseconds interactions, low-flux interactions, development of hydrodynamic codes, laser chocks simulation codes, x-ray lasers, generation of high pressures, implosion physics at 0.26 microns, dense plasmas, material's hardening by laser radiation. The published papers, the conferences and the Laboratory staff are listed [fr

  19. Progress in Harmonizing Tiered HIV Laboratory Systems: Challenges and Opportunities in 8 African Countries.

    Science.gov (United States)

    Williams, Jason; Umaru, Farouk; Edgil, Dianna; Kuritsky, Joel

    2016-09-28

    In 2014, the Joint United Nations Programme on HIV/AIDS released its 90-90-90 targets, which make laboratory diagnostics a cornerstone for measuring efforts toward the epidemic control of HIV. A data-driven laboratory harmonization and standardization approach is one way to create efficiencies and ensure optimal laboratory procurements. Following the 2008 "Maputo Declaration on Strengthening of Laboratory Systems"-a call for government leadership in harmonizing tiered laboratory networks and standardizing testing services-several national ministries of health requested that the United States Government and in-country partners help implement the recommendations by facilitating laboratory harmonization and standardization workshops, with a primary focus on improving HIV laboratory service delivery. Between 2007 and 2015, harmonization and standardization workshops were held in 8 African countries. This article reviews progress in the harmonization of laboratory systems in these 8 countries. We examined agreed-upon instrument lists established at the workshops and compared them against instrument data from laboratory quantification exercises over time. We used this measure as an indicator of adherence to national procurement policies. We found high levels of diversity across laboratories' diagnostic instruments, equipment, and services. This diversity contributes to different levels of compliance with expected service delivery standards. We believe the following challenges to be the most important to address: (1) lack of adherence to procurement policies, (2) absence or limited influence of a coordinating body to fully implement harmonization proposals, and (3) misalignment of laboratory policies with minimum packages of care and with national HIV care and treatment guidelines. Overall, the effort to implement the recommendations from the Maputo Declaration has had mixed success and is a work in progress. Program managers should continue efforts to advance the

  20. Clear progress in nuclear safety worldwide: Convention on nuclear safety concludes

    International Nuclear Information System (INIS)

    2002-01-01

    It has been concluded that a significant progress has been observed in a number of key areas, such as strengthened legislation, regulatory independence, the availability of financial resources, enhanced emergency preparedness and safety improvements at nuclear power plants built to earlier standards. The objective of the Convention is to achieve and maintain a high level of nuclear safety worldwide. During the two week Review Meeting, parties engaged in a 'peer review' process in which the National Reports from individual States were collectively examined and discussed, with written replies provided to all the questions raised. Clear improvement was noted in the quality of the National Reports, the number of questions and the openness and quality of discussion and answers. The Contracting Parties praised the IAEA's various safety review missions and services, which they use widely to help enhance the effectiveness of their national safety arrangements. Forty-six contracting parties participated at the Review Meeting with over 400 delegates attending, including many heads and senior officers from regulatory bodies and experts from industry. To date, the Convention has been signed by sixty-five States and ratified by fifty-four, representing 428 of the 448 nuclear power reactors worldwide

  1. Nuclear spectroscopic studies. Progress report, June 1, 1983-May 31, 1984

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.

    1984-01-01

    Progress is reported on nuclear structure and nuclear reaction studies utilizing heavy-ion beams. Projects at the HHIRF, the Brookhaven Tandem Accelerator, and the Nuclear Science Facility at Daresbury, England are described. Studies have been concentrated on: (1) the structure of deformed and transitional nuclei in the angular momentum range from 20 to 40 h by (HI,xn) reactions; (2) the 1- and 2-nucleon transfer reactions between spherical heavy ion projectiles and deformed targets; and (3) the low-energy properties of nuclei far from stability. Theoretical studies are also reported. Publications are listed

  2. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.8--nuclear agriculture

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about radiation study, radiation technology, isotope and nuclear agriculture

  3. Communication of nuclear data progress: No.10 (1993)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-01

    Communication of Nuclear Data Progress (CNDP) is set up by Chinese Nuclear Data Center. This is the tenth issue. It includes the measurements of {sup 54}Fe(d,{alpha}), {sup 56}Fe(d,2n), {sup 58}Ni(d,{alpha}), (d,{alpha}n), (d,x){sup 57}Ni, {sup 182{approx}184}W(d,2n), {sup 186}W(d,p), (d 2n) and {sup 58}Ni(n,{alpha}) reactions; theoretical calculations on n + {sup 16}O and {sup 197}Au, {sup 10}B(n,n) and (n,n`) reactions, channel theory of fission with diffusive dynamics; the evaluations of intermediate energy nuclear data for {sup 56}Fe, {sup 63}Cu, {sup 65}Cu(p,n) monitor reactions, and of {sup 180}Hf, {sup 181}Ta(n,2n) reactions, revision on recommended data of {sup 235}U and {sup 238}U for CENDL-2, fission barrier parameters sublibrary, a PC software of EXFOR compilation, some reports on atomic and molecular data and covariance research.

  4. Progress report, Physics Division, July 1 to September 30, 1976

    International Nuclear Information System (INIS)

    1976-10-01

    Progress in the Physics Division, Chalk River Nuclear Laboratories, is reported for the period July 1 to September 30, 1976. Operation of the MP Tandem accelerator is described. Design highlights are provided for a proposed superconcucting cyclotron. Elastic and inelastic scattering experiments, many conducted in cooperation with other laboratories, are summarized. Activities of the Chalk River computation centre are also described. (O.T.)

  5. Bulletin of the Research Laboratory for Nuclear Reactors

    International Nuclear Information System (INIS)

    Aritomi, Masanori

    2008-01-01

    The bulletin consists of two parts. The first part includes General Research Report. The Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology has three engineering divisions such as Energy Engineering, Mass Transmutation Engineering, and System and Safety Engineering. In this part, 17 reports of Energy Engineering division, 8 reports of Mass transmutation Engineering division, 11 reports of System and Safety Engineering division are described as their activities. In addition, 3 reports of Cooperative Researches are also summarized. The second part is Special Issue about COE-INES RESEARCH REPORT 2007. In this part, 3 reports of Innovative Reactor Group, 2 reports of Innovative Nuclear Energy Utilization System Group, 3 reports of Innovative Transmutation/Separation Group, 2 reports of Relationship between Nuclear and Society Group, 1 report of RA Students in the COE-INES Captainship Educational Program are described as results to their researches. (J.P.N.)

  6. Nuclear energy related capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, Susan Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing the nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.

  7. Formal training program for nuclear material custodians at Hanford Engineering Development Laboratory

    International Nuclear Information System (INIS)

    Scott, D.D.

    1979-01-01

    Hanford Engineering Development Laboratory (HEDL) has established a formal training program for nuclear material (NM) custodians. The program, designed to familiarize the custodian with the fundamental concepts of proper nuclear materials control and accountability, is conducted on a semiannual basis. The program is prepared and presented by the Safeguards and Materials Management Section of HEDL and covers 14 subjects on accountability, documentation, transportation, custodian responsibilities, and the safeguarding of nuclear material

  8. Progress in Harmonizing Tiered HIV Laboratory Systems: Challenges and Opportunities in 8 African Countries

    Science.gov (United States)

    Williams, Jason; Umaru, Farouk; Edgil, Dianna; Kuritsky, Joel

    2016-01-01

    ABSTRACT In 2014, the Joint United Nations Programme on HIV/AIDS released its 90-90-90 targets, which make laboratory diagnostics a cornerstone for measuring efforts toward the epidemic control of HIV. A data-driven laboratory harmonization and standardization approach is one way to create efficiencies and ensure optimal laboratory procurements. Following the 2008 “Maputo Declaration on Strengthening of Laboratory Systems”—a call for government leadership in harmonizing tiered laboratory networks and standardizing testing services—several national ministries of health requested that the United States Government and in-country partners help implement the recommendations by facilitating laboratory harmonization and standardization workshops, with a primary focus on improving HIV laboratory service delivery. Between 2007 and 2015, harmonization and standardization workshops were held in 8 African countries. This article reviews progress in the harmonization of laboratory systems in these 8 countries. We examined agreed-upon instrument lists established at the workshops and compared them against instrument data from laboratory quantification exercises over time. We used this measure as an indicator of adherence to national procurement policies. We found high levels of diversity across laboratories’ diagnostic instruments, equipment, and services. This diversity contributes to different levels of compliance with expected service delivery standards. We believe the following challenges to be the most important to address: (1) lack of adherence to procurement policies, (2) absence or limited influence of a coordinating body to fully implement harmonization proposals, and (3) misalignment of laboratory policies with minimum packages of care and with national HIV care and treatment guidelines. Overall, the effort to implement the recommendations from the Maputo Declaration has had mixed success and is a work in progress. Program managers should continue efforts to

  9. Safety research programs sponsored by Office of Nuclear Regulatory Research

    International Nuclear Information System (INIS)

    Weiss, A.J.; Azarm, A.; Baum, J.W.

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988

  10. RIKEN accelerator progress report, vol. 36. January - December 2002

    International Nuclear Information System (INIS)

    Asahi, K.; Abe, T.; Ichihara, T.

    2003-03-01

    This issue of RIKEN Accelerator Progress Report reports research activities of the RIKEN Accelerator Research Facility (RARF) during the calendar year of 2002. The research programs have been coordinated in the framework of the project entitled Multidisciplinary Researches on Heavy Ion Science. The project involves a variety of fields such as: nuclear physics, nuclear astrophysics, atomic physics, nuclear chemistry, radiation biology, condensed matter physics in terms of accelerator or radiation application, plant mutation, material characterization, application to space science, accelerator physics and engineering, laser technology, and computational technology. These activities involved ten laboratories, five Centers involving seven divisions, the RIKEN-RAL (Rutherford-Appleton Laboratory) Center, and the RBRC (RIKEN-Brookhaven Research Center at Brookhaven National Laboratory), and more than 350 researchers from domestic and foreign institutions. Thirty-six universities and institutes from within Japan and 33 institutes from 10 countries are involved. (J.P.N.)

  11. Communication of nuclear data progress No. 24 (2000)

    International Nuclear Information System (INIS)

    2000-12-01

    Communication of Nuclear Data Progress (CNDP) in English is set up by Chinese Nuclear Data Center. The 24th issue of CNDP includes the measurements of cross sections of 75 As(n, γ) 76 As reaction from 0.50 to 1.50 MeV; theoretical calculations of n + 10,11 B, 16 O, 144,147-152,154 Sm, 238 Pu, 241,242 Am reactions in the energy region below 20 MeV; evaluations of n + 127,135 I, 129,131,132,134-136 Xe, 176-180,Nat Hf, 206 Pb, 240 Pu reactions; the effect of the charge distribution in nucleus on the calculation of highly ionized atoms; construction of covariance matrix for measured relative fission yield data and WWW chart of the nuclides

  12. Theoretical studies in hadronic and nuclear physics. Progress report, December 1, 1993--June 30, 1994

    International Nuclear Information System (INIS)

    Cohen, T.D.; Banerjee, M.K.

    1994-07-01

    Under Hadrons in Nuclei and Nuclear Matter the authors research the ways in which the properties of nucleons and mesons are modified in the nuclear medium. Research progress is reported on a number of topics in this general area, including studies of the role of chiral symmetry for finite density or temperature nuclear matter, the use of QCD sum rules to describe baryons in nuclear matter, and color transparency. In the general field of Hadron Physics broad progress included studies of perturbative QCD, heavy quark physics, QCD sum rules, and QCD-based models. Notable progress was also achieved in Relativistic Dynamics in Quark, Hadron, and Nuclear Physics, where an explicit model of composite particles shows how the z-graph physics (which is an essential part of Dirac phenomenology) comes about. In addition, calculations of elastic electron-deuteron scattering based on two-body relativistic dynamics and meson exchange currents were completed, as were studies of quark-anti-quark bound states based on a relativistic quark model. Progress is also reported on the relativistic few-body problem. In the area of Heavy Ion Dynamics and Sharp Lepton Pairs, work continues on the Composite Particle Scenario for the 'Sharp Lepton Problem'. In particular, the scenario can now encompass the anomalous sharp leptons reported from positron irradiation of heavy neutral atoms, establishing such irradiations as an alternative experimental window to the heavy ion experiments

  13. Experiments in progress: The geography of science in the Atomic Energy Commission's peaceful uses of nuclear explosives program, 1956-1973

    Science.gov (United States)

    Kirsch, Scott Lawrence

    From 1957 to 1973, the United States Atomic Energy Commission (AEC) actively pursued the "peaceful uses of nuclear explosives" through Project Plowshare. Nuclear excavation, the detonation of shallowly buried hydrogen bombs for massive earthmoving projects like harbors and canals, was considered the most promising of the Plowshare applications, and for a time, the most economically and technically "feasible." With a basis in and contributing to theory in critical human geography and science studies, the purpose of this dissertation is to examine the collisions of science, ideology, and politics which kept Plowshare designs alive--but only as "experiments in progress." That is, this research asks how the experimental program persisted in places like the national weapons laboratory in Livermore, California, and how its ideas were tested at the nuclear test site in Nevada, yet Plowshare was kept out of those spaces beyond AEC control. Primary research focuses on AEC-related archival materials collected from the Department of Energy Coordination and Information Center, Las Vegas, Nevada, and from the Lawrence Livermore National Laboratory, as well as the public discourse through which support for and opposition to Plowshare projects was voiced. Through critical analysis of Plowshare's grandiose "geographical engineering" schemes, I thus examine the complex relations between the social construction of science and technology, on one hand, and the social production of space, on the other.

  14. Nuclear Data Covariances in the Indian Context – Progress, Challenges, Excitement and Perspectives

    International Nuclear Information System (INIS)

    Ganesan, S.

    2015-01-01

    We present a brief overview of progress, challenges, excitement and perspectives in developing nuclear data covariances in the Indian context in relation to target accuracies and sensitivity studies that are of great importance to Bhabha's 3-stage nuclear programme for energy and non-energy applications

  15. IAEA Nuclear Data Section: Progress Report, 2011/12 Summary of Nuclear Data Activity by Staff of the IAEA Nuclear Data Section, May 2011 - April 2012

    International Nuclear Information System (INIS)

    Forrest, R.; Otsuka, N.; Semkova, V.; Simakov, S.P.; Zerkin, V.

    2012-01-01

    Progress report on nuclear data activity by staff of the IAEA Nuclear Data Section from May 2011 - April 2012: 1) Staff changes 2) Data compilations, EXFOR transmission, EXFOR quality control, EXFOR coverage control, Workshops and meetings in 2011/2012 relevant to EXFOR, CINDA, Evaluated data libraries, files and programs 3) Services, software 4) Visits and Inter-centre cooperation (2011-2012) 5) Nuclear data developments 6) Publications.

  16. Applied nuclear data research and development. Semiannual progress report, April 1-September 30, 1983

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1984-06-01

    This progress report describes the activities of the Los Alamos Nuclear Data Group for April 1, 1983 through September 30, 1983. Topics covered include theory and evaluation of nuclear cross sections; nuclear cross-section processing and testing; neutron activation; fission products, and actinides; and core neutronics code development in support of LMFBR carbide core assessment

  17. Nuclear magnetic resonance common laboratory, quadrennial report

    International Nuclear Information System (INIS)

    1994-01-01

    This quadrennial report of the nuclear magnetic resonance common laboratory gives an overview of the main activities. Among the different described activities, only one is interesting for the INIS database: it concerns the Solid NMR of cements used for radioactive wastes storage. In this case, the NMR is used to characterize the structure of the material and the composition, structure and kinetics of formation of the alteration layer which is formed at the surface of concrete during water leaching conditions. The NMR methodology is given. (O.M.)

  18. G.N. Florov Laboratory of Nuclear Reactions, history and the present day

    International Nuclear Information System (INIS)

    Szmider, J.

    1996-01-01

    The scientific activity and review of results attained at Florov Nuclear Reactions Laboratory of the Joined Institute of Nuclear Research, Dubna, have been presented in historical order. Especially the heavy ion cyclotron use for synthesis of new super-heavy elements as well as investigations of their physical and chemical properties have been shown. 1 fig

  19. Progress report: nuclear safety and radiation protection in 2006

    International Nuclear Information System (INIS)

    2007-01-01

    For the French Nuclear Safety Authority (Asn), the year 2006 was marked by two important nuclear laws being passed, one of which brought about a major change in its status. The year was a relatively satisfactory one with regard to nuclear safety, although the picture was more contrasted concerning radiation protection: in this area, more particularly in the medical field, the overall impression of good progress is offset by the declaration of a number of radiotherapy accidents. Given the benefits expected from radiotherapy treatment by the patient suffering from cancer, the conditions in which this activity is carried out are a subject of major concern for Asn, in the light of the serious risks linked to patient over-exposure. ( some important points as follows: the law on transparency and security in the nuclear field, the law on sustainable management of radioactive materials and waste, Asn: an independent administrative authority, EPR reactor project safety, I.R.R.S.: an international audit of Asn in 2006, harmonization of nuclear safety, cancer radiotherapy, improved information of the public after the T.S.N. law, taking account of organisational and human factors). (N.C.)

