International Nuclear Information System (INIS)
Negele, J.W.
1975-01-01
The nuclear ground state is surveyed theoretically, and specific suggestions are given on how to critically test the theory experimentally. Detailed results on 208 Pb are discussed, isolating several features of the charge density distributions. Analyses of 208 Pb electron scattering and muonic data are also considered. 14 figures
Ground state energy fluctuations in the nuclear shell model
International Nuclear Information System (INIS)
Velazquez, Victor; Hirsch, Jorge G.; Frank, Alejandro; Barea, Jose; Zuker, Andres P.
2005-01-01
Statistical fluctuations of the nuclear ground state energies are estimated using shell model calculations in which particles in the valence shells interact through well-defined forces, and are coupled to an upper shell governed by random 2-body interactions. Induced ground-state energy fluctuations are found to be one order of magnitude smaller than those previously associated with chaotic components, in close agreement with independent perturbative estimates based on the spreading widths of excited states
Variational Monte Carlo calculations of nuclear ground states
International Nuclear Information System (INIS)
Wiringa, R.B.
1990-01-01
A major goal in nuclear physics is to understand how nuclear structure comes about from the underlying interactions between nucleons. This requires modelling nuclei as collections of strongly interacting nucleons. We start with realistic nucleon-nucleon potentials, supplemented with consistent three-nucleon potentials and two-body electroweak current operators, and try to predict nuclear ground properties, such as the binding energy, density and momentum distributions, and electromagnetic form factors. We also seek to predict other properties of nuclei such as excited states and low-energy reactions. 21 refs., 14 figs., 5 tabs
Directory of Open Access Journals (Sweden)
Akrawy Dashty T.
2018-01-01
Full Text Available Theoretical α-decay half-lives of some nuclei from ground state to ground state are calculated using different nuclear potential model including Coulomb proximity potential (CPPM, Royer proximity potential and Broglia and Winther 1991. The calculated values comparing with experimental data, it is observed that the CPPM model is in good agreement with the experimental data.
Nuclear quadrupole moment of the 99Tc ground state
International Nuclear Information System (INIS)
Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan
2008-01-01
By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2 + ground state of 99 Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc 2 and ZrTc 2 . If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the 99 Tc ground state quadrupole moment could be further reduced
Relativistic analysis of nuclear ground state densities at 135 to 200 ...
Indian Academy of Sciences (India)
fitting of differential cross-section and analyzing power, and the appearance of wine-bottle- ... So, the effect of different nuclear density distributions is quite conspicuous in the relativistic ap- proach. Hence, we have analyzed five different nuclear ground state .... The NEG and FNEG densities have been used to see the effect.
Theories of the nuclear ground state beyond Hartree-Fock
International Nuclear Information System (INIS)
Gogny, D.
1979-01-01
Intensive efforts have been invested toward defining a microscopic approach, simple enough to render feasible systematic calculations of nuclear structure and of the some time sufficiently rich in information as to serve for updating traditional microscopic approaches to the collective excitations. Our starting point is the mean field approximation with density dependent effective forces. To describe the collective excitations we use the two well known extensions based on the H.F. theory namely the random phase approximation and the adiabatic approximation to the time dependent Hartree-Fock theory. The purpose of this paper is to show what sort of calculations can be effectively carried out in the frame of such fully self consistent approaches. (KBE) 891 KBE/KBE 892 ARA
Study of polonium isotopes ground state properties by simultaneous atomic- and nuclear-spectroscopy
Koester, U H; Kalaninova, Z; Imai, N
2007-01-01
We propose to systematically study the ground state properties of neutron deficient $^{192-200}$Po isotopes by means of in-source laser spectroscopy using the ISOLDE laser ion source coupled with nuclear spectroscopy at the detection setup as successfully done before by this collaboration with neutron deficient lead isotopes. The study of the change in mean square charge radii along the polonium isotope chain will give an insight into shape coexistence above the mid-shell N = 104 and above the closed shell Z = 82. The hyperfine structure of the odd isotopes will also allow determination of the nuclear spin and the magnetic moment of the ground state and of any identifiable isomer state. For this study, a standard UC$_{x}$ target with the ISOLDE RILIS is required for 38 shifts.
International Nuclear Information System (INIS)
Farasat, M; Golzan, M M; Shojaei, S H R; Morini, F; Deleuze, M S
2016-01-01
The electronic structure, electron binding energy spectrum and (e, 2e) momentum distributions of aniline have been theoretically predicted at an electron impact energy of 1.500 keV on the basis of Born–Oppenheimer molecular dynamical simulations, in order to account for thermally induced nuclear motions in the initial electronic ground state. Most computed momentum profiles are rather insensitive to thermally induced alterations of the molecular structure, with the exception of the profiles corresponding to two ionization bands at electron binding energies comprised between ∼10.0 and ∼12.0 eV (band C) and between ∼16.5 and ∼20.0 eV (band G). These profiles are found to be strongly influenced by nuclear dynamics in the electronic ground state, especially in the low momentum region. The obtained results show that thermal averaging smears out most generally the spectral fingerprints that are induced by nitrogen inversion. (paper)
International Nuclear Information System (INIS)
Su Zongdi; Ma Lizhen
1994-01-01
The management code of the sub-library of atomic mass and characteristic constants for nuclear ground state (MCC) is used for displaying the basic information on the MCC sub-library on the screen, and retrieving the required data. The MCC data file contains the data of 4800 nuclides ranging from Z 0, A = 1 to Z = 122, A = 318. The MCC sub-library has been set up at Chinese Nuclear Data Center (CNDC), and has been used to provide the atomic masses and characteristic constants of nuclear ground states for the nuclear model calculation, nuclear data evaluations and other fields
Ground beetles (Coleoptera, Carabidae of the Hanford Nuclear Site in south-central Washington State
Directory of Open Access Journals (Sweden)
Chris Looney
2014-04-01
Full Text Available In this paper we report on ground beetles (Coleoptera: Carabidae collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site, which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte, and Stenolophus lineola (Fabricius. Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.
Atomic mass and characteristic constant of nuclear ground state (CENPL.MCC). Pt. 1
International Nuclear Information System (INIS)
Su Zongdi; Ma Lizhen; Zhou Chunmei; Ge Zhigang
1994-01-01
Atomic mass and characteristic constants for nuclear ground states are basic data for nuclear physics, and necessary ones for basic researches, theoretical calculations, as well as many applied researches. The atomic mass of exotic nuclei quite far from the valley stability are also very important for astrophysics researches. The above-requirement is paid attention to in our setting up this file. The recent and as many as possible data (such as the half-lives of the new nuclides 202 Pt, 208 Hg and 185 Hf and the mass excess of 199 Ir, which were produced and distinguished by Chinese scientists) have been collected, and put into the computer-based data file in brief table format. (1 fig.)
Looney, Chris; Zack, Richard S; Labonte, James R
2014-01-01
Carabidae) collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site), which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte), and Stenolophus lineola (Fabricius). Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.
International Nuclear Information System (INIS)
Morini, Filippo; Deleuze, Michael Simon; Watanabe, Noboru; Kojima, Masataka; Takahashi, Masahiko
2015-01-01
The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b 1 , 6a 1 , 4b 2 , and 1a 2 orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A 1 , B 1 , and B 2 symmetries, which correspond to C–H stretching and H–C–H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing
Nuclear level densities with pairing and self-consistent ground-state shell effects
Arnould, M
1981-01-01
Nuclear level density calculations are performed using a model of fermions interacting via the pairing force, and a realistic single particle potential. The pairing interaction is treated within the BCS approximation with different pairing strength values. The single particle potentials are derived in the framework of an energy-density formalism which describes self-consistently the ground states of spherical nuclei. These calculations are extended to statistically deformed nuclei, whose estimated level densities include rotational band contributions. The theoretical results are compared with various experimental data. In addition, the level densities for several nuclei far from stability are compared with the predictions of a back-shifted Fermi gas model. Such a comparison emphasizes the possible danger of extrapolating to unknown nuclei classical level density formulae whose parameter values are tailored for known nuclei. (41 refs).
Nuclear Ground State Properties in Strontium by Fast Beam Laser Spectroscopy
2002-01-01
Hyperfine structures and isotope shifts of strontium isotopes with A=78 to A=100 were measured by collinear fast beam laser spectroscopy. Nuclear spins, moments and changes in mean square charge radii are extracted from the data. The spins and moments of most of the odd isotopes are explained in the framework of the single particle model. The changes in mean square charge radii show a decrease with increasing neutron number below the N=50 shell closure. Above N=50 the charge radii increase regularly up to N=59 before revealing a strong discontinuity, indicating the onset of strong ground state deformation. A comparison of the droplet model shows that for the transitional isotopes below and above N=50, the zero point quadrupole motion describes part of the observed shell effect. Calculations carried out in the Hartree-Fock plus BCS model suggest an additional change in the surface region of the charge distribution at spherical shape. From these calculations it is furthermore proposed, that the isotopes $^7
Hartree–Fock many-body perturbation theory for nuclear ground-states
Directory of Open Access Journals (Sweden)
Alexander Tichai
2016-05-01
Full Text Available We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree–Fock solution for the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to the divergent MBPT series obtained with a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation is not feasible, we perform third-order calculations and compare to advanced ab initio coupled-cluster results for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into the tin isotopic chain in excellent agreement with the best available coupled-cluster calculations at a fraction of the computational cost.
Hartree–Fock many-body perturbation theory for nuclear ground-states
Energy Technology Data Exchange (ETDEWEB)
Tichai, Alexander, E-mail: alexander.tichai@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Langhammer, Joachim [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Binder, Sven [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Roth, Robert, E-mail: robert.roth@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany)
2016-05-10
We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree–Fock solution for the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to the divergent MBPT series obtained with a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation is not feasible, we perform third-order calculations and compare to advanced ab initio coupled-cluster results for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into the tin isotopic chain in excellent agreement with the best available coupled-cluster calculations at a fraction of the computational cost.
Kolmann, Stephen J.; Jordan, Meredith J. T.
2010-02-01
One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.
Kolmann, Stephen J; Jordan, Meredith J T
2010-02-07
One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.
Friedrich, Manuel; Stefanelli, Ulisse
2018-06-01
Graphene is locally two-dimensional but not flat. Nanoscale ripples appear in suspended samples and rolling up often occurs when boundaries are not fixed. We address this variety of graphene geometries by classifying all ground-state deformations of the hexagonal lattice with respect to configurational energies including two- and three-body terms. As a consequence, we prove that all ground-state deformations are either periodic in one direction, as in the case of ripples, or rolled up, as in the case of nanotubes.
Singlet Ground State Magnetism:
DEFF Research Database (Denmark)
Loidl, A.; Knorr, K.; Kjems, Jørgen
1979-01-01
The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width...
International Nuclear Information System (INIS)
Wei, Jie; Li, Xiao-Ping; Sessler, A.M.
1993-01-01
In order to employ Molecular Dynamics method, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing
International Nuclear Information System (INIS)
Wei, Jie; Li, Xiao-Ping
1993-01-01
In order to employ molecular dynamics (MD) methods, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations using MD methods has been performed to obtain the equilibrium crystalline beam structure. The effect of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Schiffer et al. depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing
International Nuclear Information System (INIS)
Wei, J.; Li, X.P.
1993-01-01
In order to employ the Molecular Dynamics method, commonly used in condensed matter physics, the authors have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. They include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing
International Nuclear Information System (INIS)
Toenhardt, M.
1987-01-01
In this thesis only nuclei with even proton and even neutron number have been studied. This constraint allows to use a for the description of excitation spectra very successful model, the interacting boson model (IBM) and to combine this with the density functional method. From the obtained Hamiltonian via an energy-density functional an effective potential is constructed which can be applied in the framework of the density-functional method in order to calculate ground state energies and densities. From the density distributions radii and values for the static deformation are determined. As further ground state property the separation energy for two neutrons is studied. (orig./HSI) [de
International Nuclear Information System (INIS)
Flocard, H.
1975-04-01
Hartree-Fock results concerning the ground state properties of some S-D shell nuclei are discussed. Two different Skyrme interactions have been used. They both lead to good agreement with the experimental total binding energies, charge radii and multipole moments. In particular the observed prolate-oblate transitions occuring in the S-D shell are reproduced. The calculated spectroscopic factors are also shown to be consistent with experimental data [fr
Appel, Markus; Frick, Bernhard; Elbert, Johannes; Gallei, Markus; Stühn, Bernd
2015-01-01
The quantum mechanical splitting of states by interaction of a magnetic moment with an external magnetic field is well known, e.g., as Zeeman effect in optical transitions, and is also often seen in magnetic neutron scattering. We report excitations observed in inelastic neutron spectroscopy on the redox-responsive polymer poly(vinylferrocene). They are interpreted as splitting of the electronic ground state in the organometallic ferrocene units attached to the polymer chain where a magnetic moment is created by oxidation. In a second experiment using high resolution neutron backscattering spectroscopy we observe the hyperfine splitting, i.e., interaction of nuclear magnetic moments with external magnetic fields leading to sub-μeV excitations observable in incoherent neutron spin-flip scattering on hydrogen and vanadium nuclei.
Ground assessment methods for nuclear power plant
International Nuclear Information System (INIS)
1985-01-01
It is needless to say that nuclear power plant must be constructed on the most stable and safe ground. Reliable assessment method is required for the purpose. The Ground Integrity Sub-committee of the Committee of Civil Engineering of Nuclear Power Plant started five working groups, the purpose of which is to systematize the assessment procedures including geological survey, ground examination and construction design. The works of working groups are to establishing assessment method of activities of faults, standardizing the rock classification method, standardizing assessment and indication method of ground properties, standardizing test methods and establishing the application standard for design and construction. Flow diagrams for the procedures of geological survey, for the investigation on fault activities and ground properties of area where nuclear reactor and important outdoor equipments are scheduled to construct, were established. And further, flow diagrams for applying investigated results to design and construction of plant, and for determining procedure of liquidification nature of ground etc. were also established. These systematized and standardized methods of investigation are expected to yield reliable data for assessment of construction site of nuclear power plant and lead to the safety of construction and operation in the future. In addition, the execution of these systematized and detailed preliminary investigation for determining the construction site of nuclear power plant will make much contribution for obtaining nation-wide understanding and faith for the project. (Ishimitsu, A.)
Błaszczak, Z; Marinova, K; LASER 2006
2007-01-01
7th International Workshop on Application of Lasers in Atomic Nuclei Research, LASER 2004, held in Poznan, Poland, May 29-June 01, 2006 Researchers and PhD students interested in recent results in the nuclear structure investigation by laser spectroscopy, the progress of the experimental technique and the future developments in the field will find this volume indispensable. Reprinted from Hyperfine Interactions (HYPE) Volume ???
Ground states of quantum spin systems
International Nuclear Information System (INIS)
Bratteli, Ola; Kishimoto, Akitaka; Robinson, D.W.
1978-07-01
The authors prove that ground states of quantum spin systems are characterized by a principle of minimum local energy and that translationally invariant ground states are characterized by the principle of minimum energy per unit volume
Nuclear power on unstable ground
International Nuclear Information System (INIS)
Morner, N.A.
1982-01-01
It is unacceptable scientifically to say that the problem of nuclear-waste disposal is solved today. The possibilities for future progress remain a question of subjective evaluation. Overoptimistic and careless predictions are not only meaningless but also dangerous factors for future failures and accidents. The Swedish KBS project is in all respects overoptimistic, and the Swedish Stipulation Law in all respects is not fulfilled. The geodynamics of the Fennoscandian bedrock are different from those claimed by KBS. There is a complex of forces and movements (including both novel factor and factors of uncertain or unknown origin) where the amounts and rates of movement are larger than previously realized. Intensive faulting, fracturing, and paleoseismicity are recorded during glacial periods. In this highly active bedrock medium, it is difficult to see how a safe closed deposition could ever be determined. As an emergency action for the time being in order to keep control and freedom of action, an 'open deposition' is recommended, while studies continue. (author)
Cluster decay of Ba isotopes from ground state and as an excited ...
Indian Academy of Sciences (India)
otherwise, inclusion of excitation energy decreases the T1/2 values. ... penetrates the nuclear barrier and reaches scission configuration after running .... between the ground-state energy levels of the parent nuclei and the ground-state energy.
International Nuclear Information System (INIS)
Jungk, R.
1979-01-01
A general picture is given of the technical and sociological problems which it is said arise in the 'nuclear state'. Separate chapters are entitled: radiation fodder; the gamblers; the atomic man; the intimidated; the proliferators; atomic terrorists; the supervised. The Foreword, entitled 'the hard path' (i.e. with nuclear power) is contrasted with a final chapter entitled 'Prospect: the soft path' (i.e. without nuclear power). (U.K.)
Experimental grounds for nuclear shape isomerism
International Nuclear Information System (INIS)
Makarenko, V.E.
1995-11-01
Experimental data on fission isomeric states of actinide nuclei - half lives, energies, quantum numbers, decay branches and spectroscopic properties - are discussed. Quite a few results find their explanation in the framework of nuclear shape isomerism hypothesis being the in-thing for about thirty years. Others seem to be the hints to the quasiparticle nature of fission isomers. The problem could be solved by direct measurement of nuclear spin for isomeric states. (author). 44 refs, 1 tab
Ground state of high-density matter
Copeland, ED; Kolb, Edward W.; Lee, Kimyeong
1988-01-01
It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.
Ground acceleration in a nuclear power plant
International Nuclear Information System (INIS)
Pena G, P.; Balcazar, M.; Vega R, E.
2015-09-01
A methodology that adopts the recommendations of international organizations for determining the ground acceleration at a nuclear power plant is outlined. Systematic presented here emphasizes the type of geological, geophysical and geotechnical studies in different areas of influence, culminating in assessments of Design Basis earthquake and the earthquake Operating Base. The methodology indicates that in regional areas where the site of the nuclear power plant is located, failures are identified in geological structures, and seismic histories of the region are documented. In the area of detail geophysical tools to generate effects to determine subsurface propagation velocities and spectra of the induced seismic waves are used. The mechanical analysis of drill cores allows estimating the efforts that generate and earthquake postulate. Studies show that the magnitude of the Fukushima earthquake, did not affect the integrity of nuclear power plants due to the rocky settlement found. (Author)
Search for the QCD ground state
International Nuclear Information System (INIS)
Reuter, M.; Wetterich, C.
1994-05-01
Within the Euclidean effective action approach we propose criteria for the ground state of QCD. Despite a nonvanishing field strength the ground state should be invariant with respect to modified Poincare transformations consisting of a combination of translations and rotations with suitable gauge transformations. We have found candidate states for QCD with four or more colours. The formation of gluon condensates shows similarities with the Higgs phenomenon. (orig.)
Search for C+ C clustering in Mg ground state
Indian Academy of Sciences (India)
2017-01-04
Jan 4, 2017 ... Finite-range knockout theory predictions were much larger for (12C,212C) reaction, indicating a very small 12C−12C clustering in 24Mg. (g.s.) . Our present results contradict most of the proposed heavy cluster (12C+12C) structure models for the ground state of 24Mg. Keywords. Direct nuclear reactions ...
Ground state correlations and structure of odd spherical nuclei
International Nuclear Information System (INIS)
Mishev, S.; Voronov, V.V.
2008-01-01
It is well known that the Pauli principle plays a substantial role at low energies because the phonon operators are not ideal boson operators. Calculating the exact commutators between the quasiparticle and phonon operators one can take into account the Pauli principle corrections. Besides, the ground state correlations due to the quasiparticle interaction in the ground state influence the single-particle fragmentation as well. In this paper, we generalize the basic equations of the quasiparticle-phonon nuclear model to account for both effects mentioned. As an illustration of our approach, calculations on the structure of the low-lying states in 133 Ba have been performed
International Nuclear Information System (INIS)
Nguyen Dinh Dang; Voronov, V.V.
1983-01-01
A system of basic equations of the quasiparticle-phonon model is obtained for energies and a structure of excited states described by the wave functions containing one- and two-phonon components. The effects due to the Pauli principle for two-phonon components and the phonon ground state correlations of a spherical nucleus are taken here into account. The quantitative estimations of these effects are given by a simplified scheme. The relation between these equations with the results from other theoretical approaches is discussed
Cavity optomechanics -- beyond the ground state
Meystre, Pierre
2011-05-01
The coupling of coherent optical systems to micromechanical devices, combined with breakthroughs in nanofabrication and in ultracold science, has opened up the exciting new field of cavity optomechanics. Cooling of the vibrational motion of a broad range on oscillating cantilevers and mirrors near their ground state has been demonstrated, and the ground state of at least one such system has now been reached. Cavity optomechanics offers much promise in addressing fundamental physics questions and in applications such as the detection of feeble forces and fields, or the coherent control of AMO systems and of nanoscale electromechanical devices. However, these applications require taking cavity optomechanics ``beyond the ground state.'' This includes the generation and detection of squeezed and other non-classical states, the transfer of squeezing between electromagnetic fields and motional quadratures, and the development of measurement schemes for the characterization of nanomechanical structures. The talk will present recent ``beyond ground state'' developments in cavity optomechanics. We will show how the magnetic coupling between a mechanical membrane and a BEC - or between a mechanical tuning fork and a nanoscale cantilever - permits to control and monitor the center-of-mass position of the mechanical system, and will comment on the measurement back-action on the membrane motion. We will also discuss of state transfer between optical and microwave fields and micromechanical devices. Work done in collaboration with Dan Goldbaum, Greg Phelps, Keith Schwab, Swati Singh, Steve Steinke, Mehmet Tesgin, and Mukund Vengallatore and supported by ARO, DARPA, NSF, and ONR.
Calculations of the ground state of 16O
International Nuclear Information System (INIS)
Pieper, S.C.
1989-01-01
One of the central problems in nuclear physics is the description of nuclei as systems of nucleons interacting via realistic potentials. There are two main aspects of this problem: specification of the Hamiltonian, and calculation of the ground states of nuclei with the given interaction. Realistic interactions must contain both two- and three-nucleon potentials and these potentials have a complicated non-central operator structure consisting, for example, of spin, isospin and tensor dependences. This structure results in formidable many-body problems in the computation of the ground states of nuclei. At present, reliable solutions of the Faddeev equations for the A = 3 nuclei with such interactions are routine. Recently, Carlson has made an essentially exact GFMC calculation of the He ground state using just a two-nucleon interaction, and there are reliable variational calculations for more complete potential models. Nuclear matter calculations can also be made with reasonable reliability. However, there have been very few calculations of nuclei with A > 5 using realistic interactions, and none with a modern three-nucleon interaction. In the present paper I present a new technique for variational calculations for such nuclei and apply it to the ground state of 16 O. 15 refs., 2 figs., 3 tabs
State nuclear initiatives in the United States
International Nuclear Information System (INIS)
Strauss, P.L.; Stoiber, C.R.
1977-01-01
The paper deals with State nuclear initiatives regarding the role of nuclear power in the energy future of the United States. The question of whether and under what circumstances nuclear facilities should be used to generate electricity was put to the popular vote in several States in 1976. Some general principles of Federal-State relations are discussed with specific reference to nuclear regulations. The initiative mechanism itself is described as well as its legal form and background. The parallel developments in the State and Federal legislative consideration of nuclear issues is reviewed and the suggested reasons for the defeat of the proposals in the seven States concerned are discussed. Finally, the author draws some conclusions on the effects of the 1976 initiatives on future decision-making in the US on energy policy in general and nuclear power in particular. (NEA) [fr
Thermodynamic Ground States of Complex Oxide Heterointerfaces
DEFF Research Database (Denmark)
Gunkel, F.; Hoffmann-Eifert, S.; Heinen, R. A.
2017-01-01
The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature...
Rearrangements in ground and excited states
de Mayo, Paul
1980-01-01
Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;
Magnetic properties of singlet ground state systems
International Nuclear Information System (INIS)
Diederix, K.M.
1979-01-01
Experiments are described determining the properties of a magnetic system consisting of a singlet ground state. Cu(NO 3 ) 2 .2 1/2H 2 O has been studied which is a system of S = 1/2 alternating antiferromagnetic Heisenberg chains. The static properties, spin lattice relaxation time and field-induced antiferromagnetically ordered state measurements are presented. Susceptibility and magnetic cooling measurements of other compounds are summarised. (Auth.)
Trapping cold ground state argon atoms.
Edmunds, P D; Barker, P F
2014-10-31
We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39) C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10) cm(3) s(-1).
RPA ground state correlations in nuclei
International Nuclear Information System (INIS)
Lenske, H.
1990-01-01
Overcounting in the RPA theory of ground state correlations is shown to be avoided if exact rather than quasiboson commutators are used. Single particle occupation probabilities are formulated in a compact way by the RPA Green function. Calculations with large configuration spaces and realistic interactions are performed with 1p1h RPA and second RPA (SRPA) including 2p2h mixing in excited states. In 41 Ca valence hole states are found to be quenched by about 10% in RPA and up to 18% in SRPA. Contributions from low and high lying excitations and their relation to long and short range correlations in finite nuclei are investigated. (orig.)
Ground motion prediction needs for nuclear engineering design
International Nuclear Information System (INIS)
Hadjian, A.H.
1985-01-01
The basic design philosophy of nuclear power plants stipulates that the risk to the public be as low as reasonably achievable. As a result of this philosophy, the seismic design of nuclear power plants has tended, over time, to diverge from that of other engineered structures. The emphasis at the present time is to specify ground motion at a nuclear facility site as realistically as possible and to design all safety-related structures to respond to the specified ground motion in the elastic range. The characteristics of this realistic design ground motion are discussed and present prediction needs identified
Rearrangements in ground and excited states
de Mayo, Paul
1980-01-01
Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.
Ground state searches in fcc intermetallics
International Nuclear Information System (INIS)
Wolverton, C.; de Fontaine, D.; Ceder, G.; Dreysse, H.
1991-12-01
A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration
DEFF Research Database (Denmark)
Severin, Gregory; Knutson, L. D.; Voytas, P. A.
2014-01-01
The ground state branch of the β decay of 66Ga is an allowed Fermi (0+ → 0+) transition with a relatively high f t value. The large f t and the isospin-forbidden nature of the transition indicates that the shape of the β spectrum of this branch may be sensitive to higher order contributions...... to the decay. Two previous measurements of the shape have revealed deviations from an allowed spectrum but disagree about whether the shape factor has a positive or negative slope. As a test of a new iron-free superconducting β spectrometer, we have measured the shape of the ground state branch of the 66Ga β...... spectrum above a positron energy of 1.9 MeV. The spectrum is consistent with an allowed shape, with the slope of the shape factor being zero to within ±3 × 10−3 per MeV. We have also determined the endpoint energy for the ground state branch to be 4.1535 ± 0.0003 (stat.) ±0.0007 (syst.) MeV, in good...
Ground-water protection activities of the US Nuclear Regulatory Commission
International Nuclear Information System (INIS)
1987-02-01
This report evaluates the internal consistency of NRC's ground-water protection programs. These programs have evolved consistently with growing public concerns about the significance of ground-water contamination and environmental impacts. Early NRC programs provided for protection of the public health and safety by minimizing releases of radionuclides. More recent programs have included provisions for minimizing releases of nonradiological constituents, mitigating environmental impacts, and correcting ground-water contamination. NRC's ground-water protection programs are categorized according to program areas, including nuclear materials and waste management (NMSS), nuclear reactor operation (NRR), confirmatory research and standards development (RES), inspection and enforcement (IE), and agreement state programs (SP). Based on analysis of existing ground-water protection programs within NRC, the interoffice Ground-water Protection Group has identified several inconsistencies between and within program areas. These inconsistencies include: (1) different definitions of the term ''ground-water,'' (2) variable regulation of nonradiological constituents in ground water, (3) different design periods for ground-water protection, and (4) different scopes and rigor of ground-water assessments. The second inconsistency stems from differences in statutory authority granted to the NRC. The third inconsistency is rationalized by recognizing differences in perceived risks associated with nuclear facilities. The Ground-water Protection Group will document its analysis of the remaining inconsistencies and make recommendations to reconcile or eliminate them in a subsequent report
Ground states of a spin-boson model
International Nuclear Information System (INIS)
Amann, A.
1991-01-01
Phase transition with respect to ground states of a spin-boson Hamiltonian are investigated. The spin-boson model under discussion consists of one spin and infinitely many bosons with a dipole-type coupling. It is shown that the order parameter of the model vanishes with respect to arbitrary ground states if it vanishes with respect to ground states obtained as (biased) temperature to zero limits of thermic equilibrium states. The ground states of the latter special type have been investigated by H. Spohn. Spohn's respective phase diagrams are therefore valid for arbitrary ground states. Furthermore, disjointness of ground states in the broken symmetry regime is examined
Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap
International Nuclear Information System (INIS)
Casey, Leslie A.
2014-01-01
This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.
Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap
Energy Technology Data Exchange (ETDEWEB)
Casey, Leslie A.
2014-01-13
This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.
International Nuclear Information System (INIS)
Tanida, Hiroshi; Takagi, Shigeru; Suzuki, Hiroyuki S.; Satoh, Isamu; Komatsubara, Takemi
2006-01-01
Microscopic properties have been investigated on a cubic nonmagnetic non-Kramers Γ 3 doublet ground-state (GS) system PrAg 2 In by complementarily utilizing 115 In (I=9/2) and 109 Ag (I=1/2) NMR with particular emphasis on the low-frequency (low-ω) dipole and multipole (octupole and/or quadrupole) fluctuations of f-electrons as probed by the nuclear spin relaxation rates 1/ 115 T 1 and 1/ 109 T 1 . We show that 1/ 115 T 1 and 1/ 109 T 1 are anomalously enhanced respectively below≅50 K and ≅100K over those expected for the low-ω dipole fluctuations of the excited magnetic Γ 4 and Γ 5 states in a simple crystalline-electric-field model for a Γ 3 GS system. By comparing 1/( 115 T 1 T) and 1/( 109 T 1 T) and also by considering an invariant form of the hyperfine and/or quadrupole couplings of Γ 3 octupole and/or quadrupole moments with Ag/In nuclear dipole and/or quadrupole moments, we show that Γ 3 octupole fluctuations dominate 1/ 109 T 1 and quadrupole ones can possibly contribute to 1/ 115 T 1 at low T. (author)
A Model Ground State of Polyampholytes
International Nuclear Information System (INIS)
Wofling, S.; Kantor, Y.
1998-01-01
The ground state of randomly charged polyampholytes (polymers with positive and negatively charged groups along their backbone) is conjectured to have a structure similar to a necklace, made of weakly charged parts of the chain, compacting into globules, connected by highly charged stretched 'strings' attempted to quantify the qualitative necklace model, by suggesting a zero approximation model, in which the longest neutral segment of the polyampholyte forms a globule, while the remaining part will form a tail. Expanding this approximation, we suggest a specific necklace-type structure for the ground state of randomly charged polyampholyte's, where all the neutral parts of the chain compact into globules: The longest neutral segment compacts into a globule; in the remaining part of the chain, the longest neutral segment (the second longest neutral segment) compacts into a globule, then the third, and so on. A random sequence of charges is equivalent to a random walk, and a neutral segment is equivalent to a loop inside the random walk. We use analytical and Monte Carlo methods to investigate the size distribution of loops in a one-dimensional random walk. We show that the length of the nth longest neutral segment in a sequence of N monomers (or equivalently, the nth longest loop in a random walk of N steps) is proportional to N/n 2 , while the mean number of neutral segments increases as √N. The polyampholytes in the ground state within our model is found to have an average linear size proportional to dN, and an average surface area proportional to N 2/3
Power quality considerations for nuclear spectroscopy applications: Grounding
García-Hernández, J. M.; Ramírez-Jiménez, F. J.; Mondragón-Contreras, L.; López-Callejas, R.; Torres-Bribiesca, M. A.; Peña-Eguiluz, R.
2013-11-01
Traditionally the electrical installations are designed for supplying power and to assure the personnel safety. In nuclear analysis laboratories, additional issues about grounding also must be considered for proper operation of high resolution nuclear spectroscopy systems. This paper shows the traditional ways of grounding nuclear spectroscopy systems and through different scenarios, it shows the effects on the more sensitive parameter of these systems: the energy resolution, it also proposes the constant monitoring of a power quality parameter as a way to preserve or to improve the resolution of the systems, avoiding the influence of excessive extrinsic noise.
International Nuclear Information System (INIS)
Su Zongdi
1995-01-01
Description of program or function: CENPL - GDRP (Giant Dipole Resonance Parameters for Gamma-Ray): - Format: special format described in documentation; - Nuclides: V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er, Lu, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, Th, U, Np, Pu. - Origin: Experimental values offered by S.S. Dietrich and B.L. Berman. CENPL - FBP (Fission Barrier Parameter Sub-Library): - Format: special format described in documentation; - Nuclides: (1) 51 nuclei region from Th-230 to Cf-255, (2) 46 nuclei region from Th-229 to Cf-253, (3) 24 nuclei region from Pa-232 to Cf-253; - Origin: (1) Lynn, (2) Analysis of experimental data by Back et al., (3) Ohsawa. CENPL - DLS (Discrete level scheme and branch ratio of gamma decay: - Format: Special format described in documentation; - Origin: ENSDF - BNL. CENPL - NLD (Nuclear Level Density): - Format: Special format described in documentation; - Origin: Huang Zhongfu et al. CENPL - OMP (Optical model parameter sub-library): - Format: special format described in documentation ; - Origin: CENDL, ENDF/B-VI, JENDL-3. CENPL - MC (I) and (II) (Atomic masses and characteristic constants for nuclear ground states) : - Format: Brief table format; - Nuclides: 4760 nuclides ranging from Z=0 A=1 to Z=122 A=318. - Origin: Experimental data and systematic results evaluated by Wapstra, theoretical results calculated by Moller, ENSDF - BNL and Nuclear Wallet Cards. CENPL contains the following six sub-libraries: 1. Atomic Masses and Characteristic Constants for nuclear ground states (MCC). This data consists of calculated and in most cases also measured mass excesses, atomic masses, total binding energies, spins, parities, and half-lives of nuclear ground states, abundances, etc. for 4800 nuclides. 2. Discrete Level Schemes and branching ratios of gamma decay (DLS). The data on nuclear discrete levels are based on the Evaluated
Ground-state structures of Hafnium clusters
Energy Technology Data Exchange (ETDEWEB)
Ng, Wei Chun; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technoloty, Multimedia University, Melaca Campus, 75450 Melaka (Malaysia)
2015-04-24
Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.
