WorldWideScience

Sample records for nuclear hydrogen production

  1. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  2. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    world. In recent years, the scope of the IAEA's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. The OECD Nuclear Energy Agency, Euratom and the Generation IV International Forum have also shown interest in the non-electric applications of nuclear power based on future generation advanced and innovative nuclear reactors. This report was developed under an IAEA project with the objective of providing updated, balanced and objective information on the current status of hydrogen production processes using nuclear energy. It documents the state of the art of the development of hydrogen as an energy carrier in many Member States, as well as its corresponding production through the use of nuclear power. The report includes an introduction to the technology of nuclear process heat reactors as a means of producing hydrogen or other upgraded fuels, with a focus on high temperature reactor technology to achieve simultaneous generation of electricity and high temperature process heat and steam. Special emphasis is placed on the safety aspects of nuclear hydrogen production systems.

  3. Preliminary Cost Estimates for Nuclear Hydrogen Production: HTSE System

    International Nuclear Information System (INIS)

    Yang, K. J.; Lee, K. Y.; Lee, T. H.

    2008-01-01

    KAERI is now focusing on the research and development of the key technologies required for the design and realization of a nuclear hydrogen production system. As a preliminary study of cost estimates for nuclear hydrogen systems, the hydrogen production costs of the nuclear energy sources benchmarking GTMHR and PBMR are estimated in the necessary input data on a Korean specific basis. G4-ECONS was appropriately modified to calculate the cost for hydrogen production of HTSE (High Temperature Steam Electrolysis) process with VHTR (Very High Temperature nuclear Reactor) as a thermal energy source. The estimated costs presented in this paper show that hydrogen production by the VHTR could be competitive with current techniques of hydrogen production from fossil fuels if CO 2 capture and sequestration is required. Nuclear production of hydrogen would allow large-scale production of hydrogen at economic prices while avoiding the release of CO 2 . Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The major factors that would affect the cost of hydrogen were also discussed

  4. Hydrogen production by nuclear heat

    International Nuclear Information System (INIS)

    Crosbie, Leanne M.; Chapin, Douglas

    2003-01-01

    A major shift in the way the world obtains energy is on the horizon. For a new energy carrier to enter the market, several objectives must be met. New energy carriers must meet increasing production needs, reduce global pollution emissions, be distributed for availability worldwide, be produced and used safely, and be economically sustainable during all phases of the carrier lifecycle. Many believe that hydrogen will overtake electricity as the preferred energy carrier. Hydrogen can be burned cleanly and may be used to produce electricity via fuel cells. Its use could drastically reduce global CO 2 emissions. However, as an energy carrier, hydrogen is produced with input energy from other sources. Conventional hydrogen production methods are costly and most produce carbon dioxide, therefore, negating many of the benefits of using hydrogen. With growing concerns about global pollution, alternatives to fossil-based hydrogen production are being developed around the world. Nuclear energy offers unique benefits for near-term and economically viable production of hydrogen. Three candidate technologies, all nuclear-based, are examined. These include: advanced electrolysis of water, steam reforming of methane, and the sulfur-iodine thermochemical water-splitting cycle. The underlying technology of each process, advantages and disadvantages, current status, and production cost estimates are given. (author)

  5. Status of the Korean nuclear hydrogen production project

    International Nuclear Information System (INIS)

    Jonghwa, Chang; Won-Jae, Lee

    2010-01-01

    The rapid climate changes and the heavy reliance on imported fuel in Korea have motivated interest in the hydrogen economy. The Korean government has set up a long-term vision for transition to the hydrogen economy. To meet the expected demand of hydrogen as a fuel, hydrogen production using nuclear energy was also discussed. Recently the Korean Atomic Energy Committee has approved nuclear hydrogen production development and demonstration which will lead to commercialisation in late 2030's. An extensive research and development programme for the production of hydrogen using nuclear power has been underway since 2004 in Korea. During the first three years, a technological area was identified for the economic and efficient production of hydrogen using a VHTR. A pre-conceptual design of the commercial nuclear hydrogen production plant was also performed. As a result, the key technology area in the core design, the hydrogen production process, the coupling between reactor and chemical side, and the coated fuel were identified. During last three years, research activities have been focused on the key technology areas. A nuclear hydrogen production demonstration plant (NHDD) consisting of a 200 MWth capacity VHTR and five trains of water-splitting plants was proposed for demonstration of the performance and the economics of nuclear hydrogen. The computer tools for the VHTR and the water-splitting process were created and validated to some extent. The TRISO-coated particle fuel was fabricated and qualified. The properties of high temperature materials, including nuclear graphite, were studied. The sulphur-iodine thermochemical process was proved on a 3 litre/ hour scale. A small gas loop with practical pressure and temperature with the secondary sulphur acid loop was successfully built and commissioned. The results of the first phase research increased the confidence in the nuclear hydrogen technology. From 2009, the government decided to support further key technology

  6. Evaluation of Nuclear Hydrogen Production System

    International Nuclear Information System (INIS)

    Park, Won Seok; Park, C. K.; Park, J. K. and others

    2006-04-01

    The major objective of this work is tow-fold: one is to develop a methodology to determine the best VHTR types for the nuclear hydrogen demonstration project and the other is to evaluate the various hydrogen production methods in terms of the technical feasibility and the effectiveness for the optimization of the nuclear hydrogen system. Both top-tier requirements and design requirements have been defined for the nuclear hydrogen system. For the determination of the VHTR type, a comparative study on the reference reactors, PBR and PBR, was conducted. Based on the analytic hierarchy process (AHP) method, a systematic methodology has been developed to compare the two VHTR types. Another scheme to determine the minimum reactor power was developed as well. Regarding the hydrogen production methods, comparison indices were defined and they were applied to the IS (Iodine-Sulfur) scheme, Westinghouse process, and the, high-temperature electrolysis method. For the HTE, IS, and MMI cycle, the thermal efficiency of hydrogen production were systematically evaluated. For the IS cycle, an overall process was identified and the functionality of some key components was identified. The economy of the nuclear hydrogen was evaluated, relative to various primary energy including natural gas coal, grid-electricity, and renewable. For the international collaborations, two joint research centers were established: NH-JRC between Korea and China and NH-JDC between Korea and US. Currently, several joint researches are underway through the research centers

  7. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  8. Use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Axente, Damian

    2006-01-01

    Full text: The potentials of three hydrogen production processes under development for the industrial production of hydrogen using nuclear energy, namely the advanced electrolysis the steam reforming, the sulfur-iodine water splitting cycle, are compared and evaluated in this paper. Water electrolysis and steam reforming of methane are proven and used extensively today for the production of hydrogen. The overall thermal efficiency of the electrolysis includes the efficiency of the electrical power generation and of the electrolysis itself. The electrolysis process efficiency is about 75 % and of electrical power generation is only about 30 %, the overall thermal efficiency for H 2 generation being about 25 %. Steam reforming process consists of reacting methane (or natural gas) and steam in a chemical reactor at 800-900 deg. C, with a thermal efficiency of about 70 %. In a reforming process, with heat supplied by nuclear reactor, the heat must be supplied by a secondary loop from the nuclear side and be transferred to the methane/steam mixture, via a heat exchanger type reactor. The sulfur-iodine cycle, a thermochemical water splitting, is of particular interest because it produces hydrogen efficiently with no CO 2 as byproduct. If heated with a nuclear source it could prove to be an ideal environmental solution to hydrogen production. Steam reforming remains the cheapest hydrogen production method based on the latest estimates, even when implemented with nuclear reactor. The S-I cycle offers a close second solution and the electrolysis is the most expensive of the options for industrial H 2 production. The nuclear plant could power electrolysis operations right away; steam reforming with nuclear power is a little bit further off into the future, the first operation with nuclear facility is expected to have place in Japan in 2008. The S-I cycle implementation is still over the horizon, it will be more than 10 years until we will see that cycle in full scale

  9. Nuclear hydrogen production: re-examining the fusion option

    International Nuclear Information System (INIS)

    Baindur, S.

    2007-01-01

    This paper describes a scheme for nuclear hydrogen production by fusion. The basic idea is to use nuclear energy of the fuel (hydrogen plasma) to produce molecular hydrogen fro carbon-free hydrogen compounds. The hydrogen is then stored and utilized electrochemically in fuel cells or chemically as molecular hydrogen in internal combustion engines

  10. Nuclear hydrogen: An assessment of product flexibility and market viability

    International Nuclear Information System (INIS)

    Botterud, Audun; Yildiz, Bilge; Conzelmann, Guenter; Petri, Mark C.

    2008-01-01

    Nuclear energy has the potential to play an important role in the future energy system as a large-scale source of hydrogen without greenhouse gas emissions. Thus far, economic studies of nuclear hydrogen tend to focus on the levelized cost of hydrogen without accounting for the risks and uncertainties that potential investors would face. We present a financial model based on real options theory to assess the profitability of different nuclear hydrogen production technologies in evolving electricity and hydrogen markets. The model uses Monte Carlo simulations to represent uncertainty in future hydrogen and electricity prices. It computes the expected value and the distribution of discounted profits from nuclear hydrogen production plants. Moreover, the model quantifies the value of the option to switch between hydrogen and electricity production, depending on what is more profitable to sell. We use the model to analyze the market viability of four potential nuclear hydrogen technologies and conclude that flexibility in output product is likely to add significant economic value for an investor in nuclear hydrogen. This should be taken into account in the development phase of nuclear hydrogen technologies

  11. Technical Integration of Nuclear Hydrogen Production Technology

    International Nuclear Information System (INIS)

    Lee, Ki Young; Chang, J. H.; Park, J. K.

    2007-06-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production system, and the assessment of the nuclear hydrogen production economy. To estimate the attainments of the key technologies in progress with the performance goals of GIF, itemized are the attainment indices based on SRP published in VHTR R and D steering committee of Gen-IV. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items conformed to the NHDD concepts established in a preconceptual design in 2005. The codes for analyzing the hydrogen production economy are developed for calculating the unit production cost of nuclear hydrogen. We developed basic R and D quality management methodology to meet design technology of VHTR's needs. By putting it in practice, we derived some problems and solutions. We distributed R and D QAP and Q and D QAM to each teams and these are in operation. Computer simulations are performed for estimating the thermal efficiency for the electrodialysis component likely to adapting as one of the hydrogen production system in Korea and EED-SI process known as the key components of the hydrogen production systems. Using the commercial codes, the process diagrams and the spread-sheets were produced for the Bunsen reaction process, Sulphuric Acid dissolution process and HI dissolution process, respectively, which are the key components composing of the SI process

  12. Nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Verfondern, K.

    2007-01-01

    In the long term, H 2 production technologies will be strongly focusing on CO 2 -neutral or CO 2 -free methods. Nuclear with its virtually no air-borne pollutants emissions appears to be an ideal option for large-scale centralized H 2 production. It will be driven by major factors such as production rates of fossil fuels, political decisions on greenhouse gas emissions, energy security and independence of foreign oil uncertainties, or the economics of large-scale hydrogen production and transmission. A nuclear reactor operated in the heat and power cogeneration mode must be located in close vicinity to the consumer's site, i.e., it must have a convincing safety concept of the combined nuclear/ chemical production plant. A near-term option of nuclear hydrogen production which is readily available is conventional low temperature electrolysis using cheap off-peak electricity from present nuclear power plants. This, however, is available only if the share of nuclear in power production is large. But as fossil fuel prices will increase, the use of nuclear outside base-load becomes more attractive. Nuclear steam reforming is another important near-term option for both the industrial and the transportation sector, since principal technologies were developed, with a saving potential of some 35 % of methane feedstock. Competitiveness will benefit from increasing cost level of natural gas. The HTGR heated steam reforming process which was simulated in pilot plants both in Germany and Japan, appears to be feasible for industrial application around 2015. A CO 2 emission free option is high temperature electrolysis which reduces the electricity needs up to about 30 % and could make use of high temperature heat and steam from an HTGR. With respect to thermochemical water splitting cycles, the processes which are receiving presently most attention are the sulfur-iodine, the Westinghouse hybrid, and the calcium-bromine (UT-3) cycles. Efficiencies of the S-I process are in the

  13. Nuclear hydrogen production and its safe handling

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Kim, Kwang-Rag; Ahn, Do-Hee; Lee, Minsoo; Chang, Jong Hwa

    2003-01-01

    An overview of the hydrogen related research presently undertaken at the Korea Atomic Energy Research Institute are presented. These encompass nuclear hydrogen production, hydrogen storage, and the safe handling of hydrogen, High temperature gas-cooled reactors can play a significant role, with respect to large-scale hydrogen production, if used as the provider of high temperature heat in fossil fuel conversion or thermochemical cycles. A variety of potential hydrogen production methods for high temperature gas-cooled reactors were analyzed. They are steam reforming of natural gas, thermochemical cycles, etc. The produced hydrogen should be stored safely. Titanium metal was tested primarily because its hydride has very low dissociation pressures at normal storage temperatures and a high capacity for hydrogen, it is easy to prepare and is non-reactive with air in the expected storage conditions. There could be a number of potential sources of hydrogen evolution risk in a nuclear hydrogen production facility. In order to reduce the deflagration detonation it is necessary to develop hydrogen control methods that are capable of dealing with the hydrogen release rate. A series of experiments were conducted to assess the catalytic recombination characteristics of hydrogen in an air stream using palladium catalysts. (author)

  14. Development of interface technology for nuclear hydrogen production system

    International Nuclear Information System (INIS)

    Lee, Ki Young; Park, J. K.; Chang, J. H.

    2012-06-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production systems, and the assessment of the nuclear hydrogen production economy. The codes for analyzing the hydrogen production economy are developed for calculating the unit production cost of nuclear hydrogen. We developed basic R and D quality management methodology to meet design technology of VHTR's needs. By putting it in practice, we derived some problems and solutions. We distributed R and D QAP and Q and D QAM to each teams and these are in operation. Computer simulations are performed for estimating the thermal efficiency for the electrodialysis component likely to adapting as one of the hydrogen production system in Korea and EED-SI process known as the key components of the hydrogen production systems. Using the commercial codes, the process diagrams and the spread-sheets were produced for the Bunsen reaction process, Sulphuric Acid dissolution process and HI dissolution process, respectively, which are the key components composing of the SI process

  15. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  16. Hydrogen production as a promising nuclear energy application

    International Nuclear Information System (INIS)

    Vanek, V.

    2003-01-01

    Hydrogen production from nuclear is a field of application which eventually can outweigh power production by nuclear power plants. There are two feasible routes of hydrogen production. The one uses heat to obtain hydrogen from natural gas through steam reforming of methane. This is an highly energy-consuming process requiring temperatures up to 900 deg C and producing carbon dioxide as a by-product. The other method includes direct thermochemical processes to obtain hydrogen, using sulfuric acid for instance. Sulfuric acid is decomposed thermally by the reaction: H 2 SO 4 -> H 2 O = SO 2 + (1/2) O 2 , followed by the processes I 2 + SO 2 + 2H O -> 2HI + H 2 SO 4 and 2HI -> H 2 + I 2 . The use of nuclear for this purpose is currently examined in Japan and in the US. (P.A.)

  17. Calculation of LUEC using HEEP Software for Nuclear Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongho; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution by reducing the release of carbon dioxide. A Very High Temperature Reactor (VHTR) is considered as an efficient reactor to couple with the thermo-chemical Sulfur Iodine (SI) cycle to achieve the hydrogen economy. HEEP(Hydrogen Economy Evaluation Program) is one of the software tools developed by IAEA to evaluate the economy of the nuclear hydrogen production system by estimating unit hydrogen production cost. In this paper, the LUHC (Levelized Unit Hydrogen Cost) is calculated by using HEEP for nuclear hydrogen production plant, which consists of 4 modules of 600 MWth VHTR coupled with SI process. The levelized unit hydrogen production cost(LUHC) was calculated by the HEEP software.

  18. Comparative Analysis of Hydrogen Production Methods with Nuclear Reactors

    International Nuclear Information System (INIS)

    Morozov, Andrey

    2008-01-01

    Hydrogen is highly effective and ecologically clean fuel. It can be produced by a variety of methods. Presently the most common are through electrolysis of water and through the steam reforming of natural gas. It is evident that the leading method for the future production of hydrogen is nuclear energy. Several types of reactors are being considered for hydrogen production, and several methods exist to produce hydrogen, including thermochemical cycles and high-temperature electrolysis. In the article the comparative analysis of various hydrogen production methods is submitted. It is considered the possibility of hydrogen production with the nuclear reactors and is proposed implementation of research program in this field at the IPPE sodium-potassium eutectic cooling high temperature experimental facility (VTS rig). (authors)

  19. Technical Integration of Nuclear Hydrogen Production Technology

    International Nuclear Information System (INIS)

    Lee, Ki Young; Park, J. K.; Chang, J. H.

    2009-04-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production systems, and the assessment of the nuclear hydrogen production cost. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items confirmed to the NHDD concepts. We developed and applied R and D quality management methodology to meet 'Development of Key Technologies for Nuclear Hydrogen' project. And we also distributed R and D QAM and R and D QAP to each teams and are in operation. The preconceptual flow diagrams of SI, HTSE, and HyS processes are introduced and their material and energy balances have been proposed. The hydrogen production thermal efficiencies of not only the SI process as a reference process but also the HTSE and HyS processes were also estimated. Technical feasibility assessments of SI, HTSE, and HyS processes have been carried out by using the pair-wise comparison and analytic hierarchy process, and it is revealed that the experts are considering the SI process as the most feasible process. The secondary helium pathway across the SI process is introduced. Dynamic simulation codes for the H2S04vaporizer, sulfuric acid and sulfur trioxide decomposers, and HI decomposer on the secondary helium pathway and for the primary and secondary sulfuric acid distillation columns, HIx solution distillation column, and preheater for HI vapor have been developed and integrated

  20. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    International Nuclear Information System (INIS)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-01-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production

  1. The safe production of hydrogen by nuclear power

    International Nuclear Information System (INIS)

    Verfondern, Karl

    2009-01-01

    One of the most promising 'GEN-IV' nuclear reactor concepts is the Very High Temperature Reactor (VHTR). It is characterized by a helium-cooled, graphite moderated, thermal neutron spectrum reactor core of 400-600 MW(th). Coolant outlet temperatures of 900-1000 .deg. C ideally suited for a wide spectrum of high temperature process heat or process steam applications, which allow to deliver, besides the classical electricity, also non-electrical products such as hydrogen or other fuels. In a future energy economy, hydrogen as a storable medium could adjust a variable demand for electricity by means of fuel cell power plants providing much more flexibility in optimized energy structures. The mass production of hydrogen is a major goal for Gen-IV systems. In a nuclear hydrogen production facility, the coupling between the nuclear plant and the process heat/steam application side is given by an intermediate heat exchanger (IHX), a component which provides a clear separation preventing the primary coolant from accessing the heat application plant and, vice versa, any process gases from being routed through the reactor containment. The physical separation has the advantage that the heat application facility can be conventionally designed, and repair works can be conducted under non-nuclear conditions. With regard to the safety of combined nuclear and chemical facilities, apart from their own specific categories of hazards, a qualitatively new class of events will have to be taken into account characterized by interacting influences. Arising problems to be covered by a decent overall safety concept are the questions of safety of the nuclear plant in case of fire and explosion hazards resulting from the leakage of flammable substances, the tolerable tritium contamination of the product hydrogen, or the situations of thermo-dynamic feedback in case of a loss of heat source (nuclear) or heat sink (chemical) resulting in thermal turbulences. A safety-related issue is the

  2. Safety issues of nuclear production of hydrogen

    International Nuclear Information System (INIS)

    Piera, Mireia; Martinez-Val, Jose M.; Jose Montes, Ma

    2006-01-01

    Hydrogen is not an uncommon issue in Nuclear Safety analysis, particularly in relation to severe accidents. On the other hand, hydrogen is a household name in the chemical industry, particularly in oil refineries, and is also a well known chemical element currently produced by steam reforming of natural gas, and other methods (such as coal gasification). In the not-too-distant future, hydrogen will have to be produced (by chemical reduction of water) using renewable and nuclear energy sources. In particular, nuclear fission seems to offer the cheapest way to provide the primary energy in the medium-term. Safety principles are fundamental guidelines in the design, construction and operation both of hydrogen facilities and nuclear power plants. When these two technologies are integrated, a complete safety analysis must consider not only the safety practices of each industry, but any interaction that could be established between them. In particular, any accident involving a sudden energy release from one of the facilities can affect the other. Release of dangerous substances (chemicals, radiotoxic effluents) can also pose safety problems. Although nuclear-produced hydrogen facilities will need specific approaches and detailed analysis on their safety features, a preliminary approach is presented in this paper. No significant roadblocks are identified that could hamper the deployment of this new industry, but some of the hydrogen production methods will involve very demanding safety standards

  3. Once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jeong, Y. H.

    2008-01-01

    Increasing concern about the global climate change spurs the development of low- or zero-carbon energy system. Nuclear hydrogen production by water electrolysis would be the one of the short-term solutions, but low efficiency and high production cost (high energy consumption) is the technical hurdle to be removed. In this paper the once-through sulfur process composed of the desulfurization and the water electrolysis systems is proposed. Electrode potential for the conventional water electrolysis (∼2.0 V) can be reduced significantly by the anode depolarization using sulfur dioxide: down to 0.6 V depending on the current density This depolarized electrolysis is the electrolysis step of the hybrid sulfur process originally proposed by the Westinghouse. However; recycling of sulfur dioxide requires a high temperature heat source and thus put another technical hurdle on the way to nuclear hydrogen production: the development of high temperature nuclear reactors and corresponding sulfuric acid decomposition system. By the once-through use of sulfur dioxide rather than the closed recycle, the hurdle can be removed. For the sulfur feed, the desulfurization system is integrated into the water electrolysis system. Fossil fuels include a few percent of sulfur by weight. During the refinement or energy conversion, most of the sulfur should be separated The separated sulfur can be fed to the water electrolysis system and the final product would be hydrogen and sulfuric acid, which is number one chemical in the world by volume. Lowered electrode potential and additional byproduct, the sulfuric acid, can provide economically affordable hydrogen. In this study, the once-through hybrid sulfur process for hydrogen production was proposed and the process was optimized considering energy consumption in electrolysis and sulfuric acid concentration. Economic feasibility of the proposed process was also discussed. Based on currently available experimental data for the electrode

  4. Technology selection for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Siti Alimah; Erlan Dewita

    2008-01-01

    The NPP can either be used to produce electricity, or as heat source for non-electric applications (cogeneration). High Temperature Reactor (HTR) with high outlet coolant temperature around 900~1000 o C, is a reactor type potential for cogeneration purposes such as hydrogen production and other chemical industry processes that need high heat. Considering the national energy policy that a balanced arrangement of renewable and unrenewable natural resources has to be made to keep environmental conservation for the sake of society prosperity in the future, hydrogen gas production using nuclear heat is an appropriate choice. Hydrogen gas is a new energy which is environmentally friendly that it is a prospecting alternative energy source in the future. Within the study, a comparison of three processes of hydrogen gas production covering electrolysis, steam reforming and sulfur-iodine cycle, have been conducted. The parameters that considered are the production cost, capital cost and energy cost, technological status, the independence of fossil fuel, the environmental friendly aspect, as well as the efficiency and the independence of corrosion-resistance material. The study result showed that hydrogen gas production by steam reforming is a better process compared to electrolysis and sulfur-iodine process. Therefore, steam reforming process can be a good choice for hydrogen gas production using nuclear energy in Indonesia. (author)

  5. Economical analysis of biofuel products and nuclear plant hydrogen

    International Nuclear Information System (INIS)

    Edwaren Liun

    2011-01-01

    The increasing in oil prices over the last six years is unprecedented that should be seen as a spur to increased efficiency. The surge in oil prices on the world market today is driven by strong demand factors in the depletion of world oil reserves. To replace the fuel oil from the bowels of the earth the various alternatives should be considered, including other crops or vegetable oil production of bio-fuels and hydrogen are produced by high temperature nuclear reactors. Biofuels in the form of ethanol made from corn or sugar cane and biodiesel made from palm oil or jatropha. With the latest world oil prices, future fuel vegetable oil and nuclear hydrogen-based energy technologies become popular in various parts of the world. Economics of biodiesel will be changed in accordance with world oil prices and subsidy regulations which apply to fuel products. On the other hand the role of nuclear energy in hydrogen production with the most potential in the techno-economics is a form of high temperature steam electrolysis, using heat and electricity from nuclear reactors. The production cost of biodiesel fuel on the basis of ADO type subsidy is 10.49 US$/MMBTU, while the production cost of hydrogen as an energy carrier of high temperature reactor is 15.30 US$/MMBTU. Thus, both types seem to have strong competitiveness. (author)

  6. Nuclear hydrogen production programme in the United States

    International Nuclear Information System (INIS)

    Sink, C.

    2010-01-01

    The Nuclear Hydrogen Initiative (NHI) is focused on demonstrating the economic, commercial-scale production of hydrogen using process heat derived from nuclear energy. NHI-supported research has concentrated to date on three technologies compatible with the Next Generation Nuclear Plant (NGNP): high temperature steam electrolysis (HTE); sulphur-iodine (S-I) thermochemical; and hybrid sulphur (HyS) thermochemical. In 2009 NHI will down select to a single technology on which to focus its future development efforts, for which the next step will be a pilot-scale experiment. (author)

  7. Analysis of economic and infrastructure issues associated with hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Summers, W.A.; Gorensek, M.B.; Danko, E.; Schultz, K.R.; Richards, M.B.; Brown, L.C.

    2004-01-01

    Consideration is being given to the large-scale transition of the world's energy system from one based on carbon fuels to one based on the use of hydrogen as the carrier. This transition is necessitated by the declining resource base of conventional oil and gas, air quality concerns, and the threat of global climate change linked to greenhouse gas emissions. Since hydrogen can be produced from water using non-carbon primary energy sources, it is the ideal sustainable fuel. The options for producing the hydrogen include renewables (e.g. solar and wind), fossil fuels with carbon sequestration, and nuclear energy. A comprehensive study has been initiated to define economically feasible concepts and to determine estimates of efficiency and cost for hydrogen production using next generation nuclear reactors. A unique aspect of the study is the assessment of the integration of a nuclear plant, a hydrogen production process and the broader infrastructure requirements. Hydrogen infrastructure issues directly related to nuclear hydrogen production are being addressed, and the projected cost, value and end-use market for hydrogen will be determined. The infrastructure issues are critical, since the combined cost of storing, transporting, distributing, and retailing the hydrogen product could well exceed the cost of hydrogen production measured at the plant gate. The results are expected to be useful in establishing the potential role that nuclear hydrogen can play in the future hydrogen economy. Approximately half of the three-year study has been completed. Results to date indicate that nuclear produced hydrogen can be competitive with hydrogen produced from natural gas for use at oil refineries or ammonia plants, indicating a potential early market opportunity for large-scale centralized hydrogen production. Extension of the hydrogen infrastructure from these large industrial users to distributed hydrogen users such as refueling stations and fuel cell generators could

  8. Large-scale hydrogen production using nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryland, D.; Stolberg, L.; Kettner, A.; Gnanapragasam, N.; Suppiah, S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    For many years, Atomic Energy of Canada Limited (AECL) has been studying the feasibility of using nuclear reactors, such as the Supercritical Water-cooled Reactor, as an energy source for large scale hydrogen production processes such as High Temperature Steam Electrolysis and the Copper-Chlorine thermochemical cycle. Recent progress includes the augmentation of AECL's experimental capabilities by the construction of experimental systems to test high temperature steam electrolysis button cells at ambient pressure and temperatures up to 850{sup o}C and CuCl/HCl electrolysis cells at pressures up to 7 bar and temperatures up to 100{sup o}C. In parallel, detailed models of solid oxide electrolysis cells and the CuCl/HCl electrolysis cell are being refined and validated using experimental data. Process models are also under development to assess options for economic integration of these hydrogen production processes with nuclear reactors. Options for large-scale energy storage, including hydrogen storage, are also under study. (author)

  9. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  10. Processes of hydrogen production, coupled with nuclear reactors: Economic perspectives

    International Nuclear Information System (INIS)

    Werkoff, Francois; Avril, Sophie; Mansilla, Christine; Sigurvinsson, Jon

    2006-01-01

    Hydrogen production, using nuclear power is considered from a technic-economic (TE) point of view. Three different processes are examined: Alkaline electrolysis, High-temperature steam electrolysis (HTE) and the thermochemical Sulphur-Iodine (S/I) cycle. The three processes differ, in the sense that the first one is operational and both last ones are still at demonstration stages. For them, it is at present only possible to identify key points and limits of competitiveness. The cost of producing hydrogen by alkaline electrolysis is analysed. Three major contributions to the production costs are examined: the electricity consumption, the operation and maintenance expenditures and the depreciation capital expenditures. A technic-economic evaluation of hydrogen production by HTE coupled to a high-temperature reactor (HTR) is presented. Key points appear to be the electrolyser and the high temperature heat exchangers. The S/I thermochemical cycle is based on the decomposition and the re-composition of H 2 SO 4 and HI acids. The energy consumption and the recovery of iodine are key points of the S/I cycle. With the hypothesis that the hydrogen energy will progressively replace the fossil fuels, we give a first estimate of the numbers of nuclear reactors (EPR or HTR) that would be needed for a massive nuclear hydrogen production. (authors)

  11. Cost Evaluation with G4-ECONS Program for SI based Nuclear Hydrogen Production Plant

    International Nuclear Information System (INIS)

    Kim, Jong-ho; Lee, Ki-young; Kim, Yong-wan

    2014-01-01

    Contemporary hydrogen is production is primarily based on fossil fuels, which is not considered as environments friendly and economically efficient. To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution reducing the release of carbon dioxide. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The economic assessment was performed for nuclear hydrogen production plant consisting of VHTR coupled with SI cycle. For the study, G4-ECONS developed by EMWG of GIF was appropriately modified to calculate the LUHC, assuming 36 months of plant construction time, 5 % of annual interest rate and 12.6 % of fixed charge rate. In G4-ECONS program, LUHC is calculated by the following formula; LUHC = (Annualized TCIC + Annualized O-M Cost + Annualized Fuel Cycle Cost + Annualized D-D Cost) / Annual Hydrogen Production Rate

  12. Economic Analysis for Nuclear Hydrogen Production System Based on HyS Process

    International Nuclear Information System (INIS)

    Yang, Kyeong Jin; Lee, Ki Young; Lee, Tae Hoon; Chang, Jong Hwa

    2009-01-01

    The current promising base for massive hydrogen production on high temperature environment derives primarily from three sources: the commercial production of chemicals for the sulfur-iodine (SI) process, the development of solid-oxide fuel cells (SOFC), and the hybrid method of chemicals and fuel cells. The three kinds of process requires high temperature heat energy over 850∼950 .deg. C for the efficient and economic hydrogen production. One of the clean, economic, and moreover promising heat sources supplied to the process is nuclear plants. The nuclear plants producing high temperature heat energy over 950 .deg. C are well known as Very High Temperature Reactors (VHTR) which could have two types of prismatic and pebble-bed cores along reactor core shape. In this paper, we report on the Hybrid Sulfur Process (HyS), and the estimated costs for the system which composes of VHTR of prismatic core type and HyS plant. Nuclear hydrogen production system based on HyS process has been configured to optimally use the thermal energy from VHTR and electric energy to produce hydrogen and oxygen from clean water. High temperature thermal energy is transferred to the HyS process by way of intermediate heat exchanger (IHX) with associated piping. In this paper, the hydrogen production costs for a system composed of a VHTR with six 600MWth module, a power conversion unit (PCU) and a HyS plant are presented, where the thermal energy produced in two module was converted to electric energy in PCU and then transferred to the electrolysis cells for hydrogen production and circulating units on HyS plant, and the remaining thermal energy was supplied to chemical process on HyS plants. As a preliminary study of cost estimates for nuclear hydrogen systems, the hydrogen production costs of the nuclear energy sources benchmarking GT-MHR are estimated in the necessary input data on a Korean specific basis. G4- ECONS was appropriately modified to calculate the cost for hydrogen production

  13. Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

    2009-07-31

    This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

  14. Nuclear Production of Hydrogen Using Thermochemical Water-Splitting Cycles

    International Nuclear Information System (INIS)

    Brown, L.C.; Besenbruch, G.E.; Schultz, K.R.; Marshall, A.C.; Showalter, S.K.; Pickard, P.S.; Funk, J.F.

    2002-01-01

    The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high-temperature heat from an advanced nuclear power station in a thermochemical water-splitting cycle. We carried out a detailed literature search to create a searchable database with 115 cycles and 822 references. We developed screening criteria to reduce the list to 25 cycles. We used detailed evaluation to select two cycles that appear most promising, the Adiabatic UT-3 cycle and the Sulfur-Iodine cycle. We have selected the Sulfur-Iodine thermochemical water-splitting cycle for further development. We then assessed the suitability of various nuclear reactor types to the production of hydrogen from water using the Sulfur-Iodine cycle. A basic requirement is to deliver heat to the process interface heat exchanger at temperatures up to 900 deg. C. We considered nine categories of reactors: pressurized water-cooled, boiling water-cooled, organic-cooled, alkali metal-cooled, heavy metal-cooled, gas-cooled, molten salt-cooled, liquid-core and gas-core reactors. We developed requirements and criteria to carry out the assessment, considering design, safety, operational, economic and development issues. This assessment process led to our choice of the helium gas-cooled reactor for coupling to the Sulfur-Iodine cycle. In continuing work, we are investigating the improvements that have been proposed to the Sulfur-Iodine cycle and will generate an integrated flowsheet describing a hydrogen production plant powered by a high-temperature helium gas-cooled nuclear reactor. This will allow us to size process equipment and calculate hydrogen production efficiency and capital cost, and to estimate the cost of the hydrogen produced as a function of nuclear reactor cost. (authors)

  15. Hydrogen co-production from subcritical water-cooled nuclear power plants in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Gnanapragasam, N.; Ryland, D.; Suppiah, S., E-mail: gnanapragasamn@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-06-15

    Subcritical water-cooled nuclear reactors (Sub-WCR) operate in several countries including Canada providing electricity to the civilian population. The high-temperature-steam-electrolysis process (HTSEP) is a feasible and laboratory-demonstrated large-scale hydrogen-production process. The thermal and electrical integration of the HTSEP with Sub-WCR-based nuclear-power plants (NPPs) is compared for best integration point, HTSEP operating condition and hydrogen production rate based on thermal energy efficiency. Analysis on integrated thermal efficiency suggests that the Sub-WCR NPP is ideal for hydrogen co-production with a combined efficiency of 36%. HTSEP operation analysis suggests that higher product hydrogen pressure reduces hydrogen and integrated efficiencies. The best integration point for the HTSEP with Sub-WCR NPP is upstream of the high-pressure turbine. (author)

  16. Synergistic production of hydrogen using fossil fuels and nuclear energy application of nuclear-heated membrane reformer

    International Nuclear Information System (INIS)

    Hori, M.; Matsui, K.; Tashimo, M.; Yasuda, I.

    2004-01-01

    Processes and technologies to produce hydrogen synergistically by the steam reforming reaction using fossil fuels and nuclear heat are reviewed. Formulas of chemical reactions, required heats for reactions, saving of fuel consumption or reduction of carbon dioxide emission, possible processes and other prospects are examined for such fossil fuels as natural gas, petroleum and coal. The 'membrane reformer' steam reforming with recirculation of reaction products in a closed loop configuration is considered to be the most advantageous among various synergistic hydrogen production methods. Typical merits of this method are: nuclear heat supply at medium temperature below 600 deg. C, compact plant size and membrane area for hydrogen production, efficient conversion of feed fuel, appreciable reduction of carbon dioxide emission, high purity hydrogen without any additional process, and ease of separating carbon dioxide for future sequestration requirements. With all these benefits, the synergistic production of hydrogen by membrane reformer using fossil fuels and nuclear energy can be an effective solution in this century for the world which has to use. fossil fuels any way to some extent while reducing carbon dioxide emission. For both the fossil fuels industry and the nuclear industry, which are under constraint of resource, environment and economy, this production method will be a viable symbiosis strategy for the coming hydrogen economy era. (author)

  17. The value of product flexibility in nuclear hydrogen technologies: A real options analysis

    International Nuclear Information System (INIS)

    Botterud, Audun; Yildiz, Bilge; Conzelmann, Guenter; Petri, Mark C.

    2009-01-01

    Previous economic studies of nuclear hydrogen technologies focused on levelized costs without accounting for risks and uncertainties faced by potential investors. To address some of these risks and uncertainties, we used real options theory to assess the profitability of three nuclear hydrogen production technologies in evolving electricity and hydrogen markets. Monte-Carlo simulations are used to represent the uncertainty in hydrogen and electricity prices. The model computes both the expected value and the distribution of discounted profits from the production plant. It also quantifies the value of the option to switch between hydrogen and electricity production. Under these assumptions, we conclude that investors will find significant value in the capability to switch plant output between electricity and hydrogen. (author)

  18. South Africa's nuclear hydrogen production development programme

    International Nuclear Information System (INIS)

    Van Ravenswaay, J.P.; Van Niekerk, F.; Kriek, R.J.; Blom, E.; Krieg, H.M.; Van Niekerk, W.M.K.; Van der Merwe, F.; Vosloo, H.C.M.

    2010-01-01

    In May 2007 the South African Cabinet approved a National Hydrogen and Fuel Cell Technologies R and D and Innovation Strategy. The strategy will focus on research, development and innovation for: i) wealth creation through high value-added manufacturing and developing platinum group metals catalysis; ii) building on the existing knowledge in high temperature gas-cooled reactors (HTGR) and coal gasification Fischer-Tropsch technology, to develop local cost-competitive hydrogen production solutions; iii) to promote equity and inclusion in the economic benefits from South Africa's natural resource base. As part of the roll-out strategy, the South African Department of Science and Technology (DST) created three Competence Centres (CC), including a Hydrogen Infrastructure Competence Centre hosted by the North-West University (NWU) and the Council for Scientific and Industrial Research (CSIR). The Hydrogen Infrastructure CC is tasked with developing hydrogen production, storage, distribution as well as codes and standards programmes within the framework of the DST strategic objectives to ensure strategic national innovation over the next fifteen years. One of the focus areas of the Hydrogen Infrastructure CC will be on large scale CO 2 free hydrogen production through thermochemical water-splitting using nuclear heat from a suitable heat source such as a HTGR and the subsequent use of the hydrogen in applications such as the coal-to-liquid process and the steel industry. This paper will report on the status of the programme for thermochemical water-splitting as well as the associated projects for component and technology development envisaged in the Hydrogen Infrastructure CC. The paper will further elaborate on current and future collaboration opportunities as well as expected outputs and deliverables. (authors)

  19. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    Science.gov (United States)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  20. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy - Technology Summary

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Stoots, C.M.; Herring, J.S.; McKellar, M.G.; Harvego, E.A.; Sohal, M.S.; Condie, K.G.

    2010-01-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  1. The US department of energy's research and development plans for the use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Henderson, A.D.; Pickard, P.S.; Park, C.V.; Kotek, J.F.

    2004-01-01

    The potential of hydrogen as a transportation fuel and for stationary power applications has generated significant interest in the United States. President George W. Bush has set the transition to a 'hydrogen economy' as one of the Administration's highest priorities. A key element of an environmentally-conscious transition to hydrogen is the development of hydrogen production technologies that do not emit greenhouse gases or other air pollutants. The Administration is investing in the development of several technologies, including hydrogen production through the use of renewable fuels, fossil fuels with carbon sequestration, and nuclear energy. The US Department of Energy's Office of Nuclear Energy, Science and Technology initiated the Nuclear Hydrogen Initiative to develop hydrogen production cycles that use nuclear energy. The Nuclear Hydrogen Initiative has completed a Nuclear Hydrogen R and D Plan to identify candidate technologies, assess their viability, and define the R and D required to enable the demonstration of nuclear hydrogen production by 2016. This paper gives a brief overview of the Nuclear Hydrogen Initiative, describes the purposes of the Nuclear Hydrogen R and D Plan, explains the methodology followed to prepared the plan, presents the results, and discusses the path forward for the US programme to develop technologies which use nuclear energy to produce hydrogen. (author)

  2. Hydrogen production from coal using a nuclear heat source

    Science.gov (United States)

    Quade, R. N.

    1976-01-01

    A strong candidate for hydrogen production in the intermediate time frame of 1985 to 1995 is a coal-based process using a high-temperature gas-cooled reactor (HTGR) as a heat source. Expected process efficiencies in the range of 60 to 70% are considerably higher than all other hydrogen production processes except steam reforming of a natural gas. The process involves the preparation of a coal liquid, hydrogasification of that liquid, and steam reforming of the resulting gaseous or light liquid product. A study showing process efficiency and cost of hydrogen vs nuclear reactor core outlet temperature has been completed, and shows diminishing returns at process temperatures above about 1500 F. A possible scenario combining the relatively abundant and low-cost Western coal deposits with the Gulf Coast hydrogen users is presented which provides high-energy density transportation utilizing coal liquids and uranium.

  3. Proceedings of the fourth information exchange meeting on nuclear production of hydrogen

    International Nuclear Information System (INIS)

    2010-01-01

    The use of hydrogen, both as feedstock for the industry (oil and chemical) and as an energy carrier, is expected to grow substantially during the coming decades. The current predominant method of producing hydrogen by steam-reforming methane (from natural gas) is not sustainable and has environmental drawbacks, including the emission of greenhouse gasses (GHGs). Nuclear energy offers a way to produce hydrogen from water without depleting natural gas, a valuable natural resource, and without the emission of GHGs. The OECD Nuclear Energy Agency (NEA) has conducted a number of information exchange meetings with the objective of stimulating progress in the development of nuclear production of hydrogen. These meetings, held in 2000 in Paris, France, in 2003 in Argonne, Illinois, USA, and in 2005 in Oarai, Japan, were well-attended and very successful. It is hoped that the information presented at fourth meeting and contained in these proceedings may be useful in advancing the objective of achieving economically viable, sustainable and emission-free production of hydrogen. The need for a sustainable supply of clean energy is one of the main problems facing the world. Among the various energy technologies which may be considered (including hydro, wind, solar, geo-thermal, wave and tidal), only nuclear - through the use of fast-neutron fission reactors - is capable of delivering the copious quantities of sustainable energy that will be required. In view of this, one of the means under consideration for achieving the objective of nuclear-produced hydrogen is enhanced international cooperation, including the establishment of one or more OECD/NEA joint projects. In this respect, it is worth noting that similar joint projects undertaken in the past (for example, the Dragon Project and the Halden Reactor Project) have been highly beneficial and have provided significant amounts of useful information to the sponsoring countries at shared costs. This report describes the

  4. Utilization of solar and nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Fischer, M.

    1987-01-01

    Although the world-wide energy supply situation appears to have eased at present, non-fossil primary energy sources and hydrogen as a secondary energy carrier will have to take over a long-term and increasing portion of the energy supply system. The only non-fossil energy sources which are available in relevant quantities, are nuclear energy, solar energy and hydropower. The potential of H 2 for the extensive utilization of solar energy is of particular importance. Status, progress and development potential of the electrolytic H 2 production with photovoltaic generators, solar-thermal power plants and nuclear power plants are studied and discussed. The joint German-Saudi Arabian Research, Development and Demonstration Program HYSOLAR for the solar hydrogen production and utilization is summarized. (orig.)

  5. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  6. Hydrogen production from coal using a nuclear heat source

    International Nuclear Information System (INIS)

    Quade, R.N.

    1977-01-01

    A strong candidate for hydrogen production in the intermediate time frame of 1990 to 1995 is a coal-based process using a high-temperature gas-cooled reactor (HTGR) as a heat source. Expected process efficiencies in the range of 60 to 70% are considerably higher than all other hydrogen production processes except steam reforming of a natural gas - a feedstock which may not be available in large quantities in this time frame. The process involves the preparation of a coal liquid, hydrogasification of that liquid, and steam reforming of the resulting gaseous or light liquid product. Bench-scale experimental work on the hydrogasification of coal liquids is being carried out. A study showing process efficiency and cost of hydrogen vs nuclear reactor core outlet temperature has been completed and shows diminishing returns at process temperatures above about 1500 0 F. (author)

  7. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    International Nuclear Information System (INIS)

    O'Brien, James E.

    2010-01-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a 'hydrogen economy.' The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  8. High temperature corrosion in the thermochemical hydrogen production from nuclear heat

    International Nuclear Information System (INIS)

    Coen-Porisini, F.; Imarisio, G.

    1976-01-01

    In the production of hydrogen by water decomposition utilizing nuclear heat, a multistep process has to be employed. Water and the intermediate chemical products reach in chemical cycles giving hydrogen and oxygen with regeneration of the primary products used. Three cycles are examined, characterized by the presence of halide compounds and particularly hydracids at temperatures up to 800 0 C. Corrosion tests were carried out in hydrobromic acid, hydrochloric acid, ferric chloride solutions, and hydriodic acid

  9. Progress of Nuclear Hydrogen Program in Korea

    International Nuclear Information System (INIS)

    Lee, Won Jae

    2009-01-01

    To cope with dwindling fossil fuels and climate change, it is clear that a clean alternative energy that can replace fossil fuels is required. Hydrogen is considered a promising future energy solution because it is clean, abundant and storable and has a high energy density. As other advanced countries, the Korean government had established a long-term vision for transition to the hydrogen economy in 2005. One of the major challenges in establishing a hydrogen economy is how to produce massive quantities of hydrogen in a clean, safe and economical way. Among various hydrogen production methods, the massive, safe and economic production of hydrogen by water splitting using a very high temperature gas-cooled reactor (VHTR) can provide a success path to the hydrogen economy. Particularly in Korea, where usable land is limited, the nuclear production of hydrogen is deemed a practical solution due to its high energy density. To meet the expected demand for hydrogen, the Korea Atomic Energy Institute (KAERI) launched a nuclear hydrogen program in 2004 together with Korea Institute of Energy Research (KIER) and Korea Institute of Science and Technology (KIST). Then, the nuclear hydrogen key technologies development program was launched in 2006, which aims at the development and validation of key and challenging technologies required for the realization of the nuclear hydrogen production demonstration system. In 2008, Korean Atomic Energy Commission officially approved a long-term development plan of the nuclear hydrogen system technologies as in the figure below and now the nuclear hydrogen program became the national agenda. This presentation introduces the current status of nuclear hydrogen projects in Korea and the progress of the nuclear hydrogen key technologies development. Perspectives of nuclear process heat applications are also addressed

  10. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  11. High temperature electrolysis for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Herring, J. Stephen; O'brien, James E.; Stoots, Carl M.; Hawkes, Grant L.; Hartvigsen, Joseph J.

    2005-01-01

    High-temperature nuclear reactors have the potential for substantially increasing the efficiency of hydrogen production from water splitting, which can be accomplished via high-temperature electrolysis (HTE) or thermochemical processes. In order to achieve competitive efficiencies, both processes require high-temperature operation (∼850degC). High-temperature electrolytic water splitting supported by nuclear process heat and electricity has the potential to produce hydrogen with overall system efficiencies of 45 to 55%. At the Idaho National Laboratory, we are developing solid-oxide cells to operate in the steam electrolysis mode. The research program includes both experimental and modeling activities. Experimental results were obtained from ten-cell and 22-cell planar electrolysis stacks, fabricated by Ceramatec, Inc. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (∼200 μm thick, 64 cm 2 active area), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions, gas glow rates, and current densities. Hydrogen production rates greater than 100 normal liters per hour for 196 hours have been demonstrated. In order to evaluate the performance of large-scale HTE operations, we have developed single-cell models, based on FLUENT, and a process model, using the systems-analysis code HYSYS. (author)

  12. Hydrogen as an energy carrier and its production by nuclear power

    International Nuclear Information System (INIS)

    1999-05-01

    The impact of power generation on environment is becoming an ever increasing concern in decision making when considering the energy options and power systems required by a country in order to sustain its economic growth and development. Hydrogen is a strong emerging candidate with a significant role as a clean, environmentally benign and safe to handle major energy carrier in the future. Its enhanced utilization in distributed power generation as well as in propulsion systems for mobile applications will help to significantly mitigate the strong negative effects on the environment. It ia also the nuclear power that will be of utmost importance in the energy supply of many countries over the next decades. The development of new, innovative reactor concepts utilizing passive safety features for process heat and electricity generation are considered by many to play a substantial role in the world's energy future in helping to reduce greenhouse gas emissions. This report produced by IAEA documents past and current activities in Member States in the development of hydrogen production as an energy carrier and its corresponding production through the use of nuclear power. It provides an introduction to nuclear technology as a means of producing hydrogen or other upgraded fuels and to the energy carries hydrogen and its main fields of application. Emphasis is placed on high-temperature reactor technology which can achieve the simultaneous generation of electricity and the production of high-temperature process heat

  13. Hydrogen as an energy carrier and its production by nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The impact of power generation on environment is becoming an ever increasing concern in decision making when considering the energy options and power systems required by a country in order to sustain its economic growth and development. Hydrogen is a strong emerging candidate with a significant role as a clean, environmentally benign and safe to handle major energy carrier in the future. Its enhanced utilization in distributed power generation as well as in propulsion systems for mobile applications will help to significantly mitigate the strong negative effects on the environment. It ia also the nuclear power that will be of utmost importance in the energy supply of many countries over the next decades. The development of new, innovative reactor concepts utilizing passive safety features for process heat and electricity generation are considered by many to play a substantial role in the world`s energy future in helping to reduce greenhouse gas emissions. This report produced by IAEA documents past and current activities in Member States in the development of hydrogen production as an energy carrier and its corresponding production through the use of nuclear power. It provides an introduction to nuclear technology as a means of producing hydrogen or other upgraded fuels and to the energy carries hydrogen and its main fields of application. Emphasis is placed on high-temperature reactor technology which can achieve the simultaneous generation of electricity and the production of high-temperature process heat Refs, figs, tabs

  14. Hydrogen and nuclear power

    International Nuclear Information System (INIS)

    Holt, D.J.