  20. Progress report of the neutron and nuclear physics division for the year 1984

    International Nuclear Information System (INIS)

    1985-10-01

    This progress report gives a presentation of the nuclear physics work carried out in the Service de Physique Neutronique et Nucleaire (C.E. Bruyeres-le-Chatel) during the year 1984. It comprises a part about technical work and equipments and a second part on measurement, interpretation and evaluation of nuclear data. The third part is devoted to more theoretical works: bound state and scattering nuclear models, field theory and astrophysics [fr

  1. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.10--Nuclear Information sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 28 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the tenth one, the content is about Nuclear Information sub-volume

  2. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.8--nuclear agriculture sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 10 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about nuclear agriculture sub-volume

  3. Progress report on nuclear science and technology in China (Vol.2). Proceedings of academic annual meeting of China Nuclear Society in 2011, No.10--nuclear Information sub-volume

    International Nuclear Information System (INIS)

    2012-10-01

    Progress report on nuclear science and technology in China (Vol. 2) includes 698 articles which are communicated on the second national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the tenth one, the content is about nuclear Information and computer applications

  4. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    International Nuclear Information System (INIS)

    Chikalla, T.D.; Powell, J.A.

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies

  5. Applied nuclear data research and development. Semiannual progress report, April 1-September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, E.D. (comp.)

    1984-06-01

    This progress report describes the activities of the Los Alamos Nuclear Data Group for April 1, 1983 through September 30, 1983. Topics covered include theory and evaluation of nuclear cross sections; nuclear cross-section processing and testing; neutron activation; fission products, and actinides; and core neutronics code development in support of LMFBR carbide core assessment. (GHT)

  6. Progress report of the Nuclear Physics Department

    International Nuclear Information System (INIS)

    1983-01-01

    The experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1981 to September 30, 1982 are presented. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MV tandem Van de Graaff, with the 600 MeV electron linac, at the synchrotron SATURNE and with different accelerators belonging to other laboratories, in particular the SARA facility at Grenoble, the boosted tandem at Heidelberg and the secondary beams at CERN [fr

  7. Technical basis for nuclear accident dosimetry at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kerr, G.D.; Mei, G.T.

    1993-08-01

    The Oak Ridge National Laboratory (ORNL) Environmental, Safety, and Health Emergency Response Organization has the responsibility of providing analyses of personnel exposures to neutrons and gamma rays from a nuclear accident. This report presents the technical and philosophical basis for the dose assessment aspects of the nuclear accident dosimetry (NAD) system at ORNL. The issues addressed are regulatory guidelines, ORNL NAD system components and performance, and the interpretation of dosimetric information that would be gathered following a nuclear accident

  8. Space Nuclear Safety Program. Progress report, November 1983

    International Nuclear Information System (INIS)

    Bronisz, S.E.

    1984-06-01

    This technical monthly report covers studies related to the use of 238 PuO 2 in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Topics discussed include: safety-verification impact tests; explosion test; fragment test; leaking fueled clads; effects of fresh water and seawater or PuO 2 pellets; and impact tests of 5 watt radioisotope thermoelectric generator

  9. Nuclear Physics Laboratory, University of Colorado, Final Progress Report 14 February 2004

    International Nuclear Information System (INIS)

    Kinney, E.R.

    2004-01-01

    OAK-B135 The results and progress of research funded by DOE grant number DOE-FG03-95ER40913 at the University of Colorado at Boulder is described. Includes work performed at the HERMES experiment at DESY to study the quark structure of the nucleon and the hadronization process in nuclei, as well as hadronic reactions studied at LAMPF, KEK, and Fermilab

  10. Quality manual for Laboratories of the Nuclear Materials Characterization Division

    International Nuclear Information System (INIS)

    Sabato, S.F.

    1991-05-01

    This publication presents the first Quality Manual for the Laboratories at the Nuclear Materials Characterization Division. The Manual describes the laboratories, its organization structure, fields of activities, personnel records, equipments, maintenance and calibration. The main aspects concerning quality assurance in the analysis were discussed. The whole system of receiving, identifying and processing analysis of the samples is shown. Since there are many information to be contained in several subjects of the Quality Manual, there were produced separate documents that are cross referenced in the manual. (author)

  11. Nuclear structure research at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1993--31 August 1994

    International Nuclear Information System (INIS)

    Mitchell, G.E.

    1994-01-01

    This report contains discussions on the following topics. Fundamental symmetries in the nucleus; internucleon reactions; dynamics of very light nuclei; the many-nucleon problem; and nuclear instruments and methods

  12. Status of Zircaloy deformation and oxidation research at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Chapman, R.H.; Cathcart, J.V.; Hobson, D.O.

    1976-01-01

    The U.S. Nuclear Regulatory Commission sponsors a broad range of research on the response of nuclear fuel assemblies to normal, off-normal, and accident conditions in light-water reactors. The paper reviews the current status of three Zircaloy cladding research programs in progress at the Oak Ridge National Laboratory and presents some preliminary results from each

  13. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1991

    International Nuclear Information System (INIS)

    1992-07-01

    In this annual report, the activities of education and research, the state of operation of research facilities and others in Nuclear Engineering Research Laboratory, University of Tokyo in fiscal year 1991 are summarized. In this Laboratory, there are four large research facilities, that is, the fast neutron source reactor 'Yayoi', the electron beam linac, the nuclear fusion reactor blanket experiment facility and the heavy irradiation research facility. Those are used for carrying out education and research in the wide fields of nuclear engineering, and are offered also for joint utilization. The results of the research by using respective research facilities were summarized in separate reports. In this annual report, the course of the management and operation of respective research facilities is described, and the research activities, the theses for doctorate and graduation theses of the teachers, personnel and graduate students in the Laboratory are summarized. In the research, those on first wall engineering for fusion reactors, fuel cycle engineering, electromagnetic structure engineering, AI and robotics, quantum beam engineering, new type reactor design and so on are included. (K.I.)

  14. Progress of Nuclear Data Measurement in China during 2013

    International Nuclear Information System (INIS)

    Zhigang, Ge; Xichao, Ruan

    2014-01-01

    The China nuclear data activities consists of nuclear data measurement and related measurement methods development, data evaluation and model study, data library establishment and library management, nuclear data benchmark and validation. The main activities are being carried out at China Nuclear Data Center (CNDC), China Institute of Atomic Energy (CIAE) and China Nuclear Data Coordination Network (CNDCN). More than 10 institutions and universities are involved in CNDCN. The facilities used for the nuclear data measurements and studies include the HI-13 tandem accelerator, 600 kV-Cockcroft-Walton accelerator, 5SDH-2 2x1.7 MV tandem accelerator and the China Advanced Research Reactor (CARR) at CIAE, The 4.5-MV Van de Graaff accelerator at Peking University and 300 kV -Cockcroft-Walton accelerator at Lanzhou university. This document presents the recent Progress of Nuclear Data Measurement in China: - the fission yields of 235 U at 3 MeV neutrons measured at CIAE; - the nuclear data benchmark system improvement at CIAE. With the new nuclear data benchmark system, the integral measurements were carried out for Be, Ga, natural iron and liquid Pb-Bi alloy. - The measurements of the 57 Fe(n,α) 54 Cr and 63 Cu(n,α) 60 Co reactions at neutron energies of 5.0, 5.5, 6.0 and 6.5 MeV at Peking University. Finally, the document describes the new facilities for Nuclear Data Measurement: the Back-n white neutron source of the China Spallation Neutron Source (CSNS), the neutron facility of Shanghai Institute of Applied Physics (SINAP-NF), and the multipurpose Cooling Storage Ring system, a new accelerator project planned at the Heavy Ion Research Facility in Lanzhou (HIRFL-CRS)

  15. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21

  16. Consolidated progress report for 1976 on nuclear data activities in the NDS service area

    International Nuclear Information System (INIS)

    1977-10-01

    A consolidated progress report for 1976 prepared for countries in the NDS service area. It is intended to encourage a closer relationship between Member States and provide for a wider circulation of unpublished progress reports from countries within the Nuclear Data Section service area

  17. Studies of nuclear processes. Progress report, 1 June 1976--31 December 1976

    International Nuclear Information System (INIS)

    1976-01-01

    This report covers work performed under the terms of this contract since the last progress report (ORO-2408-109). Since most of the activities to be reported are adequately reflected in the documents submitted, in the TUNL progress report and the Duke University report for the current contract period, the present document is a summary. Included are both experimental and theoretical nuclear physics. A list of publications is also included

  18. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  19. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    International Nuclear Information System (INIS)

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research

  20. Nuclear technology: katulong sa pag-unlad ng masa [support for the progress of the masses

    International Nuclear Information System (INIS)

    1999-01-01

    The topics discussed during the convention is the usefulness of nuclear science and technology in national development and to promote the beneficial uses of nuclear science and technology to support for the progress of the masses

  1. Nuclear test-experimental science annual report, Fiscal year 1990

    International Nuclear Information System (INIS)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Cherniak, J.; Donohue, M.L.; Francke, A.; Hedman, I.; Kirvel, R.D.

    1991-01-01

    Fiscal year 1990 was another year of outstanding accomplishments for the Nuclear Test-Experimental Science (NTES) Program at Lawrence Livermore National Laboratory (LLNL). We continued to make progress to enhance the experimental science in the Weapons Program and to improve the operational efficiency and productivity of the Nuclear Test Program

  2. Around Semipalatinsk nuclear test site: Progress of dose estimations relevant to the consequences of nuclear tests

    International Nuclear Information System (INIS)

    Stepanenko, Valeriy F.; Hoshi, Masaharu; Bailiff, Ian K.

    2006-01-01

    The paper is an analytical overview of the main results presented at the 3rd Dosimetry Workshop in Hiroshima (9-11 of March 2005), where different aspects of the dose reconstruction around the Semipalatinsk nuclear test site (SNTS) were discussed and summarized. The results of the international intercomparison of the retrospective luminescence dosimetry (RLD) method for Dolon' village (Kazakhstan) were presented at the Workshop and good concurrence between dose estimations by different laboratories from 6 countries (Japan, Russia, USA, Germany, Finland and UK) was pointed out. The accumulated dose values in brick for a common depth of 10 mm depth of 10 mm depth obtained independently by all participating laboratories were in good agreement for all four brick samples from Dolon' village, Kazakhstan, with the average value of the local gamma dose due to fallout (near the sampling locations) being about 220 mGy (background dose has been subtracted). Furthermore, using a conversion factor of about 2 to obtain the free-in-air dose, a value of local dose ∼440 mGy is obtained, which supports the results of external dose calculations for Dolon': recently published soil contamination data, archive information and new models were used for refining dose calculations and the external dose in air for Dolon village was estimated to be about 500 mGy. The results of electron spin resonance (ESR) dosimetry with tooth enamel have demonstrated the notable progress in application of ESR dosimetry to the problems of dose reconstruction around the Semipalatinsk nuclear test site. At the present moment, dose estimates by the ESR method have become more consistent with calculated values and with retrospective luminescence dosimetry data, but differences between ESR dose estimates and RLD/calculation data were noted. For example mean ESR dose for eligible tooth samples from Dolon' village was estimated to be about 140 mGy (above background dose), which is less than dose values obtained

  3. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Monahan, S.P.; McLaughlin, T.P.

    1997-01-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory's Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, was also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ''Conduct of Business in the Nuclear Criticality Safety Group.'' There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets

  4. Reliability research on nuclear I and C system at KAIST NIC laboratory

    International Nuclear Information System (INIS)

    Seong, Poong-Hyun

    1996-01-01

    As the use of computer systems becomes popular in nuclear industry, reliability assurance of digitized nuclear instrumentation and control systems is becoming one of hot issues. Some issues on this are S/W verification and validation, reliability estimation of digital systems, development strategy of high integrity knowledge base for expert systems, and so on. In order to address these issues, the Nuclear Instrumentation and Control (NIC) laboratory at KAIST is conducting some research projects. This paper describes some highlights of these research activities. The final goal of these research activities is to develop some useful methodologies and tools for development of dependable digital nuclear instrument and control systems. (author)

  5. Laboratory-directed research and development: FY 1996 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  6. Laboratory-directed research and development: FY 1996 progress report

    International Nuclear Information System (INIS)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects' principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences

  7. Progress in increasing electronic reporting of laboratory results to public health agencies--United States, 2013.

    Science.gov (United States)

    2013-09-27

    Electronic reporting of laboratory results to public health agencies can improve public health surveillance for reportable diseases and conditions by making reporting more timely and complete. Since 2010, CDC has provided funding to 57 state, local, and territorial health departments through the Epidemiology and Laboratory Capacity for Infectious Diseases cooperative agreement to assist with improving electronic laboratory reporting (ELR) from clinical and public health laboratories to public health agencies. As part of this agreement, CDC and state and large local health departments are collaborating to monitor ELR implementation in the United States by developing data from each jurisdiction regarding total reporting laboratories, laboratories sending ELR by disease category and message format, and the number of ELR laboratory reports compared with the total number of laboratory reports. At the end of July 2013, 54 of the 57 jurisdictions were receiving at least some laboratory reports through ELR, and approximately 62% of 20 million laboratory reports were being received electronically, compared with 54% in 2012. Continued progress will require collaboration between clinical laboratories, laboratory information management system (LIMS) vendors, and public health agencies.

  8. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1990

    International Nuclear Information System (INIS)

    1991-01-01

    In this annual report, the activities of research and education and the state of operation of the research facilities in this Laboratory in fiscal year 1990 are summarized. There are four large research facilities in this Laboratory, that is, the fast neutron source reactor 'Yayoi', the electron beam linear accelerator, the nuclear fusion reactor blanket experiment device and the heavy ion irradiation research facility. Those are used to execute research and education in the wide fields of atomic energy engineering, and put to the common utilization by universities in whole Japan. The results of the research with these facilities have been reported in the separate reports. The research aims at developing the most advanced and new fields in nuclear reactor engineering, and includes the engineering of the first wall and the fuel cycle for nuclear fusion reactors, electromagnetic structure engineering, AI and robotics, quantum beam engineering, the design of new type reactors, the basic process of radiochemistry and so on. The report on the course of the large scale facilities, research activities, the publication of research, education and the events in the Laboratory in the year are described. (K.I.)

  9. Midwest Nuclear Science and Engineering Consortium

    International Nuclear Information System (INIS)

    Volkert, Wynn; Kumar, Arvind; Becker, Bryan; Schwinke, Victor; Gonzalez, Angel; McGregor, Douglas

    2010-01-01

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  10. Midwest Nuclear Science and Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  11. Nuclear Technology Programs semiannual progress report, April-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  12. Nuclear Technology Programs semiannual progress report, April-- September 1990

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  13. Bringing atomic and nuclear physics laboratory data into the classroom

    International Nuclear Information System (INIS)

    Norman, Eric B.; Larimer, Ruth-Mary; Rech, Gregory; Lee, Jeffrey; Vue, Chue; Leubane, Tholoana; Zamvil, Kenneth; Guthrie, Laura

    2003-01-01

    To illustrate a number of basic concepts in atomic and nuclear physics, we have developed three websites where students can analyze data from modern laboratories. By working through the on-line procedures, students will become acquainted with characteristic x-ray spectra, the concept of half-life, x-ray fluorescence, and neutron activation analysis

  14. Nuclear medicine and imaging research. Progress report, January 1, 1981-December 31, 1981

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.C.

    1981-09-01

    The Progress Report for the period January 1, 1981-December 31, 1981 of the Franklin Memorial Research Institute discusses instrumentation and quantitative methods of evaluation in nuclear medicine and imaging research. Imaging systems and image evaluation are discussed in four projects: Radiation Detector Studies, Dual Purpose Scanner for Thyroid Imaging, Instrumentation for Image Processing and Enhancement, and Energy-Coded Processing in Nuclear Medicine

  15. Progress report on nuclear science and technology in China (Vol.2). Proceedings of academic annual meeting of China Nuclear Society in 2011, No.2--nuclear power sub-volume (Pt.1)

    International Nuclear Information System (INIS)

    2012-10-01

    Progress report on nuclear science and technology in China (Vol. 2) includes 698 articles which are communicated on the second national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the second one, the content is about nuclear power (Pt.1)

  16. Progress at LAMPF [Los Alamos Meson Physics Facility], January-December 1987

    International Nuclear Information System (INIS)

    Poelakker, K.