Australia - a nuclear weapons testing ground
International Nuclear Information System (INIS)
Dobbs, Michael.
1993-01-01
Between 1952 and 1958 Britain conducted five separate nuclear weapons trials in Australia. Australia had the uninhabited wide open spaces and the facilities which such tests need and Britain was able to use its special relationship with Australia to get agreement to conduct atomic tests in Australia and establish a permanent test site at Maralinga. Other non-nuclear tests were conducted between 1953-1963. The story of Britain's involvement in atomic weapons testing in Australia is told through its postal history. Both official and private covers are used to show how the postal communications were established and maintained throughout the test years. (UK)
GROUND TRANSPORTATION OF NUCLEAR PROPULSION STAGES
Energy Technology Data Exchange (ETDEWEB)
Marjon, P. L.
1963-08-15
The results of studies on transportation problems associated with the development and testing of nuclear rocket powered space vehicles at the static test size are presented. Factors involved in selecting a transport mode are discussed. Radiation shutdown considerations and a conceptual transporter capable of handling test articles of foreseeable size are examined. (D.C.W.)
The state of nuclear forensics
International Nuclear Information System (INIS)
Kristo, Michael J.; Tumey, Scott J.
2013-01-01
Nuclear terrorism has been identified as one of the most serious security threats facing the world today. Many countries, including the United States, have incorporated nuclear forensic analysis as a component of their strategy to prevent nuclear terrorism. Nuclear forensics involves the laboratory analysis of seized illicit nuclear materials or debris from a nuclear detonation to identify the origins of the material or weapon. Over the years, a number of forensic signatures have been developed to improve the confidence with which forensic analysts can draw conclusions. These signatures are validated and new signatures are discovered through research and development programs and in round-robin exercises among nuclear forensic laboratories. The recent Nuclear Smuggling International Technical Working Group Third Round Robin Exercise and an on-going program focused on attribution of uranium ore concentrate provide prime examples of the current state of nuclear forensics. These case studies will be examined and the opportunities for accelerator mass spectrometry to play a role in nuclear forensics will be discussed.
The state of nuclear forensics
Energy Technology Data Exchange (ETDEWEB)
Kristo, Michael J. [Chemical Sciences Division, Lawrence Livermore National Laboratory, P.O. Box 808, L-186, Livermore, CA 94551 (United States); Tumey, Scott J., E-mail: tumey2@llnl.gov [Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, P.O. Box 808, L-397, Livermore, CA 94551 (United States)
2013-01-15
Nuclear terrorism has been identified as one of the most serious security threats facing the world today. Many countries, including the United States, have incorporated nuclear forensic analysis as a component of their strategy to prevent nuclear terrorism. Nuclear forensics involves the laboratory analysis of seized illicit nuclear materials or debris from a nuclear detonation to identify the origins of the material or weapon. Over the years, a number of forensic signatures have been developed to improve the confidence with which forensic analysts can draw conclusions. These signatures are validated and new signatures are discovered through research and development programs and in round-robin exercises among nuclear forensic laboratories. The recent Nuclear Smuggling International Technical Working Group Third Round Robin Exercise and an on-going program focused on attribution of uranium ore concentrate provide prime examples of the current state of nuclear forensics. These case studies will be examined and the opportunities for accelerator mass spectrometry to play a role in nuclear forensics will be discussed.
Symmetry Breakdown in Ground State Dissociation of HD+
International Nuclear Information System (INIS)
Ben-Itzhak, I.; Wells, E.; Carnes, K. D.; Krishnamurthi, Vidhya; Weaver, O. L.; Esry, B. D.
2000-01-01
Experimental studies of the dissociation of the electronic ground state of HD + following ionization of HD by fast proton impact indicate that the H + +D 1s dissociation channel is more likely than the H1s+D + dissociation channel by about 7% . This isotopic symmetry breakdown is due to the finite nuclear mass correction to the Born-Oppenheimer approximation which makes the 1sσ state 3.7 meV lower than the 2pσ state at the dissociation limit. The measured fractions of the two dissociation channels are in agreement with coupled-channels calculations of 1sσ to 2pσ transitions. (c) 2000 The American Physical Society
Thailand: fertile ground for nuclear technology
International Nuclear Information System (INIS)
Innes, R.
1990-01-01
Thailand's Office of Atomic Energy for Peace (OAEP) is bringing the benefits of food irradiation and nuclear-based agricultural techniques to the population. One of the most successful OAEP programs involves irradiating a popular Thai delicacy, 'nham' (fermented raw pork) which is otherwise often contaminated with salmonella, and sometimes with trichinella. Irradiated nham has proven popular with Thai consumers. Other nuclear techniques are being applied as follows: neutron densitometry and isotope tracer techniques are providing a better understanding of the relationships between soil, fertilizer and plants; radioimmunoassay of progesterone is improving breeding of cattle and buffaloes; seed irradiation is producing improved varieties of plants; irradiation is being used to sterilize control fruit flies
Handling effluent from nuclear thermal propulsion system ground tests
International Nuclear Information System (INIS)
Shipers, L.R.; Allen, G.C.
1992-01-01
A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests
Effluent treatment options for nuclear thermal propulsion system ground tests
International Nuclear Information System (INIS)
Shipers, L.R.; Brockmann, J.E.
1992-01-01
A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests
Is the ground state of Yang-Mills theory Coulombic?
Heinzl, Thomas; Ilderton, Anton; Langfeld, Kurt; Lavelle, Martin; Lutz, Wolfgang; McMullan, David
2008-01-01
We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-abelian Coulomb fields is found to have a good overlap with the ground state for all ch...
International Nuclear Information System (INIS)
Rae, W.D.M.; Merchant, A.C.
1993-01-01
We review clustering in light nuclei including molecular resonances in heavy ion reactions. In particular we study the systematics, paying special attention to the relationships between cluster states and superdeformed configurations. We emphasise the selection rules which govern the formation and decay of cluster states. We review some recent experimental results from Daresbury and elsewhere. In particular we report on the evidence for a 7-α chain state in 28 Si in experiments recently performed at the NSF, Daresbury. Finally we begin to address theoretically the important question of the lifetimes of cluster states as deduced from the experimental energy widths of the resonances. (Author)
Centrifugal stretching along the ground state band of 168Hf
International Nuclear Information System (INIS)
Costin, A.; Pietralla, N.; Reese, M.; Moeller, O.; Ai, H.; Casten, R. F.; Heinz, A.; McCutchan, E. A.; Meyer, D. A.; Qian, J.; Werner, V.; Dusling, K.; Fitzpatrick, C. R.; Guerdal, G.; Petkov, P.; Rainovski, G.
2009-01-01
The lifetimes of the J π =4 + , 6 + , 8 + , and 10 + levels along the ground state band in 168 Hf were measured by means of the recoil distance Doppler shift (RDDS) method using the New Yale Plunger Device (NYPD) and the SPEEDY detection array at Wright Nuclear Structure Laboratory of Yale University. Excited states in 168 Hf were populated using the 124 Sn( 48 Ti,4n) fusion evaporation reaction. The new lifetime values are sufficiently precise to clearly prove the increase of quadrupole deformation as a function of angular momentum in the deformed nucleus 168 Hf. The data agree with the predictions from the geometrical confined β-soft (CBS) rotor model that involves centrifugal stretching in a soft potential
Ground test facility for nuclear testing of space reactor subsystems
International Nuclear Information System (INIS)
Quapp, W.J.; Watts, K.D.
1985-01-01
Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs
Evaluation of vibratory ground motion at nuclear power plant sites
International Nuclear Information System (INIS)
Hofmann, R.B.; Greeves, J.T.
1978-01-01
The evaluation of vibratory ground motion at nuclear power plant sites requires the cooperative effort of scientists and engineers in several disciplines. These include seismology, geology, geotechnical engineering and structural engineering. The Geosciences Branch of the NRC Division of Site Safety and Environmental Analysis includes two sections, the Geology/Seismology Section and the Geotechnical Engineering Section
Solid state nuclear track detectors
International Nuclear Information System (INIS)
Medeiros, J.A.; Carvalho, M.L.C.P. de
1992-12-01
Solid state nuclear track detectors (SSNTD) are dielectric materials, crystalline or vitreous, which registers tracks of charged nuclear particles, like alpha particles or fission fragments. Chemical etching of the detectors origin tracks that are visible at the optical microscope: track etching rate is higher along the latent track, where damage due to the charged particle increase the chemical potential, and etching rate giving rise to holes, the etched tracks. Fundamental principles are presented as well as some ideas of main applications. (author)
Is the ground state of Yang-Mills theory Coulombic?
Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; Lutz, W.; McMullan, D.
2008-08-01
We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.
Neutrino ground state in a dense star
International Nuclear Information System (INIS)
Kiers, K.; Tytgat, M.H.
1998-01-01
It has recently been argued that long range forces due to the exchange of massless neutrinos give rise to a very large self-energy in a dense, finite-ranged, weakly charged medium. Such an effect, if real, would destabilize a neutron star. To address this issue we have studied the related problem of a massless neutrino field in the presence of an external, static electroweak potential of finite range. To be precise, we have computed to one loop the exact vacuum energy for the case of a spherical square well potential of depth α and radius R. For small wells, the vacuum energy is reliably determined by a perturbative expansion in the external potential. For large wells, however, the perturbative expansion breaks down. A manifestation of this breakdown is that the vacuum carries a non-zero neutrino charge. The energy and neutrino charge of the ground state are, to a good approximation for large wells, those of a neutrino condensate with chemical potential μ=α. Our results demonstrate explicitly that long-range forces due to the exchange of massless neutrinos do not threaten the stability of neutron stars. copyright 1998 The American Physical Society
International Nuclear Information System (INIS)
Kahana, S.
1986-01-01
The role of the nuclear equation of state in determining the fate of the collapsing cores of massive stars is examined in light of both recent theoretical advances in this subject and recent experimental measurements with relativistic heavy ions. The difficulties existing in attempts to bring the softer nuclear matter apparently required by the theory of Type II supernovae into consonance with the heavy ion data are discussed. Relativistic mean field theory is introduced as a candidate for derivation of the equation of state, and a simple form for the saturation compressibility is obtained. 28 refs., 4 figs., 1 tab
Energy Technology Data Exchange (ETDEWEB)
Kahana, S.
1986-01-01
The role of the nuclear equation of state in determining the fate of the collapsing cores of massive stars is examined in light of both recent theoretical advances in this subject and recent experimental measurements with relativistic heavy ions. The difficulties existing in attempts to bring the softer nuclear matter apparently required by the theory of Type II supernovae into consonance with the heavy ion data are discussed. Relativistic mean field theory is introduced as a candidate for derivation of the equation of state, and a simple form for the saturation compressibility is obtained. 28 refs., 4 figs., 1 tab.
Study on Quaternary ground siting of nuclear power plant, (1)
International Nuclear Information System (INIS)
Kokusho, Takaji; Nishi, Koichi; Honsho, Shizumitsu
1991-01-01
A seismic stability evaluation method for a nuclear power plant to be located on a Quaternary sandy/gravelly ground is discussed herein in terms of the geological and geotechnical survey, design earthquake motion evaluation and geotechnical seismic stability analyses. The geological and geotechnical exploration tunnel in the rock-foundation siting will be difficult in the Quaternary ground siting. Boring, geophysical surveys and soil samplings will play a major role in this case. The design earthquake input spectrum for this siting is proposed so as to take account the significant effect of longer period motion on the ground stability. Equivalent and non-linear analyses demonstrate the seismic stability of the foundation ground so long as the soil density is high. (author)
Quaternary ground siting technology of nuclear power plants
International Nuclear Information System (INIS)
Nishi, K.; Kokusho, T.; Iwatate, Y.; Ishida, K.; Honsho, S.; Okamoto, T.; Tohma, J.; Tanaka, Y.; Kanatani, M.
1992-01-01
A seismic stability evaluation method for a nuclear power plant to be located on Quaternary sandy/gravelly ground is discussed herein in terms of a geological and geotechnical survey, a design earthquake motion evaluation and geotechnical seismic stability analyses. The geological and geotechnical exploration tunnel in the rock foundation siting will be difficult in the Quaternary ground siting. Boring, geophysical surveys and soil sampling will play a major role in this case. A design earthquake input spectrum for this siting is proposed to take in account the significant effect of longer period motion on ground stability. Equivalent and non-linear analyses demonstrate the seismic stability of the foundation ground so long as the soil density is high. (author)
International Nuclear Information System (INIS)
Abe, Y.
1975-01-01
The effects of polarization on the stability of α-cluster structures in 8 Be and 12 C nuclei are studied in the intrinsic states. The extent of the polarization of α-clusters is investigated by employing a molecular-orbital model. Two α-cluster structure of 8 Be is shown to be extremely stable, and a triangular configuration of three α-clusters is also shown to be stable, but the polarizations of α-clusters are found rather large. Gruemmer--Faessler's method is discussed and their results are shown to be trivial
International Nuclear Information System (INIS)
Ritz, Thorsten; Scheid, Werner; Schmidt, Juergen
1996-01-01
Two aspects are reported: (a) Resonances in the scattering of 12 C on 12 C are interpreted within a phenomenological model of two oblately deformed 12 C nuclei. The corresponding quasibound states describe the nuclei rotating around the internuclear axis and carrying out butterfly and radial oscillations; (b) Angle-integrated cross sections of the scattering of 58 Ni on 58 Ni are calculated with the coupled channel method by taking the low energy spectrum of 58 Ni into account and compared with recent experimental data of Cindro et al. in the energy range between E cm = 110 and 115 MeV. (authors)
On the ground state of Yang-Mills theory
Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.
2011-01-01
We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state ...
On the ground state of Yang-Mills theory
International Nuclear Information System (INIS)
Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.
2011-01-01
Highlights: → The ground state overlap for sets of meson potential trial states is measured. → Non-uniform gluonic distributions are probed via Wilson loop operator. → The locally UV-regulated flux-tube operators can optimize the ground state overlap. - Abstract: We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state overlap.
On the ground state for fractional quantum hall effect
International Nuclear Information System (INIS)
Jellal, A.
1998-09-01
In the present letter, we investigate the ground state wave function for an explicit model of electrons in an external magnetic field with specific inter-particle interactions. The excitation states of this model are also given. (author)
Solving satisfiability problems by the ground-state quantum computer
International Nuclear Information System (INIS)
Mao Wenjin
2005-01-01
A quantum algorithm is proposed to solve the satisfiability (SAT) problems by the ground-state quantum computer. The scale of the energy gap of the ground-state quantum computer is analyzed for the 3-bit exact cover problem. The time cost of this algorithm on the general SAT problems is discussed
Ground state phase diagram of extended attractive Hubbard model
International Nuclear Information System (INIS)
Robaszkiewicz, S.; Chao, K.A.; Micnas, R.
1980-08-01
The ground state phase diagram of the extended Hubbard model with intraatomic attraction has been derived in the Hartree-Fock approximation formulated in terms of the Bogoliubov variational approach. For a given value of electron density, the nature of the ordered ground state depends essentially on the sign and the strength of the nearest neighbor coupling. (author)
Nuclear spin states and quantum logical operations
International Nuclear Information System (INIS)
Orlova, T.A.; Rasulov, E.N.
2006-01-01
Full text: To build a really functional quantum computer, researchers need to develop logical controllers known as 'gates' to control the state of q-bits. In this work , equal quantum logical operations are examined with the emphasis on 1-, 2-, and 3-q-bit gates.1-q-bit quantum logical operations result in Boolean 'NOT'; the 'NOT' and '√NOT' operations are described from the classical and quantum perspective. For the 'NOT' operation to be performed, there must be a means to switch the state of q-bits from to and vice versa. For this purpose either a light or radio pulse of a certain frequency can be used. If the nucleus has the spin-down state, the spin will absorb a portion of energy from electromagnetic current and switch into the spin-up state, and the radio pulse will force it to switch into state. An operation thus described from purely classical perspective is clearly understood. However, operations not analogous to the classical type may also be performed. If the above mentioned radio pulses are only half the frequency required to cause a state switch in the nuclear spin, the nuclear spin will enter the quantum superposition state of the ground state (↓) and excited states (↑). A recurring radio pulse will then result in an operation equivalent to 'NOT', for which reason the described operation is called '√NOT'. Such an operation allows for the state of quantum superposition in quantum computing, which enables parallel processing of several numbers. The work also treats the principles of 2-q-bit logical operations of the controlled 'NOT' type (CNOT), 2-q-bit (SWAP), and the 3-q-bit 'TAFFOLI' gate. (author)
International Nuclear Information System (INIS)
2016-07-01
The objective of this publication is to provide the state-of-the-art practice and detailed technical elements related to ground motion evaluation by ground motion prediction equations (GMPEs) and site response in the context of seismic hazard assessments as recommended in IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations. The publication includes the basics of GMPEs, ground motion simulation, selection and adjustment of GMPEs, site characterization, and modelling of site response in order to improve seismic hazard assessment. The text aims at delineating the most important aspects of these topics (including current practices, criticalities and open problems) within a coherent framework. In particular, attention has been devoted to filling conceptual gaps. It is written as a reference text for trained users who are responsible for planning preparatory seismic hazard analyses for siting of all nuclear installations and/or providing constraints for anti-seismic design and retrofitting of existing structures
Classical many-particle systems with unique disordered ground states
Zhang, G.; Stillinger, F. H.; Torquato, S.
2017-10-01
Classical ground states (global energy-minimizing configurations) of many-particle systems are typically unique crystalline structures, implying zero enumeration entropy of distinct patterns (aside from trivial symmetry operations). By contrast, the few previously known disordered classical ground states of many-particle systems are all high-entropy (highly degenerate) states. Here we show computationally that our recently proposed "perfect-glass" many-particle model [Sci. Rep. 6, 36963 (2016), 10.1038/srep36963] possesses disordered classical ground states with a zero entropy: a highly counterintuitive situation . For all of the system sizes, parameters, and space dimensions that we have numerically investigated, the disordered ground states are unique such that they can always be superposed onto each other or their mirror image. At low energies, the density of states obtained from simulations matches those calculated from the harmonic approximation near a single ground state, further confirming ground-state uniqueness. Our discovery provides singular examples in which entropy and disorder are at odds with one another. The zero-entropy ground states provide a unique perspective on the celebrated Kauzmann-entropy crisis in which the extrapolated entropy of a supercooled liquid drops below that of the crystal. We expect that our disordered unique patterns to be of value in fields beyond glass physics, including applications in cryptography as pseudorandom functions with tunable computational complexity.
Nuclear structure with coherent states
Raduta, Apolodor Aristotel
2015-01-01
This book covers the essential features of a large variety of nuclear structure properties, both collective and microscopic in nature. Most of results are given in an analytical form thus giving deep insight into the relevant phenomena. Using coherent states as variational states, which allows a description in the classical phase space, or provides the generating function for a boson basis, is an efficient tool to account, in a realistic fashion, for many complex properties. A detailed comparison with all existing nuclear structure models provides readers with a proper framework and, at the same time, demonstrates the prospects for new developments. The topics addressed are very much of current concern in the field. The book will appeal to practicing researchers and, due to its self-contained account, can also be successfully read and used by new graduate students.
Electron scattering from the ground state of mercury
International Nuclear Information System (INIS)
Fursa, D.; Bray, I.
2000-01-01
Full text: Close-coupling calculations have been performed for electron scattering from the ground state of mercury. We have used non-relativistic convergent close-coupling computer code with only minor modifications in order to account for the most prominent relativistic effects. These are the relativistic shift effect and singlet-triplet mixing. Very good agreement with measurements of differential cross sections for elastic scattering and excitation of 6s6p 1 P state at all energies is obtained. It is well recognised that a consistent approach to electron scattering from heavy atoms (like mercury, with nuclear charge Z=80) must be based on a fully relativistic Dirac equations based technique. While development of such technique is under progress in our group, the complexity of the problem ensures that results will not be available in the near future. On other hand, there is considerable interest in reliable theoretical results for electron scattering from heavy atoms from both applications and the need to interpret existing experimental data. This is particularly the case for mercury, which is the major component in fluorescent lighting devices and has been the subject of intense experimental study since nineteen thirties. Similarly to our approach for alkaline-earth atoms we use a model of two valence electrons above an inert Hartree-Fock core to describe the mercury atom. Note that this model does not account for any core excited states which are present in the mercury discrete spectrum. The major effect of missing core-excited states is substantial underestimation of the static dipole polarizability of the mercury ground state (34 a.u.) and consequent underestimation of the forward scattering elastic cross sections. We correct for this by adding in the scattering calculations a phenomenological polarization potential. In order to obtain correct ground state ionization energy for mercury one has to account for the relativistic shift effect. We model this
Review of Nuclear Thermal Propulsion Ground Test Options
Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen
2015-01-01
High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.
On calculations of the ground state energy in quantum mechanics
International Nuclear Information System (INIS)
Efimov, G.V.
1991-02-01
In nonrelativistic quantum mechanics the Wick-ordering method called the oscillator representation suggested to calculate the ground-state energy for a wide class of potentials allowing the existence of a bound state. The following examples are considered: the orbital excitations of the ground-state in the Coulomb plus linear potential, the Schroedinger equation with a ''relativistic'' kinetic energy √p 2 +m 2 , the Coulomb three-body problem. (author). 22 refs, 2 tabs
Entanglement of two ground state neutral atoms using Rydberg blockade
DEFF Research Database (Denmark)
Miroshnychenko, Yevhen; Browaeys, Antoine; Evellin, Charles
2011-01-01
We report on our recent progress in trapping and manipulation of internal states of single neutral rubidium atoms in optical tweezers. We demonstrate the creation of an entangled state between two ground state atoms trapped in separate tweezers using the effect of Rydberg blockade. The quality...... of the entanglement is measured using global rotations of the internal states of both atoms....
On the ground state of Yang-Mills theory
Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.
2011-08-01
We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state overlap.
Excitation of nuclear states by synchrotron radiation
International Nuclear Information System (INIS)
Olariu, Albert
2003-01-01
We study the excitation of nuclear states by gamma ray beams of energy up to 200 keV produced as synchrotron radiation. We consider the possibility to populate an excited state |i> in two steps, from the ground state |g> to an intermediary state |n> which decays by gamma emission or internal conversion to a lower state |i>. The aim of this study is to establish that the probability P 2 of the two-step transition |g> → |n> → |i> should be greater than the probability P 1 of the direct transition |g> → |i>. The probabilities P 1 and P 2 correspond to a radiation pulse of duration equal to the half-time of the state |i>. We have written a computer program in C++ which computes the probability P 2 , the ratio P 2 /P 1 and the rate C 2 of the two-step transitions for any nuclei and different configurations of states. The program uses a database which contains information on the energy levels, half-lives, spins and parities of nuclear states and on the relative intensities of the nuclear transitions. If the half-lives or the relative intensities are not known the program uses the Weisskopf estimates for the transition half-lives. An interpolation program of internal conversion coefficients has also been used. We listed the values obtained for P 2 , P 2 /P 1 and C 2 in a number of cases in which P 2 is significant from the 2900 considered cases. The states |i> and |n> have the energies E i and E n , the corresponding half-lives being t i and t n . The spectral density of the synchrotron radiation has been considered to be 10 12 photons cm -2 s -1 eV -1 . We listed only the cases for which the relative intensities of the transitions from levels |n> and |i> to lower states are known. The calculations carried out in this study allowed us to identify nuclei for which P 2 has relatively great values. In the listed cases P 2 /P 1 >>1, so that the two-step excitation by synchrotron radiation is more efficient than the direct excitation |g> → |i>. For a sample having 10
Iran: the next nuclear threshold state?
Maurer, Christopher L.
2014-01-01
Approved for public release; distribution is unlimited A nuclear threshold state is one that could quickly operationalize its peaceful nuclear program into one capable of producing a nuclear weapon. This thesis compares two known threshold states, Japan and Brazil, with Iran to determine if the Islamic Republic could also be labeled a threshold state. Furthermore, it highlights the implications such a status could have on U.S. nonproliferation policy. Although Iran's nuclear program is mir...
Ground State Energy of the Modified Nambu-Goto String
Hadasz, Leszek
We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.
Ground state energy of the modified Nambu-Goto string
Hadasz, Leszek
1997-01-01
We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.
Approximating the ground state of gapped quantum spin systems
Energy Technology Data Exchange (ETDEWEB)
Michalakis, Spyridon [Los Alamos National Laboratory; Hamza, Eman [NON LANL; Nachtergaele, Bruno [NON LANL; Sims, Robert [NON LANL
2009-01-01
We consider quantum spin systems defined on finite sets V equipped with a metric. In typical examples, V is a large, but finite subset of Z{sup d}. For finite range Hamiltonians with uniformly bounded interaction terms and a unique, gapped ground state, we demonstrate a locality property of the corresponding ground state projector. In such systems, this ground state projector can be approximated by the product of observables with quantifiable supports. In fact, given any subset {chi} {contained_in} V the ground state projector can be approximated by the product of two projections, one supported on {chi} and one supported on {chi}{sup c}, and a bounded observable supported on a boundary region in such a way that as the boundary region increases, the approximation becomes better. Such an approximation was useful in proving an area law in one dimension, and this result corresponds to a multi-dimensional analogue.
The ground state energy of a classical gas
International Nuclear Information System (INIS)
Conlon, J.G.
1983-01-01
The ground state energy of a classical gas is treated using a probability function for the position of the particles and a potential function. The lower boundary for the energy when the particle number is large is defined as ground state energy. The coulomb gas consisting of positive and negative particles is also treated (fixed and variable density case) the stability of the relativistic system is investigated as well. (H.B.)
Theory of ground state factorization in quantum cooperative systems.
Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio
2008-05-16
We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.
Fission barriers and asymmetric ground states in the relativistic mean-field theory
International Nuclear Information System (INIS)
Rutz, K.; Reinhard, P.G.; Greiner, W.
1995-01-01
The symmetric and asymmetric fission path for 240 Pu, 232 Th and 226 Ra is investigated within the relativistic mean-field model. Standard parametrizations which are well fitted to nuclear ground-state properties are found to deliver reasonable qualitative and quantitative features of fission, comparable to similar nonrelativistic calculations. Furthermore, stable octupole deformations in the ground states of radium isotopes are investigated. They are found in a series of isotopes, qualitatively in agreement with nonrelativistic models. But the quantitative details differ amongst the models and between the various relativistic parametrizations. (orig.)
International Nuclear Information System (INIS)
Chakraborty, S.; Datta Pramanik, U.; Chatterjee, S.
2013-01-01
The region of the nuclear chart around neutron magic number, N∼20 and proton number (Z), 10≤ Z≤12 is known as the Island of Inversion. The valance neutron(s) of these nuclei, even in their ground state, are most likely occupying the upper pf orbitals which are normally lying above sd orbitals, N∼20 shell closure. Nuclei like 34,35 Al are lying at the boundary of this Island of Inversion. Little experimental information about their ground state configuration are available in literature
International Nuclear Information System (INIS)
Busch, Nathan Edward
2001-01-01
This dissertation focuses on the current debate in international relations literature over the risks associated with the proliferation of nuclear weapons. On this subject, IR scholars are divided into roughly two schools: proliferation 'optimists,' who argue that proliferation can be beneficial and that its associated hazards are at least surmountable, and proliferation 'pessimists,' who believe the opposite. This debate centers upon a theoretical disagreement about how best to explain and predict the behavior of states. Optimists generally ground their arguments on rational deterrence theory and maintain that nuclear weapons can actually increase stability among states, while pessimists often ground their arguments on 'organization theory,' which contends that organizational, bureaucratic, and other factors prevent states from acting rationally. A major difficulty with the proliferation debate, however, is that both sides tend to advance their respective theoretical positions without adequately supporting them with solid empirical evidence. This dissertation detailed analyses of the nuclear programs in the United States, Russia, China, India, and Pakistan to determine whether countries with nuclear weapons have adequate controls over their nuclear arsenals and tissue material stockpiles (such as highly enriched uranium and plutonium). These case studies identify the strengths and weaknesses of different systems of nuclear controls and help predict what types of controls proliferating states are likely to employ. On the basis of the evidence gathered from these cases, this dissertation concludes that a further spread of nuclear weapons would tend to have seriously negative effects on international stability by increasing risks of accidental, unauthorized, or inadvertent use of nuclear weapons and risks of thefts of fissile materials for use in nuclear or radiological devices by aspiring nuclear states or terrorist groups. (author)
Ground-Water Availability in the United States
Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.
2008-01-01
Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.
Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements
International Nuclear Information System (INIS)
Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.
1992-01-01
Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs
Energy Technology Data Exchange (ETDEWEB)
Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor
2007-09-25
These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
Energy Technology Data Exchange (ETDEWEB)
Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor
2011-09-13
These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
International Nuclear Information System (INIS)
Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.
2011-01-01
These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
Energy Technology Data Exchange (ETDEWEB)
Wetovsky, Marvin A [Editor; Patterson, Eileen F [Editor
2010-09-21
These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
Energy Technology Data Exchange (ETDEWEB)
Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor
2006-09-19
These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
International Nuclear Information System (INIS)
Wetovsky, Marvin A.; Patterson, Eileen F.
2010-01-01
These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
International Nuclear Information System (INIS)
Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.
2006-01-01
These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
International Nuclear Information System (INIS)
Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.
2007-01-01
These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
Ground state correlations and structure of odd spherical nuclei
International Nuclear Information System (INIS)
Mishev, S.; Voronov, V. V.
2006-01-01
It is well known that the Pauli principle plays a substantial role at low energies because the phonon operators are not ideal boson operators. Calculating the exact commutators between the quasiparticle and phonon operators one can take into account the Pauli principle corrections. Besides the ground state correlations due to the quasiparticle interaction in the ground state influence the single particle fragmentation as well. In this paper, we generalize the basic QPM equations to account for both mentioned effects. As an illustration of our approach, calculations on the structure of the low-lying states in "1"3"1Ba have been performed.
High-speed ground transportation development outside United States
Energy Technology Data Exchange (ETDEWEB)
Eastham, T.R. [Queen`s Univ., Kingston, Ontario (United Kingdom)
1995-09-01
This paper surveys the state of high-speed (in excess of 200 km/h) ground-transportation developments outside the United States. Both high-speed rail and Maglev systems are covered. Many vehicle systems capable of providing intercity service in the speed range 200--500 km/h are or will soon be available. The current state of various technologies, their implementation, and the near-term plans of countries that are most active in high-speed ground transportation development are reported.
USING MAGNETIC MOMENTS TO UNVEIL THE NUCLEAR STRUCTURE OF LOW-SPIN NUCLEAR STATES
Directory of Open Access Journals (Sweden)
Diego A. Torres
2011-07-01
Full Text Available The experimental study of magnetic moments for nuclear states near the ground state, I ≤ 2, provides a powerful tool to test nuclear structure models. Traditionally, the use of Coulomb excitation reactions has been used to study low spin states, mostly I = 2. The use of alternative reaction channels, such as α transfer, for the production of radioactive species that, otherwise, will be only produced in future radioactive beam facilities has proved to be an alternative to measure not only excited states with I > 2, but to populate and study long-live radioactive nuclei. This contribution will present the experimental tools and challenges for the use of the transient field technique for the measurement of g factors in nuclear states with I ≤ 2, using Coulomb excitation and α-transfer reactions. Recent examples of experimental results near the N = 50 shell closure, and the experimental challenges for future implementations with radioactive beams, will be discussed.
Probing quantum frustrated systems via factorization of the ground state.
Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio
2010-05-21
The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.
Ground Shock Resistant of Buried Nuclear Power Plant Facility
International Nuclear Information System (INIS)
Ornai, D.; Adar, A.; Gal, E.
2014-01-01
Nuclear Power Plant (NPP) might be subjected to hostile attacks such as Earth Penetrating Weapons (EPW) that carry explosive charges. Explosions of these weapons near buried NPP facility might cause collapse, breaching, spalling, deflection, shear, rigid body motion (depending upon the foundations), and in-structure shock. The occupants and the equipment in the buried facilities are exposed to the in-structure motions, and if they are greater than their fragility values than occupants might be wounded or killed and the equipment might be damaged, unless protective measures will be applied. NPP critical equipment such as pumps are vital for the normal safe operation since it requires constant water circulation between the nuclear reactor and the cooling system, including in case of an immediate shut down. This paper presents analytical- semi empirical formulation and analysis of the explosion of a penetrating weapon with a warhead of 100kgs TNT (Trinitrotoluene) that creates ground shock effect on underground NPP structure containing equipment, such as a typical pump. If the in-structure spectral shock is greater than the pump fragility values than protective measures are required, otherwise a real danger to the NPP safety might occur
Fast Preparation of Critical Ground States Using Superluminal Fronts
Agarwal, Kartiek; Bhatt, R. N.; Sondhi, S. L.