    1976-12-01

    This study examines the influence that the market demand for hydrogen might have on the development of world nuclear capacity over the next few decades. In a nuclear economy, hydrogen appears to be the preferred energy carrier over electricity for most purposes, due to its ready substitution and usage for all energy needs, as well as its low transmission costs. The economic factors upon which any transition to hydrogen fuelling will be largely based are seen to be strongly dependent on the form of future energy demand, the energy resource base, and on the status of technology. Accordingly, the world energy economy is examined to identify the factors which might affect the future demand price structure for energy, and a survey of current estimates of world energy resources, particularly oil, gas, nuclear, and solar, is presented. Current and projected technologies for production and utilization of hydrogen are reviewed, together with rudimentary cost estimates. The relative economics are seen to favour production of hydrogen from fossil fuels far into the foreseeable future, and a clear case emerges for high temperature nuclear reactors in such process heat applications. An expanding industrial market for hydrogen, and near term uses in steelmaking and aircraft fuelling are foreseen, which would justify an important development effort towards nuclear penetration of that market. (author)

  15. VHTR-based Nuclear Hydrogen Plant Analysis for Hydrogen Production with SI, HyS, and HTSE Facilities

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2016-01-01

    In this paper, analyses of material and heat balances on the SI, HyS, and HTSE processes coupled to a Very High Temperature gas-cooled Reactor (VHTR) were performed. The hydrogen production efficiency including the thermal to electric energy ratio demanded from each process is found and the normalized evaluation results obtained from three processes are compared to each other. The currently technological issues to maintain the long term continuous operation of each process will be discussed at the conference site. VHTR-based nuclear hydrogen plant analysis for hydrogen production with SI, HyS, and HTSE facilities has been carried out to determine the thermal efficiency. It is evident that the thermal to electrical energy ratio demanded from each hydrogen production process is an important parameter to select the adequate process for hydrogen production. To improve the hydrogen production efficiency in the SI process coupled to the VHTR without electrical power generation, the demand of electrical energy in the SI process should be minimized by eliminating an electrodialysis step to break through the azeotrope of the HI/I_2/H_2O ternary aqueous solution

  16. Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant

    International Nuclear Information System (INIS)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-01-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540 C and 900 C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%

  17. HTTR workshop (workshop on hydrogen production technology)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Takizuka, Takakazu

    2004-12-01

    Various research and development efforts have been performed to solve the global energy and environmental problems caused by large consumption of fossil fuels. Research activities on advanced hydrogen production technology by the use of nuclear heat from high temperature gas cooled reactors, for example, have been flourished in universities, research institutes and companies in many countries. The Department of HTTR Project and the Department of Advanced Nuclear Heat Technology of JAERI held the HTTR Workshop (Workshop on Hydrogen Production Technology) on July 5 and 6, 2004 to grasp the present status of R and D about the technology of HTGR and the nuclear hydrogen production in the world and to discuss about necessity of the nuclear hydrogen production and technical problems for the future development of the technology. More than 110 participants attended the Workshop including foreign participants from USA, France, Korea, Germany, Canada and United Kingdom. In the Workshop, the presentations were made on such topics as R and D programs for nuclear energy and hydrogen production technologies by thermo-chemical or other processes. Also, the possibility of the nuclear hydrogen production in the future society was discussed. The workshop showed that the R and D for the hydrogen production by the thermo-chemical process has been performed in many countries. The workshop affirmed that nuclear hydrogen production could be one of the competitive supplier of hydrogen in the future. The second HTTR Workshop will be held in the autumn next year. (author)

  18. Process simulation of nuclear-based thermochemical hydrogen production with a copper-chlorine cycle

    International Nuclear Information System (INIS)

    Chukwu, C.C.; Naterer, G.F.; Rosen, M.A.

    2008-01-01

    Thermochemical processes for hydrogen production driven by nuclear energy are promising alternatives to existing technologies for large-scale commercial production of hydrogen without fossil fuels. The copper-chlorine (Cu-Cl) cycle, in which water is decomposed into hydrogen and oxygen, is promising for thermochemical hydrogen production in conjunction with a Supercritical Water Cooled Reactor. Here, the cycle efficiency is examined using the Aspen Plus process simulation code. Possible efficiency improvements are discussed. The results are expected to assist the development of a lab-scale cycle demonstration, which is currently being undertaken at University of Ontario Institute of Technology in collaboration with numerous partners. (author)

  19. Hydrogen economy and nuclear energy

    International Nuclear Information System (INIS)

    Knapp, V.

    2004-01-01

    Global energy outlooks based on present trends, such as WETO study, give little optimism about fulfilling Kyoto commitments in controlling CO2 emissions and avoiding unwanted climate consequences. Whilst the problem of radioactive waste has a prominence in public, in spite of already adequate technical solutions of safe storage for future hundreds and thousands of years, there s generally much less concern with influence of fossil fuels on global climate. In addition to electricity production, process heat and transportation are approximately equal contributors to CO2 emission. Fossil fuels in transportation present also a local pollution problem in congested regions. Backed by extensive R and D, hydrogen economy is seen as the solution, however, often without much thought where from the hydrogen in required very large quantities may come. With welcome contributions from alternative sources, nuclear energy is the only source of energy capable of producing hydrogen in very large amounts, without parallel production of CO2. Future high temperature reactors could do this most efficiently. In view of the fact that nuclear weapon proliferation is not under control, extrapolation from the present level of nuclear power to the future level required by serious attempts to reduce global CO2 emission is a matter of justified concern. Finding the sites for many hundreds of new reactors would, alone, be a formidable problem in developed regions with high population density. What is generally less well understood and not validated is that the production of nuclear hydrogen allows the required large increases of nuclear power without the accompanied increase of proliferation risks. Unlike electricity, hydrogen can be economically shipped or transported by pipelines to places very far from the place of production. Thus, nuclear production of hydrogen can be located and concentrated at few remote, controllable sites, far from the population centers and consumption regions. At such

  20. Configuration and technology implications of potential nuclear hydrogen system applications.

    Energy Technology Data Exchange (ETDEWEB)

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options

  1. Conceptual design of a hydrogen production system by DME steam reforming and high-efficiency nuclear reactor technology

    International Nuclear Information System (INIS)

    Fukushima, Kimichika; Ogawa, Takashi

    2003-01-01

    Hydrogen is a potential alternative energy source and produced commercially by methane (natural gas) or LPG steam reforming, a process that requires high temperatures, which are produced by burning fossil fuels. However, since this process emits large amounts of CO 2 , replacement of the combustion heat source with a nuclear heat source for 773-1173 K processes has been proposed in order to eliminate these CO 2 emissions. This paper proposes a novel method of low-temperature nuclear hydrogen production by reforming dimethyl ether (DME) with steam produced by a low-temperature nuclear reactor at about 573 K. The authors identified conditions that provide high hydrogen production fraction at low pressure and temperatures of about 523-573 K. By setting this low-temperature hydrogen production process at about 573K upstream from a turbine, it was found theoretically that the total energy utilization efficiency is about 50% and very high. By setting a turbine upstream of the hydrogen production plant, an overall efficiency of is 75% for an FBR and 76% for a supercritical-water cooled power reactor (SCPR). (author)

  2. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study

  3. Hydrogen Production System with High Temperature Electrolysis for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kentaro, Matsunaga; Eiji, Hoashi; Seiji, Fujiwara; Masato, Yoshino; Taka, Ogawa; Shigeo, Kasai

    2006-01-01

    Steam electrolysis with solid oxide cells is one of the most promising methods for hydrogen production, which has the potential to be high efficiency. Its most parts consist of environmentally sound and common materials. Recent development of ceramics with high ionic conductivity suggests the possibility of widening the range of operating temperature with maintaining the high efficiency. Toshiba is constructing a hydrogen production system with solid oxide electrolysis cells for nuclear power plants. Tubular-type cells using YSZ (Yttria-Stabilized- Zirconia) as electrolyte showed good performance of steam electrolysis at 800 to 900 deg C. Larger electrolysis cells with present configuration are to be combined with High Temperature Reactors. The hydrogen production efficiency on the present designed system is expected around 50% at 800 to 900 deg C of operating temperature. For the Fast Reactors, 'advanced cell' with higher efficiency at lower temperature are to be introduced. (authors)

  4. Development of once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jung, Yong Hun

    2010-02-01

    Humanity has been facing major energy challenges such as the severe climate change, threat of energy security and global energy shortage especially for the developing world. Particularly, growing awareness of the global warming has led to efforts to develop the sustainable energy technologies for the harmony of the economy, social welfare and environment. Water-splitting nuclear hydrogen production is expected to help to resolve those challenges, when high energy efficiency and low cost for hydrogen production become possible. Once-through Hybrid Sulfur process (Ot-HyS), proposed in this work, produces hydrogen using the same SO 2 Depolarized water Electrolysis (SDE) process found in the original Hybrid Sulfur cycle (HyS) proposed by Westinghouse, which has the sulfuric acid decomposition (SAD) process using high temperature heat source in order to recover sulfur dioxide for the SDE process. But Ot-HyS eliminated this technical hurdle by replacing it with well-established sulfur combustion process to feed sulfur dioxide to the SDE process. Because Ot-HyS has less technical challenges, Ot-HyS is expected to advance the realization of the large-scale nuclear hydrogen production by feeding an initial nuclear hydrogen stock. Most of the elemental sulfur, at present, is supplied by desulfurization process for environmental reasons during the processing of natural gas and petroleum refining and expected to increase significantly. This recovered sulfur will be burned with oxygen in the sulfur combustion process so that produced sulfur dioxide could be supplied to the SDE process to produce hydrogen. Because the sulfur combustion is a highly exothermic reaction releasing 297 kJ/mol of combustion heat resulting in a large temperature rise, efficiency of the Ot-HyS is expected to be high by recovering this great amount of high grade excess heat with nuclear energy. Sulfuric acid, which is a byproduct of the SDE process, could be sent to the neighboring consumers with or even

  5. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    International Nuclear Information System (INIS)

    Zhiwei Zhou

    2006-01-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  6. Nuclear energy in the hydrogen economy

    International Nuclear Information System (INIS)

    Bertel, E.; Lee, K.S.; Nordborg, C.

    2004-01-01

    In the framework of a sustainable development, the hydrogen economy is envisaged as an alternative scenario in substitution to the fossil fuels. After a presentation of the hydrogen economy advantages, the author analyzes the nuclear energy a a possible energy source for hydrogen production since nuclear reactors can produce both the heat and electricity required for it. (A.L.B.)

  7. Future hydrogen markets for large-scale hydrogen production systems

    International Nuclear Information System (INIS)

    Forsberg, Charles W.

    2007-01-01

    The cost of delivered hydrogen includes production, storage, and distribution. For equal production costs, large users (>10 6 m 3 /day) will favor high-volume centralized hydrogen production technologies to avoid collection costs for hydrogen from widely distributed sources. Potential hydrogen markets were examined to identify and characterize those markets that will favor large-scale hydrogen production technologies. The two high-volume centralized hydrogen production technologies are nuclear energy and fossil energy with carbon dioxide sequestration. The potential markets for these technologies are: (1) production of liquid fuels (gasoline, diesel and jet) including liquid fuels with no net greenhouse gas emissions and (2) peak electricity production. The development of high-volume centralized hydrogen production technologies requires an understanding of the markets to (1) define hydrogen production requirements (purity, pressure, volumes, need for co-product oxygen, etc.); (2) define and develop technologies to use the hydrogen, and (3) create the industrial partnerships to commercialize such technologies. (author)

  8. Hydrogen: Adding Value and Flexibility to the Nuclear Power Industry

    International Nuclear Information System (INIS)

    Lee, J.; Bhatt, V.; Friley, P.; Horak, W.; Reisman, A.

    2004-01-01

    The objective of this study was to assess potential synergies between the hydrogen economy and nuclear energy options. Specifically: to provide a market analysis of advanced nuclear energy options for hydrogen production in growing hydrogen demand; to conduct an impact evaluation of nuclear-based hydrogen production on the economics of the energy system, environmental emissions, and energy supply security; and to identify competing technologies and challenges to nuclear options

  9. French perspectives for production of hydrogen using nuclear energy

    International Nuclear Information System (INIS)

    Vitart, Xavier; Yvon, Pascal; Carles, Philippe; Naour, Francois Le

    2009-01-01

    The demand for hydrogen, driven by classical applications such as fertilizers or oil refining a well as new applications (synthetic fuels, fuel cells ... ) is growing significantly. Presently, most of the hydrogen produced in the world uses methane or another fossil feedstock, which is not a sustainable option, given the limited fossil resources and need to reduce CO 2 emissions. This stimulates the need to develop alternative processes of production which do not suffer from these drawbacks. Water decomposition combined with nuclear energy appears to be an attractive option. Low temperature electrolysis, even if it is used currently for limited amounts is a mature technology which can be generalized in the near future. However, this technology, which requires about 4 kWh of electricity per Nm 3 of hydrogen produced, is energy intensive and presents a low efficiency. Therefore the French Atomic Energy Commission (CEA) launched an extensive research and development program in 2001 in order to investigate advanced processes which could use directly the nuclear heat and present better economic potential. In the frame of this program, high temperature steam electrolysis along with several thermochemical cycles has been extensively studied. HTSE offers the advantage of reducing the electrical energy needed by substituting thermal energy, which promises to be cheaper. The need for electricity is also greatly reduced for the leading thermochemical cycles, the iodine-sulfur and the hybrid sulfur cycles, but they require high temperatures and hence coupling to a gas cooled reactor. Therefore interest is also paid to other processes such as the copper-chlorine cycle which operates at lower temperatures and could be coupled to other generation IV nuclear systems. The technical development of these processes involved acquisition of basic thermodynamic data, optimization of flowsheets, design and test of components and lab scale experiments in the kW range. This will demonstrate

  10. Status and Planning of South Africa's Nuclear Hydrogen Production Program

    Energy Technology Data Exchange (ETDEWEB)

    Ravenswaay, J. P.; Niekerk, F.; Kriek, R. J.; Blom, E.; Krieg, H. M.; Niekerk, W. M. K.; Merwe, F.; Vosloo, H. C. M. [North-West University, Potchefstroom (South Africa)

    2009-05-15

    In May 2007 the South African Cabinet approved a National Hydrogen and Fuel Cell Technologies R and D and Innovation Strategy. The Strategy will focus on research, development and innovation for (amongst others) by building on the existing knowledge in High Temperature Gas Cooled Reactors (HTGR) and coal gasification Fischer-Tropsch technology, to develop local cost-competitive hydrogen production methods. As part of the roll-out strategy, the South African Department of Science and Technology (DST) created three Competence Centers (CC), including a Hydrogen Infrastructure Competence Centre hosted by the North-West University (NWU) and the Council for Scientific and Industrial Research (CSIR). The Hydrogen Infrastructure CC is tasked with developing Hydrogen Production, Storage, Distribution as well as Codes and Standards programs within the framework of the DST strategic objectives. A 700kW Heliostat field is to be constructed at the CSIR. It is planned that the following processes will be investigated there: Steam Methane Reforming, High Temperature Steam Electrolysis, Metal-oxide redox process. At the NWU the main focus will be on the large scale, CO{sub 2} free, hydrogen production through thermo-chemical water splitting using nuclear heat from a suitable heat source such as a HTGR. The following will be investigated: Plasma-arc reforming of methane, Investigating the integration of a HTGR with a coal-to-liquid process, steel manufacture and ammonia production, The Hybrid-Sulphur process for the production of hydrogen.

  11. Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant

    International Nuclear Information System (INIS)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-01-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540 C and 900 C, respectively. The electrolysis unit used to produce hydrogen consists of 4,009,177 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm-cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current, AC, to direct current, DC, conversion is 96%. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of the plant was also performed using the H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost using realistic financial and cost estimating assumptions. A required cost of $3.23 per kg of hydrogen produced was calculated assuming an internal rate of return of 10%. Approximately 73% of this cost ($2.36/kg) is the result of capital costs associated with

  12. Advanced Intermediate Heat Transport Loop Design Configurations for Hydrogen Production Using High Temperature Nuclear Reactors

    International Nuclear Information System (INIS)

    Chang Oh; Cliff Davis; Rober Barner; Paul Pickard

    2005-01-01

    The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic evaluations and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various

  13. Coupling of copper-chloride hybrid thermochemical water splitting cycle with a desalination plant for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, Mehmet F.; Dincer, Ibrahim; Naterer, Greg F.; Rosen, Marc A.

    2010-01-01

    Energy and environmental concerns have motivated research on clean energy resources. Nuclear energy has the potential to provide a significant share of energy supply without contributing to environmental emissions and climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another pathway for the utilization of nuclear thermal energy. One option for nuclear-based hydrogen production via thermochemical water decomposition uses a copper-chloride (Cu-Cl) cycle. Another societal concern relates to supplies of fresh water. Thus, to avoid causing one problem while solving another, hydrogen could be produced from seawater rather than limited fresh water sources. In this study we analyze a coupling of the Cu-Cl cycle with a desalination plant for hydrogen production from nuclear energy and seawater. Desalination technologies are reviewed comprehensively to determine the most appropriate option for the Cu-Cl cycle and a thermodynamic analysis and several parametric studies of this coupled system are presented for various configurations. (author)

  14. Relative economic incentives for hydrogen from nuclear, renewable, and fossil energy sources

    International Nuclear Information System (INIS)

    Gorensek, Maximilian B.; Forsberg, Charles W.

    2009-01-01

    The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because ''free'' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen. (author)

  15. Hydrogen production by high temperature electrolysis of water vapour and nuclear reactors

    International Nuclear Information System (INIS)

    Jean-Pierre Py; Alain Capitaine

    2006-01-01

    This paper presents hydrogen production by a nuclear reactor (High Temperature Reactor, HTR or Pressurized Water Reactor, PWR) coupled to a High Temperature Electrolyser (HTE) plant. With respect to the coupling of a HTR with a HTE plant, EDF and AREVA NP had previously selected a combined cycle HTR scheme to convert the reactor heat into electricity. In that case, the steam required for the electrolyser plant is provided either directly from the steam turbine cycle or from a heat exchanger connected with such cycle. Hydrogen efficiency production is valued using high temperature electrolysis. Electrolysis production of hydrogen can be performed with significantly higher thermal efficiencies by operating in the steam phase than in the water phase. The electrolysis performance is assessed with solid oxide and solid proton electrolysis cells. The efficiency from the three operating conditions (endo-thermal, auto-thermal and thermo-neutral) of a high temperature electrolysis process is evaluated. The technical difficulties to use the gases enthalpy to heat the water are analyzed, taking into account efficiency and technological challenges. EDF and AREVA NP have performed an analysis to select an optimized process giving consideration to plant efficiency, plant operation, investment and production costs. The paper provides pathways and identifies R and D actions to reach hydrogen production costs competitive with those of other hydrogen production processes. (authors)

  16. Nuclear power and hydrogen

    International Nuclear Information System (INIS)

    Welch, Robert.

    1982-06-01

    Ontario has been using CANDU reactors to produce electricity since 1962. The province does not have an electricity shortage, but it does have a shortage of liquid fuels. The government of Ontario is encouraging research into the production of hydrogen using electricity generated by a dedicated nuclear plant, and the safe and economical use of hydrogen both in the production of synthetic petroleum fuels and as a fuel in its own right

  17. System Evaluation and Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen-Production Plant

    International Nuclear Information System (INIS)

    Harvego, E.A.; McKellar, M.G.; Sohal, M.S.; O'Brien, J.E.; Herring, J.S.

    2010-01-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540 C and 900 C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current (AC) to direct current (DC) conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.1% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  18. Methods and systems for the production of hydrogen

    Science.gov (United States)

    Oh, Chang H [Idaho Falls, ID; Kim, Eung S [Ammon, ID; Sherman, Steven R [Augusta, GA

    2012-03-13

    Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

  19. Hydrogen production through nuclear energy, a sustainable scenario in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J.L.

    2007-01-01

    The energy is a key point in the social and economic development of a country, for such motive to assure the energy supply in Mexico it is of vital importance. The hydrogen it is without a doubt some one of the alternating promising fuels before the visible one necessity to decentralize the energy production based on hydrocarbons. The versatility of their applications, it high heating power and having with the more clean fuel cycle of the energy basket with which count at the moment, they are only some examples of their development potential. However the more abundant element of the universe it is not in their elementary form in our planet, it forms molecules like in the hydrocarbons or water and it stops their use it should be extracted. At the present time different methods are known for the extraction of hydrogen, there is thermal, electric, chemical, photovoltaic among others. The election of the extraction method and the primary energy source to carry out it are decisive to judge the sustainability of the hydrogen production. The sustainable development is defined as development that covers the present necessities without committing the necessity to cover the necessities of the future generations, and in the mark of this definition four indicators of the sustainable development of the different cycles of fuel were evaluated in the hydrogen production in Mexico. These indicators take in consideration the emissions of carbon dioxide in the atmosphere (environment), the readiness of the energy resources (technology), the impacts in the floor use (social) and the production costs of the cycles (economy). In this work the processes were studied at the moment available for the generation of hydrogen, those that use coal, natural gas, hydraulic, eolic energy, biomass and nuclear, as primary energy sources. These processes were evaluated with energy references of Mexico to obtain the best alternative for hydrogen production. (Author)

  20. Economic analysis of the hydrogen production by means of the thermo-chemistry process iodine-sulfur with nuclear energy

    International Nuclear Information System (INIS)

    Solorzano S, C.; Francois L, J. L.

    2011-11-01

    In this work an economic study was realized about a centralized plant of hydrogen production that works by means of a thermo-chemistry cycle of sulfur-iodine and uses heat coming from a nuclear power plant of IV generation, with base in the software -Hydrogen Economic Evaluation Programme- obtained through the IAEA. The sustainable technology that is glimpsed next for the generation of hydrogen is to great scale and based on processes of high temperature coupled to nuclear power plants, being the most important the cycle S-I and the electrolysis to high temperature, for what objective references are presented that can serve as base for the taking of decisions for its introduction in Mexico. After detailing the economic models that uses the software for the calculation of the even cost of hydrogen production and the characteristics, so much of the nuclear plant constituted by fourth generation reactors, as of the plant of hydrogen production, is proposed a -base- case, obtaining a preliminary even cost of hydrogen production with this process; subsequently different cases are studied starting from which are carried out sensibility analysis in several parameters that could rebound in this cost, taking into account that these reactors are still in design and planning stages. (Author)

  1. Status of hydrogen production by nuclear power

    International Nuclear Information System (INIS)

    Chang, Jong Wa; Yoo, Kun Joong; Park, Chang Kue

    2001-07-01

    Hydrogen production methods, such as electrolysis, thermochemical method, biological method, and photochemical method, are introduced in this report. Also reviewed are current status of the development of High Temperatrue Gas Coooled Reactor, and it application for hydrogen production

  2. Nuclear Reactor/Hydrogen Process Interface Including the HyPEP Model

    International Nuclear Information System (INIS)

    Steven R. Sherman

    2007-01-01

    The Nuclear Reactor/Hydrogen Plant interface is the intermediate heat transport loop that will connect a very high temperature gas-cooled nuclear reactor (VHTR) to a thermochemical, high-temperature electrolysis, or hybrid hydrogen production plant. A prototype plant called the Next Generation Nuclear Plant (NGNP) is planned for construction and operation at the Idaho National Laboratory in the 2018-2021 timeframe, and will involve a VHTR, a high-temperature interface, and a hydrogen production plant. The interface is responsible for transporting high-temperature thermal energy from the nuclear reactor to the hydrogen production plant while protecting the nuclear plant from operational disturbances at the hydrogen plant. Development of the interface is occurring under the DOE Nuclear Hydrogen Initiative (NHI) and involves the study, design, and development of high-temperature heat exchangers, heat transport systems, materials, safety, and integrated system models. Research and development work on the system interface began in 2004 and is expected to continue at least until the start of construction of an engineering-scale demonstration plant

  3. A nuclear based hydrogen economy

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Tamm, G.; Kunze, J.

    2005-01-01

    Exhausting demands are being imposed upon the world's ability to extract and deliver oil to the nations demanding fluid fossil fuels. This paper analyzes these issues and concludes that there must be no delay in beginning the development of the 'hydrogen economy' using nuclear energy as the primary energy source to provide both the fluid fuel and electrical power required in the 21st century. Nuclear energy is the only proven technology that is abundant and available worldwide to provide the primary energy needed to produce adequate hydrogen fluid fuel supplies to replace oil. Most importantly, this energy transition can be accomplished in an economical and technically proven manner while lowering greenhouse gas emissions. Furthermore, a similar application of using wind and solar to produce hydrogen instead of electricity for the grid can pave the way for the much larger production scales of nuclear plants producing both electricity and hydrogen. (authors)

  4. Applications of Nuclear Energy to Oil Sands and Hydrogen Production

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.; Kuran, S.

    2011-01-01

    natural gas prices, an unlikely circumstance but one that would undermine the very development of oilsands as surely as high cost and limited availability of natural gas. We examine the applications of nuclear energy to oil sands production, and the concomitant hydrogen production, utilizing realistic reactor designs, modern power and energy market considerations, and environmental constraints on waste and emissions. We cover all aspects of feasibility, specifically technical issues, comparative economics, schedule, regulatory requirements, and other implementation factors. We compare and contrast the claims versus the realities, and also provide the synergistive utilization of co-generation of hydrogen using coupled nuclear and windpower. Among the many non-technological issues expressed by the oil industry are their lack of experience with nuclear technology or nuclear power generation, and with the regulatory framework. The application of any nuclear technology must also consider Government and public support, local and First Nations acceptance, site selection, access to water, oil sands, and transmission, oil industry buy-in on the basis of hard nosed economics, the impacts of oil and gas prices, labour costs and the need for long-term contracts for steam and electricity, together with an experienced nuclear plant owner/operator. (author)

  5. Mitigation of climate change via a copper-chlorine hybrid thermochemical water splitting cycle for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, M.F.; Dincer, I.; Rosen, M.A.

    2009-01-01

    Concerns regarding climate change have motivated research on clean energy resources. While many energy resources have limitations, nuclear energy has the potential to supply a significant share of energy supply without contributing to climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another option for the utilization of nuclear thermal energy. This paper describes nuclear-based hydrogen production technologies and discusses the role of the Cu-Cl cycle for thermochemical water decomposition, potentially driven in part by waste heat from a nuclear generating station, in reducing greenhouse gas emissions. (author)

  6. The prisoner's dilemma in the production of nuclear hydrogen

    International Nuclear Information System (INIS)

    Mendoza, A.; Francois, J. L.; Martin del Campo, C.

    2011-11-01

    The human beings take to daily decisions, so much at individual as social level, that affect their quality of life in more or minor measure and modify the conditions of their environment. Decisions like to use the car or the public transportation or government policies to adopt and energy development plan that includes technologies like the production of nuclear hydrogen, present a grade of global influence, not only affect or benefit at the person or government that it carries out them, but also present consequences in the individuals and resources of the environment. The hydrogen production using nuclear energy as supply of thermal energy is in itself decision matter; from investing or not in their investigation until fomenting laws and policies that impel their development and incorporation to the industrial panorama. The countries and institutes that opt to impel this technology have the possibility to obtain economic and environmental benefits in contrast with those that do not make it, these last only benefited of the first ones in the environmental aspect. High cost for the technological transfer and economic sanctions sustained in environmental arguments toward those -non cooperators- would be a possible consequence of the cooperators action in the search of a Nash balance. The Prisoner's dilemma exemplifies and increases the comprehension of this type of problems to search for better conditions in the system that improve the situation of all the participants, in this case: governments and institutions. (Author)

  7. Hydrogen production by water dissociation from a nuclear reactor; Production d'hydrogene par dissociation de l'eau a partir d'un reacteur nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This memento presents the production of hydrogen by water decomposition, the energy needed for the electrolysis, the thermochemical cycles for a decomposition at low temperature and the possible nuclear reactors associated. (A.L.B.)

  8. Hydrogen production system coupled with high-temperature gas-cooled reactor (HTTR)

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku

    2003-01-01

    On the HTTR program, R and D on nuclear reactor technology and R and D on thermal application technology such as hydrogen production and so on, are advanced. When carrying out power generation and thermal application such as hydrogen production and so on, it is, at first, necessary to supply nuclear heat safely, stably and in low cost, JAERI carries out some R and Ds on nuclear reactor technology using HTTR. In parallel to this, JAERI also carries out R and D for jointing nuclear reactor system with thermal application systems because of no experience in the world on high temperature heat of about 1,000 centigrade supplied by nuclear reactor except power generation, and R and D on thermochemical decomposition method IS process for producing hydrogen from water without exhaust of carbon dioxide. Here were described summaries on R and D on nuclear reactor technology, R and D on jointing technology using HTTR hydrogen production system, R and D on IS process hydrogen production, and comparison hydrogen production with other processes. (G.K.)

  9. Research and development of HTTR hydrogen production systems

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Inagaki, Yoshiyuki; Onuki, Kaoru; Takeda, Tetsuaki; Nishihara, Tetsuo; Hayashi, Koji; Kubo, Shinji; Inaba, Yoshitomo; Ohashi, Hirofumi

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) has constructed the High Temperature Engineering Test Reactor (HTTR) with a thermal output of 30MW and a reactor out let coolant temper at ure of 950 .deg. C. There search and development (R and D) program on nuclear production of hydrogen was started on January in 1997 as a study consigned by Ministry of Education, Culture, Sports, Science and Technology. A hydrogen production system connected to the HTTR is being designed to be able to produce hydrogen of about 4000m 3 /h by steam reforming of natural gas, using a nuclear heat of 10MW supplied by the HTTR hydrogen production system. In order to confirm controllability, safety and performance of key components in the HTTR hydrogen production system, the facility for the out-of-pile test was constructed on the scale of approximately 1/30 of the HTTR hydrogen production system. In parallel to the out-of-pile test, the following tests as essential problem, a corrosion test of a reforming tube, a permeation test of hydrogen isotopes through heat exchanger and reforming tubes, and an integrity test of a high-temperature isolation valve are carried out to obtain detailed data for safety review and development of analytical codes. Other basis studies on the hydrogen production technology of thermochemical water splitting called an iodine sulfur (IS) process, has been carried out for more effective and various uses of nuclear heat. This paper describes the present status and a future plan on the R and D of the HTTR hydrogen production systems in JAERI

  10. Hydrogen and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, N J.D.

    1976-03-01

    There is much debate about the form and availability of energy supplies in the future. It is assumed that nuclear fuel is the only source of controlled energy. Energy inputs from the sun, the wind, the waves, the tides, and other sources not available in the form of fuels are not excluded. In this situation it has been argued that because the cost of transporting energy as a liquid or gaseous fuel is lower than the cost of transmitting energy as electricity it would be more effective to transmit and distribute energy from nuclear fuel in the form of a chemical fuel such as hydrogen. This argument has been critized by Hampson et al., (EAPA 1: 2200) who calculate that the reduced costs of transmission only outweigh the costs of production over distances so large that there appears no realistic application. These calculations neglect the time variation of electricity supply which is fundamental to the planning of an electricity supply system; they also do not appear to do justice to the relationship between the costs of hydrogen and electricity production in an integrated system. These points are included in the analysis presented here by means of the observation that hydrogen generated by nuclear plants with high capital cost and low running cost will be burned by the supply system itself in low-capital-cost plants, suitable for chemical fuels, in order to meet peak demands on the system. This establishes a relationship between the long-run marginal costs of electricity at various times of the day and the long-run marginal cost of hydrogen. These costs are then used to show that, in certain favorable, but common, circumstances, electrolytic hydrogen is the lower-cost source of energy. (from Introduction)

  11. Thermoeconomic analysis of a copper-chlorine thermochemical cycle for nuclear-based hydrogen production

    International Nuclear Information System (INIS)

    Orhan, Mehmet F.; Dincer, Ibrahim; Rosen, Marc A.

    2010-01-01

    Thermochemical water splitting with a copper-chlorine (Cu-Cl) cycle is a promising process that could be linked with nuclear reactors to decompose water into its constituents, oxygen and hydrogen, through intermediate copper and chlorine compounds. In this paper, a comprehensive exergoeconomic analysis of the Cu-Cl cycle is reported to evaluate the production costs as a function of the amount and quality of the energy used for hydrogen production, as well as the costs of the exergy losses and the exergoeconomic improvement potential of the equipment used in the process. An additional objective is to determine changes in the design parameters of the Cu-Cl cycle that improve the cost effectiveness of the overall system. (orig.)

  12. Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Michael W. Patterson

    2008-01-01

    The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible

  13. Changing the world with hydrogen and nuclear: From past successes to shaping the future

    International Nuclear Information System (INIS)

    Carre, F.

    2010-01-01

    This presentation reviews the past history of hydrogen and nuclear energy, while considering how they had been important forever, how they have been used to change the world when they were discovered and understood, and how they will likely shape our future to face specific challenges of the 21. century. Content: 1 - hydrogen and nuclear reactions at the origin of the universe: the universe and supernovae, the sun, the blue planet, the evolution of man; 2 - understanding and first uses of hydrogen: the discovery of hydrogen, hydrogen balloons, airships or dirigibles, the discovery of the electrolysis and the fuel cell, Jules Vernes; 3 - development of nuclear over the 20. century: pioneers of nuclear energy, Fermi reactor, EBR-1; 4 - development of hydrogen over the 20. century, expanding uses of hydrogen over the second half of the 20. century; 5 - four major endeavours gathering hydrogen and nuclear: light water reactors, naval reactors, nuclear rockets, controlled fusion, the PNP-500 project; 6 - stakes in hydrogen and nuclear production in the 21. century: energy challenge for the 21. century, peaking of fossil fuel production, renaissance of nuclear energy, changes in transportation model, hydrogen market, technologies for nuclear hydrogen production, carbon taxes, the path forward: international demonstrations towards industrialisation, a new generation of scientists for our dreams come true

  14. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  15. Conceptual design of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Sato, Hiroyuki; Hara, Teruo; Kato, Ryoma; Ohashi, Kazutaka; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2007-08-01

    Since hydrogen produced by nuclear should be economically competitive compared with other methods in a hydrogen society, it is important to build hydrogen production system to be coupled with the reactor as a conventional chemical plant. Japan Atomic Energy Agency started the safety study to establish a new safety philosophy to meet safety requirements for non-nuclear grade hydrogen production system. Also, structural concepts with integrating functions for the Bunsen reactor and sulphuric acid decomposer were proposed to reduce construction cost of the IS process hydrogen production system. In addition, HI decomposer which enables the process condition to be eased consisting of conventional materials and technologies was studied. Moreover, technical feasibility of the HTTR-IS system in which the hydrogen production rate of 1,000 Nm 3 /h by using the supplied heat of 10 MW from the intermediate heat exchanger of the HTTR was confirmed. This paper describes the conceptual design of the HTTR-IS hydrogen production system. (author)

  16. A proposal for safety design philosophy of HTGR for coupling hydrogen production plant

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Tazawa, Yujiro; Imai, Yoshiyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Kunitomi, Kazuhiko

    2013-06-01

    Japan Atomic Energy Agency (JAEA) has been conducting research and development for hydrogen production utilizing heat from High Temperature Gas-cooled Reactors (HTGRs). Towards the realization of nuclear hydrogen production, coupled hydrogen production plants should not be treated as an extension of a nuclear plant in order to open the door for the entry of non-nuclear industries as well as assuring reactor safety against postulated abnormal events initiated in the hydrogen production plants. Since hydrogen production plant utilizing nuclear heat has never been built in the world, little attention has been given to the establishment of a safety design for such system including the High Temperature engineering Test Reactor (HTTR). In the present study, requirements in order to design, construct and operate hydrogen production plants under conventional chemical plant standards are identified. In addition, design considerations for safety design of nuclear facility are suggested. Furthermore, feasibility of proposed safety design and design considerations are evaluated. (author)

  17. Balance of Plant Requirements for a Nuclear Hydrogen Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bradley Ward

    2006-04-01

    This document describes the requirements for the components and systems that support the hydrogen production portion of a 600 megawatt thermal (MWt) Next Generation Nuclear Plant (NGNP). These systems, defined as the "balance-of-plant" (BOP), are essential to operate an effective hydrogen production plant. Examples of BOP items are: heat recovery and heat rejection equipment, process material transport systems (pumps, valves, piping, etc.), control systems, safety systems, waste collection and disposal systems, maintenance and repair equipment, heating, ventilation, and air conditioning (HVAC), electrical supply and distribution, and others. The requirements in this document are applicable to the two hydrogen production processes currently under consideration in the DOE Nuclear Hydrogen Initiative. These processes are the sulfur iodide (S-I) process and the high temperature electrolysis (HTE) process. At present, the other two hydrogen production process - the hybrid sulfur-iodide electrolytic process (SE) and the calcium-bromide process (Ca-Br) -are under flow sheet development and not included in this report. While some features of the balance-of-plant requirements are common to all hydrogen production processes, some details will apply only to the specific needs of individual processes.

  18. Studies of the use of high-temperature nuclear heat from an HTGR for hydrogen production

    Science.gov (United States)

    Peterman, D. D.; Fontaine, R. W.; Quade, R. N.; Halvers, L. J.; Jahromi, A. M.

    1975-01-01

    The results of a study which surveyed various methods of hydrogen production using nuclear and fossil energy are presented. A description of these methods is provided, and efficiencies are calculated for each case. The process designs of systems that utilize the heat from a general atomic high temperature gas cooled reactor with a steam methane reformer and feed the reformer with substitute natural gas manufactured from coal, using reforming temperatures, are presented. The capital costs for these systems and the resultant hydrogen production price for these cases are discussed along with a research and development program.

  19. Studies of the use of high-temperature nuclear heat from an HTGR for hydrogen production

    International Nuclear Information System (INIS)

    Peterman, D.D.; Fontaine, R.W.; Quade, R.N.; Halvers, L.J.; Jahromi, A.M.

    1975-01-01

    The results of a study which surveyed various methods of hydrogen production using nuclear and fossil energy are presented. A description of these methods is provided, and efficiencies are calculated for each case. The process designs of systems that utilize the heat from a general atomic high temperature gas cooled reactor with a steam methane reformer and feed the reformer with substitute natural gas manufactured from coal, using reforming temperatures, are presented. The capital costs for these systems and the resultant hydrogen production price for these cases are discussed along with a research and development program

  20. Cost estimation of hydrogen and DME produced by nuclear heat utilization system II

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Nishihara, Tetsuo

    2004-09-01

    Utilization and production of hydrogen has been studied in order to spread utilization of the hydrogen energy in 2020 or 2030. It will take, however, many years for the hydrogen energy to be used very easily like gasoline, diesel oil and city gas in the world. During the periods, low CO 2 release liquid fuels would be used together with hydrogen. Recently, di-methyl-ether (DME). has been noticed as one of the substitute liquid fuels of petroleum. Such liquid fuels can be produced from the mixed gas such as hydrogen and carbon oxide which are produced from natural gas by steam reforming. Therefore, the system would become one of the candidates of future system of nuclear heat utilization. Following the study in 2002, we performed economic evaluation of the hydrogen and DME production by nuclear heat utilization plant where heat generated by HTGR is completely consumed for the production. The results show that hydrogen price produced by nuclear was about 17% cheaper than the commercial price by increase in recovery rate of high purity hydrogen with increased in PSA process. Price of DME in indirect method produced by nuclear heat was also about 17% cheaper than the commercial price by producing high purity hydrogen in the DME producing process. As for the DME, since price of DME produced near oil land in petroleum exporting countries is cheaper than production in Japan, production of DME by nuclear heat in Japan has disadvantage economically in this time. Trial study to estimate DME price produced by direct method was performed. From the present estimation, utilization of nuclear heat for the production of hydrogen would be more effective with coupled consideration of reduction effect of CO 2 release. (author)

  1. Overview of the Modified SI Cycle to Produce Nuclear Hydrogen Coupled to VHTR

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2016-01-01

    The steam reforming of methane is one of hydrogen production processes that rely on cheap fossil feedstocks. An overview of the VHTR-based nuclear hydrogen production process with the modified SI cycle has been carried out to establish whether it can be adopted as a feasible technology to produce nuclear hydrogen

  2. Life cycle assessment of nuclear-based hydrogen production via thermochemical water splitting using a copper-chlorine (Cu-Cl) cycle

    Science.gov (United States)

    Ozbilen, Ahmet Ziyaettin

    The energy carrier hydrogen is expected to solve some energy challenges. Since its oxidation does not emit greenhouse gases (GHGs), its use does not contribute to climate change, provided that it is derived from clean energy sources. Thermochemical water splitting using a Cu-Cl cycle, linked with a nuclear super-critical water cooled reactor (SCWR), which is being considered as a Generation IV nuclear reactor, is a promising option for hydrogen production. In this thesis, a comparative environmental study is reported of the three-, four- and five-step Cu-Cl thermochemical water splitting cycles with various other hydrogen production methods. The investigation uses life cycle assessment (LCA), which is an analytical tool to identify and quantify environmentally critical phases during the life cycle of a system or a product and/or to evaluate and decrease the overall environmental impact of the system or product. The LCA results for the hydrogen production processes indicate that the four-step Cu-Cl cycle has lower environmental impacts than the three- and five-step Cu-Cl cycles due to its lower thermal energy requirement. Parametric studies show that acidification potentials (APs) and global warming potentials (GWPs) for the four-step Cu-Cl cycle can be reduced from 0.0031 to 0.0028 kg SO2-eq and from 0.63 to 0.55 kg CO2-eq, respectively, if the lifetime of the system increases from 10 to 100 years. Moreover, the comparative study shows that the nuclear-based S-I and the four-step Cu-Cl cycles are the most environmentally benign hydrogen production methods in terms of AP and GWP. GWPs of the S-I and the four-step Cu-Cl cycles are 0.412 and 0.559 kg CO2-eq for reference case which has a lifetime of 60 years. Also, the corresponding APs of these cycles are 0.00241 and 0.00284 kg SO2-eq. It is also found that an increase in hydrogen plant efficiency from 0.36 to 0.65 decreases the GWP from 0.902 to 0.412 kg CO 2-eq and the AP from 0.00459 to 0.00209 kg SO2-eq for the

  3. Parametric Evaluation of Large-Scale High-Temperature Electrolysis Hydrogen Production Using Different Advanced Nuclear Reactor Heat Sources

    International Nuclear Information System (INIS)

    Harvego, Edwin A.; McKellar, Michael G.; O'Brien, James E.; Herring, J. Stephen

    2009-01-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered

  4. Hydrogen and nuclear energy

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Hancox, W.T.; Pendergast, D.R.

    1999-01-01

    The current world-wide emphasis on reducing greenhouse gas (GHG) emissions provides an opportunity to revisit how energy is produced and used, consistent with the need for human and economic growth. Both the scale of the problem and the efforts needed for its resolution are extremely large. We argue that GHG reduction strategies must include a greater penetration of electricity into areas, such as transportation, that have been the almost exclusive domain of fossil fuels. An opportunity for electricity to displace fossil fuel use is through electrolytic production of hydrogen. Nuclear power is the only large-scale commercially proven non-carbon electricity generation source, and it must play a key role. As a non-carbon power source, it can also provide the high-capacity base needed to stabilize electricity grids so that they can accommodate other non-carbon sources, namely low-capacity factor renewables such as wind and solar. Electricity can be used directly to power standalone hydrogen production facilities. In the special case of CANDU reactors, the hydrogen streams can be preprocessed to recover the trace concentrations of deuterium that can be re-oxidized to heavy water. World-wide experience shows that nuclear power can achieve high standards of public safety, environmental protection and commercially competitive economics, and must . be an integral part of future energy systems. (author)

  5. Cost estimation of hydrogen and DME produced by nuclear heat utilization system. Joint research

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Nishihara, Tetsuo

    2003-09-01

    Research of hydrogen energy has been performed in order to spread use of the hydrogen energy in 2020 or 2030. It will take, however, many years for the hydrogen energy to be used very easily like gasoline, diesel oil and city gas in all of countries. During the periods, low CO 2 release liquid fuels would be used together with hydrogen. Recently, di-methyl-either (DME) has been noticed as one of the substitute liquid fuels of petroleum. Such liquid fuels can be produced from the mixed gas such as hydrogen and carbon oxide which are produced by steam reforming hydrogen generation system by the use of nuclear heat. Therefore, the system would be one of the candidates of future system of nuclear heat utilization. In the present study, we focused on the production of hydrogen and DME. Economic evaluation was estimated for hydrogen and DME production in commercial and nuclear heat utilization plant. At first, heat and mass balance of each process in commercial plant of hydrogen production was estimated and commercial prices of each process were derived. Then, price was estimated when nuclear heat was used instead of required heat of commercial plant. Results showed that the production prices produced by nuclear heat were cheaper by 10% for hydrogen and 3% for DME. With the consideration of reduction effect of CO 2 release, utilization of nuclear heat would be more effective. (author)

  6. Economics and synergies of electrolytic and thermochemical methods of environmentally benign hydrogen production

    International Nuclear Information System (INIS)

    Naterer, G.F.

    2010-01-01

    Most of the world's hydrogen (about 97%) is currently derived from fossil fuels. For reduction of greenhouse gases, improvement of urban air quality, and energy security, among other reasons, carbon-free sources of hydrogen production are crucial to hydrogen becoming a significant energy carrier. Nuclear hydrogen production is a promising carbon-free alternative for large-scale, low-cost production of hydrogen in the future. Two nuclear technologies, applied in tandem, have a promising potential to generate hydrogen economically without leading to greenhouse gas emissions: 1) electrolysis and 2) thermochemical decomposition of water. This paper will investigate their unique complementary roles and economics of producing hydrogen, from a Canadian perspective. Together they can serve a unique potential for both de-centralized hydrogen needs in periods of low-demand electricity, and centralized base-load production from a nuclear station. Hydrogen production has a significantly higher thermal efficiency, but electrolysis can take advantage of low electricity prices during off-peak hours. By effectively linking these systems, water-based production of hydrogen can become more competitive against the predominant existing technology, SMR (steam-methane reforming). (orig.)

  7. Optimized Flow Sheet for a Reference Commercial-Scale Nuclear-Driven High-Temperature Electrolysis Hydrogen Production Plant

    International Nuclear Information System (INIS)

    M. G. McKellar; J. E. O'Brien; E. A. Harvego; J. S. Herring

    2007-01-01

    This report presents results from the development and optimization of a reference commercial scale high-temperature electrolysis (HTE) plant for hydrogen production. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540 C and 900 C, respectively. The electrolysis unit used to produce hydrogen consists of 4.176 - 10 6 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm-cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 49.07% at a hydrogen production rate of 2.45 kg/s with the high-temperature helium-cooled reactor concept. The information presented in this report is intended to establish an optimized design for the reference nuclear-driven HTE hydrogen production plant so that parameters can be compared with other hydrogen production methods and power cycles to evaluate relative performance characteristics and plant economics

  8. Overview of Cea studies on hydrogen production and related prospects for nuclear power

    International Nuclear Information System (INIS)

    Agator, J.M.; Guigon, A.

    2001-01-01

    The anticipated growth of the world energy demand and the increasing concern about the emission of greenhouse gases, with the objectives of limitation fixed by the Kyoto protocol, provide the impetus for the development of hydrogenous fuels, and especially that of hydrogen as energy carrier. The trend will be reinforced in the longer term with the progressive shortage of natural hydrocarbon fuels. Fuel cells used in stationary, transport and portable applications will probably be the most efficient hydrogen converter and the most promising decentralized energy technology of the coming decades. In order to contribute to the reduction of greenhouse gas emissions, the massive use of hydrogen for transport and stationary applications calls for the development of production processes compatible with low CO 2 emissions, thus limiting the use of fossil fuels (natural gas, oil, coal, etc.) as reagent or energy sources. Furthermore, the progressive exhaustion of economic fossil fuel reserves will ultimately make it necessary to extract hydrogen from water through CO 2 -free processes. With this prospect in view, base-load nuclear energy, besides renewable energies, can play an important role to produce hydrogen through electrolysis in the medium term, as can high temperature thermo-chemical water dissociation processes in the longer term. Starting from current research in the field of fuel cells and hydrogen storage systems, the CEA intends to implement a large R and D programme on hydrogen, continuing previous research and covering the aspects of production, transport and related safety requirements. This endeavour is intended to reinforce the contribution of the CEA to the national and European research effort on non-fossil energy sources, and to create new opportunities of international collaboration and networking. (authors)

  9. Overview of CEA studies on hydrogen production and related prospects for nuclear power

    International Nuclear Information System (INIS)

    Agator, J.M.; Guigon, A.; Serre-Combe, P.