    1988-09-01

    This report is the annual progress report of MP Division of the Los Alamos National Laboratory. Included are brief reports on research done at LAMPF by researchers from other institutions and other Los Alamos Divisions. These reports included the following topics: Nuclear and particle physics; Atomic and molecular physics; Materials science; Radiation-effects studies; Biomedical research and instrumentation; Nuclear chemistry; Radioisotope production and accelerator facilities development and operation

  17. Progress of research and development of nuclear fusion and development of large nuclear fusion device technology

    International Nuclear Information System (INIS)

    1994-01-01

    In the last several years, the results of tokamak experiments were conspicuous, and the progress of plasma confinement performance, transport mechanism, divertors and impurities, helium transport and exhaust, electric current drive, magnetic field ripple effect and high speed particle transport and DT experiment are reported. The other confinement methods than tokamak, the related theories and reactor technology are described. The conceptual design of ITER was carried out by the cooperation of Japan, USA, EC and the former USSR. The projects of developing nuclear fusion in various countries, the design and the required research and development of ITER, the reconstruction and the required research and development of JT-60, JET and TFTR, the design and the required research and development of large helical device, the state of research and development of laser nuclear fusion and inversion magnetic field pinch nuclear fusion, the activities and roles of industrial circles in large nuclear fusion device technology, and the long term perspective of the technical development of nuclear fusion are described. (K.I.)

  18. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.3--nuclear power sub-volume (Pt.2)

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 86 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the third one, the content is about nuclear power sub-volume (Pt.2)

  19. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.2--nuclear power sub-volume (Pt.1)

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the second one, the content is about uranium mining, uranium metallurgy and nuclear power.

  20. Progress on laboratory studies of the immobilisation of plutonium contaminated materials (pcm)

    International Nuclear Information System (INIS)

    Awmack, A.F.; Hemingway, K.

    1984-09-01

    This report describes progress on laboratory scale investigations into immobilisation of Plutonium Contaminated Materials for the year ending August 1984. The work is a continuation of that previously reported though some new work is also included. The samples tested were shredded plastic materials and latex. Three areas of work are covered (1) ISO Leach Tests (2) Radiolysis and degradation of organic materials (3) Equilibrium Leach Tests. (author)

  1. Report on the Progress of Weld Development of Irradiated Materials at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Miller, Roger G. [ORNL; Chen, Jian [ORNL; Tang, Wei [ORNL; Clark, Scarlett R. [ORNL; Gibson, Brian T. [ORNL; Vance, Mark Christopher [ORNL; Frederick, Greg [Electric Power Research Institute (EPRI); Tatman, Jonathan K. [Electric Power Research Institute (EPRI); Sutton, Benjamin J. [Electric Power Research Institute (EPRI)

    2018-04-01

    This report summarizes recent welding activities on irradiated alloys in the advanced welding facility at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory and the development of post-weld characterization capabilities and procedures that will be critical for assessing the ability of the advanced welding processes housed within the facility to make successful repairs on irradiated alloys. This facility and its capabilities were developed jointly by the U.S. Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program (and the Welding and Repair Technology Center), with additional support from Oak Ridge National Laboratory. The significant, on-going effort to weld irradiated alloys with high Helium concentrations and comprehensively analyze the results will eventually yield validated repair techniques and guidelines for use by the nuclear industry in extending the operational lifetimes of nuclear power plants.

  2. Neutron Focusing Mirrors for Neutron Radiography of Irradiated Nuclear Fuel at Idaho National Laboratory

    Science.gov (United States)

    Rai, Durgesh K.; Wu, Huarui; Abir, Muhammad; Giglio, Jeffrey; Khaykovich, Boris

    Post irradiation examination (PIE) of samples irradiated in nuclear reactors is a challenging but necessary task for the development on novel nuclear power reactors. Idaho National Laboratory (INL) has neutron radiography capabilities, which are especially useful for the PIE of irradiated nuclear fuel. These capabilities are limited due to the extremely high gamma-ray radiation from the irradiated fuel, which precludes the use of standard digital detectors, in turn limiting the ability to do tomography and driving the cost of the measurements. In addition, the small 250 kW Neutron Radiography Reactor (NRAD) provides a relatively weak neutron flux, which leads to low signal-to-noise ratio. In this work, we develop neutron focusing optics suitable for the installation at NRAD. The optics would separate the sample and the detector, potentially allowing for the use of digital radiography detectors, and would provide significant intensity enhancement as well. The optics consist of several coaxial nested Wolter mirrors and is suited for polychromatic thermal neutron radiation. Laboratory Directed Research and Development program of Idaho National Laboratory.

  3. Establishment of a clean laboratory for ultra trace analysis of nuclear materials in safeguards environmental samples

    International Nuclear Information System (INIS)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo

    2003-01-01

    The Japan Atomic Energy Research Institute has established a cleanroom facility with cleanliness of ISO Class 5: the Clean Laboratory for Environmental Analysis and Research (CLEAR). It was designed to be used for the analysis of nuclear materials in environmental samples mainly for the safeguards, in addition to the Comprehensive Nuclear-Test-Ban Treaty verification and research on environmental sciences. The CLEAR facility was designed to meet conflicting requirements of a cleanroom and for handling of nuclear materials according to Japanese regulations, i.e., to avoid contamination from outside and to contain nuclear materials inside the facility. This facility has been intended to be used for wet chemical treatment, instrumental analysis and particle handling. A fume-hood to provide a clean work surface for handling of nuclear materials was specially designed. Much attention was paid to the selection of construction materials for use to corrosive acids. The performance of the cleanroom and analytical background in the laboratory are discussed. This facility has satisfactory specification required for joining the International Atomic Energy Agency Network of Analytical Laboratories. It can be concluded that the CLEAR facility enables analysis of ultra trace amounts of nuclear materials at sub-pictogram level in environmental samples. (author)

  4. Nuclear Physics Divisions progress report for the period 1st January to 31st December 1979

    International Nuclear Information System (INIS)

    Sofield, C.J.; Lees, E.W.; Longworth, G.

    1980-04-01

    The annual progress report of the Nuclear Physics Division of the Atomic Energy Research Division of the Atomic Energy Research Establishment, Harwell for 1979, is presented under the headings; nuclear data and technology for nuclear power, nuclear studies, applications of nuclear and associated techniques, and accelerator operation, maintenance and development. Lists of reports, publications and conference papers and also of divisional, attached and research student staff are appended. (U.K.)

  5. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.5

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the fifth one, the content is about radiation protection and nuclear chemical industry.

  6. Los Alamos National Laboratory Science Education Programs. Quarterly progress report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.

    1995-09-01

    This report is quarterly progress report on the Los Alamos National Laboratory Science Education Programs. Included in the report are dicussions on teacher and faculty enhancement, curriculum improvement, student support, educational technology, and institutional improvement.

  7. Progress report on atomic and nuclear physics, 1 January 1981-1 September 1981

    International Nuclear Information System (INIS)

    Merzbacher, E.

    1981-01-01

    Progress is reviewed in the following areas: charged particle experiments with polarized beams, nuclear reaction theory, and accelerator development and instrumentation. Listings of publications and reports submitted for publication are included

  8. Progress Report of Neutron Nuclear Data in Argentina. 1972

    International Nuclear Information System (INIS)

    Ricabarra, G.H.

    1972-06-01

    Values of the reduced activation resonance integral relative to the thermal cross section, I'/σ 0 of 74 Ge and 76 Ge were determined relative to gold by measuring cadmium ratios in a reactor spectrum. Progress Report on the Activities of the Neutron and Reactor Physics Group at the Centro Atomico Bariloche and The IALE Programme for Nuclear Spectroscopy Studies of Short-Lived Nuclei. Progress Report 1971 are also included. A short abstract from each respectively, follows: The activities of the Neutron and Reactor Physics Group at the Centro Atomico Bariloche (CAB) are centered around the use of the 30 MeV electron linear accelerator (LINAC) as a high intensity pulsed neutron source. Three main lines of research are being carried out: 1. Neutron time of flight spectra measurements. 2. Neutron total cross sections measurements by transmission method. 3. Neutron die away experiments; and The on-line system described briefly in the previous Progress Report has continued operating during 1971. A complete description of the experimental facility is being published

  9. Communication of nuclear data progress No.20(1998)

    International Nuclear Information System (INIS)

    1998-12-01

    This is the 20th issue of Communication of Nuclear Data Progress (CNDP), in which the achievements in nuclear data field for the last year in China are carried. It includes the measurement of cross sections for 92 Mo (n,p) 92m Nb reaction and deduction of low energy neutron; theoretical calculations of n + 9 Be, 12 C, 85,87 Rb, 88,89,90 Sr, 89 Y, 113 Cd, 115 In, 121,123 Sb below 20 MeV and γ + 51 V, 180,182,183,184,186 W below 30 MeV; evaluations of 63,65,Nat Cu(n, α), (n,n'α) and γ + 51 V reactions and 238 U fission product yields; a method and program CABEI for adjusting consistency between the cross section data of natural element and its isotopes; testing of the tritium production for 6 Li and 7 Li; and fragment angular anisotropies and inertia parameters

  10. Nuclear waste management. Quarterly progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A. (comps.)

    1980-04-01

    Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

  11. Nuclear structure theory. Annual technical progress report, 1 July 1974--30 June 1975

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1975-01-01

    Progress during the past year is summarized for the following areas of nuclear structure and reaction theory: Meson interactions with nucleons and nuclei, including inelastic scattering of pions, three-body theories of scattering and absorption of pions by deuterons, and π-p bremsstrahlung. Theory of the effective interaction, including behavior of the expansion in orders of the reaction matrix. Statistical spectroscopy including fluctuations in energy levels and excitation strengths, and sum rules and strength distributions for various excitation processes, including single-nucleon transfer, β decay and multipole giant resonances. Studies of the inverse scattering problem. Studies of nuclear symmetries, of nuclear clustering, and of general nuclear structure by α-transfer reactions, and of nuclear shapes by (d, 3 He) reactions. (U.S.)

  12. The 1988 Leti Division progress report

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The 1988 progress report of the CEA's LETI Division (Division of Electronics, Technology and Instrumentation, France) is presented. The missions of LETI Division involve military and nuclear applications of electronics and fundamental research. The research programs developed in 1988 are the following: materials and components, non-volatile silicon memories, silicon-over-insulator, integrated circuits technologies, common experimental laboratory (opened to the European community), mass memories, photodetectors, micron sensors and flat screens [fr

  13. Nuclear theory progress report

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses research performed at University of Washington in nuclear theory. Some of the topics discussed are: nuclear astrophysics; symmetry; time reversal invariance; quark matter; superallowed beta decay; exclusive reactions; nuclear probes; soliton model; relativistic heavy ion collisions; supernova explosions; neutrino processes in dense matter; field theories; weak interaction physics; and nuclear structure

  14. Effective progression of nuclear magnetic resonance-detected fragment hits.

    Science.gov (United States)

    Eaton, Hugh L; Wyss, Daniel F

    2011-01-01

    Fragment-based drug discovery (FBDD) has become increasingly popular over the last decade as an alternate lead generation tool to HTS approaches. Several compounds have now progressed into the clinic which originated from a fragment-based approach, demonstrating the utility of this emerging field. While fragment hit identification has become much more routine and may involve different screening approaches, the efficient progression of fragment hits into quality lead series may still present a major bottleneck for the broadly successful application of FBDD. In our laboratory, we have extensive experience in fragment-based NMR screening (SbN) and the subsequent iterative progression of fragment hits using structure-assisted chemistry. To maximize impact, we have applied this approach strategically to early- and high-priority targets, and those struggling for leads. Its application has yielded a clinical candidate for BACE1 and lead series in about one third of the SbN/FBDD projects. In this chapter, we will give an overview of our strategy and focus our discussion on NMR-based FBDD approaches. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. The Legnaro National Laboratories and the SPES facility: nuclear structure and reactions today and tomorrow

    International Nuclear Information System (INIS)

    De Angelis, Giacomo; Fiorentini, Gianni

    2016-01-01

    There is a very long tradition of studying nuclear structure and reactions at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (Italian Institute of Nuclear Physics). The wide expertise acquired in building and running large germanium arrays has made the laboratories one of the most advanced research centers in γ -ray spectroscopy. The ’gamma group’ has been deeply involved in all the national and international developments of the last 20 years and is currently one of the major contributors to the AGATA project, the first (together with its American counterpart GRETINA) γ -detector array based on γ -ray tracking. This line of research is expected to be strongly boosted by the coming into operation of the SPES radioactive ion beam project, currently under construction at LNL. In this report, written on the occasion of the 40th anniversary of the Nobel prize awarded to Aage Bohr, Ben R Mottelson and Leo Rainwater and particularly focused on the physics of nuclear structure, we intend to summarize the different lines of research that have guided nuclear structure and reaction research at LNL in the last decades. The results achieved have paved the way for the present SPES facility, a new laboratories infrastructure producing and accelerating radioactive ion beams of fission fragments and other isotopes. (invited comment)

  16. The Legnaro National Laboratories and the SPES facility: nuclear structure and reactions today and tomorrow

    Science.gov (United States)

    de Angelis, Giacomo; Fiorentini, Gianni

    2016-11-01

    There is a very long tradition of studying nuclear structure and reactions at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (Italian Institute of Nuclear Physics). The wide expertise acquired in building and running large germanium arrays has made the laboratories one of the most advanced research centers in γ-ray spectroscopy. The ’gamma group’ has been deeply involved in all the national and international developments of the last 20 years and is currently one of the major contributors to the AGATA project, the first (together with its American counterpart GRETINA) γ-detector array based on γ-ray tracking. This line of research is expected to be strongly boosted by the coming into operation of the SPES radioactive ion beam project, currently under construction at LNL. In this report, written on the occasion of the 40th anniversary of the Nobel prize awarded to Aage Bohr, Ben R Mottelson and Leo Rainwater and particularly focused on the physics of nuclear structure, we intend to summarize the different lines of research that have guided nuclear structure and reaction research at LNL in the last decades. The results achieved have paved the way for the present SPES facility, a new laboratories infrastructure producing and accelerating radioactive ion beams of fission fragments and other isotopes.

  17. Fire preparedness measures in buildings with hot laboratories

    International Nuclear Information System (INIS)

    Oberlaender, B.C.

    2003-01-01

    Important hot laboratory safety issues are the general design/construction of the building with respect to fire, fire prevention, fire protection, administrative controls, and risk assessment. Within the network of the European Working Group Hot Laboratories and Remote Handling items concerning 'fire preparedness measures in hot laboratories' were screened and studied. Two questionnaires were sent to European hot laboratories; the first in November 2002 on 'fire preparedness measures, fire detection and fire suppression/extinguishing in lead shielded cells, concrete shielded cells' and the second in June 2003 on 'Fire preparedness measures in buildings with hot laboratories'. The questionnaires were filled in by a total of ten hot laboratories in seven European countries. On request of participants the answers were evaluated and 'anonymised' for presentation and discussion at the plenary meeting. The answers showed that many European hot laboratories are implementing improvements to their fire protection programmes to comply with more stringent requirements of the national authorities. The recommendations ('International guidelines for the fire protection of Nuclear Power Plants') given by the insurance pools are followed up with national variations. An ISO standard (ISO 17873) is in progress giving criteria for the design and the operation of ventilation systems as well as fire hazard management in nuclear installations others than reactors

  18. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.7--nuclear fusion and plasma physics sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 22 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear fusion and plasma physics sub-volume

  19. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.9--nuclear technology applied in industry sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 35 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the ninth one, the content is about nuclear technology applied in industry sub-volume

  20. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.4--Nuclear chemistry and radiation chemistry sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 24 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the fourth one, the content is about Nuclear chemistry and radiation chemistry sub-volume

  1. Progress and safety aspects in process heat utilization from nuclear systems

    International Nuclear Information System (INIS)

    Barnert, H.