2018-05-01
We propose a spatiotemporal quench protocol that allows for the fast preparation of ground states of gapless models with Lorentz invariance. Assuming the system initially resides in the ground state of a corresponding massive model, we show that a superluminally moving "front" that locally quenches the mass, leaves behind it (in space) a state arbitrarily close to the ground state of the gapless model. Importantly, our protocol takes time O (L ) to produce the ground state of a system of size ˜Ld (d spatial dimensions), while a fully adiabatic protocol requires time ˜O (L2) to produce a state with exponential accuracy in L . The physics of the dynamical problem can be understood in terms of relativistic rarefaction of excitations generated by the mass front. We provide proof of concept by solving the proposed quench exactly for a system of free bosons in arbitrary dimensions, and for free fermions in d =1 . We discuss the role of interactions and UV effects on the free-theory idealization, before numerically illustrating the usefulness of the approach via simulations on the quantum Heisenberg spin chain.
Ground-state fidelity in the BCS-BEC crossover
International Nuclear Information System (INIS)
Khan, Ayan; Pieri, Pierbiagio
2009-01-01
The ground-state fidelity has been introduced recently as a tool to investigate quantum phase transitions. Here, we apply this concept in the context of a crossover problem. Specifically, we calculate the fidelity susceptibility for the BCS ground-state wave function, when the intensity of the fermionic attraction is varied from weak to strong in an interacting Fermi system, through the BCS-Bose-Einstein Condensation crossover. Results are presented for contact and finite-range attractive potentials and for both continuum and lattice models. We conclude that the fidelity susceptibility can be useful also in the context of crossover problems.
Measurement of the ground-state hyperfine splitting of antihydrogen
Juhász, B; Federmann, S
2011-01-01
The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, consisting of a cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of ~10−7. The first preliminary measurements of the hyperfine transitions will start in 2011.
Coherent Control of Ground State NaK Molecules
Yan, Zoe; Park, Jee Woo; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin
2016-05-01
Ultracold dipolar molecules exhibit anisotropic, tunable, long-range interactions, making them attractive for the study of novel states of matter and quantum information processing. We demonstrate the creation and control of 23 Na40 K molecules in their rovibronic and hyperfine ground state. By applying microwaves, we drive coherent Rabi oscillations of spin-polarized molecules between the rotational ground state (J=0) and J=1. The control afforded by microwave manipulation allows us to pursue engineered dipolar interactions via microwave dressing. By driving a two-photon transition, we are also able to observe Ramsey fringes between different J=0 hyperfine states, with coherence times as long as 0.5s. The realization of long coherence times between different molecular states is crucial for applications in quantum information processing. NSF, AFOSR- MURI, Alfred P. Sloan Foundation, DARPA-OLE
Dissociation energy of the ground state of NaH
International Nuclear Information System (INIS)
Huang, Hsien-Yu; Lu, Tsai-Lien; Whang, Thou-Jen; Chang, Yung-Yung; Tsai, Chin-Chun
2010-01-01
The dissociation energy of the ground state of NaH was determined by analyzing the observed near dissociation rovibrational levels. These levels were reached by stimulated emission pumping and fluorescence depletion spectroscopy. A total of 114 rovibrational levels in the ranges 9≤v '' ≤21 and 1≤J '' ≤14 were assigned to the X 1 Σ + state of NaH. The highest vibrational level observed was only about 40 cm -1 from the dissociation limit in the ground state. One quasibound state, above the dissociation limit and confined by the centrifugal barrier, was observed. Determining the vibrational quantum number at dissociation v D from the highest four vibrational levels yielded the dissociation energy D e =15 815±5 cm -1 . Based on new observations and available data, a set of Dunham coefficients and the rotationless Rydberg-Klein-Rees curve were constructed. The effective potential curve and the quasibound states were discussed.
Three-body problem in the ground-state representation
International Nuclear Information System (INIS)
Gonzalez, A.
1993-01-01
The ground-state probability density of a three-body system is used to construct a classical potential U whose minimum coincides exactly with the ground-state energy. The spectrum of excited states may approximately be obtained by imposing quasiclassical quantization conditions over the classical motion in U. We show nontrivial one-dimensional models in which either this quantization condition is exact or considerably improves the usual semiclassical quantization. For three-dimensional problems, the small-oscillation frequencies in states with total angular momentum L = 0 are computed. These frequencies could represent an improvement over the frequencies of triatomic molecules computed with the use of ordinary quasiclassics for the motion of the nuclei in the molecular term. By providing a semiclassical description of the first excited quantum states, the sketched approach rises some interesting questions such as, for example, the relevance (once again) of classical chaos to quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor
2005-09-20
These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
International Nuclear Information System (INIS)
Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.
2005-01-01
These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
Nuclear electric power and the proliferation of nuclear weapon states
International Nuclear Information System (INIS)
Walske, C.
1977-01-01
Control and elimination of the strategic nuclear weapons held by the nuclear weapon states remains the central problem in the arms control and disarmament field. Whether the proliferation of nations with nuclear weapons can be stopped is dubious. A sovereign nation will launch a nuclear weapons program if it has the motivation and resource. Motivation depends on military and political considerations. The necessary resources are economic and technological. Conditions in some sovereign states explain this issue. A survey of commercial nuclear power programs outside the USA lists 45 countries using or planning to use nuclear reactors for power generation. There are currently 112 reactors now operating outside the United States, 117 more under construction, 60 on order, and 180 planned. The U. S. as of December 1976 has 64 operating reactors, 72 under construction, 84 on order, and 8 planned. Nuclear trade and export policies are discussed. In this article, Mr. Walske says that American industry is convinced that the need for nuclear energy abroad is more urgent than in the United States; that in the long run, the breeder reactor must be developed to enable the supply of nuclear fuel to last for centuries; and that the experience of American industry abroad has convinced it that emphasis on restrictive, denial type policies will almost certainly fail--a collapse of what has been gained through the test ban treaty and the nonproliferation treaty
Nuclear power in the United States
International Nuclear Information System (INIS)
Johnston, J.B.
1985-01-01
All over the world except in the United States, nuclear energy is a low cost, secure, environmentally acceptable form of energy. In the United States, civilian nuclear power is dead. 112 nuclear power plants have been abandoned or cancelled in the last decade, and there has been no new order for nuclear plants since 1978. It will be fortunate to have 125 operating nuclear plants in the United States in the year 2000. There are almost 90 completed nuclear power plants and about 45 under construction in the United States, but several of those under construction will eventually be abandoned. About 20 % of the electricity in the United States will be generated by nuclear plants in 2000 as compared with 13 % supplied in the last year. Under the present regulatory and institutional arrangement, American electric utilities would not consider to order a new nuclear power plant. Post-TMI nuclear plants became very expensive, and there is also ideological opposition to nuclear power. Coal-firing plants are also in the similar situation. The uncertainty about electric power demand, the cost of money, the inflation of construction cost and regulation caused the situation. (Kako, I.)
Ground acceleration in a nuclear power plant; Aceleracion del suelo en una central nuclear
Energy Technology Data Exchange (ETDEWEB)
Pena G, P.; Balcazar, M.; Vega R, E., E-mail: pablo.pena@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)
2015-09-15
A methodology that adopts the recommendations of international organizations for determining the ground acceleration at a nuclear power plant is outlined. Systematic presented here emphasizes the type of geological, geophysical and geotechnical studies in different areas of influence, culminating in assessments of Design Basis earthquake and the earthquake Operating Base. The methodology indicates that in regional areas where the site of the nuclear power plant is located, failures are identified in geological structures, and seismic histories of the region are documented. In the area of detail geophysical tools to generate effects to determine subsurface propagation velocities and spectra of the induced seismic waves are used. The mechanical analysis of drill cores allows estimating the efforts that generate and earthquake postulate. Studies show that the magnitude of the Fukushima earthquake, did not affect the integrity of nuclear power plants due to the rocky settlement found. (Author)
International Nuclear Information System (INIS)
Litehiser, J.; Carrato, P.
2005-01-01
For the first time in decades several US utilities are exploring the possibility of building new Nuclear Power Plant (NPP) generating capacity in the Central and Eastern United States (CEUS). Among the many topics that must be considered to license a nuclear plant (NPP) is appropriate design to mitigate the potential effects of vibratory ground motion from earthquakes. Agreement on seismic design ground motion was not always easy during licensing of the last generation of NPPs. Therefore, over the last few decades both industry and the United States Nuclear Regulatory Commission (USNRC) have worked to find ground motion criteria that recognize and overcome earlier licensing difficulties. Such criteria should be stable and easily implemented. Important and complementary programs under the direction of the Lawrence Livermore National Laboratory (LLNL) and the Electric Power Research Institute (EPRI) were part of this effort, and these studies resulted in probabilistic seismic hazard assessments (PSHAs) for a number of CEUS NPP sites. These results and the concepts underlying them are now incorporated into both USNRC regulation and regulatory guidance. Nevertheless, as the utilities and the NRC begin a renewed licensing dialog, issues of regulatory interpretation of earthquake ground motion design criteria have emerged. These issues are as fundamental as the shape and amplitude of ground motion design response spectra and as significant as the impact of these spectra on structural design. Successful and timely resolution of these issues will significantly impact the future of nuclear power in the US. The purpose of this paper is to briefly describe some of these issues and the approaches that have been proposed for their resolution. (authors)
Ground state of the parallel double quantum dot system.
Zitko, Rok; Mravlje, Jernej; Haule, Kristjan
2012-02-10
We resolve the controversy regarding the ground state of the parallel double quantum dot system near half filling. The numerical renormalization group predicts an underscreened Kondo state with residual spin-1/2 magnetic moment, ln2 residual impurity entropy, and unitary conductance, while the Bethe ansatz solution predicts a fully screened impurity, regular Fermi-liquid ground state, and zero conductance. We calculate the impurity entropy of the system as a function of the temperature using the hybridization-expansion continuous-time quantum Monte Carlo technique, which is a numerically exact stochastic method, and find excellent agreement with the numerical renormalization group results. We show that the origin of the unconventional behavior in this model is the odd-symmetry "dark state" on the dots.
Monitoring of natural revegetation of Semipalatinsk nuclear testing ground
International Nuclear Information System (INIS)
Sultanova, B.M.
2002-01-01
It is well known, that monitoring of natural revegetation of Semipalatinsk test site (STS) was carried out during period 1994-2002 at test areas (Experimental field, Balapan, Degelen). In this paper the peculiarities of vegetation cover of these test areas are observed. Thus, vegetation cover of Experimental field ground in the epicentre is completely destroyed. At present there are different stages of zonal steppe communities rehabilitation: in zones with γ-irradiation 11000-14000 μR/h the revegetation is not found; on the plots with γ-irradiation 8200-10000 μR/h rare species of Artemisia frigida are found; aggregation of plant (managed from 6000-7000 μR/h is observed; At the γ-irradiation 80-200 μR/h rarefied groups of bunch grass communities similar to the zonal steppe are formed and zonal bunch grass communities developed with 18-25 μR/h. Vegetation cover of Degelen hill tops and near-mouth ground in the results of underground nuclear expulsions are completely destroyed. Here there are three main kinds of vegetation: very stony gallery areas don't almost overgrow; at technogen tops near galleries the single plants, rare field groups and unclosed micro-phyto-biocenoses of weed and adventive species (Amaranthus retroflexus, Artemisia dracunculus, Laxctuca serriola, Chorispora sibirica etc.). On the Balapan are the revegetation is limited by high radiation pollution rate. Here cenose rehabilitation is presented by Artemisia marshalliana, Spita sareptana, Festuca valresiaca). In their paper florostic and phyrocoenitic diversity of STS's flora transformation is studied. Pattern distribution and migration of radionuclides in soils and vegetation cover is represented
Ground-state electronic structure of actinide monocarbides and mononitrides
DEFF Research Database (Denmark)
Petit, Leon; Svane, Axel; Szotek, Z.
2009-01-01
The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increa...
A Ground State Tri-pí-Methane Rearrangement
Czech Academy of Sciences Publication Activity Database
Zimmerman, H. E.; Církva, Vladimír; Jiang, L.
2000-01-01
Roč. 41, č. 49 (2000), s. 9585-9587 ISSN 0040-4039 Institutional research plan: CEZ:AV0Z4072921 Keywords : tri-pi-methane * ground state Subject RIV: CC - Organic Chemistry Impact factor: 2.558, year: 2000
Ground state energy of a polaron in a superlattice
International Nuclear Information System (INIS)
Mensah, S.Y.; Allotey, F.K.A.; Nkrumah, G.; Mensah, N.G.
2000-10-01
The ground state energy of a polaron in a superlattice was calculated using the double-time Green functions. The effective mass of the polaron along the planes perpendicular to the superlattice axis was also calculated. The dependence of the ground state energy and the effective mass along the planes perpendicular to the superlattice axis on the electron-phonon coupling constant α and on the superlattice parameters (i.e. the superlattice period d and the bandwidth Δ) were studied. It was observed that if an infinite square well potential is assumed, the ground state energy of the polaron decreases (i.e. becomes more negative) with increasing α and d, but increases with increasing Δ. For small values of α, the polaron ground state energy varies slowly with Δ, becoming approximately constant for large Δ. The effective mass along the planes perpendicular to the superlattice axis was found to be approximately equal to the mass of an electron for all typical values of α, d and Δ. (author)
Observation of Hyperfine Transitions in Trapped Ground-State Antihydrogen
Olin, Arthur
2015-01-01
This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4~parts~in~$10^3$. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.
α-clustering in the ground state of 40Ca
International Nuclear Information System (INIS)
Michel, F.
1976-01-01
The anomalous large angle scattering observed in 40 Ca(α, α) is studied in the frame of a semi-microscopic model taking into account the presence of α-correlations in the ground state of 40 Ca. The calculations, performed between 18 and 29 MeV, assert the potential, non resonant nature of the phenomenon. (Auth.)
Ground states of the massless Derezinski-Gerard model
International Nuclear Information System (INIS)
Ohkubo, Atsushi
2009-01-01
We consider the massless Derezinski-Gerard model introduced by Derezinski and Gerard in 1999. We give a sufficient condition for the existence of a ground state of the massless Derezinski-Gerard model without the assumption that the Hamiltonian of particles has compact resolvent.
Magnetic excitons in singlet-ground-state ferromagnets
DEFF Research Database (Denmark)
Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.
1971-01-01
The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...
Correlation induced paramagnetic ground state in FeAl
Czech Academy of Sciences Publication Activity Database
Mohn, P.; Persson, C.; Blaha, P.; Schwarz, K.; Novák, Pavel; Eschrig, H.
2001-01-01
Roč. 87, č. 19 (2001), s. 196401-1-196401-4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z1010914 Keywords : FeAl * paramagnetic ground state Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.668, year: 2001
Observation of hyperfine transitions in trapped ground-state antihydrogen
Energy Technology Data Exchange (ETDEWEB)
Collaboration: A. Olin for the ALPHA Collaboration
2015-08-15
This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4 parts in 10{sup 3}. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.
Antiferrodistortive phase transitions and ground state of PZT ceramics
International Nuclear Information System (INIS)
Pandey, Dhananjai
2013-01-01
The ground state of the technologically important Pb(Zr x Ti (1-x) )O 3 , commonly known as PZT, ceramics is currently under intense debate. The phase diagram of this material shows a morphotropic phase boundary (MPB) for x∼0.52 at 300K, across which a composition induced structural phase transition occurs leading to maximization of the piezoelectric properties. In search for the true ground state of the PZT in the MPB region, Beatrix Noheda and coworkers first discovered a phase transition from tetragonal (space group P4mm) to an M A type monoclinic phase (space group Cm) at low temperatures for x=0.52. Soon afterwards, we discovered yet another low temperature phase transition for the same composition in which the M A type (Cm) monoclinic phase transforms to another monoclinic phase with Cc space group. We have shown that the Cm to Cc phase transition is an antiferrodistortive (AFD) transition involving tilting of oxygen octahedra leading to unit cell doubling and causing appearance of superlattice reflections which are observable in the electron and neutron diffraction patterns only and not in the XRD patterns, as a result of which Noheda and coworkers missed the Cc phase in their synchrotron XRD studies at low temperatures. Our findings were confirmed by leading groups using neutron, TEM, Raman and high pressure diffraction studies. The first principles calculations also confirmed that the true ground state of PZT in the MPB region has Cc space group. However, in the last couple of years, the Cc space group of the ground state has become controversial with an alternative proposal of R3c as the space group of the ground state phase which is proposed to coexist with the metastable Cm phase. In order to resolve this controversy, we recently revisited the issue using pure PZT and 6% Sr 2+ substituted PZT, the latter samples show larger tilt angle on account of the reduction in the average cationic radius at the Pb 2+ site. Using high wavelength neutrons and high
Coherent-state representation for the QCD ground state
International Nuclear Information System (INIS)
Celenza, L.S.; Ji, C.; Shakin, C.M.
1987-01-01
We make use of the temporal gauge to construct a coherent state which is meant to describe the gluon condensate in the QCD vacuum under the assumption that the condensate is in a zero-momentum mode. The state so constructed is a color singlet and will yield finite, nonperturbative vacuum expectation values such as . (This matrix element is found to have a value of about 0.012 GeV 4 in QCD sum-rule studies.)
Application of Low Voltage High Resistance Grounding in Nuclear Power Plants
Directory of Open Access Journals (Sweden)
Choong-Koo Chang
2016-02-01
Full Text Available Most nuclear power plants now utilize solid grounded low voltage systems. For safety and reliability reasons, the low voltage (LV high resistance grounding (HRG system is also increasingly used in the pulp and paper, petroleum and chemical, and semiconductor industries. Fault detection is easiest and fastest with a solidly grounded system. However, a solidly grounded system has many limitations such as severe fault damage, poor reliability on essential circuits, and electrical noise caused by the high magnitude of ground fault currents. This paper will briefly address the strengths and weaknesses of LV grounding systems. An example of a low voltage HRG system in the LV system of a nuclear power plant will be presented. The HRG system is highly recommended for LV systems of nuclear power plants if sufficient considerations are provided to prevent nuisance tripping of ground fault relays and to avoid the deterioration of system reliability.
Nuclear methods and the nuclear equation of state
1999-01-01
The theoretical study of the nuclear equation of state (EOS) is a field of research which deals with most of the fundamental problems of nuclear physics. This book gives an overview of the present status of the microscopic theory of the nuclear EOS. Its aim is essentially twofold: first, to serve as a textbook for students entering the field, by covering the different subjects as exhaustively and didactically as possible; second, to be a reference book for all researchers active in the theory of nuclear matter, by providing a report on the latest developments. Special emphasis is given to the
Regionalization of ground motion attenuation in the conterminous United States
International Nuclear Information System (INIS)
Chung, D.H.; Bernreuter, D.L.
1979-01-01
Attenuation results from geometric spreading and from absorption. The former is almost independent of crustal geology or physiographic region. The latter depends strongly on crustal geology and the state of the earth's upper mantle. Except for very high-frequency waves, absorption does not affect ground motion at distances less than 25 to 50 km. Thus, in the near-field zone, the attenuation in the eastern United States will be similar to that in the western United States. Most of the differences in ground motion can be accounted for by differences in attenuation caused by differences in absorption. The other important factor is that for some Western earthquakes the fault breaks the earth's surface, resulting in larger ground motion. No Eastern earthquakes are known to have broken the earth's surface by faulting. The stress drop of Eastern earthquakes may be higher than for Western earthquakes of the same seismic moment, which would affect the high-frequency spectral content. This factor is believed to be of much less significance than differences in absorption in explaining the differences in ground motion between the East and the West. 6 figures
Introducing nuclear power into currently non-nuclear states
International Nuclear Information System (INIS)
Gert, Claassen
2007-01-01
As the nuclear renaissance gains momentum, many countries that currently have no nuclear power plants will begin to consider introducing them. It is anticipated that smaller reactors such as the Pebble Bed Modular Reactor (PBMR) will not only be sold to current nuclear states to also to states where there is currently no nuclear experience. A range of issues would have to be considered for nuclear plants to be sold to non-nuclear states, such as the appropriate regulatory environment, standardization and codes, non-proliferation, security of supply, obtaining experienced merchant operators, appropriate financial structures and education and training. The paper considers nine major issues that need to be addressed by governments and vendors alike: 1) political enabling framework, 2) regulatory framework, 3) responsible owner, 4) responsible operator, 5) finance, 6) contact management, 7) fuel supply and waste management framework, 8) training and education, and 9) industrial infrastructure. International cooperation by organisations such as the IAEA, financial institutions and international suppliers will be required to ensure that developing countries as well as developed ones share the benefits of the nuclear renaissance. The opportunities that the nuclear industry affords to develop local skills, create job opportunities and to develop local manufacturing industries are among the important reasons that the South African Government has decided to support and fund the development of the Pebble Bed Modular Reactor project. (author)
Introducing nuclear power into currently non-nuclear states
International Nuclear Information System (INIS)
Claassen, Gert
2007-01-01
As the nuclear renaissance gains momentum, many countries that currently have no nuclear power plants will begin to consider introducing them. It is anticipated that smaller reactors such as the Pebble Bed Modulator Reactor (PBMR) will not only be sold to current nuclear states to also to states where there is currently no nuclear experience. A range of issues would have to be considered for nuclear plants to be solid to non-nuclear states, such as the appropriate regulatory environment, standardization and codes, non-proliferation, security of supply, obtaining experienced merchant operators, appropriate financial structures and education and training. The paper considers nine major issues that need to be addressed by governments and vendors alike. International cooperation by organisations such as the IAEA, financial institutions and international suppliers will be required to ensure that developing countries as well as developed ones share the benefits of the nuclear renaissance. The opportunities that the nuclear industry affords to develop local skills, create job opportunities and to develop local manufacturing industries are among the important reasons that the South African Government has decided to support and fund the development of the Pebble Bed Modular Reactor project. These considerations are included in the paper. (author)
Advantages of being a nuclear state
International Nuclear Information System (INIS)
Ahmadova, S.
2012-01-01
Full text : Despite of some progress in the field of nuclear non-proliferation regime at the end of the last century, de-facto nuclear countries, and the issues such as Iran's uranium enrichment activities, the nuclear program of the North Korea proves the regime is in deep crisis. Besides, as a result of rapid scientific and technological development the number of enterprises processing raw material is increasing, the import of materials containing uranium and plutonium is becoming easier and reserves and facilities are widely spread in the black market. Unimpeded access to the information and scientific literature on production of nuclear weapons becomes available, organization and purposeful participation in the events related to the nuclear technology increase, the fact of involvement of scholars and engineers from the developed countries is observed. The growth of nuclear reactors amount with the purpose of energy supply increase the demand for enriched uranium and plutonium, and this hampers the protection these substances. Furthermore, the existence of local natural reserves, the state attention to the staff training able to create nuclear weapons, the staff aware of the work with radioactive substances, the programs considering military preparation on the application of nuclear weapons and so on problems directly threaten the non-proliferation regime. Despite the concern on non-proliferation of nuclear weapons expressed by many scholars and officials, the interest and attempts of states in becoming nuclear states always increase. These interests are stipulated by objective and subjective reasons
Extreme states in nuclear matter
International Nuclear Information System (INIS)
Rafelski, J.; Frankfurt Univ.
1981-01-01
Theory of hot nuclear fireballs consisting of all possible finite size hadronic constituents in chemical and thermal equilibrium is presented. As a complement of this hadronic gas phase characterized by maximal temperature and energy density, the quark bag description of the hadronic fireball is considered. Preliminary calculations of temperatures and mean transverse momenta of particles emitted in high multiplicity relativistic nuclear collisions together with some considereations on the observability of quark matter are offered. (orig.)
State and perspectives of Czechoslovakian nuclear law
International Nuclear Information System (INIS)
Bezdek, R.
1992-01-01
In Czechoslovakia, the peaceful utilization of nuclear energy is governed by a series of legislative norms of varied character and legal power. The most important are the Act No. 194/1988 and the Act No. 28/1984. The former defines the competence of the Czechoslovak Atomic Energy Commission (CAEC), which is the central authority of state administration in the field of utilization of nuclear energy. The latter deals with the State inspection for the nuclear safety of nuclear facilities. In accordance with this Act, the CAEC is the competent authority for the licensing and inspection of nuclear safety. In addition to the two main Acts, a series of CAEC Regulations govern nuclear activities (accounting and control of nuclear materials, radioactive waste management, physical protection, qualifications of personnel in nuclear facilities, quality assurance, etc.). There is no specific legislation governing nuclear third liability. The solution for the various shortcomings of the contemporary codification lies primarily in change of the present codification. This change, however, should not mean a general and indiscriminate ''destruction'' of the legal norms in force at present, but in gradual and purposive creation of an integral, legal system capable of reacting flexibly, the core of which would consist of an Act concerning the peaceful utilization of nuclear energy and on liability for nuclear damage. (author)
Effect of the ground state correlations in the density distribution and zero point fluctuations
International Nuclear Information System (INIS)
Barranco, F.; Broglia, R.A.
1985-01-01
The existence of collective vibrations in the spectrum implies that the description of the ground state in an independent particle model must be corrected. This is because of the zero point fluctuations induced by the collective vibrations, so that ground state correlations have to be included. These are taken into account via the diagrammatic expansion of the Nuclear Field Theory, giving place to a renormalization in the different properties of the ground state. As far as the density distribution is concerned, in a NFT consistent calculation, the largest contributions arise from diagrams that cannot be expressed in terms of backward going amplitudes of the phonon RPA wave function. For a given multipolarity the main correction comes from the low lying state. The giant resonance is of smaller relevance since it lies at larger energies in the response function. The octupole modes give the dominant contribution, and the effect in average becomes smaller as the multipolarity increases. These results agree quite well with those obtained taking into account the zero point fluctuations of the nuclear surface in the collective model with the Esbensen and Bertsch prescription, which the authors use to explain the anomalous behaviour of the mean square radii of the Calcium isotopes
International Nuclear Information System (INIS)
Desplanques, B.
1989-12-01
The concept of nucleon in nuclei has often been referred to in recent literature. What it is used for is rarely precised however. In this paper, it is shown (or reminded) that the nucleon in nuclei is a model dependent object. As an illustration, it is shown that nuclear matter in its ground state may be described to a good approximation, if not exactly, by an independent particle state and that the on-shell G-matrix used in calculating its binding energy gets its effective character from that of those particles. The expression of these particles in terms of free nucleon operators is given
Guidelines for ground motion definition for the eastern United States
International Nuclear Information System (INIS)
Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.
1985-06-01
Guidelines for the determination of earthquake ground motion definition for the eastern United States are established here. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large- to great-sized earthquakes (M/sub s/ > 7.5) have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes has been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data have been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data, a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the safe shutdown earthquake (SSE). A new procedure for establishing the operating basis earthquake (OBE) is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., figs., tabs
Present state of nuclear cardiology
International Nuclear Information System (INIS)
Krause, T.; Moser, E.
1994-01-01
Unlike other techniques, nuclear cardiologic imaging enables evaluation of cardiac function employing radioactive tracers. This procedure can be used to assess myocardial blood flow, metabolism, viability, cardiac innervation and receptor status. Therefore, this noninvasive imaging modality can be regarded as supplementary to the screening methods in cardiology and also to angiography. General clinical use was not possible until the rapid development of nuclear medicine in the fifties began. With increasing wide-spread of positron emission tomography more detailed information on metabolic tissue characterization can be expected and will be of enormous relevance in clinical decision making and in selecting patients for interventions. (orig.) [de
Cluster expansion for ground states of local Hamiltonians
Directory of Open Access Journals (Sweden)
Alvise Bastianello
2016-08-01
Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.
Ground-state properties of a supersymmetric fermion chain
International Nuclear Information System (INIS)
Fendley, Paul; Hagendorf, Christian
2011-01-01
We analyze the ground state of a strongly interacting fermion chain with a supersymmetry. We conjecture a number of exact results, such as a hidden duality between weak and strong couplings. By exploiting a scale-free property of the perturbative expansions, we find exact expressions for the order parameters, yielding the critical exponents. We show that the ground state of this fermion chain and another model in the same universality class, the XYZ chain along a line of couplings, are both written in terms of the same polynomials. We demonstrate this explicitly for up to N = 24 sites and provide consistency checks for large N. These polynomials satisfy a recursion relation related to the Painlevé VI differential equation and, using a scale-free property of these polynomials, we derive a simple and exact formula for their N→∞ limit
Electron pumping of the ground state of 21Ne. Transfers and multiple diffusion processes
International Nuclear Information System (INIS)
Stoeckel, F.; Lombardi, M.
1978-01-01
The electron-pumping process of the ground state of 21 Ne has been studied. It is demonstrated how in a neon cell at a pressure of 10 -4 to 10 -2 torr, a high frequency discharge can create a nuclear spin alignment in the fundamental level (I=3/2) when the excited levels are themselves aligned. The nuclear alignment is observed by monitoring the change of the linear polarization of several optical transitions during the magnetic resonance of the fundamental level. Various transfers of the alignments are investigated and a detailed study of the influence of the multiple diffusion is carried out. The multiple diffusion produces a depolarization and a relaxation of the nuclear spin. A theoretical calculation has been made for a two-level system with a J=1 radiative level and a J=0 ground state. Experimentally a relaxation time of the nuclear alignment varying from 37 ms to 240 ms is observed when the neon pressure decreases from 10 -2 to 10 -4 torr [fr
Photoionization of furan from the ground and excited electronic states.
Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero
2016-02-28
Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.
Variational calculation for the ground state of 12C
International Nuclear Information System (INIS)
Consoni, L.H.A.; Coelho, H.T.; Das, T.K.
1983-01-01
A variational calculation is done for the ground state of a 3α-particle system. Two simple trial wavefunctions are used and results are compared with an exact calculation done by the Hyperspherical Harmonic method. A modifed Ali-Bodmer potential for the α-α interaction is considered for all calculations. It is found that these simple wave functions can be very useful for phenomenological calculations. (Author) [pt
Bethe ansatz study for ground state of Fateev Zamolodchikov model
International Nuclear Information System (INIS)
Ray, S.
1997-01-01
A Bethe ansatz study of a self-dual Z N spin lattice model, originally proposed by V. A. Fateev and A. B. Zamolodchikov, is undertaken. The connection of this model to the Chiral Potts model is established. Transcendental equations connecting the zeros of Fateev endash Zamolodchikov transfer matrix are derived. The free energies for the ferromagnetic and the anti-ferromagnetic ground states are found for both even and odd spins. copyright 1997 American Institute of Physics
Ground-state correlations within a nonperturbative approach
Czech Academy of Sciences Publication Activity Database
De Gregorio, G.; Herko, J.; Knapp, F.; Lo Iudice, N.; Veselý, Petr
2017-01-01
Roč. 95, č. 2 (2017), č. článku 024306. ISSN 2469-9985 R&D Projects: GA ČR GA13-07117S Institutional support: RVO:61389005 Keywords : ground state * harmonic oscillator frequency * space dimensions Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 3.820, year: 2016
Ground state solutions for non-local fractional Schrodinger equations
Directory of Open Access Journals (Sweden)
Yang Pu
2015-08-01
Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.
Electronic and ground state properties of ThTe
Energy Technology Data Exchange (ETDEWEB)
Bhardwaj, Purvee, E-mail: purveebhardwaj@gmail.com; Singh, Sadhna, E-mail: drsadhna100@gmail.com [High Pressure Research Lab. Department of Physics Barkatullah University, Bhopal (MP) 462026 (India)
2016-05-06
The electronic properties of ThTe in cesium chloride (CsCl, B2) structure are investigated in the present paper. To study the ground state properties of thorium chalcogenide, the first principle calculations have been calculated. The bulk properties, including lattice constant, bulk modulus and its pressure derivative are obtained. The calculated equilibrium structural parameters are in good agreement with the available experimental and theoretical results.
Ground state energy values and moments of the anharmonic oscillator
International Nuclear Information System (INIS)
Seetharaman, M.; Raghavan, Sekhar; Subba Rao, G.
1981-01-01
It is shown that a very satisfactory estimate of the energy values (for all values of the anharmonicity) and moments of the ground state of the quartic anharmonic oscillator can be obtained in the variational method, by considering trial wavefunctions which have the correct asymptotic properties. The results derived with a single variational parameter are a considerable improvement over the recent results of C.A. Ginsburg and E.W. Montroll (1978). (author)
Ground states for light and heavy quark hadrons
Energy Technology Data Exchange (ETDEWEB)
Anderson, J T [Physics Dept., Philippines Univ., Manila (Philippines)
1994-01-01
According to de Rujula et al. if the degenerate multiplet masses are known then it is not necessary to parametrize the interactions. With degenerate multiplet masses calculated from the spinorial decomposition of the SU(2)xSU(2) part of the SU(6)xSU(6) symmetry, the ground states for 3, 4 and 5 quark hadrons are calculated in terms of the Cartan matrix integers n[sub [alpha
Ground state solutions for diffusion system with superlinear nonlinearity
Directory of Open Access Journals (Sweden)
Zhiming Luo
2015-03-01
where $z=(u,v\\colon\\mathbb{R}\\times\\mathbb{R}^{N}\\rightarrow\\mathbb{R}^{2}$, $b\\in C^{1}(\\mathbb{R}\\times\\mathbb{R}^{N}, \\mathbb{R}^{N}$ and $V(x\\in C(\\mathbb{R}^{N},\\mathbb{R}$. Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.