    2001-01-01

    The anticipated growth of the world energy demand and the increasing concern about the emission of greenhouse gases, with the objectives of limitation fixed by the Kyoto protocol, prepare the ground for the development of hydrogenous fuels, and especially that of hydrogen as energy carrier. The trend will be reinforced in the longer term with the progressive shortage of natural hydrocarbon fuels. Fuel cells used in stationary, transport and portable applications will probably be the most efficient hydrogen converter and the most promising decentralized energy technology of the next decades. In order to contribute to the reduction of greenhouse gas emissions, a massive use of hydrogen for transport and stationary applications calls for the development of production processes compatible with low CO 2 emissions, thus limiting the use of fossil fuels (natural gas, oil, coal...) as reagent or energy sources. Furthermore, the progressive exhaustion of economic fossil fuel reserves will ultimately make it necessary to extract hydrogen from water through CO 2 free processes. With this prospect in view, base-load nuclear energy, besides renewable energies, can play an important role to produce hydrogen through electrolysis in the medium term, and also through high temperature thermochemical water dissociation processes in the longer term. Starting from current research in the field of fuel cans and hydrogen storage systems, the CEA intends to implement a large R and D programme on hydrogen also covering the aspects of production, transport and related safety requirements. This endeavour is intended to reinforce the contribution of the CEA to the national and European research effort on non-fossil energy sources, and to open new opportunities of international collaborations and networking. (authors)

  10. France [National and regional programmes on the production of hydrogen using nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    Consumption of primary energy in France amounted to 278 Mtoe in 2005, with an average increase of 1.3%/a between 1990 and 2005. The breakdown of primary energy is 42% nuclear energy, 33% oil, 15% natural gas, 6% renewables and 4% coal. France is comparatively poor in domestic energy resources. French coal production, which was still around 40 million t/a at the end of the 1970s, was terminated in 2004. Also, domestic natural gas contributes not more than 2% of France's primary energy production. With the general objectives being to control energy demand, diversify sources of energy, increase research into energy, and provide methods of transporting and storing energy, the French energy policy has given priority to the development of a national energy supply with a strong focus on nuclear energy and renewable energies. These energies are seen to provide a reliable long term supply without GHG emissions and to ensure stable electricity prices. The first nuclear power plants built in France were gas cooled reactors and the country also participated in the OECD Dragon project. Today France is the world's second largest producer of nuclear energy (after the USA) with an electricity share of 78%. France operates 58 nuclear power stations with a total capacity of 63.2 GW. One Gen- III reactor (EPR) is currently under construction. Since nuclear energy is not always fully used, interest is growing in using excess nuclear electricity, apart from export, for hydrogen production to regulate the electricity production.

  11. Hydrogen storage for mixed wind-nuclear power plants in the context of a hydrogen economy

    International Nuclear Information System (INIS)

    Taljan, Gregor; Fowler, Michael; Canizares, Claudio; Verbic, Gregor

    2008-01-01

    A novel methodology for the economic evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new aspects such as residual heat and oxygen utilization is applied in this work. This analysis is completed in the context of a hydrogen economy and competitive electricity markets. The simulation of the operation of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity, the selling of excess hydrogen and oxygen, and the selling of heat are optimized to maximize profit to the energy producer. The simulation is performed in two phases: in a pre-dispatch phase, the system model is optimized to obtain optimal hydrogen charge levels for the given operational horizons. In the second phase, a real-time dispatch is carried out on an hourly basis to optimize the operation of the system as to maximize profits, following the hydrogen storage levels of the pre-dispatch phase. Based on the operation planning and dispatch results, an economic evaluation is performed to determine the feasibility of the proposed scheme for investment purposes; this evaluation is based on calculations of modified internal rates of return and net present values for a realistic scenario. The results of the present studies demonstrate the feasibility of a hydrogen storage and production system with oxygen and heat utilization for existent nuclear and wind power generation facilities. (author)

  12. Transportation cost of nuclear off-peak power for hydrogen production based on water electrolysis

    International Nuclear Information System (INIS)

    Shimizu, Saburo; Ueno, Shuichi

    2004-01-01

    The paper describes transportation cost of the nuclear off-peak power for a hydrogen production based on water electrolysis in Japan. The power could be obtainable by substituting hydropower and/or fossil fueled power supplying peak and middle demands with nuclear power. The transportation cost of the off-peak power was evaluated to be 1.42 yen/kWh when an electrolyser receives the off-peak power from a 6kV distribution wire. Marked reduction of the cost was caused by the increase of the capacity factor. (author)

  13. Hydrogen energy and sustainability: overview and the role for nuclear energy

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2008-01-01

    This paper discusses the role of nuclear power in hydrogen energy and sustainability. Hydrogen economy is based on hydrogen production, packaging (compression, liquefaction, hydrides), distribution (pipelines, road, rail, ship), storage (pressure and cryogenic containers), transfer and finally hydrogen use

  14. Study on hydrogen production using the fast breeder reactors (FBR)

    International Nuclear Information System (INIS)

    Kani, Yoshio

    2003-01-01

    As the fast breeder reactor (FBR) can effectively convert uranium-238 difficult to carry out nuclear fission at thermal neutron reactors to nuclear fissionable plutonium-239 to use it remarkable upgrading of application on uranium can be performed, to be expected for sustainable energy source. And, by reuse minor actinides of long half-life nuclides in reprocessed high level wasted solutions for fuels of nuclear reactors, reduction of radioactive poison based on high level radioactive wastes was enabled. As high temperature of about 800 centigrade was required on conventional hydrogen production, by new hydrogen production technique even at operation temperature of sodium-cooled FBR it can be enabled. Here were described for new hydrogen production methods applicable to FBR on palladium membrane hydrogen separation method carrying out natural gas/steam modification at reaction temperature of about 500 centigrade, low temperature thermo-chemical method expectable simultaneous simplification of production process, and electrolysis method expected on power load balancing. (G.K.)

  15. Comparative environmental impact and efficiency assessment of selected hydrogen production methods

    Energy Technology Data Exchange (ETDEWEB)

    Ozbilen, Ahmet, E-mail: Ahmet.Ozbilen@uoit.ca; Dincer, Ibrahim, E-mail: Ibrahim.Dincer@uoit.ca; Rosen, Marc A., E-mail: Marc.Rosen@uoit.ca

    2013-09-15

    The environmental impacts of various hydrogen production processes are evaluated and compared, considering several energy sources and using life cycle analysis. The results indicate that hydrogen produced by thermochemical water decomposition cycles are more environmentally benign options compared to conventional steam reforming of natural gas. The nuclear based four-step Cu–Cl cycle has the lowest global warming potential (0.559 kg CO{sub 2}-eq per kg hydrogen production), mainly because it requires the lowest quantity of energy of the considered processes. The acidification potential results show that biomass gasification has the highest impact on environment, while wind based electrolysis has the lowest. The relation is also investigated between efficiency and environmental impacts. -- Highlights: • Environmental performance of nuclear-based hydrogen production is investigated. • The GWP and AP results are compared with various hydrogen production processes. • Nuclear based 4-step Cu–Cl cycle is found to be an environmentally benign process. • Wind-based electrolysis has the lowest AP value.

  16. Hydrogen or Fossil Combustion Nuclear Combined Cycle Systems for Baseload and Peak Load Electricity Production. Annex X

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    A combined cycle power plant is described that uses: (i) heat from a high temperature nuclear reactor to meet baseload electrical demands; and (ii) heat from the same high temperature reactor and burning natural gas, jet fuel or hydrogen to meet peak load electrical demands. For baseload electricity production, fresh air is compressed, then flows through a heat exchanger, where it is heated to between 700 and 900{sup o}C by using heat provided by a high temperature nuclear reactor via an intermediate heat transport loop, and finally exits through a high temperature gas turbine to produce electricity. The hot exhaust from the Brayton cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high temperature reactor. Natural gas, jet fuel or hydrogen is then injected into the hot air in a combustion chamber, combusts and heats the air to 1300{sup o}C - the operating conditions for a standard natural gas fired combined cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until required. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electrical grid can vary from zero (i.e. when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. As nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil fired turbines) to meet spinning reserve requirements and stabilize the electrical grid. This combined

  17. Thermal-Hydraulic Sensitivity Study of Intermediate Loop Parameters for Nuclear Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Hwa; Lee, Heung Nae; Park, Jea Ho [KONES Corp., Seoul (Korea, Republic of); Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Sang Il; Yoo, Yeon Jae [Hyundai Engineering Co., Seoul (Korea, Republic of)

    2016-10-15

    The heat generated from the VHTR is transferred to the intermediate loop through Intermediate Heat Exchanger (IHX). It is further passed on to the Sulfur-Iodine (SI) hydrogen production system (HPS) through Process Heat Exchanger (PHX). The IL provides the safety distance between the VHTR and HPS. Since the IL performance affects the overall nuclear HPS efficiency, it is required to optimize its design and operation parameters. In this study, the thermal-hydraulic sensitivity of IL parameters with various coolant options has been examined by using MARS-GCR code, which was already applied for the case of steam generator. Sensitivity study of the IL and PHX parameters has been carried out based on their thermal-hydraulic performance. Several parameters for design and operation, such as the pipe diameter, safety distance and surface area, are considered for different coolant options, He, CO{sub 2} and He-CO{sub 2} (2:8). It was found that the circulator work is the major factor affecting on the overall nuclear hydrogen production system efficiency. Circulator work increases with the safety distance, and decreases with the operation pressure and loop pipe diameter. Sensitivity results obtained from this study will contribute to the optimization of the IL design and operation parameters and the optimal coolant selection.

  18. Study on commercial HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo

    2000-07-01

    The Japanese energy demand in 2030 will increase up to 117% in comparison with one in 2000. We have to avoid a large consumption of fossil fuel that induces a large CO 2 emission from viewpoint of global warming. Furthermore new energy resources expected to resolve global warming have difficulty to be introduced more because of their low energy density. As a result, nuclear power still has a possibility of large introduction to meet the increasing energy demand. On the other hand, in Japan, 40% of fossil fuels in the primary energy are utilized for power generation, and the remaining are utilized as a heat source. New clean energy is required to reduce the consumption of fossil fuels and hydrogen is expected as a alternative energy resource. Prediction of potential hydrogen demand in Japan is carried out and it is clarified that the demand will potentially increase up to 4% of total primary energy in 2050. In present, steam reforming method is the most economical among hydrogen generation processes and the cost of hydrogen production is about 7 to 8 yen/m 3 in Europe and the United States and about 13 yen/m 3 in Japan. JAERI has proposed for using the HTGR whose maximum core outlet temperature is at 950degC as a heat source in the steam reforming to reduced the consumption of fossil fuels and resulting CO 2 emission. Based on the survey of the production rate and the required thermal energy in conventional industry, it is clarified that a hydrogen production system by the steam reforming is the best process for the commercial HTGR nuclear heat utilization. The HTGR steam reforming system and other candidate nuclear heat utilization systems are considered from viewpoint of system layout and economy. From the results, the hydrogen production cost in the HTGR stream reforming system is expected to be about 13.5 yen/m 3 if the cost of nuclear heat of the HTGR is the same as one of the LWR. (author)

  19. Safety assessment of VHTR hydrogen production system against fire, explosion and acute toxicity

    International Nuclear Information System (INIS)

    Murakami, Tomoyuki; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2008-01-01

    The Japan Atomic Energy Agency has been developing a nuclear hydrogen production system by using heat from the Very High Temperature Reactor (VHTR). This system will handle a large amount of combustible gas and toxic gas. The risk from fire, explosion and acute toxic exposure caused by an accident involving chemical material release in a hydrogen production system is assessed. It is important to ensure the safety of the nuclear plant, and the risks for public health should be sufficiently small. This report provides the basic policy for the safety evaluation in cases of accident involving fire, explosion and toxic material release in a hydrogen production system. Preliminary safety analysis of a commercial-sized VHTR hydrogen production system, GTHTR300C, is performed. This analysis provides us with useful information on the separation distance between a nuclear plant and a hydrogen production system and a prospect that an accident in a hydrogen production system does not significantly increase the risks of the public. (author)

  20. Hydrogen and oxygen production with nuclear heat

    International Nuclear Information System (INIS)

    Barnert, H.

    1979-09-01

    After some remarks on the necessity of producing secondary energy sources for the heat market, the thermodynamic fundamentals of the processes for producing hydrogen and oxygen from water on the basis of nuclear thermal energy are briefly explained. These processes are summarized as one class of the 'thermochemical cycle process' for the conversion of thermal into chemical energy. A number of thermochemical cycle processes are described. The results of the design work so far are illustrated by the example of the 'sulphuric acid hybrid process'. The nuclear heat source of the thermochemical cycle process is the high-temperature reactor. Statements concerning rentability are briefly commented upon, and the research and development efforts and expenditure required are sketched. (orig.) 891 GG/orig. 892 MB [de

  1. Process flow sheet evaluation of a nuclear hydrogen steelmaking plant applying very high temperature reactors for efficient steel production with less CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, Seiji, E-mail: kasahara.seiji@jaea.go.jp; Inagaki, Yoshiyuki; Ogawa, Masuro

    2014-05-01

    Highlights: • CO{sub 2} emissions from a nuclear hydrogen steelmaking system was 13–21% of that from a blast furnace steelmaking system. • Heat input to shaft furnace in hydrogen steelmaking was large with much H{sub 2} consumption in the part. • Though hydrogen production thermal efficiency had influence on total heat input to hydrogen steelmaking, the effect on the CO{sub 2} emissions was small. • Steelmaking scale of a nuclear hydrogen steelamking plant with 2 VHTRs was a little smaller than that of the largest Midrex{sup ®} steelmaking plants. - Abstract: Recently, CO{sub 2} reduction is an important problem for steelmaking. Substitution of coal, presently used as a reducing agent of iron ore in blast furnaces, to hydrogen produced by non-fossil energy is a way to reduce CO{sub 2} emissions. In this study, the idea of nuclear hydrogen steelmaking (NHS) system was investigated using very high temperature reactor (VHTR) and thermochemical hydrogen production iodine–sulfur (IS) process. Heat input and CO{sub 2} emissions including material production, material transportation, and electricity generation were evaluation criteria. Results of the NHS system were compared with those of a conventional blast furnace steelmaking (BFS) system. Influence of heat input options to the steelmaking process and hydrogen production thermal efficiency of IS process were investigated for the NHS system. Though heat input to the NHS system was 130–142% of that to the BFS system, CO{sub 2} emissions of the system were 13–21%. Pre-heating of hydrogen by coal combustion before blowing to a shaft furnace was effective to decrease heat input, although CO{sub 2} emissions increased. Direct pre-heating by nuclear heat was also effective without increase of CO{sub 2} emissions if close location of the nuclear reactor to the steelmaking plant was publicly accepted. Hydrogen production thermal efficiency had a significant influence on the heat input. Conceptual design of a

  2. A Study on Methodology of Assessment for Hydrogen Explosion in Hydrogen Production Facility

    International Nuclear Information System (INIS)

    Jung, Gun Hyo

    2007-02-01

    Due to the exhaustion of fossil fuel as energy sources and international situation insecurity for political factor, unstability of world energy market is rising, consequently, a substitute energy development have been required. Among substitute energy to be discussed, producing hydrogen from water by nuclear energy which does not release carbon is a very promising technology. Very high temperature gas cooled reactor is expected to be utilized since the procedure of producing hydrogen requires high temperature over 1000 .deg. C. Hydrogen production facility using very high temperature gas cooled reactor lies in situation of high temperature and corrosion which makes hydrogen release easily. In case of hydrogen release, there lies a danger of explosion. Moreover explosion not only has a bad influence upon facility itself but very high temperature gas cooled reactor which also result in unsafe situation that might cause serious damage. However, from point of thermal-hydraulics view, long distance makes low efficiency result. In this study, therefore, outlines of hydrogen production using nuclear energy is researched. Several methods for analyzing the effects of hydrogen explosion upon high temperature gas cooled reactor are reviewed. Reliability physics model which is appropriate for assessment is used. Using this model, leakage probability, rupture probability and structure failure probability of very high temperature gas cooled reactor is evaluated classified by detonation volume and distance. Also based on standard safety criteria which is a value of 1x10 -6 , the safety distance between very high temperature and hydrogen production facility is calculated. In the future, assessment for characteristic of very high temperature gas cooled reactor, capacity to resist pressure from outside hydrogen explosion and overpressure for large amount of detonation volume in detail is expected to identify more precise distance using reliability physics model in this paper. This

  3. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  4. Optical pumping production of spin polarized hydrogen

    International Nuclear Information System (INIS)

    Knize, R.J.; Happer, W.; Cecchi, J.L.

    1984-01-01

    There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process where photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allow the production of greater than 10 18 polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed

  5. Computational model for a high temperature electrolyzer coupled to a HTTR for efficient nuclear hydrogen production

    International Nuclear Information System (INIS)

    Gonzalez, Daniel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy; Gamez, Abel; Brayner, Carlos; Garcia, Lazaro; Garcia, Carlos; Torre, Raciel de la; Sanchez, Danny

    2015-01-01

    High temperature electrolysis process coupled to a very high temperature reactor (VHTR) is one of the most promising methods for hydrogen production using a nuclear reactor as the primary heat source. However there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the process and other physical parameters that has to be taken into consideration for its accurate application in the hydrogen economy as a massive production method. For this lack of experimental facilities, mathematical models are one of the most used tools to study this process and theirs flowsheets, in which the electrolyzer is the most important component because of its complexity and importance in the process. A computational fluid dynamic (CFD) model for the evaluation and optimization of the electrolyzer of a high temperature electrolysis hydrogen production process flowsheet was developed using ANSYS FLUENT®. Electrolyzer's operational and design parameters will be optimized in order to obtain the maximum hydrogen production and the higher efficiency in the module. This optimized model of the electrolyzer will be incorporated to a chemical process simulation (CPS) code to study the overall high temperature flowsheet coupled to a high temperature accelerator driven system (ADS) that offers advantages in the transmutation of the spent fuel. (author)

  6. Computational model for a high temperature electrolyzer coupled to a HTTR for efficient nuclear hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Daniel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy; Gamez, Abel; Brayner, Carlos, E-mail: danielgonro@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Garcia, Lazaro; Garcia, Carlos; Torre, Raciel de la, E-mail: lgarcia@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Sanchez, Danny [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)

    2015-07-01

    High temperature electrolysis process coupled to a very high temperature reactor (VHTR) is one of the most promising methods for hydrogen production using a nuclear reactor as the primary heat source. However there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the process and other physical parameters that has to be taken into consideration for its accurate application in the hydrogen economy as a massive production method. For this lack of experimental facilities, mathematical models are one of the most used tools to study this process and theirs flowsheets, in which the electrolyzer is the most important component because of its complexity and importance in the process. A computational fluid dynamic (CFD) model for the evaluation and optimization of the electrolyzer of a high temperature electrolysis hydrogen production process flowsheet was developed using ANSYS FLUENT®. Electrolyzer's operational and design parameters will be optimized in order to obtain the maximum hydrogen production and the higher efficiency in the module. This optimized model of the electrolyzer will be incorporated to a chemical process simulation (CPS) code to study the overall high temperature flowsheet coupled to a high temperature accelerator driven system (ADS) that offers advantages in the transmutation of the spent fuel. (author)

  7. Main component analysis of nuclear magnetic resonance /sup 1/H and /sup 13/C quantitative spectra of hydrogenation products of tars from Kansk-Achinsk Achinsk and Cheremkhovsk coals

    Energy Technology Data Exchange (ETDEWEB)

    Kushnarev, D.F.; Polonov, V.M.; Donskikh, V.I.; Rokhina, E.F.; Kalabin, G.A.

    1986-03-01

    Possibility is discussed of examining nuclear magnetic resonance /sup 1/H and /sup 13/C quantitative spectra of coal tar hydrogenation products using main component factorial analysis and applying special mathematical methods of processing experimental data. Nuclear magnetic resonance spectra of hydrogenation products of low temperature Cheremkhovsk coal carbonization tar and rapid pyrolysis Kansk-Achinsk coal tar were obtained on a WP-200SY (Bruker) spectrometer at 50.3 and 200.1 MHz, respectively. Data processing was carried out on an ODRA-1304 computer. Comparative correlation of parameters are given of tars and hydrogenation products which consist of hydrogenation of aromatic cycles and destruction of alkyl substituents, and factorial loads on structural parameters of tar hydrogenation products. 11 references.

  8. Hydrogen production processes; Procedes de production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H{sub 2} question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I{sub 2}/H{sub 2}O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H{sub 2} production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  9. Nuclear-electrolytic hydrogen as a transportation fuel

    International Nuclear Information System (INIS)

    DeLuchi, M.A.

    1989-01-01

    Hydrogen is a very attractive transportation fuel in three important ways: it is the least polluting fuel that can be used in an internal combustion engine, it produces no greenhouse gases, and it is potentially available anywhere there is water and a clean source of power. The prospect of a clean, widely available transportation fuel has motivated much of the research on hydrogen fuels. This paper is a state-of-the art review of the production, storage, performance, environmental impacts, safety, and cost of nuclear-electrolytic hydrogen for highway vehicles

  10. Two dimensional simulation of hydrogen iodide decomposition reaction using fluent code for hydrogen production using nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Jung Sik [The Institute of Machinery and Electronic Technology, Mokpo National Maritime University, Mokpo (Korea, Republic of); Shin, Young Joon; Lee, Ki Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Jae Hyuk [Division of Marine Engineering System, Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-06-15

    The operating characteristics of hydrogen iodide (HI) decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV) ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of H2O was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.

  11. Evaluation of hydrogen production system coupling with HTTR using dynamic analysis code

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo; Hayashi, Koji; Inagaki, Yoshiyuki

    2006-01-01

    The Japan Atomic Energy Agency (JAEA) was entrusted 'Development of Nuclear Heat Utilization Technology' by Ministry of Education, Culture, Sports, Science and Technology. In this development, the JAEA investigated the system integration technology to couple the hydrogen production system by steam reforming with the High Temperature Engineering Test Reactor (HTTR). Prior to the construction of the hydrogen production system coupling with the HTTR, a dynamic analysis code had to be developed to evaluate the system transient behaviour of the hydrogen production system because there are no examples of chemical facilities coupled with nuclear reactor in the world. This report describes the evaluation of the hydrogen production system coupling with HTTR using analysis code, N-HYPAC, which can estimate transient behaviour of the hydrogen production system by steam reforming. The results of this investigation provide that the influence of the thermal disturbance caused by the hydrogen production system on the HTTR can be estimated well. (author)

  12. Hydrogen generation by nuclear power for sustainable development in the 21-st century

    International Nuclear Information System (INIS)

    Bilegan, Iosif Constantin; Pall, Stefan

    2002-01-01

    Hydrogen is the main non-polluting fuel. It is produced by natural gas steam reforming, water electrolysis and thermonuclear processes. Currently, 4% of the hydrogen world production is obtained by water electrolysis. The use of nuclear power for hydrogen production avoids the generation of greenhouse gases and the dependence of primary external energy sources. The US is currently developing a modular reactor for hydrogen production and water desalination, STAR - H 2 (Secure Transportable Autonomous Reactor for Hydrogen production) with fast neutrons, lead cooling and passive safety systems operating at a temperature of 780 deg C. Also, a Russian reactor of the same type is operated at 540 deg C. China and India joint industrial countries like France, Japan, Russia and US in recognizing that any strategies aiming at a future with clean energy implies the nuclear energy

  13. Heat supply analysis of steam reforming hydrogen production process in conventional and nuclear

    International Nuclear Information System (INIS)

    Siti Alimah; Djati Hoesen Salimy

    2015-01-01

    Tile analysis of heat energy supply in the production of hydrogen by natural gas steam reforming process has been done. The aim of the study is to compare the energy supply system of conventional and nuclear heat. Methodology used in this study is an assessment of literature and analysis based on the comparisons. The study shows that the heat sources of fossil fuels (natural gas) is able to provide optimum operating conditions of temperature and pressure of 850-900 °C and 2-3 MPa, as well as the heat transfer is dominated by radiation heat transfer, so that the heat flux that can be achieved on the catalyst tube relatively high (50-80 kW/m"2) and provide high thermal efficiency of about 85 %. While in the system with nuclear energy, due to the demands of safety, process operating at less than optimum conditions of temperature and pressure of 800-850 °C and 4.5 MPa, as well as the heat transfer is dominated by convection heat transfer, so that the heat flux that can be achieved catalyst tube is relatively low (1020 kW/m"2) and it provides a low thermal efficiency of about 50 %. Modifications of reformer and heat utilization can increase the heat flux up to 40 kW/m"2 so that the thermal efficiency can reach 78 %. Nevertheless, the application of nuclear energy to hydrogen production with steam reforming process is able to reduce the burning of fossil fuels which has implications for the potential decrease in the rate of CO2 emissions into the environment. (author)

  14. Basic principles on the safety evaluation of the HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Kazutaka; Nishihara, Tetsuo; Tazawa, Yujiro; Tachibana, Yukio; Kunitomi, Kazuhiko

    2009-03-01

    As HTGR hydrogen production systems, such as HTTR-IS system or GTHTR300C currently being developed by Japan Atomic Energy Agency, consists of nuclear reactor and chemical plant, which are without a precedent in the world, safety design philosophy and regulatory framework should be newly developed. In this report, phenomena to be considered and events to be postulated in the safety evaluation of the HTGR hydrogen production systems were investigated and basic principles to establish acceptance criteria for the explosion and toxic gas release accidents were provided. Especially for the explosion accident, quantitative criteria to the reactor building are proposed with relating sample calculation results. It is necessary to treat abnormal events occurred in the hydrogen production system as an 'external events to the nuclear plant' in order to classify the hydrogen production system as no-nuclear facility' and basic policy to meet such requirement was also provided. (author)

  15. Present status of research on hydrogen energy and perspective of HTGR hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Ogawa, Masuro; Akino, Norio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-03-01

    A study was performed to make a clear positioning of research and development on hydrogen production systems with a High Temperature Gas-cooled Reactor (HTGR) under currently promoting at the Japan Atomic Energy Research Institute through a grasp of the present status of hydrogen energy, focussing on its production and utilization as an energy in future. The study made clear that introduction of safe distance concept for hydrogen fire and explosion was practicable for a HTGR hydrogen production system, including hydrogen properties and need to provide regulations applying to handle hydrogen. And also generalization of hydrogen production processes showed technical issues of the HTGR system. Hydrogen with HTGR was competitive to one with fossil fired system due to evaluation of production cost. Hydrogen is expected to be used as promising fuel of fuel cell cars in future. In addition, the study indicated that there were a large amount of energy demand alternative to high efficiency power generation and fossil fuel with nuclear energy through the structure of energy demand and supply in Japan. Assuming that hydrogen with HTGR meets all demand of fuel cell cars, an estimation would show introduction of the maximum number of about 30 HTGRs with capacity of 100 MWt from 2020 to 2030. (author)

  16. Economic analysis of the hydrogen production by means of the thermo-chemistry process iodine-sulfur with nuclear energy; Analisis economico de la produccion de hidrogeno mediante el proceso termoquimico yodo-azufre con energia nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Solorzano S, C.; Francois L, J. L., E-mail: cuausos@comunidad.unam.mx [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac No. 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico)

    2011-11-15

    In this work an economic study was realized about a centralized plant of hydrogen production that works by means of a thermo-chemistry cycle of sulfur-iodine and uses heat coming from a nuclear power plant of IV generation, with base in the software -Hydrogen Economic Evaluation Programme- obtained through the IAEA. The sustainable technology that is glimpsed next for the generation of hydrogen is to great scale and based on processes of high temperature coupled to nuclear power plants, being the most important the cycle S-I and the electrolysis to high temperature, for what objective references are presented that can serve as base for the taking of decisions for its introduction in Mexico. After detailing the economic models that uses the software for the calculation of the even cost of hydrogen production and the characteristics, so much of the nuclear plant constituted by fourth generation reactors, as of the plant of hydrogen production, is proposed a -base- case, obtaining a preliminary even cost of hydrogen production with this process; subsequently different cases are studied starting from which are carried out sensibility analysis in several parameters that could rebound in this cost, taking into account that these reactors are still in design and planning stages. (Author)

  17. Membrane steam reforming of natural gas for hydrogen production by utilization of medium temperature nuclear reactor

    International Nuclear Information System (INIS)

    Djati Hoesen Salimy

    2010-01-01

    The assessment of steam reforming process with membrane reactor for hydrogen production by utilizing of medium temperature nuclear reactor has been carried out. Difference with the conventional process of natural gas steam reforming that operates at high temperature (800-1000°C), the process with membrane reactor operates at lower temperature (~500°C). This condition is possible because the use of perm-selective membrane that separate product simultaneously in reactor, drive the optimum conversion at the lower temperature. Besides that, membrane reactor also acts the role of separation unit, so the plant will be more compact. From the point of nuclear heat utilization, the low temperature of process opens the chance of medium temperature nuclear reactor utilization as heat source. Couple the medium temperature nuclear reactor with the process give the advantage from the point of saving fossil fuel that give direct implication of decreasing green house gas emission. (author)

  18. Accident sequences and causes analysis in a hydrogen production process

    Energy Technology Data Exchange (ETDEWEB)

    Jae, Moo Sung; Hwang, Seok Won; Kang, Kyong Min; Ryu, Jung Hyun; Kim, Min Soo; Cho, Nam Chul; Jeon, Ho Jun; Jung, Gun Hyo; Han, Kyu Min; Lee, Seng Woo [Hanyang Univ., Seoul (Korea, Republic of)

    2006-03-15

    Since hydrogen production facility using IS process requires high temperature of nuclear power plant, safety assessment should be performed to guarantee the safety of facility. First of all, accident cases of hydrogen production and utilization has been surveyed. Based on the results, risk factors which can be derived from hydrogen production facility were identified. Besides the correlation between risk factors are schematized using influence diagram. Also initiating events of hydrogen production facility were identified and accident scenario development and quantification were performed. PSA methodology was used for identification of initiating event and master logic diagram was used for selection method of initiating event. Event tree analysis was used for quantification of accident scenario. The sum of all the leakage frequencies is 1.22x10{sup -4} which is similar value (1.0x10{sup -4}) for core damage frequency that International Nuclear Safety Advisory Group of IAEA suggested as a criteria.

  19. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  20. Nuclear electrolytic hydrogen

    International Nuclear Information System (INIS)

    Barnstaple, A.G.; Petrella, A.J.

    1982-05-01

    An extensive study of hydrogen supply has recently been carried out by Ontario Hydro which indicates that electrolytic hydrogen produced from nuclear electricity could offer the lowest cost option for any future large scale hydrogen supply in the Province of Ontario, Canada. This paper provides a synopsis of the Ontario Hydro study, a brief overview of the economic factors supporting the study conclusion and discussion of a number of issues concerning the supply of electrolytic hydrogen by electric power utilities

  1. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  2. Hydrogen from nuclear plus wind using real-time electricity prices

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.; Fairlie, M.; Anders, P.

    2004-01-01

    During the early years of hydrogen's use as a vehicle fuel, penetration of the market will be small. This favours distributed production by electrolysis, which avoids the scale-dependent costs of distribution from centralized plants. For electrolysis actually to be the preferred option, capital equipment for electrolysis must be reasonably cheap but the dominant cost component is the electricity price. By about 2006, advanced designs of nuclear reactors should be available to produce electricity at around 30 US$/MW.h at the plant gate. The best approach to producing low-cost electrolytic hydrogen is shown to be use of such reactors to supply electricity to the grid at times of peak price and demand and to make hydrogen at other times In this paper, this model has been used to calculate the production costs for electrolytic hydrogen at the location where the electricity is generated, using the actual prices of electricity paid by the Alberta Power Pool in 2002 and 2003 and by the Ontario Grid for 2003. The analysis shows clearly that by optimizing the co-production of hydrogen and electricity (referred to as the H 2 /e process) the cost for hydrogen produced can comfortably meet the US Department of Energy's target of 2000 US$/tonne. Because of its lower availability factor, wind-produced electricity cannot meet this cost target. However, if wind power availability can reach 35%, an intermittent supplementary current of wind-generated electricity may economically be fed to an electrolytic plant primarily supplied by nuclear power. Additional current raises the voltage for electrolysis but there would be only small additional capital costs. The two non-CO 2 -emitting sources, nuclear and wind could become complementary, providing an affordable way of storing wind-generated electricity when the supply exceeds demand in electricity markets The analyses presented in this paper looks at the case of bulk production of H 2 /e in a 'wholesale' energy market and does not

  3. The US department of energy programme on hydrogen production

    International Nuclear Information System (INIS)

    Paster, M.D.

    2004-01-01

    Clean forms of energy are needed to support sustainable global economic growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision for moving toward a hydrogen economy - a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. In February 2003, President George W. Bush announced a new Hydrogen Fuel Initiative to achieve this vision. To realize this vision, the U.S. must develop and demonstrate advanced technologies for hydrogen production, delivery, storage, conversion, and applications. Toward this end, the DOE has worked with public and private organizations to develop a National Hydrogen Energy Technology Road-map. The Road-map identifies the technological research, development, and demonstration steps required to make a successful transition to a hydrogen economy. One of the advantages of hydrogen is that it can utilize a variety of feedstocks and a variety of production technologies. Feedstock options include fossil resources such as coal, natural gas, and oil, and non-fossil resources such as biomass and water. Production technologies include thermochemical, biological, electrolytic and photolytic processes. Energy needed for these processes can be supplied through fossil, renewable, or nuclear sources. Hydrogen can be produced in large central facilities and distributed to its point of use or it can be produced in a distributed manner in small volumes at the point of use such as a refueling station or stationary power facility. In the shorter term, distributed production will play an important role in initiating the use of hydrogen due to its lower capital investment. In the longer term, it is likely that centralized

  4. Universally applicable design concept of stably controlling an HTGR-hydrogen production system

    International Nuclear Information System (INIS)

    Hada, Kazuhiko; Shibata, Taiju; Nishihara, Tetsuo; Shiozawa, Shusaku

    1996-01-01

    An HTGR-hydrogen production system should be designed to have stable controllability because of a large difference in thermal dynamics between reactor and hydrogen production system and such a control design concept should be universally applicable to a variety of hydrogen production processes by the use of nuclear heat from HTGR. A transient response analysis of an HTGR-steam reforming hydrogen production system showed that a steam generator installed in a helium circuit for cooling the nuclear reactor provides stable controllability of the total system, resulting in avoiding a reactor scram. A survey of control design-related characteristics among several hydrogen production processes revealed the similarity of endothermic chemical reactions by the use of high temperature heat and that steam is required as a reactant of the endothermic reaction or for preheating a reactant. Based on these findings, a system design concept with stable controllability and universal applicability was proposed to install a steam generator as a downstream cooler of an endothermic reactor in the helium circuit of an HTGR-hydrogen production system. (author)

  5. Feasibility Study of Hydrogen Production from Existing Nuclear Power Plants Using Alkaline Electrolysis

    International Nuclear Information System (INIS)

    Swalla, Dana R.

    2008-01-01

    The mid-range industrial market currently consumes 4.2 million metric tons of hydrogen per year and has an annual growth rate of 15% industries in this range require between 100 and 1000 kilograms of hydrogen per day and comprise a wide range of operations such as food hydrogenation, electronic chip fabrication, metals processing and nuclear reactor chemistry modulation

  6. Nuclear hydrogen - possibilities for Brazil; Hidrogenio nuclear - possibilidades para o Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, Adonis Marcelo; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio]. E-mail: saliba@ipen.br

    2008-07-01

    The energy vector hydrogen represents a good possibility to replace fossil fuels. One of the main renewable sources of interest for hydrogen is water, which is abundant and can be decomposed directly into pure H{sub 2} and O{sub 2}. This water splitting can be performed by the following methods: electrolysis, thermal decomposition, and thermochemical cycles. The thermochemical cycles and high temperature electrolysis (HTE) are often thought to be feasible methods to be associated with a High Temperature Gas cooled Reactor (HTGR). Both routines have high efficiency at temperature range of 700-950 deg C. In this work, is presented an attainable proposal for Brazilian production of hydrogen based on a HTGR followed by HTE system. A research group at Fuel Cell and Hydrogen Center - CCCH at IPEN/CNEN-SP has elaborated a working plan for 10 years, where it is proposed a R and D line for hydrogen production based on nuclear energy supplied by HTGR. So, in this work, a Brazilian program for researching in this area is proposed inviting potential cooperation. (author)

  7. The hydrogen economy for a sustainable future and the potential contribution of nuclear power

    International Nuclear Information System (INIS)

    Hardy, C.

    2003-01-01

    The Hydrogen Economy encompasses the production of hydrogen using a wide range of energy sources, its storage and distribution as an economic and universal energy carrier, and its end use by industry and individuals with negligible emission of pollutants and greenhouse gases. Hydrogen is an energy carrier not a primary energy source, just like electricity is an energy carrier. The advantages of hydrogen as a means of storage and distribution of energy, and the methods of production of hydrogen, are reviewed. Energy sources for hydrogen production include fossil fuels, renewables, hydropower and nuclear power. Hydrogen has many applications in industry, for residential use and for transport by air, land and sea. Fuel cells are showing great promise for conversion of hydrogen into electricity and their development and current status are discussed. Non-energy uses of hydrogen and the safety aspects of hydrogen are also considered. It is concluded that the Hydrogen Economy, especially if coupled to renewable and nuclear energy sources, is a technically viable and economic way of achieving greater energy diversity and security and a sustainable future in this century

  8. Rydberg phases of Hydrogen and low energy nuclear reactions

    Science.gov (United States)

    Olafsson, Sveinn; Holmlid, Leif

    2016-03-01

    For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.

  9. Hydrogen from nuclear energy and the impact on climate change

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Poehnell, T.G.

    2001-01-01

    The two major candidates for hydrogen production include nuclear power and other renewable energy sources. However, hydrogen produced by steam reforming of natural gas offers little advantage in total cycle greenhouse gas (GHG) emissions over hybrid internal combustion engine (ICE) technology. Only nuclear power offers the possibility of cutting GHG emissions significantly and to economically provide electricity for traditional applications and by producing hydrogen for its widespread use in the transportation sector. Using nuclear energy to produce hydrogen for transportation fuel, doubles or triples nuclear's capacity to reduce GHG emissions. An analysis at the Atomic Energy of Canada shows that a combination of hydrogen fuel and nuclear energy can stabilize GHG emissions and climate change for a wide range of the latest scenarios presented by the Intergovernmental Panel on Climate Change. The technology for replacing hydrocarbon fuels with non-polluting hydrogen exists with nuclear power, electrolysis and fuel cells, using electric power grids for distribution. It was emphasized that a move toward total emissions-free transportation will be a move towards solving the negative effects of climate change. This paper illustrated the trends between global economic and atmospheric carbon dioxide concentrations. Low carbon dioxide emission energy alternatives were discussed along with the sources of hydrogen and the full cycle assessment results in reduced emissions. It was shown that deploying 20 CANDU NPPs (of 690 MW (e) net each) would fuel 13 million vehicles with the effect of levelling of carbon dioxide emissions from transportation between 2020 to 2030. 13 refs., 2 tabs., 3 figs

  10. Nuclear-produced hydrogen by a thermochemical Cu-Cl plant for passenger hydrogen trains

    International Nuclear Information System (INIS)

    Marin, G.; Naterer, G.; Gabriel, K.

    2010-01-01

    This paper compares the technical and economic aspects of electrification of a passenger-train operation in Ontario Canada, versus operation with hydrogen trains using nuclear-produced hydrogen. A local GO Transit diesel operation in Ontario has considered electrification as an alternative to reduce greenhouse gas emissions of passenger trains in the Toronto area. Hydrogen production from nuclear energy via a thermo-chemical Copper-Chlorine (Cu-Cl) cycle for train operation is shown to have lower emissions than direct electrification. It significantly reduces the greenhouse gas emissions compared to diesel operation. A bench-mark reference case used for the nuclear thermo-chemical Cu-Cl cycle is the Sulfur-Iodine (S-I) cycle, under investigation in the USA, Japan, and France, among others. The comparative study in this paper considers a base case of diesel operated passenger trains, within the context of a benefits case analysis for train electrification, for GO Transit operations in Toronto, and the impact of each cost component is discussed. The cost analysis includes projected prices of fuel cell trains, with reference to studies performed by train operators. (author)

  11. Conceptual design model of the sulfur-iodine S-I thermochemical water splitting process for hydrogen production using nuclear heat source

    International Nuclear Information System (INIS)

    Gonzalez Rodriguez, Daniel; Parra, Lazaro Garcia

    2011-01-01

    Hydrogen is the most indicated candidate for its implementation as energy carrier in a future sustainable scenario. The current hydrogen production is based on fossils fuels; they have a huge contribution to the atmosphere pollution. Thermochemical water-splitting cycles do not have this issue because they use solar or nuclear heat; their environment impact is smaller than conventional fuels. The software based on chemical process simulation (CPS) can be used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. In the paper is developed a model for Sulfur-Iodine process in order to analyze his sensibility and calculate the efficiency and the influence of many parameters on this value. (author)

  12. Conceptual design model of the sulfur-iodine S-I thermochemical water splitting process for hydrogen production using nuclear heat source

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Rodriguez, Daniel; Parra, Lazaro Garcia, E-mail: dgr@instec.cu, E-mail: lgarcia@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Ciencias y Tecnologias Aplicadas, La Habana (Cuba)

    2011-07-01

    Hydrogen is the most indicated candidate for its implementation as energy carrier in a future sustainable scenario. The current hydrogen production is based on fossils fuels; they have a huge contribution to the atmosphere pollution. Thermochemical water-splitting cycles do not have this issue because they use solar or nuclear heat; their environment impact is smaller than conventional fuels. The software based on chemical process simulation (CPS) can be used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. In the paper is developed a model for Sulfur-Iodine process in order to analyze his sensibility and calculate the efficiency and the influence of many parameters on this value. (author)

  13. Hydrogen production processes

    International Nuclear Information System (INIS)

    2003-01-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H 2 question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I 2 /H 2 O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H 2 production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  14. Hydrogen production through nuclear energy, a sustainable scenario in Mexico; Produccion de hidrogeno mediante energia nuclear, un escenario sostenible en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ortega V, E.; Francois L, J.L. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: iqoren@gmail.com

    2007-07-01

    The energy is a key point in the social and economic development of a country, for such motive to assure the energy supply in Mexico it is of vital importance. The hydrogen it is without a doubt some one of the alternating promising fuels before the visible one necessity to decentralize the energy production based on hydrocarbons. The versatility of their applications, it high heating power and having with the more clean fuel cycle of the energy basket with which count at the moment, they are only some examples of their development potential. However the more abundant element of the universe it is not in their elementary form in our planet, it forms molecules like in the hydrocarbons or water and it stops their use it should be extracted. At the present time different methods are known for the extraction of hydrogen, there is thermal, electric, chemical, photovoltaic among others. The election of the extraction method and the primary energy source to carry out it are decisive to judge the sustainability of the hydrogen production. The sustainable development is defined as development that covers the present necessities without committing the necessity to cover the necessities of the future generations, and in the mark of this definition four indicators of the sustainable development of the different cycles of fuel were evaluated in the hydrogen production in Mexico. These indicators take in consideration the emissions of carbon dioxide in the atmosphere (environment), the readiness of the energy resources (technology), the impacts in the floor use (social) and the production costs of the cycles (economy). In this work the processes were studied at the moment available for the generation of hydrogen, those that use coal, natural gas, hydraulic, eolic energy, biomass and nuclear, as primary energy sources. These processes were evaluated with energy references of Mexico to obtain the best alternative for hydrogen production. (Author)

  15. THEN: COE-INES international workshop on 'toward hydrogen economy; what nuclear can contribute and how'. Proposal and presentations

    International Nuclear Information System (INIS)

    2005-01-01

    The workshop of the title was held on topics; hydrogen system, nuclear and non-nuclear hydrogen production, hydrogen storage and transportation, fuel-cells, hydrogen energy management, hydrogen economy and all subjects related on hydrogen system, consisted of 4 panels by 15 panelists and a comprehensive discussion session. (J.P.N.)

  16. Activities of Nuclear Research Institute Rez in the area of hydrogen technologies

    International Nuclear Information System (INIS)

    Doucek, A.; Janik, L.; Misak, J.

    2010-01-01

    NRI is a research institution established in 1955. Nowadays, the Institute provides wide range of expertise and services for operators of the nuclear power plants in the Czech Republic and abroad, supports Czech central state institutions in the domains of strategic energy planning and development, management of radioactive waste (for the Ministry of Trade and Industry), provides independent expertise for the State Office of Nuclear Safety, performs activities in the area of exploitation of ionising radiation and irradiation services for basic and applied research, health service and industry, performs research and provides services for radioactive waste disposal, production of radiopharmaceuticals, education and training of experts and scientific specialists and performs many other activities. With the gradual changes in energy policy, hydrogen economy becomes one of the important topics related to nuclear energy. NRI is participating in the research and development in this area and as a member of the Czech Hydrogen Technology Platform is currently the leader in this area in the country. To promote hydrogen economy, NRI prepared and participated in several demonstration projects. Studies on production of hydrogen in current and future nuclear power plants are performed as well. (authors)

  17. A comparison of hydrogen with alternate energy forms from coal and nuclear energy

    International Nuclear Information System (INIS)

    Cox, K.E.

    1976-01-01

    Alternate energy forms that can be produced from coal and nuclear energy have been analyzed on efficiency, economic and end-use grounds. These forms include hydrogen, methane, electricity, and EVA-ADAM, a 'chemical heat pipe' approach to energy transmission. The EVA-ADAM system for nuclear heat appears to be economically competitive with the other energy carriers except over very large distances. The cost of hydrogen derived from coal is approximately equal to that of methane derived from the same source when compared on an equal BTU basis. Thermochemically derived hydrogen from nuclear energy shows a break-even range with hydrogen derived from coal at coal costs of from Pound33 to 80/ton depending on the cost of nuclear heat. Electricity and electrolytically derived hydrogen are the most expensive energy carriers and electricity's use should be limited to applications involving work rather than heat. Continued work in thermochemical hydrogen production schemes should be supported as an energy option for the future. (author)

  18. Hydrogen safety in nuclear power - issues and measures. Preparing 'handbook for improved hydrogen safety in nuclear power'

    International Nuclear Information System (INIS)

    Ogawa, Tooru; Nakajima, Kiyoshi; Hino, Ryutaro

    2015-01-01

    In response to hydrogen explosion at the reactor building of TEPCO Fukushima Daiichi Nuclear Power Station, the common understanding among researchers in various fields has been required for the chain of various events surrounding hydrogen in case of the accident of a light water reactor. The group composed of specialists of nuclear power and gas combustion/explosion from universities, nuclear power equipment manufacturers, business interests, and nuclear power institutes is promoting the preparation work of 'Handbook for upgrading the safety of hydrogen measures related to nuclear power,' which is scheduled to be published in the end of 2015. The main themes dealt with in the handbook are as follows; (1) severe accident management and hydrogen control, (2) hydrogen combustion phenomena to be considered, (3) behavior of air - water vapor - hydrogen system, (4) passive autocatalytic recombiner (PAR) / igniter / containment spray, and (5) water-containing waste management. This paper introduces the outline of these movements and latest achievements. (A.O.)

  19. Advances in hydrogen production by thermochemical water decomposition: A review

    International Nuclear Information System (INIS)

    Rosen, Marc A.

    2010-01-01

    Hydrogen demand as an energy currency is anticipated to rise significantly in the future, with the emergence of a hydrogen economy. Hydrogen production is a key component of a hydrogen economy. Several production processes are commercially available, while others are under development including thermochemical water decomposition, which has numerous advantages over other hydrogen production processes. Recent advances in hydrogen production by thermochemical water decomposition are reviewed here. Hydrogen production from non-fossil energy sources such as nuclear and solar is emphasized, as are efforts to lower the temperatures required in thermochemical cycles so as to expand the range of potential heat supplies. Limiting efficiencies are explained and the need to apply exergy analysis is illustrated. The copper-chlorine thermochemical cycle is considered as a case study. It is concluded that developments of improved processes for hydrogen production via thermochemical water decomposition are likely to continue, thermochemical hydrogen production using such non-fossil energy will likely become commercial, and improved efficiencies are expected to be obtained with advanced methodologies like exergy analysis. Although numerous advances have been made on sulphur-iodine cycles, the copper-chlorine cycle has significant potential due to its requirement for process heat at lower temperatures than most other thermochemical processes.