    1995-01-01

    Report about the Status and the Progress in the Various Programs and Projects in the Federal Republic of Germany in Process Heat Utilization from the High Temperature Reactor and on Recent Changes of the Atomic Law in the Federal Republic of Germany with Big Influence on the Safety of Nuclear Energy Technology. (author)

  2. Summary of nuclear plant aging research at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1991-01-01

    Oak Ridge National Laboratory (ORNL) has been a major contributor to the Nuclear Regulatory Commission (NRC) Nuclear Plant Aging Research Program since its inception. The research at ORNL has consisted primarily of the preparation of comprehensive aging assessments and other studies of safety related and other components and systems. The components and systems have been identified and prioritized based on risk considerations, as well as by operating experience. In each case, ORNL has been preparing a Phase 1 assessment which summarizes design features, operating conditions, and stressors which lead to degradation and failure; identified parameters which could be used to detect, trend and differentiate the degradations; and proposed potential inspection, surveillance, and monitoring methods which could be applied to the parameters. Where appropriate, Phase 2 assessments have been prepared, which verify and recommend inspection, surveillance and monitoring methods based on vendor information, laboratory and field tests, and in-situ inspections and tests. Finally, Phase 3 assessments are prepared which provide recommendations regarding implementing the inspection, surveillance and monitoring methods, and provide recommendations regarding criteria to be applied. Other activities include providing assistance to NRC/Nuclear Regulatory Research and regional offices as requested, and participation in ASME and IEEE codes and standards

  3. Experimental nuclear physics at Vanderbilt University. Progress report, August, 1983-August, 1984

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1984-01-01

    Progress summaries are given in the fields of in-beam gamma ray spectroscopy, nuclei far from stability, nuclear reaction mechanism studies, delta-electron spectroscopy, theoretical studies, and other research and activities. Status of the Joint Institute for Heavy Ion Research is reviewed

  4. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1989

    International Nuclear Information System (INIS)

    1990-01-01

    This report summerizes the research and educational activities at the Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The Laboratory holds four main facilities, which are Yayoi reactor, an electron accelerator, fusion blanket research facility, and heavy ion irradiation research facility. And they are open to the researchers both inside and outside the University. The application of the facilities are described. The activities and achievements of the Laboratory staffs, and theses for graduate, master, and doctor degrees are also summerized. (J.P.N.)

  5. Studies of nuclear processes. Progress report, June 1, 1974--May 31, 1975

    International Nuclear Information System (INIS)

    Clegg, T.B.; Ludwig, E.J.; Merzbacher, E.; Shafroth, S.M.; Thompson, W.J.

    1975-01-01

    The studies of nuclear processes conducted by the Chapel Hill group affiliated with the Triangle Universities Nuclear Laboratory (TUNL) have continued to emphasize the following topics: I. Proton Beam Experiments; II. Polarized Deuteron Beam Experiments; III. Development of Ion Sources, Experimental Equipment, and Techniques; IV. Nuclear Theory and Nuclear Reaction Analyses; V. Atomic Effects in Nuclear Bombardment. The Cyclo-Graaff at TUNL and the 4-MeV Van de Graaff accelerator were the primary sources of particle beams. Computations were carried out on the computers at TUNL and at the Triangle Universities Computation Center (TUCC). Many charged particle and neutron experiments were undertaken jointly with groups from Duke University and North Carolina State University. The research program has aimed at a better understanding of the spin dependence of nuclear interactions revealed in experiments with polarized beams. Collisions between charged particles and complex atoms, leading to inner shell ionization, were studied in high resolution over a broad energy range. (U.S.)

  6. Nuclear Technology Programs semiannual progress report, April-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. (ed.)

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  7. Nuclear technology programs. Semiannual progress report, April--September 1991

    International Nuclear Information System (INIS)

    1993-07-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  8. Theoretical studies in hadronic and nuclear physics. Progress report, July 1, 1994--June 1, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M.K.; Griffin, J.J.

    1995-06-01

    This progress report contains 36 items of research work done by ten members of the University of Maryland Nuclear Theory Group with 21 outside collaborators from various institutions in the US, Canada, Korea and Europe. The report is in four sections, each representing major and basic areas of interest in nuclear theory. The sections are as follows: (1) hadrons in nuclei and nuclear matter; (2) hadron physics; (3) relativistic dynamics in quark, hadron and nuclear physics; (4) heavy ion dynamics and related processes.

  9. Theoretical studies in hadronic and nuclear physics. Progress report, July 1, 1994--June 1, 1995

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Griffin, J.J.

    1995-06-01

    This progress report contains 36 items of research work done by ten members of the University of Maryland Nuclear Theory Group with 21 outside collaborators from various institutions in the US, Canada, Korea and Europe. The report is in four sections, each representing major and basic areas of interest in nuclear theory. The sections are as follows: (1) hadrons in nuclei and nuclear matter; (2) hadron physics; (3) relativistic dynamics in quark, hadron and nuclear physics; (4) heavy ion dynamics and related processes

  10. Overview of nuclear structure with electrons

    International Nuclear Information System (INIS)

    Geesaman, D. F.

    1999-01-01

    Following a broad summary of the author's view of nuclear structure in 1974, he will discuss the key elements they have learned in the past 25 years from the research at the M.I.T. Bates Linear Accelerator center and its sister electron accelerator laboratories. Electron scattering has provided the essential measurements for most of the progress. The future is bright for nuclear structure research as their ability to realistically calculate nuclear structure observables has dramatically advanced and they are increasingly able to incorporate an understanding of quantum chromodynamics into their picture of the nucleus

  11. 76 FR 11522 - In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear...

    Science.gov (United States)

    2011-03-02

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-029-COL, 52-030-COL] In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear Power Plant, Units 1 and 2... by the Nuclear Regulatory Commission staff in this case. Mr. Dehmel has not previously performed any...

  12. Progress report on the investigation of nuclear plant costs

    International Nuclear Information System (INIS)

    Kent, G.F.

    1987-01-01

    Over the past few years, many studies have been performed in an effort to understand, evaluate, and explain the reasons for the substantial increases in nuclear plant costs, as well as for the divergence between predicted and actual costs. Concerns regarding these cost increases is shared by utility owners, engineer/constructors, and public utility commissions. The future use of nuclear power depends on the ability of the industry to control these costs while maintaining safety. Stone and Webster Engineering Corporation (SWEC) has responded to this concern by initiating an internal study to evaluate, quantify, and explain the factors influencing this cost growth. Previously, a conceptual approach was presented in which three explanatory variables or factors were used as surrogates for the many variables that affected plant cost. This paper presents a progress report of that continuing study

  13. Some Recent Progress on Quark Pairings in Dense Quark and Nuclear Matter

    International Nuclear Information System (INIS)

    Pang Jinyi; Wang Jincheng; Wang Qun

    2012-01-01

    In this review article we give a brief overview on some recent progress in quark pairings in dense quark/nuclear matter mostly developed in the past five years. We focus on following aspects in particular: the BCS-BEC crossover in the CSC phase, the baryon formation and dissociation in dense quark/nuclear matter, the Ginzburg-Landau theory for three-flavor dense matter with U A (1) anomaly, and the collective and Nambu-Goldstone modes for the spin-one CSC. (physics of elementary particles and fields)

  14. More work to do: a pathway for future progress on strengthening nuclear security

    NARCIS (Netherlands)

    Herbach, J.; Pitts-Kiefer, S.

    2015-01-01

    With the nuclear security summit process winding down but much work remaining, it is vital to initiate a process by which states can continue and expand on the substantial progress that already has been made.

  15. Experiments on the nuclear interactions of pion and electrons. Final progress report

    International Nuclear Information System (INIS)

    Minehart, R.C.

    1998-05-01

    The work in this report is grouped into four categories. (1) The experiments in pion nucleus physics were primarily studies of pion absorption and scattering in light nuclei, carried out at the Los Alamos Meson Physics Facility (LAMPF). (2) The experiments on fundamental particle properties were carried out at LAMPF and at the Paul Scherrer Institute (PSI) in Switzerland, the pion-beta decay experiment is still under construction and will begin taking data in 1999. (3) The experiments in electro-nuclear physics were performed at the Stanford Linear Electron Accelerator (SLAC), at the Saclay Laboratory in France, at the LEGS facility at the Brookhaven National Laboratory, and at the Continuous Electron Beam Accelerator Facility (CEBAF) at the Jefferson Laboratory. These experiments relate mainly to the question of the role of longitudinal and transverse strength for inelastic scattering from nuclei, measurements of fundamental nuclear properties with tagged polarized photons, and to the quark structure of the nucleon and its excited states. (4) Experiments on absorption of antiprotons in heavy nuclei, were carried out by K. Ziock primarily while on a sabbatical leave in Munich, Germany

  16. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.8--isotope

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about radiation study, radiation technology, isotope and nuclear agriculture

  17. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.7--pulse power technology

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear electronics, nuclear detecting technology, pulse power technology, nuclear fusion and plasma

  18. Progress report on nuclear science and technology in China (Vol.2). Proceedings of academic annual meeting of China Nuclear Society in 2011, No.10--nuclear technology economy and management modernization sub-volume

    International Nuclear Information System (INIS)

    2012-10-01

    Progress report on nuclear science and technology in China (Vol. 2) includes 698 articles which are communicated on the second national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the tenth one, the content is about nuclear technology economy and management modernization

  19. Evolution of the Nuclear Safeguards Performance Laboratory PERLA on the Ispra Site of the Institute for Transuranium Elements

    International Nuclear Information System (INIS)

    Berndt, R.; Abbas, K.; Berthou, V.; De Almeida Carrapico, C.; Forcina, V.; Mayorov, V.; Mortreau, P.; Mosconi, M.; Pedersen, B.; Peerani, P.; Rosas, F.; Tagziria, H.; Tomanin, A.; Rozite, A.; Marin-Ferrer, M.; Crochemore, J.-M.; Roesgen, E.; Janssens, W.A.M.; )

    2015-01-01

    Based upon the experience of many years of operation, the safeguards Performance Laboratory PERLA will be reshaped in the near future (and relocated on the Ispra site such as not to interfere with decommissioning activities). During almost 30 years of successfully operating nuclear facilities in Ispra for supporting nuclear safeguards inspectorates with R&D, equipment development and training for in the meantime more than 1250 trainees, this laboratory is the main work-horse in this field and has functioned very frequently in the last years as easily accessible nuclear laboratory for external users. Even if a constant evolution took place in the last years, and additional facilities like the active neutron laboratory PUNITA or the ITRAP test laboratory for nuclear security R&D, testing and training have been taken in service, this step-change will allow refiguring the laboratory to face also new user expectations. NDA for safeguards continues to be a cornerstone of the measurement capacities complemented by experimental and advanced approaches, such as using active neutron interrogation, automation of measurements, complemented by Monte-Carlo simulations for neutron and gamma radiation. The tendency is also to integrate multiple plant signals (not only NDA measurements) in an overall assessment scheme and we envisage offering training and exercising capabilities for the inspectors also in this direction in the future. This paper will thus provide some insight in the concepts for the future use of the nuclear facilities on the Ispra site, which is complementary to two other contributions to this symposium, i.e., one describing the activities of our sister unit in Karlsruhe on NDA Safeguards Training and another on the new Advanced Safeguards Measurement, Monitoring and Modelling Laboratory (AS3ML) being built currently in Ispra. (author)

  20. Triangle Universities Nuclear Laboratory: Progress report - TUNL XXVII, 1 September 1987--31 August 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report contains papers in the following areas: fundamental symmetries in the nucleus; dynamics of few-nucleon systems; tensor forces in light nuclei; nucleon-nucleus interaction mechanisms; nuclear structure and reactions; and development and instrumentation

  1. Progress report - Physical and Environmental Sciences - TASCC Division -1995 January 1 to June 30

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Included in this progress report of the TASCC division at Chalk River Nuclear Laboratories is the research and development being carried out at this time and a listing of the relevant publications, reports. lectures and conference contributions. 15 tabs. 19 figs.

  2. Progress report - Physical and Environmental Sciences - TASCC Division -1995 January 1 to June 30

    International Nuclear Information System (INIS)

    1995-08-01

    Included in this progress report of the TASCC division at Chalk River Nuclear Laboratories is the research and development being carried out at this time and a listing of the relevant publications, reports. lectures and conference contributions. 15 tabs. 19 figs

  3. IAEA Technical Co-operation activities: Asia and the Pacific. Workshop on training nuclear laboratory technicians

    International Nuclear Information System (INIS)

    Roeed, S.S.

    1976-01-01

    The workshop was held to exchange information on existing facilities and programmes in Asia and the Pacific for training nuclear laboratory technicians, to identify future training needs and to assess the need for IAEA's involvement in this field. As the participants outlined the requirements for nuclear laboratory technician training and the facilities available in their respective countries, it became evident that, in addition to the training of radioisotope laboratory technicians, they also wished to review the need for technician training for the operation of nuclear power plants and industrial application of atomic energy. The terms of reference of the workshop were extended accordingly. The opening address by Chang Suk Lee, the Korean Vice Minister of Science and Technology, noted the valuable contribution to quality control and other industrial uses that nuclear techniques have made in his country. He also reviewed the application of nuclear techniques in Korean agriculture and medicine. The participants explored various forms of co-operation that could be established between countries of the region. Exchange programmes, not only for students but also for expert teachers, and the exchange or loan of equipment were suggested. It was felt that some generalized training courses could be organized on a regional basis, and two countries advocated the setting up of a regional training centre. One suggestion was to arrange regional training courses in special fields that would move from one country to another. The need was felt for periodic regional meetings on training methods, course content and other questions relating to training of laboratory technicians. The IAEA was requested to act as a clearinghouse for information on available training facilities in the region and to advise on the curricula for technician training courses. The Agency was also asked to organize short courses for the training of instructors of technicians in the various fields of atomic

  4. Laboratory training manual on the use of nuclear techniques in pesticide research

    International Nuclear Information System (INIS)

    1983-01-01

    This is a laboratory training manual on the use of nuclear techniques, and in particular radioisotopes in pesticide research. It is designed to give the scientists involved in pesticide research the basic terms and principles for understanding ionizing radiation: detection and measurement its hazards and safety measures, and some of the more common applications. Laboratory exercises representing the types of experiments that are valuable in pesticide research programmes and field tests which demonstrate the use of radiolabelled pesticides are included

  5. Nuclear excitations and reaction mechanisms. Progress report

    International Nuclear Information System (INIS)

    Fallieros, S.; Levin, F.S.

    1986-01-01

    Theoretical research is being conducted on the following topics: photon scattering, gauge invariance and the extension of Siefert's Theorem; retardation effects in photonuclear absorption and the Cabibbo Radicati Sum Rule; isovector transition densities, currents and response functions; the electric polarizability, the magnetic susceptibility and the distribution of oscillator strengths in some elementary systems; relativistic models and processes; properties of skyrmions; multiquark compound bags and the charge form factor of the A = 3 nuclei; nuclear reaction theory; three-particle scattering theory; deuteron-nucleus model calculations; asymptotia in three-particle scattering systems; and time-dependent approach to few-nucleon collisions. Progress in each of these areas is reviewed briefly. A list of invited talks and of publications for the fiscal year 1986 is included. 27 refs

  6. Nuclear structure research. Progress report, August 1, 1993--July 31, 1994

    International Nuclear Information System (INIS)

    Brenner, D.S.

    1994-08-01

    The Clark University research program in nuclear structure is a collaborative effort involving Clark University personnel, staff members from Brookhaven National Laboratory and an active participation of scientists from the US and other nations. The TRISTAN on-line isotope separator and the capture γ-ray facility at the High Flux Beam Reactor have been the primary experimental foci of the program although experiments have been carried out at other installations such as the High Flux Reactor of the Institute Laue-Langevin in Grenoble and at the Tandem Van de Graaff Accelerator, Yale University. Recently, we have joined colleagues from Argonne National Laboratory, Vanderbilt University and the University of Maryland in experiments using the Fragment Mass Analyzer (FMA) at the ATLAS accelerator. Our program has four principal research themes which underlie the various research initiatives, three involving nuclear structure physics and one directed towards astrophysics. These themes are: (1) the critical role of the proton-neutron interaction in the evolution of nuclear structure and its relation to collectivity, (2) the study of exotic nuclei far-from-stability produced by radioactive ion beams (REBs), (3) the appearance and role of dynamical symmetries in nuclei and the characterization of transitions among these limits, and (4) the characterization and prediction of properties of nuclei far from stability of importance in stellar nucleosynthesis

  7. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.10--nuclear technology economy and management modernization sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 18 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the tenth one, the content is about nuclear technology economy and management modernization sub-volume

  8. Nuclear Physics Institute of Lyon: The 1988 to 1989 progress report

    International Nuclear Information System (INIS)

    1990-01-01

    The 1988 to 1989 progress report of the Nuclear Physics Institute of Lyon is presented. Among the most important events, the operation of LEP, the acquisition and analysis of the first data which allowed to limitate at 3 the number of neutrino species, may be mentioned. The investigations relating to superdeformed nuclei and the assembly of the RFQ post-accelerator at the hydrogen aggregate accelerator are summarized. The most relevant results obtained in the fields of High Energy, Nuclear and multi-disciplinary Physics are reviewed. The developments concerning instrumentation, international cooperation and teaching are included. The published papers and the thesis presented are listed [fr

  9. Index to Nuclear Safety: a technical progress review by chrology, permuted title, and author, Volume 11(1) through Volume 20(6)

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, W B; Passiakos, M

    1980-06-01

    This index to Nuclear Safety, a bimonthly technical progress review, covers articles published in Nuclear Safety, Volume II, No. 1 (January-February 1970), through Volume 20, No. 6 (November-December 1979). It is divided into three sections: a chronological list of articles (including abstracts) followed by a permuted-title (KWIC) index and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center (NSIC), covers all safety aspects of nuclear power reactors and associated facilities. Over 600 technical articles published in Nuclear Safety in the last ten years are listed in this index.