Modulation Algorithms for Manipulating Nuclear Spin States
Liu, Boyang; Zhang, Ming; Dai, Hong-Yi
2013-01-01
We exploit the impact of exact frequency modulation on transition time of steering nuclear spin states from theoretical point of view. 1-stage and 2-stage Frequency-Amplitude-Phase modulation (FAPM) algorithms are proposed in contrast with 1-stage and 3-stage Amplitude-Phase modulation (APM) algorithms. The sufficient conditions are further present for transiting nuclear spin states within the specified time by these four modulation algorithms. It is demonstrated that transition time performa...
Responsibilities of the nuclear-weapon states
International Nuclear Information System (INIS)
Wang Jun
1994-01-01
The responsibilities of Nuclear Weapon States are presented by a straightforward analysis together with the ways in which they could fulfill them. The complete undertaking of all the commitments by the Nuclear Weapon States may take a long time. However they do not have a single excuse to neglect such a historic opportunity to do their best to provide a genuinely secure world environment for the international community, of which they too are members
Kohn-Sham Theory for Ground-State Ensembles
International Nuclear Information System (INIS)
Ullrich, C. A.; Kohn, W.
2001-01-01
An electron density distribution n(r) which can be represented by that of a single-determinant ground state of noninteracting electrons in an external potential v(r) is called pure-state v -representable (P-VR). Most physical electronic systems are P-VR. Systems which require a weighted sum of several such determinants to represent their density are called ensemble v -representable (E-VR). This paper develops formal Kohn-Sham equations for E-VR physical systems, using the appropriate coupling constant integration. It also derives local density- and generalized gradient approximations, and conditions and corrections specific to ensembles
Sideband cooling of micromechanical motion to the quantum ground state.
Teufel, J D; Donner, T; Li, Dale; Harlow, J W; Allman, M S; Cicak, K; Sirois, A J; Whittaker, J D; Lehnert, K W; Simmonds, R W
2011-07-06
The advent of laser cooling techniques revolutionized the study of many atomic-scale systems, fuelling progress towards quantum computing with trapped ions and generating new states of matter with Bose-Einstein condensates. Analogous cooling techniques can provide a general and flexible method of preparing macroscopic objects in their motional ground state. Cavity optomechanical or electromechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime--in which a system has less than a single quantum of motion--has been difficult because sideband cooling has not sufficiently overwhelmed the coupling of low-frequency mechanical systems to their hot environments. Here we demonstrate sideband cooling of an approximately 10-MHz micromechanical oscillator to the quantum ground state. This achievement required a large electromechanical interaction, which was obtained by embedding a micromechanical membrane into a superconducting microwave resonant circuit. To verify the cooling of the membrane motion to a phonon occupation of 0.34 ± 0.05 phonons, we perform a near-Heisenberg-limited position measurement within (5.1 ± 0.4)h/2π, where h is Planck's constant. Furthermore, our device exhibits strong coupling, allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass. Because mechanical oscillators can couple to light of any frequency, they could also serve as a unique intermediary for transferring quantum information between microwave and optical domains.
Nuclear development in the United States
International Nuclear Information System (INIS)
Brewer, S.
1983-01-01
The history of the nuclear development in the United States has been one of international cooperation relations so far. The United States is to offer the technical information on atomic energy utilization to foreign countries in exchange for the guarantee that they never attempt to have or develop nuclear weapons. Actually, the United States has supplied the technologies on nuclear fuel cycle and other related fields to enable other countries to achieve economical and social progress. The Department of Energy clarified the public promise of the United States regarding the idea of international energy community. The ratio of nuclear power generation to total electric power supply in the United States exceeded 12%, and will exceed 20% by 1990. Since 1978, new nuclear power station has not been ordered, and some of the contracted power stations were canceled. The atomic energy industry in the United States prospered at the beginning of 1970s, but lost the spirit now, mainly due to the institutional problems rather than the technical ones. As the policy of the government to eliminate the obstacles, the improvement of the procedure for the permission and approval, the establishment of waste disposal capability, the verification of fast breeder reactor technology and the promotion of commercial fuel reprocessing were proposed. The re-establishment of the United States as the reliable supplier of atomic energy service is the final aim. (Kako, I.)
Study of ground state optical transfer for ultracold alkali dimers
Bouloufa-Maafa, Nadia; Londono, Beatriz; Borsalino, Dimitri; Vexiau, Romain; Mahecha, Jorge; Dulieu, Olivier; Luc-Koenig, Eliane
2013-05-01
Control of molecular states by laser pulses offer promising potential applications. The manipulation of molecules by external fields requires precise knowledge of the molecular structure. Our motivation is to perform a detailed analysis of the spectroscopic properties of alkali dimers, with the aim to determine efficient optical paths to form molecules in the absolute ground state and to determine the optimal parameters of the optical lattices where those molecules are manipulated to avoid losses by collisions. To this end, we use state of the art molecular potentials, R-dependent spin-orbit coupling and transition dipole moment to perform our calculations. R-dependent SO coupling are of crucial importance because the transitions occur at internuclear distances where they are affected by this R-dependence. Efficient schemes to transfer RbCs, KRb and KCs to the absolute ground state as well as the optimal parameters of the optical lattices will be presented. This work was supported in part by ``Triangle de la Physique'' under contract 2008-007T-QCCM (Quantum Control of Cold Molecules).
Parent di-nuclear quasimolecular states as exotic resonant states
International Nuclear Information System (INIS)
Grama, N.
2002-01-01
It in shown that the parent di-nuclear quasimolecular state is an exotic resonant state that corresponds to a S-matrix pole in the neighbourhood of an attractor in the k-plane. The properties of the parent quasimolecular states i.e. energy, widths, deviation from the linear dependence of the energy on l(l + 1) doorway character and criteria for observability, result naturally from the general properties of the exotic resonant states. (author)
Systematics of ground state multiplets of atomic nuclei in the delta-interaction approach
Energy Technology Data Exchange (ETDEWEB)
Imasheva, L. T.; Ishkhanov, B. S.; Stepanov, M. E., E-mail: stepanov@depni.sinp.msu.ru [Moscow State University, Faculty of Physics (Russian Federation); Tretyakova, T. Yu. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)
2015-12-15
Pairing forces between nucleons in an atomic nucleus strongly influence its structure. One of the manifestations of pair interaction is the ground state multiplet (GSM) formation in the spectrum of low-lying excited states of even–even nuclei. The value of GSM splitting is determined by the value of pair interaction of nucleons; for each isotope, it can be estimated on the basis of experimental nuclear masses. The quality of this estimate is characterized by the degree of reproduction of GSM levels in the nucleus. The GSM systematics in even–even nuclei with a pair of identical nucleons in addition to the filled nuclear core is considered on the basis of delta interaction.
Energy of ground state of laminar electron-hole liquid
International Nuclear Information System (INIS)
Andryushin, E.A.
1976-01-01
The problem of a possible existence of metal electron-hole liquid in semiconductors is considered. The calculation has been carried out for the following model: two parallel planes are separated with the distance on one of the planes electrons moving, on the other holes doing. Transitions between the planes are forbidden. The density of particles for both planes is the same. The energy of the ground state and correlation functions for such electron-and hole system are calculated. It is shown that the state of a metal liquid is more advantageous against the exciton gas. For the mass ratio of electrons and holes, msub(e)/msub(h) → 0 a smooth rearrangement of the system into a state with ordered heavy particles is observed
International Nuclear Information System (INIS)
Hicks, H.G.
1981-11-01
This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines
The nuclear option in Canada - why it is gaining ground
International Nuclear Information System (INIS)
Hopwood, J.M.; Alizadeh, A.; Hedges, K.R.; Tighe, P.
2005-01-01
Over the last five years, the nuclear option in Canada has gone from 'off-the-radar' to an essential part of the energy debate. In Ontario, in particular, building new nuclear plants, along with life-extension of existing plants, has been recommended by government commissions as one of the vital energy-supply options to be pursued. Both life-extension and introduction of new nuclear power plants are complicated by uncertainties in the energy market, and by changes in the organizational and policy environment. Public and policy-maker recognition of the nuclear role are steadily growing, but commercial conditions to support nuclear projects are still difficult to define and obtain. In Canada, as in many OECD countries, the need to add to electricity infrastructure is becoming apparent. Life-extension of existing nuclear units, and projects to build new unit, are being planned. The key challenges, once energy policy issues have been addressed, are mainly commercial. Based on its successful experience with overseas projects such as Quinshan, and on its evolutionary approach to design of new, advanced power plants, AECL is well placed to meet these challenges and launch a new round of nuclear projects. Overall, the Canadian perspective is towards increasing support for the nuclear option. Canada is poised to join the vanguard of the broadening nuclear power expansion. (orig.)
Ground state energies from converging and diverging power series expansions
International Nuclear Information System (INIS)
Lisowski, C.; Norris, S.; Pelphrey, R.; Stefanovich, E.; Su, Q.; Grobe, R.
2016-01-01
It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh–Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state’s spatial extension is comparable to L. Once the binding strength is so strong that the ground state’s extension is less than L, the power expansion becomes divergent, consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.
Ground state energies from converging and diverging power series expansions
Energy Technology Data Exchange (ETDEWEB)
Lisowski, C.; Norris, S.; Pelphrey, R.; Stefanovich, E., E-mail: eugene-stefanovich@usa.net; Su, Q.; Grobe, R.
2016-10-15
It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh–Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state’s spatial extension is comparable to L. Once the binding strength is so strong that the ground state’s extension is less than L, the power expansion becomes divergent, consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.
Analytic model for surface ground motion with spall induced by underground nuclear tests
International Nuclear Information System (INIS)
MacQueen, D.H.
1982-04-01
This report provides a detailed presentation and critique of a model used to characterize the surface ground motion following a contained, spalling underground nuclear explosion intended for calculation of the resulting atmospheric acoustic pulse. Some examples of its use are included. Some discussion of the general approach of ground motion model parameter extraction, not dependent on the specific model, is also presented
State of art of nuclear telerobots
Energy Technology Data Exchange (ETDEWEB)
Yoon, Ji Sup; Oh, S C; Park, Y S; Kim, K S
1997-03-01
A state-of-the-art survey on telerobotics technology for nuclear applications is made with view to provide technical data base to interested users. Most of the information are gathered from G7 countries with some addition of Korean status of development. Although the bulk of information is focussed on mobile robots, graphic simulation for man-machine interface is also included in the survey. Examples of telerobotics application to nuclear work are investigated. (author). 108 refs., 9 tabs., 64 figs
Ground-State Structures of Ice at High-Pressures
McMahon, Jeffrey M.
2011-01-01
\\textit{Ab initio} random structure searching based on density functional theory is used to determine the ground-state structures of ice at high pressures. Including estimates of lattice zero-point energies, ice is found to adopt three novel crystal phases. The underlying sub-lattice of O atoms remains similar among them, and the transitions can be characterized by reorganizations of the hydrogen bonds. The symmetric hydrogen bonds of ice X and $Pbcm$ are initially lost as ice transforms to s...
Spectroscopic factor of the 7He ground state
International Nuclear Information System (INIS)
Beck, F.; Frekers, D.; Neumann-Cosel, P. von; Richter, A.; Ryezayeva, N.; Thompson, I.J.
2007-01-01
The neutron spectroscopic factor S n of the 7 He ground state is extracted from an R-matrix analysis of a recent measurement of the 7 Li(d, 2 He) 7 He reaction with good energy resolution. The width extracted from a deconvolution of the spectrum is Γ=183(22) keV (full width at half maximum, FWHM). The result S n =0.64(9) is slightly larger than predictions of recent 'ab initio' Green's function Monte Carlo and fermionic molecular dynamics calculations
International Nuclear Information System (INIS)
Yang Shan; Liu Li; Huang Xiaojing
2014-01-01
In the domestic and abroad standards, the grounding capacitive current limitation in the non-grounding electric auxiliary system is less than 10 A. Limiting capacitive current in the standard aims to speed up the arc extinguishing to reduce the duration of arc over-voltage, but not to prevent the arc producing, The arc over-voltage harm is related to the multiple, frequency and duration of the over-voltage. When the insulation vulnerabilities appear in the equipment, the arc over-voltage may result in insulation vulnerabilities of the electrical equipment breakdown, which leads to multiple, short-circuit accidents. The cable connector, accessory and electromotor winding are all insulation vulnerabilities. Setting the arc suppression coil which can counteract the grounding capacitive current makes the arc vanish quickly. Using the casting bus which remarkably reduces the ground capacitance of the electric transmission line makes the equipment safer. (authors)
Reclaiming some moral high ground - Ethical aspects in nuclear communications
International Nuclear Information System (INIS)
Hore-Lacy, Ian
2000-01-01
Public communication about nuclear energy needs to relate to the cultural undercurrents which determine how people perceive the environment. The paper discusses some of these and suggests ways of responding to them. It also outlines major ethical considerations relevant to uranium mining and nuclear energy and hence which are relevant to communication about both. Competent discourse about values is fundamental. (author)
International Nuclear Information System (INIS)
Bryan, J.B.
1980-01-01
Some predicted peak free-field ground motions at shot depth for the nuclear explosive excavation of a canal in Egypt are summarized. Peak values of displacement, velocity, acceleration, and radial stress are presented as a function of slant range from the working point. Results from two-dimensional TENSOR cratering calculations are included. Fits to ground motion measurements in other media are also shown. This summary is intended to help specify engineering design requirements for detonating nuclear explosive salvos which are required to efficiently excavate the canal. It also should be useful in guiding estimates for gage response ranges in ground motion measurements
Line list for the ground state of CaF
Hou, Shilin; Bernath, Peter F.
2018-05-01
The molecular potential energy function and electronic dipole moment function for the ground state of CaF were studied with MRCI, ACPF, and RCCSD(T) ab initio calculations. The RCCSD(T) potential function reproduces the experimental vibrational intervals to within ∼2 cm-1. The RCCSD(T) dipole moment at the equilibrium internuclear separation agrees well with the experimental value. Over a wide range of internuclear separations, far beyond the range associated with the observed spectra, the ab initio dipole moment functions are similar and highly linear. An extended Morse oscillator (EMO) potential function was also obtained by fitting the observed lines of the laboratory vibration-rotation and pure rotation spectra of the 40CaF X2Σ+ ground state. The fitted potential reproduces the observed transitions (v ≤ 8, N ≤ 121, Δv = 0, 1) within their experimental uncertainties. With this EMO potential and the RCCSD(T) dipole moment function, line lists for 40CaF, 42CaF, 43CaF, 44CaF, 46CaF, and 48CaF were computed for v ≤ 10, N ≤ 121, Δv = 0-10. The calculated emission spectra are in good agreement with an observed laboratory spectrum of CaF at a sample temperature of 1873 K.
A new representation for ground states and its Legendre transforms
International Nuclear Information System (INIS)
Cedillo, A.
1994-01-01
The ground-state energy of an electronic system is a functional of the number of electrons (N) and the external potential (v): E = E(N,V), this is the energy representation for ground states. In 1982, Nalewajski defined the Legendre transforms of this representation, taking advantage of the strict concavity of E with respect to their variables (concave respect v and convex respect N), and he also constructed a scheme for the reduction of derivatives of his representations. Unfortunately, N and the electronic density (p) were the independent variables of one of these representations, but p depends explicitly on N. In this work, this problem is avoided using the energy per particle (ε) as the basic variables, and the Legendre transformations can be defined. A procedure for the reduction of derivatives is generated for the new four representations and, in contrast to the Nalewajski's procedure, it only includes derivatives of the four representations. Finally, the reduction of derivatives is used to test some relationships between the hardness and softness kernels
Ground state analysis of magnetic nanographene molecules with modified edge
International Nuclear Information System (INIS)
Gorjizadeh, Narjes; Ota, Norio; Kawazoe, Yoshiyuki
2013-01-01
Highlights: ► Graphene molecules can become ferromagnetic by edge modifications. ► Dihydrogenation of one zigzag edge of rectangular flakes make them ferromagnetic. ► Triangular flakes become high-spin state by dehydrogenization of one zigzag edge. - Abstract: We study spin states of edge modified nanographene molecules with rectangular and triangular shapes by first principle calculations using density functional theory (DFT) and Hartree–Fock (HF) methods with Møller–Plesset (MP) correlation energy correction at different levels. Anthracene (C 14 H 10 ) and phenalenyl (C 13 H 9 ), which contain three benzene rings combined in two different ways, can be considered as fragments of a graphene sheet. Carbon-based ferromagnetic materials are of great interest both in fundamental science and technological potential in organic spintronics devices. We show that non-magnetic rectangular molecules such as C 14 H 10 can become ferromagnetic with high-spin state as the ground state by dihydrogenization of one of the zigzag edges, while triangular molecules such as C 13 H 9 become ferromagnetic with high-spin state by dehydrogenization of one of the zigzag edges
Radon detection in soils by solid state nuclear track detectors
International Nuclear Information System (INIS)
Moraes, M.A.P.V. de; Khouri, M.T.F.C.
1986-01-01
The solid state nuclear track detectors technique was developed to be used in radon detection, by alpha particles tracks, and its application in uranium prospecting on the ground. The sensitive films to alpha particles used are the cellulose nitrate films LR 115 and CA 8015. Several simulations experiments and field measurements were carried out to verify the method possibilities. Maps of some anomalies in Caetite City (Bahia, Brazil) were made with the densities of tracks obtained. The results were compared with scintillation counter measurements. (Author) [pt
The relation between the (N) and (N-1) electrons atomic ground state
International Nuclear Information System (INIS)
Briet, P.
1984-05-01
The relation between the ground state of an N and (N-1) electrons atomic system are studied. We show that in some directions of the configuration space, the ratio of the N electrons atomic ground state to the one particle density is asymptotically equivalent to the (N-1) electrons atomic ground state
Nuclear energy : member survey provides basis for common ground
International Nuclear Information System (INIS)
Hartley, Rolfe
2006-01-01
There is a lot of misinformation to the general public about the nuclear energy and renewable energy and also the greenhouse effect is just as controversial. There is a need to educate general public that nuclear is a low greenhouse energy source. There are other energy sources, such as solar, wind, hydro and geothermal. The most important aspect is the effective management of these sources
DEFF Research Database (Denmark)
Johnsen, Kristinn; Yngvason, Jakob
1996-01-01
We report on a numerical study of the density matrix functional introduced by Lieb, Solovej, and Yngvason for the investigation of heavy atoms in high magnetic fields. This functional describes exactly the quantum mechanical ground state of atoms and ions in the limit when the nuclear charge Z...... and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...... by other methods. For iron at B=1012 G the ground-state energy differs by less than 2% from the Hartree-Fock value. We have also studied the maximal negative ionization of heavy atoms in this model at various field strengths. In contrast to Thomas-Fermi type theories atoms can bind excess negative charge...
International Nuclear Information System (INIS)
Wang Baolin
1995-01-01
The analytical calculation of the nuclear ground state deformation of the even-even isotopes in the rare-earth region is given by utilizing the intrinsic states of the sdg interacting boson model. It is compared systematically with the reported theoretical and experimental results. It is shown that the sdg interacting boson model is a reasonable scheme for the description of even-even nuclei deformation
g-factor of the ground state of 73Se
International Nuclear Information System (INIS)
Nishimura, Katsuhiko; Ohya, Susumu; Mutsuro, Naoshi
1987-01-01
Nuclear magnetic resonance on oriented 73 Se in an iron host has been observed at about 7mK. From resonance-shift measurement, the magnetic hyperfine-splitting frequency μ M , g-factor and magnetic hyperfine field were derived as μ M =102.61(3)MH z , |g(9/2 + )|=0.188(16) and B HF ( 73 SeFe)=716(81)kG. The experimental values of the g-factors of the g 9/2 neutron states, in the neighborhood of the neutron number 40, are compared with the theoretical values based on the core-polarization model. (author)
Nuclear collective states at finite temperature
International Nuclear Information System (INIS)
Milian, A.; Barranco, M.; Mas, D.; Lombard, R.J.
1987-04-01
The Energy Density Method (EDM) has been used to study low-lying nuclear collective states as well as isoscalar giant resonances at finite temperature (T). Giant states have been studied by computing the corresponding strength function moments (sum rules) in the Random-Phase Approximation (RPA). For the description of the low lying states we have resorted to a variety of models from the rather sophisticated RPA method to liquid drop and schematic models. It has been found that low lying states are most affected by thermal effects, giant resonances being little affected in the range of temperatures here studied
Magnetic ground states in nanocuboids of cubic magnetocrystalline anisotropy
Energy Technology Data Exchange (ETDEWEB)
Bonilla, F.J., E-mail: fbonilla@cicenergigune.com; Lacroix, L.-M.; Blon, T., E-mail: thomas.blon@insa-toulouse.fr
2017-04-15
Flower and easy-axis vortex states are well-known magnetic configurations that can be stabilized in small particles. However, <111> vortex (V<111>), i.e. a vortex state with its core axis along the hard-axis direction, has been recently evidenced as a stable configuration in Fe nanocubes of intermediate sizes in the flower/vortex transition. In this context, we present here extensive micromagnetic simulations to determine the different magnetic ground states in ferromagnetic nanocuboids exhibiting cubic magnetocrystalline anisotropy (MCA). Focusing our study in the single-domain/multidomain size range (10–50 nm), we showed that V<111> is only stable in nanocuboids exhibiting peculiar features, such as a specific size, shape and magnetic environment, contrarily to the classical flower and easy-axis vortex states. Thus, to track experimentally these V<111> states, one should focused on (i) nanocuboids exhibiting a nearly perfect cubic shape (size distorsion <12%) made of (ii) a material which combines a zero or positive MCA and a high saturation magnetization, such as Fe or FeCo; and (iii) a low magnetic field environment, V<111> being only observed in virgin or remanent states. - Highlights: • The <111> vortex is numerically determined in nanocubes of cubic anisotropy. • It constitutes an intermediate state in the single-domain limit. • Such a vortex can only be stabilized in perfect or slightly deformed nanocuboids. • It exists in nanocuboids made of materials with zero or positive cubic anisotropy. • The associated magnetization reversal is described by a rotation of the vortex axis.
Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe
Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.
2015-04-01
The nuclear structure of 124Xe has been investigated via measurements of the β+/EC decay of 124Cs with the 8 π γ -ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2+→0+ in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study, B (E 2 ;23+→02+) =78 (13 ) W.u. and B (E 2 ;24+→03+) =53 (12 ) W.u. were determined. The 03+ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te (3He,n )124Xe measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.
State financial cover for nuclear incidents
International Nuclear Information System (INIS)
Jacobsson, M.
1985-01-01
Some States have introduced systems of compensation out of public funds in case the compensation under the Paris Convention and the Brussels Supplementary Convention is insufficient to cover the damage caused by a nuclear incident. The systems are described in this paper as well as that in Switzerland, which is not Party to these Conventions. (NEA) [fr
Ground state configurations in antiferromagnetic ultrathin films with dipolar anisotropy
International Nuclear Information System (INIS)
León, H.
2013-01-01
The formalism developed in a previous work to calculate the dipolar energy in quasi-two-dimensional crystals with ferromagnetic order is now extended to collinear antiferromagnetic order. Numerical calculations of the dipolar energy are carried out for systems with tetragonally distorted fcc [001] structures, the case of NiO and MnO ultrathin film grown in non-magnetic substrates, where the magnetic phase is a consequence of superexchange and dipolar interactions. The employed approximation allows to demonstrate that dipolar coupling between atomic layers is responsible for the orientation of the magnetization when it differs from the one in a single layer. The ground state energy of a given NiO or MnO film is found to depend not only on the strain, but also on how much the interlayer separation and the 2D lattice constant are changed with respect to the ideal values corresponding to the non-distorted cubic structure. Nevertheless, it is shown that the orientation of the magnetization in the magnetic phase of any of these films is determined by the strain exclusively. A striped phase with the magnetization along the [112 ¯ ] direction appears as the ground state configuration of NiO and MnO ultrathin films. In films with equally oriented stripes along the layers this magnetic phase is twofold degenerate, while in films with multidomain layers it is eightfold degenerate. These results are not in contradiction with experimentally observed out-of-plane or in-plane magnetization of striped phases in NiO and MnO ultrathin films. - Highlights: ► Dipolar energy in collinear antiferromagnetic ultrathin films is calculated. ► Numerical results are presented for distorted fcc [001] structures. ► The lowest energy of a system depends on how the tetragonal distortion is achieved. ► A striped phase with magnetization in the [112 ¯ ] direction is the ground state. ► In multidomain NiO and MnO films it is eightfold degenerate.
Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation
Energy Technology Data Exchange (ETDEWEB)
Kaptan, Y., E-mail: yuecel.kaptan@physik.tu-berlin.de; Herzog, B.; Schöps, O.; Kolarczik, M.; Woggon, U.; Owschimikow, N. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin (Germany); Röhm, A.; Lingnau, B.; Lüdge, K. [Institut für Theoretische Physik, Technische Universität Berlin, Berlin (Germany); Schmeckebier, H.; Arsenijević, D.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin (Germany); Mikhelashvili, V.; Eisenstein, G. [Technion Institute of Technology, Faculty of Electrical Engineering, Haifa (Israel)
2014-11-10
The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observed response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.
Liquid 4He: Modified LOCV ground-state energy calculations
International Nuclear Information System (INIS)
Skjetne, B.; Ostgaard, E.
1996-01-01
The ground-state energetics of liquid 4 He is studied in a constrained variational approach, where the significance of neglecting terms beyond second order in the cluster expansion is estimated in a crude way. An adjustment to the conditions of healing on the two-body correlation function excludes from the global average field the effects of pairwise clustering to higher orders. To this end, open-quotes virtualclose quotes particles beyond nearest neighbors are included in the average correlation volume. Results within the scope of such modifications are consistent with GFMC and QDMC calculations, falling within the range -7.25 ± 0.05 K when recent interaction models are used
Ground-state properties of neutron magic nuclei
Energy Technology Data Exchange (ETDEWEB)
Saxena, G., E-mail: gauravphy@gmail.com [Govt. Women Engineering College, Department of Physics (India); Kaushik, M. [Shankara Institute of Technology, Department of Physics (India)
2017-03-15
A systematic study of the ground-state properties of the entire chains of even–even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126 has been carried out using relativistic mean-field plus Bardeen–Cooper–Schrieffer approach. Our present investigation includes deformation, binding energy, two-proton separation energy, single-particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using nonrelativistic approach (Skyrme–Hartree–Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip-lines, the (Z, N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.
Nuclear engineering education in the United States
International Nuclear Information System (INIS)
Williamson, T.G.
1982-01-01
In discussing nuclear engineering education in the United States it is shown that the most critical issue facing the nuclear engineering education community today is enrolment in a time of increasing demand for graduate engineers. Related to the issue of enrolment is support for graduate students, whether it be fellowships, traineeships, or research assistantships. Other issues are those of maintaining a vital faculty in the face of a competitive job market, of maintaining research facilities and developing new ones, and of determining the directions of educational efforts in the future. (U.K.)
Nuclear energy and the constitutional state
International Nuclear Information System (INIS)
Saladin, P.
1984-01-01
This article puts the main emphasis on the problems of the constitutional principles of democracy, federalism, peaceful living together of peoples and constitutional state, i.e. problems caused by the development of nuclear energy. The fact that these problems are explained by way of the example of Switzerland, does not reduce the validity of the findings also for the German constitutional system, since the problems are identical and comparable. A long-term goal is a state theory which helps to define the aims and tasks of the state under technical, social, economic and cultural conditions of the end of the 20th and perhaps of the 21st century. Nuclear technology challenges the modern Western state and puts to the test the firmness of its legitimacy basis and the efficiency of its principles. It was conceived in a time which is separated from the present by technological revolutions. Safeguarding of humanity is aim and obligation of the modern constitutional state; the constitutional state stipulates the rules of conduct and, if the state remains true to its claim, it sets the procedures and the organization which give due priority order to the development of modern technology. (orig./HSCH) [de
Ground state of charged Base and Fermi fluids in strong coupling
International Nuclear Information System (INIS)
Mazighi, R.
1982-03-01
The ground state and excited states of the charged Bose gas were studied (wave function, equation of state, thermodynamics, application of Feynman theory). The ground state of the charged Fermi gas was also investigated together with the miscibility of charged Bose and Fermi gases at 0 deg K (bosons-bosons, fermions-bosons and fermions-fermions) [fr
A comparative icMRCI study of some NO+, NO and NO- electronic ground state properties
International Nuclear Information System (INIS)
Polak, R.; Fiser, J.
2004-01-01
Potential energy, electric field gradient (EFG) at both nuclei, and electric dipole moment functions for the electronic ground states of NO + , NO and NO - were calculated at the internally contracted multireference configuration interaction (icMRCI) level using augmented correlation-consistent basis sets. The changes in the EFG's with internuclear separation R were used to interpret the character of bonding in the triad of NO species. The vibrational dependences of the electric properties were estimated and the EFG's were employed to determine the 14 N nuclear quadrupole coupling constants. The effects of the choice of the basis set and reference configuration space were investigated. While the results obtained for NO + and NO served primarily to assess the quality of calculations by comparison with available experimental and theoretical data, new information was obtained on NO - , including electric property functions and some notions about the existence of metastable states
Effects of ground state correlations on the structure of odd-mass spherical nuclei
International Nuclear Information System (INIS)
Mishev, S.; Voronov, V. V.
2008-01-01
It is well known that the Pauli principle plays a substantial role at low energies because the quasiparticle and phonon operators, used to describe them, are built of fermions and as a consequence they are not ideal bosons. The correct treatment of this problem requires calculation of the exact commutators between the quasiparticle and phonon operators and in this way to take into account the Pauli principle corrections. In addition to the correlations due to the quasiparticle interaction in the ground-state influence the single-particle fragmentation as well. In this article, we generalize the basic equations of the quasiparticle-phonon nuclear model to account for both effects mentioned above. As an illustration of our approach, calculations of the structure of the low-lying states in the odd-mass nuclei 131-137 Ba have been performed
DOE states reheat nuclear waste debate
International Nuclear Information System (INIS)
Crawford, M.
1985-01-01
After decades of struggling with the issue, Congress in late 1982 established a firm plan for burying growing volumes of nuclear reactor wastes. But 2 l/2 years later the waste disposal debate is as hot as ever. Utility companies, environmentalists, federal officials, and state governments are again clashing - this time over the way the program is proceeding. The Nuclear Waste Policy Act calls for the Department of Energy to start accepting wastes in 1998 at the first of two planned repositories. Selection of this first repository site was mandated for early 1987, but program delays at DOE have pushed the decision back to March 1991. Despite this postponement and other schedule slips, the Department still aims to meet Congress's 1998 deadline. But states, Indian tribes, and environmentalists fear the site selection process will be compromised and want the start up date rolled back
Space nuclear power plant technology development philosophy for a ground engineering phase
International Nuclear Information System (INIS)
Buden, D.; Trapp, T.J.; Los Alamos National Lab., NM)
1985-01-01
The development of a space qualified nuclear power plant is proceeding from the technical assessment and advancement phase to the ground engineering phase. In this new phase, the selected concept will be matured by the completion of activities needed before protoflight units can be assembled and qualified for first flight applications. This paper addresses a possible philosophy to arrive at the activities to be performed during the ground engineering phase. The philosophy is derived from what we believe a potential user of nuclear power would like to see completed before commitment to a flight development phase. 5 references
Space nuclear power plant technology development philosophy for a ground engineering phase
International Nuclear Information System (INIS)
Buden, D.; Trapp, T.J.
1985-01-01
The development of a space qualified nuclear power plant is proceeding from the Technical Assessment and Advancement Phase to the Ground Engineering Phase. In this new phase, the selected concept will be matured by the completion of activities needed before protoflight units can be assembled and qualified for first flight applications. This paper addresses a possible philosophy to arrive at the activities to be performed during the Ground Engineering Phase. The philosophy is derived from what we believe a potential user of nuclear power would like to see completed before commitment to a flight development phase
K- nuclear states: Binding energies and widths
Czech Academy of Sciences Publication Activity Database
Hrtánková, Jaroslava; Mareš, Jiří
2017-01-01
Roč. 96, č. 1 (2017), č. článku 015205. ISSN 2469-9985 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : K- nuclear * kaonic * states Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 3.820, year: 2016
Work and Risk: Perceptions of Nuclear-Power Personnel. a Study in Grounded Theory.
Fields, Claire Dewitt
1992-01-01
The utility industry has devoted time and money to assure personnel within nuclear power plants are informed about occupational risks. Radiation-protection training programs are designed to present information to employees about occupational radiation and protective procedures. Work -related concerns are known to create stress, affect the morale of the workforce, influence collective bargaining, and increase compensation claims. This study was designed to determine perceptions of risk among employees of nuclear power plants and identify variables that influence these perceptions. Four power plants were included in the study, one in Canada and three in the United States. Data were generated through participant observations and interviews of 350 participants during a period of 3 weeks at each plant. Data were gathered and analyzed following procedures advanced by Grounded Theory, a naturalistic methodology used in this study. Training content, information, and communication materials were additional sources of data. Findings indicated employees believed health and safety risks existed within the work environment. Perceptions of risk were influenced by training quality, the work environment, nuclear myths and images of the general public, and fears of family members. Among the three groups of workers, administration personnel, security personnel, and radiation workers, the latter identified a larger number of risks. Workers perceived radiation risks, shift work, and steam pipe ruptures as high-level concerns. Experiencing stress, making mistakes, and fear of sabotage were concerns shared among all employee groups at various levels of concern. Strategies developed by employees were used to control risk. Strategies included teamwork, humor, monitoring, avoidance, reframing, and activism. When risks were perceived as uncontrollable, the employee left the plant. A coping strategy of transferring concerns about radiological risks to nonradiological risks were uncovered in
Relativistic dissipative hydrodynamics and the nuclear equation of state
International Nuclear Information System (INIS)
Olson, T.S.; Hiscock, W.A.