  20. Hydrogen production by high-temperature gas-cooled reactor. Conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Ohashi, Hirofumi; Sato, Hiroyuki; Hara, Teruo; Kato, Ryoma; Kunitomi, Kazuhiko

    2008-01-01

    Nuclear hydrogen production is necessary in an anticipated hydrogen society that demands a massive quantity of hydrogen without economic disadvantage. Japan Atomic Energy Agency (JAEA) has launched the conceptual design study of a hydrogen production system with a near-term plan to connect it to Japan's first high-temperature gas-cooled reactor HTTR. The candidate hydrogen production system is based on the thermochemical water-splitting iodine sulphur (IS) process.The heat of 10 MWth at approximately 900degC, which can be provided by the secondary helium from the intermediate heat exchanger of the HTTR, is the energy input to the hydrogen production system. In this paper, we describe the recent progresses made in the conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system. A new concept of sulphuric acid decomposer is proposed. This involves the integration of three separate functions of sulphuric acid decomposer, sulphur trioxide decomposer, and process heat exchanger. A new mixer-settler type of Bunsen reactor is also designed. This integrates three separate functions of Bunsen reactor, phase separator, and pump. The new concepts are expected to result in improved economics through construction and operation cost reductions because the number of process equipment and complicated connections between the equipment has been substantially reduced. (author)

  1. Development status on hydrogen production technology using high-temperature gas-cooled reactor at JAEA, Japan

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Hino, Ryutaro

    2006-01-01

    The high-temperature gas-cooled reactor (HTGR), which is graphite-moderated and helium-cooled, is attractive due to its unique capability of producing high temperature helium gas and its fully inherent reactor safety. In particular, hydrogen production using the nuclear heat from HTGR (up to 900 deg. C) offers one of the most promising technological solutions to curb the rising level of CO 2 emission and resulting risk of climate change. The interests in HTGR as an advanced nuclear power source for the next generation reactor, therefore, continue to rise. This is represented by the Japanese HTTR (High-Temperature Engineering Test Reactor) Project and the Chinese HTR-10 Project, followed by the international Generation IV development program, US nuclear hydrogen initiative program, EU innovative HTR technology development program, etc. To enhance nuclear energy application to heat process industries, the Japan Atomic Energy Agency (JAEA) has continued extensive efforts for development of hydrogen production system using the nuclear heat from HTGR in the framework of the HTTR Project. The HTTR Project has the objectives of establishing both HTGR technology and heat utilization technology. Using the HTTR constructed at the Oarai Research and Development Center of JAEA, reactor performance and safety demonstration tests have been conducted as planned. The reactor outlet temperature of 950 deg. C was successfully achieved in April 2004. For hydrogen production as heat utilization technology, R and D on thermo-chemical water splitting by the 'Iodine-Sulfur process' (IS process) has been conducted step by step. Proof of the basic IS process was made in 1997 on a lab-scale of hydrogen production of 1 L/h. In 2004, one-week continuous operation of the IS process was successfully demonstrated using a bench-scale apparatus with hydrogen production rate of 31 L/h. Further test using a pilot scale facility with greater hydrogen production rate of 10 - 30 m 3 /h is planned as

  2. Non-electric applications of nuclear power: Seawater desalination, hydrogen production and other industrial applications. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2009-01-01

    Today, nuclear power plants contribute about 16% to the world's electricity generation. Because electricity represents less than one third of the primary energy uses, nuclear energy provides only about 6% of total energy consumption in the world. If nuclear energy were used for purposes other than electricity generation, it could play a more significant role in global energy supply. This could have also a significant impact on global goals for reduced greenhouse gas emissions for a cleaner environment. Nuclear power is the only large-scale carbon-free energy source that, in the near and medium term, has the potential to significantly displace limited and uncertain fossil fuels. To do this, however, nuclear power must move beyond its historical role as solely a producer of electricity to other non-electric applications. These applications include seawater desalination, district heating, heat for industrial processes, and electricity and heat for hydrogen production among others. These applications have tremendous potential in ensuring future worldwide energy and water security for sustainable development. In recent years, various agencies involved in nuclear energy development programmes have carried out studies on non-electric applications of nuclear power and useful reports have been published. The IAEA launched a programme on co-generation applications in the 1990's in which a number of Member States have been and continue to be actively involved. This programme, however is primarily concerned with seawater desalination, and district and process heating, utilizing the existing reactors as a source of heat and electricity. In recent years the scope of the Agency's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. OECD/NEA (OECD Nuclear Energy Agency), EURATOM (European Atomic Energy Community) and GIF (Generation IV International Forum) have also evinced

  3. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  4. Hydrogen risk reduction in Nuclear power plant

    International Nuclear Information System (INIS)

    Movahed, M.A.; Travis, J.R.

    1999-01-01

    In case of a severe accident in a nuclear power plant with core melt and hydrogen production, the hydrogen risk is one of the main concerns. It may jeopardize the containment integrity due to violent deflagration that can lead to DDT (Deflagration Detonation Transient) or even detonation of proper hydrogen mitigation means are not available. The design of the EPR (European Pressurized water Reactor) Hydrogen mitigation and control system is based on the lumped parameter code WAVCO and the 3D code GASFLOW. The concept consists of recombiners and igniters to cope with all scenarios including those without steam. The system has been checked to avoid DDT by the 7λ criteria that's implemented in GASFLOW. Future analysis could deal with determining dynamic pressure loads, if appropriate, and some sensitivity studies to check the hydrogen control measures with respect to different source locations and mass flow rates. Also a conditional criterion for determining the likelihood of fast deflagration should be developed. (author)

  5. Role of nuclear produced hydrogen for global environment and energy

    International Nuclear Information System (INIS)

    Tashimo, M.; Kurosawa, A.; Ikeda, K.

    2004-01-01

    Sustainability on economical growth, energy supply and environment are major issues for the 21. century. Within this context, one of the promising concepts is the possibility of nuclear-produced hydrogen. In this study, the effect of nuclear-produced hydrogen on the environment is discussed, based on the output of the computer code 'Grape', which simulates the effects of the energy, environment and economy in 21. century. Five cases are assumed in this study. The first case is 'Business as usual by Internal Combustion Engine (ICE)', the second 'CO 2 limited to 550 ppm by ICE', the third 'CO 2 limited to 550 ppm by Hybrid Car', the fourth 'CO 2 limited to 550 ppm by Fuel Cell Vehicle (FCV) with Hydrogen produced by conventional Steam Methane Reforming (SMR)' and the fifth 'CO 2 limited to 550 ppm by FCV with Nuclear Produced-Hydrogen'. The energy used for transportation is at present about 25% of the total energy consumption in the world and is expected to be the same in the future, if there is no improvement of energy efficiency for transportation. On this point, the hybrid car shows the much better efficiency, about 2 times better than traditional internal combustion engines. Fuel Cell powered Vehicles are expected to be a key to resolving the combined issue of the environment and energy in this century. The nuclear-produced hydrogen is a better solution than conventional hydrogen production method using steam methane reforming. (author)

  6. Nuclear power reactors and hydrogen storage systems

    International Nuclear Information System (INIS)

    Ibrahim Aly Mahmoud El Osery.

    1980-01-01

    Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

  7. Sustainable hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  8. HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    James E. O& #39; Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

    2005-10-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

  9. Overview of Light Hydrogen-Based Low Energy Nuclear Reactions

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading.

  10. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  11. Summary - Advanced high-temperature reactor for hydrogen and electricity production

    International Nuclear Information System (INIS)

    Forsberg, Charles W.

    2001-01-01

    Historically, the production of electricity has been assumed to be the primary application of nuclear energy. That may change. The production of hydrogen (H 2 ) may become a significant application. The technology to produce H 2 using nuclear energy imposes different requirements on the reactor, which, in turn, may require development of new types of reactors. Advanced High Temperature reactors can meet the high temperature requirements to achieve this goal. This alternative application of nuclear energy may necessitate changes in the regulatory structure

  12. Handbook of advanced nuclear hydrogen safety. 1st edition

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Takegami, Hiroaki; Ogawa, Toru

    2017-03-01

    In the aftermath of the Fukushima nuclear accident, safety measures against hydrogen in severe accident has been recognized as a serious technical problem in Japan. Therefore, efforts have begun to form a common knowledge base between nuclear engineers and experts on combustion and explosion, and to secure and improve future nuclear energy safety. As one of such activities, we have prepared the 'Handbook of Advanced Nuclear Hydrogen Safety'. A handbook committee consisting of Japanese experts in the fields of nuclear and combustion-explosion in universities, nuclear companies, electric companies and research institutes was established in 2012. The objective and consents of the handbook were determined, and the outline of the contents was decided. The concepts of the handbook are as follows: to show advanced nuclear hydrogen safety technologies that nuclear engineers should understand, to show hydrogen safety points to make combustion-explosion experts cooperate with nuclear engineers, to expand information on water radiolysis considering the situation from just after the Fukushima accidents and to the waste management necessary for decommissioning after the accident etc. Many experts have participated to manuscript preparation, which was the first step of forming a hydrogen community across the boundaries of fields. The hydrogen community is expected to grow along with its improvement to the knowledge base on nuclear hydrogen safety. (author)

  13. Containment hydrogen removal system for a nuclear power plant

    International Nuclear Information System (INIS)

    Callaghan, V.M.; Flynn, E.P.; Pokora, B.M.

    1984-01-01

    A hydrogen removal system (10) separates hydrogen from the containment atmosphere of a nuclear power plant using a hydrogen permeable membrane separator (30). Water vapor is removed by condenser (14) from a gas stream withdrawn from the containment atmosphere. The gas stream is then compressed by compressor (24) and cooled (28,34) to the operating temperature of the hydrogen permeable membrane separator (30). The separator (30) separates the gas stream into a first stream, rich in hydrogen permeate, and a second stream that is hydrogen depleted. The separated hydrogen is passed through a charcoal adsorber (48) to adsorb radioactive particles that have passed through the hydrogen permeable membrane (44). The hydrogen is then flared in gas burner (52) with atmospheric air and the combustion products vented to the plant vent. The hydrogen depleted stream is returned to containment through a regenerative heat exchanger (28) and expander (60). Energy is extracted from the expander (60) to drive the compressor (24) thereby reducing the energy input necessary to drive the compressor (24) and thus reducing the hydrogen removal system (10) power requirements

  14. Hydrogen from nuclear plus wind using real-time electricity prices. Abstract 154

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.; Fairlie, M.

    2004-01-01

    'Full text:' During the early years of hydrogen's use as a vehicle fuel, penetration of the market will be small. This favours distributed production by electrolysis, which avoids the scale-dependent costs of distribution from centralized plants. For electrolysis actually to be the preferred option, capital equipment for electrolysis must be reasonably cheap but the dominant cost component is the electricity price. By about 2006, advanced designs of nuclear reactors should be available to produce electricity at around 30 US$/MW.h. The best approach to producing low-cost electrolytic hydrogen is shown to be use of such reactors to supply electricity to the grid at times of peak price and demand and to make hydrogen at other times. This model has been analysed using the actual prices of electricity paid by the Alberta Power Pool in 2002 and 2003 and by the Ontario Grid for 2003. The analysis shows clearly that this route electrolytic hydrogen can comfortably meet the US Department of Energy's hydrogen production-cost target of 2000$/t. Because of its low availability wind-produced electricity cannot meet this cost target. However, if wind availability can reach 35% availability, an intermittent supplementary current of wind-generated electricity may economically be fed to an electrolytic plant primarily supplied by nuclear power. Additional current raises the voltage for electrolysis but there would be only small additional capital costs. The two non-CO 2 -emitting sources, nuclear and wind (or other intermittent renewables with costs comparable to advanced nuclear) could become complementary, providing an affordable way of storing wind-generated electricity. (author)

  15. Hydrogen production system based on high temperature gas cooled reactor energy using the sulfur-iodine (SI) thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Garcia, L.; Gonzalez, D.

    2011-01-01

    Hydrogen production from water using nuclear energy offers one of the most attractive zero-emission energy strategies and the only one that is practical on a substantial scale. Recently, strong interest is seen in hydrogen production using heat of a high-temperature gas-cooled reactor. The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using thermochemical or high-temperature electrolysis (HTE) processes. Eventually it could be also employ a high-temperature gas-cooled reactor (HTGR), which is particularly attractive because it has unique capability, among potential future generation nuclear power options, to produce high-temperature heat ideally suited for nuclear-heated hydrogen production. Using heat from nuclear reactors to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been interest of many laboratories in the world. One of the promising approaches to produce large quantity of hydrogen in an efficient way using the nuclear energy is the sulfur-iodine (SI) thermochemical water splitting cycle. Among the thermochemical cycles, the sulfur iodine process remains a very promising solution in matter of efficiency and cost. This work provides a pre-conceptual design description of a SI-Based H2-Nuclear Reactor plant. Software based on chemical process simulation (CPS) was used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. (Author)

  16. Long-Term Nuclear Knowledge Management (NKM) on Nuclear Production of Hydrogen - A Case Study of the Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    2007-01-01

    In Japan, so-called a formal nuclear policy; The Framework for Nuclear Energy Policy is built up by Japan Atomic Energy Commission at every 5-year, in which not only a conventional light water reactor (LWR) but also a fast breeder reactor (FBR), HTGR and a fusion reactor (FR) is referred as a prominent candidate of long-term (<100 years) nuclear energy source. The policy makers might have multi-purpose scenarios for a future of innovated nuclear energy systems through results of various discussions at their level. According to long-term nuclear knowledge management, the author made ex ante evaluation of HTGR known as the intellectual assets of JAERI 1, from the viewpoint of hypothetical benefits under conditions of substantial uncertainty. Nuclear knowledge management (NKM) is an integrated, systematic approach to identifying, managing and sharing an organization's nuclear knowledge, and enabling persons to create new nuclear knowledge collectively and thereby helping achieve the objectives. NKM identifies, optimizes, and actively manages intellectual assets either in the form of explicit knowledge held in intangible products or tacit knowledge possessed by individuals or communities in the nuclear fields. In the present study the authors wish not only to show the validity of long-term NKM as a key factor of HTGR but also to assess their hypothetical benefits through the year 2050 under conditions of substantial uncertainty. It should be stressed that those factors are important intellectual assets of JAERI developed to date. Additionally, in the Framework for Nuclear Energy Policy constructed up by the Japan Atomic Energy Commission, a LWR, a fast breeder reactor (FBR), a HTGR, and a fusion reactor (FR) are all defined as eligible and prominent candidates for long-term nuclear energy sources. In this sense, we estimate here a direct market creation of (1) hydrogen energy production and (2) electricity generation, by commercialized HTGR through the year 2050 with

  17. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  18. Hydrogen from nuclear power

    International Nuclear Information System (INIS)

    Miller, A.I.

    2006-01-01

    A few years ago, one frequently heard the view that LNG would cap the price of natural gas in North America at around 5 or 6 US$/GJ just as soon as sufficient terminal capacity could be installed. Recent experience with international LNG prices suggests that this is unlikely. While oil and gas prices have proven almost impossible to predict it seems likely that the price of gas will in future broadly track its energy equivalent in oil. Consequently, planning for natural gas at 10 $/GJ would seem prudent. Using steam-methane reforming, this produces hydrogen at 1500 $/t. If CO 2 has to be sequestered, adding another 500 $/t H 2 is a likely additional cost. So is water electrolysis now competitive? Electrolysis would deliver hydrogen at 2000$/t if electricity costs 3.7 US cents/kWh. This is lower than the Alberta Pool average supply price but very close to AECL's estimated cost for power from a new reactor. However, electricity prices in deregulated markets vary hugely and there would be large leverage on the hydrogen price in delivering a mix of electricity (when the Pool price is high) and hydrogen (when it is low). The key to that possibility - as well as other issues of interruptibility - is low-cost cavern storage, similar to that used for natural gas. One long-standing example for hydrogen storage exists in the UK. The nuclear-electrolysis route offers long-term price stability. It also has co-product possibilities if a use can be found for oxygen (equivalent to about 300 $/t H 2 ) and to produce heavy water (provided the scale is at least 100 MW)

  19. The prisoner's dilemma in the production of nuclear hydrogen; El dilema del prisionero en la produccion de hidrogeno nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, A.; Francois, J. L.; Martin del Campo, C., E-mail: iqalexmdz@yahoo.com.mx [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2011-11-15

    The human beings take to daily decisions, so much at individual as social level, that affect their quality of life in more or minor measure and modify the conditions of their environment. Decisions like to use the car or the public transportation or government policies to adopt and energy development plan that includes technologies like the production of nuclear hydrogen, present a grade of global influence, not only affect or benefit at the person or government that it carries out them, but also present consequences in the individuals and resources of the environment. The hydrogen production using nuclear energy as supply of thermal energy is in itself decision matter; from investing or not in their investigation until fomenting laws and policies that impel their development and incorporation to the industrial panorama. The countries and institutes that opt to impel this technology have the possibility to obtain economic and environmental benefits in contrast with those that do not make it, these last only benefited of the first ones in the environmental aspect. High cost for the technological transfer and economic sanctions sustained in environmental arguments toward those -non cooperators- would be a possible consequence of the cooperators action in the search of a Nash balance. The Prisoner's dilemma exemplifies and increases the comprehension of this type of problems to search for better conditions in the system that improve the situation of all the participants, in this case: governments and institutions. (Author)

  20. Biomimetic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krassen, Henning

    2009-05-15

    Hydrogenases catalyze the reduction of protons to molecular hydrogen with outstanding efficiency. An electrode surface which is covered with active hydrogenase molecules becomes a promising alternative to platinum for electrochemical hydrogen production. To immobilize the hydrogenase on the electrode, the gold surface was modified by heterobifunctional molecules. A thiol headgroup on one side allowed the binding to the gold surface and the formation of a self-assembled monolayer. The other side of the molecules provided a surface with a high affinity for the hydrogenase CrHydA1 from Chlamydomonas reinhardtii. With methylviologen as a soluble energy carrier, electrons were transferred from carboxy-terminated electrodes to CrHydA1 and conducted to the active site (H-cluster), where they reduce protons to molecular hydrogen. A combined approach of surface-enhanced infrared absorption spectroscopy, gas chromatography, and surface plasmon resonance allowed quantifying the hydrogen production on a molecular level. Hydrogen was produced with a rate of 85 mol H{sub 2} min{sup -1} mol{sup -1}. On a 1'- benzyl-4,4'-bipyridinum (BBP)-terminated surface, the electrons were mediated by the monolayer and no soluble electron carrier was necessary to achieve a comparable hydrogen production rate (approximately 50% of the former system). The hydrogen evolution potential was determined to be -335 mV for the BBP-bound hydrogenase and -290 mV for the hydrogenase which was immobilized on a carboxy-terminated mercaptopropionic acid SAM. Therefore, both systems significantly reduce the hydrogen production overpotential and allow electrochemical hydrogen production at an energy level which is close to the commercially applied platinum electrodes (hydrogen evolution potential of -270 mV). In order to couple hydrogen production and photosynthesis, photosystem I (PS1) from Synechocystis PCC 6803 and membrane-bound hydrogenase (MBH) from Ralstonia eutropha were bound to each other

  1. SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL

    International Nuclear Information System (INIS)

    E. A. Harvego; M. G. McKellar; J. E. O'Brien

    2008-01-01

    A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 66.1% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency

  2. System Analysis of Nuclear-Assisted Syngas Production from Coal

    International Nuclear Information System (INIS)

    Harvego, E.A.; McKellar, M.G.; O'Brien, J.E.

    2009-01-01

    A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

  3. Nuclear energy - basis for hydrogen economy

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    The development of human civilization in general as well as that of every country in particular is in direct relation to the assurance of a cost effective energy balance encompassing all industrial spheres and everyday activities. Unfortunately, the uncontrolled utilization of Earth's energy resources is already causing irreversible damage to various components of the eco-system of the Earth. Nuclear energy used for electricity and hydrogen production has the biggest technological potential for solving of the main energy outstanding issues of the new century: increasing of energy dependence; global warming. Because of good market position the political basis is assured for fast development of new generation nuclear reactors and fuel cycles which can satisfy vigorously increasing needs of affordable and clean energy. Political conditions are created for adequate participation of nuclear energy in the future global energy mix. They must give chance to the nuclear industry to take adequate part in the new energy generation capacity.(author)

  4. South Africa's opportunity to maximise the role of nuclear power in a global hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Greyvenstein, R. [Pebble Bed Modular Reactor (PBMR) (Pty) Ltd. (South Africa)], E-mail: renee.greyvenstein@pbmr.co.za; Correia, M. [Pebble Bed Modular Reactor (PBMR) (Pty) Ltd. (South Africa)], E-mail: michael.correia@pbmr.co.za; Kriel, W. [Pebble Bed Modular Reactor (PBMR) (Pty) Ltd. (South Africa)], E-mail: willem.kriel@pbmr.us

    2008-11-15

    Global concern for increased energy demand, increased cost of natural gas and petroleum, energy security and environmental degradation are leading to heightened interest in using nuclear energy and hydrogen to leverage existing hydrocarbon reserves. The wasteful use of hydrocarbons can be minimised by using nuclear as a source of energy and water as a source of hydrogen. Virtually all hydrogen today is produced from fossil fuels, which give rise to CO{sub 2} emissions. Hydrogen can be cleanly produced from water (without CO{sub 2} pollution) by using nuclear energy to generate the required electricity and/or process heat to split the water molecule. Once the clean hydrogen has been produced, it can be used as feedstock to fuel cell technologies, or in the nearer term as feedstock to a coal-to-liquids process to produce cleaner synthetic liquid fuels. Clean liquid fuels from coal - using hydrogen generated from nuclear energy - is an intermediate step for using hydrogen to reduce pollution in the transport sector; simultaneously addressing energy security concerns. Several promising water-splitting technologies have been identified. Thermo-chemical water-splitting and high-temperature steam electrolysis technologies require process temperatures in the range of 850 deg. C and higher for the efficient production of hydrogen. The pebble bed modular reactor (PBMR), under development in South Africa, is ideally suited to generate both high-temperature process heat and electricity for the production of hydrogen. This paper will discuss South Africa's opportunity to maximise the use of its nuclear technology and national resources in a global hydrogen economy.

  5. NHI economic analysis of candidate nuclear hydrogen processes

    International Nuclear Information System (INIS)

    Allen, D.; Pickard, P.; Patterson, M.; Sink, C.

    2010-01-01

    The DOE Nuclear Hydrogen Initiative (NHI) is investigating candidate technologies for large scale hydrogen production using high temperature gas-cooled reactors (HTGR) in concert with the Next Generation Nuclear Plant (NGNP) programme. The candidate processes include high temperature thermochemical and high temperature electrolytic processes which are being investigated in a sequence of experimental and analytic studies to establish the most promising and cost effective means of hydrogen production with nuclear energy. Although these advanced processes are in an early development stage, it is important that the projected economic potential of these processes be evaluated to assist in the prioritisation of research activities, and ultimately in the selection of the most promising processes for demonstration and deployment. The projected cost of hydrogen produced is the most comprehensive metric in comparing candidate processes. Since these advanced processes are in the early stages of development and much of the technology is still unproven, the estimated production costs are also significantly uncertain. The programme approach has been to estimate the cost of hydrogen production from each process periodically, based on the best available data at that time, with the intent of increasing fidelity and reducing uncertainty as the research programme and system definition studies progress. These updated cost estimates establish comparative costs at that stage of development but are also used as inputs to the evaluation of research priorities, and identify the key cost and risk (uncertainty) drivers for each process. The economic methodology used to assess the candidate processes are based on the H2A ground rules and modelling tool (discounted cash flow) developed by the DOE Office of Energy Efficiency and Renewable Energy (EERE). The figure of merit output from the calculation is the necessary selling price for hydrogen in dollars per kilogram that satisfies the cost

  6. Non-combustible nuclear radiation shields with high hydrogen content

    International Nuclear Information System (INIS)

    Hall, W.C.; Peterson, J.M.

    1978-01-01

    The invention relates to compositions, methods of production, and uses of non-combustible nuclear radiation shields, with particular emphasis on those containing a high concentration of hydrogen atoms, especially effective for moderating neutron energy by elastic scatter, dispersed as a discontinuous phase in a continuous phase of a fire resistant matrix

  7. Inhibition of the radiolytic hydrogen production in the nuclear waste of 'bitumen coated' type: study of the interaction between hydrogen and cobalt hydroxo-sulphide

    International Nuclear Information System (INIS)

    Pichon, C.

    2006-11-01

    In the nuclear field in France, the bitumen is mainly used for the conditioning of the radioactive muds generated by the fuel reprocessing. However, the self-irradiation of the bitumen induces a production of hydrogen which generates safety problems. The comparison of various storage sites showed that the presence of cobalt hydroxo sulphide limited such a production. Consequently, this compound was regarded as an 'inhibitor of radiolytic hydrogen production'. However, the origin of this phenomenon was not clearly identified. In order to propose an explanation to this inhibition phenomenon, model organic molecules were used to represent the components of the bitumen. Irradiations were carried out by protons to simulate the alpha radiolysis. The organic molecules irradiations by a proton beam showed that cobalt hydroxo sulphide CoSOH, does not act as a hydrogenation catalyst of unsaturated hydrocarbons, nor as a radicals scavenger, but consists of a trap of hydrogen. Experiments of hydrogen trapping at ambient temperature were carried out according to two techniques: gravimetry and manometry. The solid was characterized before and after interaction with hydrogen (infrared and Raman spectroscopies, X-ray diffraction). The initial solid was composed of amorphous cobalt hydroxo sulphide and a minor phase of cobalt hydroxide. The gravimetry and manometry experiments showed that the maximum of hydrogen trapping capacity is equal to 0.59 ± 0.18 mole of hydrogen per mole of cobalt. After interaction with hydrogen, the Co(OH) 2 phase disappeared and a new solid phase appeared corresponding to Co 9 S 8 . These observations, as well as the analysis of the gas phase, made it possible to conclude with the following reaction (1): 9 CoSOH + 11/2 H 2 = Co 9 S 8 + 9 H 2 O + H 2 S (1). Gravimetry experiments at temperatures between 50 and 210 C revealed the desorption of water but not of hydrogen sulphide. The absence of hydrogen sulphide in gaseous phase and the Co(OH) 2 phase

  8. Proceedings of the 1st JAEA/KAERI information exchange meeting on HTGR and nuclear hydrogen technology

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Sakaba, Nariaki; Nishihara, Tetsuo; Yan, Xing L.; Hino, Ryutaro

    2007-03-01

    Japan Atomic Energy Agency (JAEA) has completed an implementation with Korea Atomic Energy Research Institute (KAERI) on HTGR and nuclear hydrogen technology, 'The Implementation of Cooperative Program in the Field of Peaceful Uses of Nuclear Energy between KAERI and JAEA. 'To facilitate efficient technology development on HTGR and nuclear hydrogen by the IS process, an information exchange meeting was held at the Oarai Research and Development Center of JAEA on August 28-30, 2006 under Program 13th of the JAEA/KAERI Implementation, 'Development of HTGR and Nuclear Hydrogen Technology'. JAEA and KAERI mutually showed the status and future plan of the HTTR (High-Temperature Engineering Test Reactor) project in Japan and of the NHDD (Nuclear Hydrogen Development and Demonstration) project in Korea, respectively, and discussed collaboration items. This proceedings summarizes all materials of presented technical discussions on HTGR and hydrogen production technology as well as the meeting briefing including collaboration items. (author)

  9. Overview of light water/hydrogen-based low energy nuclear reactions

    International Nuclear Information System (INIS)

    Miley, George H.; Shrestha, Prajakti J.

    2006-01-01

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading. (author)

  10. The modular pebble bed nuclear reactor - the preferred new sustainable energy source for electricity, hydrogen and potable water production?

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2003-01-01

    This paper describes a joint project of Massachusetts Institute of technology, Nu-Tec Inc. and Proto Power. The elegant simplicity of graphite moderated pebble bed reactor is the basis for the 'generation four' nuclear power plants. High Temperature Gas Cooled (HTGC) nuclear power plant have the potential to become the preferred base load sustainable energy source for the new millennium. The great attraction of these helium cooled 'Generation Four' nuclear plant can be summarised as follows: Factory assembly line production; Modularity and ease of delivery to site; High temperature Brayton Cycle ideally suited for cogeneration of electricity, potable water and hydrogen; Capital and operating costs competitive with hydrocarbon plant; Design is inherently meltdown proof and proliferation resistant

  11. Hydrogen production by several cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dhruv; Kumar, H.D. (Banaras Hindu Univ., Varanasi (India). Dept. of Botany)

    1992-11-01

    Twenty species belonging to eleven genera of nitrogen-fixing and non-nitrogen-fixing cyanobacteria were screened for production of hydrogen. Only one species each of Nostoc and Anabaena showed light-and nitrogenase-dependent aerobic hydrogen production. The highest rate of aerobic hydrogen production was recorded in Anabaena sp. strain CA. When incubated anaerobically under 99% Ar + 1% CO[sub 2], all the tested strains produced hydrogen. Nickel supplementation completely abolished hydrogen production both under aerobic and anaerobic conditions, except in Anabaena sp. strain CA, where only the rate of production was decreased. Species of Plectonema, Oscillatoria and Spirulina showed methyl viologen-dependent (hydrogenase-dependent) hydrogen production. Other physiological activities were also studied with a view to selecting a suitable organism for large-scale production of hydrogen. (author)

  12. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    International Nuclear Information System (INIS)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-01-01

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study

  13. THEN-2: The 2nd COE-INES international workshop on 'toward hydrogen economy; what nuclear can contribute and how'. Proposal and presentations

    International Nuclear Information System (INIS)

    2006-01-01

    The workshop of the title was held on topics; nuclear hydrogen system in cooperation with other non-nuclear energy systems related with hydrogen production, storage and transportation, and synthesized fuel productions, hydrogen energy management and economy, consisted of 3 keynote lectures and 4 topical sessions by 15 presenters and a panel discussion session. (J.P.N.)

  14. Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac No. 8532, Col. Progreso, C.P. 62550, Jiutepec, Morelos (Mexico)

    2012-07-01

    The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

  15. Basic study on high temperature gas cooled reactor technology for hydrogen production

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Lee, W. J.; Lee, H. M.

    2003-01-01

    The annual production of hydrogen in the world is about 500 billion m 3 . Currently hydrogen is consumed mainly in chemical industries. However hydrogen has huge potential to be consumed in transportation sector in coming decades. Assuming that 10% of fossil energy in transportation sector is substituted by hydrogen in 2020, the hydrogen in the sector will exceed current hydrogen consumption by more than 2.5 times. Currently hydrogen is mainly produced by steam reforming of natural gas. Steam reforming process is chiefest way to produce hydrogen for mass production. In the future, hydrogen has to be produced in a way to minimize CO2 emission during its production process as well as to satisfy economic competition. One of the alternatives to produce hydrogen under such criteria is using heat source of high-temperature gas-cooled reactor. The high-temperature gas-cooled reactor represents one type of the next generation of nuclear reactors for safe and reliable operation as well as for efficient and economic generation of energy

  16. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    International Nuclear Information System (INIS)

    McKellar, Michael G.; Harvego, Edwin A.; Gandrik, Anastasia A.

    2010-01-01

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322 C and 750 C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

  17. Hydrogen in water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    1992-01-01

    The Commission of the European Community (CEC) and the International Atomic Energy Agency (IAEA) decided in 1989 to update the state of the art concerning hydrogen in water cooled nuclear power reactors by commissioning a report which would review, all the available information to-date and make recommendations for the future. This joint report was prepared by committees formed by the IAEA and by the CEC. The aim of this report is to review the current understanding on the areas in which the research on hydrogen in LWR is conventionally presented, taking into account the results of the latest reported research developments. The main reactions through which hydrogen is produced are assessed together with their timings. An estimation of the amount of hydrogen produced by each reaction is given, in order to reckon their relative contribution to the hazard. An overview is then given of the state of knowledge of the most important phenomena taking place during its transport from the place of production and the phenomena which control the hydrogen combustion and the consequences of combustion under various conditions. Specific research work is recommended in each sector of the presented phenomena. The last topics reviewed in this report are the hydrogen detection and the prevent/mitigation of pressure and temperature loads on containment structures and structures and safety related equipment caused by hydrogen combustion

  18. Coupling the modular helium reactor to hydrogen production processes

    International Nuclear Information System (INIS)

    Richards, M.B.; Shenoy, A.S.; Schultz, K.R.

    2004-01-01

    Steam reforming of natural gas (methane) currently produces the bulk of hydrogen gas used in the world today. Because this process depletes natural gas resources and generates the greenhouse gas carbon dioxide as a by-product, there is a growing interest in using process heat and/or electricity generated by nuclear reactors to generate hydrogen by splitting water. Process heat from a high temperature nuclear reactor can be used directly to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850 deg C to 950 deg C can drive the sulphur-iodine (S-I) thermochemical process to produce hydrogen with high efficiency. The S-I process produces highly pure hydrogen and oxygen, with formation, decomposition, regeneration, and recycle of the intermediate chemical reagents. Electricity can also 1)e used directly to split water, using conventional, low-temperature electrolysis (LTE). Hydrogen can also be produced with hybrid processes that use both process heat and electricity to generate hydrogen. An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyzer to generate hydrogen. This process is of interest because the efficiency of electrolysis increases with temperature. Because of its high temperature capability, advanced stage of development relative to other high-temperature reactor concepts, and passive-safety features, the modular helium reactor (MHR) is well suited for producing hydrogen using nuclear energy. In this paper we investigate the coupling of the MHR to the S-I process, LTE, and HTE. These concepts are referred to as the H2-MHR. (author)

  19. Out-of-pile demonstration test of hydrogen production system coupling with HTTR

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Nishihara, Tetsuo; Takeda, Tetsuaki; Hada, Kazuhiko; Hayashi, Koji

    1999-01-01

    In Japan Atomic Energy Research Institute, a hydrogen production system is being designed to produce hydrogen by means of a steam reforming process of natural gas using nuclear heat (10 MW, 905degC) supplied by the High Temperature Engineering Test Reactor (HTTR). The safety principle and criteria are also being investigated in the HTTR hydrogen production system. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile demonstration test was planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 has a hydrogen production capacity of 110 Nm 3 /h using an electric heater as a reactor substitute. The test facility is under manufacturing aiming at completion in 2000 and followed by the test till 2004. In parallel to this, a hydrogen permeation test and a corrosion test of a catalyst tube of a steam reformer are being carried out to obtain data necessary for the design of the system. This report describes outline of the out-of-pile hydrogen production facility and demonstration test program for the HTTR hydrogen production system at present status. (author)

  20. Out-of-pile demonstration test of hydrogen production system coupling with HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Nishihara, Tetsuo; Takeda, Tetsuaki; Hada, Kazuhiko; Hayashi, Koji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-07-01

    In Japan Atomic Energy Research Institute, a hydrogen production system is being designed to produce hydrogen by means of a steam reforming process of natural gas using nuclear heat (10 MW, 905degC) supplied by the High Temperature Engineering Test Reactor (HTTR). The safety principle and criteria are also being investigated in the HTTR hydrogen production system. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile demonstration test was planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 has a hydrogen production capacity of 110 Nm{sup 3}/h using an electric heater as a reactor substitute. The test facility is under manufacturing aiming at completion in 2000 and followed by the test till 2004. In parallel to this, a hydrogen permeation test and a corrosion test of a catalyst tube of a steam reformer are being carried out to obtain data necessary for the design of the system. This report describes outline of the out-of-pile hydrogen production facility and demonstration test program for the HTTR hydrogen production system at present status. (author)

  1. Performance test results of mock-up test facility of HTTR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo

    2004-01-01

    For the purpose to demonstrate effectiveness of high-temperature nuclear heat utilization, Japan Atomic Energy Research Institute has been developing a hydrogen production system and has planned to connect the hydrogen production system to High Temperature Engineering Test Reactor (HTTR). Prior to construction of a HTTR hydrogen production system, a mock-up test facility was constructed to investigate transient behavior of the hydrogen production system and to establish system controllability. The Mock-up test facility with a full-scale reaction tube is an approximately 1/30-scale model of the HTTR hydrogen production system and an electric heater is used as a heat source instead of a reactor. After its construction, a performance test of the test facility was carried out in the same pressure and temperature conditions as those of the HTTR hydrogen production system to investigate its performance such as hydrogen production ability, controllability and so on. It was confirmed that hydrogen was stably produced with a hot helium gas about 120m 3 /h, which satisfy the design value, and thermal disturbance of helium gas during the start-up could be mitigated within the design value by using a steam generator. The mock-up test of the HTTR hydrogen production system using this facility will continue until 2004. (author)

  2. Dynamic flowgraph modeling of process and control systems of a nuclear-based hydrogen production plant

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dabbagh, Ahmad W. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada); Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-09-15

    Modeling and analysis of system reliability facilitate the identification of areas of potential improvement. The Dynamic Flowgraph Methodology (DFM) is an emerging discrete modeling framework that allows for capturing time dependent behaviour, switching logic and multi-state representation of system components. The objective of this research is to demonstrate the process of dynamic flowgraph modeling of a nuclear-based hydrogen production plant with the copper-chlorine (Cu-Cl) cycle. Modeling of the thermochemical process of the Cu-Cl cycle in conjunction with a networked control system proposed for monitoring and control of the process is provided. This forms the basis for future component selection. (author)

  3. Design and reliability assessment of control systems for a nuclear-based hydrogen production plant with copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dabbagh, Ahmad W. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4 (Canada); Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4 (Canada)

    2010-02-15

    The thermochemical Copper-Chlorine (Cu-Cl) cycle is an emerging new method of nuclear-based hydrogen production. In the process, water is decomposed into hydrogen and oxygen through several physical and chemical processes. In this paper, a Distributed Control System (DCS) is designed for the thermochemical Cu-Cl cycle. The architecture and the communication networks of the DCS are discussed. Reliability of the DCS is assessed using fault trees. In the assessment, the impact of the malfunction of the actuators, sensors, controllers and communication networks on the overall system reliability is investigated. This provides key information for the selection of control system components, and determination of their inspection frequency and maintenance strategy. The hydrogen reactor unit, which is one of the major components in the thermochemical Cu-Cl cycle, is used to demonstrate the detailed design and analysis. (author)

  4. A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production

    International Nuclear Information System (INIS)

    Shin, Jae Sun; Cho, Sung Jin; Choi, Suk Hoon; Qasim, Faraz; Lee, Euy Soo; Park, Sang Jin; Lee, Heung N.; Park, Jae Ho; Lee, Won Jae

    2014-01-01

    SI Cyclic process is one of the thermochemical hydrogen production processes using iodine and sulfur for producing hydrogen molecules from water. VHTR (Very High Temperature Reactor) can be used to supply heat to hydrogen production process, which is a high temperature nuclear reactor. IHX (Intermediate Heat Exchanger) is necessary to transfer heat to hydrogen production process safely without radioactivity. In this study, the strategy for the optimum design of IHX between SI hydrogen process and VHTR is proposed for various operating pressures of the reactor, and the different cooling fluids. Most economical efficiency of IHX is also proposed along with process conditions

  5. USE OF THE MODULAR HELIUM REACTOR FOR HYDROGEN PRODUCTION

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.

    2003-01-01

    OAK-B135 A significant ''Hydrogen Economy'' is predicted that will reduce our dependence on petroleum imports and reduce pollution and greenhouse gas emissions. Hydrogen is an environmentally attractive fuel that has the potential to displace fossil fuels, but contemporary hydrogen production is primarily based on fossil fuels. The author has recently completed a three-year project for the US Department of Energy (DOE) whose objective was to ''define an economically feasible concept for production of hydrogen, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-slitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen, and to select one for further detailed consideration. They selected the Sulfur-Iodine cycle. In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this report

  6. Study on hydrogen production by high temperature electrolysis of steam

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Aita, Hideki; Sekita, Kenji; Haga, Katsuhiro; Iwata, Tomo-o.

    1997-09-01

    In JAERI, design and R and D works on hydrogen production process have been conducted for connecting to the HTTR under construction at the Oarai Research Establishment of JAERI as a nuclear heat utilization system. As for a hydrogen production process by high-temperature electrolysis of steam, laboratory-scale experiments were carried out with a practical electrolysis tube with 12 cells connected in series. Hydrogen was produced at a maximum density of 44 Nml/cm 2 h at 950degC, and know-how of operational procedures and operational experience were also accumulated. Thereafter, a planar electrolysis cell supported by a metallic plate was fabricated in order to improve hydrogen production performance and durability against thermal cycles. In the preliminary test with the planar cell, hydrogen has been produced continuously at a maximum density of 33.6 Nml/cm 2 h at an electrolysis temperature of 950degC. This report presents typical test results mentioned above, a review of previous studies conducted in the world and R and D items required for connecting to the HTTR. (author)

  7. Maintaining a technology-neutral approach to hydrogen production process development through conceptual design of the next generation nuclear plant - HTR2008-58191

    International Nuclear Information System (INIS)

    Patterson, M. W.; Park, C. V.

    2008-01-01

    The Energy Policy Act of 2005 (EPAct) charges the Dept. of Energy (DOE) with developing and demonstrating the technical and economic feasibility of using high temperature gas-cooled reactor (HTGR) technology for the production of electricity and/or hydrogen. The design, construction and demonstration of this technology in an HTGR proto-type reactor are termed the Next Generation Nuclear Plant (NGNP) Project. Currently, parallel development of three hydrogen production processes will continue until a single process technology is recommended for final demonstration in the NGNP - a technology neutral approach. This analysis compares the technology neutral approach to acceleration of the hydrogen process down-selection at the completion of the NGNP conceptual design to improve integration of the hydrogen process development and NGNP Project schedule. The accelerated schedule activities are based on completing evaluations and achieving technology readiness levels (TRLs) identified in NGNP systems engineering and technology road-maps. The cost impact of accelerating the schedule and risk reduction strategies was also evaluated. The NGNP Project intends to design and construct a component test facility (CTF) to support testing and demonstration of HTGR technologies, including those for hydrogen production. The demonstrations will support scheduled design and licensing activities, leading to subsequent construction and operation of the NGNP. Demonstrations in the CTF are expected to start about two years earlier than similarly scaled hydrogen demonstrations planned in the technology neutral baseline. The schedule evaluation assumed that hydrogen process testing would be performed in the CTF and synchronized the progression of hydrogen process development with CTF availability. (authors)

  8. Hydrogen production by water-splitting and HTGR

    International Nuclear Information System (INIS)

    Courvoisier, P.; Rastouin, J.; Tilliette, Z.C.

    1976-01-01

    Some aspects of the use of heat of nuclear origin for the production of hydrogen by water-splitting are considered. General notions pertaining to the yield of chemical cycles are discussed and the heat balance corresponding to two specific processes is evaluated. The possibilities of high temperature reactors, with respect to the coolant temperature levels, are examined from the standpoint of core design and technology of some components. Furthermore these reactors can lead to excellent use of nuclear fuel. The coupling of the nuclear reactor with the chemical plant by means of a secondary helium circuit gives rise to the design of an intermediate heat exchanger, which is an important component of the overall installation [fr

  9. Prospects on hydrogen production for a generalized domestic, industrial and automotive, usage

    Science.gov (United States)

    Dini, D.

    Assuming the availability of advanced nuclear and solar systems as prime energy sources for electrolytic production of hydrogen, an assessment is made of high pressure electrolytic gasification, liquefaction and storage work requirements. Also, a pipeline network and associated equipment for the delivery and storage of hydrogen are considered in the context of a future replacement of all fossil fuels by hydrogen. Attention is given to space-based systems and terrestrial photovoltaics.

  10. Cea assessment of the sulphur-iodine cycle for hydrogen production

    International Nuclear Information System (INIS)

    Caries, Ph.; Vitart, X.; Yvon, P.

    2010-01-01

    The sulphur-iodine cycle is a promising process for hydrogen production using nuclear heat: - it is a purely thermochemical cycle, implying that hydrogen production will scale with volume rather than surface; - it only involves fluids, thus avoiding the often difficult handling of solids; - its heat requirements are well matched to the temperatures available from a Generation IV very/high temperature reactor. These characteristics seem very attractive for high efficiency and low cost massive hydrogen production. On the other hand, the efficiency of the cycle may suffer from the large over-stoichiometries of water and iodine and the very important heat exchanges it involves; furthermore, due to lack of adequate thermodynamic models, its efficiency is difficult to assess with confidence. Besides, the large quantities of chemicals that need to be handled, and the corrosiveness of these chemicals, are factors not to be overlooked in terms of investment and operation costs. In order to assess the actual potential of the sulphur-iodine cycle for massive hydrogen production at a competitive cost, CEA has been conducting an important programme on this cycle, ranging from thermodynamic measurements to hydrogen production cost evaluation, with flow sheet optimisation, component sizing and investment cost estimation as intermediate steps. The paper will present the method used, the status of both efficiency and production cost estimations, and discuss perspectives for improvement. (authors)

  11. Hydrogen production methods

    International Nuclear Information System (INIS)

    Hammerli, M.

    1982-07-01

    Old, present and new proceses for producing hydrogen are assessed critically. The emphasis throughout is placed on those processes which could be commercially viable before the turn of the century for large-scale hydrogen manufacture. Electrolysis of water is the only industrial process not dependent on fossil resources for large-scale hydrogen production and is likely to remain so for the next two or three decades. While many new processes, including those utilizing sunlight directly or indirectly, are presently not considered to be commercially viable for large-scale hydrogen production, research and development effort is needed to enhance our understanding of the nature of these processes. Water vapour electrolysis is compared with thermochemical processes: the former has the potential for displacing all other processes for producing hydrogen and oxygen from water

  12. Thin-thick hydrogen target for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Gheller, J.-M.; Juster, F.-P.; Authelet, G. [CEA Saclay, Irfu/SACM, F-91191 Gif-Sur-Yvette cedex (France); Vinyar, I. [PELIN Limited Liability Company 27 A, Gzhatskaya Str, office 103 St. Petersbourg 195220 (Russian Federation); Relland, J. [CEA Saclay, Irfu/SIS, F-91191 Gif-Sur-Yvette cedex (France); Commeaux, C. [Institut de Physique Nucléaire, campus Universitaire-Bat 103, 91406 Orsay cedex (France)

    2014-01-29

    In spectroscopic studies of unstable nuclei, hydrogen targets are of key importance. The CHyMENE Project aims to provide to the nuclear physics community a thin and pure solid windowless hydrogen or deuterium target. CHyMENE project must respond to this request for the production of solid Hydrogen. The solid hydrogen target is produced in a continuous flow (1 cm/s) by an extrusion technique (developed with the PELIN laboratory) in a vacuum chamber. The shape of the target is determined by the design of the nozzle at the extrusion process. For the purpose, the choice is a rectangular shape with a width of 10 mm and a thickness in the range of 30-50 microns necessary for the physics objectives. The cryostat is equipped with a GM Cryocooler with sufficient power for the solidification of the hydrogen in the lower portion of the extruder. In the higher part of the cryostat, the hydrogen gas is first liquefied and partially solidified. It is then compressed at 100 bars in the cooled extruder before expulsion of the film through the nozzle at the center of the reaction vacuum chamber. After the previous step, the solid hydrogen ribbon falls by gravity into a dedicated chamber where it sublimes and the gas is pumped and evacuated in a exhaust line. This paper deals with the design of the cryostat with its equipment, with the sizing of the thermal bridge (Aluminum and copper), with the results regarding the contact resistance as well as with the vacuum computations of the reaction and recovery hydrogen gas chambers.

  13. Preliminary estimations on the heat recovery method for hydrogen production by the high temperature steam electrolysis

    International Nuclear Information System (INIS)

    Koh, Jae Hwa; Yoon, Duck Joo

    2009-01-01

    As a part of the project 'development of hydrogen production technologies by high temperature electrolysis using very high temperature reactor', we have developed an electrolyzer model for high temperature steam electrolysis (HTSE) system and carried out some preliminary estimations on the effects of heat recovery on the HTSE hydrogen production system. To produce massive hydrogen by using nuclear energy, the HTSE process is one of the promising technologies with sulfur-iodine and hybrid sulfur process. The HTSE produces hydrogen through electrochemical reaction within the solid oxide electrolysis cell (SOEC), which is a reverse reaction of solid oxide fuel cell (SOFC). The HTSE system generally operates in the temperature range of 700∼900 .deg. C. Advantages of HTSE hydrogen production are (a) clean hydrogen production from water without carbon oxide emission, (b) synergy effect due to using the current SOFC technology and (c) higher thermal efficiency of system when it is coupled nuclear reactor. Since the HTSE system operates over 700 .deg. C, the use of heat recovery is an important consideration for higher efficiency. In this paper, four different heat recovery configurations for the HTSE system have been investigated and estimated

  14. Microalgal hydrogen production - A review.

    Science.gov (United States)

    Khetkorn, Wanthanee; Rastogi, Rajesh P; Incharoensakdi, Aran; Lindblad, Peter; Madamwar, Datta; Pandey, Ashok; Larroche, Christian

    2017-11-01

    Bio-hydrogen from microalgae including cyanobacteria has attracted commercial awareness due to its potential as an alternative, reliable and renewable energy source. Photosynthetic hydrogen production from microalgae can be interesting and promising options for clean energy. Advances in hydrogen-fuel-cell technology may attest an eco-friendly way of biofuel production, since, the use of H 2 to generate electricity releases only water as a by-product. Progress in genetic/metabolic engineering may significantly enhance the photobiological hydrogen production from microalgae. Manipulation of competing metabolic pathways by modulating the certain key enzymes such as hydrogenase and nitrogenase may enhance the evolution of H 2 from photoautotrophic cells. Moreover, biological H 2 production at low operating costs is requisite for economic viability. Several photobioreactors have been developed for large-scale biomass and hydrogen production. This review highlights the recent technological progress, enzymes involved and genetic as well as metabolic engineering approaches towards sustainable hydrogen production from microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Mitigation of Hydrogen Hazards in Severe Accidents in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2011-07-01

    Consideration of severe accidents in nuclear power plants is an essential component of the defence in depth approach in nuclear safety. Severe accidents have very low probabilities of occurring, but may have significant consequences resulting from the degradation of nuclear fuel. The generation of hydrogen and the risk of hydrogen combustion, as well as other phenomena leading to overpressurization of the reactor containment in case of severe accidents, represent complex safety issues in relation to accident management. The combustion of hydrogen, produced primarily as a result of heated zirconium metal reacting with steam, can create short term overpressure or detonation forces that may exceed the strength of the containment structure. An understanding of these phenomena is crucial for planning and implementing effective accident management measures. Analysis of all the issues relating to hydrogen risk is an important step for any measure that is aimed at the prevention or mitigation of hydrogen combustion in reactor containments. The main objective of this publication is to contribute to the implementation of IAEA Safety Standards, in particular, two IAEA Safety Requirements: Safety of Nuclear Power Plants: Design and Safety of Nuclear Power Plants: Operation. These Requirements publications discuss computational analysis of severe accidents and accident management programmes in nuclear power plants. Specifically with regard to the risk posed by hydrogen in nuclear power reactors, computational analysis of severe accidents considers hydrogen sources, hydrogen distribution, hydrogen combustion and control and mitigation measures for hydrogen, while accident management programmes are aimed at mitigating hydrogen hazards in reactor containments.