  10. Commercial LFCM vitrification technology. Quarterly progress report, October-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, H.C.; Jarrett, J.H. (comps.)

    1985-07-01

    This report is the first in a series of quarterly reports compiled by the Nuclear Waste Treatment Program Office at Pacific Northwest Laboratory to document progress on commercial liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the first quarter of FY 1985 is discussed: pretreatment systems, melting process chemistry, glass development and characterization, feed preparation and transfer systems, melter systems, canister filling and handling systems, off-gas systems, process/product modeling and control, and supporting studies. 33 figs., 12 tabs.

  11. Accelerator Mass Spectrometry at the Nuclear Science Laboratory: Applications to Nuclear Astrophysics

    Science.gov (United States)

    Collon, P.; Bauder, W.; Bowers, M.; Lu, W.; Ostdiek, K.; Robertson, D.

    The Accelerator Mass Spectrometry (AMS) program at the Nuclear Science Laboratory of the University of Notre Dame is focused on measurements related to galactic radioactivity and to nucleosynthesis of main stellar burning as well as the production of so called Short-Lived Radionuclides (SLRs) in the Early Solar System (ESS). The research program is based around the 11MV FN tandem accelerator and the use of the gas-filled magnet technique for isobar separation. Using a technique that evolved from radiocarbon dating, this paper presents a number of research programs that rely on the use of an 11MV tandem accelerator at the center of the AMS program.

  12. Progress report of the Nuclear Physics Department (1.10.1983 - 30.9.1984)

    International Nuclear Information System (INIS)

    1985-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1983 to September 20, 1984. These studies concern the structure of nuclei and the nuclear reaction mechanisms. The experiments have been carried at the 9 MV tandem Van de Graaff, the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble, and the secondary beams at CERN [fr

  13. 1999 LDRD Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  14. Management of legacy spent nuclear fuel wastes at the Chalk River Laboratories: operating experience and progress towards waste remediation

    International Nuclear Information System (INIS)

    Cox, D.S.; Bainbridge, I.B.; Greenfield, K.R.

    2006-01-01

    AECL has been managing and storing a diversity of spent nuclear fuel, arising from operations at its Chalk River Laboratories (CRL) site over more than 50 years. A subset of about 22 tonnes of research reactor fuels, primarily metallic uranium, have been identified as a high priority for remediation, based on monitoring and inspection that has determined that these fuels and their storage containers are corroding. This paper describes the Fuel Packaging and Storage (FPS) project, which AECL has launched to retrieve these fuels from current storage, and to emplace them in a new above-ground dry storage system, as a prerequisite step to decommissioning some of the early-design waste storage structures at CRL. The retrieved fuels will be packaged in a new storage container, and subjected to a cold vacuum drying process that will remove moisture, and thereby reduce the extent of future corrosion and degradation. The FPS project will enable improved interim storage to be implemented for legacy fuels at CRL, until a decision is made on the ultimate disposition of legacy fuels in Canada. (author)

  15. Material handling for the Los Alamos National Laboratory Nuclear Storage Facility

    International Nuclear Information System (INIS)

    Pittman, P.; Roybal, J.; Durrer, R.; Gordon, D.

    1999-01-01

    This paper will present the design and application of material handling and automation systems currently being developed for the Los Alamos National Laboratory (LANL) Nuclear Material Storage Facility (NMSF) renovation project. The NMSF is a long-term storage facility for nuclear material in various forms. The material is stored within tubes in a rack called a basket. The material handling equipment range from simple lift assist devices to more sophisticated fully automated robots, and are split into three basic systems: a Vault Automation System, an NDA automation System, and a Drum handling System. The Vault Automation system provides a mechanism to handle a basket of material cans and to load/unload storage tubes within the material vault. In addition, another robot is provided to load/unload material cans within the baskets. The NDA Automation System provides a mechanism to move material within the small canister NDA laboratory and to load/unload the NDA instruments. The Drum Handling System consists of a series of off the shelf components used to assist in lifting heavy objects such as pallets of material or drums and barrels

  16. Nuclear law in progress

    International Nuclear Information System (INIS)

    Manóvil, Rafael Mariano

    2014-01-01

    The 21. AIDN / INLA Congress was organized by the International Nuclear Law Association, in Buenos Aires, between the October 20 and 23, 2014. In this event, were presented almost 50 papers about these subjects: radioactive sources, safety and licensing, radioactive waste management, radiation protection, nuclear transport, security and non-proliferation, nuclear liability and insurance, etc.

  17. The community's research and development programme on decommissioning of nuclear installations. Fourth annual progress report 1988

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This is the fourth annual progress report on the European Community's programme (1984-88) of research on the decommissioning of nuclear installations. It shows the status of the programme at 31 December 1988. The fourth progress report describes the objectives, scope and work programme of the 72 research contracts concluded, as well as the progress of work achieved and the results obtained in 1988

  18. The Community's research and development programme on decommissioning of nuclear installations. Third annual progress report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This is the third annual progress report of the European Community's programme (1984-88) of research on the decommissioning of nuclear installations. It shows the status of the programme on 31 December 1987. The third progress report describes the objectives, scope and work programme of the 69 research contracts concluded, as well as the progress of work achieved and the results obtained in 1987

  19. Computational methods for the nuclear and neutron matter problems. Progress report

    International Nuclear Information System (INIS)

    Kalos, M.H.

    1979-01-01

    A brief report is given of progress on the development of Monte Carlo methods for the treatment of both simplified and realistic models of extensive neutron and nuclear matter and, eventually, of finite nuclei. A wide class of algorithms that may allow the efficient sampling of the integrands required in calculating the energy expectations with useful trial wave functions was devised

  20. Design of simulated nuclear electronics laboratory experiments based on IAEA-TECDOC-530 on pcs

    International Nuclear Information System (INIS)

    Ghousia, S.F.; Nadeem, M.; Khaleeq, M.T.

    2002-05-01

    In this IAEA project, PK-11089 (Design of Simulated Nuclear Electronics Laboratory Experiments based on IAEA-TECDOC-530 on PCs), a software package consisting of Computer-Simulated Laboratory Experiments on Nuclear Electronics compatible with the IAEA-TECDOC-530 (Nuclear Electronics Laboratory Manual) has been developed in OrCAD 9.0 (an electronic circuit simulation software environment) as a self-training aid. The software process model employed in this project is the Feedback Waterfall model with some Rapid Application Model. The project work is completed in the five phases of the SDLC, (all of them have been fully completed) which includes the Requirement Definition, Phase, System and Software Design, Implementation and Unit testing, Integration and System-testing phase and the Operation and Maintenance phase. A total of 125 circuits are designed in 39 experiments from Power Supplies, Analog circuits, Digital circuits and Multi-channel analyzer sections. There is another set of schematic designs present in the package, which contains faulty circuits. This set is designed for the learners to exercise the troubleshooting. The integration and system-testing phase was carried out simultaneously. The Operation and Maintenance phase has been implemented by accomplishing it through some trainees and some undergraduate engineering students by allowing them to play with the software independently. (author)

  1. Nuclear technology programs semiannual progress report, April--September 1989

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1991-08-01

    This document reports on the work done by the Nuclear Technology Program of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1989. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with developing a process for separating the organic and inorganic constitutents of the red-water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories. 154 refs., 154 figs., 100 tabs

  2. Nuclear Physics Division progress report

    International Nuclear Information System (INIS)

    West, D.; Cookson, J.A.; Findlay, D.J.S.

    1983-07-01

    Summaries are given of work on nuclear data and technology for nuclear power; nuclear reactions and nuclear properties; applications of nuclear and associated techniques in a variety of fields, particularly with the use of ion beams; accelerator operation and development. (U.K.)

  3. Education and research at the Ohio State University nuclear reactor laboratory

    International Nuclear Information System (INIS)

    Miller, D.W.; Myser, R.D.; Talnagi, J.W.

    1989-01-01

    The educational and research activities at the Ohio State University Nuclear Reactor Laboratory (OSUNRL) are discussed in this paper. A brief description of an OSUNRL facility improvement program and its expected impact on research is presented. The overall long-term goal of the OSUNRL is to support the comprehensive education, research, and service mission of OSU

  4. Self-Reliance and Sustainability of Nuclear Analytical Laboratories in Small States of Central Europe: The Slovenian Case

    International Nuclear Information System (INIS)

    Korun, M.

    2013-01-01

    The Jožef Stefan Institute is the largest research institution in Slovenia devoted to research in many fields of science and technology. Within the Institute several nuclear analytical laboratories operate, making it the largest nuclear research institution in Slovenia. The Laboratory for Radiation Measuring Systems and Radioactivity Measurements belongs to the Department for Medium and Low Energy Physics, which is engaged mainly in nuclear physics, interactions of radiation with matter and its applications, and in providing a service in radiation measurements and dosimetry. The laboratory was founded almost thirty years ago, when the three accelerators, which formed the basis of the research infrastructure of the department, came to the end of their working lives. The personnel took the opportunity to participate in the programme of radioactivity monitoring of the Krško Nuclear Power Plant, which at that time went into operation. The equipment, i.e., the detectors, electronics and computers, was available, but the expertise was limited to the techniques of measurement and analysis in gamma-ray spectrometry. The absence of the expertise in radiochemistry was a serious drawback, therefore new methods in detector calibration had to be developed. In the following years the laboratory participated not only in the monitoring programme of the nuclear power plant but also in other radioactivity monitoring programmes in Slovenia. Since its foundation the laboratory did not receive any financial support either from the state or from the department. Support in equipment and expertise was received from the International Atomic Energy Agency, the Government of the United States and the United Nations Development Programme. The laboratory is engaged mainly in gamma-ray spectrometric measurements of samples from the natural, living and working environments. The main customers are the Krško Nuclear Power Plant and governmental organizations and agencies. The work for these

  5. Cyclotron laboratory in the Institute of Nuclear Studies of the Hungarian Academy of Sciences

    International Nuclear Information System (INIS)

    Gal'chuk, A.V.; Korolev, L.E.; Stepanov, A.V.

    1985-01-01

    The status of the development of cyclotron laboratory in the Institute for Nuclear Research of the Hungarian Academy of Sciences is discussed. The MGTS-20Eh isochronous cyclotron is to be mounted in the laboratory. Obtaining of accelerated proton beams is planned (energy of 5-18 MeV, internal beam current - 200 μA, external beam current - 50 μA), deuterons (3-10 MeV, 300 μA, 50 μA), H 3 +2 ions (7-27 MeV, 50 μA, 25 μA) and He 4 +2 (6-20 MeV, 50 μA, 25 μA). Fundamental researches in the field of atomic and nuclear physics applied investigations in the field of analysis of high purity materials, radiobiological investigations in the field of medicine and agriculture are to be performed in the laboratory. The cyclotron is to be used for production and application of short-lived radioisotopes and radiation testing machine parts

  6. Nuclear structure at intermediate energies. Progress report

    International Nuclear Information System (INIS)

    Bonner, B.E.; Mutchler, G.S.

    1992-01-01

    We report here oil the progress that we made for the nine months beginning October 1, 1991 for DOE Grant No. DE-FG05-87ER40309. The report covers the third year of a three year grant. Since we are submitting an accompanying Grant Renewal Proposal, we provide in this report more background information than usual for the different projects. The theme that unites the experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of AGS bar p experiment E854, AGS heavy ion experiment E810, as-well as the approved STAR experiment at RHIC), - all these projects share this common goal. FNAL E683 may well open a new field of investigation in nuclear physics: That of just how colored quarks and gluons interact with nuclear matter as they traverse nuclei of different-sizes. In most all of the experiments mentioned, above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are available to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do. The format we follow in the Progress Report is,to provide a concise, but fairly complete write-up on each project. The publications listed in Section In give much greater detail on many of the projects. The aim in this report is to focus on the physics goals, the results, and their significance

  7. Fields of progress: Nuclear techniques and food security

    International Nuclear Information System (INIS)

    Dargie, J.

    2000-01-01

    Isotopes and ionizing radiation have been used throughout the past half century to provide practical solutions to many issues and challenges facing the world's food and agricultural development. Since the mid-1960s, the IAEA and United Nations Food and Agriculture Organization (FAO) have worked together through the Joint FAO/IAEA Division, using their combined technical and managerial expertise and experience to bring the benefits of nuclear technology to farmers and consumers. This article reviews results of selected projects of the Joint FAO/IAEA Division that have contributed to food and agriculture. development. In some areas, it updates previous reports on the work of the Division and the FAO/IAEA Agriculture and Biotechnology Laboratory, which supports the Joint Programme. The article specifically focuses on three of the key strategic issues earmarked for intergovernmental attention at the World Food Summit and earlier at the UN Conference on Environment and Development in 1992. Each can be addressed effectively through nuclear technology that is supported by other technologies, national capacities, and an enabling political and economic environment

  8. Triangle Universities Nuclear Laboratory annual report - TUNL XXIV, 1 July 1984-31 August 1985

    International Nuclear Information System (INIS)

    1985-01-01

    Research programs of the Triangle Nuclear Laboratory are discussed. These studies are based on reactions induced by polarized beam, protons, deuterons and neutrons. Individual programs are cataloged separately

  9. Progress report on nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-01

    The experimental program in nuclear physics at the University of Tennessee, Knoxville, is led by Professors Carrol Bingham, Lee Riedinger, and Soren Sorenseni who respectively lead the studies of the exotic decay modes of nuclei far from stability, the program of high-spin research, and our effort in relativistic heavy-ion physics. Over the years, this broad program of research has been successful partially because of the shared University resources applied to this group effort. The proximity of the Oak Ridge National Laboratory has allowed us to build extremely strong programs of joint research, and in addition to play an important leadership role in the Joint Institute for Heavy Ion Research (JIHIR). Our experimental program is also very closely linked with those at other national laboratories: Argonne (collaborations involving the Fragment Mass Analyzer (FMA) and γ-ray arrays), Brookhaven (the RHIC and Phenix projects), and Berkeley (GAMMASPHERE). We have worked closely with a variety of university groups in the last three years, especially those in the UNISOR and now UNIRIB collaborations. And, in all aspects of our program, we have maintained close collaborations with theorists, both to inspire the most exciting experiments to perform and to extract the pertinent physics from the results. The specific areas discussed in this report are: properties of high-spin states; study of low-energy levels of nuclei far from stability; and high energy heavy-ion physics

  10. Heating- and growing-degree days at Chalk River Nuclear Laboratories, 1976-1980

    International Nuclear Information System (INIS)

    Jay, P.C.; Wildsmith, D.P.