1989-01-01
The theory of dissipative, relativistic fluids due to Israel and Stewart is used to constrain the form of the nuclear equation of state. In the Israel-Stewart theory, there are conditions on the equation of state and other thermodynamic properties (the ''second-order'' coefficients) of a fluid which, if satisfied, guarantee that equilibria are stable and that fluid perturbations propagate causally and obey hyperbolic equations. The second-order coefficients in the Israel-Stewart theory, which are relaxation times for the dissipative degrees of freedom and coupling constants between different forms of dissipation, are derived for a free, degenerate Fermi gas. It is shown rigorously that the free, degenerate Fermi gas is stable (and hence causal) at all temperatures in this theory. These values for the second-order coefficients are then used in the stability conditions to constrain various proposed expressions for the nuclear ground-state energy. The stability conditions are found to provide significantly more stringent constraints on the proposed equations of state than the usual simple restriction that the adiabatic sound speed be less than the speed of light
International Nuclear Information System (INIS)
Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.
1993-01-01
Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed
Towards 6Li-40K ground state molecules
International Nuclear Information System (INIS)
Brachmann, Johannes Felix Simon
2013-01-01
The production of a quantum gas with strong long - range dipolar interactions is a major scientific goal in the research field of ultracold gases. In their ro - vibrational ground state Li-K dimers possess a large permanent dipole moment, which could possibly be exploited for the realization of such a quantum gas. A production of these molecules can be achieved by the association of Li and K at a Feshbach resonance, followed by a coherent state transfer. In this thesis, detailed theoretical an experimental preparations to achieve state transfer by means of Stimulated Raman Adiabatic Passage (STIRAP) are described. The theoretical preparations focus on the selection of an electronically excited molecular state that is suitable for STIRAP transfer. In this context, molecular transition dipole moments for both transitions involved in STIRAP transfer are predicted for the first time. This is achieved by the calculation of Franck-Condon factors and a determination of the state in which the 6 Li- 40 K Feshbach molecules are produced. The calculations show that state transfer by use of a single STIRAP sequence is experimentally very well feasible. Further, the optical wavelengths that are needed to address the selected states are calculated. The high accuracy of the data will allow to carry out the molecular spectroscopy in a fast and efficient manner. Further, only a comparatively narrow wavelength tuneability of the spectroscopy lasers is needed. The most suitable Feshbach resonance for the production of 6 Li- 40 K molecules at experimentally manageable magnetic field strengths is occurring at 155 G. Experimentally, this resonance is investigated by means of cross-dimensional relaxation. The application of the technique at various magnetic field strengths in the vicinity of the 155 G Feshbach resonance allows a determination of the resonance position and width with so far unreached precision. This reveals the production of molecules on the atomic side of the resonance
Electromagnetic properties of the three-nucleon ground state
International Nuclear Information System (INIS)
Strueve, W.
1985-01-01
The electromagnetic form factors of the three-nucleon ground state are calculated on the base of an exact solution of the Faddeev equations. In a Hilbert space of nucleons and a possible Δ-isobar the effects of a non-perturbative description of the Δ-isobar on the magnetic form factors are studied. Pure nucleonic current operators with two- and three-particle character can be described in the extended Hilbert space by simpler one-body operators. Additionally nonrelativistic meson-exchange corrections due to π and ρ exchange are calculated consistently with the requirements of current conservation. Further relativistic corrections are estimated on selected examples. The calculations yield a total magnetic contribution of the Δ-isobar which is smaller than hitherto assumed, a static approximation of the Δ propagation is proved as inadmissible and must be rejected. Together with the meson-exchange corrections a well agreement with the experimental data at low momentum transfers results. Especially the magnetic moments and magnetization radii can be explained. For higher momentum transfers the results show the importance of further corrections. The regard of selected relativistic corrections leads to a good description of the experimental magnetic form factors. Also by this way the position of the minimum and the height of the second maximum in the 3 He charge form factor can be explained. The comparison with the latest experimental results reveals furthermore unresolved problems in the description of the 3 H charge form factor. (orig.) [de
Hara, Akito; Awano, Teruyoshi
2017-06-01
Ultrashallow thermal donors (USTDs), which consist of light element impurities such as carbon, hydrogen, and oxygen, have been found in Czochralski silicon (CZ Si) crystals. To the best of our knowledge, these are the shallowest hydrogen-like donors with negative central-cell corrections in Si. We observed the ground-state splitting of USTDs by far-infrared optical absorption at different temperatures. The upper ground-state levels are approximately 4 meV higher than the ground-state levels. This energy level splitting is also consistent with that obtained by thermal excitation from the ground state to the upper ground state. This is direct evidence that the wave function of the USTD ground state is made up of a linear combination of conduction band minimums.
Nuclear Liability, State of the Art
International Nuclear Information System (INIS)
Reitsma, S. M. S.
2010-01-01
Over fifty years ago states started to introduce legislation protecting the public against the potential magnitude and peculiarity of risks arising from the nuclear energy production. They did so trough a specific liability and compensation regime. Whether legislation was based on national initiatives or, as more frequently, related to international nuclear liability conventions, it was based on a number of principles being applied universally. Furthermore, it at the same time strived for not preventing the development of the nuclear industry because of an unbearable liability. This paper aims at explaining the broad outline of the above legislation, its development since its early years, the state of the art as regards its modernisation as well as the (alleged) problems underlying the delay in its introduction in a number of countries. When dealing with those problems it will be inevitable to touch upon a number of insurance related matters, which, as an insurer I am happy to tell, will lead me to familiar territory.(author).
International Nuclear Information System (INIS)
Suchomel, J.; Murinova, S.
2004-01-01
In this presentation authors deals with the review of the state of nuclear energetics in the Slovak Republic. Perspectives of nuclear energy and renewable sources of energy as well as attitudes of public to nuclear energy are discussed
Extension of responsibilities of the State Office for Nuclear Safety
International Nuclear Information System (INIS)
Hrehor, M.
1995-01-01
The responsibilities of the State Office for Nuclear Safety have been extended by Act No. 85/1995 to cover protection against ionizing radiation. The following responsibilities of the State Office for Nuclear Safety are defined by the Act: a) state surveillance over nuclear safety of nuclear facilities, and over radioactive waste and spent fuel management; b) state surveillance over nuclear materials, their record-keeping and accountancy; c) state surveillance over the safeguarding of nuclear facilities and nuclear materials; d) state surveillance over selected materials, facilities and technologies used in the nuclear field, as well as dual-purpose materials and facilities; e) state surveillance over protection against ionizing radiation; f) coordination of the performance of the Radiation Monitoring Network over the Czech Republic and responsibility for international exchange of data on the radiological situation. The Act is reproduced in full, and the organizational structure of the Office is shown in a chart. (J.B.)
A Hydrogen Containment Process for Nuclear Thermal Engine Ground testing
Wang, Ten-See; Stewart, Eric; Canabal, Francisco
2016-01-01
The objective of this study is to propose a new total hydrogen containment process to enable the testing required for NTP engine development. This H2 removal process comprises of two unit operations: an oxygen-rich burner and a shell-and-tube type of heat exchanger. This new process is demonstrated by simulation of the steady state operation of the engine firing at nominal conditions.
Anomalous Ground State of the Electrons in Nano-confined Water
2016-06-13
Anomalous ground state of the electrons in nano -confined water G. F. Reiter1*, Aniruddha Deb2*, Y. Sakurai3, M. Itou3, V. G. Krishnan4, S. J...electronic ground state of nano -confined water must be responsible for these anomalies but has so far not been investigated. We show here for the first time...using x-ray Compton scattering and a computational model, that the ground state configuration of the valence electrons in a particular nano
Movement of radionuclides from river to ground water in vicinity of location for nuclear power plant
International Nuclear Information System (INIS)
Knezevic, Lj.; Lazic, S.; Vukovic, Z.
1984-01-01
The possibility of ground water contamination caused by radionuclide from river water to which liquid effluents were released from a nuclear power station was estimated using one-dimensional transport model. This model is suitable for a homogeneous medium and takes into account hydraulic convection and dispersion as well as physical-chemical retardation for the various radionuclides. (author)
Nuclear material control in the United States
International Nuclear Information System (INIS)
Jaeger, C.; Waddoups, I.
1995-01-01
The Department of Energy has defined a safeguards system to be an integrated system of physical protection, material accounting and material control subsystems designed to deter, prevent, detect, and respond to unauthorized possession, use, or sabotage of SNM. In practice, safeguards involve the development and application of techniques and procedures dealing with the establishment and continued maintenance of a system of activities. The system must also include administrative controls and surveillance to assure that the procedures and techniques of the system are effective and are being carried out. The control of nuclear material is critical to the safeguarding of nuclear materials within the United States. The U.S. Department of Energy includes as part of material control four functional performance areas. They include access controls, material surveillance, material containment and detection/assessment. This paper will address not only these areas but also the relationship between material control and other safeguards and security functions
The United States nuclear merchant ship program
International Nuclear Information System (INIS)
Maynard, E.V.
1978-01-01
The issues of financial protection contemplate appropriate financing to permit construction of the involved vessels. In addition, the licensing process will require a demonstrated ability for financial response in the event of injury to persons or damage to property. Since the thrust in the United States is to use the Price-Anderson framework for Insurance and Indemnity, much attention is devoted to this legislation. The pre-existing regime is related to the distinguishing requirements of the Maritime field with proposals being advanced to more nearly parallel the insurance coverage philosophy of Europe, i.e., to utilize insurance pools for the nuclear risks and utilize the conventional insurance market for non-nuclear risks. Public affairs issues impact heavily on legislation efforts and thusly become significant in developing a program for Financial Protection
Derivation of novel human ground state naive pluripotent stem cells.
Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H
2013-12-12
Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation
Ground state solutions for asymptotically periodic Schrodinger equations with critical growth
Directory of Open Access Journals (Sweden)
Hui Zhang
2013-10-01
Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.
Correlated ground state and E2 giant resonance built on it
International Nuclear Information System (INIS)
Tohyama, Mitsuru
1995-01-01
Taking 16 O as an example of realistic nuclei, we demonstrate that a correlated ground state can be obtained as a long time solution of a time-dependent density-matrix formalism (TDDM) when the residual interaction is adiabatically treated. We also study in TDDM the E2 giant resonance of 16 O built on the correlated ground state and compare it with that built on the Hartree-Fock ground state. It is found that a spurious mixing of low frequency components seen in the latter is eliminated by using the correlated ground state. (author)
Current Ground Test Options for Nuclear Thermal Propulsion (NTP)
Gerrish, Harold P., Jr.
2014-01-01
About 20 different NTP engines/ reactors were tested from 1959 to 1972 as part of the Rover and Nuclear Engine for Rocket Vehicle Application (NERVA) program. Most were tested in open air at test cell A or test cell C, at the Nevada Test Site (NTS). Even after serious engine breakdowns of the reactor (e.g., Phoebus 1A), the test cells were cleaned up for other engine tests. The engine test stand (ETS) was made for high altitude (approximately 1 psia) testing of an NTP engine with a flight configuration, but still had the exhaust released to open air. The Rover/NERVA program became aware of new environmental regulations which would prohibit the release of any significant quantity of radioactive particulates and noble gases into the open air. The nuclear furnace (NF-1) was the last reactor tested before the program was cancelled in 1973, but successfully demonstrated a scrubber concept on how to filter the NTP exhaust. The NF-1 was demonstrated in the summer of 1972. The NF-1 used a 44MW reactor and operated each run for approximately 90 minutes. The system cooled the hot hydrogen exhaust from the engine with a water spray before entering a particle filter. The exhaust then passed through a series of heat exchangers and water separators to help remove water from the exhaust and further reduce the exhaust temperatures. The exhaust was next prepared for the charcoal trap by passing through a dryer and effluent cooler to bring exhaust temperatures close to liquid nitrogen. At those low temperatures, most of the noble gases (e.g., Xe and Kr made from fission products) get captured in the charcoal trap. The filtered hydrogen is finally passed through a flare stack and released to the air. The concept was overall successful but did show a La plating on some surfaces and had multiple recommendations for improvement. The most recent detailed study on the NTP scrubber concept was performed by the ARES Corporation in 2006. The concept is based on a 50,000 lbf thrust engine
Procedures for evaluation of vibratory ground motions of soil deposits at nuclear power plant sites
International Nuclear Information System (INIS)
1975-06-01
According to USNRC requirements set forth in Appendix A, 10 CFR, Part 100, vibratory ground motion criteria for a nuclear plant must be based on local soil conditions, as well as on the seismicity, geology, and tectonics of the region. This report describes how such criteria can be developed by applying the latest technology associated with analytical predictions of site-dependent ground motions and with the use of composite spectra obtained from the current library of strong motion records. Recommended procedures for defining vibratory ground motion criteria contain the following steps: (1) geologic and seismologic studies; (2) site soils investigations; (3) site response sensitivity studies; (4) evaluation of local site response characteristics; (5) selection of site-matched records; and (6) appraisal and selection of seismic input criteria. An in-depth discussion of the engineering characteristics of earthquake ground motions including parameters used to characterize earthquakes and strong motion records, geologic factors that influence ground shaking, the current strong motion data base, and case histories of the effects of past earthquake events is presented. Next, geotechnical investigations of the seismologic, geologic, and site soil conditions required to develop vibratory motion criteria are briefly summarized. The current technology for establishing vibratory ground motion criteria at nuclear plant sites, including site-independent and site-dependent procedures that use data from strong motion records and from soil response analyses is described. (auth)
Optimized RVB states of the 2-d antiferromagnet: ground state and excitation spectrum
Chen, Yong-Cong; Xiu, Kai
1993-10-01
The Gutzwiller projection of the Schwinger-boson mean-field solution of the 2-d spin- {1}/{2} antiferromagnet in a square lattice is shown to produce the optimized, parameter-free RVB ground state. We get -0.6688 J/site and 0.311 for the energy and the staggered magnetization. The spectrum of the excited states is found to be linear and gapless near k≅0. Our calculation suggests, upon breaking of the rotational symmetry, ɛ k≅2JZ r1-γ 2k with Zr≅1.23.
Mathematical aspects of ground state tunneling models in luminescence materials
International Nuclear Information System (INIS)
Pagonis, Vasilis; Kitis, George
2015-01-01
Luminescence signals from a variety of natural materials have been known to decrease with storage time at room temperature due to quantum tunneling, a phenomenon known as anomalous fading. This paper is a study of several mathematical aspects of two previously published luminescence models which describe tunneling phenomena from the ground state of a donor–acceptor system. It is shown that both models are described by the same type of integral equation, and two new analytical equations are presented. The first new analytical equation describes the effect of anomalous fading on the dose response curves (DRCs) of naturally irradiated samples. The DRCs in the model were previously expressed in the form of integral equations requiring numerical integration, while the new analytical equation can be used immediately as a tool for analyzing experimental data. The second analytical equation presented in this paper describes the anomalous fading rate (g-Value per decade) as a function of the charge density in the model. This new analytical expression for the g-Value is tested using experimental anomalous fading data for several apatite crystals which exhibit high rate of anomalous fading. The two new analytical results can be useful tools for analyzing anomalous fading data from luminescence materials. In addition to the two new analytical equations, an explanation is provided for the numerical value of a constant previously introduced in the models. - Highlights: • Comparative study of two luminescence models for feldspars. • Two new analytical equations for dose response curves and anomalous fading rate. • The numerical value z=1.8 of previously introduced constant in models explained.
Ground-state hyperfine splitting for Rb, Cs, Fr, Ba+, and Ra+
Ginges, J. S. M.; Volotka, A. V.; Fritzsche, S.
2017-12-01
We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms 87Rb,133Cs, and 211Fr and alkali-metal-like ions +135Ba and +225Ra, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.
From Regional Hazard Assessment to Nuclear-Test-Ban Treaty Support - InSAR Ground Motion Services
Lege, T.; Kalia, A.; Gruenberg, I.; Frei, M.
2016-12-01
There are numerous scientific applications of InSAR methods in tectonics, earthquake analysis and other geologic and geophysical fields. Ground motion on local and regional scale measured and monitored via the application of the InSAR techniques provide scientists and engineers with plenty of new insights and further understanding of subsurface processes. However, the operational use of InSAR is not yet very widespread. To foster the operational utilization of the Copernicus Sentinel Satellites in the day-to-day business of federal, state and municipal work and planning BGR (Federal Institute for Geosciences and Natural Resources) initiated workshops with potential user groups. Through extensive reconcilement of interests and demands with scientific, technical, economic and governmental stakeholders (e.g. Ministries, Mining Authorities, Geological Surveys, Geodetic Surveys and Environmental Agencies on federal and state level, SMEs, German Aerospace Center) BGR developed the concept of the InSAR based German National Ground Motion Service. One important backbone for the nationwide ground motion service is the so-called Persistent Scatterer Interferometry Wide Area Product (WAP) approach developed with grants of European research funds. The presentation shows the implementation of the ground motion service and examples for product developments for operational supervision of mining, water resources management and spatial planning. Furthermore the contributions of Copernicus Sentinel 1 radar data in the context of CTBT are discussed. The DInSAR processing of Sentinel 1 IW (Interferometric Wide Swath) SAR acquisitions from January 1st and 13th Jan. 2016 allow for the first time a near real time ground motion measurement of the North Korean nuclear test site. The measured ground displacements show a strong spatio-temporal correlation to the calculated epicenter measured by teleseismic stations. We are convinced this way another space technique will soon contribute even
The actual state of nuclear fuel cycle
International Nuclear Information System (INIS)
Sawai, Masako
2014-01-01
The describing author's claims are as follows: a new mythology, semi made-in Japan energy, which 'the energy fundamental plan' creates; what is a nuclear fuel cycle?; operation processes in a reprocessing plant; the existing state against a recycle in dream; does a recycle reduce waste masses?; discharged liquid and gaseous radioactive wastes; an evaluation of exposure 'the value 22 μSv is irresponsible'; the putting off of waste problem in reprocessing; a guide in reprocessing; should a reprocessing be a duty of electric power companies? (M.H.)
Tricriticality for dimeric Coulomb molecular crystals in ground state
Travěnec, Igor; Šamaj, Ladislav
2017-12-01
We study the ground-state properties of a system of dimers. Each dimer consists in a pair of equivalent charges at a fixed distance, immersed in a neutralizing homogeneous background. All charges interact pairwisely by Coulomb potential. The dimer centers form a two-dimensional rectangular lattice with the aspect ratio α\\in [0, 1] and each dimer is allowed to rotate around its center. The previous numerical simulations, made for the more general Yukawa interaction, indicate that only two basic dimer configurations can appear: either all dimers are parallel or they have two different angle orientations within alternating (checkerboard) sublattices. As the dimer size increases, two second-order phase transitions, related to two kinds of the symmetry breaking in dimer’s orientations, were reported. In this paper, we use a recent analytic method based on an expansion of the interaction energy in Misra functions which converges quickly and provides an analytic derivation of the critical behaviour. Our main result is that there exists a specific aspect ratio of the rectangular lattice α^*=0.714 106 840 000 71\\ldots which divides the space of model’s phases onto two distinct regions. If the lattice aspect ratio α>α* , we recover both types of the second-order phase transitions and find that they are of mean-field type with the critical exponent β = 1/2 . If 0.711 535≤slantα<α* , the phase transition associated with the discontinuity of dimer’s angles on alternating sublattices becomes of first order. For α=α* , the first- and second-order phase transitions meet at the tricritical point, characterized by the different critical index β = 1/4 . Such phenomenon is known from literature about the Landau theory of one-component fields, but in our two-component version the scenario is more complicated: the component which is already in the symmetry-broken state at the tricritical point also interferes and exhibits unexpectedly the mean-field singular
DEFF Research Database (Denmark)
Reynisson, J.; Wilbrandt, R.; Brinck, V.
2002-01-01
. The physical and chemical properties of the excited singlet state of the trioxatriangulenium (TOTA(+)) carbenium ion are investigated by experimental and Computational means. The degeneracy of the lowest excited states is counteracted by Jahn-Teller-type distortion, which leads to vibronic broadening...... of the long wavelength absorption band. A strong fluorescence is observed at 520 nm (tau(n) = 14.6 ns, phi(n) = 0.12 in deaerated acetonitrile). The fluorescence is quenched by 10 aromatic electron donors predominantly via a dynamic charge transfer mechanism, but ground state complexation is shown...... triphenylenes is studied separately. Phosphorescence spectra, triplet lifetimes, and triplet-triplet absorption spectra are provided. In the discussion, TOTA(+) is compared to the unsubstituted xanthenium ion and its 9-phenyl derivative with respect to the excited state properties....
Walking out of the nuclear state
International Nuclear Information System (INIS)
Haug, H.J.
1988-01-01
Wackersdorf and Gorleben, these are two major stations on the way into the nuclear state. But resistance is gaining strength. More and more people - and not only from affected areas - refuse to accept a development that is a threat to their health, their home, and democracy. Various Christian groups, supported by local citizens' initiatives, have organised a nine-week protest march through the Federal Republic of Germany, intended as a parallel to the 'way of the Cross', uttering protest against the nuclear threat and concern about creation at every station on the way from the site of the planned nuclear waste reprocessing plant at Wackersdorf in Bavaria to the site of the waste repository at Gorleben in Lower Saxony, making a route of more than 900 kilometers. The author of the book describes the experiences of the marching people, their hopes and their fears. His report explains how traditionally minded, conservative people of the Oberpfalz region became self-conscious, alert, disobedient citizens who no longer trust in the policy of appeasement, and how brutal police actions destroyed their trust in justice and the rule of law. The author presents the feeling of the citizens in their own words, and reports in a separate chapter about the documentation film 'Spaltprozesse' which shows the development and events that made even convinced CSU adherents change their mind and develop in them a different understanding of the political situation. Another chapter deals with the well-known Robert Jungk and the legal proceedings commenced against him. (orig.) [de
International Nuclear Information System (INIS)
Zheng Yi
2008-01-01
A simple dynamic rising nuclear cloud based model for atmospheric nuclear explosion radioactive prediction was presented. The deposition of particles and initial cloud radius changing with time before the cloud stabilization was considered. Large-scale relative diffusion theory was used after cloud stabilization. The model was considered reasonable and dependable in comparison with four U.S. nuclear test cases and DELFIC model results. (authors)
Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen
2014-09-09
The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.
Exact ground and excited states of an antiferromagnetic quantum spin model
International Nuclear Information System (INIS)
Bose, I.
1989-08-01
A quasi-one-dimensional spin model which consists of a chain of octahedra of spins has been suggested for which a certain parameter regime of the Hamiltonian, the ground state, can be written down exactly. The ground state is highly degenerate and can be other than a singlet. Also, several excited states can be constructed exactly. The ground state is a local RVB state for which resonance is confined to rings of spins. Some exact numerical results for an octahedron of spins have also been reported. (author). 16 refs, 2 figs, 1 tab
Construction and study of exact ground states for a class of quantum antiferromagnets
International Nuclear Information System (INIS)
Fannes, M.
1989-01-01
Techniques of quantum probability are used to construct the exact ground states for a class of quantum spin systems in one dimension. This class in particular contains the antiferromagnetic models introduced by various authors under the name of VBS-models. The construction permits a detailed study of these ground states. (A.C.A.S.) [pt
Long range order in the ground state of two-dimensional antiferromagnets
International Nuclear Information System (INIS)
Neves, E.J.; Perez, J.F.
1985-01-01
The existence of long range order is shown in the ground state of the two-dimensional isotropic Heisenberg antiferromagnet for S >= 3/2. The method yields also long range order for the ground state of a larger class of anisotropic quantum antiferromagnetic spin systems with or without transverse magnetic fields. (Author) [pt
Ab initio calculation atomics ground state wave function for interactions Ion- Atom
International Nuclear Information System (INIS)
Shojaee, F.; Bolori zadeh, M. A.
2007-01-01
Ab initio calculation atomics ground state wave function for interactions Ion- Atom Atomic wave function expressed in a Slater - type basis obtained within Roothaan- Hartree - Fock for the ground state of the atoms He through B. The total energy is given for each atom.
Ground State Structure of a Coupled 2-Fermion System in Supersymmetric Quantum Mechanics
Finster, Felix
1997-05-01
We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to theN=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like
Ground state structure of a coupled 2-fermion system in supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Finster, F.
1997-01-01
We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to the N=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like. copyright 1997 Academic Press, Inc
The State Surveillance over Nuclear Safety of Nuclear Facilities Act No. 28/1984
International Nuclear Information System (INIS)
1995-01-01
The Act lays down responsibilities of the Czechoslovak Atomic Energy Commission in the field of state surveillance over nuclear safety of nuclear facilities; determines the responsibilities of nuclear safety inspectors in their inspection activities; specifies duties of bodies and corporations responsible for nuclear safety of nuclear facilities; stipulates the obligation to set up emergency plans; and specifies penalties imposed on corporations and individuals for noncompliance with nuclear safety provisions. The Act entered into force on 4 April 1984. (J.B.)
Development of Risk Assessment Methodology for State's Nuclear Security Regime
International Nuclear Information System (INIS)
Jang, Sung Soon; Seo, Hyung Min; Lee, Jung Ho; Kwak, Sung Woo
2011-01-01
Threats of nuclear terrorism are increasing after 9/11 terrorist attack. Treats include nuclear explosive device (NED) made by terrorist groups, radiological damage caused by a sabotage aiming nuclear facilities, and radiological dispersion device (RDD), which is also called 'dirty bomb'. In 9/11, Al Qaeda planed to cause radiological consequences by the crash of a nuclear power plant and the captured airplane. The evidence of a dirty bomb experiment was found in Afganistan by the UK intelligence agency. Thus, the international communities including the IAEA work substantial efforts. The leaders of 47 nations attended the 2010 nuclear security summit hosted by President Obama, while the next global nuclear summit will be held in Seoul, 2012. Most states established and are maintaining state's nuclear security regime because of the increasing threat and the international obligations. However, each state's nuclear security regime is different and depends on the state's environment. The methodology for the assessment of state's nuclear security regime is necessary to design and implement an efficient nuclear security regime, and to figure out weak points. The IAEA's INPRO project suggests a checklist method for State's nuclear security regime. The IAEA is now researching more quantitative methods cooperatively with several countries including Korea. In this abstract, methodologies to evaluate state's nuclear security regime by risk assessment are addressed
Memphis State University Center for Nuclear Studies progress report
International Nuclear Information System (INIS)
1976-01-01
This quarterly report outlines the progress made by the Center for Nuclear Studies at Memphis State University in the development of specialized educational programs for the nuclear industry through the month of February, 1976
Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring
Energy Technology Data Exchange (ETDEWEB)
Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory
2008-09-23
These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy
International Nuclear Information System (INIS)
Berman, G. P.; Doolen, G. D.; Hammel, P. C.; Tsifrinovich, V. I.
2000-01-01
We propose a nuclear-spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two-qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1 K. (c) 2000 The American Physical Society
State of nuclear waste management of German nuclear power stations
International Nuclear Information System (INIS)
1983-01-01
The waste management of nuclear power plants in the Federal Republic of Germany is today prevailing in the public discussion. Objections raised in this connection, e.g. that the nuclear waste management has been omitted from the development of peaceful utilization of nuclear energy or remained insolved, are frequently accepted without examination, and partly spread as facts. This is, however, not the truth: From the outset in 1955 the development of nuclear technology in the Federal Republic of Germany has included investigations of the problems of reprocessing and non-detrimental disposal of radioactive products, and the results have been compiled in a national nuclear waste management concept. (orig.) [de
International Conference on Extreme States in Nuclear Systems
International Nuclear Information System (INIS)
Arlt, R.; Kuehn, B.
1979-12-01
The abstracts of contributed papers are arranged under the following headings: (1) nuclear matter, incl. elementary interactions, phase transitions, compression of nuclear matter; (2) heavy ion reactions, incl. nucleus-nucleus potential, mechanism of heavy ion reactions, role of non-equilibrium processes, nuclear quasimolecules, superheavy nuclei; (3) high spin states and nuclear structure; and (4) relativistic nuclear physics, incl. heavy ion reactions, particle production, role of nucleon associations. (author)
Concept study of a hydrogen containment process during nuclear thermal engine ground testing
Directory of Open Access Journals (Sweden)
Ten-See Wang
Full Text Available A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process. Keywords: Hydrogen decomposition reactions, Hydrogen recombination reactions, Hydrogen containment process, Nuclear thermal propulsion, Ground testing
Effluent Containment System for space thermal nuclear propulsion ground test facilities
International Nuclear Information System (INIS)
1995-08-01
This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative ECS that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal
Concept study of a hydrogen containment process during nuclear thermal engine ground testing
Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco
2016-01-01
A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze ...
International Nuclear Information System (INIS)
Thomas, G.F.
1994-01-01
This note shows how uncertainties in nearfield and farfield ground water velocities affect the inventory that migrates from a geologic nuclear waste repository within the classical advection-dispersion approach and manifest themselves through both the finite variances and covariances in the activities of transported nuclides and in the apparent scale dependence of the host rock's dispersivity. Included is a demonstration of these effects for an actinide chain released from used CANDU fuel buried in a hypothetical repository. (Author)
United States - Japanese nuclear relations: implications for the pacific region
International Nuclear Information System (INIS)
Suttmeier, R.P.
1980-01-01
The initiation of a new approach to non-proliferation policy by the United States in 1977 was the most upsetting development in the history of US-Japanese nuclear relations. The policy has seemingly altered Japanese views of its own nuclear future very little, yet it has altered the tone of the nuclear relationship with the United States. Recent Japanese nuclear power developments, both technical and administrative, are outlined and the prospects for the future of the United States-Japanese nuclear relationship and for Pacific regional cooperation assessed. Issues of importance in the relationship include reprocessing - enrichment, plutonium management, spent fuel and waste management and uranium supplies
The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule
Directory of Open Access Journals (Sweden)
Jing Zhou
2016-03-01
Full Text Available To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS at Co L2,3 edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co-L2,3 XAS spectra demonstrate a robust ground state of 2A1g symmetry that is built from 73% 3d7 character and 27% 3 d 8 L ¯ ( L ¯ denotes a ligand hole components, as the first excited-state with 2Eg symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A1g symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A1g to 2Eg configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.
TDHF study of the He+ collision on atomic He targets at the 8Be ground state energy
International Nuclear Information System (INIS)
Cai, J.; Shoppa, T.D.; Langanke, K.
1997-01-01
Experimentally the 8 Be ground state resonance has been studied in He + collisions on atomic He atoms. The nuclear resonance manifests itself by satellite resonance lines corresponding to different electron configurations of the Be ion. Experimentally a large probability for the emission of one electron has been deduced. We study the atomic He + +He collision within a model in which the evolution of the electron wavefunction is treated dynamically in the TDHF scheme, and the motion of the nuclei is treated classically. In agreement with experiment we find a large probability for one electron to be emitted into the continuum during the lifetime of the 8 Be ground state resonance. (orig.). With 2 figs., 1 tab
International Nuclear Information System (INIS)
Antony, M.S.; Britz, J.
1986-01-01
A compilation of experimental root-mean square radii, isotope shifts, ground-state magnetic dipole and electric quadrupole moments of nuclei 1≤A≤239 is presented. Shell, sub-subshell closures and changes in nuclear deformations discernible from data are displayed graphically. The nuclear charge distribution, for 1≤A≤ 239 nuclei deduced from Coulomb displacement energies is shown for comparison
Arsenic in Ground Water of the United States
... Team More Information Arsenic in groundwater of the United States Arsenic in groundwater is largely the result of ... Gronberg (2011) for updated arsenic map. Featured publications United States Effects of human-induced alteration of groundwater flow ...
A simple parameter-free wavefunction for the ground state of two-electron atoms
International Nuclear Information System (INIS)
Ancarani, L U; Rodriguez, K V; Gasaneo, G
2007-01-01
We propose a simple and pedagogical wavefunction for the ground state of two-electron atoms which (i) is parameter free (ii) satisfies all two-particle cusp conditions (iii) yields reasonable ground-state energies, including the prediction of a bound state for H - . The mean energy, and other mean physical quantities, is evaluated analytically. The simplicity of the result can be useful as an easy-to-use wavefunction when testing collision models
Exact many-electron ground states on diamond and triangle Hubbard chains
International Nuclear Information System (INIS)
Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter
2009-01-01
We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (1) a rewriting of the Hamiltonian into positive semidefinite form, (2) the construction of a many-electron ground state of this Hamiltonian, and (3) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fulfill certain relations. The scheme is first employed to construct exact ground state for the diamond Hubbard chain in a magnetic field. These ground states are found to exhibit a wide range of properties such as flat-band ferromagnetism and correlation induced metallic, half-metallic or insulating behavior, which can be tuned by changing the magnetic flux, local potentials, or electron density. Detailed proofs of the uniqueness of the ground states are presented. By the same technique exact ground states are constructed for triangle Hubbard chains and a one-dimensional periodic Anderson model with nearest-neighbor hybridization. They permit direct comparison with results obtained by variational techniques for f-electron ferromagnetism due to a flat band in CeRh 3 B 2 . (author)
DEFF Research Database (Denmark)
Piligkos, Stergios; Weihe, Høgni; Bill, Eckhard
2009-01-01
examples of high nuclearity polymetallic systems where detailed information on the spin-Hamiltonian parameters of the ground and excited spin states is observed. We interpret the EPR spectra by use of restricted size effective subspaces obtained by the rigorous solution of spin-Hamiltonians of dimension up...