  16. Production of hydrogen from organic waste via hydrogen sulfide

    International Nuclear Information System (INIS)

    McMahon, M.; Davis, B.R.; Roy, A.; Daugulis, A.

    2007-01-01

    In this paper an integrated process is proposed that converts organic waste to hydrogen via hydrogen sulphide. The designed bioreactor has achieved high volumetric productivities comparable to methanogenic bioreactors. Proposed process has advantages of bio-methane production and is more resilient to process upset. Thermochemical conversion of hydrogen sulphide to hydrogen is exothermic and also requires smaller plant infrastructure

  17. Integrating large-scale cogeneration of hydrogen and electricity from wind and nuclear sources (NUWINDTM)

    International Nuclear Information System (INIS)

    Miller, A. I.; Duffey, R. B.

    2008-01-01

    As carbon-free fuels, hydrogen and electricity are headed for major roles in replacing hydrocarbons as the world constrains carbon dioxide (CO 2 ) emissions. This will apply particularly to the transport sector. A general trend toward electric drive on-board vehicles is already evident and hydrogen converted to electricity by a fuel cell is likely to be a major source of on-board electricity. The major car manufacturers continue to invest heavily in this option and significant government initiatives in both the USA and Canada are beginning demonstration deployments of the infrastructure needed for hydrogen refueling. However, early adoption of hydrogen as a transport fuel may well be concentrated on heavy-duty transportation: trains, ships and trucks, where battery storage of electricity is unlikely to be practical. But both hydrogen and electricity are secondary fuels and are only effective if the source of the primary energy is a low CO 2 emitter such as nuclear and wind. A competitive cost is also essential and, to achieve this, one must rely on off-peak electricity prices. This paper examines historical data for electricity prices and the actual output of the main wind farms in Ontario to show how nuclear and wind can be combined to generate hydrogen by water electrolysis at prices that are competitive with fossil-based hydrogen production. The NuWind TM concept depends on operating electrolysis cells over an extended range of current densities to accommodate the inherent variability of wind and of electricity prices as they vary in open markets. The cost of co-producing hydrogen with electricity originating from nuclear plants (80%) and from wind turbines (20%) is very close to that of production from a constantly available electricity source. In contrast, the price of hydrogen produced using electricity from wind alone is estimated to cost about $1500/tonne more than hydrogen from NuWind or nuclear alone because the electrolysis facility must be much larger

  18. Hydrogen behaviour and mitigation in water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    Della Loggia, E.

    1992-01-01

    The Commission of the European Communities (CEC) and the International Atomic Energy Agency (IAEA), within the framework of their safety research activities, initiated and arranged a series of specialist meetings and research contracts on hydrogen behaviour and control. The result of this work is summarized in a report jointly prepared by the two international organizations entitled 'Hydrogen in water-cooled nuclear power reactors'. Independently, the Kurchatov Atomic Energy Institute organized a workshop on the hydrogen issue in Sukhumi, USSR, with CEC and IAEA cooperation. Commonly expressed views have emerged and recommendations were formulated to organize the subsequent seminar/workshop concentrating mainly on the most recent research and analytical projects and findings related to the hydrogen behaviour, and-most importantly-on the practical approaches and engineering solutions to the hydrogen control and mitigation. The seminar/workshop, therefore, addressed the 'theory and practice' aspects of the hydrogen issue. The workshop was structured in the following sessions: combustible gas production; hydrogen distribution; combustion phenomena; combustion effects and threats; and detection and migration

  19. Meeting the near-term demand for hydrogen using nuclear energy in competitive power markets

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.

    2004-01-01

    Hydrogen is becoming the reference fuel for future transportation and the timetable for its adoption is shortening. However, to deploy its full potential, hydrogen production either directly or indirectly needs to satisfy three criteria: no associated emissions, including CO 2 ; wide availability; and affordability. This creates a window of great opportunity within the next 15 years for nuclear energy to provide the backbone of hydrogen-based energy systems. But nuclear must establish its hydrogen generating role long before the widespread deployment of Gen IV high-temperature reactors, with their possibility of producing hydrogen directly by heat rather than electricity. For Gen IV the major factors will be efficiency and economic cost, particularly if centralized storage is needed and/or credits for avoided emissions and/or oxygen sales. In the interim, despite its apparently lower overall efficiency, water electrolysis is the only available technology today able to meet the first and second criteria. The third criterion includes costs of electrolysis and electricity. The primary requirements for affordable electrolysis are low capital cost and high utilisation. Consequently, the electricity supply must enable high utilisation as well as being itself low-cost and emissions-free. Evolved Gen III+ nuclear technologies can produce electricity on large scales and at rates competitive with today's CO 2 -emitting, fossil-fuelled technologies. As an example of electrolytic hydrogen's potential, we show competitive deployment in a typical competitive power market. Among the attractions of this approach are reactors supplying a base-loaded market - though permitting occasional, opportunistic diversion of electricity during price spikes on the power grid - and easy delivery of hydrogen to widely distributed users. Gen IV systems with multiple product streams and higher efficiency (e.g., the SCWR) can also be envisaged which can use competitive energy markets to advantage

  20. A general survey of the potential and the main issues associated with the sulfur-iodine thermochemical cycle for hydrogen production using nuclear heat

    International Nuclear Information System (INIS)

    Vitart, Xavier; Carles, Philippe; Anzieu, Pascal

    2008-01-01

    The thermochemical sulfur-iodine cycle is studied by CEA with the objective of massive hydrogen production using nuclear heat at high temperature. The challenge is to acquire by the end of 2008 the necessary decision elements, based on a scientific and validated approach, to choose the most promising way to produce hydrogen using a generation IV nuclear reactor. Amongst the thermochemical cycles, the sulfur-iodine process remains a very promising solution in matter of efficiency and cost, versus its main competitor, conventional electrolysis. The sulfur-iodine cycle is a very versatile process, which allows lot of variants for each section which can be adjusted in synergy in order to optimise the whole process. The main part of CEA's program is devoted to the study of the basic processes: new thermodynamics data acquisition, optimisation of water and iodine quantity, optimisation of temperature and pressure in each unit of the flow-sheet and survey of innovative solutions (membrane separations for instance). This program also includes optimisation of a detailed flow-sheet and studies for a hydrogen production plant (design, scale, first evaluations of safety issues and technico-economic questions). This program interacts strongly with other teams, in the framework of international collaborations (Europe, USA for instance). (author)

  1. A general survey of the potential and the main issues associated with the sulfur-iodine thermochemical cycle for hydrogen production using nuclear heat

    International Nuclear Information System (INIS)

    Vitart, X.; Carles, P.; Anzieu, P.

    2008-01-01

    The thermochemical sulfur-iodine cycle is studied by CEA with the objective of massive hydrogen production using nuclear heat at high temperature. The challenge is to acquire by the end of 2008 the necessary decision elements, based on a scientific and validated approach, to choose the most promising way to produce hydrogen using a generation IV nuclear reactor. Amongst the thermochemical cycles, the sulfur-iodine process remains a very promising solution in matter of efficiency and cost, versus its main competitor, conventional electrolysis. The sulfur-iodine cycle is a very versatile process, which allows lot of variants for each section which can be adjusted in synergy in order to optimise the whole process. The main part of CEA's program is devoted to the study of the basic processes: new thermodynamics data acquisition, optimisation of water and iodine quantity, optimisation of temperature and pressure in each unit of the flow-sheet and survey of innovative solutions (membrane separations for instance). This program also includes optimisation of a detailed flow-sheet and studies for a hydrogen production plant (design, scale, first evaluations of safety issues and technico-economic questions). This program interacts strongly with other teams, in the framework of international collaborations (Europe, USA for instance). (authors)

  2. Hydrogen Monitoring in Nuclear Power Cycles

    International Nuclear Information System (INIS)

    Maurer, Heini; Staub, Lukas

    2012-09-01

    Maintaining constant Hydrogen levels in Nuclear power cycles is always associated with the challenge to determine the same reliably. Grab sample analysis is complicated and costly and online instruments currently known are difficult to maintain, verify and calibrate. Although amperometry has been proven to be the most suitable measuring principle for online instruments, it has never been thoroughly investigated what electrode materials would best perform in terms of measurement drift and regeneration requirements. This paper we will cover the findings of a research program, conducted at the R and D centre of Swan Analytische Instrumente AG in Hinwil Switzerland, aimed to find ideal electrode materials and sensor design to provide the nuclear industry with an enhanced method to determine dissolved hydrogen in nuclear power cycles. (authors)

  3. Research and development program of hydrogen production system with high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Shiozawa, S.; Ogawa, M.; Inagaki, Y.; Nishihara, T.; Shimizu, S.

    2000-01-01

    Japan Atomic Energy Research Institute (JAERI) has been developing a hydrogen production system with a high temperature gas-cooled reactor (HTGR). While the HTGR hydrogen production system has the following advantages compared with a fossil-fired hydrogen production system; low operation cost (economical fuel cost), low CO 2 emission and saving of fossil fuel by use of nuclear heat, it requires some items to be solved as follows; cost reduction of facility such as a reactor, coolant circulation system and so on, development of control and safety technologies. As for the control and safety technologies, JAERI plans demonstration test with hydrogen production system by steam reforming of methane coupling to 30 Wt HTGR, named high temperature engineering test reactor (HTTR). Prior to the demonstration test, a 1/30-scale out-of-pile test facility is in construction for safety review and detailed design of the HTTR hydrogen production system. Also, design study will start for reduction of facility cost. Moreover, basic study on hydrogen production process without CO 2 emission is in progress by thermochemical water splitting. (orig.)

  4. Meeting the near-term demand for hydrogen using nuclear energy in competitive power markets

    International Nuclear Information System (INIS)

    Miller, Alistair I.; Duffey, Romney B.

    2004-01-01

    Hydrogen is becoming the reference fuel for future transportation and, in the USA in particular, a vision for its production from advanced nuclear reactors has been formulated. Fulfillment of this vision depend on its economics in 2020 or later. Prior to 2020, hydrogen needs to gain a substantial foothold without incurring excessive costs for the establishment of the distribution network for the new fuel. Water electrolysis and steam-methane reforming (SMR) are the existing hydrogen-production technologies, used for small-scale and large-scale production, respectively. Provided electricity is produced at costs expected for nuclear reactors of near-term design, electrolysis appears to offer superior economics when the SMR-related costs of distribution and sequestration (or an equivalent emission levy) are included. This is shown to hold at least until several percentage points of road transport have been converted to hydrogen. Electrolysis has large advantages over SMRs in being almost scale-independent and allowing local production. The key requirements for affordable electrolysis are low capital cost and relatively high utilization, although the paper shows that it should be advantageous to avoid the peaks of electricity demand and cost. The electricity source must enable high utilization as well as being itself low-cost and emissions-free. By using off-peak electricity, no extra costs for enhanced electricity distribution should occur. The longer-term supply of hydrogen may ultimately evolve away from low-temperature water electrolysis but it appears to be an excellent technology for early deployment and capable of supplying hydrogen at prices not dissimilar from today's costs for gasoline and diesel provided the vehicle's power unit is a fuel cell. (author)

  5. Fundamental philosophy on the safety design of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Kazutaka; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2007-01-01

    Japan Atomic Energy Agency (JAEA) has been conducting an R and D work on the VHTR reactor system and IS hydrogen production system to realize hydrogen production using nuclear heat. As a part of this activity, JAEA is planning to connect an IS test system to the High Temperature Engineering Test Reactor (HTTR) to demonstrate its technical feasibility. This paper proposes a fundamental philosophy on the safety design of the HTTR-IS hydrogen production system including the methodology to select postulated abnormal events and its event sequences and to define safety functions of the IS system to ensure the reactor safety. Also the measure to clarify the IS system as non-reactor system is proposed. (author)

  6. Studies on membrane acid electrolysis for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marco Antonio Oliveira da; Linardi, Marcelo; Saliba-Silva, Adonis Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio], Email: saliba@ipen.br

    2010-07-01

    Hydrogen represents great opportunity to be a substitute for fossil fuels in the future. Water as a renewable source of hydrogen is of great interest, since it is abundant and can decompose, producing only pure H{sub 2} and O{sub 2}. This decomposition of water can be accomplished by processes such as electrolysis, thermal decomposition and thermochemical cycles. The electrolysis by membrane has been proposed as a viable process for hydrogen production using thermal and electrical energy derived from nuclear energy or any renewable source like solar energy. In this work, within the context of optimization of the electrolysis process, it is intended to develop a mathematical model that can simulate and assist in parameterization of the electrolysis performed by polymer membrane electrolytic cell. The experimental process to produce hydrogen via the cell membrane, aims to optimize the amount of gas produced using renewable energy with noncarbogenic causing no harm by producing gases deleterious to the environment. (author)

  7. Valuation of the safety concept of the combined nuclear/chemical complex for hydrogen production with HTTR

    International Nuclear Information System (INIS)

    Verfondern, K.; Nishihara, T.

    2004-06-01

    The high-temperature engineering test reactor (HTTR) in Oarai, Japan, will be worldwide the first plant to demonstrate the production of hydrogen by applying the steam reforming process and using nuclear process heat as primary energy. Particular safety aspects for such a combined nuclear/chemical complex have to be investigated to further detail. One of these special aspects is the fire and explosion hazard associated with the presence of flammable gases including a large LNG storage tank in close vicinity to the reactor building. A special focus is laid upon the conceivable development of a detonation pressure wave and its damaging effect on the reactor building. A literature study has shown that methane is a comparatively slow reacting gas and that a methane vapor cloud in the open atmosphere or partially obstructed areas is highly unlikely to result in a detonation if inadvertently released and ignited. Various theoretical assessments and experimental studies, which have been conducted in the past and which are of significance for the HTTR-steam reforming system, include the spreading and combustion behavior of cryogenic liquids and flammable gas mixtures providing the basis of a comprehensive safety analysis of the combined nuclear/chemical facility. (orig.)

  8. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  9. Preliminary safety analysis of the HTTR-IS nuclear hydrogen production system

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Tazawa, Yujiro; Tachibana, Yukio; Sakaba, Nariaki

    2010-06-01

    Japan Atomic Energy Agency is planning to demonstrate hydrogen production by thermochemical water-splitting IS process utilizing heat from the high-temperature gas-cooled reactor HTTR (HTTR-IS system). The previous study identified that the HTTR modification due to the coupling of hydrogen production plant requires an additional safety review since the scenario and quantitative values of the evaluation items would be altered from the original HTTR safety review. Hence, preliminary safety analyses are conducted by using the system analysis code. Calculation results showed that evaluation items such as a coolant pressure, temperatures of heat transfer tubes at the pressure boundary, etc., did not exceed allowable values. Also, the peak fuel temperature did not exceed allowable value and therefore the reactor core was not damaged and cooled sufficiently. This report compiles calculation conditions, event scenarios and the calculation results of the preliminary safety analysis. (author)

  10. A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.

    2013-09-18

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  11. Nuclear reaction analysis of hydrogen in materials: Principals and applications

    International Nuclear Information System (INIS)

    Lanford, W.A.

    1991-01-01

    Analysis for hydrogen in materials is difficult by most traditional analytic methods. Because hydrogen has no Auger transitions, no X-ray transitions, does not neutron activate, and does not backscatter ions, it is invisible in analytical methods based on these effects. In addition, since hydrogen is a universal contaminant in vacuum systems, techniques based on mass spectrometry are difficult unless extreme measures are taken to reduce hydrogen backgrounds. Because of this situation, methods have been developed for analyzing for hydrogen in solid materials based on nuclear reactions between bombarding ions and hydrogen atoms (protons) in the samples. The nuclear reaction methods are now practiced at laboratories around the world. The basic principals of nuclear reaction analysis will be briefly presented. This method will be illustrated by applications to problems ranging from basic physics, to geology, to materials science, and to art history and archeology

  12. Hybrid systems to address seasonal mismatches between electricity production and demand in nuclear renewable electrical grids

    International Nuclear Information System (INIS)

    Forsberg, Charles

    2013-01-01

    A strategy to enable zero-carbon variable electricity production with full utilization of renewable and nuclear energy sources has been developed. Wind and solar systems send electricity to the grid. Nuclear plants operate at full capacity with variable steam to turbines to match electricity demand with production (renewables and nuclear). Excess steam at times of low electricity prices and electricity demand go to hybrid fuel production and storage systems. The characteristic of these hybrid technologies is that the economic penalties for variable nuclear steam inputs are small. Three hybrid systems were identified that could be deployed at the required scale. The first option is the gigawatt-year hourly-to-seasonal heat storage system where excess steam from the nuclear plant is used to heat rock a kilometer underground to create an artificial geothermal heat source. The heat source produces electricity on demand using geothermal technology. The second option uses steam from the nuclear plant and electricity from the grid with high-temperature electrolysis (HTR) cells to produce hydrogen and oxygen. Hydrogen is primarily for industrial applications; however, the HTE can be operated in reverse using hydrogen for peak electricity production. The third option uses variable steam and electricity for shale oil production. -- Highlights: •A system is proposed to meet variable hourly to seasonal electricity demand. •Variable solar and wind electricity sent to the grid. •Base-load nuclear plants send variable steam for electricity and hybrid systems. •Hybrid energy systems can economically absorb gigawatts of variable steam. •Hybrid systems include geothermal heat storage, hydrogen, and shale-oil production

  13. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  14. Multi-objective technico-economic optimization of energy conversion systems: hydrogen and electricity cogeneration from Generation IV nuclear reactor

    International Nuclear Information System (INIS)

    Gomez, A.

    2008-01-01

    With the increase in environmental considerations, such as the control of greenhouse emissions, and with the decrease in the fossil energy resources, hydrogen is currently considered as a promising energy vector. One of the main technological challenges of a future hydrogen economy is its large scale production without fossil fuel emissions. Under this context, nuclear energy is particularly adapted for hydrogen massive production by thermochemical cycles or high temperature electrolysis. One of the selected nuclear systems is the Very High Temperature Reactor (950 C/1200 C), cooled with helium, and dedicated to hydrogen production or to hydrogen electricity cogeneration. The main objective of this investigation, within the framework of a collaboration between CEA, French Atomic Agency (Cadarache) and LGC (Toulouse), consists in defining a technico-economic optimization methodology of electricity-hydrogen cogeneration systems, in order to identify and propose promising development strategies. Among the massive production processes of hydrogen, the thermochemical cycle Iodine-Sulphur has been considered. Taking into account the diversity of the used energies (i.e., heat and electricity) on the one hand and of the produced energies (hydrogen and electricity) on the other hand of the studied cogeneration system, an exergetic approach has been developed due to its ability to consider various energy forms on the same thermodynamical basis. The CYCLOP software tool (CEA) is used for the thermodynamic modelling of these systems. The economic criterion, calculated using the SEMER software tool (CEA), is based on the minimization of the total production site cost over its lifespan i.e., investment, operating costs and nuclear fuel cost. Capital investment involves the development of cost functions adapted to specific technologies and their specific operating conditions. The resulting optimization problems consist in maximizing the energy production, while minimizing the

  15. Technical Analysis of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  16. Fermentative hydrogen production by diverse microflora

    International Nuclear Information System (INIS)

    Baghchehsaraee, B.; Nakhla, G.; Karamanev, D.; Margaritis, A.

    2009-01-01

    'Full text': In this study of hydrogen production with activated sludge, a diverse bacterial source has been investigated and compared to microflora from anaerobic digester sludge, which is less diverse. Batch experiments were conducted at mesophilic (37 o C) and thermophilic (55 o C) temperatures. The hydrogen production yields with activated sludge at 37 o C and 55 o C were 0.25 and 0.93 mol H 2 /mol glucose, respectively. The maximum hydrogen production rates with activated sludge in both temperatures were 4.2 mL/h. Anaerobic digester sludge showed higher hydrogen production yields and rates at both mesophilic and thermophilic temperatures. The results of repeated batch experiments with activated sludge showed an increase in the hydrogen production during the consecutive batches. However, hydrogen production was not stable along the repeated batches. The observed instability was due to the formation of lactic acid and ethanol. (author)

  17. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    International Nuclear Information System (INIS)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira

    2017-01-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  18. Hydrogen production methods efficiency coupled to an advanced high temperature accelerator driven system

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Daniel González; Lira, Carlos Alberto Brayner de Oliveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Fernández, Carlos García, E-mail: danielgonro@gmail.com, E-mail: mmhamada@ipen.br [Instituto Superior de Tecnologías y Ciencias aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed flowsheet of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. (author)

  19. Energy scenarios for hydrogen production in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J. L.

    2009-10-01

    The hydrogen is a clean and very efficient fuel, its combustion does not produce gases of greenhouse effect, ozone precursors and residual acids. Also the hydrogen produced by friendly energy sources with the environment like nuclear energy could help to solve the global problems that it confronts the energy at present time. Presently work fuel cycles of hydrogen production technologies in Mexico are judged, by means of a structured methodology in the concept of sustainable development in its social, economic and environmental dimensions. The methodology is divided in three scenarios: base, Outlook 2030 and capture of CO 2 . The first scenario makes reference to cycles analysis in a current context for Mexico, the second taking in account the demand projections reported by the IAEA in its report Outlook and the third scenario, capture of CO 2 , the technologies are analyzed supposing a reduction in capture costs of 75%. Each scenario also has four cases (base, social, environmental and economic) by means of which the cycles are analyzed in the dimensions of sustainable development. For scenarios base and capture, results show that combination nuclear energy- reformed of gas it is the best alternative for cases base and economic. For social case, the evaluated better technology is the hydraulics, and for environmental case, the best option is represented by the regenerative thermochemistry cycles. The scenario Outlook 2030 show a favorable tendency of growth of renewable sources, being the aeolian energy the best technology evaluated in the cases base and environmental, the hydraulics technology in the social case and in the economic case the reformed of natural gas that uses nuclear heat. (Author)

  20. Thermodynamic of the associated cycle and application to the assembly of thermochemical iodine sulphur cycle and a nuclear engine for the hydrogen production

    International Nuclear Information System (INIS)

    Dumont, Y.

    2008-01-01

    This thesis is devoted to the design of an assembly of a hydrogen production process by the thermochemical iodine-sulphur cycle and a nuclear reactor. The suggested coupling network uses a power cycle which produces a work which is directly used for the heat pump running. The purpose of this thermodynamic cycle association is to recover the rejected energy at low temperature of a process to provide the energy needs of this same process at high temperature. This association is applied to the studied coupling. The construction of the energy distribution network is designed by the pinch analysis. In the case of a conventional coupling, the efficiency of hydrogen production is 22.0%. By integrating the associated cycles into the coupling, the efficiency of production is 42.6%. The exergetic efficiency, representative of the energy using quality, increases from 58.7% to 85.4%. (author) [fr

  1. Development program of hydrogen production by thermo-chemical water splitting is process

    International Nuclear Information System (INIS)

    Ryutaro Hino

    2005-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been conducting R and D on the HTGR and also on thermo-chemical water splitting hydrogen production by using a iodine-sulfur cycle (IS process) in the HTTR project. The continuous hydrogen production for one week was demonstrated with a bench-scale test apparatus made of glass, and the hydrogen production rare was about 31 NL/h. Based on the test results and know-how obtained through the bench-scale test, a pilot test plant, which has a hydrogen production performance of 30 Nm 3 /h and will be operated under the high pressure up to 2 MPa, is being designed conceptually as the next step of the IS process development aiming to realize a future nuclear hydrogen production coupled with the HTGR. In this paper, we will introduce one-week continuous hydrogen production conducted with the bench-scale test apparatus and the pilot test program including R and D and an analytical system necessary for designing the pilot test plant. MW. Figure 1 shows an overview of the HTTR-IS plant. In this paper, we will introduce latest test results obtained with the bench-scale test apparatus and concepts of key components of the IS process, a sulfuric acid (H 2 SO 4 ) and a sulfur trioxide (SO 3 ) decomposers working under high-temperature corrosive circumstance, are also introduced as well as relating R and D and an analytical system for the pilot plant design. (authors)

  2. Hydrogen production from biomass by biological systems

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Qader, S.

    2009-01-01

    Hydrogen gas is seen as a future energy carrier, not involved in 'greenhouse' gas and its released energy in combustion can be converted to electric power. Biological system with low energy can produce hydrogen compared to electrochemical hydrogen production via solar battery-based water splitting which requires the use of solar batteries with high energy requirements. The biological hydrogen production occurs in microalgae and cyanobacteria by photosynthesis. They consume biochemical energy to produce molecular hydrogen. Hydrogen in some algae is an anaerobic production in the absence of light. In cyanobacteria the hydrogen production simultaneously happens with nitrogen fixation, and also catalyzed by nitrogenase as a side reaction. Hydrogen production by photosynthetic bacteria is mediated by nitrogenase activity, although hydrogenases may be active for both hydrogen production and hydrogen uptake under some conditions. Genetic studies on photosynthetic microorganisms have markedly increased in recent times, relatively few genetic engineering studies have focused on altering the characteristics of these microorganisms, particularly with respect to enhancing the hydrogen-producing capabilities of photosynthetic bacteria and cyanobacteria. (author)

  3. Preliminary analysis of an hydrogen generator system based on nuclear energy in the Laguna Verde site

    International Nuclear Information System (INIS)

    Flores y Flores, A.; Francois L, J.L.

    2003-01-01

    The shortage of fossil fuels in the next future, as well as the growing one demand of energetics and the high cost of the production of alternating fuels, it forces us to take advantage of to the maximum the fossil fuel with the one which we count and to look for the form of producing alternating fuels at a low cost and better even if these supply sources are reliable and non pollutants. It is intended a solution to the shortage of fuel; to use the thermal energy liberated of some appropriate nuclear reactor to be able to obtain a fuel but clean and relatively cheap as it is the hydrogen. In the first place the methods were looked for to produce hydrogen using thermal energy, later it was analyzed the temperature liberated by the existent nuclear reactors as well as the advanced designs, according to this liberated temperature settled down that the methods but feasible to produce hydrogen its were the one of reformed with water stream of the natural gas (methane) and the other one of the S-I thermochemical cycle, and the nuclear reactors that give the thermal energy for this production they are those of gas of high temperature. Once established the processes and the appropriate reactors, it was analyzed the site of Laguna Verde, with relationship to the free space to be able to place the reactor and the plant producer of hydrogen, as well as the direction in which blow the dominant winds and the near towns to the place, it was carried out an analysis of some explosion of tanks that could store hydrogen and the damage that its could to cause depending from the distance to which its were of the fire. Finally it was carried out an evaluation of capital and of operation costs for those two methods of hydrogen production. (Author)

  4. Efficiency of the sulfur–iodine thermochemical water splitting process for hydrogen production based on ADS (accelerator driven system)

    International Nuclear Information System (INIS)

    García, Lázaro; González, Daniel; García, Carlos; García, Laura; Brayner, Carlos

    2013-01-01

    The current hydrogen production is based on fossil fuels; they have a huge contribution to the atmosphere's pollution. Thermochemical water splitting cycles don't present this issue because the required process heat is obtained from nuclear energy and therefore, the environmental impact is smaller than using conventional fuels. Although, solar hydrogen production could be also used for practical applications because it's lower environmental impact. One of the promising approaches to produce large quantities of hydrogen in an efficient way using nuclear energy is the sulfur–iodine (S–I) thermochemical water splitting cycle. The nuclear source proposed in this paper is a pebble bed gas cooled transmutation facility. Pebble bed very high temperature advanced systems have great perspectives to assume the future nuclear energy. Softwares based on CPS (chemical process simulation) can be used to simulate the thermochemical water splitting sulfur-iodine cycle for hydrogen production. In this paper, a model for analyzing the sulfur-iodine process sensibility respect to the thermodynamics parameters: temperature, pressure and mass flow is developed. Efficiency is also calculated and the influence of different parameters on this value. The behavior of the proposed model for different values of initial reactant's flow, is analyzed. - Highlights: • Chemical Process Simulation (CPS) of the complete sulfur iodine cycle. • Conceptual design of an accelerator driven system for hydrogen production. • Radial and axial temperature profile for the end of stationary cycle (EOC). • Thermal stability of the sulfuric and hydriodic acid sections determination. • Sulfur iodine cycle efficiency analyses for different heat flow from the ADS

  5. Simulation of hydrogen distribution in an Indian Nuclear Reactor Containment

    Energy Technology Data Exchange (ETDEWEB)

    Prabhudharwadkar, Deoras M. [Department of Mechanical Engineering, Indian Institute of Technology, Mumbai (India); Iyer, Kannan N., E-mail: kiyer@iitb.ac.i [Department of Mechanical Engineering, Indian Institute of Technology, Mumbai (India); Mohan, Nalini; Bajaj, Satinder S. [Nuclear Power Corporation of India Ltd., Mumbai (India); Markandeya, Suhas G. [Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2011-03-15

    Research highlights: This work addresses hydrogen dispersion in commercial nuclear reactor containment. The numerical tool used for simulation is first benchmarked with experimental data. Parametric results are then carried out for different release configurations. Results lead to the conclusion that the dispersal is buoyancy dominated. Also, the hydrogen concentration is high enough to demand mitigation devices. - Abstract: The management of hydrogen in a Nuclear Reactor Containment after LOCA (Loss Of Coolant Accident) is of practical importance to preserve the structural integrity of the containment. This paper presents the results of systematic work carried out using the commercial Computational Fluid Dynamics (CFD) software FLUENT to assess the concentration distribution of hydrogen in a typical Indian Nuclear Reactor Containment. In order to obtain an accurate estimate of hydrogen concentration distribution, a suitable model for turbulence closure is required to be selected. Using guidelines from the previous studies reported in the literature and a comparative simulation study using simple benchmark problems, the most suitable turbulence model for hydrogen mixing prediction was identified. Subsequently, unstructured meshes were generated to represent the containment of a typical Indian Nuclear Reactor. Analyses were carried out to quantify the hydrogen distribution for three cases. These were (1) Uniform injection of hydrogen for a given period of time at room temperature, (2) Time varying injection as has been computed from an accident analysis code, (3) Time varying injection (as used in case (2)) at a high temperature. A parametric exercise was also carried out in case (1) where the effect of various inlet orientations and locations on hydrogen distribution was studied. The results indicate that the process of hydrogen dispersal is buoyancy dominated. Further for typical injection rates encountered following LOCA, the dispersal is quite poor and most

  6. Simulation of hydrogen distribution in an Indian Nuclear Reactor Containment

    International Nuclear Information System (INIS)

    Prabhudharwadkar, Deoras M.; Iyer, Kannan N.; Mohan, Nalini; Bajaj, Satinder S.; Markandeya, Suhas G.

    2011-01-01

    Research highlights: → This work addresses hydrogen dispersion in commercial nuclear reactor containment. → The numerical tool used for simulation is first benchmarked with experimental data. → Parametric results are then carried out for different release configurations. → Results lead to the conclusion that the dispersal is buoyancy dominated. → Also, the hydrogen concentration is high enough to demand mitigation devices. - Abstract: The management of hydrogen in a Nuclear Reactor Containment after LOCA (Loss Of Coolant Accident) is of practical importance to preserve the structural integrity of the containment. This paper presents the results of systematic work carried out using the commercial Computational Fluid Dynamics (CFD) software FLUENT to assess the concentration distribution of hydrogen in a typical Indian Nuclear Reactor Containment. In order to obtain an accurate estimate of hydrogen concentration distribution, a suitable model for turbulence closure is required to be selected. Using guidelines from the previous studies reported in the literature and a comparative simulation study using simple benchmark problems, the most suitable turbulence model for hydrogen mixing prediction was identified. Subsequently, unstructured meshes were generated to represent the containment of a typical Indian Nuclear Reactor. Analyses were carried out to quantify the hydrogen distribution for three cases. These were (1) Uniform injection of hydrogen for a given period of time at room temperature, (2) Time varying injection as has been computed from an accident analysis code, (3) Time varying injection (as used in case (2)) at a high temperature. A parametric exercise was also carried out in case (1) where the effect of various inlet orientations and locations on hydrogen distribution was studied. The results indicate that the process of hydrogen dispersal is buoyancy dominated. Further for typical injection rates encountered following LOCA, the dispersal is

  7. Production of hydrogen from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lohmueller, R

    1984-03-01

    Hydrocarbons are the preferred starting materials for the industrial production of hydrogen. Most hydrogen is produced by steam reforming of light hydrocarbons. Partial oxidation of heavy oil and residue is used for the production of H/sub 2/ and synthesis gas in large plants. In both cases gas purification was improved. Hydrogen-rich gases like coke oven gas, refinery-offgas, and offgases from the chemical and petrochemical industry have high potential for becoming a major source of hydrogen. Processes for recovering H/sub 2/ (and by-products) are condensation and rectification at low temperatures and, most attractive and versatile for the production of very pure H/sub 2/, adsorption (PSA). The environmental impact of H/sub 2/ production lies mainly in the emission of CO/sub 2/ and heat. Other forms of pollution can be considerably reduced by conventional methods. The economy of H/sub 2/ production depends essentially on price and availability of the raw materials.

  8. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion

    International Nuclear Information System (INIS)

    Libert, M.F.; Sellier, R.; Marty, V.; Camaro, S.

    2000-01-01

    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H 2 production in a bituminized nuclear waste environment were simulated in the present study: - H 2 production by iron corrosion under anaerobic conditions was simulated by adding 10% of H 2 in the atmosphere; - H 2 production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H 2 in water allows the growth of hydrogen oxidizing bacteria leading to: - CO 2 and N 2 production; - H 2 consumption; - lower NO 3 - concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO 3 - release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H 2 instead of hydrocarbons. (authors)

  9. Sensitivity Studies of Advanced Reactors Coupled to High Temperature Electrolysis (HTE) Hydrogen Production Processes

    International Nuclear Information System (INIS)

    Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

    2007-01-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the steam or air sweep loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycle producing the highest efficiencies varied depending on the temperature range considered

  10. Information exchange on HTGR and nuclear hydrogen technology between JAEA and INET in 2008

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Tachibana, Yukio; Sun Yuliang

    2009-07-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation activities on HTGR and nuclear hydrogen technology between JAEA and INET in 2008. (author)

  11. Information exchange on HTGR and nuclear hydrogen technology between JAEA and INET in 2009

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Wang Hong

    2010-07-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation activities on HTGR and nuclear hydrogen technology between JAEA and INET in 2009. (author)

  12. Hydrogen management in nuclear reactor containment

    International Nuclear Information System (INIS)

    Iyer, Kannan

    2014-01-01

    The talk will present the systematic methodology evolved to assess the hydrogen management in nuclear reactor containment during a severe accident. The focus is on the methodology evolved as the full problem is yet to be solved completely. First, the method to quantify mixing of hydrogen is presented. It is demonstrated that buoyancy modified model is adequate to quantify the process satisfactorily. On noting that the hydrogen levels are higher than the safe limits, effort was directed towards mitigating the concentration. Passive Auto-catalytic Recombiners (PAR) were identified as the potential devices for mitigation. Efforts were then directed to model these and a satisfactory one-step reaction derived from a 12 reaction model was evolved. This model was satisfactory when compared with experimental results with hydrogen concentration below 4%. However, the same when extended to hydrogen concentration of 20%, predicts very high concentration thereby indicating the need for experiments at high hydrogen concentration. (author)

  13. Hydrogen production using plasma processing

    International Nuclear Information System (INIS)

    Wagner, D.; Whidden, T.K.

    2006-01-01

    Plasma processing is a promising method of extracting hydrogen from natural gas while avoiding the greenhouse gas (GHG) production typical of other methods such as steam methane reforming. This presentation describes a plasma discharge process based that, in a single reactor pass, can yield hydrogen concentrations of up to 50 % by volume in the product gas mixture. The process is free of GHG's, does not require catalysts and is easily scalable. Chemical and morphological analyses of the gaseous and solid products of the process by gas-chromatography/mass-spectrometry, microscopic Raman analyses and electron microscopy respectively are reviewed. The direct production of hydrogen-enriched natural gas (HENG) as a fuel for low pollution internal combustion engines and its purification to high-purity hydrogen (99.99%) from the product gas by pressure swing adsorption (PSA) purifier beds are reviewed. The presentation reviews potential commercial applications for the technology

  14. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  15. Photovoltaic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J. [Univ. of Miami, Coral Gables, FL (United States)

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  16. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M; Lien, S; Weaver, P F

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  17. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  18. New efficient hydrogen process production from organosilane hydrogen carriers derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brunel, Jean Michel [Unite URMITE, UMR 6236 CNRS, Faculte de Medecine et de Pharmacie, Universite de la Mediterranee, 27 boulevard Jean Moulin, 13385 Marseille 05 (France)

    2010-04-15

    While the source of hydrogen constitutes a significant scientific challenge, addressing issues of hydrogen storage, transport, and delivery is equally important. None of the current hydrogen storage options, liquefied or high pressure H{sub 2} gas, metal hydrides, etc.. satisfy criteria of size, costs, kinetics, and safety for use in transportation. In this context, we have discovered a methodology for the production of hydrogen on demand, in high yield, under kinetic control, from organosilane hydrogen carriers derivatives and methanol as co-reagent under mild conditions catalyzed by a cheap ammonium fluoride salt. Finally, the silicon by-products can be efficiently recycle leading to an environmentally friendly source of energy. (author)

  19. Liquid hydrogen production via hydrogen sulfide methane reformation

    Science.gov (United States)

    Huang, Cunping; T-Raissi, Ali

    Hydrogen sulfide (H 2S) methane (CH 4) reformation (H 2SMR) (2H 2S + CH 4 = CS 2 + 4H 2) is a potentially viable process for the removal of H 2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H 2SMR produces carbon disulfide (CS 2), a liquid under ambient temperature and pressure-a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H 2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH 4 to H 2S ratios are needed. In this paper, we analyze H 2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H 2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively.

  20. A study on the role of nuclear energy in the demand-supply structure in the 21st century. Towards the use of hydrogen and electricity energy

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Shinichi; Kawanami, Jun [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    It is said that global warming has been caused by the massive consumption of fossil fuel such as oil and coal. As a fundamental measure to solve this problem, hydrogen is highly expected to be the next-generation energy source, the by-product after combustion of which is water. Previous studies have concentrated on the examination of hydrogen-producing systems that use such means as sunlight or wind power generation and transporting liquefied hydrogen to Japan (NEDO WE-NET Plan). In this study, a simulation using the energy demand-supply model was conducted in view of the advent of an energy system that is based on hydrogen and electrical energy while taking hydrogen production by means of nuclear power such as a high-temperature gas reactor into consideration. On the basis of the results, the conditions for dissemination of use of hydrogen and the role of nuclear power were examined. As a result, we found that widespread use of hydrogen will be promoted by environmental regulations and that hydrogen produced by means of nuclear power, which does not produce carbon dioxide at the time of production, will likely play an important role. (author)

  1. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M.; Lien, S.; Weaver, P.F.

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  2. Techno-economic study of hydrogen production by high temperature electrolysis coupled with an EPR-water steam production and coupling possibilities

    International Nuclear Information System (INIS)

    Tinoco, R. R.; Bouallou, C.; Mansilla, C.; Werkoff, F.

    2007-01-01

    Nuclear reactors present a wide range of coupling possibilities with several industrial processes, hydrogen production being one of them. Among the Pressurised Water nuclear Reactors (PWR), the new European Pressurised Reactor (EPR) offers the water steam production at low-medium temperatures, from 230 degree Celsius to 330 degree Celsius for the primary and secondary exchange circuits. The use of this water steam for hydrogen production by High Temperature Electrolysis is the subject of this study, under a French context. The study of this coupling, has considered two hypotheses. First, water steam drawing off in secondary circuit has been evaluated in terms of possible impact in electricity production and reactor availability. After the drawing off at 78 bar (EPR secondary circuit pressure), pressure has to be dropped in order to protect the high temperature electrolyser from damage, so an isenthalpic drop has been considered. Liquid-vapour equilibrium happens with pressure drops, so separation of gas phase and recycling of liquid phase are proposed. Second, only water steam production with an EPR has been evaluated. The feed water enters the secondary circuit and passes from liquid phase to vapour in the steam generators, and then all steam is canalized to the high temperature electrolyser. The potentiality of water steam production in the EPR has been evaluated from 15 to 40 bar. Small reactors could be the best choice if only water steam production is considered. After steam production, it steam enters into the High Temperature Electrolysis process, like a cold stream for two parallel series of three heat exchangers reaching temperatures up to 950 degree Celsius. Then the steam is heated by an electric device and finally it enters the electrolyser. The electrolysis product streams (hydrogen-steam mixture and oxygen) are used in the heat exchangers like hot streams. For both hypotheses, information about water composition has been studied in order to minimise

  3. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    To meet the reduction of the emission of CO 2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  4. Determining phenols in coal conversion products by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kanitskaya, L.V.; Kushnarev, D.F.; Polonov, V.M.; Kalabin, G.A.

    1985-03-01

    Possibility of using nuclear magnetic resonance spectra of the hydrogen 1 (/sup 1/H) isotope for a qualitative and quantitative evaluation of the hydroxyl groups in the products of coal processing is investigated. The basis of the method is the fact that in NMR spectra of the /sup 1/H in organic compounds with acid protons, the latter are unprotected when strong bases are used as solvents because of intermolecular hydrogen bonds. The resin from the medium-temperature semicoking of Cheremkhovskii coals, its hydrogenate, and phenol fraction of the hydrogenate were used for the investigation. The results were compared with the results of other NMR spectroscopy methods. The high solubility of hexamethanol and the fact that the products can be analyzed in the natural state, are some advantages of the method. 18 references.

  5. Hydrogen production coupled to nuclear waste treatment: the safe treatment of alkali metals through a well-demonstrated process

    International Nuclear Information System (INIS)

    Rahier, A.; Mesrobian, G.

    2006-01-01

    In 1992, the United Nations emphasised the urgent need to act against the perpetuation of disparities between and within nations, the worsening of poverty, hunger, ill health and illiteracy and the continuing deterioration of ecosystems on which we depend for our well-being. In this framework, taking into account the preservation of both worldwide energy resources and ecosystems, the use of nuclear energy to produce clean energy carriers, such as hydrogen, is undoubtedly advisable. However, coping fully with the Agenda 21 statements requires defining adequate treatment processes for nuclear wastes. This paper discusses the possible use of a well-demonstrated process to convert radioactively contaminated alkali metals into sodium hydroxide while producing hydrogen. We conclude that a synergy between Chlor-Alkali specialists and nuclear specialists may help find an acceptable solution for radioactively contaminated sodium waste. (author)

  6. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.-M.

    1993-01-01

    The cost of hydrogen from water electrolysis is estimated, assuming that the electricity was produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the sectors of power generation, heat and transportation are calculated, based on a state-of-the-art technology and a more advanced technology expected to represent the state by the year 2010. The cost of hydrogen utilization (without energy taxes) is higher than the current price of fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen will not gain a significant market share in either of the cases discussed. (Author)

  7. Hydrogen production using Rhodopseudomonas palustris WP 3-5 with hydrogen fermentation reactor effluent

    International Nuclear Information System (INIS)

    Chi-Mei Lee; Kuo-Tsang Hung

    2006-01-01

    The possibility of utilizing the dark hydrogen fermentation stage effluents for photo hydrogen production using purple non-sulfur bacteria should be elucidated. In the previous experiments, Rhodopseudomonas palustris WP3-5 was proven to efficiently produce hydrogen from the effluent of hydrogen fermentation reactors. The highest hydrogen production rate was obtained at a HRT value of 48 h when feeding a 5 fold effluent dilution from anaerobic hydrogen fermentation. Besides, hydrogen production occurred only when the NH 4 + concentration was below 17 mg-NH 4 + /l. Therefore, for successful fermentation effluent utilization, the most important things were to decrease the optimal HRT, increase the optimal substrate concentration and increase the tolerable ammonia concentration. In this study, a lab-scale serial photo-bioreactor was constructed. The reactor overall hydrogen production efficiency with synthetic wastewater exhibiting an organic acid profile identical to that of anaerobic hydrogen fermentation reactor effluent and with effluent from two anaerobic hydrogen fermentation reactors was evaluated. (authors)

  8. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  9. Thermal integration of SCWR nuclear and thermochemical hydrogen plants

    International Nuclear Information System (INIS)

    Wang, Z.; Naterer, G.F.; Gabriel, K.S.

    2010-01-01

    In this paper, the intermediate heat exchange between a Generation IV supercritical water-cooled nuclear reactor (SCWR) and a thermochemical hydrogen production cycle is discussed. It is found that the maximum and range of temperatures of a thermochemical cycle are the dominant parameters that affect the design of its coupling with SCWR. The copper-chlorine (Cu-Cl) thermochemical cycle is a promising cycle that can link with SCWRs. The location of extracting heat from a SCWR to a thermochemical cycle is investigated in this paper. Steam bypass lines downstream of the SCWR core are suggested for supplying heat to the Cu-Cl hydrogen production cycle. The stream extraction location is strongly dependent on the temperature requirements of the chemical steps of the thermochemical cycle. The available quantity of heat exchange at different hours of a day is also studied. It is found that the available heat at most hours of power demand in a day can support an industrial scale steam methane reforming plant if the SCWR power station is operating at full design capacity. (author)

  10. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL RECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002 REV. 1

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH, RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-12-01

    OAK-B135 Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy [1-1,1-2]. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties [1-3,1-4]. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily

  11. High temperature fast reactor for hydrogen production in Brazil; Reator nuclear rapido de altissima temperatura para producao de hidrogenio no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Jamil A. do; Ono, Shizuca; Guimaraes, Lamartine N.F. [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados]. E-mail: jamil@ieav.cta.br

    2008-07-01

    The main nuclear reactors technology for the Generation IV, on development phase for utilization after 2030, is the fast reactor type with high temperature output to improve the efficiency of the thermo-electric conversion process and to enable applications of the generated heat in industrial process. Currently, water electrolysis and thermo chemical cycles using very high temperature are studied for large scale and long-term hydrogen production, in the future. With the possible oil scarcity and price rise, and the global warming, this application can play an important role in the changes of the world energy matrix. In this context, it is proposed a fast reactor with very high output temperature, {approx} 1000 deg C. This reactor will have a closed fuel cycle; it will be cooled by lead and loaded with nitride fuel. This reactor may be used for hydrogen, heat and electricity production in Brazil. It is discussed a development strategy of the necessary technologies and some important problems are commented. The proposed concept presents characteristics that meet the requirements of the Generation IV reactor class. (author)

  12. A hybrid HTGR system producing electricity, hydrogen and such other products as water demanded in the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X., E-mail: yan.xing@jaea.go.jp; Noguchi, H.; Sato, H.; Tachibana, Y.; Kunitomi, K.; Hino, R.

    2014-05-01

    Alternative energy products are being considered by the Middle East countries for both consumption and export. Electricity, water, and hydrogen produced not from oil and gas are amongst those desirable. A hybrid nuclear production system, GTHTR300C, under development in JAEA can achieve this regional strategic goal. The system is based on a 600 MWt HTGR and equipped to cogenerate electricity by gas turbine and seawater desalination by using only the nuclear plant waste heat. Hydrogen is produced via a thermochemical water-splitting process driven by the reactor's 950 °C heat. Additionally process steam may be produced for industrial uses. An example is shown of manufacturing soda ash, an internationally traded commodity, from using the steam produced and the brine discharged from desalination. The nuclear reactor satisfies nearly all energy requirements for the hybrid generations without emitting CO{sub 2}. The passive safety of the reactor as described in the paper permits proximity of siting the reactor with the production facilities to enhance energy transmission. Production flowsheet of the GTHTR300C is given for up to 300 MWe electricity, 58 t/day hydrogen, 56,000 m{sup 3}/day potable water, 3500 t/day steam, and 1000 t/day soda ash. The production thermal efficiency reaches 88%.

  13. Liquid hydrogen production via hydrogen sulfide methane reformation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [University of Central Florida, Florida Solar Energy Center, 1769 Clearlake Road, Cocoa, FL 32922 (United States)

    2008-01-03

    Hydrogen sulfide (H{sub 2}S) methane (CH{sub 4}) reformation (H{sub 2}SMR) (2H{sub 2}S + CH{sub 4} = CS{sub 2} + 4H{sub 2}) is a potentially viable process for the removal of H{sub 2}S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H{sub 2}SMR produces carbon disulfide (CS{sub 2}), a liquid under ambient temperature and pressure - a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H{sub 2}SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH{sub 4} to H{sub 2}S ratios are needed. In this paper, we analyze H{sub 2}SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H{sub 2}SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively. (author)

  14. Estimation of optimal capacity of the module through the demand analysis of refinery hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Young-Seek; Kim, Ho-Jin; Kim, Il-Su [SK energy Institution of Technology, Daejeon (Korea, Republic of)] (and others)

    2006-02-15

    Hydrogen is focused as energy carrier, not an energy source on the rising of problems such as exhaustion of fossil fuel and environment pollution. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases. The oil refiners and petro-chemical plant are very large, centralized producers and users of industrial hydrogen, and they a high-potential early market for hydrogen produced by nuclear energy. Therefore, hydrogen market of petro-chemical industry as demand site for nuclear hydrogen was investigated and worked for demand forecast of hydrogen in 2020. Also we suggested possible supply plans of nuclear hydrogen considered regional characteristics. The hydrogen production cost was analyzed and estimated for nuclear hydrogen as well as conventional hydrogen production such as natural gas reforming and coal gasification in various range.