    1981-05-01

    An update of the report, Heating- and Growing-Degree-Days at Chalk River Nuclear Laboratories (AECL-5547) is presented along with various other meteorological variables which were not included in the previous publication. Also included, and shown in graph form, are the monthly degree-day frequencies. (author)

  11. A simulation of 'schedule-cost' progress monitoring system in nuclear power project management

    International Nuclear Information System (INIS)

    Song Haitao; Huang Zhongping; Zhang Zemin; Wang Zikai

    2010-01-01

    The objective of project management is to find the optimal balance between progress and cost according to the project requirements. Traditional method always manages progress and cost separately. However, domestic and international experience indicated that the interactions between these two factors are crucial in the project implementation. Modern project managers have to manage and maintain a 'Progress - Cost' joint control framework. Such a model is applied into a sub-project of a nuclear power project using Simulink in this paper. It helps to identify and correct the deviations of the project. Earned Value Management is used by the project manager to quantify the cost of the project and progress of implementation. The budget plan value, actual value, earned value are three important parameters to measure cost and progress of the project. The experimental results illustrated that the method gives a more comprehensive performance evaluation of the project. (authors)

  12. Implementation of quality management systems and progress towards accreditation of National Tuberculosis Reference Laboratories in Africa

    Directory of Open Access Journals (Sweden)

    Heidi Albert

    2017-03-01

    Full Text Available Background: Laboratory services are essential at all stages of the tuberculosis care cascade, from diagnosis and drug resistance testing to monitoring response to treatment. Enabling access to quality services is a challenge in low-resource settings. Implementation of a strong quality management system (QMS and laboratory accreditation are key to improving patient care. Objectives: The study objective was to determine the status of QMS implementation and progress towards accreditation of National Tuberculosis Reference Laboratories (NTRLs in the African Region. Method: An online questionnaire was administered to NTRL managers in 47 World Health Organization Regional Office for Africa member states in the region, between February and April 2015, regarding the knowledge of QMS tools and progress toward implementation to inform strategies for tuberculosis diagnostic services strengthening in the region. Results: A total of 21 laboratories (43.0% had received SLMTA/TB-SLMTA training, of which 10 had also used the Global Laboratory Initiative accreditation tool. However, only 36.7% of NTRLs had received a laboratory audit, a first step in quality improvement. Most NTRLs participated in acid-fast bacilli microscopy external quality assurance (95.8%, although external quality assurance for other techniques was lower (60.4% for first-line drug susceptibility testing, 25.0% for second-line drug susceptibility testing, and 22.9% for molecular testing. Barriers to accreditation included lack of training and accreditation programmes. Only 28.6%of NTRLs had developed strategic plans and budgets which included accreditation. Conclusion: Good foundations are in place on the continent from which to scale up accreditation efforts. Laboratory audits should be conducted as a first step in developing quality improvement action plans. Political commitment and strong leadership are needed to drive accreditation efforts; advocacy will require clear evidence of patient

  13. Decommissioning of AECL Whiteshell laboratories - 16311

    International Nuclear Information System (INIS)

    Koroll, Grant W.; Bilinsky, Dennis M.; Swartz, Randall S.; Harding, Jeff W.; Rhodes, Michael J.; Ridgway, Randall W.

    2009-01-01

    Whiteshell Laboratories (WL) is a Nuclear Research and Test Establishment near Winnipeg, Canada, operated by AECL since the early 1960's and now under decommissioning. WL occupies approximately 4400 hectares of land and employed more than 1000 staff up to the late-1990's, when the closure decision was made. Nuclear facilities at WL included a research reactor, hot cell facilities and radiochemical laboratories. Programs carried out at the WL site included high level nuclear fuel waste management research, reactor safety research, nuclear materials research, accelerator technology, biophysics, and industrial radiation applications. In preparation for decommissioning, a comprehensive environmental assessment was successfully completed [1] and the Canadian Nuclear Safety Commission issued a six-year decommissioning licence for WL starting in 2003 - the first decommissioning licence issued for a Nuclear Research and Test Establishment in Canada. This paper describes the progress in this first six-year licence period. A significant development in 2006 was the establishment of the Nuclear Legacy Liabilities Program (NLLP), by the Government of Canada, to safely and cost effectively reduce, and eventually eliminate the nuclear legacy liabilities and associated risks, using sound waste management and environmental principles. The NLLP endorsed an accelerated approach to WL Decommissioning, which meant advancing the full decommissioning of buildings and facilities that had originally been planned to be decontaminated and prepared for storage-with-surveillance. As well the NLLP endorsed the construction of enabling facilities - facilities that employ modern waste handling and storage technology on a scale needed for full decommissioning of the large radiochemical laboratories and other nuclear facilities. The decommissioning work and the design and construction of enabling facilities are fully underway. Several redundant non-nuclear buildings have been removed and redundant

  14. The development of computer industry and applications of its relevant techniques in nuclear research laboratories

    International Nuclear Information System (INIS)

    Dai Guiliang

    1988-01-01

    The increasing needs for computers in the area of nuclear science and technology are described. The current status of commerical availabe computer products of different scale in world market are briefly reviewed. A survey of some noticeable techniques is given from the view point of computer applications in nuclear science research laboratories

  15. Progress in welding studies for Canadian nuclear fuel waste disposal containers

    International Nuclear Information System (INIS)

    Maak, P.Y.Y.

    1985-11-01

    This report describes the progress in the development of closure-welding technology for Canadian nuclear fuel waste disposal containers. Titanium, copper and Inconel 625 are being investigated as candidate materials for fabrication of these containers. Gas-tungsten-arc welding, gas metal-arc-welding, resistance-heated diffusion bonding and electron beam welding have been evaluated as candidate closure welding processes. Characteristic weldment properties, relative merits of welding techniques, suitable weld joint configurations and fit-up tolerances, and welding parameter control ranges have been identified for various container designs. Furthermore, the automation requirements for candidate welding processes have been assessed. Progress in the development of a computer-controlled remote gas-shielded arc welding system is described

  16. Progress in the U.S. nuclear utility industry 1979-1989

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    March 28, 1979 changed the course of the commercial U.S. nuclear utility industry. An accident at Three Mile Island Nuclear Station Unit 2 in Middletown, Pennsylvania damaged the reactor's fuel core, as well as the industry's reputation and confidence. In the months after the event, the president of the United States, the nuclear industry, the public, government regulators and the media sought answers to many questions. Among the most important were, how and why did the accident happen? The President's Commission on the Accident at TMI, the Kemeny Commission, was formed to address these questions. Four major causes were identified by the commission: - inadequate or inappropriate operator training; - mechanical problems and faulty instrumentation; - poor control room design; - communication failures at the facility and in information exchange within the industry. Of even greater importance was another question: How could another such accident be prevented? A look at the industry's progress in the 10 years since the TMI accident shows this question has been vigorously addressed and that corrective actions have been taken.

  17. Progress in the U.S. nuclear utility industry 1979-1989

    International Nuclear Information System (INIS)

    1989-01-01

    March 28, 1979 changed the course of the commercial U.S. nuclear utility industry. An accident at Three Mile Island Nuclear Station Unit 2 in Middletown, Pennsylvania damaged the reactor's fuel core, as well as the industry's reputation and confidence. In the months after the event, the president of the United States, the nuclear industry, the public, government regulators and the media sought answers to many questions. Among the most important were, how and why did the accident happen? The President's Commission on the Accident at TMI, the Kemeny Commission, was formed to address these questions. Four major causes were identified by the commission: - inadequate or inappropriate operator training; - mechanical problems and faulty instrumentation; - poor control room design; - communication failures at the facility and in information exchange within the industry. Of even greater importance was another question: How could another such accident be prevented? A look at the industry's progress in the 10 years since the TMI accident shows this question has been vigorously addressed and that corrective actions have been taken

  18. Isotope and nuclear chemistry division. Annual report, FY 1987. Progress report, October 1986-September 1987

    International Nuclear Information System (INIS)

    Barr, D.W.; Heiken, J.H.

    1988-05-01

    This report describes progress in the major research and development programs carried out in FY 1987 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical weapons diagnostics and research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry

  19. High frequency of tumor cells with nuclear Egr-1 protein expression in human bladder cancer is associated with disease progression

    DEFF Research Database (Denmark)

    Egerod, Frederikke N S Lihme; Bartels, Annette; Fristrup, Niels

    2009-01-01

    bladder cancer. RESULTS: The frequency of tumor cells with nuclear Egr-1 immunolabelling correlated to bladder cancer stage, grade and to later progression to muscle-invasive bladder cancer (T2-4). Stage T1 tumors exhibited significantly higher frequencies of tumor cells with nuclear Egr-1 immunolabelling...... than Ta tumors (P = 0.001). Furthermore, Kaplan-Meier survival analysis showed that a high frequency of tumor cells with nuclear Egr-1 immunolabelling was significantly associated with a higher risk of progression to stage T2-4 (log-rank test, P = 0.035). Tumor cells with nuclear Egr-1 immunolabelling...

  20. Laboratory for Nuclear Science. High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  1. Nuclear measurements and reference materials annual progress report, january - december 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The 1988 progress report of the Central Bureau for Nuclear Measurements (CBNM) is presented. The major changes in the role and orientation of the Joint Research Center, of which CBNM is an institute, are included. The main tasks of CBNM, which involve the program on Nuclear Measurements and Reference Materials, are given. Technical activities concerning the GELINA electron beam and Van de Graaff accelerators are reported. The study of transition radiation at linear electron accelerators, and the development of isotope dilution mass spectrometry, for trace analysis and isotope abundance measurements in iron and gallium, are summarized. The scientific and technical support to the commission, work for third parties, and contribution to conferences are presented

  2. Modernization of physical protection educational laboratories in the National Research Nuclear University MEPhI

    Science.gov (United States)

    Geraskin, N. I.; Krasnoborodko, A. A.

    2017-01-01

    Non-proliferation of nuclear materials includes, in addition to accounting and control, the Physical Protection (PP) of one. The paper considers the experience by MEPhI in application the practical educational in the area of PP technical systems. The following aspects are discussed in the paper: specific features graduate program in nuclear security area; overview of the practical course curricula in the special laboratory.

  3. Nuclear Physics division progress report

    International Nuclear Information System (INIS)

    Lees, E.W.; Longworth, G.; Scofield, C.J.

    1981-07-01

    Work undertaken by the Nuclear Physics Division of AERE, Harwell during 1980 is presented under the headings: (1) Nuclear Data and Technology for Nuclear Power. (2) Nuclear Studies. (3) Applications of Nuclear and Associated Techniques. (4) Accelerator Operation, Maintenance and Development. Reports, publications and conference papers presented during the period are given and members of staff listed. (U.K.)

  4. Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Laboratory

    2010-01-01

    The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

  5. MSU-DOE Plant Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)

  6. The progress in development and use of nuclear energy for the power in Yugoslavia

    International Nuclear Information System (INIS)

    Vrhovac, S.; Bojic, K.; Fabijancic, A.; Medvedec, I.; Vujovic, D.

    1984-01-01

    Nuclear power plant Krsko from 1982, produces the power which is very useful for the electric power system of the country. At the same time, the investors of the nuclear power plants from republics and autonomous provinces of Yugoslavia have organized the construction of series of nuclear power plants up to 2000. The purpose of this report is to explain those activities which have initiated the process of development and the use of energy for the power in Yugoslavia, and to continue the attempts to place the near future to the progress of this process. The base of these efforts has to be solving the very problem of decision making regarding the best solution of nuclear fuel cycle, the type of nuclear power plants in Yugoslavia and their construction. (author)

  7. The Community's research and development programme on decommissioning of nuclear installations (1989-1993). Annual progress report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    This is the second annual progress report of the European Community's programme (1989-93) of research on decommissioning of nuclear installations. It shows the status of the programme on 31 December 1991. This second progress report summarizes the objectives, scope and work programme of the 76 research contracts concluded, as well as the progress of work achieved and the results obtained in 1991

  8. Research and service capabilities of the National Nuclear Forensic Research Laboratory; Capacidades de investigacion y servicio del Laboratorio Nacional de Investigacion en Forense Nuclear, Lanafonu

    Energy Technology Data Exchange (ETDEWEB)

    Romero G, E. T.; Hernandez M, H.; Flores C, J.; Paredes G, L. C., E-mail: elizabeth.romero@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    According to the recommendations of the International Atomic Energy Agency, Mexico is taking steps to combat illicit trafficking in nuclear material. The creation of a National Nuclear Forensic Research Laboratory (Lanafonu, acronym in Spanish) has been assigned to the Instituto Nacional de Investigaciones Nucleares (ININ, Mexico) in 2014. The objectives of this Laboratory are: to combat illicit trafficking in nuclear materials, to optimize scientific processes and techniques used to analyze nuclear materials (orphans or radioactive sources), environmental and potential biological sources as a result of the handling, transport and final storage. At present, the Lanafonu facilities are focused on the optimization of emergency and routine protocols for measuring radioisotopes in environmental and biological samples using inductive coupling mass spectrometer with magnetic sector. The main activities are: i) optimization of the methods for measuring the isotopes of Pu by alpha-spectrometry, Icp-SFMS and AMS (accelerator mass spectrometry), ii) development or radiochemical methods for routine situations and nuclear emergencies, iii) participation in the scientific technical commission on nuclear forensic science, iv) participation in international intercomparison exercises to optimize and validate methods, and v) consolidation of Lanafonu in Mexico and the IAEA. (Author)

  9. Progress report 1981

    International Nuclear Information System (INIS)

    Chalupka, A.; Dirninger, G.

    1982-01-01

    The progress report describes the scientific work and research results of the institute for radium research and nuclear physics of the Austrian Academy of Sciences for the period of 1981. The progress report covers the subject areas of nuclear theory, nuclear model calculations, experimental nuclear physics and neutron involved reactions, medium energy physics, instrumentation and detectors, evaluation of nuclear data and numerical data processing, dating, applications in medicine, dosimetry and environmental studies. A list of publications of this institute is given. (A.N.)

  10. Progress report 1982

    International Nuclear Information System (INIS)

    Chalupka, A.; Wild, E.; Dirninger, G.

    1983-01-01

    The progress report describes the scientific work and research results of the institute for radium research and nuclear physics of the Austrian Academy of Sciences for the period of 1982. The progress report covers the subject areas of nuclear theory, nuclear model calculations, experimental nuclear physics and neutron involved reactions, medium energy physics, instrumentation and detectors, evaluation of nuclear data and numerical data processing, dating, applications in medicine, dosimetry and environmental studies. A list of publications of this institute is given. (A.N.)

  11. Chemistry evaluation in French EDF Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jacquier, Hervé

    2014-01-01

    The Nuclear Production Division of EDF is comprised of 19 power stations (58 PWR reactors) and 2 national engineering organisations. Nuclear Inspection (IN) is an internal assessment unit of the EDF Nuclear Production Directorate. At the request of the Directorate, it carries out periodic evaluations of all the units of the division. The evaluation of the nuclear sites (EGE: Overall Excellence Assessment) is carried out every 4 years, an intermediate evaluation is also carried out between each EGE. These evaluations are independent of the WANO and IAEA evaluations. Exchanges are carried out between Nuclear Inspection and the other international operators (for example, USA (INPO), England, China...) to share site evaluation methods. These evaluations are carried out by a team of 30 inspectors, reinforced during each evaluation by 10 peers who come from the various French nuclear sites. Nuclear Inspection produces a performance standards document for each FUNCTIONAL AREA, which is based on the requirements of the company. On the whole, 13 areas are evaluated during each inspection, in particular: Management, Operations, Maintenance, Engineering and Chemistry. The area of reactor plant chemistry has been evaluated since 2009. The Chemistry performance standards document is written from the EDF internal requirements and international references. During site evaluations, all the performance standards are assessed for compliance. The Chemistry performance standards document is comprised of 3 topics: Management of plant chemistry, The respect of the chemical and radiochemical specifications, The condition of the laboratories and the sampling lines, measuring equipment, and chemical products. The evaluations carried out make it possible to define strengths and weaknesses which the sites must address. After each evaluation, the assessment is presented to the site management and to the director of EDF Nuclear Production. For 4 years these evaluations have allowed progress to

  12. Localization of nuclear cathepsin L and its association with disease progression and poor outcome in colorectal cancer.

    LENUS (Irish Health Repository)

    Sullivan, Shane

    2012-02-01

    Previous in vitro studies have identified a nuclear isoform of Cathepsin L. The aim of this study was to examine if nuclear Cathepsin L exists in vivo and examine its association with clinical, pathological and patient outcome data. Cellular localization (nuclear and cytoplasmic) and expression levels v of Cathespin L in 186 colorectal cancer cases using immunohistochemistry. The molecular weight and activity of nuclear and cytoplasmic Cathepsin L in vivo and in vitro were assessed by Western blotting and ELISA, respectively. Epithelial nuclear staining percentage (p = 0.04) and intensity (p = 0.006) increased with advancing tumor stage, whereas stromal cytoplasmic staining decreased (p = 0.02). Using multivariate statistical analysis, survival was inversely associated with staining intensity in the epithelial cytoplasm (p = 0.01) and stromal nuclei (p = 0.007). In different colorectal cell lines and in vivo tumors, pro- and active Cathepsin L isoforms were present in both the cytoplasm and nuclear samples, with pro-Cathepsin L at 50 kDa and active Cathepsin L at 25 kDa. Purified nuclear and cytoplasmic fractions from cell lines and tumors showed active Cathepsin L activity. The identification of nuclear Cathepsin L may play an important prognostic role in colorectal disease progression and patient outcome. Moreover, these findings suggest that altering active nuclear Cathepsin L may significantly influence disease progression.

  13. Nuclear technology programs; Semiannual progress report, October 1989--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  14. Progress report - Physical and Environmental Sciences - TASCC Division -1995 July 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J C [ed.

    1996-05-01

    Included in this progress report of the TASCC division at Chalk River Nuclear Laboratories is the research and development being carried out at this time and a listing of the relevant publications, reports, lectures and conference contributions. The TASCC staff is also detailed. 8 tabs.,16 figs.