Energy Technology Data Exchange (ETDEWEB)
Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory
2009-09-21
These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.
Economical state of nuclear industries in 1980
International Nuclear Information System (INIS)
1982-01-01
The Japan Atomic Industrial Forum, Inc., has carried out the survey of the actual state of atomic energy industries in Japan every year, and the 22nd survey was performed on the state in 1980. In this survey, the atomic energy industries are classified into electric power business, mining and manufacture, and trading companies. The actual results of expenditures, sales, the investment in facilities, backlogs, the volume of business, the number of employees and so on were surveyed by questionnaire, respectively. The data show the history of the atomic energy industries for a quarter of a century, and are utilized to search for the problems. The period of survey was from April 1, 1980, to March 31, 1981. The number of enterprises surveyed was 1234, and 924 companies replied, accordingly, the ratio of reply was 75%. 546 enterprises among the 924 had some results related to atomic energy, therefore, the results of survey were classified, totalized, examined and analyzed, based on the survey papers of these 546 enterprises. As for the Japanese economy, the real growth of economy was 3.8%, the index of mining and manufacturing production increased by 4.6%, but total energy consumption decreased by 4.4%, as compared with the previous year. One nuclear power plant began the operation, and 4000 centrifuges are operated in the uranium enrichment pilot plant. The trends of expenditures, sales and employees are shown. (Kako, I.)
Nuclear bodies in the oocyte nucleus of ground beetles are enriched in snRNPs.
Jaglarz, M K
2001-08-01
Within the oocyte nucleus of many insect species, a variable number of intensely stained spherical bodies occur. These nuclear bodies differ significantly from nucleoli and their precise role in nuclei has not been elucidated yet. I have examined some of the histochemical properties as well as the molecular composition of these structures in a representative of ground (carabid) beetles. I demonstrate, using molecular markers, that the nuclear bodies are composed of small nuclear RNAs and associated proteins, including p80 coilin. Hence, they correspond to Cajal bodies (= coiled bodies) described in somatic cell nuclei as well as oocyte germinal vesicles in plant and animal organisms. It is suggested that Cajal bodies in the carabid germinal vesicle serve as a storage site for splicing factors.
International Nuclear Information System (INIS)
2014-01-01
The possibility that nuclear material or other radioactive material could be used for criminal purposes or intentionally used in an unauthorized manner cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear material or other radioactive material is used or transported. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises: Nuclear Security Fundamentals, which include the objective and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security. Specifically, each State has the responsibility to provide for the security of nuclear material and other radioactive material and their associated facilities and activities; to ensure the security of such material in use, storage, or in transport; to combat illicit trafficking and the inadvertent movement of
International Nuclear Information System (INIS)
2014-01-01
The possibility that nuclear material or other radioactive material could be used for criminal purposes or intentionally used in an unauthorized manner cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear material or other radioactive material is used or transported. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises: Nuclear Security Fundamentals, which include the objective and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security. Specifically, each State has the responsibility to provide for the security of nuclear material and other radioactive material and their associated facilities and activities; to ensure the security of such material in use, storage, or in transport; to combat illicit trafficking and the inadvertent movement of
Objective and Essential Elements of a State's Nuclear Security Regime. Nuclear Security Fundamentals
International Nuclear Information System (INIS)
2013-01-01
The possibility that nuclear material or other radioactive material could be used for criminal purposes or intentionally used in an unauthorized manner cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear material or other radioactive material is used or transported. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises: Nuclear Security Fundamentals, which include the objective and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security. Specifically, each State has the responsibility to provide for the security of nuclear material and other radioactive material and their associated facilities and activities; to ensure the security of such material in use, storage, or in transport; to combat illicit trafficking and the inadvertent movement of
International Nuclear Information System (INIS)
2014-01-01
The possibility that nuclear material or other radioactive material could be used for criminal purposes or intentionally used in an unauthorized manner cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear material or other radioactive material is used or transported. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises: Nuclear Security Fundamentals, which include the objeurity Fundamentals, which include the objective and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security. Specifically, each State has the responsibility to provide for the security of nuclear material and other radioactive material and their associated facilities and activities; to ensure the security of such material in use, storage, or in transport; to combat illicit
International Nuclear Information System (INIS)
2014-01-01
The possibility that nuclear material or other radioactive material could be used for criminal purposes or intentionally used in an unauthorized manner cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear material or other radioactive material is used or transported. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises: Nuclear Security Fundamentals, which include the objective and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security. Specifically, each State has the responsibility to provide for the security of nuclear material and other radioactive material and their associated facilities and activities; to ensure the security of such material in use, storage, or in transport; to combat illicit trafficking and the inadvertent movement of
International Nuclear Information System (INIS)
Fuchs, J; Duffy, G J; Rowlands, W J; Lezama, A; Hannaford, P; Akulshin, A M
2007-01-01
We present an experimental study of sub-natural width resonances in fluorescence from a collimated beam of 6 Li atoms excited on the D 1 and D 2 lines by a bichromatic laser field. We show that in addition to ground-state Zeeman coherence, coherent population oscillations between ground and excited states contribute to the sub-natural resonances. High-contrast resonances of electromagnetically induced transparency and electromagnetically induced absorption due to both effects, i.e., ground-state Zeeman coherence and coherent population oscillations, are observed
Strategy of nuclear power in Korea, non-nuclear-weapon state and peaceful use of nuclear power
International Nuclear Information System (INIS)
Nagasaki, Takao
2005-01-01
The nuclear power plant started at Kori in Korea in April, 1978. Korea has carried out development of nuclear power as a national policy. The present capacity of nuclear power plants takes the sixes place in the world. It supplies 42% total power generation. The present state of nuclear power plant, nuclear fuel cycle facility, strategy of domestic production of nuclear power generation, development of next generation reactor and SMART, strategy of export in corporation with industry, government and research organization, export of nuclear power generation in Japan, nuclear power improvement project with Japan, Korea and Asia, development of nuclear power system with nuclear diffusion resistance, Hybrid Power Extraction Reactor System, radioactive waste management and construction of joint management and treatment system of spent fuel in Asia are stated. (S.Y.)
Proton capture to the ground and excited states in light nuclei
International Nuclear Information System (INIS)
Anghinolfi, M.; Corvisiero, P.; Guarnone, M.; Ricco, G.; Sanzone, M.; Taiuti, M.; Zucchiatti, A.
1984-01-01
Proton capture experiments, when performed with good resolution, generally provide two different kinds of physical information; the ground-state pγ/sub o/ cross section, which is related, through the detailed balance, to the inverse photonuclear γp/sub o/ reaction; the advantage of capture experiments is the definite kinematics, corresponding to monochromatic photons in γp reactions, and a more precise beam monitoring. The pγ/sub x/ cross section to the various excited states of the final nucleus; this information is typical of capture experiments, since excited nuclear targets are not available. Many laboratories performed extensive capture experiments at excitation energies up to the GDR region, but only recently few groups (Ohio, Triangle and Genova Universities) extended the investigation to energies above the GDR. In fact more severe experimental problems arise at higher energies: since the pγ differential cross sections range in this energy region between 0.1 and 1Γb/sr, while competitive reactions have two or three order of magnitude higher cross sections, the signal-to-background ratio is very low. The data analysis strongly depends on the detector line shape, scarsely known at photon energies above 20 MeV; a very accurate knowledge of the detector response function is therefore necessary
Energy Technology Data Exchange (ETDEWEB)
Antoun, T; Harris, D; Lay, T; Myers, S C; Pasyanos, M E; Richards, P; Rodgers, A J; Walter, W R; Zucca, J J
2008-02-11
The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes a path by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas.
Generalization of the nuclear equation of state to nonequilibrium states
International Nuclear Information System (INIS)
Neise, L.W.
1990-10-01
In this thesis it was shown, how the thermodynamic terms can be generalized, so that they are also still applicable in nonequilibrium states. Thereby the method with a generalized grand canonical potential presented here is also applicable to two mutually steadily streaming through parts of nuclear matter. The momentum anisotropy is described by a parameter which enters the equation of state quite similarly as for instance the temperature. While now in a purely position-dependent microscopical interaction a momentum anisotropy only means an additional additive kinetic energy, momentum-dependent forces, as they play a role in nucleus-nucleus collisions, lead to complicated connections, which were analyzed in this thesis. An important advance of the procedure presented here is the relativistic formulation, which allows to study also large momentum anisotropies respectively large relative flow velocities. It could be shown that the formation of delta matter is forced by a momentum anisotropy. Especially interesting is the influence of a momentum anisotropy on the phase transition between hadronic matter and a quark-gluon plasma. (orig./HSI) [de
Present state of nuclear power business in China
International Nuclear Information System (INIS)
Morokuzu, Muneo
2011-01-01
This article presented present state of nuclear power business in China based on latest information obtained at visit at nuclear power related facilities in December 2010. China Atomic Energy Authority (CAEA) promoted nuclear power, while National Nuclear Safety Administration (NNSA) was an independent regulatory body of nuclear power. Construction of nuclear power was promoted by three national nuclear engineering development corporations: China National Nuclear Corporation (CNNC), China Guangdon Nuclear Power Corporation (CGNPC) and State Nuclear Power Technology Corporation (SNPTC). In China, 13 nuclear power reactors were in operation and 27 under construction. Shortage of nuclear engineers became evident with rapid growth of nuclear power, which forced delay of nuclear power construction schedule. Future strategies of reactor type varied domestic, French and US ones respectively dependent on CNNC, CGNPC and SNPTC, CNNC seemed to change from third generation reactor (CNP 1000) to second one (CP 1000) due to regulatory licensing difficulty of NNSA. As for advanced reactor development, large scale PWR project, HTR project and FBR development project were proceeding. As HTR project was selected as high-priority project, an experimental reactor (HTR-10) was critical in 2000 and construction of demonstration reactor started in 2009. (T. Tanaka)
International Nuclear Information System (INIS)
2001-01-01
Results of the LI Meeting on Nuclear Spectroscopy and Nuclear Structure are presented. Properties of excited states of atomic nuclei and mechanisms of nuclear reactions are considered. Studies on the theory of nucleus and fundamental interactions pertinent to experimental study of nuclei properties and mechanisms of nuclear reactions, technique and methods of experiment, application of nuclear-physical method, are provided [ru
New United States policies regarding international nuclear cooperation
International Nuclear Information System (INIS)
Marshall, H.R. Jr.
1981-10-01
This paper discusses the United States policy on international nuclear power development in the light of the priorities established by President Reagan in the guidelines for his Administration's nuclear co-operation policy. The aim is to establish a framework allowing for co-operation in peaceful nuclear development while remaining committed to the objective of preventing the further spread of nuclear weapons, in particular by supporting the Non-Proliferation Treaty, the IAEA Safeguards System and the Tlatelolco Treaty (NEA) [fr
Component design challenges for the ground-based SP-100 nuclear assembly test
International Nuclear Information System (INIS)
Markley, R.A.; Disney, R.K.; Brown, G.B.
1989-01-01
The SP-100 ground engineering system (GES) program involves a ground test of the nuclear subsystems to demonstrate their design. The GES nuclear assembly test (NAT) will be performed in a simulated space environment within a vessel maintained at ultrahigh vacuum. The NAT employs a radiation shielding system that is comprised of both prototypical and nonprototypical shield subsystems to attenuate the reactor radiation leakage and also nonprototypical heat transport subsystems to remove the heat generated by the reactor. The reactor is cooled by liquid lithium, which will operate at temperatures prototypical of the flight system. In designing the components for these systems, a number of design challenges were encountered in meeting the operational requirements of the simulated space environment (and where necessary, prototypical requirements) while also accommodating the restrictions of a ground-based test facility with its limited available space. This paper presents a discussion of the design challenges associated with the radiation shield subsystem components and key components of the heat transport systems
International Nuclear Information System (INIS)
Yamanaka, Masanori; Honjo, Shinsuke; Kohmoto, Mahito
1996-01-01
We investigate one-dimensional strongly correlated electron models which have the resonating-valence-bond state as the exact ground state. The correlation functions are evaluated exactly using the transfer matrix method for the geometric representations of the valence-bond states. In this method, we only treat matrices with small dimensions. This enables us to give analytical results. It is shown that the correlation functions decay exponentially with distance. The result suggests that there is a finite excitation gap, and that the ground state is insulating. Since the corresponding noninteracting systems may be insulating or metallic, we can say that the gap originates from strong correlation. The persistent currents of the present models are also investigated and found to be exactly vanishing
Solid state nuclear track detection principles, methods and applications
Durrani, S A; ter Haar, D
1987-01-01
Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti
Nonspherical atomic ground-state densities and chemical deformation densities from x-ray scattering
International Nuclear Information System (INIS)
Ruedenberg, K.; Schwarz, W.H.E.
1990-01-01
Presuming that chemical insight can be gained from the difference between the molecular electron density and the superposition of the ground-state densities of the atoms in a molecule, it is pointed out that, for atoms with degenerate ground states, an unpromoted ''atom in a molecule'' is represented by a specific ensemble of the degenerate atomic ground-state wave functions and that this ensemble is determined by the anisotropic local surroundings. The resulting atomic density contributions are termed oriented ground state densities, and the corresponding density difference is called the chemical deformation density. The constraints implied by this conceptual approach for the atomic density contributions are formulated and a method is developed for determining them from x-ray scattering data. The electron density of the appropriate promolecule and its x-ray scattering are derived, the determination of the parameters of the promolecule is outlined, and the chemical deformation density is formulated
Qing-Hui, Wang; Xu-Ping, Shao; Xiao-Hua, Yang
2016-01-01
Hyperfine structures of ICl in its vibronic ground state due to the nuclear spin and electric quadruple interactions are determined by diagonalizing the effective Hamiltonian matrix. Furthermore, the Stark sub-levels are precisely determined as well. The results are helpful for electro-static manipulation (trapping or further cooling) of cold ICl molecules. For example, an electric field of 1000 V/cm can trap ICl molecules less than 637 μK in the lowest hyperfine level. Project supported by the National Natural Science Foundation of China (Grant No. 11034002), the National Basic Research Program of China (Grant No. 2011CB921602), and Qing Lan Project, China.
Estevez Aguado, M.E.; Agramunt, J.; Rubio, B.; Tain, J.L.; Jordan, D.; Fraile, L.M.; Gelletly, W.; Frank, A.; Csatlos, M.; Csige, L.; Dombradi, Zs.; Krasznahorkay, A.; Nacher, E.; Sarriguren, P.; Borge, M.J.G.; Briz, J.A.; Tengblad, O.; Molina, F.; Moreno, O.; Kowalska, M.; Fedosseev, V.N.; Marsh, B.A.; Fedorov, D.V.; Molkanov, P.L.; Andreyev, A.N.; Seliverstov, M.D.; Burkard, K.; Huller, W.
2015-01-01
The beta decay of $^{192,190}$Pb has been studied using the total absorption technique at the ISOLDE(CERN) facility. The beta-decay strength deduced from the measurements, combined with QRPA theoretical calculations, allow us to infer that the ground states of the $^{192,190}$Pb isotopes are spherical. These results represent the first application of the shape determination method using the total absorption technique for heavy nuclei and in a region where there is considerable interest in nuclear shapes and shape effects.
Theoretical Grounds of Formation of the Efficient State Economic Policy
Directory of Open Access Journals (Sweden)
Semyrak Oksana S.
2013-12-01
Full Text Available The article conducts historical and analytical analysis of views on the role of state administration in the sphere of economic relations by various economic directions in order to allocate traditional and newest essential reference points of the modern theory of state regulation of economy. It identifies specific features of modern models of economic policy that envisage setting goals by the state, selection of relevant efficient tools and mathematic function, which would describe dependencies between them. It considers the concept of the basic theory of economic policy of Jan Tinbergen, its advantages and shortcomings. It studies prerequisites and conducts analysis of the modern concept of the role of state in economy as a subject of the market. It considers the modern concept of economic socio-dynamics, pursuant to which the main task of the state is maximisation of social usefulness and permanent improvement of the Pareto-optimal. It considers the “socio-dynamic multiplicator” notion, which envisages availability of three main components: social effect from activity of the state, yearning of individuals for creation of something new and availability of formal and informal institutions that united first two elements.
Pade approximants for the ground-state energy of closed-shell quantum dots
International Nuclear Information System (INIS)
Gonzalez, A.; Partoens, B.; Peeters, F.M.
1997-08-01
Analytic approximations to the ground-state energy of closed-shell quantum dots (number of electrons from 2 to 210) are presented in the form of two-point Pade approximants. These Pade approximants are constructed from the small- and large-density limits of the energy. We estimated that the maximum error, reached for intermediate densities, is less than ≤ 3%. Within that present approximation the ground-state is found to be unpolarized. (author). 21 refs, 3 figs, 2 tabs
Many electron variational ground state of the two dimensional Anderson lattice
International Nuclear Information System (INIS)
Zhou, Y.; Bowen, S.P.; Mancini, J.D.
1991-02-01
A variational upper bound of the ground state energy of two dimensional finite Anderson lattices is determined as a function of lattice size (up to 16 x 16). Two different sets of many-electron basis vectors are used to determine the ground state for all values of the coulomb integral U. This variational scheme has been successfully tested for one dimensional models and should give good estimates in two dimensions
Ground-state energy for 1D (t,U,X)-model at low densities
International Nuclear Information System (INIS)
Buzatu, F.D.
1992-09-01
In describing the properties of quasi-1D materials with a highly-screened interelectronic potential, an attractive hopping term has to be added to the Hubbard Hamiltonian. The effective interaction and the ground-state energy in ladder approximation are analyzed. At low electronic densities, the attractive part of the interaction, initially smaller than the repulsive term, can become more effective, the ground-state energy decreasing below the unperturbed value. (author). 12 refs, 4 figs
Nuclear matter in all its states
International Nuclear Information System (INIS)
Bonche, P.; Cugnon, J.; Babinet, R.; Mathiot, J.F.; Van Hove, L.; Buenerd, M.; Galin, J.; Lemaire, M.C.; Meyer, J.
1986-01-01
This report includes the nine lectures which have been presented at the Joliot-Curie School of Nuclear Physics in 1985. The subjects covered are the following: thermodynamic description of excited nuclei; heavy ion reactions at high energy (theoretical approach); heavy ion reactions at high energy (experimental approach); relativistic nuclear physics and quark effects in nuclei; quark matter; nuclear compressibility and its experimental determinations; hot nuclei; anti p-nucleus interaction; geant resonances at finite temperature [fr
Nuclear Security Education Program at the Pennsylvania State University
Energy Technology Data Exchange (ETDEWEB)
Uenlue, Kenan [The Pennsylvania State University, Radiation Science and Engineering Center, University Park, PA 16802-2304 (United States); The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304 (United States); Jovanovic, Igor [The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304 (United States)
2015-07-01
The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basis of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale
Nuclear Security Education Program at the Pennsylvania State University
International Nuclear Information System (INIS)
Uenlue, Kenan; Jovanovic, Igor
2015-01-01
The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basis of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale
Seismic design spectra for nuclear power plants, state-of-the-art
International Nuclear Information System (INIS)
Michalopoulos, A.P.; Shukla, D.K.
1976-01-01
The State-of-the-Art of nuclear power plant design involves the use of design response spectra together with a modal analysis of a mathematical idealization of the actual structure. The design response spectra give the maximum response to ground shaking for a family of single degree-of-freedom viscously damped oscillators. These spectra are usually described as an accelerogram giving ground acceleration as a function of time. The definition of a 'standard' design response spectra is reviewed and illustrated by data relevant to 'hard' or rock sites. Finally, the paper recommends a set of design response spectra applicable to rock sites
Learning from nuclear waste repository design: the ground-control plan
International Nuclear Information System (INIS)
Schmidt, B.
1988-01-01
At present, under a U.S. Department of Energy program, three repositories for commercial spent fuel-in salt, tuff and basalt-are in the phase of site characterization and conceptual design, and one pilot project for defense waste in salt is under development. Because of strict quality assurance requirements throughout design and construction, and the need to predict and ascertain in advance the satisfactory performance of the underground openings, underground openings in the unusual circumstances of the repository environment have been analysed. This will lead to an improved understanding of rock behavior and improved methods of underground analysis and design. A formalized ground control plan was developed, the principles of which may be applied to other types of projects. This paper summarizes the status of underground design and construction for nuclear waste repositories and presents some details of the ground control plan and its individual elements. (author)
International Nuclear Information System (INIS)
Suo, Bingbing; Yu, Yan-Mei; Han, Huixian
2015-01-01
We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest-lying state is calculated for Ω = 1/2, 3/2, 5/2, and 7/2 in order to clarify the ground state of IrO. Our calculation suggests that the ground state is of Ω = 1/2, which is highly mixed with 4 Σ − and 2 Π states in Λ − S notation. The two low-lying states 5/2 and 7/2 are nearly degenerate with the ground state and locate only 234 and 260 cm −1 above, respectively. The equilibrium bond length 1.712 Å and the harmonic vibrational frequency 903 cm −1 of the 5/2 state are close to the experimental measurement of 1.724 Å and 909 cm −1 , which suggests that the 5/2 state should be the low-lying state that contributes to the experimental spectra. Moreover, the electronic states that give rise to the observed transition bands are assigned for Ω = 5/2 and 7/2 in terms of the obtained excited energies and oscillator strengths
Concept study of a hydrogen containment process during nuclear thermal engine ground testing
Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco
A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.
Tornado damage at the Grand Gulf, Mississippi nuclear power plant site: aerial and ground surveys
International Nuclear Information System (INIS)
Fujita, T.T.; McDonald, J.R.
1978-05-01
A tornado struck the Grand Gulf nuclear power generating station, Port Gibson, Mississippi, about 11:30 p.m. on April 17, 1978. Storm damage investigators from the University of Chicago and Texas Tech University were dispatched to survey the damage. The meteorological situation that spawned the Grand Gulf tornado and seven others in the area is discussed. Aerial surveys of the entire damage path and detailed surveys of the plant site are presented. An engineering evaluation of the damage is also presented based primarily on information gained from detailed ground surveys
International Nuclear Information System (INIS)
El Samad, O.
2009-01-01
To establish nuclear techniques for the study and management of water resources including technology transfer; to develop a national strategy for the use of isotope techniques in water management and development studies; to develop a water mangement framework; to solve problems related to water shortage, overexploitation, management and rapid quality deterioration; to evaluate the sources, recharge rates and renewal of ground water reservoires; to resolve the problems of mixed aquifers, the quantity of mixing and the exchange reactions between groundwater reservoirs and their matrix; to strengthen the role of the CNRS within national instituions and water authorities. (author)
The nuclear state - from consensus to conflict
International Nuclear Information System (INIS)
Blowers, Andrew.; Pepper, David.
1987-01-01
The early 1980s is suggested as the 'moment of transition' in Britain when public opinion turned from being basically, but quietly, in favour or indifferent to nuclear power, to being actively involved in debate about it and far less happy with it. The accident to the reactor at Chernobyl made nuclear power a major international issue and intensified the debate. The conflict over nuclear power in Britain and elsewhere in the Western World is examined. The causes of the conflict are identified as legitimacy, accountability and control, the changing political environment and finally, the international political dimension. Problems at the fuel reprocessing plant at Sellafield and the disposal of radioactive wastes are seen as central issues in the conflict. Questionable levels of nuclear safety are also crucial with the accident at Chernobyl making this a major factor. This chapter looks at these issues as the background to the nuclear power conflict. (UK)
Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes.
Fayet, Guillaume; Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Rotureau, Patricia; Adamo, Carlo
2010-02-26
This work presents a quantitative structure-property relationship (QSPR)-based approach allowing an accurate prediction of the excited-state properties of organic dyes (anthraquinones and azobenzenes) from ground-state molecular descriptors, obtained within the (conceptual) density functional theory (DFT) framework. The ab initio computation of the descriptors was achieved at several levels of theory, so that the influence of the basis set size as well as of the modeling of environmental effects could be statistically quantified. It turns out that, for the entire data set, a statistically-robust four-variable multiple linear regression based on PCM-PBE0/6-31G calculations delivers a R(adj)(2) of 0.93 associated to predictive errors allowing for rapid and efficient dye design. All the selected descriptors are independent of the dye's family, an advantage over previously designed QSPR schemes. On top of that, the obtained accuracy is comparable to the one of the today's reference methods while exceeding the one of hardness-based fittings. QSPR relationships specific to both families of dyes have also been built up. This work paves the way towards reliable and computationally affordable color design for organic dyes. Copyright 2009 Elsevier Inc. All rights reserved.
Equilibrium states and ground state of two-dimensional fluid foams
International Nuclear Information System (INIS)
Graner, F.; Jiang, Y.; Janiaud, E.; Flament, C.
2001-01-01
We study the equilibrium energies of two-dimensional (2D) noncoarsening fluid foams, which consist of bubbles with fixed areas. The equilibrium states correspond to local minima of the total perimeter. We present a theoretical derivation of energy minima; experiments with ferrofluid foams, which can be either highly distorted, locally relaxed, or globally annealed; and Monte Carlo simulations using the extended large-Q Potts model. For a dry foam with small size variance we develop physical insight and an electrostatic analogy, which enables us to (i) find an approximate value of the global minimum perimeter, accounting for (small) area disorder, the topological distribution, and physical boundary conditions; (ii) conjecture the corresponding pattern and topology: small bubbles sort inward and large bubbles sort outward, topological charges of the same signs ''repel'' while charges of the opposite signs ''attract;'' (iii) define local and global markers to determine directly from an image how far a foam is from its ground state; (iv) conjecture that, in a local perimeter minimum at prescribed topology, the pressure distribution and thus the edge curvature are unique. Some results also apply to 3D foams
Fermionic molecular dynamics for ground states and collisions of nuclei
International Nuclear Information System (INIS)
Feldmeier, H.; Bieler, K.; Schnack, J.
1994-08-01
The antisymmetric many-body trial state which describes a system of interacting fermions is parametrized in terms of localized wave packets. The equations of motion are derived from the time-dependent quantum variational principle. The resulting Fermionic Molecular Dynamics (FMD) equations include a wide range of semi-quantal to classical physics extending from deformed Hartree-Fock theory to Newtonian molecular dynamics. Conservation laws are discussed in connection with the choice of the trial state. The model is applied to heavy-ion collisions with which its basic features are illustrated. The results show a great variety of phenomena including deeply inelastic collisions, fusion, incomplete fusion, fragmentation, neck emission, promptly emitted nucleons and evaporation. (orig.)
Magnetic excitations in intermediate valence semiconductors with singlet ground state
International Nuclear Information System (INIS)
Kikoin, K.A.; Mishchenko, A.S.
1994-01-01
The explanation of the origin inelastic peaks in magnetic neutron scattering spectra of the mixed-valent semiconductor SmB 6 is proposed. It is shown that the excitonic theory of intermediate valence state not only gives the value of the peak frequency but also explains the unusual angular dependence of intensity of inelastic magnetic scattering and describes the dispersion of magnetic excitations in good agreement with experiment
Ground state magnetic properties of Fe nanoislands on Cu(111)
International Nuclear Information System (INIS)
Kishi, Tomoya; David, Melanie; Nakanishi, Hiroshi; Kasai, Hideaki; Dino, Wilson Agerico; Komori, Fumio
2005-01-01
We investigate magnetic properties of Fe nanoislands on Cu(111) in the relaxed structure within the density functional theory. We observe that the nanoislands exhibit the ferromagnetic properties with large magnetic moment. We find that the change in the magnetic moment of each Fe atom is induced by deposition on Cu(111) and structure relaxation of Fe nanoislands. Moreover, we examine the stability of ferromagnetic states of Fe nanoislands by performing the total energy calculations. (author)
Gapless Spin-Liquid Ground State in the S =1 /2 Kagome Antiferromagnet
Liao, H. J.; Xie, Z. Y.; Chen, J.; Liu, Z. Y.; Xie, H. D.; Huang, R. Z.; Normand, B.; Xiang, T.
2017-03-01
The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor S =1 /2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and numerical methods employed to date. We apply the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical studies and the physical interpretation of this result.
Status of nuclear engineering education in the United States
International Nuclear Information System (INIS)
Brown, G.J.
2000-01-01
Nuclear engineering education in the United States is reflective of the perceived health of the nuclear electric power industry within the country. Just as new commercial reactor orders have vanished and some power plants have shut down, so too have university enrollments shrunk and research reactors closed. This decline in nuclear trained specialists and the disappearance of the nuclear infrastructure is a trend that must be arrested and reversed if the United States is to have a workforce capable of caring for a nuclear power industry to not only meet future electric demand but to ensure that the over 100 existing plants, their supporting facilities and their legacy in the form of high level waste and facility clean-up are addressed. Additionally, the United States has an obligation to support and maintain its nuclear navy and other defence needs. And, lastly, if the United States is to have a meaningful role in the international use of nuclear power with regard to safety, non-proliferation and the environment, then it is imperative that the country continues to produce world-class nuclear engineers and scientists by supporting nuclear engineering education at its universities. The continued support of the federal government. and industry for university nuclear engineering and nuclear energy research and development is essential to sustain the nuclear infrastructure in the United States. Even with this support, and the continued excellent operation of the existing fleet of nuclear electric power plants, it is conceivable that nuclear engineering as an academic discipline may fall victim to poor communications and a tarnished public image. What is needed is a combination of federal and industrial support along with the creativity of the universities to expand their offerings to include more than power production. The objective is a positive message on careers in nuclear related fields, and recognition of the important role of nuclear energy in meeting the country
International Nuclear Information System (INIS)
Kovar, P.
2004-01-01
The report summarises results of activities of the State Office for Nuclear Safety (SUJB) in the supervision of nuclear safety and radiation protection in the Czech Republic. The first part of the report evaluates nuclear safety of nuclear installations and contains information concerning the results of supervision of radiation protection in 2003 in the Czech Republic. The second part of the report describes new responsibilities of the SUJB in the domain of nuclear, chemical, bacteriological (biological) and toxin weapons ban. (author)
IAEA Completes Nuclear Security Review Mission in United States
International Nuclear Information System (INIS)
2013-01-01
Full text: A team of nuclear security experts led by the International Atomic Energy Agency (IAEA) today completed a mission to review nuclear security practices of civil nuclear facilities licensed by the United States Nuclear Regulatory Commission (NRC). Conducted at the U.S. Government's request, the two-week International Physical Protection Advisory Service (IPPAS) mission reviewed the United States' nuclear security-related legislative and regulatory framework. As part of this work, the IPPAS team, led by John O'Dacre of Canada and comprising nine experts from eight IAEA Member States, met with NRC officials and reviewed the physical protection systems at the Center for Neutron Research (NCNR) at the National Institute of Standards and Technology. The IPPAS team concluded that nuclear security within the U.S. civil nuclear sector is robust and sustainable and has been significantly enhanced in recent years. The team identified a number of good practices in the nation's nuclear security regime and at the NCNR. The IPPAS team also made a recommendation and some suggestions for the continuing improvement of nuclear security overall. The mission in the United States was the 60th IPPAS mission organized by the IAEA. 'Independent international peer reviews such as IAEA IPPAS missions are increasingly being recognized for their value as a key component for exchanges of views and advice on nuclear security measures', said Khammar Mrabit, Director of the IAEA Office of Nuclear Security. 'The good practices identified during this mission will contribute to the continuous improvements of nuclear security in other Member States'. The IPPAS team provided a draft report to the NRC and will submit a final report soon. Because it contains security-related information about a specific nuclear site, IPPAS reports are not made public. 'The IPPAS programme gives us a chance to learn from the experience and perspective of our international partners', said NRC Chairman Allison M
International Nuclear Information System (INIS)
Zhang Guangming; Yu Lu
2000-04-01
The ground-state phase diagram of a half-filled anisotropic Kondo lattice model is calculated within a mean-field theory. For small transverse exchange coupling J perpendicular perpendicular c1 , the ground state shows an antiferromagnetic long-range order with finite staggered magnetizations of both localized spins and conduction electrons. When J perpendicular > J perpendicular c2 , the long-range order is destroyed and the system is in a disordered Kondo singlet state with a hybridization gap. Both ground states can describe the low-temperature phases of Kondo insulating compounds. Between these two distinct phases, there may be a coexistent regime as a result of the balance between local Kondo screening and magnetic interactions. (author)
Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model.
Dai, Yan-Wei; Cho, Sam Young; Batchelor, Murray T; Zhou, Huan-Qiang
2014-06-01
We numerically investigate the two-dimensional q-state quantum Potts model on the infinite square lattice by using the infinite projected entangled-pair state (iPEPS) algorithm. We show that the quantum fidelity, defined as an overlap measurement between an arbitrary reference state and the iPEPS ground state of the system, can detect q-fold degenerate ground states for the Z_{q} broken-symmetry phase. Accordingly, a multiple bifurcation of the quantum ground-state fidelity is shown to occur as the transverse magnetic field varies from the symmetry phase to the broken-symmetry phase, which means that a multiple-bifurcation point corresponds to a critical point. A (dis)continuous behavior of quantum fidelity at phase transition points characterizes a (dis)continuous phase transition. Similar to the characteristic behavior of the quantum fidelity, the magnetizations, as order parameters, obtained from the degenerate ground states exhibit multiple bifurcation at critical points. Each order parameter is also explicitly demonstrated to transform under the Z_{q} subgroup of the symmetry group of the Hamiltonian. We find that the q-state quantum Potts model on the square lattice undergoes a discontinuous (first-order) phase transition for q=3 and q=4 and a continuous phase transition for q=2 (the two-dimensional quantum transverse Ising model).