  15. Estimation of optimal capacity of the module through the demand analysis of refinery hydrogen

    International Nuclear Information System (INIS)

    Yoon, Young-Seek; Kim, Ho-Jin; Kim, Il-Su

    2006-02-01

    Hydrogen is focused as energy carrier, not an energy source on the rising of problems such as exhaustion of fossil fuel and environment pollution. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases. The oil refiners and petro-chemical plant are very large, centralized producers and users of industrial hydrogen, and they a high-potential early market for hydrogen produced by nuclear energy. Therefore, hydrogen market of petro-chemical industry as demand site for nuclear hydrogen was investigated and worked for demand forecast of hydrogen in 2020. Also we suggested possible supply plans of nuclear hydrogen considered regional characteristics. The hydrogen production cost was analyzed and estimated for nuclear hydrogen as well as conventional hydrogen production such as natural gas reforming and coal gasification in various range

  16. Photochemical hydrogen production system

    International Nuclear Information System (INIS)

    Copeland, R.J.

    1990-01-01

    Both technical and economic factors affect the cost of producing hydrogen by photochemical processes. Technical factors include the efficiency and the capital and operating costs of the renewable hydrogen conversion system; economic factors include discount rates, economic life, credit for co-product oxygen, and the value of the energy produced. This paper presents technical and economic data for a system that generates on-peak electric power form photochemically produced hydrogen

  17. Generation IV nuclear energy systems and hydrogen economy. New progress in the energy field in the 21st century

    International Nuclear Information System (INIS)

    Zang Mingchang

    2004-01-01

    The concept of hydrogen economy was initiated by the United States and other developed countries in the turn of the century to mitigate anxiety of national security due to growing dependence on foreign sources of energy and impacts on air quality and the potential effects of greenhouse gas emissions. Hydrogen economy integrates the primary energy used to produce hydrogen as a future energy carrier, hydrogen technologies including production, delivery and storage, and various fuel cells for transportation and stationary applications. A new hydrogen-based energy system would created as an important solution in the 21st century, flexible, affordable, safe, domestically produced, used in all sectors of the economy and in all regions of the country, if all the R and D plans and the demonstration come to be successful in 20-30 years. Among options of primary energy. Generation IV nuclear energy under development is particularly well suited to hydrogen production, offering the competitive position of large-scale hydrogen production with near-zero emissions. (author)

  18. Efficiency of the sulfur-iodine thermochemical water splitting process for hydrogen production based on ADS

    International Nuclear Information System (INIS)

    Gonzalez, D.; Garcia, L.; Garcia, C.; Garcia, L.; Brayner, C.

    2013-01-01

    The current hydrogel production is based on fossil fuels; they have a huge contribution to the atmosphere's pollution. thermochemical water splitting cycles don't present this issue because the required process heat is obtained from nuclear energy and therefore, the environmental impact is smaller than using conventional fuels. One of the promising approaches to produce large quantities of hydrogen in an efficient way using nuclear energy is the sulfur-iodine (S-I) thermochemical water splitting cycle. The nuclear source proposed in this paper is a pebble bed gas cooled transmutation facility. Pebble bed very high temperature advanced systems have great perspectives to assume the future nuclear energy. Software based on Chemical Process Simulation (CPS) can be used to simulate the thermochemical water splitting sulfur-iodine cycle for hydrogen production. In this paper, a model for analyzing the sulfur-iodine process sensibility is developed. Efficiency is also calculated and the influence of different parameters on this value. The behavior of the proposed model before different values of initial reactant's flow is analyzed. (Author)

  19. Towards nuclear energy applications other than electricity production

    International Nuclear Information System (INIS)

    Lecomte, M.

    2007-01-01

    Use of nuclear energy relies on operation of a boiler, involving practically no greenhouse gas emission. Whereas production of electricity is, nowadays, virtually its sole purpose, demand for heat production could equally arise, particularly with the emergence of high-temperature, or even very-high-temperature reactors. With the abilities this involves, as regards the recovery of heavy crude oils from tar sands, seawater desalination, or, most importantly, production of hydrogen by electrolysis, or thermochemistry, this being the energy carrier of tomorrow. (authors)

  20. US work on technical and economic aspects of electrolytic, thermochemical, and hybrid processes for hydrogen production at temperatures below 550 deg. C

    International Nuclear Information System (INIS)

    Petri, M.C.; Yyldyz, B.; Klickman, A.E.

    2006-01-01

    Hydrogen demand is increasing, but there are few options for affordable hydrogen production free of greenhouse gas emissions. Nuclear power is one of the most promising options. Most research is focused on high-temperature electrolytic and thermochemical processes for nuclear-generated hydrogen, but it will be many years before very high temperature reactors become commercially available. For light water reactors or supercritical reactors, low-temperature water electrolysis is a currently available technology for hydrogen production. Higher efficiencies may be gained through thermo-electrochemical hydrogen production cycles, but there are only a limited number that have heat requirements consistent with the lower temperatures of light-water reactor technology. Indeed, active research is ongoing for only three such cycles in the USA. Reductions in electricity and system costs would be needed (or the imposition of a carbon tax) for low-temperature water electrolysis to compete with today's costs for steam methane reformation. The interactions between hydrogen and electricity markets and hydrogen and electricity producers are complex and will evolve as the markets evolve. (author)

  1. The hydrogen production; La production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Aujollet, P.; Goldstein, St. [CEA Cadarach, Dir. de l' Energie Nucleaire, 13 - Saint Paul lez Durance (France); Lucchese, P. [CEA Fontenay aux Roses, Dir. des Nouvelles Technologies de l' Energie, 92 (France)

    2002-07-01

    This paper gives an overview on the implementing of the hydrogen as substitution fuel in the transportation sector. It presents also the problems of this fuel storage and exploitation and describes the production modes and their safety. It also presents the main lines of the japan HTGR program. (A.L.B.)

  2. Engineering Design Elements of a Two-Phase Thermosyphon to Trannsfer NGNP Nuclear Thermal Energy to a Hydrogen Plant

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwal

    2009-07-01

    Two hydrogen production processes, both powered by a Next Generation Nuclear Plant (NGNP), are currently under investigation at Idaho National Laboratory. The first is high-temperature steam electrolysis, which uses both heat and electricity; the second is thermo-chemical production through the sulfur iodine process primarily using heat. Both processes require a high temperature (>850°C) for enhanced efficiency; temperatures indicative of the NGNP. Safety and licensing mandates prudently dictate that the NGNP and the hydrogen production facility be physically isolated, perhaps requiring separation of over 100 m.

  3. HTTR demonstration program for nuclear cogeneration of hydrogen and electricity

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Sumita, Junya; Terada, Atsuhiko; Ohashi, Hirofumi; Yan, Xing L.; Nishihara, Tetsuo; Tachibana, Yukio; Inagaki, Yoshiyuki

    2015-01-01

    Japan Atomic Energy Agency initiated a High Temperature Engineering Test Reactor (HTTR) demonstration program in accordance with recommendations of a task force established by Ministry of Education, Culture, Sports, Science and Technology according to the Strategic Energy Plan as of April 2014. The demonstration program is designed to complete helium gas turbine and hydrogen production system technologies aiming at commercial plant deployment in 2030s. The program begins with coupling a helium gas turbine in the secondary loop of the HTTR and expands by adding the H 2 plant to a tertiary loop to enable hydrogen cogeneration. Safety standards for coupling the helium gas turbine and H 2 plant to the nuclear reactor will be established through safety review in licensing. A system design and its control method are planned to be validated with a series of test operations using the HTTR-GT/H 2 plant. This paper explains the outline of HTTR demonstration program with a plant concept of the heat application system directed at establishing an HTGR cogeneration system with 950°C reactor outlet temperature for production of power and hydrogen as recommended by the task force. Commercial deployment strategy including a development plan for the helium gas turbine is also presented. (author)

  4. Limits for hydrogen production of a solar - hydrogen system in Cuernavaca, Mexico

    International Nuclear Information System (INIS)

    Arriaga, H.L.G.; Gutierrez, S.L.; Cano, U.

    2006-01-01

    In this work experimental data are used in order to estimate the production of hydrogen as a function of irradiance of a direct-interconnection of solar panel system with a SPE (Solid Polymer Electrolyte) electrolyzer (also Solar-Hydrogen system). The solar - hydrogen system, consists of a photovoltaic solar array of 36 panels (75 Watts each) of monocrystalline silicon interconnected with an electrolyzer stack of 25 cells (around 100 cm 2 of geometrical area) with a maximum hydrogen production of 1 Nm 3 /h. By the use of voltage, current density, energy consumption values of the whole solar-hydrogen system, an average efficiency up to 5% was estimated and an average of 3,800 NL of hydrogen per day can be expected. Also the maximum hydrogen production for the months of July and December (sunniest and least sunny months in the location) is predicted. (authors)

  5. Limits for hydrogen production of a solar - hydrogen system in Cuernavaca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Arriaga, H.L.G.; Gutierrez, S.L.; Cano, U. [Instituto de Investigaciones Electricas Av. Reforma 113, col. Palmira c.p.62490 Cuernavaca Morelos (Mexico)

    2006-07-01

    In this work experimental data are used in order to estimate the production of hydrogen as a function of irradiance of a direct-interconnection of solar panel system with a SPE (Solid Polymer Electrolyte) electrolyzer (also Solar-Hydrogen system). The solar - hydrogen system, consists of a photovoltaic solar array of 36 panels (75 Watts each) of monocrystalline silicon interconnected with an electrolyzer stack of 25 cells (around 100 cm{sup 2} of geometrical area) with a maximum hydrogen production of 1 Nm{sup 3}/h. By the use of voltage, current density, energy consumption values of the whole solar-hydrogen system, an average efficiency up to 5% was estimated and an average of 3,800 NL of hydrogen per day can be expected. Also the maximum hydrogen production for the months of July and December (sunniest and least sunny months in the location) is predicted. (authors)

  6. Appraisal of bio-hydrogen production schemes

    International Nuclear Information System (INIS)

    Bent Sorensen

    2006-01-01

    Work is ongoing on several schemes of biological hydrogen production. At one end is the genetic modification of biological systems (such as algae or cyanobacteria) to produce hydrogen from photosynthesis, instead of the energy-rich compounds (such as NADPH 2 ) normally constituting the endpoint of the transformations through the photo-systems. A second route is to collect and use the biomass produced by normal plant growth processes in a separate step that produces hydrogen. This may be done similar to biogas production by fermentation, where the endpoint is methane (plus CO 2 and minor constituents). Hydrogen could be the outcome of a secondary process starting from methane, involving any of the conventional methods of hydrogen production from natural gas. An alternative to fermentation is gasification of the biomass, followed by a shift-reaction leading to hydrogen. I compare advantages and disadvantages of these three routes, notably factors such as system efficiency, cost and environmental impacts, and also compare them to liquid biofuels. (author)

  7. Safety assessment for the IS process in a hydrogen production facility

    International Nuclear Information System (INIS)

    Cho, Nam Chul

    2005-08-01

    A substitute energy development have been required due to the dry up of the fossil fuel and an environmental problem. Consequently, among substitute energy to be discussed, producing hydrogen from water which does not release carbon is a very promising technology. Also, Iodine-Sulfur(IS) thermochemical water decomposition is one of the promising process which is used to produce hydrogen efficiently using the high temperature gas-cooled reactor(HTGR) as an energy source that is possible to supply heat over 1000 .deg. C. In this study, to make a safety assessment of the hydrogen production using the IS process, an initiating events analysis and an accident scenario modeling considering the relief system were carried out. A method for initiating event identification used the Master Logic Diagram(MLD) that is logical and deductive. As a result, 9 initiating events that cause a leakage of the chemical material were identified. 6 accident scenario based on the initiating event are identified and quantified to the event trees. The frequency of the chemical material leakage produced by IS process is estimated relatively high to the value of 1.22x10 -4 /y. Therefore, it requires more effort on safety of the hydrogen production which can be considered as a part of the nuclear system and safety management research to increase social acceptability. Moreover, these methods will be helpful to the safety assessment of the hydrogen production system of the IS process in general

  8. Hydrogen production from electrolysis in LHD-type helical reactor FFHR

    International Nuclear Information System (INIS)

    Yamada, S.; Sagara, A.; Imagawa, S.; Mito, T.; Motojima, O.

    2007-01-01

    The LHD-type helical power reactor, FFHR, is proposed by the National Institute for Fusion Science on the basis of the engineering achievements and confinement properties of the LHD. The output of the thermal power and electric power of the FFHR2m2 are optimized to 3 GW and 1 GW, respectively. To assess the technical potential of the FFHR2m2 operation style, hydrogen production from electrolysis is investigated in this report. Gaseous hydrogen of 700 tons per day can be produced by the electric power of 1 GW. The steam of 6,354 tons per day at 150 degree C is necessary in this case. Required heating power to produce the stem from the water at 20 degree C is 198 MW. In FFHR2m2, about 450 MW of thermal power is delivered via the scrape-off layer plasma to the divertors with double-null structure. The divertor may be one of the potential heat sources to produce the steam for the electrolysis. Hydrogen has to be packaged by compression or liquefaction, transported by trailer or pipeline, stored, and transferred to the end users. The four different styles of plant outputs were estimated: (A) 1 GW of power generation, (B) pressurized hydrogen gas of 625 tons per day, (C) liquid hydrogen of 574 tons per day, and (D) 0.824 GW of electricity plus 100 tons per day of liquid hydrogen. Case (A) is suitable for a largely constant level of power demand as well as a nuclear fission power plant. Case (B) and case (C) are dedicated hydrogen production and these cases are desirable as the infrastructure for the future fuel cell society. Case (D) has the flexibility in plant operation. Electrical power to the grid can be modulated if the excess electricity were used for the hydrogen production, at the constant power generation. This fraction rate of case (D) is appropriate for the levelization between on-peak and off-peak demand. Energy conversion efficiencies of these four cases are also discussed in this paper. (authors)

  9. Inhibition of the radiolytic hydrogen production in the nuclear waste of 'bitumen coated' type: study of the interaction between hydrogen and cobalt hydroxo-sulphide; Inhibition de la production d'hydrogene radiolytique dans les dechets nucleaires de type 'enrobes bitumineux': etude de l'interaction entre l'hydrogene et l'hydroxosulfure de cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, C

    2006-11-15

    In the nuclear field in France, the bitumen is mainly used for the conditioning of the radioactive muds generated by the fuel reprocessing. However, the self-irradiation of the bitumen induces a production of hydrogen which generates safety problems. The comparison of various storage sites showed that the presence of cobalt hydroxo sulphide limited such a production. Consequently, this compound was regarded as an 'inhibitor of radiolytic hydrogen production'. However, the origin of this phenomenon was not clearly identified. In order to propose an explanation to this inhibition phenomenon, model organic molecules were used to represent the components of the bitumen. Irradiations were carried out by protons to simulate the alpha radiolysis. The organic molecules irradiations by a proton beam showed that cobalt hydroxo sulphide CoSOH, does not act as a hydrogenation catalyst of unsaturated hydrocarbons, nor as a radicals scavenger, but consists of a trap of hydrogen. Experiments of hydrogen trapping at ambient temperature were carried out according to two techniques: gravimetry and manometry. The solid was characterized before and after interaction with hydrogen (infrared and Raman spectroscopies, X-ray diffraction). The initial solid was composed of amorphous cobalt hydroxo sulphide and a minor phase of cobalt hydroxide. The gravimetry and manometry experiments showed that the maximum of hydrogen trapping capacity is equal to 0.59 {+-} 0.18 mole of hydrogen per mole of cobalt. After interaction with hydrogen, the Co(OH){sub 2} phase disappeared and a new solid phase appeared corresponding to Co{sub 9}S{sub 8}. These observations, as well as the analysis of the gas phase, made it possible to conclude with the following reaction (1): 9 CoSOH + 11/2 H{sub 2} = Co{sub 9}S{sub 8} + 9 H{sub 2}O + H{sub 2}S (1). Gravimetry experiments at temperatures between 50 and 210 C revealed the desorption of water but not of hydrogen sulphide. The absence of hydrogen

  10. Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories

    International Nuclear Information System (INIS)

    Libert, M.; Bildstein, O.; Esnault, L.; Jullien, M.; Sellier, R.

    2011-01-01

    A thorough understanding of the energy sources used by microbial systems in the deep terrestrial subsurface is essential since the extreme conditions for life in deep biospheres may serve as a model for possible life in a nuclear waste repository. In this respect, H 2 is known as one of the most energetic substrates for deep terrestrial subsurface environments. This hydrogen is produced from abiotic and biotic processes but its concentration in natural systems is usually maintained at very low levels due to hydrogen-consuming bacteria. A significant amount of H 2 gas will be produced within deep nuclear waste repositories, essentially from the corrosion of metallic components. This will consequently improve the conditions for microbial activity in this specific environment. This paper discusses different study cases with experimental results to illustrate the fact that microorganisms are able to use hydrogen for redox processes (reduction of O 2 , NO 3- , Fe III) in several waste disposal conditions. Consequences of microbial activity include: alteration of groundwater chemistry and shift in geochemical equilibria, gas production or consumption, bio-corrosion, and potential modifications of confinement properties. In order to quantify the impact of hydrogen bacteria, the next step will be to determine the kinetic rate of the reactions in realistic conditions. (authors)

  11. Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories

    Science.gov (United States)

    Libert, M.; Bildstein, O.; Esnault, L.; Jullien, M.; Sellier, R.

    A thorough understanding of the energy sources used by microbial systems in the deep terrestrial subsurface is essential since the extreme conditions for life in deep biospheres may serve as a model for possible life in a nuclear waste repository. In this respect, H 2 is known as one of the most energetic substrates for deep terrestrial subsurface environments. This hydrogen is produced from abiotic and biotic processes but its concentration in natural systems is usually maintained at very low levels due to hydrogen-consuming bacteria. A significant amount of H 2 gas will be produced within deep nuclear waste repositories, essentially from the corrosion of metallic components. This will consequently improve the conditions for microbial activity in this specific environment. This paper discusses different study cases with experimental results to illustrate the fact that microorganisms are able to use hydrogen for redox processes (reduction of O 2, NO3-, Fe III) in several waste disposal conditions. Consequences of microbial activity include: alteration of groundwater chemistry and shift in geochemical equilibria, gas production or consumption, biocorrosion, and potential modifications of confinement properties. In order to quantify the impact of hydrogen bacteria, the next step will be to determine the kinetic rate of the reactions in realistic conditions.

  12. Evidence of 9Be  +  p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas

    Science.gov (United States)

    Krasilnikov, A. V.; Kiptily, V.; Lerche, E.; Van Eester, D.; Afanasyev, V. I.; Giroud, C.; Goloborodko, V.; Hellesen, C.; Popovichev, S. V.; Mironov, M. I.; contributors, JET

    2018-02-01

    The intensity of 9Be  +  p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be  +  p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.

  13. The hydrogen issue.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-01-17

    Hydrogen is often proposed as the fuel of the future, but the transformation from the present fossil fuel economy to a hydrogen economy will need the solution of numerous complex scientific and technological issues, which will require several decades to be accomplished. Hydrogen is not an alternative fuel, but an energy carrier that has to be produced by using energy, starting from hydrogen-rich compounds. Production from gasoline or natural gas does not offer any advantage over the direct use of such fuels. Production from coal by gasification techniques with capture and sequestration of CO₂ could be an interim solution. Water splitting by artificial photosynthesis, photobiological methods based on algae, and high temperatures obtained by nuclear or concentrated solar power plants are promising approaches, but still far from practical applications. In the next decades, the development of the hydrogen economy will most likely rely on water electrolysis by using enormous amounts of electric power, which in its turn has to be generated. Producing electricity by burning fossil fuels, of course, cannot be a rational solution. Hydroelectric power can give but a very modest contribution. Therefore, it will be necessary to generate large amounts of electric power by nuclear energy of by renewable energies. A hydrogen economy based on nuclear electricity would imply the construction of thousands of fission reactors, thereby magnifying all the problems related to the use of nuclear energy (e.g., safe disposal of radioactive waste, nuclear proliferation, plant decommissioning, uranium shortage). In principle, wind, photovoltaic, and concentrated solar power have the potential to produce enormous amounts of electric power, but, except for wind, such technologies are too underdeveloped and expensive to tackle such a big task in a short period of time. A full development of a hydrogen economy needs also improvement in hydrogen storage, transportation and distribution

  14. Preliminary Conceptual Design and Development of Core Technology of Very High Temperature Gas-Cooled Reactor Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jong Hwa; Kang, H. S.; Gil, C. S. and others

    2006-05-15

    For the nuclear hydrogen production system, the VHTR technology and the IS cycle technology are being developed. A comparative evaluation on the block type reactor and the pebble type reactor is performed to decide a proper nuclear hydrogen production reactor. 100MWt prismatic type reactor is tentatively decided and its safety characteristics are roughly investigated. Computation codes of nuclear design, thermo-fluid design, safety-performance analysis are developed and verified. Also, the development of a risk informed design technology is started. Experiments for metallic materials and graphites are carried out for the selection of materials of VHTR components. Diverse materials for process heat exchanger are studied in various corrosive environments. Pyrolytic carbon and SiC coating technology is developed and fuel manufacturing technology is basically established. Computer program is developed to evaluate the performance of coated particle fuels.

  15. Preliminary Conceptual Design and Development of Core Technology of Very High Temperature Gas-Cooled Reactor Hydrogen Production

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Kang, H. S.; Gil, C. S. and others

    2006-05-01

    For the nuclear hydrogen production system, the VHTR technology and the IS cycle technology are being developed. A comparative evaluation on the block type reactor and the pebble type reactor is performed to decide a proper nuclear hydrogen production reactor. 100MWt prismatic type reactor is tentatively decided and its safety characteristics are roughly investigated. Computation codes of nuclear design, thermo-fluid design, safety-performance analysis are developed and verified. Also, the development of a risk informed design technology is started. Experiments for metallic materials and graphites are carried out for the selection of materials of VHTR components. Diverse materials for process heat exchanger are studied in various corrosive environments. Pyrolytic carbon and SiC coating technology is developed and fuel manufacturing technology is basically established. Computer program is developed to evaluate the performance of coated particle fuels

  16. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  17. Present status of r and d on hydrogen production by high temperature electrolysis of steam

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Aita, Hideki; Sekita, Kenji; Haga, Katsuhiro; Miyamoto, Yoshiaki; Iwata, Tomo-o.

    1995-08-01

    In JAERI, design and R and D works on hydrogen production process have been conducted for connecting to the HTTR under construction at the Oarai Establishment of the JAERI as the nuclear heat utilization system. As for a hydrogen production process by high-temperature electrolysis of steam, laboratory-scale experiments have been conducted using a practical electrolysis tube with 12 cells connected in series. Hydrogen was produced at a maximum density of 44 Nml/cm 2 h at 950degC, and know-how of operational procedures and operational experience have been also accumulated. Then, a self-supporting planar electrolysis cell was fabricated in order to improve hydrogen production performance. In the preliminary test with the planar cell, hydrogen has been produced continuously at a maximum density of 36 Nml/cm 2 h at lower electrolysis temperature of 850degC. This report presents typical test results mentioned above, a review of previous studies conducted in the world and R and D items required for connecting to the HTTR. (author)

  18. Hydrogen production by recombinant Escherichia coli strains

    Science.gov (United States)

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  19. Hydrogen behavior in light-water reactors

    International Nuclear Information System (INIS)

    Berman, M.; Cummings, J.C.

    1984-01-01

    The Three Mile Island accident resulted in the generation of an estimated 150 to 600 kg of hydrogen, some of which burned inside the containment building, causing a transient pressure rise of roughly 200 kPa (2 atm). With this accident as the immediate impetus and the improved safety of reactors as the long-term goal, the nuclear industry and the Nuclear Regulatory Commission initiated research programs to study hydrogen behavior and control during accidents at nuclear plants. Several fundamental questions and issues arise when the hydrogen problem for light-water-reactor plants is examined. These relate to four aspects of the problem: hydrogen production; hydrogen transport, release, and mixing; hydrogen combustion; and prevention or mitigation of hydrogen combustion. Although much has been accomplished, some unknowns and uncertainties still remain, for example, the rate of hydrogen production during a degraded-core or molten-core accident, the rate of hydrogen mixing, the effect of geometrical structures and scale on combustion, flame speeds, combustion completeness, and mitigation-scheme effectiveness. This article discusses the nature and extent of the hydrogen problem, the progress that has been made, and the important unresolved questions

  20. Hydrogen treatment system in the Genkai nuclear power plant No. 2

    International Nuclear Information System (INIS)

    Nakamura, Masayuki; Kodama, Hideo; Murashima, Masayasu

    1977-01-01

    The new hydrogen treatment system which injects hydrogen into the volume control tank for purging the mixed waste gas of Kr, Xe, etc. is adopted in the Genkai nuclear power plant No. 2. The system is composed of mainly the waste gas pretreatment equipment, a palladium alloy membrane type hydrogen separator, a hydrogen compressor, and a waste gas decay tank. The outline of the primary cooling system and the chemical volume control system of PWR, the hydrogen treatment system, and the gaseous waste disposal system of original and new types for the Genkai nuclear power plants No. 1 and 2 are explained in this paper. This newly added hydrogen treatment system will be able to reduce the rare gas concentration rate in the primary coolant to about 1/2 and 1/5 for Kr 85 and Xe 133 , respectively. (auth.)

  1. Isotopic and spin-nuclear effects in solid hydrogens (Review Article)

    Science.gov (United States)

    Freiman, Yuri A.; Crespo, Yanier

    2017-12-01

    The multiple isotopic family of hydrogens (H2, HD, D2, HT, DT, T2) due to large differences in the de Boer quantum parameter and inertia moments displays a diversity of pronounced quantum isotopic solid-state effects. The homonuclear members of this family (H2, D2, T2) due to the permutation symmetry are subjects of the constraints of quantum mechanics which link the possible rotational states of these molecules to their total nuclear spin giving rise to the existence of two spin-nuclear modifications, ortho- and parahydrogens, possessing substantially different properties. Consequently, hydrogen solids present an unique opportunity for studying both isotope and spin-nuclear effects. The rotational spectra of heteronuclear hydrogens (HD, HT, DT) are free from limitations imposed by the permutation symmetry. As a result, the ground state of these species in solid state is virtually degenerate. The most dramatic consequence of this fact is an effect similar to the Pomeranchuk effect in 3He which in the case of the solid heteronuclear hydrogens manifests itself as the reentrant broken symmetry phase transitions. In this review article we discuss thermodynamic and kinetic effects pertaining to different isotopic and spin-nuclear species, as well as problems that still remain to be solved.

  2. Bio-hydrogen Production Potential from Market Waste

    Directory of Open Access Journals (Sweden)

    Lanna Jaitalee

    2010-07-01

    Full Text Available This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS of organic waste were varied from 2%, 3% and 5% respectively. The pH was controlled at 5.5 for all batches in the experiment. The results showed that bio-hydrogen production depended on feed-substrate concentration. At initial TVS content of 3%, the highest hydrogen production was achieved at a level of 0.59 L-H2/L at pH 5.5. The maximum hydrogen yield was 15.3 ml H2/g TVS or 8.5 ml H2/g COD. The composition of H2 in the biogas ranged from 28.1-30.9% and no CH4 was detected in all batch tests.

  3. Microwave plasma for hydrogen production from liquids

    Directory of Open Access Journals (Sweden)

    Czylkowski Dariusz

    2016-06-01

    Full Text Available The hydrogen production by conversion of liquid compounds containing hydrogen was investigated experimentally. The waveguide-supplied metal cylinder-based microwave plasma source (MPS operated at frequency of 915 MHz at atmospheric pressure was used. The decomposition of ethanol, isopropanol and kerosene was performed employing plasma dry reforming process. The liquid was introduced into the plasma in the form of vapour. The amount of vapour ranged from 0.4 to 2.4 kg/h. Carbon dioxide with the flow rate ranged from 1200 to 2700 NL/h was used as a working gas. The absorbed microwave power was up to 6 kW. The effect of absorbed microwave power, liquid composition, liquid flow rate and working gas fl ow rate was analysed. All these parameters have a clear influence on the hydrogen production efficiency, which was described with such parameters as the hydrogen production rate [NL(H2/h] and the energy yield of hydrogen production [NL(H2/kWh]. The best achieved experimental results showed that the hydrogen production rate was up to 1116 NL(H2/h and the energy yield was 223 NL(H2 per kWh of absorbed microwave energy. The results were obtained in the case of isopropanol dry reforming. The presented catalyst-free microwave plasma method can be adapted for hydrogen production not only from ethanol, isopropanol and kerosene, but also from different other liquid compounds containing hydrogen, like gasoline, heavy oils and biofuels.

  4. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion; Developpement de populations microbiennes oxydant l'hydrogene produit par radiolyse ou par corrosion des metaux

    Energy Technology Data Exchange (ETDEWEB)

    Libert, M F; Sellier, R; Marty, V; Camaro, S [CEA Cadarache, Dept. d' Entreposage et de Stockage des Dechets (DCC/DESD/SEP), 13 - Saint-Paul-lez-Durance (France)

    2000-07-01

    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H{sub 2} production in a bituminized nuclear waste environment were simulated in the present study: - H{sub 2} production by iron corrosion under anaerobic conditions was simulated by adding 10% of H{sub 2} in the atmosphere; - H{sub 2} production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H{sub 2} in water allows the growth of hydrogen oxidizing bacteria leading to: - CO{sub 2} and N{sub 2} production; - H{sub 2} consumption; - lower NO{sub 3}{sup -} concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO{sub 3}{sup -} release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H{sub 2} instead of hydrocarbons. (authors)

  5. Solutions to commercializing metal hydride hydrogen storage products

    International Nuclear Information System (INIS)

    Tomlinson, J.J.; Belanger, R.

    2004-01-01

    'Full text:' Whilst the concept of a Hydrogen economy in the broad sense may for some analysts and Fuel Cell technology developers be an ever moving target the use of hydrogen exists and is growing in other markets today. The use of hydrogen is increasing. Who are the users? What are their unique needs? How can they better be served? As the use of hydrogen increases there are things we can do to improve the perception and handling of hydrogen as an industrial gas that will impact the future issues of hydrogen as a fuel thereby assisting the mainstream availability of hydrogen fuel a reality. Factors that will induce change in the way hydrogen is used, handled, transported and stored are the factors to concentrate development efforts on. Other factors include: cost; availability; safety; codes and standards; and regulatory authorities acceptance of new codes and standards. New methods of storage and new devices in which the hydrogen is stored will influence and bring about change and increased use. New innovative products based on Metal Hydride hydrogen storage will address some of the barriers to widely distributed hydrogen as a fuel or energy carrier to which successful fuel cell product commercialization is subject. Palcan has developed innovative products based on it's Rare Earth Metal Hydride alloy. Some of these innovations will aid the distribution of hydrogen as a fuel and offer alternatives to the existing hydrogen user and to the Fuel Cell product developer. An overview of the products and how these products will affect the distribution and use of hydrogen as an industrial gas and fuel is presented. (author)

  6. Hydrogen Production Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Hydrogen Production Technical Team Roadmap identifies research pathways leading to hydrogen production technologies that produce near-zero net greenhouse gas (GHG) emissions from highly efficient and diverse renewable energy sources. This roadmap focuses on initial development of the technologies, identifies their gaps and barriers, and describes activities by various U.S. Department of Energy (DOE) offices to address the key issues and challenges.

  7. Production of hydrogen by direct gasification of coal with steam using nuclear heat

    Science.gov (United States)

    1975-01-01

    Problems related to: (1) high helium outlet temperature of the reactor, and (2) gas generator design used in hydrogen production are studied. Special attention was given to the use of Oklahoma coal in the gasification process. Plant performance, operation, and environmental considerations are covered.

  8. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  9. Hydrogen production by alkaline water electrolysis

    OpenAIRE

    Santos, Diogo M. F.; Sequeira, César A. C.; Figueiredo, José L.

    2013-01-01

    Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article...

  10. Measurement of hydrogen in BCN films by nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko [Kanazawa Univ. (Japan); Awazu, Kaoru [Industrial Research Inst., of Ishikawa, Kanazawa (Japan); Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-07-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influence on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem produce the films with the properties required. Ion beam techniques using nuclear reactions are effective for the quantitative determination of hydrogen concentration. A specially designed spectrometer is employed for the detailed determination of hydrogen concentrations by detecting 4.43MeV {gamma}-rays from the resonant nuclear reactions {sup 1}H({sup 15}N, {alpha}{gamma}){sup 12}C at the 6.385MeV. In this study, the BCN films were formed on silicon substrate by ion beam assisted deposition (IBAD), in which boron and carbon were deposited by electron beam heating of B{sub 4}C solid and nitrogen was supplied by ion implantation simultaneously. The concentrations of hydrogen in BCN films were measured using RNRA. The mechanical properties of BCN films were evaluated using an ultra-micro-hardness tester. It was confirmed that the hardness of BCN films increased with increasing the concentration of hydrogen. (author)

  11. Laser-driven nuclear-polarized hydrogen internal gas target

    International Nuclear Information System (INIS)

    Seely, J.; Crawford, C.; Clasie, B.; Xu, W.; Dutta, D.; Gao, H.

    2006-01-01

    We report the performance of a laser-driven polarized internal hydrogen gas target (LDT) in a configuration similar to that used in scattering experiments. This target used the technique of spin-exchange optical pumping to produce nuclear spin polarized hydrogen gas that was fed into a cylindrical storage (target) cell. We present in this paper the performance of the target, methods that were tried to improve the figure-of-merit (FOM) of the target, and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation and the experimental results were in good agreement with the results from the simulation. The best experimental result achieved was at a hydrogen flow rate of 1.1x10 18 atoms/s, where the sample beam exiting the storage cell had 58.2% degree of dissociation and 50.5% polarization. Based on this measurement, the atomic fraction in the storage cell was 49.6% and the density averaged nuclear polarization was 25.0%. This represents the highest FOM for hydrogen from an LDT and is higher than the best FOM reported by atomic beam sources that used storage cells

  12. Thermodynamic analysis of a nuclear-hydrogen power system using H2/O2 direct combustion product as a working substance in the bottom cycle

    International Nuclear Information System (INIS)

    Chen, D.Z.; Yu, C.P.

    1990-01-01

    A combined thermodynamic cycle using nuclear and hydrogen energy as heat sources was investigated in this paper. The cycle is composed of top cycle using HTGR as energy source and helium as working medium and a bottom cycle with H 2 /O 2 direct combustion product as working substance. hydrogen and oxygen are thermochemically by splitting of water produced through a part of nuclear heat recovered from the top cycle. They may be delivered to the O 2 /H 2 users or used as fuels for the high temperature bottom Rankine steam cycle. The combined cycle not only uses the new energy sources instead of conventional fossil fuels but it possess the advantages of both helium and steam cycle. It has a high thermal efficiency, large unit capacity, many-sided usage and less pollution. It may represent a new type of combined cycles for future energy conversion and power generation. Using computer diagram, a variety of schemes were calculated and analyzed. The influence of some main parameters upon the cycle performance were also studied

  13. Hydrogen Production From Water By Thermo-Chemical Methods (UT-3): Evaluation of Side Reactions By Simulation Process

    International Nuclear Information System (INIS)

    Rusli, A.

    1997-01-01

    Hydogen fuel with its advantages will be able to replace all the positions of fossil fuels post o il and gas or migas . Among the advantages of hydrogen fuel are pollution free, abundant of raw material in the form of water molecule, flexible in application, able to stroge and transport as well as fossil energy sources (oil and gas). Hydogen could be produced from water by means of thermochemical, thermolysis, photolysis and electrolysis. Nuclear heat (HTGR), solar heat or waste heat from steel industry can be used as energy source for these processes. In case of thermochemical method, some problems realated to production process should be studied and evaluated. Simulation is considered can be applied to study the effects of side reactions and also to resolve its problems in hydrogen production process. In this paper is reported the evalution results of hydrogen production process by thermochemical (UT-3) through both of the experimental and computer simulation. It has been proposed a new flow chart of hydrogen production to achieve the hydrogen production continuously. A simulator has been developed based on experimental data and related mathematical equations. This simulator can be used to scle-up the UT-3 thermochemical cycle for hydrogen production process

  14. New concepts in hydrogen production in Iceland

    International Nuclear Information System (INIS)

    Arnason, B.; Sigfusson, T.I.; Jonsson, V.K.

    1993-01-01

    The paper presents some new concepts of hydrogen production in Iceland for domestic use and export. A brief overview of the Icelandic energy consumption and available resources is given. The cost of producing hydrogen by electrolysis is calculated for various alternatives such as plant size, load factors and electricity cost. Comparison is made between the total cost of liquid hydrogen delivered to Europe from Iceland and from Northern America, showing that liquid hydrogen delivered to Europe from Iceland would be 9% less expensive. This assumes conventional technology. New technologies are suggested in the paper and different scenarios for geothermally assisted hydrogen production and liquefaction are discussed. It is estimated that the use of geothermal steam would lead to 19% lower hydrogen gas production costs. By analysing the Icelandic fishing fleet, a very large consumer of imported fuel, it is argued that a transition of fuel technology from oil to hydrogen may be a feasible future option for Iceland and a testing ground for changing fuel technology. (Author)

  15. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    Directory of Open Access Journals (Sweden)

    Ten-See Wang

    Full Text Available A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process. Keywords: Hydrogen decomposition reactions, Hydrogen recombination reactions, Hydrogen containment process, Nuclear thermal propulsion, Ground testing

  16. Renewable solar hydrogen production and utilization

    International Nuclear Information System (INIS)

    Bakos, J.

    2006-01-01

    There is a tremendous opportunity to generate large quantities of hydrogen from low grade and economical sources of methane including landfill gas, biogas, flare gas, and coal bed methane. The environmental benefits of generating hydrogen using renewable energy include significant greenhouse gas and air contaminant reductions. Solar Hydrogen Energy Corporation (SHEC LABS) recently constructed and demonstrated a Dry Fuel Reforming (DFR) hydrogen generation system that is powered primarily by sunlight focusing-mirrors in Tempe, Arizona. The system comprises a solar mirror array, a temperature controlling shutter system, and two thermo-catalytic reactors to convert methane, carbon dioxide, and water into hydrogen. This process has shown that solar hydrogen generation is feasible and cost-competitive with traditional hydrogen production. The presentation will provide the following: An overview of the results of the testing conducted in Tempe, Arizona; A look at the design and installation of the scaled-up technology site at a landfill site in Canada; An examination of the economic and environmental benefits of renewable hydrogen production using solar energy

  17. An evaluation of reactor cooling and coupled hydrogen production processes using the modular helium reactor

    International Nuclear Information System (INIS)

    Harvego, E.A.; Reza, S.M.M.; Richards, M.; Shenoy, A.

    2006-01-01

    The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using either thermochemical or high-temperature electrolysis (HTE) processes. Using heat from the MHR to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been the subject of a U.S. Department of Energy sponsored Nuclear Engineering Research Initiative (NERI) project led by General Atomics, with participation from the Idaho National Laboratory (INL) and Texas A and M University. While the focus of much of the initial work was on the SI thermochemical production of hydrogen, recent activities included development of a preconceptual design for an integral HTE hydrogen production plant driven by the process heat and electricity produced by a 600 MW MHR. This paper describes ATHENA analyses performed to evaluate alternative primary system cooling configurations for the MHR to minimize peak reactor vessel and core temperatures while achieving core helium outlet temperatures in the range of 900-1000 deg. C that are needed for the efficient production of hydrogen using either the SI or HTE process. The cooling schemes investigated are intended to ensure peak fuel temperatures do not exceed specified limits under normal or transient upset conditions, and that reactor vessel temperatures do not exceed American Society of Mechanical Engineers (ASME) code limits for steady-state or transient conditions using standard light water reactor vessel materials. Preconceptual designs for SI and HTE hydrogen production plants driven by one or more 600 MW MHRs at helium outlet temperatures in the range of 900-1000 deg. C are described and compared. An initial SAPHIRE model to evaluate the reliability, maintainability, and availability of the SI hydrogen production plant is also described. Finally, a preliminary flowsheet for a conceptual design of an HTE hydrogen production plant coupled to a 600 MW modular helium reactor is presented and

  18. Extremophile mediated hydrogen production for hydrogenation of substrates in aqueous media

    Science.gov (United States)

    Anjom, Mouzhgun

    Catalytic hydrogenation reactions are pervasive throughout our economy, from production of margarine as food, liquid fuels for transportation and chiral drugs such as L-DOPA. H2 production from non-fossil fuel feedstocks is highly desirable for transition to the "Hydrogen Economy". Also, the rates of hydrogenation reactions that involve a substrate, H 2 gas and a catalyst are often limited by the solubility of H2 in solvent. The present research thus envisioned designing water-soluble catalysts that could effectively utilize biologically produced H2 in a coupled system to hydrogenate substrates in homogeneous mode (two-phase system). Biological production of H2 as an end product or byproduct of the metabolism of organisms that operate under strict anaerobic conditions has been proposed. However, contrary to what was previously observed, Thermotoga neapolitana, belonging to the order of Thermotogales efficiently produces H2 gas under microaerobic conditions (Van Ooteghem et al. 2004). For H2 production by T. neapolitana in the bacterial growth medium (DSM 5068) at an optimum temperature of 70 C, our results in batch mode show that: (1) H2 was produced from glucose though with 16% efficiency, the rest goes to biomass production, (2) H2 gas was produced even when the cultures were inoculated under microaerobic conditions (up to 8% (v/v) O2) suggesting a protective mechanism for one or more [Fe-Fe] hydrogenases in T. neapolitana, (3) H2 production was pH dependent but addition of simple, non-toxic physiological buffering additives such as Methylene succinic acid increased H2 production and (4) H2 production rate varied linearly in the 100--6800 kPa pressure range. We then screened various water-soluble metal catalysts in batch mode and selected the RhCl3.3H2O/TPPTS (TPPTS is a water-soluble ligand) system that achieved 86% hydrogenation of Methylene succinic acid (an olefin) in an aqueous medium pressurized with preformed H2. When water was replaced with the DSM 5068

  19. Microbial electrolysis cells as innovative technology for hydrogen production

    International Nuclear Information System (INIS)

    Chorbadzhiyska, Elitsa; Hristov, Georgi; Mitov, Mario; Hubenova, Yolina

    2011-01-01

    Hydrogen production is becoming increasingly important in view of using hydrogen in fuel cells. However, most of the production of hydrogen so far comes from the combustion of fossil fuels and water electrolysis. Microbial Electrolysis Cell (MEC), also known as Bioelectrochemically Assisted Microbial Reactor, is an ecologically clean, renewable and innovative technology for hydrogen production. Microbial electrolysis cells produce hydrogen mainly from waste biomass assisted by various bacteria strains. The principle of MECs and their constructional elements are reviewed and discussed. Keywords: microbial Electrolysis Cells, hydrogen production, waste biomass purification

  20. High temperature fast reactor for hydrogen production in Brazil

    International Nuclear Information System (INIS)

    Nascimento, Jamil A. do; Ono, Shizuca; Guimaraes, Lamartine N.F.

    2008-01-01

    The main nuclear reactors technology for the Generation IV, on development phase for utilization after 2030, is the fast reactor type with high temperature output to improve the efficiency of the thermo-electric conversion process and to enable applications of the generated heat in industrial process. Currently, water electrolysis and thermo chemical cycles using very high temperature are studied for large scale and long-term hydrogen production, in the future. With the possible oil scarcity and price rise, and the global warming, this application can play an important role in the changes of the world energy matrix. In this context, it is proposed a fast reactor with very high output temperature, ∼ 1000 deg C. This reactor will have a closed fuel cycle; it will be cooled by lead and loaded with nitride fuel. This reactor may be used for hydrogen, heat and electricity production in Brazil. It is discussed a development strategy of the necessary technologies and some important problems are commented. The proposed concept presents characteristics that meet the requirements of the Generation IV reactor class. (author)

  1. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production.

    Science.gov (United States)

    RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie

    2011-06-01

    Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Evaluation of two processes of hydrogen production starting from energy generated by high temperature nuclear reactors; Evaluacion de dos procesos de produccion de hidrogeno a partir de energia generada por reactores nucleares de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J., E-mail: jvalle@upmh.edu.mx [Universidad Politecnica Metropolitana de Hidalgo, Boulevard Acceso a Tolcayuca 1009, Ex-Hacienda San Javier, 43860 Tolcayuca, Hidalgo (Mexico)

    2013-10-15

    In this work an evaluation to two processes of hydrogen production using energy generated starting from high temperature nuclear reactors (HTGR's) was realized. The evaluated processes are the electrolysis of high temperature and the thermo-chemistry cycle Iodine-Sulfur. The electrolysis of high temperature, contrary to the conventional electrolysis, allows reaching efficiencies of up to 60% because when increasing the temperature of the water, giving thermal energy, diminishes the electric power demand required to separate the molecule of the water. However, to obtain these efficiencies is necessary to have water vapor overheated to more than 850 grades C, temperatures that can be reached by the HTGR. On the other hand the thermo-chemistry cycle Iodine-Sulfur, developed by General Atomics in the 1970 decade, requires two thermal levels basically, the great of them to 850 grades C for decomposition of H{sub 2}SO{sub 4} and another minor to 360 grades C approximately for decomposition of H I, a high temperature nuclear reactor can give the thermal energy required for the process whose products would be only hydrogen and oxygen. In this work these two processes are described, complete models are developed and analyzed thermodynamically that allow to couple each hydrogen generation process to a reactor HTGR that will be implemented later on for their dynamic simulation. The obtained results are presented in form of comparative data table of each process, and with them the obtained net efficiencies. (author)

  3. Analysis and optimal process development of the iodine-Sulfur cycle for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Lee, Byung Jin

    2009-02-01

    Hydrogen is expected to be a main energy vector for the future society. Among many thermo-chemical water splitting technologies for mass production of hydrogen, Iodine-Sulfur (I-S) cycle is considered to be the most promising one. Originated in the 1980s by General Atomics in the United States, the I-S cycle utilizes high temperature heat from energy sources such as nuclear reactors. Despite its high viability relative to many other options, lots of technical challenges need to be resolved until it can practically contribute to the mass production of hydrogen. In the present work, based on the experimental data available from previous works and discussions collected through the literature survey, the optimal operating conditions were proposed for the Bunsen reaction, considering the key concerns of the I-S cycle: i.e., the liquid-liquid (L-L) phase separation performance, the water distributions between the sulfuric acid and poly-hydroiodic acid (HI x ) phases, the side reactions, and the operating cost due to the excess iodine and water. All the available experimental data were combined together, and a series of parametric studies were done to find out any trends among parameters. The optimal operating point is determined as 4 mol of excess iodine and 11 mol of excess water in the stoichiometry at temperature of 330K, while the allowable window ranges between 4∼6 mol for excess iodine, 11∼13 moles for excess water, and 330∼350K for temperature. As for the distribution of excess water after the Bunsen reaction and L-L phase separation, 5 mol moves to the sulfuric acid phase and 6∼8 mol to the HI x phase. By controlling the operation within this window, it should be possible to avoid the side reaction and iodine solidification, to increase the HI concentration well above the azeotrope in the HI x section, and to minimize the operating cost caused by the excess iodine and water. With the optimized Bunsen reaction process to yield an over-azeotropic HI liquid

  4. Negative hydrogen ion production mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bacal, M. [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Wada, M. [School of Science and Engineering, Doshisha University, Kyoto 610-0321 (Japan)

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  5. Research on hydrogen production system

    International Nuclear Information System (INIS)

    Nakagiri, Toshio

    2002-07-01

    Hydrogen is closely watched for environmental issues in recent years. In this research, hydrogen production systems and production techniques are widely investigated, and selected some hydrogen production process which have high validity for FBR system. Conclusions of the investigation are shown below. (1) Water-electrolysis processes and steam reform processes at low temperatures are already realized in other fields, so they well be easily adopted for FBR system. FBR system has no advantage when compared with other systems, because water-electrolysis processes can be adopted for other electricity generation system. On the other hand, FBR system has an advantage when steam reforming processes at low temperatures will be adopted, because steam reforming processes at 550-600degC can't be adopted for LWR. (2) Thermochemical processes will be able to adopted for FBR when process temperature will be lowered and material problems solved, because their efficiencies are expected high. Radiolysis processes which use ray (for example, gamma rya) emitted in reactor can be generate hydrogen easily, so they will be able to be adopted for FBR if splitting efficiency will be higher. Further investigation and R and D to realize these processes are considered necessary. (author)

  6. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  7. Nuclear reaction analysis of hydrogen in amorphous silicon and silicon carbide films

    International Nuclear Information System (INIS)

    Guivarc'h, A.; Le Contellec, M.; Richard, J.; Ligeon, E.; Fontenille, J.; Danielou, R.