  15. Progress report - Physical and Environmental Sciences - TASCC Division -1995 July 1 to December 31

    International Nuclear Information System (INIS)

    Hardy, J.C.

    1996-05-01

    Included in this progress report of the TASCC division at Chalk River Nuclear Laboratories is the research and development being carried out at this time and a listing of the relevant publications, reports, lectures and conference contributions. The TASCC staff is also detailed. 8 tabs.,16 figs

  16. Shaft extension design at the Underground Research Laboratory, Pinawa, Manitoba

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Ball, A.E.

    1991-01-01

    AECL Research has constructed an underground laboratory for the research and development required for the Canadian Nuclear Fuel Waste Management Program. The experimental program in the laboratory will contribute to the assessment of the feasibility and safety of nuclear fuel waste disposal deep in stable plutonic rock. In 1988, AECL extended the shaft of the Underground Research Laboratory (URL) from the existing 255 m depth to a depth of 443 m in cooperation with the United States Department of Energy. The project, which involved carrying out research activities while excavation and construction work was in progress, required careful planning. To accommodate the research programs, full-face blasting with a burn cut was used to advance the shaft. Existing facilities at the URL had to be modified to accommodate an expanded underground facility at a new depth. This paper discusses the design criteria, shaft-sinking methods and approaches used to accommodate the research work during this shaft extension project. (11 refs., 11 figs.)

  17. The Community's research and development programme on decommissioning of nuclear installations. Second annual progress report (year 1986)

    International Nuclear Information System (INIS)

    1987-01-01

    This is the second annual progress report of the European Community's programme (1984-88) of research on the decommissioning of nuclear installations. It shows the status of the programme on 31 December 1986. This second progress report describes the objectives, scope and work programme of the 58 research contracts concluded, as well as the progress of work achieved and the results obtained in 1986

  18. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1979-12-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed hear are of a continuing nature. Results and conclusions described may change as the work continues

  19. Decommissioning of fuel PIE caves at Berkeley Nuclear Laboratories

    International Nuclear Information System (INIS)

    Brant, A.W.

    1990-01-01

    This paper describes the first major contract awarded to private industry to carry out decommissioning of a facility with significant radiation levels. The work required operatives to work in pressurised suits, entry times were significantly affected by sources of radiation in the Caves, being as low as thirty minutes per day initially. The Caves at Berkeley Nuclear Laboratories carry out post irradiation examination of fuel elements support units and reactor core components from CEGB power stations. The decommissioning work is part of an overall refurbishment of the facility to allow the receipt of AGR Fuel Stringer Component direct from power stations. The paper describes the decommissioning and decontamination of the facility from the remote removal and clean up work carried out by the client to the hands-on work. It includes reference to entry times, work patterns, interfaces with the client and the operations of the laboratory. Details of a specially adapted size reduction method are given. (Author)

  20. Anisotropic Rotational Diffusion Studied by Nuclear Spin Relaxation and Molecular Dynamics Simulation: An Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Fuson, Michael M.

    2017-01-01

    Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…

  1. Triangle Universities Nuclear Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This report contains brief papers that discusses the following topics: Fundamental Symmetries in the Nucleus; Internucleon Interactions; Dynamics of Very Light Nuclei; Facets of the Nuclear Many-Body Problem; and Nuclear Instruments and Methods.

  2. Triangle Universities Nuclear Laboratory

    International Nuclear Information System (INIS)

    1991-01-01

    This report contains brief papers that discusses the following topics: Fundamental Symmetries in the Nucleus; Internucleon Interactions; Dynamics of Very Light Nuclei; Facets of the Nuclear Many-Body Problem; and Nuclear Instruments and Methods

  3. Triangle Universities Nuclear Laboratory: Annual report, TUNL XXV, 1 September 1985-31 August 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The varied research programs described in this report reflect a decision to devote major resources to the study of the multiple facets of nuclear structure which can be probed through light-ion and neutron induced nuclear reactions. Particular emphasis is placed on reactions induced by polarized protons, deuterons, and neutrons. A major commitment continues towards the study of the statistical properties of nuclear structure revealed by elastic and inelastic scattering experiments using ultra high resolution proton beams. A third major laboratory commitment involves measurements of fast neutron cross sections required by the Department of Energy's program for the development of controlled thermonuclear fusion

  4. Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3

    International Nuclear Information System (INIS)

    Ulm, Franz-Josef

    2000-01-01

    OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3(NOTE: Part II A item 1 indicates ''PAPER'', but a report is attached electronically)

  5. NASA's progress in nuclear electric propulsion technology

    International Nuclear Information System (INIS)

    Stone, J.R.; Doherty, M.P.; Peecook, K.M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed. 19 refs

  6. Management of nuclear materials in an R ampersand D environment at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Behrens, R.G.; Roth, S.B.; Jones, S.R.

    1991-01-01

    Los Alamos National Laboratory is a multidisciplinary R ampersand D organization and, as such, its nuclear materials inventory is diverse. Accordingly, major inventories of isotopes such as Pu-238, Pu-239, Pu-242, U-235, Th, tritium, and deuterium, and lesser amounts of isotopes of Am, Cm, Np and exotic isotopes such as berkelium must be managed in accordance with Department of Energy Orders and Laboratory policies. Los Alamos also acts as a national resource for many one-of-a-kind materials which are supplied to universities, industry, and other government agencies within the US and throughout the world. Management of these materials requires effective interaction and communication with many nuclear materials custodians residing in over forty technical groups as well as effective interaction with numerous outside organizations. This paper discusses the role, philosophy, and organizational structure of Nuclear Materials Management at Los Alamos and also briefly presents results of two special nuclear materials management projects: 1- Revision of Item Description Codes for use in the Los Alamos nuclear material data base and 2- The recommendation of new economic discard limits for Pu-239. 2 refs., 1 fig

  7. The progress and issues of national nuclear and radiation safety supervision and MIS

    International Nuclear Information System (INIS)

    Zhou Kefei; Sun Guochen; Jiang Guang; Li Jingxi; Zhang Lin

    2009-01-01

    The article briefly describes the pre-planning construction of 'National Nuclear and Radiation Safety Supervision and Management Information System', Including the overall frame of the system and the main issues found in the work which affect and confine the progress of the program. Some recommendations are put forward. (authors)

  8. Process information systems in nuclear reprocessing

    International Nuclear Information System (INIS)

    Jaeschke, A.; Keller, H.; Orth, H.

    1987-01-01

    On a production management level, a process information system in a nuclear reprocessing plant (NRP) has to fulfill conventional operating functions and functions for nuclear material surveillance (safeguards). Based on today's state of the art of on-line process control technology, the progress in hardware and software technology allows to introduce more process-specific intelligence into process information systems. Exemplified by an expert-system-aided laboratory management system as component of a NRP process information system, the paper demonstrates that these technologies can be applied already. (DG) [de

  9. Implementation of the Immersive Virtual Reality Laboratory in Nuclear Engineering Institute

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos de Abreu; Grecco, Claudio Henrique dos Santos; Carvalho, Paulo Victor R.; Oliveira, Mauro Vitor de; Santos, Isaac J.A. Luquetti; Augusto, Silas Cordeiro; Viana Filho, Alfredo Marques

    2005-01-01

    The Immersive Virtual Reality Laboratory under development in Human System Interface Laboratory constitute a powerful general-purpose facility for experimental and computational work on human perception and perceptually guided action. Virtual reality or virtual environment are computer generated environments with and within people can interact. The advantage of VR is that people can be immersed by the simulated environment, which would sometimes be unavailable due to cost, safety, or perceptual restrictions in the real environment. There are many applications of virtual reality on the nuclear area. Training is one of the most common of them. A significant advantage of a virtual training environment over a real one is it's enormous flexibility. A virtual environment can be used as the basis for training in any number of different scenarios, so that trainees can learn to cope with many different situations, some of which may be impossible to prepare for any other way. Another advantage of using virtual environments for training purposes is that trainees learn by actively performing actions. This has a significant effect on their ability to retain what they learn, and is clearly superior to passive training techniques, such as videos and books, for training where spatial understanding is important. This kind of Laboratory is the first in Brazilian nuclear area. A safe virtual environment can be used to simulate a real environment that is either too dangerous, complex, or expensive to training. Virtual environments can therefore be used to increase safety standards, improve efficiency, and reduce overall training costs. (author)

  10. Research and Progress on Virtual Cloud Laboratory

    Directory of Open Access Journals (Sweden)

    Zhang Jian Wei

    2016-01-01

    Full Text Available In recent years, cloud computing technology has experienced continuous development and improvement, and has gradually expanded to the education sector. First, this paper will introduce the background knowledge of the current virtual cloud laboratory; by comparing the advantages and disadvantages between traditional laboratory and virtual cloud laboratory, and comparing the application, advantages and disadvantages, and development trend of OpenStack technology and VMWare technology in safety, performance, design, function, use case, and value of virtual cloud laboratory, this paper concludes that application based on OpenStack virtual cloud laboratory in universities and research institutes and other departments is essential.

  11. Development of Biodiversity Laboratory to Support the Establishment of Flora and Fauna Database in the Vicinity of Nuclear Facility

    International Nuclear Information System (INIS)

    Nor Humaira Lau Abdullah; Anis Nadia Mohd Faisol Mahadeven; Mohd Noor Hidayat Adenan

    2015-01-01

    The Biodiversity Laboratory (44128) at Agrotechnology and Biosciences Division (BAB) was developed using One-Off 2014 budget. The renovation works of Seed Technology Laboratory into Biodiversity Laboratory was planned in 2013 and was fully completed in early 2015. This laboratory serves as a centre for development and storage of flora and fauna database. Thus far, this laboratory houses various facilities that befit the function of this laboratory, such as small mammalian and insects sampling tools, herbarium specimen preparation tools, fume chamber, and work benches. Among the activities carried out in this laboratory were sampling and processing of flora, fauna and mushroom specimens collected in the vicinity of nuclear facility besides exhibiting processed/preserved herbaria, mushrooms, fauna and insects specimens. On the other hand, activities planned include cataloguing of existing specimens, online database development, study on ionising radiation towards development of bio indicator, and development of Standard Operating Procedure (SOP). However there are some limitations in terms of tools (supercomputer, camera microscope, photography set-up and drying oven) and not to mention, expertise. In order to overcome the limitations, some recommendations for improvement can be considered for instance fund application, hiring staffs in desired field of expertise (botanist and zoologist) and training's. In summary, this laboratory has potential to support the aspiration of Nuclear Malaysia to be a TSO for national nuclear power development plan in the aspect of environmental and ecosystem protection especially towards non-human biota. (author)

  12. LFCM [liquid-fed ceramic melter] vitrification technology: Quarterly progress report, January--March 1987

    International Nuclear Information System (INIS)

    Brouns, R. A.; Allen, C. R.; Powell, J. A.

    1988-05-01

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to describe the progress in developing, testing, applying and documenting liquid-fed ceramic melter vitrification technology. Progress in the following technical subject areas during the second quarter of FY 1987 is discussed: melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, and process/product modeling. 23 refs., 14 figs., 10 tabs

  13. Nuclear structure studies using the high resolution spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility: Annual progress report, [1987-1988

    International Nuclear Information System (INIS)

    1987-09-01

    This document constitutes the (1987 to 1988) progress report for the ongoing medium energy nuclear physics research program supported by the US Department of Energy with the University of Texas at Austin. A major part of the work has been and will continue to be associated with research done at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS), the External Proton Beam (EPB), and the new Neutron Time of Flight Facility (NTOF). Other research is done at the Fermi National Accelerator Laboratory (FNAL). The research focuses on (1) providing proton + nucleus data which test nonrelativistic and relativistic models of the medium energy proton + nucleus interaction, (2) providing (p,p) and (p,n) data which are to be analyzed to provide new nuclear structure information (both ground state and excited state), (3) providing nucleon + nucleon data to aid in the systematic study of the fundamental nucleon-nucleon interaction, (4) developing and improving the proton + nucleus theoretical models themselves, and (5) initiating new experimental programs whose goals are to search for new phenomena in nuclear physics. 182 refs., 71 figs., 5 tabs

  14. Studies of nuclear processes. Progress report, June 1, 1975--May 31, 1976

    International Nuclear Information System (INIS)

    Cleqq, T.B.; Ludwig, E.J.; Merzbacher, E.; Shafroth, S.M.; Thompson, W.J.

    1976-01-01

    The UNC Chapel Hill group, affiliated with the Triangle Universities Nuclear Laboratory (TUNL), has emphasized in its recent research the following topics: nuclear interactions induced by polarized beams of protons and deuterons; developments in equipment and techniques for the measurement and interpretation of these interactions; the design and analysis of nuclear and atomic scattering experiments for protons, deuterons and heavier projectiles; the theory of ion-atom collisions; atomic effects in nuclear bombardment. The particle beams used were obtained primarily from the TUNL Cyclo-Graaff, the FN-tandem Van de Graaff and Lamb-shift polarized-ion source, and the 4-MeV Van de Graaff accelerators. Computations were performed using the computers at TUNL, at the Triangle Universities Computation Center, and at UNC, Chapel Hill. Collaborative experiments were undertaken primarily with the research groups from Duke University and North Carolina State University. Extensive participation of our graduate students in all aspects of the research has assured them a broad training in the fundamental and technical aspects of physics. Our research efforts have produced a deeper understanding of the spin dependence of nuclear interactions through measurements with polarized beams. Inner-shell ionization phenomena have been revealed in our detailed experimental and theoretical studies of atomic effects in nuclear bombardment

  15. Proposed approach for bedrock characterization at Chalk River Nuclear Laboratories for waste disposal

    International Nuclear Information System (INIS)

    Heystee, R.J.; Dixon, D.F.

    1985-07-01

    Low- and intermediate-level wastes (L AND ILW) are produced at the Chalk River Nuclear Laboratories (CRNL) by the operation of reactors for nuclear research and development and by the production of radioisotopes. CRNL also manages L and ILW produced by Canadian research laboratories, universities, hospitals and some industries. An option that is being considered for the disposal of some of these wastes is to emplace them in a shallow rock cavity in fractured crystalline bedrock on the CRNL property. To design such a disposal facility and to evalute its long-term performance, data must be obtained on the geologic and hydrogeologic characteristics of the site. Over the past several years, a variety of airborne, ground surface and borehole geological, geophysical and/or hydrogeological methods have been used to acquire data on some rock mass discontinuities at CRNL. The techniques which are apparently more useful for acquiring these data are described and a proposed approach to site characterization for a shallow rock cavity at CRNL is outlined

  16. Progress by nuclear power

    International Nuclear Information System (INIS)

    Creamer, A.

    1980-01-01

    United States scientist Petr Beckmann predicts that there will eventually be nuclear power stations in the Transvaal in South Africa. This will take place for two reasons: to decrease pollution problems and to ensure economic advancement. He also refers to the the toxicity of nuclear wastes and coal wastes

  17. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product 99 Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories. 127 refs., 76 figs., 103 tabs

  18. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

  19. Nuclear Plant Analyzer development at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Laats, E.T.; Beelman, R.J.; Charlton, T.R.; Hampton, N.L.; Burtt, J.D.

    1985-01-01

    The Nuclear Plant Analyzer (NPA) is a state-of-the-art safety analysis and engineering tool being used to address key nuclear power plant safety issues. The NPA has been developed to integrate the NRC's computerized reactor behavior simulation codes such as RELAP5, TRAC-BWR, and TRAC-PWR, with well-developed computer graphics programs and large repositories of reactor design and experimental data. An important feature of the NAP is the capability to allow an analyst to redirect a RELAP5 or TRAC calculation as it progresses through its simulated scenario. The analyst can have the same power plant control capabilities as the operator of an actual plant. The NPA resides on the dual CDS Cyber-176 mainframe computers at the INEL and is being converted to operate on a Cray-1S computer at the LANL. The subject of this paper is the program conducted at the INEL

  20. Nuclear chemistry research and spectroscopy with radioactive sources. Nineteenth annual progress report

    International Nuclear Information System (INIS)

    Fink, R.W.