International Nuclear Information System (INIS)
Murray, R.C.; Tokarz, F.J.
1976-01-01
Analytic studies were made of the adequacy of simulating earthquake effects at the Nevada Test Site for structural testing purposes. It is concluded that underground nuclear explosion ground motion will produce inelastic behavior and damage comparable to that produced by strong earthquakes. The generally longer duration of earthquakes compared with underground nuclear explosions does not appear to significantly affect the structural behavior of the building frames considered. A comparison of maximum ductility ratios, maximum story drifts, and maximum displacement indicate similar structural behavior for both types of ground motion. Low yield (10 - kt) underground nuclear explosions are capable of producing inelastic behavior in large structures. Ground motion produced by underground nuclear explosions can produce inelastic earthquake-like effects in large structures and could be used for testing large structures in the inelastic response regime. The Nevada Test Site is a feasible earthquake simulator for testing large structures
State Office for Nuclear Safety - New Regulatory Body in Croatia
International Nuclear Information System (INIS)
Novosel, N.; Prah, M.; Valcic, I.; Cizmek, A.
2006-01-01
The Act on Nuclear Safety was adopted by the Croatian Parliament on 15 October 2003, and it is published in the Official Gazette No. 173/03. This Act regulates safety and protective measures for using nuclear materials and specified equipment and performing nuclear activities, and establishes the State Office for Nuclear Safety. Provisions of this Act apply on nuclear activities, nuclear materials and specified equipment. Also, by accession to international conventions and agreements, Croatia took the responsibility of implementing the provisions of those international treaties. In the process of European and international integrations, Croatia has to make harmonization with European and international standards also in the field of nuclear safety. The State Office for Nuclear Safety as an independent regulatory authority started its work on 1st June 2005 by taking over responsibility for activities relating to nuclear safety and cooperation with the International Atomic Energy Agency from the Ministry of the Economy, Labour and Entrepreneurship. In this paper responsibilities, organization and projects of the State Office for Nuclear Safety will be presented, with the accent on development of regulations and international cooperation. (author)
Engineering an all-optical route to ultracold molecules in their vibronic ground state
Koch, Christiane P.; Moszynski, Robert
2008-01-01
We propose an improved photoassociation scheme to produce ultracold molecules in their vibronic ground state for the generic case where non-adiabatic effects facilitating transfer to deeply bound levels are absent. Formation of molecules is achieved by short laser pulses in a Raman-like pump-dump process where an additional near-infrared laser field couples the excited state to an auxiliary state. The coupling due to the additional field effectively changes the shape of the excited state pote...
The Nuclear Renaissance in the United States
International Nuclear Information System (INIS)
Buongiorno, Jacopo
2008-01-01
Nuclear power currently provides 20% of the electricity generation in the U.S. and about 16% worldwide. As a carbon-free energy source, nuclear is receiving a lot of attention by industry, lawmakers and environmental groups, as they attempt to resolve the issue of man-made climate change. For the first time in 30 years several U.S. electric utilities have applied for construction and operation licenses of new nuclear power plants. This talk will review the safety, operational and economic record of the existing U.S. commercial reactor fleet, will provide an overview of the reactor designs considered for the new wave of plant construction, and will discuss several research projects being conducted at the Massachusetts Institute of Technology to support the expansion of nuclear power in the U.S. and overseas.
International Nuclear Information System (INIS)
1992-01-01
The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada's responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency's oversight responsibilities: (1) Assure that the health and safety of Nevada's citizens are adequately protected with regard to any federal high-level radioactive waste program within the State; (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987; (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State; (4) Work closely and consult with affected local governments and State agencies; (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository
Mandrà, Salvatore; Zhu, Zheng; Katzgraber, Helmut G
2017-02-17
We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated with a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)NJOPFM1367-263010.1088/1367-2630/11/7/073021]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.
International Nuclear Information System (INIS)
1988-01-01
The United Nuclear Corporation (UNC) site is located approximately 17 miles northeast of Gallup, New Mexico in McKinley County. The site operated as a State-licensed uranium mill facility from June 1977 to May 1982. It includes an ore-processing mill (about 25 acres) and an unlined tailings pond area (about 100 acres). In July 1979, approximately 23 million gallons of tailings and pond water were released to a nearby river as a result of a dam breach in the tailings pond area. The site damage was repaired; however, attention was focused on ground-water contamination resulting from tailings seepage. Nevertheless, the offsite migration of radionuclides and chemical constituents from uranium milling byproduct materials into the ground water, as well as to surface water and air, are still principal threats at the site. The remedial action will address onsite ground water contamination. Source control and onsite surface reclamation will be implemented under the direction of the Nuclear Regulatory Commission and integrated with this ground water operable unit. The primary contaminants of concern affecting the ground water are metals including arsenic, and radioactive substances including radium-226/228 and gross alpha. The selected remedial action for the site is included
Ground state energy and width of 7He from 8Li proton knockout
International Nuclear Information System (INIS)
Denby, D. H.; DeYoung, P. A.; Hall, C. C.; Baumann, T.; Bazin, D.; Spyrou, A.; Breitbach, E.; Howes, R.; Brown, J.; Frank, N.; Gade, A.; Mosby, S. M.; Peters, W. A.; Thoennessen, M.; Hinnefeld, J.; Hoffman, C. R.; Jenson, R. A.; Luther, B.; Olson, C. W.; Schiller, A.
2008-01-01
The ground state energy and width of 7 He has been measured with the Modular Neutron Array (MoNA) and superconducting dipole Sweeper magnet experimental setup at the National Superconducting Cyclotron Laboratory. 7 He was produced by proton knockout from a secondary 8 Li beam. The measured decay energy spectrum is compared to simulations based on Breit-Wigner line shape with an energy-dependent width for the resonant state. The energy of the ground state is found to be 400(10) keV with a full-width at half-maximum of 125( -15 +40 ) keV
International Nuclear Information System (INIS)
Younker, J.L.; Wilson, W.E.; Sinnock, S.
1986-01-01
In support of the US Department of Energy Nevada Nuclear Waste Storage Investigations Project, ground-water travel times were calculated for flow paths in both the saturated and unsaturated zones at Yucca Mountain, a potential site for a high-level radioactive waste repository in southern Nevada. The calculations were made through a combined effort by Science Applications International Corporation, Sandia National Laboratories, and the US Geological Survey. Travel times in the unsaturated zone were estimated by dividing the flow path length by the ground-water velocity, where velocities were obtained by dividing the vertical flux by the effective porosity of the rock types along assumed vertical flow paths. Saturated zone velocities were obtained by dividing the product of the bulk hydraulic conductivity and hydraulic gradient by the effective porosity. Total travel time over an EPA-established 5-km flow path was then calculated to be the sum of the travel times in the two parts of the flow path. Estimates of ground water fluxes and travel times are critical for evaluating the favorability of the Yucca Mountain site because they provide the basis for estimating the potential for radionuclides to reach the accessible environment within certain time limits
Extended random-phase approximation with three-body ground-state correlations
International Nuclear Information System (INIS)
Tohyama, M.; Schuck, P.
2008-01-01
An extended random-phase approximation (ERPA) which contains the effects of ground-state correlations up to a three-body level is applied to an extended Lipkin model which contains an additional particle-scattering term. Three-body correlations in the ground state are necessary to preserve the hermiticity of the Hamiltonian matrix of ERPA. Two approximate forms of ERPA which neglect the three-body correlations are also applied to investigate the importance of three-body correlations. It is found that the ground-state energy is little affected by the inclusion of the three-body correlations. On the contrary, three-body correlations for the excited states can become quite important. (orig.)
Quantum ground state and single-phonon control of a mechanical resonator.
O'Connell, A D; Hofheinz, M; Ansmann, M; Bialczak, Radoslaw C; Lenander, M; Lucero, Erik; Neeley, M; Sank, D; Wang, H; Weides, M; Wenner, J; Martinis, John M; Cleland, A N
2010-04-01
Quantum mechanics provides a highly accurate description of a wide variety of physical systems. However, a demonstration that quantum mechanics applies equally to macroscopic mechanical systems has been a long-standing challenge, hindered by the difficulty of cooling a mechanical mode to its quantum ground state. The temperatures required are typically far below those attainable with standard cryogenic methods, so significant effort has been devoted to developing alternative cooling techniques. Once in the ground state, quantum-limited measurements must then be demonstrated. Here, using conventional cryogenic refrigeration, we show that we can cool a mechanical mode to its quantum ground state by using a microwave-frequency mechanical oscillator-a 'quantum drum'-coupled to a quantum bit, which is used to measure the quantum state of the resonator. We further show that we can controllably create single quantum excitations (phonons) in the resonator, thus taking the first steps to complete quantum control of a mechanical system.
Learning Approach on the Ground State Energy Calculation of Helium Atom
International Nuclear Information System (INIS)
Shah, Syed Naseem Hussain
2010-01-01
This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function.The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.
Probing the 8He ground state via the 8He(p,t)6He reaction
International Nuclear Information System (INIS)
Keeley, N.; Skaza, F.; Lapoux, V.; Alamanos, N.; Auger, F.; Beaumel, D.; Becheva, E.; Blumenfeld, Y.; Delaunay, F.; Drouart, A.; Gillibert, A.; Giot, L.; Kemper, K.W.; Nalpas, L.; Pakou, A.; Pollacco, E.C.; Raabe, R.; Roussel-Chomaz, P.; Rusek, K.; Scarpaci, J.-A.; Sida, J.-L.; Stepantsov, S.; Wolski, R.
2007-01-01
The weakly-bound 8 He nucleus exhibits a neutron halo or thick neutron skin and is generally considered to have an α+4n structure in its ground state, with the four valence neutrons each occupying 1p 3/2 states outside the α core. The 8 He(p,t) 6 He reaction is a sensitive probe of the ground state structure of 8 He, and we present a consistent analysis of new and existing data for this reaction at incident energies of 15.7 and 61.3A MeV, respectively. Our results are incompatible with the usual assumption of a pure (1p 3/2 ) 4 structure and suggest that other configurations such as (1p 3/2 ) 2 (1p 1/2 ) 2 may be present with significant probability in the ground state wave function of 8 He
Energy Technology Data Exchange (ETDEWEB)
Levy, Mel, E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W., E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario (Canada)
2014-05-14
Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.
Nuclear engineering education in the United States: a status report
International Nuclear Information System (INIS)
Miller, D.W.; Spinrad, B.I.
1986-01-01
The executive summary of the White Paper entitled The Revitalization of Nuclear Energy Education in the United States is the major component of this paper. The White Paper was completed under the auspices of the Nuclear Engineering Department Heads Organization (NEDHO). The presentation highlights events and program changes that have occurred in 1985-1986 following publication of the NEDHO White Paper. Many of these events provide optimism for the revitalization of nuclear engineering education
Ground water share in supplying domestic water in Khartoum state
International Nuclear Information System (INIS)
Mohammed, M. E. A.
2010-10-01
In this research study of the sources of groundwater from wells and stations that rely on the national authority for urban water in the state of Khartoum, this study includes three areas, namely the Khartoum area, North Khartoum and Omdurman area. This research evaluate and identify the sources of groundwater from wells and stations and find out the productivity of wells and underground stations. The study period were identified from 2004 to 2008 during this commoners were Alabaralgeoffip Knowledge Production and stations from the water. The methods used in this study was to determine the sources of groundwater from wells and stations in the three areas with the knowledge of the percentage in each year and the total amount of water produced from wells and stations in Khartoum, North Khartoum and Omdurman it is clear from this study that the percentage of productivity in the annual increase to varying degrees in floater from 2004 to 2008 and also clear that the Omdurman area depends on groundwater wells over a maritime area of stations based on stations with more and more consumption of Khartoum and the sea. Also been identified on the tank top and bottom of the tank where the chemical properties and physical properties after the identification of these qualities and characteristics have been identified the quantity and quality of water produced from wells and stations. (Author)
Ground state properties of MnB{sub 4}
Energy Technology Data Exchange (ETDEWEB)
Winter, Jan Lennart; Steinki, Nico; Schulze Grachtrup, Dirk; Menzel, Dirk; Suellow, Stefan [Institut fuer Physik der Kondensierten Materie, TU Braunschweig (Germany); Knappschneider, Arno; Albert, Barbara [Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie, TU Darmstadt (Germany)
2016-07-01
Recently, single crystalline MnB{sub 4} was synthesized for the first time, yielding microscale crystals with dimensions of the order of 200 μm. Based on band structure calculations, it was argued that the material is semiconducting as result of a Peierls distortion. Conversely, in a study of polycrystalline material it was concluded that the material is a weakly ferromagnetic metal. To establish if MnB{sub 4} is a semiconductor we have carried out single crystal four point resistivity measurements. For this purpose a setup for measuring microscale samples was developed and characterized. Qualitatively, we find semiconducting behavior (increasing resistivity for decreasing temperature), although a band gap could not be derived because of a non-linear Arrhenius plot. Our data are consistent with MnB{sub 4} being a pseudogap/small gap material as proposed. A pronounced sample dependence of the transport properties points to the presence of impurity states. For the single crystals no ferromagnetic signatures could be obtained, suggesting an extrinsic cause of it in polycrystalline material.
Stability and related properties of vacua and ground states
International Nuclear Information System (INIS)
Wreszinski, Walter F.; Jaekel, Christian D.
2008-01-01
We consider the formal non-relativistic limit (nrl) of the :φ 4 : s+1 relativistic quantum field theory (rqft), where s is the space dimension. Following the work of R. Jackiw [R. Jackiw, in: A. Ali, P. Hoodbhoy (Eds.), Beg Memorial Volume, World Scientific, Singapore, 1991], we show that, for s = 2 and a given value of the ultraviolet cutoff κ, there are two ways to perform the nrl: (i) fixing the renormalized mass m 2 equal to the bare mass m 0 2 ; (ii) keeping the renormalized mass fixed and different from the bare mass m 0 2 . In the (infinite-volume) two-particle sector the scattering amplitude tends to zero as κ → ∞ in case (i) and, in case (ii), there is a bound state, indicating that the interaction potential is attractive. As a consequence, stability of matter fails for our boson system. We discuss why both alternatives do not reproduce the low-energy behaviour of the full rqft. The singular nature of the nrl is also nicely illustrated for s = 1 by a rigorous stability/instability result of a different nature
Democratic Republic of Congo A Fertile Ground for Instability in the Great Lakes Region States
2017-06-09
ravaged by a brutal armed conflict. In comparison to the three past presidents, Joseph Kabila has managed to restore political stability and calm to much...DEMOCRATIC REPUBLIC OF CONGO-A FERTILE GROUND FOR INSTABILITY IN THE GREAT LAKES REGION STATES A thesis presented to the Faculty of...From - To) AUG 2016 – JUNE 2017 4. TITLE AND SUBTITLE Democratic Republic of Congo-A Fertile Ground for Instability in the Great Lakes Region
Construction of ground-state preserving sparse lattice models for predictive materials simulations
Huang, Wenxuan; Urban, Alexander; Rong, Ziqin; Ding, Zhiwei; Luo, Chuan; Ceder, Gerbrand
2017-08-01
First-principles based cluster expansion models are the dominant approach in ab initio thermodynamics of crystalline mixtures enabling the prediction of phase diagrams and novel ground states. However, despite recent advances, the construction of accurate models still requires a careful and time-consuming manual parameter tuning process for ground-state preservation, since this property is not guaranteed by default. In this paper, we present a systematic and mathematically sound method to obtain cluster expansion models that are guaranteed to preserve the ground states of their reference data. The method builds on the recently introduced compressive sensing paradigm for cluster expansion and employs quadratic programming to impose constraints on the model parameters. The robustness of our methodology is illustrated for two lithium transition metal oxides with relevance for Li-ion battery cathodes, i.e., Li2xFe2(1-x)O2 and Li2xTi2(1-x)O2, for which the construction of cluster expansion models with compressive sensing alone has proven to be challenging. We demonstrate that our method not only guarantees ground-state preservation on the set of reference structures used for the model construction, but also show that out-of-sample ground-state preservation up to relatively large supercell size is achievable through a rapidly converging iterative refinement. This method provides a general tool for building robust, compressed and constrained physical models with predictive power.
Palo Verde Nuclear Generating Station: an example of the state role in regional nuclear projects
International Nuclear Information System (INIS)
Pasternak, A.
1980-10-01
A nuclear power plant siting policy which confines new construction to existing sites will lead to the formation of large regional power centers, each involving many utilities from several states. The Palo Verde Nuclear Project in Arizona has been examined in terms of the role state regulation plays in large regional nuclear projects. State regulatory processes do not reflect the regional nature of large power centers. Decisions and actions by individual state regulatory commissions create risk and uncertainty for all the utility participants in regional projects. A climate and mechanism to encourage and facilitate interstate cooperation are needed to enhance the viability of the confined siting policy and the regional power center concept
Czechoslovak nuclear medicine, development and present state
Energy Technology Data Exchange (ETDEWEB)
Hupka, S [Ustav Klinickej Onkologie, Bratislava (Czechoslovakia)
1981-01-01
The growth is described of nuclear medicine departments and units in Czechoslovakia in the past 25 years of the existence of the Czechoslovak Society for Nuclear Medicine and Radiation Hygiene, the numbers of personnel and their qualifications. While only three nuclear medicine units were involved in the use of radioisotopes for diagnostic and therapeutic purposes in the 1950's, 29 specialized departments and 15 laboratories are now in existence with a staff of 299 medical doctors and other university graduates and 365 technicians and nurses. They operate all possible instruments, from simple detector devices via gamma cameras to computer tomographs. Briefly, the involvement of the Society is described in coordinated research programs, both with institutions in the country and with the other CMEA countries and IAEA.
Modeling of the stress-strain state of the ground mass contaminated with peracetic acid
Directory of Open Access Journals (Sweden)
Levenko Anna
2017-01-01
Full Text Available None of the methods described previously provides a solution to the problem that deals with the SSS evaluation of the ground mass which is under the influence of chemically active substances and, in particular, under the influence of peracetic acid. The stress-strain state of the ground mass contaminated with peracetic acid was estimated. Stresses occurring in the ground mass in the natural state were determined after the entry of acid into it and after the chemical fixation of it with sodium silicate. All the parameters of the stress-strain state of the ground mass were obtained under a number of physical and mechanical conditions. It was determined that following the work on the silicatization of the ground mass contaminated with peracetic acid the quantity of strain decreased by 26.11 to 48.9%. The comparison of the results of stress calculations indicates the stress reduction in the ground mass in 1.8 – 2.6 times after its fixing.
Recent applications of nuclear orientation to solid state physics
International Nuclear Information System (INIS)
Turrell, B.G.
1985-01-01
The author reviews how certain problems in solid state physics have been clarified by low temperature nuclear orientation and nuclear magnetic resonance of oriented nuclei. The advantages of these techniques, a brief survey of recent progress in traditional applications, and new developments are discussed, and, finally, future trends are suggested. (Auth.)
United States nuclear tests, July 1945 through September 1992
Energy Technology Data Exchange (ETDEWEB)
1994-12-01
This document lists chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Several tests conducted during Operation Dominic involved missile launches from Johnston Atoll. Several of these missile launches were aborted, resulting in the destruction of the missile and nuclear device either on the pad or in the air.
International survey on solid state nuclear track detection
International Nuclear Information System (INIS)
Azimi-Garakani, D.; Wernli, C.
1992-04-01
The results of the 1990 international survey on solid state nuclear track detection are presented. The survey was performed in collaboration with the International Nuclear Track Society (INTS). These results include the data on principal investigator(s), collaborator(s), institution, field of application(s), material(s), and method(s) of track observation from 28 countries. (author)
Physics of high spin nuclear states
Energy Technology Data Exchange (ETDEWEB)
Wyss, R [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States); [MSI, Frescativ, Stockholm (Sweden)
1992-08-01
High spin physics is a vast topic addressing the variety of nuclear excitation modes. In the present paper, some general aspects related to recent highlights of nuclear spectroscopy are discussed. The relation between signature splitting and shape changes in the unique parity orbitals is elucidated. The relevance of the Pseudo SU(3) symmetry in the understanding of rotational band structure is addressed. Specific features of rotational bands of intruder configurations are viewed as a probe of the neutron-proton interaction. (author). 36 refs., 5 figs.
Nuclear deterrence in second tier nuclear weapon states: a case study of India
International Nuclear Information System (INIS)
Sethi, Manpreet
2009-12-01
Nuclear deterrence today anchors the national security of all states that possess nuclear weapons. Certain principles or requirements of nuclear deterrence are the same for all such countries. For instance, the ability to threaten with unacceptable damage, or the ability to raise the costs of an action that an adversary might want to take by threatening punishment that would make the act seem meaningless and even regrettable. But must every nuclear nation indulge in an exercise of large-scale warhead accumulation or yield refinements through nuclear testing, or creation of elaborate nuclear war fighting plans in order to claim credible deterrence? Can the practice of deterrence in the second tier states follow a different course? The study examines the manner in which India is engaged in constructing a credible and stable deterrence relationship with two of its nuclear armed adversaries, Pakistan and China with an arsenal much smaller, and command and control structures far simpler than in any of the P-5 nations. Does this difference impact the nature of its nuclear deterrence? In its efforts at creating and sustaining credible nuclear deterrence should India necessarily be expected to follow the same path and rules as those of the P-5? Would it be compelled to build hundreds of warheads and a huge weapons infrastructure? Would a deterrence based on anything less not be credible or stable? The study concludes that even countries with small nuclear arsenals behave no differently from states that possess several thousands of such weapons. The assumption that small nuclear arsenals and rudimentary command and control lend themselves to temptations of easy nuclear use is misplaced. Credible nuclear deterrence between India and Pakistan or India and China would hold on the same bases it has held elsewhere - fear of nuclear destruction, imposition of unacceptable damage, and the ability to rationally calculate and weigh the benefits against the costs of use of nuclear
International Nuclear Information System (INIS)
Ootori, Yasuki; Ishikawa, Hiroyuki; Takeda, Tomoyoshi
2004-01-01
In the JEAG4601-1987 (Japan Electric Association Guide for earthquake resistance design), either the conventional deterministic method or probabilistic method is used for evaluating the stability of ground foundations and surrounding slopes in nuclear power plants. The deterministic method, in which the soil properties of 'mean ± coefficient x standard deviation' is adopted for the calculations, is generally used in the design stage to data. On the other hand, the probabilistic method, in which the soil properties assume to have probabilistic distributions, is stated as a future method. The deterministic method facilitates the evaluation, however, it is necessary to clarify the relationship between the deterministic and probabilistic methods. In order to investigate the relationship, a simple model that can take into account the dynamic effect of structures, and a simplified method for taking the spatial randomness into account are proposed in this study. As a result, it is found that the shear strength of soil is the most important factor for the stability of grounds and slopes, and the probability below the safety factor evaluated with the soil properties of mean - 1.0 x standard deviation' by the deterministic methods of much lower. (author)
Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment
Energy Technology Data Exchange (ETDEWEB)
David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski
2012-07-01
In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.
International Nuclear Information System (INIS)
Tomimatsu, Toru; Shirai, Shota; Hashimoto, Katsushi; Sato, Ken; Hirayama, Yoshiro
2015-01-01
Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs
German nuclear expansion: state, capital, world market
International Nuclear Information System (INIS)
Galvan, C.G.
1988-01-01
This paper intends to discuss the technological development as it happened in Germany or, better, it places in the scene of world market, where it did. In the attention center is the big achievement of pacific use of atomic technology: the nuclear power plants, which the new energy is used in electric generation. (C.M.)
eta-nuclear bound states revisited
Czech Academy of Sciences Publication Activity Database
Friedman, E.; Gal, A.; Mareš, Jiří
2013-01-01
Roč. 725, 4-5 (2013), s. 334-338 ISSN 0370-2693 R&D Projects: GA ČR(CZ) GAP203/12/2126 Institutional support: RVO:61389005 Keywords : meson-baryon interactions * mesons in nuclear matter * Mesic nuclei Subject RIV: BE - Theoretical Physics Impact factor: 6.019, year: 2013
Structural Distortion Stabilizing the Antiferromagnetic and Semiconducting Ground State of BaMn2As2
Directory of Open Access Journals (Sweden)
Ekkehard Krüger
2016-09-01
Full Text Available We report evidence that the experimentally found antiferromagnetic structure as well as the semiconducting ground state of BaMn 2 As 2 are caused by optimally-localized Wannier states of special symmetry existing at the Fermi level of BaMn 2 As 2 . In addition, we find that a (small tetragonal distortion of the crystal is required to stabilize the antiferromagnetic semiconducting state. To our knowledge, this distortion has not yet been established experimentally.
Van der Waals potential and vibrational energy levels of the ground state radon dimer
Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei
2017-08-01
In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10/C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.
Antibonding hole ground state in InAs quantum dot molecules
Energy Technology Data Exchange (ETDEWEB)
Planelles, Josep [Departament de Química Física i Analítica, Universitat Jaume I, E-12080, Castelló (Spain)
2015-01-22
Using four-band k⋅p Hamiltonians, we study how strain and position-dependent effective masses influence hole tunneling in vertically coupled InAs/GaAs quantum dots. Strain reduces the tunneling and hence the critical interdot distance required for the ground state to change from bonding to antibonding. Variable mass has the opposite effect and a rough compensation leaves little affected the critical bonding-to-antibonding ground state crossover. An alternative implementation of the magnetic field in the envelope function Hamiltonian is given which retrieves the experimental denial of possible after growth reversible magnetically induced bonding-to-antibonding ground state transition, predicted by the widely used Luttinger-Kohn Hamiltonian.
Exact ground-state correlation functions of an atomic-molecular Bose–Einstein condensate model
Links, Jon; Shen, Yibing
2018-05-01
We study the ground-state properties of an atomic-molecular Bose–Einstein condensate model through an exact Bethe Ansatz solution. For a certain range of parameter choices, we prove that the ground-state Bethe roots lie on the positive real-axis. We then use a continuum limit approach to obtain a singular integral equation characterising the distribution of these Bethe roots. Solving this equation leads to an analytic expression for the ground-state energy. The form of the expression is consistent with the existence of a line of quantum phase transitions, which has been identified in earlier studies. This line demarcates a molecular phase from a mixed phase. Certain correlation functions, which characterise these phases, are then obtained through the Hellmann–Feynman theorem.
Energy Technology Data Exchange (ETDEWEB)
Ledermüller, Katrin; Schütz, Martin, E-mail: martin.schuetz@chemie.uni-regensburg.de [Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg (Germany)
2014-04-28
A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.
Ledermüller, Katrin; Schütz, Martin
2014-04-28
A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.
International Nuclear Information System (INIS)
Ledermüller, Katrin; Schütz, Martin
2014-01-01
A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest
Optically controlled locking of the nuclear field via coherent dark-state spectroscopy.
Xu, Xiaodong; Yao, Wang; Sun, Bo; Steel, Duncan G; Bracker, Allan S; Gammon, Daniel; Sham, L J
2009-06-25
A single electron or hole spin trapped inside a semiconductor quantum dot forms the foundation for many proposed quantum logic devices. In group III-V materials, the resonance and coherence between two ground states of the single spin are inevitably affected by the lattice nuclear spins through the hyperfine interaction, while the dynamics of the single spin also influence the nuclear environment. Recent efforts have been made to protect the coherence of spins in quantum dots by suppressing the nuclear spin fluctuations. However, coherent control of a single spin in a single dot with simultaneous suppression of the nuclear fluctuations has yet to be achieved. Here we report the suppression of nuclear field fluctuations in a singly charged quantum dot to well below the thermal value, as shown by an enhancement of the single electron spin dephasing time T(2)*, which we measure using coherent dark-state spectroscopy. The suppression of nuclear fluctuations is found to result from a hole-spin assisted dynamic nuclear spin polarization feedback process, where the stable value of the nuclear field is determined only by the laser frequencies at fixed laser powers. This nuclear field locking is further demonstrated in a three-laser measurement, indicating a possible enhancement of the electron spin T(2)* by a factor of several hundred. This is a simple and powerful method of enhancing the electron spin coherence time without use of 'spin echo'-type techniques. We expect that our results will enable the reproducible preparation of the nuclear spin environment for repetitive control and measurement of a single spin with minimal statistical broadening.
International Nuclear Information System (INIS)
Balakrishna, Jayashree; Bondarescu, Ruxandra; Daues, Gregory; Bondarescu, Mihai
2008-01-01
Excited state soliton stars are studied numerically for the first time. The stability of spherically symmetric S-branch excited state oscillatons under radial perturbations is investigated using a 1D code. We find that these stars are inherently unstable either migrating to the ground state or collapsing to black holes. Higher excited state configurations are observed to cascade through intermediate excited states during their migration to the ground state. This is similar to excited state boson stars [J. Balakrishna, E. Seidel, and W.-M. Suen, Phys. Rev. D 58, 104004 (1998).]. Ground state oscillatons are then studied in full 3D numerical relativity. Finding the appropriate gauge condition for the dynamic oscillatons is much more challenging than in the case of boson stars. Different slicing conditions are explored, and a customized gauge condition that approximates polar slicing in spherical symmetry is implemented. Comparisons with 1D results and convergence tests are performed. The behavior of these stars under small axisymmetric perturbations is studied and gravitational waveforms are extracted. We find that the gravitational waves damp out on a short time scale, enabling us to obtain the complete waveform. This work is a starting point for the evolution of real scalar field systems with arbitrary symmetries
Jiménez, Andrea
2014-02-01
We study the unexpected asymptotic behavior of the degeneracy of the first few energy levels in the antiferromagnetic Ising model on triangulations of closed Riemann surfaces. There are strong mathematical and physical reasons to expect that the number of ground states (i.e., degeneracy) of the antiferromagnetic Ising model on the triangulations of a fixed closed Riemann surface is exponential in the number of vertices. In the set of plane triangulations, the degeneracy equals the number of perfect matchings of the geometric duals, and thus it is exponential by a recent result of Chudnovsky and Seymour. From the physics point of view, antiferromagnetic triangulations are geometrically frustrated systems, and in such systems exponential degeneracy is predicted. We present results that contradict these predictions. We prove that for each closed Riemann surface S of positive genus, there are sequences of triangulations of S with exactly one ground state. One possible explanation of this phenomenon is that exponential degeneracy would be found in the excited states with energy close to the ground state energy. However, as our second result, we show the existence of a sequence of triangulations of a closed Riemann surface of genus 10 with exactly one ground state such that the degeneracy of each of the 1st, 2nd, 3rd and 4th excited energy levels belongs to O( n), O( n 2), O( n 3) and O( n 4), respectively.
Stability of the electroweak ground state in the Standard Model and its extensions
International Nuclear Information System (INIS)
Di Luzio, Luca; Isidori, Gino; Ridolfi, Giovanni
2016-01-01
We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.
Stability of the electroweak ground state in the Standard Model and its extensions
Energy Technology Data Exchange (ETDEWEB)
Di Luzio, Luca, E-mail: diluzio@ge.infn.it [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Isidori, Gino [Department of Physics, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy)
2016-02-10
We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.
Stability of the electroweak ground state in the Standard Model and its extensions
Directory of Open Access Journals (Sweden)
Luca Di Luzio
2016-02-01
Full Text Available We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.
Ground State of Bosons in Bose-Fermi Mixture with Spin-Orbit Coupling
Sakamoto, Ryohei; Ono, Yosuke; Hatsuda, Rei; Shiina, Kenta; Arahata, Emiko; Mori, Hiroyuki
2017-07-01
We study an effect of spin-1/2 fermions on the ground state of a Bose system with equal Rashba and Dresselhaus spin-orbit coupling. By using mean-field and tight-binding approximations, we show the ground state phase diagram of the Bose system in the spin-orbit coupled Bose-Fermi mixture and find that the characteristic phase domain, where a spin current of fermions may be induced, can exist even in the presence of a significantly large number of fermions.
Numerical study of the t-J model: Exact ground state and flux phases
International Nuclear Information System (INIS)
Hasegawa, Y.; Poilblanc, D.
1990-01-01
Strongly correlated 2D electrons described by the t-J model are investigated numerically. Exact ground state for one and two holes in a finite cluster with periodic boundary conditions are obtained by using the Lanczos algorithm. The effects of Coulomb repulsion of the holes on the nearest neighbor sites are taken into account. Commensurate flux phases are investigated for the same size of clusters. They are shown to be a good approximation for the ground state specially in the intermediate value of J/t. (author). 21 refs, 3 figs
Numerical study of ground state and low lying excitations of quantum antiferromagnets
International Nuclear Information System (INIS)
Trivedi, N.; Ceperley, D.M.
1989-01-01
The authors have studied, via Green function Monte Carlo (GFMC), the S = 1/2 Heisenberg quantum antiferromagnet in two dimensions on a square lattice. They obtain the ground state energy with only statistical errors E 0 /J = -0.6692(2), the staggered magnetization m † = 0.31(2), and from the long wave length behavior of the structure factor, the spin wave velocity c/c o = 1.14(5). They show that the ground state wave function has long range pair correlations arising from the zero point motion of spin waves
The ground-state phase diagrams of the spin-3/2 Ising model
International Nuclear Information System (INIS)
Canko, Osman; Keskin, Mustafa
2003-01-01
The ground-state spin configurations are obtained for the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic exchange interactions and a single-ion crystal field. The interactions are assumed to be only between nearest-neighbors. The calculated ground-state phase diagrams are presented on diatomic lattices, such as the square, honeycomb and sc lattices, and triangular lattice in the (Δ/z vertical bar J vertical bar ,K/ vertical bar J vertical bar) and (H/z vertical bar J vertical bar, K/ vertical bar J vertical bar) planes
Singlet Ground State Magnetism: III Magnetic Excitons in Antiferromagnetic TbP
DEFF Research Database (Denmark)
Knorr, K.; Loidl, A.; Kjems, Jørgen
1981-01-01
The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined.......The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined....