    1980-01-01

    The 1 H( 11 B, α)αα nuclear reaction is used to determine the H content and the density of amorphous semiconductor Si 1 -sub(x)Csub(x)H 2 and SiHsub(z) thin films. Rutherford backscattering is used to determine the x values and infrared transmission to study the hydrogen bonds. We have observed a transfer or/and a release of hydrogen under bombardment by various ions and we show that this last effect must be taken into account for a correct determination of the hydrogen content. An attempt is made to correlate the hydrogen release with electronic and nuclear energy losses. (orig.)

  8. Decentralized and direct solar hydrogen production: Towards a hydrogen economy in MENA region

    Energy Technology Data Exchange (ETDEWEB)

    Bensebaa, Farid; Khalfallah, Mohamed; Ouchene, Majid

    2010-09-15

    Hydrogen has certainly some advantages in spite of its high cost and low efficiency when compared to other energy vectors. Solar energy is an abundant, clean and renewable source of energy, currently competing with fossil fuel for water heating without subsidy. Photo-electrochemical, thermo-chemicals and photo-biological processes for hydrogen production processes have been demonstrated. These decentralised hydrogen production processes using directly solar energy do not require expensive hydrogen infrastructure for packaging and delivery in the short and medium terms. MENA region could certainly be considered a key area for a new start to a global deployment of hydrogen economy.

  9. Hydrogen production from water: Recent advances in photosynthesis research

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  10. Roles Prioritization of Hydrogen Production Technologies for Promoting Hydrogen Economy in the Current State of China

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Gao, Suzhao; Tan, Shiyu

    2015-01-01

    Hydrogen production technologies play an important role in the hydrogen economy of China. However, the roles of different technologies played in promoting the development of hydrogen economy are different. The role prioritization of various hydrogen production technologies is of vital importance...... information. The prioritization results by using the proposed method demonstrated that the technologies of coal gasification with CO2 capture and storage and hydropower-based water electrolysis were regarded as the two most important hydrogen production pathways for promoting the development of hydrogen...... for the stakeholders/decision-makers to plan the development of hydrogen economy in China and to allocate the finite R&D budget reasonably. In this study, DPSIR framework was firstly used to identify the key factors concerning the priorities of various hydrogen production technologies; then, a fuzzy group decision...

  11. Scenarios of hydrogen production from wind power

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, Mario

    2010-09-15

    Since almost total amount of hydrogen is currently being produced from natural gas, other ways of cleaner and 'more renewable' production should be made feasible in order to make benchmarks for total 'hydrogen economy'. Hydrogen production from wind power combined with electrolysis imposes as one possible framework for new economy development. In this paper various wind-to-hydrogen scenarios were calculated. Cash flows of asset based project financing were used as decision making tool. Most important parameters were identified and strategies for further research and development and resource allocation are suggested.

  12. Annex 15 of the IEA Hydrogen Implementing Agreement : Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lindblad, P. [Uppsala Univ., Uppsala (Sweden)]|[International Energy Agency, Paris (France)

    2004-07-01

    Task 15 of the Hydrogen Implementation Agreement of the International Energy Agency is to advance the science of biophotosynthesis of hydrogen, which is the biological production of hydrogen from water and sunlight using microalgal photosynthesis. A practical process for biophotolysis would result in an innovative biological source of sustainable and environmentally benign renewable energy source. Japan, Norway, Sweden and the United States initially committed to the project. Since then Canada, the Netherlands and the United Kingdom have joined. The current task is to produce hydrogen from both green algae and cyanobacteria with focus on early-stage applied research on biophotolysis processes with intermediate carbon dioxide fixation. Significant advances have also occurred in the scientific field of cyanobacterial biohydrogen. Cyanobacteria has enzymes that metabolise hydrogen. Photosynthetic cyanobacteria have simple nutritional requirements and can grow in air, water, or mineral salts with light as the only source of energy. This research will help provide the advances needed to achieve practical efficiencies and cost objectives of biological hydrogen production. tabs., figs.

  13. Thermodynamic analysis of the use a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water-splitting cycle for hydrogen production

    International Nuclear Information System (INIS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    2008-01-01

    the combined system comprising a SCW nuclear power generation plant and a chemical heat pump, which provides high-temperature heat to a thermochemical water splitting cycle for hydrogen production. It is concluded that the proposed chemical heat pump permits the utilization efficiency of nuclear energy to be improved by at least 2% without jeopardizing nuclear reactor safety. Based on this analysis, further research appears to be merited on the proposed advanced design of a nuclear power generation plant combined with a chemical heat pump, and implementation in appropriate applications seems worthwhile. (author)

  14. Fusion reactors for hydrogen production via electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    1979-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  15. Zero emission distributed hydrogen production

    International Nuclear Information System (INIS)

    Maddaloni, J.; Rowe, A.; Bailey, R.; McDonald, J.D.

    2004-01-01

    The need for distributed production facilities has become a critical issue in developing a hydrogen infrastructure. Hydrogen generation using processes that make effective use of what would normally be considered waste streams or process inefficiencies can have more favorable economics than stand-alone technologies. Currently, natural gas is distributed to industrial and residential customers through a network of pipelines. High pressure main lines move gas to the vicinity of consumers where the pressure is reduced for local, low pressure distribution. Often, the practice is to use an isenthalpic expansion which results in a cooling of the gas stream. Some of the natural gas is burned to preheat the fuel so that the temperature after the expansion is near ambient. This results in the destruction of exergy in the high pressure gas stream and produces CO 2 in the process. If, instead, a turbo-expander is used to reduce the stream pressure, work can be recovered using a generator and hydrogen can be produced via electrolysis. This method of hydrogen production is free of green-house gas emissions, makes use of existing gas distribution facilities, and uses exergy that would otherwise be destroyed. Pressure reduction using the work producing process (turbo-expander) is accompanied by a large drop in temperature, on the average of 70 K. The local gas distributor requires the gas temperature to be raised again to near 8 o C to prevent damage to valve assemblies. The required heating power after expansion can be on the order of megawatts (site dependent.) Supplying the heat can be seen as a cost if energy is taken from the system to reheat the fuel; however, the low temperature stream may also be considered an asset if the cooling power can be used for a local process. This analysis is the second stage of a study to examine the technical and economic feasibility of using pressure let-down sites as hydrogen production facilities. This paper describes a proposed

  16. Contribution to the analysis of hydrogenated amorphous silicon by nuclear methods

    International Nuclear Information System (INIS)

    Jeannerot, Luc.

    1981-01-01

    The physico chemical characterization of hydrogenated amorphous silicon thin films (0,5 to 2 μm thick) makes use of nuclear microanalysis for quantitative determination and depth profiling of the elements hydrogen, oxygen, argon and carbon. Concerning the methods, performances of the hydrogen analysis using the 1 H( 15 N, αγ) nuclear reaction are presented emphasizing the precision and the analytical consequences of the interaction ion-material. For charged particles data processing (mainly Rutherford backscattering) computer treatments have been developed either for concentration profile obtention as for spectra prediction of given material configurations. The essential results concerning hydrogenated silicon prepared by RF sputtering are on one hand the correlation between the oxygen incorporation and the beam-induced hydrogen effusion and in the other hand the role of the substrate in the impurities incorporation. From the study of the elaboration conditions of the material a tentative interpretation is made for the incorporation and the role of oxygen [fr

  17. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  18. Development of hydrogen production technology using FBR

    International Nuclear Information System (INIS)

    Ono, Kiyoshi; Otaki, Akira; Chikazawa, Yoshitaka; Nakagiri, Toshio; Sato, Hiroyuki; Sekine, Takashi; Ooka, Makoto

    2004-06-01

    This report describes the features of technology, the schedule and the organization for the research and development regarding the hydrogen production technology using FBR thermal energy. Now, the hydrogen production system is proposed as one of new business models for FBR deployment. This system is the production of hydrogen either thermal energy at approximately from 500degC to 550degC or electricity produced by a sodium cooled FBR. Hydrogen is expected to be one of the future clean secondary energies without carbon-dioxide emission. Meanwhile the global energy demand will increase, especially in Asian countries, and the energy supply by fossil fuels is not the best choice considering the green house effect and the stability of energy supply. The development of the hydrogen technology using FBR that satisfies 'sustainable energy development' and 'utilization of energies free from environmental pollution' will be one of the promising options. Based on the above mentioned recognition, we propose the direction of the development, the issues to be solved, the time schedule, the budget, and the organization for R and D of three hydrogen production technologies, the thermochemical hybrid process, the low temperature steam reforming process, and the high temperature steam electrolysis process in JNC. (author)

  19. Characterization of hydrogen, nitrogen, oxygen, carbon and sulfur in nuclear fuel (UO2) and cladding nuclear rod materials

    International Nuclear Information System (INIS)

    Crewe, Maria Teresa I.; Lopes, Paula Corain; Moura, Sergio C.; Sampaio, Jessica A.G.; Bustillos, Oscar V.

    2011-01-01

    The importance of Hydrogen, Nitrogen, Oxygen, Carbon and Sulfur gases analysis in nuclear fuels such as UO 2 , U 3 O 8 , U 3 Si 2 and in the fuel cladding such as Zircaloy, is a well known as a quality control in nuclear industry. In UO 2 pellets, the Hydrogen molecule fragilizes the metal lattice causing the material cracking. In Zircaloy material the H2 molecules cause the boiling of the cladding. Other gases like Nitrogen, Oxygen, Carbon and Sulfur affect in the lattice structure change. In this way these chemical compounds have to be measure within specify parameters, these measurement are part of the quality control of the nuclear industry. The analytical procedure has to be well established by a convention of the quality assurance. Therefore, the Oxygen, Carbon, Sulfur and Hydrogen are measured by infrared absorption (IR) and the nitrogen will be measured by thermal conductivity (TC). The gas/metal analyzer made by LECO Co. model TCHEN-600 is Hydrogen, Oxygen and Nitrogen analyzer in a variety of metals, refractory and other inorganic materials, using the principle of fusion by inert gas, infrared and thermo-coupled detector. The Carbon and Sulfur compounds are measure by LECO Co. model CS-400. A sample is first weighed and placed in a high purity graphite crucible and is casted on a stream of helium gas, enough to release the oxygen, nitrogen and hydrogen. During the fusion, the oxygen present in the sample combines with the carbon crucible to form carbon monoxide. Then, the nitrogen present in the sample is analyzed and released as molecular nitrogen and the hydrogen is released as gas. The hydrogen gas is measured by infrared absorption, and the sample gases pass through a trap of copper oxide which converts CO to CO 2 and hydrogen into water. The gases enter the cell where infrared water content is then converted making the measurement of total hydrogen present in the sample. The Hydrogen detection limits for the nuclear fuel is 1 μg/g for the Nitrogen

  20. Neutron-induced hydrogen and helium production in iron

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C.

    2004-01-01

    In support of the Advanced Fuel Cycle Initiative, cross sections for hydrogen and helium production by neutrons are being investigated on structural materials from threshold to 100 MeV with the continuous-in-energy spallation neutron source at the Los Alamos Neutron Science Center (LANSCE). The present measurements are for elemental iron. The results are compared with values from the ENDF/B-VI library and its extension with LA150 evaluations. For designs in the Advanced Fuel Cycle Initiative, structural materials will be subjected to very large fluences of neutrons, and the selection of these materials will be guided by their resistance to radiation damage. The macroscopic effects of radiation damage result both from displacement of atoms in the materials as well as nuclear transmutation. We are studying the production of hydrogen and helium by neutrons, because these gases can lead to significant changes in materials properties such as embrittlement and swelling. Our experiments span the full range from threshold to 100 MeV. The lower neutron energies are those characteristic of fission neutrons, whereas the higher energies are relevant for accelerator-based irradiation test facilities. Results for the nickel isotopes, {sup 58,60}Ni, have been reported previously. The present studies are on natural iron.

  1. Production cost comparisons of hydrogen from fossil and nuclear fuel and water decomposition

    Science.gov (United States)

    Ekman, K. R.

    1981-01-01

    The comparative costs entailed in producing hydrogen by major technologies that rely on petroleum, natural gas, coal, thermochemical cycles, and electrolysis are examined. Techniques were developed for comparing these processes by formulating the process data and economic assessments on a uniform and consistent basis. These data were normalized to permit a meaningful comparative analysis of product costs of these processes.

  2. How green are the hydrogen production processes?

    International Nuclear Information System (INIS)

    Miele, Ph.; Demirci, U.B.

    2010-01-01

    Molecular hydrogen is recognised as being one of the most promising fuels alternate to fossil fuels. Unfortunately it only exists combined with other elements like e.g. oxygen in the case of water and therefore has to be produced. Today various methods for producing molecular hydrogen are being investigated. Besides its energy potential, molecular hydrogen is regarded as being a green energy carrier because it can be produced from renewable sources and its combustion/oxidation generates water. However as it has to be produced its greenness merits a deeper discussion especially stressing on its production routes. The goal of the present article is to discuss the relative greenness of the various hydrogen production processes on the basis of the twelve principles of green chemistry. It is mainly showed that the combination 'renewable raw materials, biological or electrochemical methods, and renewable energies (e.g. solar or wind)' undeniably makes the hydrogen production green. (authors)

  3. Hydrogen production with fully integrated fuel cycle gas and vapour core reactors

    International Nuclear Information System (INIS)

    Anghaie, S.; Smith, B.

    2004-01-01

    This paper presents results of a conceptual design study involving gas and vapour core reactors (G/VCR) with a combined scheme to generate hydrogen and power. The hydrogen production schemes include high temperature electrolysis as well as two dominant thermochemical hydrogen production processes. Thermochemical hydrogen production processes considered in this study included the calcium-bromine process and the sulphur-iodine processes. G/VCR systems are externally reflected and moderated nuclear energy systems fuelled by stable uranium compounds in gaseous or vapour phase that are usually operated at temperatures above 1500 K. A gas core reactor with a condensable fuel such as uranium tetrafluoride (UF 4 ) or a mixture of UF 4 and other metallic fluorides (BeF 2 , LiF, KF, etc.) is commonly known as a vapour core reactor (VCR). The single most relevant and unique feature of gas/vapour core reactors is that the functions of fuel and coolant are combined into one. The reactor outlet temperature is not constrained by solid fuel-cladding temperature limits. The maximum fuel/working fluid temperature in G/VCR is only constrained by the reactor vessel material limits, which is far less restrictive than the fuel clad. Therefore, G/VCRs can potentially provide the highest reactor and cycle temperature among all existing or proposed fission reactor designs. Gas and vapour fuel reactors feature very low fuel inventory and fully integrated fuel cycle that provide for exceptional sustainability and safety characteristics. With respect to fuel utilisation, there is no fuel burn-up limit for gas core reactors due to continuous recycling of the fuel. Owing to the flexibility in nuclear design characteristics of cavity reactors, a wide range of conversion ratio from completely burner to breeder is achievable. The continuous recycling of fuel in G/VCR systems allow for complete burning of actinides without removing and reprocessing of the fuel. The only waste products at the back

  4. Hydrogen Production by Water Electrolysis Via Photovoltaic Panel

    Directory of Open Access Journals (Sweden)

    Hydrogen Production by Water Electrolysis Via Photovoltaic Panel

    2016-07-01

    Full Text Available Hydrogen fuel is a good alternative to fossil fuels. It can be produced using a clean energy without contaminated emissions. This work is concerned with experimental study on hydrogen production via solar energy. Photovoltaic module is used to convert solar radiation to electrical energy. The electrical energy is used for electrolysis of water into hydrogen and oxygen by using alkaline water electrolyzer with stainless steel electrodes. A MATLAB computer program is developed to solve a four-parameter-model and predict the characteristics of PV module under Baghdad climate conditions. The hydrogen production system is tested at different NaOH mass concentration of (50,100, 200, 300 gram. The maximum hydrogen production rate is 153.3 ml/min, the efficiency of the system is 20.88% and the total amount of hydrogen produced in one day is 220.752 liter.

  5. The Future of Nuclear Energy As a Primary Source for Clean Hydrogen Energy System in Developing Countries

    International Nuclear Information System (INIS)

    Ahmed, K.; Shaaban, H.

    2007-01-01

    The limited availability of fossil fuels compared to the increasing demand and the connected environmental questions have become topics of growing importance and international attention. Many other clean alternative sources of energy are available, but most of them are either relatively undeveloped technologically or are not yet fully utilized. Also, there is a need for a medium which can carry the produced energy to the consumer in a convenient and environmentally acceptable way. In this study, a fission reactor as a primary energy source with hydrogen as an energy carrier is suggested. An assessment of hydrogen production from nuclear energy is presented. A complete nuclear-electro-hydrogen energy system is proposed for a medium size city (population of 500,000). The whole energy requirement is assessed including residential, industrial and transportation energies. A preliminary economical and environmental impact study is performed on the proposed system. The presented work could be used as a nucleus for a feasibility study for applying this system in any newly established city

  6. Production of hydrogen from by-products of food industries by rhodospirillaceae

    Energy Technology Data Exchange (ETDEWEB)

    Reh, U.

    1983-11-01

    The decomposition of organic substances from food-by-products as whey, beet sugar molasses, cane-sugar-molasses and potato-water by the Rhodospirillaceae Rp. capsulata, Rp. acidophila, Rm. vannielii, Rs. rubrum, and Rs. tenue to hydrogen and carbon dioxide were tested. In a pre-cultivation Lactobacillus bulgaricus converted the sugars of the by-products into lactic acid, which is easier in handling. Rs. rubrum was superior in producing hydrogen from this nutrient. It released from whey up to 56% of the substrate hydrogen, from beet sugar molasses 42%, from cane-sugar-molasses 89% and from potato-water 19%. Out-door-researches were made to evaluate the decrease of hydrogen yield under the influence of weather as well as day and night periods compared to the homogeneous conditions of the laboratory. From 200 m/sup 3/ whey, the daily output of a dairy, 4000 m/sup 3/ hydrogen corresponding to an energy equivalent of 1000 l fuel oil could be produced. To achieve this, 130 000 m/sup 2/ have to be covered with batch fermenters. These results show, that there is nearly no hope to decompose food by-products by Rhodospirillaceae in large scale technology, unless a new processing technology using a flow-fermenter and raising the hydrogen production significantly will be found.

  7. Continuous hydrogen production from starch by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Keigo; Tanisho, Shigeharu [Yokohama National Univ. (Japan)

    2010-07-01

    This study was investigated the effect of hydraulic retention time (HRT) on hydrogen production rate, hydrogen yield and the production rate of volatile fatty acid. The experiment was performed in a continuous stirred tank reactor (CSTR) with a working volume of 1 L by using a Clostridium sp. The temperature of the CSTR was regulated 37 C. The pH was controlled 6.0 by the addition of 3 M of NaOH solution. Starch was used as the carbon source with the concentration of 30 g L{sup -1}. Hydrogen production rate increased from 0.9 L-H{sub 2} L-culture{sup -1} h{sup -1} to 3.2 L-H{sub 2} L-culture{sup -1} h{sup -1} along with the decrease of HRT from 9 h to 1.5 h. Hydrogen yield decreased at low HRT. The major volatile fatty acids are acetic acid, butyric acid and lactic acid. The production rates of acetic acid and butyric acid increased along with the decrease of HRT. On the other hand, the rate of lactic acid was low at high HRT while it increased at HRT 1.5 h. The increase of the production rate of lactic acid suggested one of the reasons that hydrogen yield decreased. (orig.)

  8. Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima Part II: modeling and experimental approaches for hydrogen production.

    Science.gov (United States)

    Auria, Richard; Boileau, Céline; Davidson, Sylvain; Casalot, Laurence; Christen, Pierre; Liebgott, Pierre Pol; Combet-Blanc, Yannick

    2016-01-01

    Thermotoga maritima is a hyperthermophilic bacterium known to produce hydrogen from a large variety of substrates. The aim of the present study is to propose a mathematical model incorporating kinetics of growth, consumption of substrates, product formations, and inhibition by hydrogen in order to predict hydrogen production depending on defined culture conditions. Our mathematical model, incorporating data concerning growth, substrates, and products, was developed to predict hydrogen production from batch fermentations of the hyperthermophilic bacterium, T. maritima . It includes the inhibition by hydrogen and the liquid-to-gas mass transfer of H 2 , CO 2 , and H 2 S. Most kinetic parameters of the model were obtained from batch experiments without any fitting. The mathematical model is adequate for glucose, yeast extract, and thiosulfate concentrations ranging from 2.5 to 20 mmol/L, 0.2-0.5 g/L, or 0.01-0.06 mmol/L, respectively, corresponding to one of these compounds being the growth-limiting factor of T. maritima . When glucose, yeast extract, and thiosulfate concentrations are all higher than these ranges, the model overestimates all the variables. In the window of the model validity, predictions of the model show that the combination of both variables (increase in limiting factor concentration and in inlet gas stream) leads up to a twofold increase of the maximum H 2 -specific productivity with the lowest inhibition. A mathematical model predicting H 2 production in T. maritima was successfully designed and confirmed in this study. However, it shows the limit of validity of such mathematical models. Their limit of applicability must take into account the range of validity in which the parameters were established.

  9. Techno-economic study of hydrogen production by high temperature electrolysis and coupling with different thermal energy sources

    International Nuclear Information System (INIS)

    Rivera-Tinoco, R.

    2009-03-01

    This work focuses on the techno-economic study of massive hydrogen production by the High Temperature Electrolysis (HTE) process and also deals with the possibility of producing the steam needed in the process by using different thermal energy sources. Among several sources, those retained in this study are the biomass and domestic waste incineration units, as well as two nuclear reactors (European Pressurised water Reactor - EPR and Sodium Fast Reactor - SFR). Firstly, the technical evaluation of the steam production by each of these sources was carried out. Then, the design and modelling of the equipments composing the process, specially the electrolysers (Solid Oxides Electrolysis Cells), are presented. Finally, the hydrogen production cost for each energy sources coupled with the HTE process is calculated. Moreover, several sensibility studies were performed in order to determine the process key parameter and to evaluate the influence of the unit size effect, the electric energy cost, maintenance, the cells current density, their investment cost and their lifespan on the hydrogen production cost. Our results show that the thermal energy cost is much more influent on the hydrogen production cost than the steam temperature at the outlet stream of the thermal source. It seems also that the key parameters for this process are the electric energy cost and the c ells lifespan. The first one contributes for more than 70% of the hydrogen production cost. From several cell lifespan values, it seems that a 3 year value, rather than 1 year, could lead to a hydrogen production cost reduced on 34%. However, longer lifespan values going from 5 to 10 years would only lead to a 8% reduction on the hydrogen production cost. (author)

  10. Hydrogen speciation in hydrated layers on nuclear waste glass

    International Nuclear Information System (INIS)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-01-01

    The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 and 165, and PNL 76-68), which were leached at 90 0 C (all glasses) or hydrated in a vapor-saturated atmosphere at 202 0 C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 μm layer on SRL-131 glass formed by leaching at 90 0 C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H + interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups

  11. Fuel production from coal by the Mobil Oil process using nuclear high-temperature process heat

    International Nuclear Information System (INIS)

    Hoffmann, G.

    1982-01-01

    Two processes for the production of liquid hydrocarbons are presented: Direct conversion of coal into fuel (coal hydrogenation) and indirect conversion of coal into fuel (syngas production, methanol synthesis, Mobil Oil process). Both processes have several variants in which nuclear process heat may be used; in most cases, the nuclear heat is introduced in the gas production stage. The following gas production processes are compared: LURGI coal gasification process; steam reformer methanation, with and without coal hydrogasification and steam gasification of coal. (orig./EF) [de

  12. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  13. Solar driven technologies for hydrogen production

    Directory of Open Access Journals (Sweden)

    Medojević Milovan M.

    2016-01-01

    Full Text Available Bearing in mind that the production of hydrogen based on renewable energy sources, without doubt, is an important aspect to be taken into account when considering the potential of this gas, where as particularly interesting technologies stand out the ones which are based on the use of solar energy to produce hydrogen. The goal of this paper provides basic technological trajectories, with the possibility of combining, for solar driven hydrogen production, such as: electrochemical, photochemical and thermochemical process. Furthermore, the paper presents an analysis of those technologies from a technical as well as economic point of view. In addition, the paper aims to draw attention to the fact that the generation of hydrogen using renewable energy should be imposed as a logical and proper way to store solar energy in the form of chemical energy.

  14. Biological hydrogen production by moderately thermophilic anaerobic bacteria

    International Nuclear Information System (INIS)

    HP Goorissen; AJM Stams

    2006-01-01

    This study focuses on the biological production of hydrogen at moderate temperatures (65-75 C) by anaerobic bacteria. A survey was made to select the best (moderate) thermophiles for hydrogen production from cellulolytic biomass. From this survey we selected Caldicellulosiruptor saccharolyticus (a gram-positive bacterium) and Thermotoga elfii (a gram-negative bacterium) as potential candidates for biological hydrogen production on mixtures of C 5 -C 6 sugars. Xylose and glucose were used as model substrates to describe growth and hydrogen production from hydrolyzed biomass. Mixed substrate utilization in batch cultures revealed differences in the sequence of substrate consumption and in catabolites repression of the two microorganisms. The regulatory mechanisms of catabolites repression in these microorganisms are not known yet. (authors)

  15. Feasibility of waste to Bio-diesel production via Nuclear-Biomass hybrid model. System dynamics analysis

    International Nuclear Information System (INIS)

    Nam, Hoseok; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    Nuclear-Biomass hybrid system which takes waste biomass from municipal, agricultural area, and forest as feedstock produces Bio-diesel fuel from synthesis gas generated by endothermic pyrolytic gasification using high temperature nuclear heat. Over 900 degree Celsius of exterior thermal heat from nuclear reactors, Very High Temperature Reactor (VHTR) and some other heat sources, bring about waste biomass gasification to produce maximum amount of chemical energy from feedstock. Hydrogen from Biomass gasification or Bio-diesel as the product of Fischer-Tropsch reaction following it provide fuels for transport sector. Nuclear-Biomass hybrid system is a new alternatives to produce more energy generating synergy effects by efficiently utilizing the high temperature heat from nuclear reactor that might be considerably wasted by thermal cycle, and also energy loss from biomass combustion or biochemical processes. System Dynamics approach is taken to analyze low-carbon synthesis fuel, Bio-diesel, production with combination of carbon monoxide and hydrogen from biomass gasification. Feedstock cost considering collection, transportation, storage and facility for biomass gasification impacts the economic feasibility of this model. This paper provides the implication of practical nuclear-biomass hybrid system application with feedstock supply chain through evaluation of economic feasibility. (author)

  16. Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application

    Directory of Open Access Journals (Sweden)

    Rajendra S. Gaikwad

    2011-01-01

    Full Text Available Cobalt ferrite, CoFe2O4, nanocrystalline films were deposited using electrostatic spray method and explored in sustainable hydrogen production application. Reflection planes in X-ray diffraction pattern confirm CoFe2O4 phase. The surface scanning microscopy photoimages reveal an agglomeration of closely-packed CoFe2O4 nanoflakes. Concentrated solar-panel, a two-step water splitting process, measurement technique was preferred for measuring the hydrogen generation rate. For about 5 hr sustainable, 440 mL/hr, hydrogen production activity was achieved, confirming the efficient use of cobalt ferrite nanocrystallites film in hydrogen production application.

  17. An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul; Ganjehkaviri, A.

    2015-01-01

    Highlights: • 40% of energy demand of Malaysia could be supplied by thermochemical process of PSR. • SCWG of PSR is preferable thermochemical process due to char and tar elimination. • Potential of H 2 production from SCWG of PSR is 1.05 × 10 10 kgH 2 per year in Malaysia. • Highly moisturized PSR could be used in hydrogen production by SCWG process. - Abstract: Hydrogen is one of the most promising energy carriers for the future of the world due to its tremendous capability of pollution reduction. Hydrogen utilization is free of toxic gases formation as well as carbon dioxide (CO 2 ) emission. Hydrogen production can be implemented using a wide variety of resources including fossil fuels, nuclear energy and renewable and sustainable energy (RSE). Amongst various RSE resources, biomass has great capacity to be employed for renewable hydrogen production. Hydrogen production from palm solid residue (PSR) via thermochemical process is a perfect candidate for waste-to-well strategy in palm oil mills in Malaysia. In this paper, various characteristics of hydrogen production from thermochemical process of PSR includes pyrolysis and gasification are reviewed. The annual oil palm fruits production in Malaysia is approximately 100 million tonnes which the solid waste of the fruits is capable to generate around 1.05 × 10 10 kgH 2 (1.26 EJ) via supercritical water gasification (SCWG) process. The ratio of energy output to energy input of SCWG process of PSR is about 6.56 which demonstrates the priority of SCWG to transform the energy of PSR into a high energy end product. The high moisture of PSR which is the most important barrier for its direct combustion, emerges as an advantage in thermochemical reactions and highly moisturized PSR (even more than 50%) is utilized directly in SCWG without application of any high cost drying process. Implementation of appropriate strategies could lead Malaysia to supply about 40% of its annual energy demand by hydrogen yield from

  18. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the

  19. Hydrogen from algal biomass: A review of production process

    Directory of Open Access Journals (Sweden)

    Archita Sharma

    2017-09-01

    Full Text Available Multifariousness of biofuel sources has marked an edge to an imperative energy issue. Production of hydrogen from microalgae has been gathering much contemplation right away. But, mercantile production of microalgae biofuels considering bio-hydrogen is still not practicable because of low biomass concentration and costly down streaming processes. This review has taken up the hydrogen production by microalgae. Biofuels are the up and coming alternative to exhaustible, environmentally and unsafe fossil fuels. Algal biomass has been considered as an enticing raw material for biofuel production, these days photobioreactors and open-air systems are being used for hydrogen production from algal biomass. The formers allow the careful cultivation control whereas the latter ones are cheaper and simpler. A contemporary, encouraging optimization access has been included called algal cell immobilization on various matrixes which has resulted in marked increase in the productivity per volume of a reactor and addition of the hydrogen-production phase.

  20. Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production

    DEFF Research Database (Denmark)

    Luo, Gang; Karakashev, Dimitar Borisov; Xie, Li

    2011-01-01

    Long-term effects of inoculum pretreatments(heat, acid, loading-shock) on hydrogen production from glucose under different temperatures (378C, 558C) and initial pH (7 and 5.5) were studied by repeated batch cultivations. Results obtained showed that it was necessary to investigate the long......-term effect of inoculum pretreatment on hydrogen production since pretreatments may just temporarily inhibit the hydrogen consuming processes. After long-term cultivation, pretreated inocula did not enhance hydrogen production compared to untreated inocula under mesophilic conditions (initial pH 7 and pH 5.......5) and thermophilic conditions (initial pH 7). However, pretreatment could inhibit lactate production and lead to higher hydrogen yield under thermophilic conditions at initial pH 5.5. The results further demonstrated that inoculum pretreatment could not permanently inhibit either methanogenesis or homoacetogenesis...

  1. Hydrogen production in a PWR during LOCA

    International Nuclear Information System (INIS)

    Cassette, P.

    1984-01-01

    Hydrogen generation during a PWR LOCA has been estimated for design basis accident and for two more severe hypothetical accidents. Hydrogen production during design basis accident is a rather slow mechanism, allowing in the worst case, 15 days to connect a hydrogen recombining unit to the containment atmosphere monitoring system. Hydrogen generated by steam oxidation during more severe hypothetical accidents was found limited by steam availability and fuel melting phenomena. Uncertainty is, however, still remaining on corium-zirconium-steam interaction. In the worst case, calculations lead to the production of 500 kg of hydrogen, thus leading to a volume concentration of 15% in containment atmosphere, assuming homogeneous hydrogen distribution within the reactor building. This concentration is within flammability limits but not within detonation limits. However, hydrogen detonation due to local hydrogen accumulation cannot be discarded. A major uncertainty subsisting on hydrogen hazard is hydrogen distribution during the first hours of the accident. This point determines the effects and consequences of local detonation or deflagration which could possibly be harmful to safeguard systems, or induce missile generation in the reactor building. As electrical supply failures are identified as an important contributor to severe accident risk, corrective actions have been taken in France to improve their reliability, including the installation of a gas turbine on each site to supplement the existing sources. These actions are thus contributing to hydrogen hazard reduction

  2. Nuclear H2 production - a utility perspective

    International Nuclear Information System (INIS)

    Keuter, D.

    2010-01-01

    Entergy is the second largest nuclear owner/operator in the United States with five nuclear units in the south operating under a cost of service structure and an additional six units in the Northeast and Midwest operating as merchant generating facilities. As a major nuclear operator in the merchant sector, Entergy wears the risk of nuclear operations - revenues are directly dependent upon operational performance. Our investment in merchant nuclear operations reflects our belief that use of nuclear energy in the competitive merchant environment can be an economically viable business venture. Over the past 10 years, our success in the merchant sector has led to our support for the expanded use of nuclear energy and more specifically the development and deployment of advanced nuclear technologies. Of particular interest today is Entergy's support for the development of HTGR - nuclear technologies that can expand the application of nuclear energy into the broader energy marketplace. Studies and economic evaluations, thus far, have indicated that HTGR can compete with premium fossil fuels in supplying process heat for industrial processes and may well become competitive in the production of hydrogen for the bulk market. We believe that the application of nuclear energy in the broader energy marketplace is of vital importance to our nation's energy security and as an experienced merchant nuclear operator, we believe that business opportunities in this broader energy market will emerge. (author)

  3. Calculations of hydrogen detonations in nuclear containments by the random choice method

    International Nuclear Information System (INIS)

    Delichatsios, M.A.; Genadry, M.B.

    1983-01-01

    Computer codes were developed for the prediction of pressure histories at different points of a nuclear containment wall due to postulated internal hydrogen detonations. These pressure histories are required to assess the structural response of a nuclear containment to hydrogen detonations. The compressible flow equations including detonation, which was treated as a sharp fluid discontinuity, were solved by the random choice method which reproduces maximum pressures and discontinuities sharply. The computer codes were validated by calculating pressure profiles and maximum wall pressures for plane and spherical geometries and comparing the results with exact analytic solutions. The two-dimensional axisymmetric program was used to calculate wall pressure histories in an actual nuclear containment. The numerical results for wall pressures are presented in a dimensionless form, which allows their use for different combinations of hydrogen concentration, and initial conditions. (orig.)

  4. Thermodynamic investigation and environment impact assessment of hydrogen production from steam reforming of poultry tallow

    International Nuclear Information System (INIS)

    Hajjaji, Noureddine

    2014-01-01

    Highlights: • Thermodynamic analysis and environmental impact assessment of H 2 production system. • Thermodynamic analysis identifies optimal conditions for H 2 production. • LCA is applied to evaluate the environmental impacts of H 2 production system. • Inventories data are derived from process simulation and from literature review. • Thermal energy process is the main contributor to the environmental impact. - Abstract: In this research, various assessment tools are applied to comprehensively investigate hydrogen production from steam reforming of poultry tallow (PT). These tools investigate the chemical reactions, design and simulate the entire hydrogen production process, study the energetic performance and perform an environment impact assessment using life cycle assessment (LCA) methodology. The chemical reaction investigation identifies thermodynamically optimal operating conditions at which PT may be converted to hydrogen via the steam reforming process. The synthesis gas composition was determined by simulations to minimize the Gibbs free energy using the Aspen Plus™ 10.2 software. These optimal conditions are, subsequently, used in the design and simulation of the entire PT-to-hydrogen process. LCA is applied to evaluate the environmental impacts of PT-to-hydrogen system. The system boundaries include rendering and reforming along with the required transportation process. The reforming inventories data are derived from process simulation in Aspen Plus™, whereas the rendering data are adapted from a literature review. The life cycle inventories data of PT-to-hydrogen are computationally implemented into SimaPro 7.3. A set of seven relevant environmental impact categories are evaluated: global warming, abiotic depletion, acidification, eutrophication, ozone layer depletion, photochemical oxidant formation, and cumulative non-renewable fossil and nuclear energy demand. The results are subject to a systematic sensitivity analysis and compared

  5. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  6. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production

    Science.gov (United States)

    Schastlivtsev, A. I.; Borzenko, V. I.

    2017-11-01

    The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.

  7. Hydrogen Process Coupling to Modular Helium Reactors

    International Nuclear Information System (INIS)

    Shenoy, Arkal; Richards, Matt; Buckingham, Robert

    2009-01-01

    The U.S. Department of Energy (DOE) has selected the helium-cooled High Temperature Gas-Cooled Reactor (HTGR) as the concept to be used for the Next Generation Nuclear Plant (NGNP), because it is the most advanced Generation IV concept with the capability to provide process heat at sufficiently high temperatures for production of hydrogen with high thermal efficiency. Concurrently with the NGNP program, the Nuclear Hydrogen Initiative (NHI) was established to develop hydrogen production technologies that are compatible with advanced nuclear systems and do not produce greenhouse gases. The current DOE schedule for the NGNP Project calls for startup of the NGNP plant by 2021. The General Atomics (GA) NGNP pre-conceptual design is based on the GA Gas Turbine Modular Helium Reactor (GT-MHR), which utilizes a direct Brayton cycle Power Conversion System (PCS) to produce electricity with a thermal efficiency of 48%. The nuclear heat source for the NGNP consists of a single 600-MW(t) MHR module with two primary coolant loops for transport of the high-temperature helium exiting the reactor core to a direct cycle PCS for electricity generation and to an Intermediate Heat Exchanger (IHX) for hydrogen production. The GA NGNP concept is designed to demonstrate hydrogen production using both the thermochemical sulfur-iodine (SI) process and high-temperature electrolysis (HTE). The two primary coolant loops can be operated independently or in parallel. The reactor design is essentially the same as that for the GT-MHR, but includes the additional primary coolant loop to transport heat to the IHX and other modifications to allow operation with a reactor outlet helium temperature of 950 .deg. C (vs. 850 .deg. C for the GT-MHR). The IHX transfers a nominal 65 MW(t) to the secondary heat transport loop that provides the high-temperature heat required by the SI-based and HTE-based hydrogen production facilities. Two commercial nuclear hydrogen plant variations were evaluated with

  8. Where does the energy for hydrogen production come from? Status and alternatives. 3. ed.

    International Nuclear Information System (INIS)

    Schindler, J.; Wurster, R.; Zerta, M.; Blandow, V.; Zittel, W.

    2011-05-01

    This brochure addresses and endeavours to find answers to the question as to the future availability of energy commodities. One point requiring clarification here is how long the production rates of crude oil, natural gas and coal will keep pace with and satisfy the rising demand. Particularly with regard to coal, it further needs to be clarified when, to what extent and for what period of time the separation and safe storage of carbon dioxide from fossil combustion will be possible, this being a prerequisite for the production of energy from coal. Then it needs to be clarified what contribution can realistically be expected from nuclear energy. The brochure also assesses the potentials of renewable energies for covering energy demand. It presents the cost reduction potentials in wind power and photovoltaics and the potential for producing motor fuels from renewable energy. Here it places a special emphasis on hydrogen. In conclusion it can be said that the downturn in oil production soon to be expected will leave a gap which can be closed neither by other fossil fuels nor by nuclear energy resources. On the other side, even though renewable energies will grow rapidly over the coming decades, their contribution will for some time yet be too small to be able to close this gap. This means that there is no way around making more efficient use of energy across all stages of production and use. It is also seen that biofuels will not keep the world moving as it is now and that hydrogen will therefore become a significant motor fuel. The use of hydrogen will only become dispensable if it proves possible to develop electromobiles with acceptable properties (storage density, service life, cold start behaviour, price). However, this appears improbable from today's perspective. One rollout strategy available at short term in Germany would be to use byproduct hydrogen from the chemical industry for the first vehicle fleets. Today, this hydrogen is mainly used thermally by co

  9. Evaluation of a hydrogen sensor for nuclear reactor containment monitoring

    International Nuclear Information System (INIS)

    Hoffheins, B.S.; McKnight, T.E.; Lauf, R.J.; Smith, R.R.; James, R.E.

    1997-01-01

    Measurement of hydrogen concentration in containment atmospheres in nuclear plants is a key safety capability. Current technologies require extensive sampling systems and subsequent maintenance and calibration costs can be very expensive. A new hydrogen sensor has been developed that is small and potentially inexpensive to install and maintain. Its size and low power requirement make it suitable in distributed systems for pinpointing hydrogen buildup. This paper will address the first phase of a testing program conducted to evaluate this sensor for operation in reactor containments

  10. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Science.gov (United States)

    2010-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The provisions...

  11. Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yunli; Wang, Jianji; Liu, Zhen; Ren, Yunlai; Li, Guozhi [School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471039, Henan (China)

    2009-12-15

    Relatively large percentages of xylose with glucose, arabinose, mannose, galactose and rhamnose constitute the hydrolysis products of hemicellulose. In this paper, hydrogen production performance of facultative anaerobe (Enterobacter aerogenes) has been investigated from these different monomeric sugars except glucose. It was shown that the stereoisomers of mannose and galactose were more effective for hydrogen production than those of xylose and arabinose. The substrate of 5 g/l xylose resulted in a relative high level of hydrogen yield (73.8 mmol/l), hydrogen production efficiency (2.2 mol/mol) and a maximum hydrogen production rate (249 ml/l/h). The hydrogen yield, hydrogen production efficiency and the maximum hydrogen production rate reached 104 mmol/l, 2.35 mol/mol and 290 ml/l/h, respectively, on a substrate of 10 g/l galactose. The hydrogen yields and the maximum hydrogen production rates increased with an increase of mannose concentrations and reached 119 mmol/l and 518 ml/l/h on the culture of 25 g/l mannose. However, rhamnose was a relative poor carbon resource for E. aerogenes to produce hydrogen, from which the hydrogen yield and hydrogen production efficiency were about one half of that from the mannose substrate. E. aerogenes was found to be a promising strain for hydrogen production from hydrolysis products of hemicellulose. (author)

  12. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  13. Preliminary analysis of an hydrogen generator system based on nuclear energy in the Laguna Verde site; Analisis preliminar de un sistema generador de hidrogeno basado en energia nuclear en el sitio de Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Flores y Flores, A [FI-UNAM, 04500 Mexico D.F. (Mexico); Francois L, J L [FI-UNAM, Jiutepec, Morelos (Mexico)

    2003-07-01

    The shortage of fossil fuels in the next future, as well as the growing one demand of energetics and the high cost of the production of alternating fuels, it forces us to take advantage of to the maximum the fossil fuel with the one which we count and to look for the form of producing alternating fuels at a low cost and better even if these supply sources are reliable and non pollutants. It is intended a solution to the shortage of fuel; to use the thermal energy liberated of some appropriate nuclear reactor to be able to obtain a fuel but clean and relatively cheap as it is the hydrogen. In the first place the methods were looked for to produce hydrogen using thermal energy, later it was analyzed the temperature liberated by the existent nuclear reactors as well as the advanced designs, according to this liberated temperature settled down that the methods but feasible to produce hydrogen its were the one of reformed with water stream of the natural gas (methane) and the other one of the S-I thermochemical cycle, and the nuclear reactors that give the thermal energy for this production they are those of gas of high temperature. Once established the processes and the appropriate reactors, it was analyzed the site of Laguna Verde, with relationship to the free space to be able to place the reactor and the plant producer of hydrogen, as well as the direction in which blow the dominant winds and the near towns to the place, it was carried out an analysis of some explosion of tanks that could store hydrogen and the damage that its could to cause depending from the distance to which its were of the fire. Finally it was carried out an evaluation of capital and of operation costs for those two methods of hydrogen production. (Author)

  14. Hydrogen production from sewage sludge by steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Aye, L.; Klinkajorn, P. [Melbourne Univ. International Technologies Centre, Melbourne, Victoria (Australia). Dept. of Civil and Environmental Engineering

    2006-07-01

    Because of the shortage of energy sources in the near future, renewable energy, such as biomass, has become an important source of energy. One of the most common approaches for producing gaseous fuels from biomass is gasification. The main product gases of gasification are hydrogen, carbon monoxide, methane and low molecular weight hydrocarbons. Because of the capability of very low emission at the point of use, the interest in using hydrogen for electrical power generation and in electric-vehicles has been increasing. Hydrogen from biomass steam gasification (SG) is a net zero green house gas emission fuel. Sewage sludge (SS) has a potential to produce hydrogen-rich gaseous fuel. Therefore, hydrogen production from sewage sludge may be a solution for cleaner fuel and the sewage sludge disposal problem. This paper presented the results of a computer model for SSSG by using Gibbs free energy minimization (GFEM) method. The computer model developed was used to determine the hydrogen production limits for various steam to biomass ratios. The paper presented an introduction to renewable energy and gasification and discussed the Gibbs free energy minimization method. The study used a RAND algorithm. It presented the computer model input parameters and discussed the results of the stoichiometric analysis and Gibbs free energy minimization. The energy requirement for hydrogen production was also presented. 17 refs., 1 tab., 6 figs.

  15. Proposal of safety design methodologies for an HTGR-hydrogen production system. Mainly on countermeasures against fire and explosion

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo; Hada, Kazuhiko; Shiozawa, Syusaku

    1996-03-01

    Among key issues of the safety design for an HTGR-hydrogen production system is to ensure the safety of the nuclear reactor against fire and explosion accidents in the hydrogen production plant. The fire and explosion accidents in the hydrogen production plant are categorized into the following two cases; Accidents inside the reactor building (R/B) and accidents outside the R/B. Against accidents inside the R/B, the proposed safety design concept is to prevent the occurrence of the accidents based on the defence in depth concept. The piping system and/or heat transfer tubes which have the potential possibility of combustible materials ingress into the R/B due to the failure are designed at the highest aseismic level to prevent the failure against severe earthquake. Even if the failure occurs, the piping trench and related compartments are fulfilled with nitrogen so as to prevent the occurrence of accidents. The proposed safety design concept for the accidents outside the R/B is the mitigation of effects of accidents. Proposed countermeasures is to take the safe distance between the hydrogen production plant and the items important to safety in the nuclear plant. We showed that the anticipated accidents to estimate the safe distance are large scale pool burning, fireball, pressure vessel burst and vapor cloud explosion. Especially, new estimating concept to establish the safe distance is proposed for the vapor cloud explosion. To reduce the safe distance, we proposed the underground non-pressurized storage tank and ventilation system for the storage of large amount of combustible liquid. (author). 61 refs

  16. IEA hydrogen agreement, task 15: photobiological hydrogen production - an international collaboration

    International Nuclear Information System (INIS)

    Lindblad, P.; Asada, Y.; Benemann, J.; Hallenbeck, P.; Melis, A.; Miyake, J.; Seibert, M.; Skulberg, O.

    2000-01-01

    Biological hydrogen production, the production of H 2 by microorganisms, has been an active field of basic and applied research for many years. Realization of practical processes for photobiological hydrogen production from water using solar energy would result in a major, novel source of sustainable and renewable energy, without greenhouse gas emissions or environmental pollution. However, development of such processes requires significant scientific and technological advances, and long-term basic and applied R and D. This International Energy Agency (lEA) Task covers research areas and needs at the interface of basic and applied R and D which are of mutual interest to the countries and researchers participating in the lEA Hydrogen Agreement. The overall objective is to sufficiently advance the basic and early-stage applied science in this area of research over the next five years to allow an evaluation of the potential of such a technology to be developed as a practical renewable energy source for the 21st Century. (author)

  17. Photobiological hydrogen production : photochemical efficiency and bioreactor design

    NARCIS (Netherlands)

    Akkerman, I.; Janssen, M.; Rocha, J.; Wijffels, R.H.

    2002-01-01

    Biological production of hydrogen can be carried out by photoautotrophic or photoheterotrophic organisms. Here, the photosystems of both processes are described. The main drawback of the photoautotrophic hydrogen production process is oxygen inhibition. The few efficiencies reported on the

  18. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH{sub 4} + H{sub 2}O {yields} 3H{sub 2}O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m{sup 3}{sub N}/h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  19. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH 4 + H 2 O → 3H 2 O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m 3 N /h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  20. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tafticht, T.; Agbossou, K. [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  1. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    T Tafticht; K Agbossou

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  2. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    Tafticht, T.; Agbossou, K.

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  3. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    T Tafticht; K Agbossou [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  4. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  5. Hydrogen production by alkaline water electrolysis

    Directory of Open Access Journals (Sweden)

    Diogo M. F. Santos

    2013-01-01

    Full Text Available Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article, the electrochemical fundamentals of alkaline water electrolysis are explained and the main process constraints (e.g., electrical, reaction, and transport are analyzed. The historical background of water electrolysis is described, different technologies are compared, and main research needs for the development of water electrolysis technologies are discussed.

  6. Bio-hydrogen production from renewable organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  7. Concepts for Large Scale Hydrogen Production

    OpenAIRE

    Jakobsen, Daniel; Åtland, Vegar

    2016-01-01

    The objective of this thesis is to perform a techno-economic analysis of large-scale, carbon-lean hydrogen production in Norway, in order to evaluate various production methods and estimate a breakeven price level. Norway possesses vast energy resources and the export of oil and gas is vital to the country s economy. The results of this thesis indicate that hydrogen represents a viable, carbon-lean opportunity to utilize these resources, which can prove key in the future of Norwegian energy e...

  8. Hydrogen production by water-splitting using heat supplied by a high-temperature reactor

    International Nuclear Information System (INIS)

    Courvoisier, P.; Rastoin, J.; Titiliette, Z.