    1983-01-01

    Our effort is centered on radioactive decay studies of far-from-stable nuclides produced with heavy ions from the Holifield Heavy Ion Research Facility (HHIRF) and studied on-line with the University Isotope Separator at Oak Ridge (UNISOR). Progress is reported on the following studies: lifetime of the g/sub 7/2/ level in 109 Ag; halflife of the h/sub 9/2/ level in 187 Au; decay of 8.4 min 187 Au → 187 Pt; orbital EC probabilities and decay energy of 207 Bi; decay of 9 min /sup 201m/Po and 16 min /sup 201g/Po; decay of 2.5 min 125 Ba; decay of 7.4 min 203 At; exploration of neutron-deficient Sm, Pm, and Nd nuclides; preparation of thoron active deposit conversion electron sources; inception of nuclear laser spectroscopy at UNISOR; and nuclear structure calculations with nuclear models. Publications are listed

  1. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2000-2001

    International Nuclear Information System (INIS)

    Astier, Pierre; Bassler, Ursula; Levy, Jean-Michel; Cossin, Isabelle; Mathy, Jean-Yves

    2002-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2000-2001: 1 - Forewords; 2 - Scientific and technical activities of the laboratory: Physics with accelerators (CP Violation, hadronic physics, proton-antiproton physics, Neutrino beams, LEP, LHC, future linear electron collider); Physics without accelerators (extreme energy cosmic radiation, Cosmology and supernovae, high-energy gamma astronomy); theoretical physics (QCD, phenomenological approaches); 3 - Technical and administrative activities (electronics, computers, mechanics departments, Administration and general services); 4 - Laboratory life (Teaching, training, Internal activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - staff

  2. Nuclear and high-energy physics laboratory - LPNHE. Activity report 1998-1999

    International Nuclear Information System (INIS)

    Vaissiere, Christian de la; Banner, Marcel; Faivre, Maria; Moine, Marguerite; Dumas, Jean-Marc; Jos, Jeanne

    2000-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 1998-1999: 1 - Forewords; 2 - Physics experiments: LHC Physics with ATLAS, search for new physics at LEP, DIRAC experiment, Neutrinos oscillation with NOMAD, TONIC and HERA-H1 experiments, CP Violation (BaBar), DΦ experiment at Tevatron, high-energy gamma astronomy, Supernovae, Pierre Auger Laboratory); 3 - Technical activities and means (electronics, computers, mechanics departments); 4 - Laboratory life (Teaching, Administration and general services, Internal and external activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - staff

  3. Nuclear and high-energy physics laboratory - LPNHE. Activity report 2002-2003

    International Nuclear Information System (INIS)

    Dagoret-Campagne, Sylvie; Roos, Lydia; Schwemling, Philippe; Cossin, Isabelle; Mathy, Jean-Yves

    2004-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 2002-2003: 1 - Forewords; 2 - Scientific and technical activities of the laboratory: Physics with accelerators (CP Violation, proton-antiproton physics, LHC, Neutrino beams, LEP, future linear electron collider); Physics without accelerators (extreme energy cosmic radiation, Cosmology and supernovae, high-energy gamma astronomy); theoretical physics (QCD, phenomenological approaches); 3 - Technical and administrative activities (electronics, computers, mechanics departments, Administration and general services); 4 - Laboratory life (Teaching, training, Internal activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - Appendix: staff

  4. Nuclear and high-energy physics laboratory - LPNHE. Activity report 1996-1997

    International Nuclear Information System (INIS)

    Vaissiere, Christian de la; Boniface, Nicole; Dumas, Jean-Marc; Jos, Jeanne

    1998-01-01

    The LPNHE is a joint research unit (UMR 7585) of the National Institute of Nuclear Physics and Particle Physics (IN2P3), Institute of the National Centre for Scientific Research (CNRS), UPMC and Paris Diderot Paris 7. It hosts several research teams and technical services (computers, electronics, mechanical), and two support services (administration, logistics). The laboratory is engaged in several major experimental programs pursued in the framework of international collaborations with very large research facilities around the world, centers of particle accelerators and observatories. The research programs cover current issues in particle physics, astro-particle and cosmology. This report presents the activities of the laboratory during the years 1996-1997: 1 - Forewords; 2 - Physics experiments: LHC Physics with ATLAS, search for new physics at LEP (DELPHI), Neutrinos oscillation DIRAC experiment, Neutrinos oscillation (NOMAD, TONIC), HERA-H1 experiment, CP Violation (BaBar), DΦ experiment at Tevatron, study of gamma radiation sources (CAT), Supernovae, Auger Laboratory project; 3 - Technical activities and means (electronics, computers, mechanics departments); 4 - Laboratory life (Teaching, Administration and general services, Internal and external activities); 5 - Dissemination of scientific information; 6 - List of publications; 7 - staff

  5. Nuclear Structure Research at the Triangle Universities Nuclear Laboratory. [Final report, 1 April 1988 to 4 May 1998

    International Nuclear Information System (INIS)

    Mitchell, Gary E.

    2000-01-01

    Much of the research is focused on symmetries and symmetry breaking. The authors have emphasized the effects of the many body system on symmetry breaking--the parity violation studies. A parallel interest lies in the effects of symmetry breaking on the many body system (as manifested in the statistical distributions characterizing the system). Another major activity has involved few nucleon scattering. The primary technical efforts are in low temperature targetry. The service activity for the nuclear science community is Nuclear Data Evaluation. Results achieved in these areas during the period of the grant are summarized. Details are given in the 10 annual progress reports, 10 Ph.D. dissertations, and approximately 150 publications

  6. Analytical progresses of the International Olympic Committee and World Anti-Doping Agency Olympic laboratories.

    Science.gov (United States)

    Georgakopoulos, Costas; Saugy, Martial; Giraud, Sylvain; Robinson, Neil; Alsayrafi, Mohammed

    2012-07-01

    The Summer Olympic Games constitute the biggest concentration of human sports and activities in a particular place and time since 776 BCE, when the written history of the Olympic Games in Olympia began. Summer and Winter Olympic anti-doping laboratories, accredited by the International Olympic Committee in the past and the World Anti-Doping Agency in the present times, acquire worldwide interest to apply all new analytical advancements in the fight against doping in sports, hoping that this major human event will not become dirty by association with this negative phenomenon. This article summarizes the new analytical progresses, technologies and knowledge used by the Olympic laboratories, which for the vast majority of them are, eventually, incorporated into routine anti-doping analysis.

  7. The U.S. nuclear waste management program - technical progress at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, L.H. [U.S. Department of Energy (United States)

    2001-07-01

    This paper discusses the current status of a national program being developed by the U.S. Department of Energy for the management of spent nuclear fuel and high-level radioactive waste produced by civilian nuclear power generation and defense-related activities. In 1987 the U.S. Congress directed the Department to characterize the Yucca Mountain site in Nevada and determine its suitability for development of a geologic repository. This paper will focus on the technical progress that has been made after more than 15 years of scientific and engineering investigations at Yucca Mountain, and the remaining work that is being done to support a decision on whether to recommend the site for development of a geologic repository. (author)

  8. Nuclear strategies in food and agriculture - 25 years of progress, 1964-1989

    International Nuclear Information System (INIS)

    Sigurbjoernsson, Bjoern

    1990-01-01

    Full text: Healthy and abundant food supplies is a goal for every nation in the world. Nuclear techniques have played a fundamental role in solving some of the obstacles to attaining this goal which existed in the 1960s. New trends and approaches in food and agricultural production have had a tangible impact on the quality of life of people worldwide. Research, testing, analysis and experience in the peaceful applications of nuclear energy have helped solve many practical problems for farmers and industry alike. Unfortunately, however, not all successful nuclear applications available to industrialized countries reach developing nations. To address this problem, in 1964, the International Atomic Energy Agency (IAEA) and the Food and Agriculture Organization (FAO) of the United Nations joined forces to create the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. Initially just a small unit seeking solutions to food and agriculture problems through nuclear techniques, the Joint Division, and the Agricultural Laboratory of the IAEA Seibersdorf Laboratories, have since grown to be an internationally respected research and development centre, a forum for global sharing of information and knowledge, and a conduit through which nuclear technology can be transferred to those countries which need It mos The Joint FAO/IAEA Division today focuses on six major areas: Insect and pest control nuclear techniques are used to control or eradicate harmful pests responsible for extreme losses in food production, as well as in human and animal life, through dangerous diseases. Food preservation through irradiation has become a valuable tool in reducing post-harvest food losses, reducing the occurrence of food-borne disease, and extending the shelf life of agricultural commodities. Animal production and health is an area where nuclear techniques have been used successfully to improve the health and productivity of ruminant animals. Plant breeding and genetics is an

  9. Laboratory quality assurance and its role in the safeguards analytical laboratory evaluation (SALE) program

    International Nuclear Information System (INIS)

    Delvin, W.L.; Pietri, C.E.

    1981-07-01

    Since the late 1960's, strong emphasis has been given to quality assurance in the nuclear industry, particularly to that part involved in nuclear reactors. This emphasis has had impact on the analytical chemistry laboratory because of the importance of analytical measurements in the certification and acceptance of materials used in the fabrication and construction of reactor components. Laboratory quality assurance, in which the principles of quality assurance are applied to laboratory operations, has a significant role to play in processing, fabrication, and construction programs of the nuclear industry. That role impacts not only process control and material certification, but also safeguards and nuclear materials accountability. The implementation of laboratory quality assurance is done through a program plan that specifies how the principles of quality assurance are to be applied. Laboratory quality assurance identifies weaknesses and deficiencies in laboratory operations and provides confidence in the reliability of laboratory results. Such confidence in laboratory measurements is essential to the proper evaluation of laboratories participating in the Safeguards Analytical Laboratory Evaluation (SALE) Program

  10. Nuclear powered satellite studies. Annual progress report, July 1, 1977--June 30, 1978

    International Nuclear Information System (INIS)

    Kaplan, M.H.

    1978-06-01

    Progress achieved during the reporting period is reported. Discussions of several pertinent aspects are included, e.g., schedule, personnel, technology developments, and plans. The reporting period represents the second year of activities of a project which is designed to provide continuing support in the area of nuclear space power technology. Important results are summarized

  11. Fundamental aspects of nuclear physics

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1987-01-01

    I am pleased to be able to attend this symposium in honor of D. Allan Bromley and to see the new accelerator of the Yale University Nuclear Structure Laboratory. My talk on symmetry tests seems appropriate for this occasion: so much of the progress in this field depends on detailed knowledge of nuclear structure. The nuclear ''tricks'' that are played to filter and amplify interactions are possible because the nuclear spectroscopists have cataloged nuclear levels and determined their properties. I will describe how such nuclear structure studies may help to provide a window on physics beyond the standard model. My talk is not a summary of this subfield of nuclear physics. There is simply too much happening today to make a summary talk feasible. Instead, I have chosen four topics that I hope are representative of the field as a whole: parity mixing of nuclear states, time-reversal-odd nuclear moments, the Mikheyev-Smirnov enhancement of solar neutrino oscillations, and a nuclear experiment to monitor the long-term rate of stellar collapse in the galaxy. 39 refs., 5 figs., 1 tab

  12. Nuclear medicine at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Atkins, H.L.

    1976-01-01

    The Nuclear Medicine Program at the Brookhaven National Laboratory seeks to develop new materials and methods for the investigation of human physiology and disease processes. Some aspects of this research are related to basic research of how radiopharmaceuticals work. Other aspects are directed toward direct applications as diagnostic agents. It is likely that cyclotron-produced positron emitting nuclides will assume greater importance in the next few years. This can be attributed to the ability to label biologically important molecules with high specific activity without affecting biological activity, using 11 C, 13 N, and 15 O. Large quantities of these short-lived nuclides can be administered without excessive radiation dose and newer instrumentation will permit reconstructive axial tomography, providing truly quantitative display of distribution of radioactivity. The 122 Xe- 122 I generator has the potential for looking at rapid dynamic processes. Another generator, the 68 Ge- 68 Ga generator produces a positron emitter for the use of those far removed from cyclotrons. The possibilities for 68 Ga radiopharmaceuticals are as numerous as those for /sup 99m/Tc diagnostic agents

  13. Neutron activation analysis in an industrial laboratory using an off-site nuclear reactor

    International Nuclear Information System (INIS)

    Osborn, T.W.; Broering, W.B.

    1977-01-01

    A multifunctional research laboratory, such as Procter and Gamble's Miami Valley Laboratories, requires elemental analyses on many materials. A general survey technique is important even if the information it provides is incomplete or is less precise than single element analyses. Procter and Gamble has developed neutron activation analysis (NAA) capabilities using a nuclear reactor several hundred miles away. The concentration of 40 to 50 elements can be determined in a variety of matrices. We have found NAA to be a powerful supplement to some of the more classical analytical techniques even without having an on-site neutron source. We have also found an automated data acquisition system to be essential for the successful application of NAA in an industrial laboratory

  14. Study of structure of nuclei with neutrons and nuclear data measurements for MFE. Progress report, December 1, 1981-July 31, 1984

    International Nuclear Information System (INIS)

    Lane, R.O.; Grimes, S.M.

    1984-01-01

    Measurements of cross sections for neutron induced reactions of interest to the fusion energy program have been carried out. These measurements include neutron elastic and inelastic cross sections for 6 Li, 11 B, 13 C and 18 O as well as cross sections for 6 Li(n,t)α, 58 Ni(n,z), 60 Ni(n,z) and stainless steel (n,z) reactions. Most of these data have been analyzed using either R-marix studies or Hauser-Feshback calculations. Details of these measurements and analyses are given. Improvements to the facilities at this Laboratory are also described. A new shell model code has been developed to aid in studies of nuclear structure and reaction mechanisms. A description of the code and a summary of the structure and level density calculations now in progress are given

  15. Support of nuclear engineering education and research at the University of Michigan. Progress report, May 15, 1993--May 14, 1994

    International Nuclear Information System (INIS)

    Martin, W.R.

    1994-05-01

    This report describes progress on four different projects in the fission reactor area that have been supported by the grant during the past year. These projects are: Accelerator transmutation of nuclear waste (Steve Pearson); Neutronic analysis of the Ford Nuclear Reactor (Brent Renkema); and Monte Carlo depletion capability and new perturbation Monte Carlo algorithms, with utilization of massively parallel processors (Amit Majumdar). These tasks are briefly described and progress to date is presented

  16. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.8--radiation research and radiation technology

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about radiation study, radiation technology, isotope and nuclear agriculture

  17. Radiological risk guidelines for nonreactor nuclear facilities at the Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Lucas, D.E.; Ikenberry, T.A.

    1994-03-01

    Radiological risk evaluation guidelines for the public and workers have been developed at the Pacific Northwest Laboratory (PNL) based upon the Nuclear Safety Policy of the US Department of Energy (DOE) established in Secretary of Energy Notice SEN-35-91 (DOE 1991). The DOE nuclear safety policy states that the general public be protected-such that no individual bears significant additional risk to health and safety from the operation of a DOE nuclear facility above the risks to which members of the general population are normally exposed. The radiological risk evaluation guidelines developed at PNL are unique in that they are (1) based upon quantitative risk goals and (2) provide a consistent level of risk management. These guidelines are used to evaluate the risk from radiological accidents that may occur during research and development activities at PNL. A safety analyst uses the frequency of the potential accident and the radiological dose to a given receptor to determine if the accident consequences meet the objectives of the Nuclear Safety Policy

  18. The Community's research and development programme on decommissioning of nuclear power plants. Fourth annual progress report (year 1983)

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This is the fourth progress report of the European Community's program. (1979-83) of research on decommissioning of nuclear power plants. It covers the year 1983 and follows the 1980, 1981 and 1982 reports (EUR 7440, EUR 8343, EUR 8962). The present report describes the further progress of research and contains a large amount of results. For a majority of the 51 research contracts composing the 1979-83 programme, work was completed by the end of 1983; the conclusions drawn from this work are in this report. The European Community's program deals with the following fields: long-term integrity of buildings and systems; decontamination for decommissioning purposes; dismantling techniques; treatment of specific wastes materials (steel, concrete and graphite); large transport containers for radioactive waste produced in the dismantling of nuclear power plants; estimation of the quantities of radioactive waste arising from the decommissioning of nuclear power plants in the Community; influence of nuclear power plant design features on decommissioning

  19. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1980-02-01

    Studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two 238 PuO 2 pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported

  20. Chemical Engineering Division Fuel Cycle Programs. Quarterly progress report, October-December 1981

    International Nuclear Information System (INIS)

    Steindler, M.J.; Bates, J.K.; Cannon, T.F.

    1982-05-01

    Methods of measuring rates of leaching from simulated waste glasses using neutron activation analysis and radiotracers have been developed. Laboratory-scale impact tests of solid alternative waste forms are being performed to obtain a size analysis of the fragments. Logging techniques are being developed to measure the relative amount of residual oil in a depleted oil reservoir by injecting gamma-active solution into it. Work to test the behavior of radionuclides leached from proposed nuclear-waste repositories using laboratory-analog experiments is in progress. High potassium levels in crushed granite from a Northern Illinois drill hole are probably derived by the leaching of potassium feldspar. Testing and development of equipment for the destructive analysis of full-length irradiated fuel rods from the LWBR are in progress. 19 figures, 13 tables