    1976-01-01

    Some aspects of the use of heat of nuclear origin for the production of hydrogen by water-splitting are considered. General notions pertaining to the yield of chemical cycles are discussed and the heat balance corresponding to two specific processes is evaluated. The possibilities of high temperature reactors, with respect to the coolant temperature levels, are examined from the standpoint of core design and technology of some components. Furthermore, subject to a judicious selection of their characteristics, these reactors can lead to excellent use of nuclear fuel. The coupling of the nuclear reactor with the chemical plant by means of a secondary helium circuit gives rise to the design of an intermediate heat exchanger, which is an important component of the overall installation. (orig.) [de

  9. Molecular hydrogen: an energy source for bacterial activity in nuclear waste disposal

    International Nuclear Information System (INIS)

    Libert, M.; Esnault, L.

    2010-01-01

    Document available in extended abstract form only. Hydrogen is a common product of microbial metabolism, large number of bacteria are able to use it as energetic substrate in subsurface ecosystems. Moreover H 2 is known as one of the most energetic substrates for deep subsurface ecosystem. It could be produced in different ways mainly volcanic activity (basalts iron rich volcanic rocks) or natural radiolysis of water or even fermentation. The millimolar concentrations of H 2 observed in the ground waters are consistent with the activity of a large variety of hydrogen-oxidising bacteria as described in the following Table. Electron acceptors are identified as O 2 , CO 2 , NO 3 , SO 4 or Fe +++ . Aerobic, anaerobic, obligate and facultative autotrophs are included. Numerous of these bacteria are thermophilic bacteria. This bacterial activity leads to the production of methane, acetate, nitrogen, hydrogen sulphur or ferrous oxides. In anoxic environments, H 2 concentrations are governed by microbial metabolism. In most cases, H 2 producing microorganisms are thermodynamically controlled by the abundance of H 2 , and survive thanks to H 2 consumers, a metabolism called inter-species H 2 transfer. Metabolism of H 2 is catalysed by hydrogenase as cytoplasmic enzymes or membrane bound enzymes. Several situations of H 2 production will occur in nuclear waste repository: - Radiolysis of water. - Radiolysis of organic matter (such as bitumen, in case of B waste), H 2 production due to gamma radiolysis of bitumen is evaluated to 1 L H 2 /kg of bitumen /MGy. - Corrosion of metal containers (in deaerated solutions). Large amount of H 2 are predicted in some situations, and will select the development of hydrogen species. Then, aerobic hydrogen bacteria oxidising hydrogen could be found in basins containing irradiating waste, or during the oxic period of storage, denitrifying bacteria or sulfate reducing bacteria will develop near the bitumen waste. Groundwater of the Callovo

  10. Hydrogen production by aqueous phase catalytic reforming of glycerine

    International Nuclear Information System (INIS)

    Ozguer, Derya Oncel; Uysal, Bekir Zuehtue

    2011-01-01

    Hydrogen is believed to be the one of the main energy carriers in the near future. In this research glycerine, which is produced in large quantities as a by-product of biodiesel process, was converted to hydrogen aiming to contribute to clean energy initiative. Conversion of glycerol to hydrogen was achieved via aqueous-phase reforming (APR) with Pt/Al 2 O 3 catalyst. The experiments were carried out in an autoclave reactor and a continuous fixed-bed reactor. The effects of reaction temperature (160-280 o C), feed flow rate (0.05-0.5 mL/dak) and feed concentration (5-85 wt-% glycerine) on product distribution were investigated. Optimum temperature for hydrogen production with APR was determined as 230 o C. Maximum gas production rate was found at the feed flow rates around 0.1 mL/min. It was also found that hydrogen concentration in the gas product increased with decreasing glycerol concentration in the feed.

  11. Development of HyPEP, A Hydrogen Production Plant Efficiency Calculation Program

    International Nuclear Information System (INIS)

    Lee, Young Jin; Park, Ji Won; Lee, Won Jae; Shin, Young Joon; Kim, Jong Ho; Hong, Sung Deok; Lee, Seung Wook; Hwang, Moon Kyu

    2007-12-01

    Development of HyPEP program for assessing the steady-state hydrogen production efficiency of the nuclear hydrogen production facilities was carried out. The main developmental aims of the HyPEP program are the extensive application of the GUI for enhanced user friendliness and the fast numerical solution scheme. These features are suitable for such calculations as the optimisation calculations. HyPEP was developed with the object-oriented programming techniques. The components of the facility was modelled as objects in a hierarchical structure where the inheritance property of the object oriented program were extensively applied. The Delphi program language which is based on the Object Pascal was used for the HyPEP development. The conservation equations for the thermal hydraulic flow network were setup and the numerical solution scheme was developed and implemented into HyPEP beta version. HyPEP beta version has been developed with working GUI and the numerical solution scheme implementation. Due to the premature end of this project the fully working version of HyPEP was not produced

  12. Hydrogen production from steam methane reforming and electrolysis as part of a near-term hydrogen infrastructure

    International Nuclear Information System (INIS)

    Roberts, K.

    2003-01-01

    Building a complete hydrogen infrastructure for a transportation system based on Fuel Cells (FC) and hydrogen is a risky and expensive ordeal, especially given that it is not known with complete certainty that Fuel Cells will indeed replace the gasoline ICE. But how can we expect the diffusion of an automotive technology if there is no infrastructure to support its fuel needs? This gives rise to a chicken and egg type problem. One way to get around this problem is to produce hydrogen when and where it is needed. This solves the problems of high costs associated with expensive pipeline distribution networks, the high energy-intensities associated with liquefaction of hydrogen and the high costs of cryogenic equipment. This paper will consider the advantages and disadvantages of two such hydrogen production mechanisms, namely, onsite production of hydrogen from Electrolysis and onsite production of hydrogen from Steam Methane Reforming (SMR). Although SMR hydrogen may be more economical due to the availability and low cost of methane, under certain market and technological conditions onsite electrolytic hydrogen can be more attractive. The paper analyses the final price of delivered hydrogen based on its sensitivity to market conditions and technology developments. (author)

  13. Hydrogen production from small hyropower sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    A synergistic relationship was not found to exist between low-head hydropower and electrolytic hydrogen production. The storageability of hydrogen was expected to mitigate problems of hydrogen generation variability associated with the use of low-head hydropower as the power source. The expense of gaseous hydrogen storage equipment effectively eliminates storage as a means to decouple hydrogen demand and power/hydrogen production. From the opposite perspective, the availability of a low and stable cost of power from low-head hydro was expected to improve the competitiveness of electrolysis. In actuality, the results indicated that hydroelectric power from small dams would be comparatively expensive by current grid power standards (mid-1979). Electrolysis, in the capacity range considered here, is less sensitive to the cost of the power than originally presumed. Other costs including depreciation and capital related charges are more significant. Due to power generation variability, sole reliance on low-head hydropower to provide electricity to the cells would reduce the utilization of the hydrogen production investment, resulting in an increase in unit production costs. These factors were paramount in the Air Products recommendation to discontinue the study before continuing to more detailed stages of analysis, including an analysis of a site specific facility and the construction of a demonstration facility. Another major factor was the unavailability of a pipeline hydrogen supply situation which, because of lower distribution and capital costs, could have been commercially viable. An unfavorable judgment on the combined facility should not be misinterpreted and extended to the component systems. Although a detailed analysis of the individual prospects for electrolysis and low-head hydropower was beyond the study scope, the reader will realize, as the study is reviewed, that each is worthy of individual consideration.

  14. The application of CFD to hydrogen risk analysis in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Hui; Han Xu; Chang Meng; Wang Xiaofeng; Wang Shuguo; Lu Xinhua; Wu Lin

    2013-01-01

    Status of the hydrogen risk analysis method is systemically summarized in this paper and the advantages and limits of CFD (Computational Fluid Dynamic) in hydrogen risk analysis is discussed. The international experimental programs on the CFD hydrogen risk analysis are introduced in this paper. The application of CFD to nuclear power plant (NPP) hydrogen risk analysis is introduced in detail by taking EPR and Ling'ao NPP for example. In these bases, the CFD development prospect of hydrogen risk analysis is also summarized in this paper. (authors)

  15. Production, storage, transporation and utilization of hydrogen

    International Nuclear Information System (INIS)

    Akiba, E.

    1992-01-01

    Hydrogen is produced from water and it can be used for fuel. Water is formed again by combustion of hydrogen with oxygen in the air. Hydrogen is an ideal fuel because hydrogen itself and gases formed by the combustion of hydrogen are not greenhouse and ozone layer damaging gases. Therefore, hydrogen is the most environmental friendly fuel that we have ever had. Hydrogen gas does not naturally exist. Therefore, hydrogen must be produced from hydrogen containing compounds such as water and hydrocarbons by adding energy. At present, hydrogen is produced in large scale as a raw material for the synthesis of ammonia, methanol and other chemicals but not for fuel. In other words, hydrogen fuel has not been realized but will be actualized in the near future. In this paper hydrogen will be discussed as fuel which will be used for aircraft, space application, power generation, combustion, etc. Especially, production of hydrogen is a very important technology for achieving hydrogen energy systems. Storage, transportation and utilization of hydrogen fuel will also be discussed in this paper

  16. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments.

    Science.gov (United States)

    Wang, Wen; Luo, Gang; Xie, Li; Zhou, Qi

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon production from cassava stillage. Acid pretreatment thereby has higher capacity to promote hydrogen production compared with alkaline pretreatment. Effects of pretreatment temperature, time and acid concentration on hydrogen production were also revealed by response surface methodology. The results showed that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen production of 434 mL, 67% higher than raw cassava stillage.

  17. Economical hydrogen production by electrolysis using nano pulsed DC

    Energy Technology Data Exchange (ETDEWEB)

    Dharmaraj, C.H. [Tangedco, Tirunelveli, ME Environmental Engineering (India); Adshkumar, S. [Department of Civil Engineering, Anna University of Technology Tirunelveli, Tirunelveli - 627007 (India)

    2012-07-01

    Hydrogen is an alternate renewable eco fuel. The environmental friendly hydrogen production method is electrolysis. The cost of electrical energy input is major role while fixing hydrogen cost in the conventional direct current Electrolysis. Using nano pulse DC input makes the input power less and economical hydrogen production can be established. In this investigation, a lab scale electrolytic cell developed and 0.58 mL/sec hydrogen/oxygen output is obtained using conventional and nano pulsed DC. The result shows that the nano pulsed DC gives 96.8 % energy saving.

  18. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    Energy Technology Data Exchange (ETDEWEB)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, (Korea, Republic of)

    2006-07-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H{sub 2}/l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H{sub 2}/l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  19. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    International Nuclear Information System (INIS)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park

    2006-01-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H 2 /l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H 2 /l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  20. The development of the Hydrogen Economic Evaluation Program (HEEP)

    International Nuclear Information System (INIS)

    Khamis, I.

    2010-01-01

    The International Atomic Energy Agency (IAEA) is developing software to perform economic analysis related to hydrogen production. The software is expected to analyse the economics of the four most promising processes for hydrogen production. These processes are: high and low temperature electrolysis, thermochemical processes including the S-I process, conventional electrolysis and steam reforming. The IAEA HEEP software is expected to be used for comparative studies between nuclear and fossil energy sources. Therefore, typical conventional methods are also to be included in HEEP to enable comparison with nuclear hydrogen production. The HEEP models will be based on some economic and technical data, and on cost modelling. Modelling will include various aspects of hydrogen economy including storage, transport and distribution with options to eliminate or include specific details as required by the users. Development of HEEP is based on the IAEA's successful programme during the development of DEEP. This IAEA DEEP software has been distributed free of charge to more than 500 scientists/engineers and researchers from 50 countries interested in cost estimation of desalination plants using nuclear/fossil energy sources. DEEP is not a design code. A number of member states engaged in nuclear desalination activities in their countries have used DEEP for conducting feasibility studies for establishing large nuclear desalination projects based on different nuclear reactors types and desalination processes. HEEP is expected to be similar to the IAEA software DEEP which is being used to perform economic analysis and feasibility studies related to nuclear desalination in the IAEA and other member states. It is expected that HEEP will have similar architecture to DEEP but with the possibility of easy update and future expansion. Various major processes and technologies are to be incorporated in the HEEP programme as the basis for modelling the performance and cost

  1. Co-generation of hydrogen from nuclear and wind: the effect on costs of realistic variations in wind capacity and power prices

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.

    2005-01-01

    Can electricity from high-capacity nuclear reactors be blended with the variable output of wind turbines to produce electrolytic hydrogen competitively? Future energy hopes and emissions reduction scenarios place significant reliance on renewables, actually meaning largely new wind power both onshore and offshore. The opportunity exists for a synergy between high capacity factor nuclear plants and wind power using hydrogen by both as a 'currency' for use in transportation and industrial processing. But this use of hydrogen needs to be introduced soon. To be competitive with alternative sources, hydrogen produced by conventional electrolysis requires low-cost electricity (likely <2.5 Cent US/kW.h). One approach is to operate interruptibly allowing an installation to sell electricity when the grid price is high and to make hydrogen when it is low. Our previous studies have shown that this could be a cost-competitive approach with a nuclear power generator producing electricity around 3 Cent US/kW.h. Although similar unit costs are projected for wind-generated electricity, idleness of the hydrogen production (electrolysis) facility due to the variability of wind generated electricity imposes a serious cost penalty. This paper reports our latest results on the potential economics of blending electricity from nuclear and wind sources by using wind-generated power, when available, to augment the current through electrolysis equipment that is primarily nuclear-powered. A voltage penalty accompanies the higher current. A 10% increase in capital cost for electrolysis equipment enables it to accommodate the higher rate of hydrogen generation, while still being substantially cheaper than the capital cost of wind-dedicated electrolysis. Real-time data for electricity costs have been combined with real-time wind variability in our NuWind model. The variability in wind fields between sites was accommodated by assuming an average wind speed that produced an average electricity

  2. Solar photochemical production of HBr for off-peak electrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H. [Solar Reactor Technologies Inc., Miami, FL (United States)

    1996-10-01

    Progress is reported on the development of a unique and innovative hydrogen production concept utilizing renewable (Solar) energy and incorporating energy storage. The concept is based on a solar-electrolytic system for production of hydrogen and oxygen. It employs water, bromine, solar energy, and supplemental electrical power. The process consumes only water, sunlight and off-peak electricity, and produces only hydrogen, oxygen, and peaking electrical power. No pollutants are emitted, and fossil fuels are not consumed. The concept is being developed by Solar Reactor Technologies, Inc., (SRT) under the auspices of a Cooperative Agreement with the U.S. Department of Energy (DOE).

  3. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Niel, van E.W.J.; Claassen, P.A.M.; Stams, A.J.M.

    2003-01-01

    Substrate and product inhibition of hydrogen production during sucrose fermentation by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus was studied. The inhibition kinetics were analyzed with a noncompetitive, nonlinear inhibition model. Hydrogen was the most severe

  4. Production of hydrogen by microbial fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S.; Cox, D.; Levandowsky, M.

    1988-01-01

    Production of hydrogen by defined and undefined bacterial cultures was studied, using pure sugars (glucose and maltose) or natural sources rich in either pure sugars or polysaccharides. The latter included sugar cane juice, corn pulp (enzymatically treated or untreated), and enzymatically treated paper. Mixed microbial flora from sewage and landfill sediments, as well as pure and mixed cultures of known coliform bacteria produced mixtures of hydrogen and carbon dioxide at 37/sup 0/C and 55/sup 0/C, with hydrogen concentrations as high as 87%. In the case of the pure glucose substrate, an average yield of 0.7 mol hydrogen per mol glucose was obtained.

  5. A new concept of hydrogen production system for sodium cooled FBR

    International Nuclear Information System (INIS)

    Nakagiri, Toshio; Aoto, Kazumi; Hoshiya, Taiji

    2004-01-01

    A new thermo-chemical and electrolytic hybrid hydrogen production process (thermo-chemical and electrolytic Hybrid Hydrogen process in Lower Temperature range: HHLT) is newly proposed by the Japan Nuclear Cycle Development Institute (JNC) to realize the hydrogen production from water by using the heat generation of sodium cooled Fast Breeding Reactor (FBR). The HHLT process is based on the sulfuric acid (H 2 SO 4 ) synthesis and decomposition processes developed earlier (Westinghouse process), and sulfur trioxide (SO 3 ) decomposition process of HHLT is facilitated by electrolysis with ionic oxygen conductive solid electrolyte to reduce operating temperature 200degC-300degC lower than Westinghouse process. Decomposition processes of SO 3 were confirmed with the cell voltage lower than 0.5 V at 500degC-600degC using 8mol yttria stabilized zirconia (8molYSZ) solid electrolyte and platinum electrode. Therefore, total voltage required for HHLT is expected to be lower than 1.0 V, because the voltage required for sulfuric acid synthesis is about 0.5V. Thermal efficiency of HHLT based on chemical reactions was roughly estimated to be within the range of 35% to 55% under the influence of H 2 SO 4 concentration and heat recovery. These results show the possibility of development of a new hydrogen production process which needs low splitting voltage and has high efficiency at around 500degC, utilizing the heat generation of sodium cooled FBR. SO 3 splitting with the voltage lower than 0.5V was confirmed at about 500degC experimentally, and ideal thermal efficiency of the cycle based on chemical reactions was evaluated. Furthermore, test apparatus to substantiate whole process of HHLT was manufactured. (author)

  6. Theory of nuclear quadrupole interactions in solid hydrogen fluoride

    International Nuclear Information System (INIS)

    Mohamed, N.S.; Sahoo, N.; Das, T.P.; Kelires, P.C.

    1990-01-01

    The nuclear quadrupole interaction of 19 F * (I=5/2) nucleus in solid hydrogen fluoride has been studied using the Hartree Fock cluster technique to understand the influence of both intrachain hydrogen bonding effects and the weak interchain interaction. On the basis of our investigations, the 34.04 MHz coupling constant observed by TDPAD measurements has been ascribed to the bulk solid while the observed 40.13 MHz coupling constant is suggested as arising from a small two- or three-molecule cluster produced during the proton irradiation process. Two alternate explanations are offered for the origin of coupling constants close to 40 MHz in a number of solid hydrocarbons containing hydrogen and fluorine ligands. (orig.)

  7. Measuring nuclear transparency from exclusive vector meson production in lepton-nucleus scattering

    International Nuclear Information System (INIS)

    Fang, G.Y.

    1994-01-01

    Preliminary results on the measurement of nuclear transparencies from exclusive ρ 0 meson production from E665 at Fermilab are reported. The data were collected on hydrogen, deuterium, carbon, calcium, and lead targets with a mean beam energy of 470 GeV. Increases in the transparencies are observed in both coherent and incoherent production channels as the virtuality of the photon increases, as expected of color transparency. Ideas of systematic studies of color transparency in exclusive vector meson production at CEBAF are discussed

  8. A hydrogen production experiment by the thermo-chemical and electrolytic hybrid hydrogen production in lower temperature range. System viability and preliminary thermal efficiency estimation

    International Nuclear Information System (INIS)

    Takai, Toshihide; Nakagiri, Toshio; Inagaki, Yoshiyuki

    2008-10-01

    A new experimental apparatus by the thermo-chemical and electrolytic Hybrid-Hydrogen production in Lower Temperature range (HHLT) was developed and hydrogen production experiment was performed to confirm the system operability. Hydrogen production efficiency was estimated and technical problems were clarified through the experimental results. Stable operation of the SO 3 electrolysis cell and the sulfur dioxide solution electrolysis cell were confirmed during experimental operation and any damage which would be affected solid operation was not detected under post operation inspection. To improve hydrogen production efficiency, it was found that the reduction of sulfuric acid circulation and the decrease in the cell voltage were key issues. (author)

  9. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting

    Directory of Open Access Journals (Sweden)

    Jeffrey C. S. Wu

    2012-10-01

    Full Text Available Hydrogen is the ideal fuel for the future because it is clean, energy efficient, and abundant in nature. While various technologies can be used to generate hydrogen, only some of them can be considered environmentally friendly. Recently, solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen, particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies, a review of photocatalytic water splitting over titania and non-titania based photocatalysts, a discussion of the types of photocatalytic water-splitting approaches, and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here, the development of highly stable visible–light-active photocatalytic materials, and the design of efficient, low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.

  10. POTENTIAL FOR HYDROGEN BUILDUP IN HANFORD SEALED AIR FILLED NUCLEAR STORAGE VESSELS

    International Nuclear Information System (INIS)

    HEY BE

    2008-01-01

    This calculation is performed in accordance with HNF-PRO-8259, PHMC Calculation Preparation and Issue and addresses the question as to whether a flammable mixture of hydrogen gas can accumulate in a Hanford sealed nuclear storage vessel where the only source of hydrogen is the moisture in the air that initially filled the vessel Of specific concern is nuclear fuel inside IDENT 69-Gs, placed in Core Component Containers (CCCs) located inside Interim Storage Vaults (ISVs) at the Plutonium Finishing Plant (PFP) The CCCs are to be removed from the ISVs and placed inside a Hanford Unirradiated Fuel Package (HUFP) for transport and interim storage. The repackaging procedures mandated that no plastics were permitted, all labels and tape were to be removed and the pins to be clean and inspected Loading of the fuel into the CCC/ISV package was permitted only if it was not raining or snowing. This was to preclude the introduction of any water The purpose was to minimize the presence of any hydrogenous material inside the storage vessels. The scope of NFPA 69, 'Standard on Explosion Prevention Systems', precludes its applicability for this case. The reactor fuel pins are helium bonded. The non-fuel pins, such as the pellet stacks, are also helium bonded. The fuel pellets were sintered at temperatures that preclude any residual hydrogenous material. Hydrogen gas can be formed from neutron and gamma radiolysis of water vapor. The radiolysis reaction is quite complex involving several intermediate radicals, and competing recombination reactions. Hydrogen gas can also be formed through corrosion. This analysis takes a simplistic approach and assumes that all water vapor present in the storage vessel is decomposed into hydrogen gas. Although the analysis is needed to specifically address HUFP storage of nuclear fuel, it is equally applicable to any sealed fuel storage vessel under the assumptions listed

  11. Co-production of hydrogen and electricity with CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Arienti, S.; Cotone, P.; Davison, J. [Foster Wheeler Italiana (Italy)

    2007-07-01

    This paper summarizes the results of a study carried out by Foster Wheeler for the IEA Greenhouse Gas R & D Programme that focused on different IGCC configurations with CO{sub 2} capture and H{sub 2} production. The three following main cases are compared: production of hydrogen, with minimum amount of electricity for a stand-alone plant production; co-production of the optimum hydrogen/electricity ratio; and co-production of hydrogen and electricity in a flexible plant that varies the hydrogen/electricity ratio. The paper reviews three available gasification technologies and presents the results of a more detailed evaluation of the selected one. The scope of this paper is to underline possible advantages of hydrogen and electricity co-production from coal, that is likely going to replace natural gas and petroleum as a source of hydrogen in the long term. Expected advantage of co-production will be the ability to vary the hydrogen/electricity ratio to meet market demands. A natural gas, diesel and gasoline demand market analysis has been performed for the Netherlands and the USA to determine the expected future hydrogen demand. Plant performance and costs are established and electric power production costs are evaluated. Electricity and hydrogen co-production plants are compared to plants that produce electricity only, with and without CO{sub 2} capture, to evaluate the costs of CO{sub 2} avoidance. 4 refs., 8 figs., 4 tabs.

  12. Electrochemical methods to study hydrogen production during interaction of copper with deoxygenated aqueous solution

    International Nuclear Information System (INIS)

    Lilja, Christina; Betova, Iva; Bojinov, Martin

    2016-01-01

    In some countries, spent nuclear fuel is planned to be encapsulated in canisters with a copper shell for corrosion protection, for further disposal in geologic repositories. The possibilities for corrosion after oxygen depletion must be evaluated, even if copper is considered to be immune in oxygen-free water. To follow the interaction of copper with deoxygenated aqueous solution, open-circuit potentiometric and electrochemical impedance measurements have been coupled to in-situ detection of cupric ion, dissolved molecular hydrogen and oxygen concentrations using electrochemical sensors. A kinetic model that considers the production of hydrogen as a catalytic process, the rate of which is proportional to the surface coverage of an intermediate species formed during interaction between copper and the solution is used to interpret the results. Kinetic parameters are estimated by a simultaneous fit of the experimental impedance spectra, the open circuit potential and cupric ion concentration as depending on temperature (22–70 °C) and exposure time (up to 720 h) to the model equations. Using the obtained values and a balance equation of hydrogen production on copper and its diffusion out of the cell through its walls, the kinetic parameters of this process are estimated by fitting dissolved molecular hydrogen concentration vs. time data at the three temperatures.

  13. Efficiency analysis of hydrogen production methods from biomass

    NARCIS (Netherlands)

    Ptasinski, K.J.

    2008-01-01

    Abstract: Hydrogen is considered as a universal energy carrier for the future, and biomass has the potential to become a sustainable source of hydrogen. This article presents an efficiency analysis of hydrogen production processes from a variety of biomass feedstocks by a thermochemical method –

  14. Chemical Plant Accidents in a Nuclear Hydrogen Generation Scheme

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Revankar, Shripad T.

    2011-01-01

    A high temperature nuclear reactor (HTR) could be used to drive a steam reformation plant, a coal gasification facility, an electrolysis plant, or a thermochemical hydrogen production cycle. Most thermochemical cycles are purely thermodynamic, and thus achieve high thermodynamic efficiency. HTRs produce large amounts of heat at high temperature (1100 K). Helium-cooled HTRs have many passive, or inherent, safety characteristics. This inherent safety is due to the high design basis limit of the maximum fuel temperature. Due to the severity of a potential release, containment of fission products is the single most important safety issue in any nuclear reactor facility. A HTR coupled to a chemical plant presents a complex system, due primarily to the interactive nature of both plants. Since the chemical plant acts as the heat sink for the nuclear reactor, it important to understand the interaction and feedback between the two systems. Process heat plants and HTRs are generally very different. Some of the major differences include: time constants of plants, safety standards, failure probability, and transient response. While both the chemical plant and the HTR are at advanced stages of testing individually, no serious effort has been made to understand the operation of the integrated system, especially during accident events that are initiated in the chemical plant. There is a significant lack of knowledge base regarding scaling and system integration for large scale process heat plants coupled to HTRs. Consideration of feedback between the two plants during time-dependent scenarios is absent from literature. Additionally, no conceptual studies of the accidents that could occur in either plant and impact the entire coupled system are present in literature

  15. Thermodynamic analysis of hydrogen production from biomass gasification

    International Nuclear Information System (INIS)

    Cohce, M.K.; Dincer, I.; Rosen, M.A.

    2009-01-01

    'Full Text': Biomass resources have the advantage of being renewable and can therefore contribute to renewable hydrogen production. In this study, an overview is presented of hydrogen production methods in general, and biomass-based hydrogen production in particular. For two methods in the latter category (direct gasification and pyrolysis), assessments are carried out, with the aim of investigating the feasibility of producing hydrogen from biomass and better understanding the potential of biomass as a renewable energy source. A simplified model is presented here for biomass gasification based on chemical equilibrium considerations, and the effects of temperature, pressure and the Gibbs free energy on the equilibrium hydrogen yield are studied. Palm oil (designated C 6 H 10 O 5 ), one of the most common biomass resources in the world, is considered in the analyses. The gasifier is observed to be one of the most critical components of a biomass gasification system, and is modeled using stoichiometric reactions. Various thermodynamic efficiencies are evaluated, and both methods are observed to have reasonably high efficiencies. (author)

  16. The Modular Helium Reactor for Hydrogen Production

    International Nuclear Information System (INIS)

    E. Harvego; M. Richards; A. Shenoy; K. Schultz; L. Brown; M. Fukuie

    2006-01-01

    For electricity and hydrogen production, an advanced reactor technology receiving considerable international interest is a modular, passively-safe version of the high-temperature, gas-cooled reactor (HTGR), known in the U.S. as the Modular Helium Reactor (MHR), which operates at a power level of 600 MW(t). For hydrogen production, the concept is referred to as the H2-MHR. Two concepts that make direct use of the MHR high-temperature process heat are being investigated in order to improve the efficiency and economics of hydrogen production. The first concept involves coupling the MHR to the Sulfur-Iodine (SI) thermochemical water splitting process and is referred to as the SI-Based H2-MHR. The second concept involves coupling the MHR to high-temperature electrolysis (HTE) and is referred to as the HTE-Based H2-MHR

  17. GAT 4 production and storage of hydrogen. Report July 2004

    International Nuclear Information System (INIS)

    2004-01-01

    This paper concerns two aspects of the hydrogen: the production and the storage. For both parts the challenges and a state of the art are presented. It discusses also the hydrogen production by renewable energies, by solar energy, the hydrogen of hydrocarbons reforming purification, active phases development, thermal transfer simulation. Concerning the hydrogen storage the hydrogen adsorption by large surface solid, the storage by metallic hydrides, the alanates and light hydrides, the adsorption on carbon nano-tubes, the storage in nano-structures, the thermal and mechanical simulation of the hydrogen are presented. (A.L.B.)

  18. Method of inhibiting concentration of radioactive corrosion products in cooling water or nuclear power plants

    International Nuclear Information System (INIS)

    Takabayashi, Jun-ichi; Hishida, Mamoru; Ishikura, Takeshi.

    1979-01-01

    Purpose: To suppress the increase in the concentration of the radioactive corrosion products in cooling water, which increase is accompanied by the transference of the corrosion products activated and accumulated in the core due to dissolution and exfoliation into the core water, and inhibit the flowing of said products out of the core and the diffusion thereof into the cooling system, thereby to prevent the accumulation of said products in the cooling system and prevent radioactive contaminations. Method: In a nuclear power plant of a BWR type light water reactor, when the temperature of the pile water is t 0 C, hydrogen is injected in cooling water in a period of time from immediately before starting of the drive stopping operation of the nuclear power plant to immediately after the termination of restarting operation, whereby the concentration of hydrogen in the reactor water through said period is maintained at a value more than 2exp (0.013 t) cm 3 N.T.P./kg H 2 O. (Aizawa, K.)

  19. Evaluation of the pressure loads generated by hydrogen explosion in auxiliary nuclear building

    International Nuclear Information System (INIS)

    Ahmed Bentaib; Alexandre Bleyer; Pierre Pailhories; Jean-Pierre L'heriteau; Bernard Chaumont; Jerome Dupas; Jerome Riviere

    2005-01-01

    Full text of publication follows: In the framework of nuclear safety, a hydrogen leaks in the auxiliary nuclear building would raise a explosion hazard. A local ignition of the combustible mixture would give birth initially to a slow flame, rapidly accelerated by obstacles. This flame acceleration is responsible for high pressure loads that can damage the auxiliary building and destroy safety equipments in it. In this paper, we evaluate the pressure loads generated by an hydrogen explosion for both bounding and realistic explosion scenarios. The bounding scenarios use stoichiometric hydrogen-air mixtures and the realistic scenarios correspond to hydrogen leaks with mass flow rate varying between 1 g/s and 9 g/s. For every scenario, the impact of the ignition location and ignition time are investigated. The hydrogen dispersion and explosion are computed using the TONUS code. The dispersion model used is based on a finite element solver and the explosion is simulated by a structured finite volumes EULER equation solver and the combustion model CREBCOM which simulates the hydrogen/air turbulent flame propagation, taking into account 3D complex geometry and reactants concentration gradients. The pressure loads computed are then used to investigate the occurrence of a mechanical failure of the tanks located in the auxiliary nuclear building and containing radioactive fluids. The EUROPLEXUS code is used to perform 3D mechanical calculations because the loads are non uniform and of rather short deviation. (authors)

  20. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    OpenAIRE

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    2016-01-01

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze ...

  1. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  2. Nuclear Data Libraries for Hydrogen in Light Water Ice

    International Nuclear Information System (INIS)

    Torres, L; Gillette, V.H

    2000-01-01

    Nuclear data libraries were produced for hydrogen (H) in light water ice at different temperatures, 20, 30, 50, 77, 112, 180, 230 K.These libraries were produced using the NJOY nuclear data processing system.With this code we produce pointwise cross sections and related quantities, in the ENDF format, and in the ACE format for MCNP.Experimental neutron spectra at such temperatures were compared with MCNP4B simulations, based on the locally produced libraries, leading to satisfactory results

  3. Measuring nuclear transparency from exclusive vector meson production in lepton-nucleus scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fang, G.Y. [Harvard Univ., Cambridge, MA (United States)

    1994-04-01

    Preliminary results on the measurement of nuclear transparencies from exclusive {rho}{sup 0} meson production from E665 at Fermilab are reported. The data were collected on hydrogen, deuterium, carbon, calcium, and lead targets with a mean beam energy of 470 GeV. Increases in the transparencies are observed in both coherent and incoherent production channels as the virtuality of the photon increases, as expected of color transparency. Ideas of systematic studies of color transparency in exclusive vector meson production at CEBAF are discussed.

  4. Hydrogen production by sodium borohydride in NaOH aqueous solution

    Science.gov (United States)

    Wang, Q.; Zhang, L. F.; Zhao, Z. G.

    2018-01-01

    The kinetics of hydrolysis reaction of NaBH4 in NaOH aqueous solution is studied. The influence of pH of the NaOH aqueous solution on the rate of hydrogen production and the hydrogen production efficiency are studied for the hydrolysis reaction of NaBH4. The results show that the activation energy of hydrolysis reaction of NaBH4 increased with the increase of the initial pH of NaOH aqueous solution.With the increasing of the initial pH of NaOH aqueous solution, the rate of hydrogen production and hydrogen production efficiency of NaBH4 hydrolysis decrease.

  5. Microbial production of hydrogen from starch-manufacturing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, H.; Maki, R.; Hirose, J.; Hayashi, S. [Miyazaki Univ. (Japan). Dept. of Applied Chemistry

    2002-05-01

    Effective hydrogen production from starch-manufacturing wastes by microorganisms was investigated. Continuous hydrogen production in high yield of 2.7 mol H{sub 2} mol{sup -1} glucose was attained by a mixed culture of Clostridium butyricum and Enterobacter aerogenes HO-39 in the starch waste medium consisting of sweet potato starch residue as a carbon source and corn steep liquor as a nitrogen source in a repeated batch culture. Rhodobacter sp. M-19 could produce hydrogen from the supernatant of the culture broth obtained in the repeated batch culture of C. butyricum and E. aerogenes HO-39. Hydrogen yield of 4.5 mol H{sub 2} mol{sup -1} glucose was obtained by culturing Rhodobacter sp. M-19 in the supernatant supplemented with 20{mu}gl{sup -1} Na{sub 2}MoO{sub 4} 2H{sub 2}O and 10mgl{sup -1} EDTA in a repeated batch culture with pH control at 7.5. Therefore, continuous hydrogen production with total hydrogen yield of 7.2 mol H{sub 2} mol{sup -1} glucose from the starch remaining in the starch residue was attained by the repeated batch culture with C. butyricum and E. aerogenes HO-39 and by the successive repeated batch culture with Rhodobacter sp. M-19. (Author)

  6. Ovonic Renewable Hydrogen (ORH) - low temperature hydrogen production from renewable fuels

    International Nuclear Information System (INIS)

    Reichman, B.; Mays, W.; Strebe, J.; Fetcenko, M.

    2009-01-01

    'Full text': ECD has developed a new technology to produce hydrogen from various organic matters. In this technology termed Ovonic Renewable Hydrogen (ORH), base material such as NaOH is used as a reactant to facilitate the reforming of the organic matters to hydrogen gas. This Base-Facilitated Reforming (BFR) process is a one-step process and has number of advantages over the conventional steam reforming and gasification processes including lower operation temperature and lower heat consumption. This paper will describe the ORH process and discuss its technological and economics advantages over the conventional hydrogen production processes. ORH process has been studied and demonstrated on variety of renewable fuels including liquid biofuels and solid biomass materials. Results of these studies will be presented. (author)

  7. Design Configurations and Coupling High Temperature Gas-Cooled Reactor and Hydrogen Plant

    International Nuclear Information System (INIS)

    Chang H. Oh; Eung Soo Kim; Steven Sherman

    2008-01-01

    The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood

  8. Uses and evaluation methods of potential hydrogen permeation barriers for nuclear reactor materials

    International Nuclear Information System (INIS)

    Noga, J.O.; Piercy, G.R.; Bowker, J.T.

    1985-07-01

    This report summarizes results on the use of coatings as hydrogen permeation barriers on nuclear reactor component materials. Two classes of base materials were considered, exothermic hydrogen absorbers and endothermic hydrogen absorbers. The results of the tests indicate that substantial reductions in the amount of hydrogen absorbed by a metal can be achieved through the use of hydrogen permeation barrier coatings. Gold was determined to provide an effective hydrogen permeation barrier on Zr-2-1/2 Nb pressure tube material. Tin was determined to be a suitable hydrogen permeation barrier when applied on AISI 410 stainless steel and iron. Both gas phase and electrochemical permeation techniques were used to determine hydrogen permeabilities through coatings and base materials

  9. Compact hydrogen production systems for solid polymer fuel cells

    Science.gov (United States)

    Ledjeff-Hey, K.; Formanski, V.; Kalk, Th.; Roes, J.

    Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350°C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900°C the decomposition of propane into carbon and hydrogen takes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2.

  10. Safety Implementation of Hydrogen Igniters and Recombiners for Nuclear Power Plant Severe Accident Management

    Institute of Scientific and Technical Information of China (English)

    XIAO Jianjun; ZHOU Zhiwei; JING Xingqing

    2006-01-01

    Hydrogen combustion in a nuclear power plant containment building may threaten the integrity of the containment. Hydrogen recombiners and igniters are two methods to reduce hydrogen levels in containment buildings during severe accidents. The purpose of this paper is to evaluate the safety implementation of hydrogen igniters and recombiners. This paper analyzes the risk of deliberate hydrogen ignition and investigates three mitigation measures using igniters only, hydrogen recombiners only or a combination of recombiners and igniters. The results indicate that steam can effectively control the hydrogen flame acceleration and the deflagration-to-detonation transition.

  11. Hydrogen release from irradiated elastomers measured by Nuclear Reaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jagielski, J., E-mail: jacek.jagielski@itme.edu.pl [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland); Ostaszewska, U. [Institute for Engineering of Polymer Materials & Dyes, Division of Elastomers & Rubber Technology, Harcerska 30, 05-820 Piastow (Poland); Bielinski, D.M. [Technical University of Lodz, Institute of Polymer & Dye Technology, Stefanowskiego 12/16, 90-924 Lodz (Poland); Grambole, D. [Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden Rossendorf, PO Box 51 01 19, D-01314 Dresden (Germany); Romaniec, M.; Jozwik, I.; Kozinski, R. [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); Kosinska, A. [National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland)

    2016-03-15

    Ion irradiation appears as an interesting method of modification of elastomers, especially friction and wear properties. Main structural effect caused by heavy ions is a massive loss of hydrogen from the surface layer leading to its smoothening and shrinking. The paper presents the results of hydrogen release from various elastomers upon irradiation with H{sup +}, He{sup +} and Ar{sup +} studied by using Nuclear Reaction Analysis (NRA) method. The analysis of the experimental data indicates that the hydrogen release is controlled by inelastic collisions between ions and target electrons. The last part of the study was focused on preliminary analysis of mechanical properties of irradiated rubbers.

  12. Experimental investigations relevant for hydrogen and fission product issues raised by the Fukushima accident

    Directory of Open Access Journals (Sweden)

    Sanjeev Gupta

    2015-02-01

    Full Text Available The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS, unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled

  13. Hydrogen production and storage: R & D priorities and gaps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    This review of priorities and gaps in hydrogen production and storage R & D has been prepared by the IEA Hydrogen Implementing Agreement in the context of the activities of the IEA Hydrogen Co-ordination Group. It includes two papers. The first is by Trygve Riis, Elisabet F. Hagen, Preben J.S. Vie and Oeystein Ulleberg. This offers an overview of the technologies for hydrogen production. The technologies discussed are reforming of natural gas; gasification of coal and biomass; and the splitting of water by water-electrolysis, photo-electrolysis, photo-biological production and high-temperature decomposition. The second paper is by Trygve Riis, Gary Sandrock, Oeystein Ulleberg and Preben J.S. Vie. The objective of this paper is to provide a brief overview of the possible hydrogen storage options available today and in the foreseeable future. Hydrogen storage can be considered for onboard vehicular, portable, stationary, bulk, and transport applications, but the main focus of this paper is on vehicular storage, namely fuel cell or ICE/electric hybrid vehicles. 7 refs., 24 figs., 14 tabs.

  14. Republic of Korea [National and regional programmes on the production of hydrogen using nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    The total primary energy consumption of the Republic of Korea in 2006 was 233 Mtoe (ranking ninth in the world), with 43% petroleum, 24% coal, 16% nuclear, 14% LNG, 2% renewables and 1% hydro. Energy consumption is expected to grow significantly in the future. The country lacks domestic energy resources and currently has to import 97% of its primary energy demand. The Republic of Korea is the sixth largest and fastest growing CO{sub 2} emitter of the OECD countries. The total installed electrical generation capacity is 61.4 GW(e), of which 17.5 GW(e) is from nuclear. As of 2006, 36% of the electricity was generated by nuclear, 38% by coal, 20% by LNG, 5% by petroleum and 1% by hydropower. The Republic of Korea is a small country with a high population density where the use of low-density renewable energies is limited and not a practicable solution. Commercial scale nuclear power generation started at the Kori-1 plant in 1978, and another 19 reactor units have since been built using a mixture of CANDU (4 reactors) and PWR (16 reactors) technologies. The total nuclear capacity amounts to 17.7 GW. Eight more plants are planned to come on-line in the period from 2010 to 2016, adding another 9.4 GW. According to the 'National Energy Basic Plan' of 2008, the share of nuclear in the primary energy should grow to 33% provided by 32 units. Nuclear power research in the Republic of Korea is very active with investigation into a variety of advanced reactors, including the Korea Atomic Energy Research Institute (KAERI) small system-integrated modular advanced reactor (SMART), a 330 MW(th) pressurized water reactor with integral steam generators and advanced safety features, and designed for generating electricity (up to 100 MW(e)) and/or for thermal applications such as seawater desalination. Other advanced reactor concepts under development are a liquid metal fast/transmutation reactor and a high temperature hydrogen generation design.

  15. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments

    DEFF Research Database (Denmark)

    Wang, Wen; Luo, Gang; Xie, Li

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon...... that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen...

  16. Developments and constraints in fermentative hydrogen production

    NARCIS (Netherlands)

    Bartacek, J.; Zabranska, J.; Lens, P.N.L.

    2007-01-01

    Fermentative hydrogen production is a novel aspect of anaerobic digestion. The main advantage of hydrogen is that it is a clean and renewable energy source/carrier with high specific heat of combustion and no contribution to the Greenhouse effect, and can be used in many industrial applications.

  17. Renewable hydrogen production by catalytic steam reforming of peanut shells pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.J.; Chornet, E.; Czernik, S.; Feik, C.; French, R.; Phillips, S. [National Renewable Energy Lab., Golden, CO (United States); Abedi, J.; Yeboah, Y.D. [Clark Atlanta Univ., Atlanta, GA (United States); Day, D.; Howard, J. [Scientific Carbons Inc., Blakely, GA (United States); McGee, D. [Enviro-Tech Enterprises Inc., Matthews, NC (United States); Realff, M.J. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2002-07-01

    A project was initiated to determine the feasibility of producing hydrogen from agricultural wastes at a cost comparable to methane-reforming technologies. It is possible that hydrogen can be produced cost competitively with natural gas reforming by integrating hydrogen production with existing waste product utilization processes. This report presents initial results of an engineering demonstration project involving the development of a steam reforming process by a team of government, industrial and academic organizations working at the thermochemical facility at the National Renewable Energy Laboratory. The process is to be used on the gaseous byproducts from a process for making activated carbon from densified peanut shells. The reactor is interfaced with a 20 kg/hour fluidized-bed fast pyrolysis system and takes advantage of process chemical analysis and computer control and monitoring capacity. The reactor will be tested on the pyrolysis vapors produced in the activated carbon process. The final phase of the project will look at the production of hydrogen through the conversion of residual CO to H{sub 2} over a shift catalyst and separating hydrogen from CO{sub 2} using pressure swing adsorption. The purified oxygen will be mixed with natural gas and used for transportation purposes. The study demonstrates the potential impact of hydrogen and bioenergy on the economic development and diversification of rural areas. 11 refs., 2 tabs., 5 figs.

  18. Principle and perspectives of hydrogen production through biocatalyzed electrolysis

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Euverink, G.J.W.; Metz, S.J.; Buisman, C.J.N.

    2006-01-01

    Biocatalyzed electrolysis is a novel biological hydrogen production process with the potential to efficiently convert a wide range of dissolved organic materials in wastewaters. Even substrates formerly regarded to be unsuitable for hydrogen production due to the endothermic nature of the involved

  19. The calculation of specific heats for some important solid components in hydrogen production process based on CuCl cycle

    Directory of Open Access Journals (Sweden)

    Avsec Jurij

    2014-01-01

    Full Text Available Hydrogen is one of the most promising energy sources of the future enabling direct production of power and heat in fuel cells, hydrogen engines or furnaces with hydrogen burners. One of the last remainder problems in hydrogen technology is how to produce a sufficient amount of cheap hydrogen. One of the best options is large scale thermochemical production of hydrogen in combination with nuclear power plant. copper-chlorine (CuCl cycle is the most promissible thermochemical cycle to produce cheap hydrogen.This paper focuses on a CuCl cycle, and the describes the models how to calculate thermodynamic properties. Unfortunately, for many components in CuCl cycle the thermochemical functions of state have never been measured. This is the reason that we have tried to calculate some very important thermophysical properties. This paper discusses the mathematical model for computing the thermodynamic properties for pure substances and their mixtures such as CuCl, HCl, Cu2OCl2 important in CuCl hydrogen production in their fluid and solid phase with an aid of statistical thermodynamics. For the solid phase, we have developed the mathematical model for the calculation of thermodynamic properties for polyatomic crystals. In this way, we have used Debye functions and Einstein function for acoustical modes and optical modes of vibrations to take into account vibration of atoms. The influence of intermolecular energy we have solved on the basis of Murnaghan equation of state and statistical thermodynamics.

  20. Composition of hydrogenation products of Borodino brown coal

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Gyul' malieva; A.S. Maloletnev; G.A. Kalabin; A.M. Gyul' maliev [Institute for Fossil Fuels, Moscow (Russian Federation)

    2008-02-15

    The composition of liquid products of hydrogenation of brown coal from the Borodino deposit was determined by means of {sup 13}C NMR spectroscopy and chemical thermodynamics methods. It was shown that the group composition of the liquid hydrogenation products at thermodynamic equilibrium is predictable from the elemental composition of the organic matter of parent coal. 9 refs., 5 figs., 6 tabs.

  1. Fiber Optic Hydrogen Sensor Development: Cooperative Research and Development Final Report, CRADA number CRD-05-00158

    International Nuclear Information System (INIS)

    Ringer, M.

    2010-01-01

    NREL and Nuclear Filter Technology collaborated to develop a prototype product for a hydrogen threshold sensor that was used to monitor hydrogen production in the transport of nuclear waste transport containers. This application is a core business area for Nuclear Filter Technology and will provide a basis for creating sensor products that are used in other licensed fields of use. Activities included design and construction of prototype product, product testing and debugging, and finalizing a prototype for initial field tests.

  2. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  3. Hydrogen - High pressure production and storage

    International Nuclear Information System (INIS)

    Lauretta, J.R

    2005-01-01

    The development of simple, safe and more and more efficient technologies for the production and the storage of hydrogen is necessary condition for the transition towards the economy of hydrogen.In this work the hydrogen production studies experimentally to high pressure by electrolysis of alkaline solutions without the intervention of compressing systems and its direct storage in safe containers.The made tests show that the process of electrolysis to high pressure is feasible and has better yield than to low pressure, and that is possible to solve the operation problems, with relatively simple technology.The preliminary studies and tests indicate that the system container that studied is immune to the outbreak and can have forms and very different sizes, nevertheless, to reach or to surpass the efficiency of storage of the conventional systems the investments necessary will be due to make to be able to produce aluminum alloy tubes of high resistance

  4. Improvement of anaerobic bio-hydrogen gas production from organic sludge waste

    International Nuclear Information System (INIS)

    Lee, S.; Lee, Y. H.

    2009-01-01

    Microbial hydrogen gas production from organic matters stands out as one of the most promising alternatives for sustainable green energy production. Based on the literature review, investigation of anaerobic bio-hydrogen gas production from organic sludge waste using a mixed culture has been very limited. The objective of this study was to assess the anaerobic bio-hydrogen gas production from organic sludge waste under various conditions. (Author)

  5. Potential of biogenic hydrogen production for hydrogen driven remediation strategies in marine environments.

    Science.gov (United States)

    Hosseinkhani, Baharak; Hennebel, Tom; Boon, Nico

    2014-09-25

    Fermentative production of bio-hydrogen (bio-H2) from organic residues has emerged as a promising alternative for providing the required electron source for hydrogen driven remediation strategies. Unlike the widely used production of H2 by bacteria in fresh water systems, few reports are available regarding the generation of biogenic H2 and optimisation processes in marine systems. The present research aims to optimise the capability of an indigenous marine bacterium for the production of bio-H2 in marine environments and subsequently develop this process for hydrogen driven remediation strategies. Fermentative conversion of organics in marine media to H2 using a marine isolate, Pseudoalteromonas sp. BH11, was determined. A Taguchi design of experimental methodology was employed to evaluate the optimal nutritional composition in batch tests to improve bio-H2 yields. Further optimisation experiments showed that alginate-immobilised bacterial cells were able to produce