Ground-state properties of third-row elements with nonlocal density functionals
International Nuclear Information System (INIS)
Bagno, P.; Jepsen, O.; Gunnarsson, O.
1989-01-01
The cohesive energy, the lattice parameter, and the bulk modulus of third-row elements are calculated using the Langreth-Mehl-Hu (LMH), the Perdew-Wang (PW), and the gradient expansion functionals. The PW functional is found to give somewhat better results than the LMH functional and both are found to typically remove half the errors in the local-spin-density (LSD) approximation, while the gradient expansion gives worse results than the local-density approximation. For Fe both the LMH and PW functionals correctly predict a ferromagnetic bcc ground state, while the LSD approximation and the gradient expansion predict a nonmagnetic fcc ground state
Traces of Lorentz symmetry breaking in a hydrogen atom at ground state
Borges, L. H. C.; Barone, F. A.
2016-02-01
Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.
Traces of Lorentz symmetry breaking in a hydrogen atom at ground state
Energy Technology Data Exchange (ETDEWEB)
Borges, L.H.C. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil)
2016-02-15
Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)
Traces of Lorentz symmetry breaking in a hydrogen atom at ground state
International Nuclear Information System (INIS)
Borges, L.H.C.; Barone, F.A.
2016-01-01
Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)
On the ground state of the two-dimensional non-ideal Bose gas
International Nuclear Information System (INIS)
Lozovik, Yu.E.; Yudson, V.I.
1978-01-01
The theory of the ground state of the two-dimensional non-ideal Bose gas is presented. The conditions for the validity of the ladder and the Bogolubov approximations are derived. These conditions ensure the existence of a Bose condensate in the ground state of two-dimensional systems. These conditions are different from the corresponding conditions for the three-dimensional case. The connection between the effective interaction and the two-dimensional scattering amplitude at some characteristic energy kappa 2 /2m (not equal to 0) is obtained (f(kappa = 0) = infinity in the two-dimensional case). (Auth.)
Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb Breakup
Directory of Open Access Journals (Sweden)
Chakraborty S.
2014-03-01
Full Text Available Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s⊗νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al.
Trapping cold ground state argon atoms for sympathetic cooling of molecules
Edmunds, P. D.; Barker, P. F.
2014-01-01
We trap cold, ground-state, argon atoms in a deep optical dipole trap produced by a build-up cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of co-trapped metastable argon atoms using a new type of parametric loss spectroscopy. Using this technique we als...
Unambiguous assignment of the ground state of a nearly degenerate cluster
International Nuclear Information System (INIS)
Gutsev, G. L.; Khanna, S. N.; Jena, P.
2000-01-01
A synergistic approach that combines first-principles theory and electron photodetachment experiment is shown to be able to uniquely identify the ground state of a nearly degenerate cluster in the gas phase. Additionally, this approach can complement the Stern-Gerlach technique in determining the magnetic moment of small clusters unambiguously. The method, applied to a Fe 3 cluster, reveals its ground state to have a magnetic moment of 10μ B --in contrast with earlier predictions. (c) 2000 The American Physical Society
Electron-nuclear magnetic resonance in the inverted state
International Nuclear Information System (INIS)
Ignatchenko, V.A.; Tsifrinovich, V.I.
1975-01-01
The paper considers the susceptibility of the electron-nucleus system of a ferromagnet when nuclear magnetization is inverted with respect to the hyperfine field direction. The inverted state is a situation in which nuclear magnetization is turned through π relative to its equilibrium orientation, whereas electron magnetization is in an equilibrium state with respect to an external magnetic field. The consideration is carried out for a thin plate magnetized in its plane. Amplification of a weak radiofrequency signal can be attained under the fulfilment of an additional inequality relating the interaction frequency with electron and nuclear relaxation parameters. The gain may exceed the gain for an inverted nuclear system in magnetically disordered substances. In the range of strong interaction between the frequencies of ferromagnetic (FMR) and nuclear magnetic (NMR) resonances the electron-nuclear magnetic resonance (ENMR) spectrum possesses a fine structure which is inverse to that obtained for the ENMR spectrum in a normal state. The inverted state ENMR line shape is analysed in detail for the case of so weak HF fields that the relaxation conditions may be regarded as stationary. The initial (linear) stages of a forced transient process arising in an electron-nuclear system under the effect of a strong HF field are briefly analysed
Current state of nuclear fusion research
International Nuclear Information System (INIS)
Naraghi, M.
1985-01-01
During the past quarter century, plasma physics and nuclear fusion research have gone through impressive development. Tokamak, is realized to be the number one candidate for nuclear fusion reactor. Two large experiments, one called Joint European Torus (JET) at Culham, England, and the other JT-60 project in Japan have been completed and have reported preliminary results. In JET an average electron density of 4x10 13 pcls/ cm 3 , ion temperatures of 3Kev and energy confinement of 0.8 sec have been achieved. However, the Zeff has been even equal to 10 which unfortunately is a source of plasma energy loss. JT-60 has not offered any appreciable results yet, however, the objectives and initial tests promise long pulse duration, with very high ion and plasma densities. Both experiments have promised to achieve conditions approaching those needed in a fusion reactor. Other important experiments will be discussed and the role of third world countries will be emphasized. (Author)
The nuclear state - From consensus to conflict
International Nuclear Information System (INIS)
Blowers, A.; Pepper, D.
1987-01-01
This book confirms the view that there is a lack of coherent planning for energy in general and for all the activities associated with nuclear energy in particular, which is common to several Western countries. What planning there is, is generally confined by secretive processes rather than being open to democratic public consultation and involvement. It tends, too, to be restricted to specific siting matters and inquiries, although these should not and cannot be divorced from overall strategy
Nuclear matter and its equation of state
International Nuclear Information System (INIS)
Stock, R.
1985-11-01
We can estimate the nuclear bulk compressibility from the excitation energy of the monopole vibration mode, which represents a density oscillation about rho 0 , of extremely small magnitude (a few percent) only. A description of the monopole excitation energy systematics has been obtained by assuming a parabolic shape about rho 0 for the energy-density relation of cold nuclear matter. This implies a linear pressure response to small density changes inside nuclear matter. It enables one to define a nuclear 'sound' mode and the sound velocity turns out to be vsub(s)proportional0.2 c. All of this could be known only for small excursions from rho 0 as long as we were unable to subject nuclei to extreme stresses. The study of head-on collisions of heavy nuclei at high energy has removed this limitation. In these reactions we are reproducing under laboratory conditions the extremely violent transformations of matter occuring in the cosmic and stellar evolution. From the quark-gluon stage of the Big Bang, prior to hadronic freeze-out, to the supernova these cosmic events require an understanding of matter bulk properties over an enormous range of density, from about 10 times rho 0 down to about 10 -3 rho 0 . We will approach them through the compression-expansion-freeze-out cycle of central nucleus-nucleus collisions in the energy range from 50 MeV per projectile nucleon, corresponding to the compression barrier, upwards to 225 GeV/A (the top energy of the CERN SPS), and further into the TeV/A range by observation of events induced by cosmic ray nuclei. In this article I describe some of the results recently obtained at the BEVALAC, i.e. in the GeV/A domain. (orig./HSI)
Commercial Nuclear Reprocessing in the United States
Energy Technology Data Exchange (ETDEWEB)
Sherrill, Charles Leland [Brigham Young Univ., Provo, UT (United States); Balatsky, Galya Ivanovna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-09-09
The short presentation outline: Reprocessing Overview; Events leading up to Carter’s Policy; Results of the decision; Policy since Nuclear Nonproliferation Act. Conclusions reached: Reprocessing ban has become an easy and visible fix to the public concern about proliferation, but has not completely stopped proliferation; and, Reprocessing needs to become detached from political considerations, so technical research can continue, regardless of the policy decisions we decide to take.
Lightning discrimination by a ground-based nuclear burst detection system
International Nuclear Information System (INIS)
Thornbrough, A.D.
1978-04-01
Sandia Laboratories is developing for the U.S. Army a Ground-Based Nuclear Burst Detection System to provide pertinent information for its field commanders and higher authorities. The equipment must operate in all kinds of weather and produce very low false alarms under all types of conditions. With these requirements, a study of the effects during thunderstorms, which includes thousands of lightning flashes, was conducted. The results of these studies were that, with suitable discrimination, the system had no false alarms during a period of high thunderstorm activity in the Albuquerque area for the time from September 13 to October 3, 1977. Data and plots are included of those false alarms that were recorded before the final discriminants were implemented to provide an inventory of waveshapes for additional analysis
Lightning discrimination by a ground-based nuclear burst detection system
Energy Technology Data Exchange (ETDEWEB)
Thornbrough, A.D.
1978-04-01
Sandia Laboratories is developing for the U.S. Army a Ground-Based Nuclear Burst Detection System to provide pertinent information for its field commanders and higher authorities. The equipment must operate in all kinds of weather and produce very low false alarms under all types of conditions. With these requirements, a study of the effects during thunderstorms, which includes thousands of lightning flashes, was conducted. The results of these studies were that, with suitable discrimination, the system had no false alarms during a period of high thunderstorm activity in the Albuquerque area for the time from September 13 to October 3, 1977. Data and plots are included of those false alarms that were recorded before the final discriminants were implemented to provide an inventory of waveshapes for additional analysis.
Pion production and the nuclear equation of state
International Nuclear Information System (INIS)
Harris, J.W.; Odyniec, G.; Pugh, H.G.
1984-10-01
There has been considerable recent interest in the nuclear equation of state and how it may be determined in relativistic nucleus-nucleus collisions. In these collisions extremely high temperatures are reached and compression to densities several times that of normal nuclear matter are predicted. This affords us the unique opportunity to study, in a somewhat controlled manner, the behavior of nuclear matter under these extreme conditions. If the observables that are measured in experiments can be related in a quantitative way to state variables of the system then the equation of state can be extracted. This relation plays a very important role in understanding the formation and collapse of supernovae and the stability and structure of neutron stars. Furthermore, it can be used to test and constrain field theoretical approaches to nuclear matter and to help to better understand the dynamics of high energy nucleus-nucleus collisions. In this presentation the relationship between the nuclear equation of state and relativistic nucleus-nucleus collisions will be discussed with an emphasis on how to extract the former. That a high density state of the collision should exist will be shown. One observable, namely the pion multiplicity, will be shown to survive the succeeding stages of the collision process to provide information on the equation of state at high densities. The resulting equation of state will be presented and discussed in the light of recent theoretical development. 34 refs., 12 figs
''Super-radiant'' states in intermediate energy nuclear physics
International Nuclear Information System (INIS)
Auerbach, N.
1994-01-01
A ''super-radiant'' state emerges when, under certain conditions, one or a few ''internal'' states acquire a large collective decay width due to the coupling to one or a few ''external'' decay channels. The rest of the internal states are ''stripped'' of their decay width and become long lived quasistationary states. The essentials of such mechanism and its possible role in intermediate energy nuclear physics are discussed in this work
International Nuclear Information System (INIS)
Walck, M.C.
1996-10-01
This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository
Energy Technology Data Exchange (ETDEWEB)
Walck, M.C.
1996-10-01
This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository.
A Rigorous Investigation on the Ground State of the Penson-Kolb Model
Yang, Kai-Hua; Tian, Guang-Shan; Han, Ru-Qi
2003-05-01
By using either numerical calculations or analytical methods, such as the bosonization technique, the ground state of the Penson-Kolb model has been previously studied by several groups. Some physicists argued that, as far as the existence of superconductivity in this model is concerned, it is canonically equivalent to the negative-U Hubbard model. However, others did not agree. In the present paper, we shall investigate this model by an independent and rigorous approach. We show that the ground state of the Penson-Kolb model is nondegenerate and has a nonvanishing overlap with the ground state of the negative-U Hubbard model. Furthermore, we also show that the ground states of both the models have the same good quantum numbers and may have superconducting long-range order at the same momentum q = 0. Our results support the equivalence between these models. The project partially supported by the Special Funds for Major State Basic Research Projects (G20000365) and National Natural Science Foundation of China under Grant No. 10174002
A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates
Energy Technology Data Exchange (ETDEWEB)
Wang, Hanquan, E-mail: hanquan.wang@gmail.com [School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan Province, 650221 (China); Yunnan Tongchang Scientific Computing and Data Mining Research Center, Kunming, Yunnan Province, 650221 (China)
2014-10-01
In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can be computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method.
Reactive ground-state pathways are not ubiquitous in red/green cyanobacteriochromes.
Chang, Che-Wei; Gottlieb, Sean M; Kim, Peter W; Rockwell, Nathan C; Lagarias, J Clark; Larsen, Delmar S
2013-09-26
Recent characterization of the red/green cyanobacteriochrome (CBCR) NpR6012g4 revealed a high quantum yield for its forward photoreaction [J. Am. Chem. Soc. 2012, 134, 130-133] that was ascribed to the activity of hidden, productive ground-state intermediates. The dynamics of the pathways involving these ground-state intermediates was resolved with femtosecond dispersed pump-dump-probe spectroscopy, the first such study reported for any CBCR. To address the ubiquity of such second-chance initiation dynamics (SCID) in CBCRs, we examined the closely related red/green CBCR NpF2164g6 from Nostoc punctiforme. Both NpF2164g6 and NpR6012g4 use phycocyanobilin as the chromophore precursor and exhibit similar excited-state dynamics. However, NpF2164g6 exhibits a lower quantum yield of 32% for the generation of the isomerized Lumi-R primary photoproduct, compared to 40% for NpR6012g4. This difference arises from significantly different ground-state dynamics between the two proteins, with the SCID mechanism deactivated in NpF2164g6. We present an integrated inhomogeneous target model that self-consistently fits the pump-probe and pump-dump-probe signals for both forward and reverse photoreactions in both proteins. This work demonstrates that reactive ground-state intermediates are not ubiquitous phenomena in CBCRs.
A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates
International Nuclear Information System (INIS)
Wang, Hanquan
2014-01-01
In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can be computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method
Energies of the ground state and first excited 0 sup + state in an exactly solvable pairing model
Dinh Dang, N
2003-01-01
Several approximations are tested by calculating the ground-state energy and the energy of the first excited 0 sup + state using an exactly solvable model with two symmetric levels interacting via a pairing force. They are the BCS approximation (BCS), Lipkin-Nogami (LN) method, random-phase approximation (RPA), quasiparticle RPA (QRPA), the renormalized RPA (RRPA), and renormalized QRPA (RQRPA). It is shown that, in the strong-coupling regime, the QRPA which neglects the scattering term of the model Hamiltonian offers the best fit to the exact solutions. A recipe is proposed using the RRPA and RQRPA in combination with the pairing gap given by the LN method. Applying this recipe, it is shown that the superfluid-normal phase transition is avoided, and a reasonably good description for both of the ground-state energy and the energy of the first excited 0 sup + state is achieved. (orig.)
Effect of earthquake and tsunami. Ground motion and tsunami observed at nuclear power station
International Nuclear Information System (INIS)
Hijikata, Katsuichirou
2012-01-01
Fukushima Daiichi and Daini Nuclear Power Stations (NPSs) were struck by the earthquake off the pacific coast in the Tohoku District, which occurred at 14:46 on March 11, 2011. Afterwards, tsunamis struck the Tohoku District. In terms of the earthquake observed at the Fukushima NPSs, the acceleration response spectra of the earthquake movement observed on the basic board of reactor buildings exceeded the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss for partial periodic bands at the Fukushima Daiichi NPS. As for the Fukushima Daini NPS, the acceleration response spectra of the earthquake movement observed on the basic board of the reactor buildings was below the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss. Areas inundated by Tsunami at each NPS were investigated and tsunami inversion analysis was made to build tsunami source model to reproduce tide record, tsunami height, crustal movement and inundated area, based on tsunami observation records in the wide areas from Hokkaido to Chiba prefectures. Tsunami heights of Fukushima Daiichi and Daini NPSs were recalculated as O.P. +13m and +9m respectively and tsunami peak height difference was attributed to the extent of superposition of tsunami waves of tsunami earthquake type of wave source in the area along interplane trench off the coast in the Fukushima prefecture and interplane earthquake type of wave source in rather deep interplate area off the coast in the Miyagi prefecture. (T. Tanaka)
Assessment of erecting nuclear power plants below ground in an open building pit
International Nuclear Information System (INIS)
Kroeger, W.; Altes, J.; Bongartz, R.; David, P.H.; Escherich, K.H.; Kasper, K.; Koschmieder, D.; Roethig, K.D.; Schwarzer, K.; Wolters, J.
1978-01-01
The technical feasibility, costs and safety potential of siting a nuclear power plant below ground level have been assessed. The reference plant was a 1,300 MWsub(e) PWR and the siting was based on a 'cut-and-cover' design in soil. The 'cut-and-cover' design enhances the safety potential of the site both with regard to extreme internal accidents and to external impacts inclusive of hostile attack. The measures required to 'harden' the site against these extreme conditions do not cancel each other. The realization of the safety potential is strongly dependent on the reliability of the closure equipment on routes to the atmosphere. These closures represent the remaining vulnerable feature of the design, as all other release paths are through soil which prevents any immediate danger to the public. The concepts considered include partial or complete lowering of the reactor. The thickness of the coverage depends on the degree of protection required and is typically between 8 and 13 m. The essential systems of the above-ground design are unchanged and therefore prior experience and existing designs can be applied. The concepts appear to be technically feasible including, in particular, the large pits and the additional closures; the technical difficulties, however, should not be underestimated. The depth of lowering does not determine the gain in safety because a well designed coverage can act as natural soil. Partial lowering, in fact, appears to be the more economic method. According to the degree of protection and the variations of design, the concepts would cost between 8 and 14% more than the capital cost of an equivalent above-ground plant. The construction time would be extended by 1.4 years for the concepts investigated. (orig./HP) [de
From ground state to fission fragments: A complex, multi-dimensional multi-path problem
International Nuclear Information System (INIS)
Moeller, P.; Nix, J.R.; Swiatecki, W.J.
1992-01-01
Experimental results on the fission properties of nuclei close to 264 Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus 258 Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic-energy distribution peaked at about 235 MeV whereas 256 Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic-energy distribution peaked at about 200 MeV. Qualitatively, these sudden changes have been postulated to be due to the emergence of fragment shells in symmetric-fission products close to 132 Sn. Here we present a quantitative calculation that shows where high-kinetic-energy symmetric fusion occurs and why it is associated with a sudden and large decrease in fission half-lives. We base our study on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. We use the three-quadratic-surface parameterization to generate the shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. Since these shapes are thought to correspond to the scission shapes for the high-kinetic-energy events it is of crucial importance that a continuous sequence of shapes leading from the nuclear ground state to these configurations can be studied within the framework of the model. We present the results of the calculations in terms of potential-energy surfaces and fission half-lives for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. They clearly show the appearance of a second fission valley, which leads to scission configurations close to tow touching spheres, for fissioning systems in the vicinity of 264 Fm
Rayleigh approximation to ground state of the Bose and Coulomb glasses
Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.
2015-01-01
Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties. PMID:25592417
Nuclear engineering education in the United States
International Nuclear Information System (INIS)
Williamson, T.G.
1982-01-01
The critical issue facing the nuclear engineering education community today is first and foremost enrollment in a time of increasing demand for graduate engineers. Related to the issue of enrollment is support for graduate students, whether it be fellowships, traineeships, or research assistantships. Other issues are those of maintaining a vital faculty in the face of competitive job market, of maintaining research facilities and developing new ones, and last and certainly not least that of determining the directions of our educational efforts in the future. These issues are examined in the paper. (author)
State of controlled nuclear fusion research
International Nuclear Information System (INIS)
Rodrigo, A.B.
1978-04-01
The development of a commercial fusion reactor requires an adequate solution to the problems of heating and confinement of the nuclear fuel, as well as a considerable effort in materials technology and reactor engineering. A general discussion is presented of the status of the research connected with the most advanced concepts, indicating in each case the present situation and the main problems that must be solved to meet the requeriments estimated for power reactors. In particular, the laser-inertial concept is reviewed in detail. (author) [es
State-federal interactions in nuclear regulation
Energy Technology Data Exchange (ETDEWEB)
Pasternak, A.D.; Budnitz, R.J.
1987-12-01
The Atomic Energy Act of 1954 established, and later Congressional amendments have confirmed, that except in areas which have been explicitly granted to the states, the federal government possesses preemptive authority to regulate radiation hazards associated with the development and use of atomic energy. Since the passage of the original Act, numerous decisions by the courts have reaffirmed the legitimacy of federal preemption, and have defined and redefined its scope. In this study, the aim is to explore the underlying issues involved in federal preemption of radiation-hazard regulation, and to recommend actions that the Department of Energy and other agencies and groups should consider undertaking in the near term to protect the preemption principle. Appropriate roles of the states are discussed, as well as recent state-level activities and their rationale, and several current arenas in which state-federal conflicts about regulation of hazards are being played out. The emphasis here is on four particular arenas that are now important arenas of conflict, but the issues discussed are far broader in scope. These four arenas are: state-level moratorium activity; emergency planning for reactors; conflicts arising from state financial regulation; and inroads in federal preemption through litigation under state law.
State-federal interactions in nuclear regulation
International Nuclear Information System (INIS)
Pasternak, A.D.; Budnitz, R.J.
1987-12-01
The Atomic Energy Act of 1954 established, and later Congressional amendments have confirmed, that except in areas which have been explicitly granted to the states, the federal government possesses preemptive authority to regulate radiation hazards associated with the development and use of atomic energy. Since the passage of the original Act, numerous decisions by the courts have reaffirmed the legitimacy of federal preemption, and have defined and redefined its scope. In this study, the aim is to explore the underlying issues involved in federal preemption of radiation-hazard regulation, and to recommend actions that the Department of Energy and other agencies and groups should consider undertaking in the near term to protect the preemption principle. Appropriate roles of the states are discussed, as well as recent state-level activities and their rationale, and several current arenas in which state-federal conflicts about regulation of hazards are being played out. The emphasis here is on four particular arenas that are now important arenas of conflict, but the issues discussed are far broader in scope. These four arenas are: state-level moratorium activity; emergency planning for reactors; conflicts arising from state financial regulation; and inroads in federal preemption through litigation under state law
Status of nuclear desalination in IAEA member states
International Nuclear Information System (INIS)
2007-01-01
Some of the IAEA Member States have active nuclear desalination programmes and, during the last few years, substantial overall progress has been made in this field. As part of the ongoing activities within the IAEA's nuclear power programme, it was thus decided to prepare a status report, which would briefly describe the recent nuclear seawater desalination related developments and relevant IAEA activities. This status report briefly covers salient aspects of the new generation reactors and a few innovative reactors being considered for desalination and other non-electrical applications, the recent advances in the commonly employed desalination processes and their coupling to nuclear reactors. A summary of techno-economic feasibility studies carried out in interested Member States has been presented and the potable water cost reduction strategies from nuclear desalination plants have been discussed. The socio-economic and environmental benefits of nuclear power driven desalination plants have been elaborated. It is expected that the concise information provided in this report would be useful to the decision makers in the Member States and would incite them to consider or to accelerate the deployment of nuclear desalination projects in their respective countries
In-beam study of the rotational states in actinides after alpha-induced nuclear reactions
International Nuclear Information System (INIS)
Hardt, K.
1983-01-01
In the experiments described in this thesis the ground state rotational bands of a whole series of actinide isotopes has been studied by means of α-induced nuclear reactions. The rotational bands studied in the even isotopes could be identified up to a spin of about 16 (h/2π). With this data it was now possible to establish a broad systematic of the rotational energies up to relatively high angular momenta. Also in the odd isotopes 233 U and 239 Pu it was possible to follow the ground state rotational bands up to higher spins and to compare them with predictions of the rotational model. By means of the (α,α'2n) reaction the nuclei 230 Th and especially 228 Th could by populated. (orig./HSI) [de
The estimate of ecological risk for ground ecosystems in case of nuclear power plant failures
International Nuclear Information System (INIS)
Kremlenkov, D.Y.; Kremlenkov, M.Y.
2003-01-01
Full text: The stochastic nature of radiation damage generates a need of forecasting information about possible consequences for environment and people. In this article it is given the estimate of probable damage to forest-and agricultural ecosystems from radionuclide emergency pollution in case of nuclear plant failures (for early emergency period). This estimate is based on radio-ecological risk conception which provide with the application of radioactive substances distribution models in atmosphere, as were calculation of absorbent radiation dose in critical ecosystem groups-calculation of probable area of lost ecosystems has been done by using the program written in Pascal. The quantitative estimate of environmental loss has been conducted for diverse classes of atmospheric stability. The value of ecological dose range (ELD) to coniferous forest is 30 Gy, deciduous forest - 300 Gy, agricultural crop - 60 Gy. The value of minimum ecological dose range (MELD) for all ecosystems is 10 Gy. In dose spread from MELD to ELD the ecological damage is proportional to absorbed dose. The ecological damage to ground ecosystems caused by cesium-137 and strontium-90 emergency pollution is primarily depended on the scale of radionuclide emergency pollution as well as weather conditions and radio-stability of critical vegetal ecosystem groups. On the assumption of a dose spread from MELD to ELD, ecological risk defined in probable ecosystem's destruction area is estimated: for cesium-137 pollution about 2 % of coniferous forest and from 4 to 9 % of deciduous forest; for strontium-90 pollution from 2 to 4 % of agricultural crop. As the scale of cesium-137 emergency pollution rise from 10 4 to 10 5 Cu the probable damage determined in ecosystem's destruction area increase 12-19 times to coniferous forest ecosystem and 15-36 times to deciduous forest according to weather conditions. The probable damage to coniferous and deciduous forest rise 11-17 times in proportion as the scale
Electron-impact excitation and ionization cross sections for ground state and excited helium atoms
International Nuclear Information System (INIS)
Ralchenko, Yu.; Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de
2008-01-01
Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n≤4 are treated individually, while the states with n≥5 are considered degenerate. For the processes involving transitions to and from n≥5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form
Mandal, Sudhansu S.; Mukherjee, Sutirtha; Ray, Koushik
2018-03-01
A method for determining the ground state of a planar interacting many-electron system in a magnetic field perpendicular to the plane is described. The ground state wave-function is expressed as a linear combination of a set of basis functions. Given only the flux and the number of electrons describing an incompressible state, we use the combinatorics of partitioning the flux among the electrons to derive the basis wave-functions as linear combinations of Schur polynomials. The procedure ensures that the basis wave-functions form representations of the angular momentum algebra. We exemplify the method by deriving the basis functions for the 5/2 quantum Hall state with a few particles. We find that one of the basis functions is precisely the Moore-Read Pfaffian wave function.
The nuclear renaissance in the United States
International Nuclear Information System (INIS)
Simard, R.
1999-01-01
This document is not a true report but a succession of transparencies listing the main titles of subjects that have been developed in oral form at the international topical meeting: TopFuel'99. The different subjects developed during the lecture were: -why a renaissance? -how is the market place changing? -how is nuclear generation changing? -growing awareness of clean air contributions -what has changed for the existing U.S. plants -what has changed for future U.S. plants. A plot is given presenting the capacity factor (in %) for the operating and the all plants for the years 1980 to 1998. A chart presenting the costs (including the 1994-1996 production costs + estimated capital + general and administrative costs) in cents/kWh per plant is given. It shows how the plants are positioned relative to an assumed market clearing price of 2.0-3.0 cents/kWh. A few plants would be competitive at market clearing prices below 2.0 cents/kWh, a few would not be competitive even in a 3.0 cent/kWh market. The majority of U.S. nuclear power plants would be competitive if markets clear between 2.0 cents and 3.0 cents/kWh. (O.M.)
International Nuclear Information System (INIS)
Nakatsuji, H.
1979-01-01
The SAC and SAC CI theories are formulated for actual calculations of singlet ground states and their excited states of arbitrary spin multiplicity. Approximations are considered for the variational methods since time-consuming terms are involved. The results of test calculations for singlet states have shown, with much smaller numbers of variables (sizes of the matrices involved), excellent agreement with the full CI and close-to-full CI results. This shows the utility of the SAC theory for ground states and especially of the SAC CI theory for excited states, since the slow convergence of the CI theory is much more critical for excited states than for ground states. (Auth.)
Ground state properties of exotic nuclei in deformed medium mass region
International Nuclear Information System (INIS)
Manju; Chatterjee, R.; Singh, Jagjit; Shubhchintak
2017-01-01
The dipole moment, size of the nucleus and other ground state properties of deformed nuclei 37 Mg and 31 Ne are presented. Furthermore with this deformed wave function the electric dipole strength distribution for deformed nuclei 37 Mg and 31 Ne is calculated. This will allow us to investigate the two dimensional scaling phenomenon with two parameters: quadrupole deformation and separation energy
Some fundamental properties of the ground state of atoms and molecules
International Nuclear Information System (INIS)
Lieb, E.H.
1986-01-01
This paper studies the ground states of atoms and molecules in quantum mechanics and reports on some mathematically rigourous results pertaining to the matter. The non-relativistic Hamiltonian for a molecule in the static nucleus approximation is presented along with notations
Search for 12 C+ 12 C clustering in 24 Mg ground state
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 88; Issue 2. Search for 12C+12C clustering in 24Mg ground state. B N JOSHI ARUN K JAIN D C BISWAS B V JOHN Y K GUPTA L S DANU R P VIND G K PRAJAPATI S MUKHOPADHYAY A SAXENA. Regular Volume 88 Issue 2 February 2017 Article ID 29 ...
Lower bounds for the ground states of He-isoelectronic series
International Nuclear Information System (INIS)
Fraga, Serafin
1981-01-01
A formulation, based on the concept of null local kinetic energy regions, has been developed for the determination of lower bounds for the ground state of a two-electron atom. Numerical results, obtained from Hartree-Fock functions, are presented for the elements He through Kr of the two-electron series
Ground states and formal duality relations in the Gaussian core model
Cohn, H.; Kumar, A.; Schürmann, A.
2009-01-01
We study dimensional trends in ground states for soft-matter systems. Specifically, using a high-dimensional version of Parrinello-Rahman dynamics, we investigate the behavior of the Gaussian core model in up to eight dimensions. The results include unexpected geometric structures, with surprising
Experimental Insights into Ground-State Selection of Quantum XY Pyrochlores
Hallas, Alannah M.; Gaudet, Jonathan; Gaulin, Bruce D.
2018-03-01
Extensive experimental investigations of the magnetic structures and excitations in the XY pyrochlores have been carried out over the past decade. Three families of XY pyrochlores have emerged: Yb2B2O7, Er2B2O7, and, most recently, [Formula: see text]Co2F7. In each case, the magnetic cation (either Yb, Er, or Co) exhibits XY anisotropy within the local pyrochlore coordinates, a consequence of crystal field effects. Materials in these families display rich phase behavior and are candidates for exotic ground states, such as quantum spin ice, and exotic ground-state selection via order-by-disorder mechanisms. In this review, we present an experimental summary of the ground-state properties of the XY pyrochlores, including evidence that they are strongly influenced by phase competition. We empirically demonstrate the signatures for phase competition in a frustrated magnet: multiple heat capacity anomalies, suppressed TN or TC, sample- and pressure-dependent ground states, and unconventional spin dynamics.
On the topological ground state of E-infinity spacetime and the super string connection
International Nuclear Information System (INIS)
El Naschie, M.S.
2007-01-01
There are at present a huge number of valid super string ground states, making the one corresponding to our own universe extremely hard to determine. Therefore it may come as quite a surprise that it is a rather simple undertaking to determine the exact topological ground state of E-infinity Cantorian spacetime theory. Similar to the ground state of the Higgs for E-infinity, the expectation value of the topological ground state is non-zero and negative. Its value is given exactly by -bar o -∼ n(1/φ) n =-(4+φ 3 ) where φ=(5-1)/2 and n represents an integer Menger-Uhryson dimension running from n=0 to n=-∼. Recalling that the average dimension of ε (∼) is given by ∼ =4+φ 3 , one could interpret this result as saying that our E-infinity spacetime may be viewed as an in itself closed manifold given by the remarkable equation: + =zeroThus in a manner of speaking, the universe could have spontaneously tunnelled into existence from virtual nothingness
Search for 12 C+ 12 C clustering in 24 Mg ground state
Indian Academy of Sciences (India)
In the backdrop of many models, the heavy cluster structure of the ground state of 24 Mg has been probed experimentally for the first time using the heavy cluster knockout reaction 24 Mg( 12 C, 212 C) 12 C in thequasifree scattering kinematic domain. In the ( 12 C, 212 C) reaction, the direct 12 C-knockout cross-section was ...
Ground state properties of the bond alternating spin-1/2 anisotropic Heisenberg chain
Directory of Open Access Journals (Sweden)
S. Paul
2017-06-01
Full Text Available Ground state properties, dispersion relations and scaling behaviour of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain have been studied where the exchange interactions on alternate bonds are ferromagnetic (FM and antiferromagnetic (AFM in two separate cases. The resulting models separately represent nearest neighbour (NN AFM-AFM and AFM-FM bond alternating chains. Ground state energy has been estimated analytically by using both bond operator and Jordan-Wigner representations and numerically by using exact diagonalization. Dispersion relations, spin gap and several ground state orders have been obtained. Dimer order and string orders are found to coexist in the ground state. Spin gap is found to develop as soon as the non-uniformity in alternating bond strength is introduced in the AFM-AFM chain which further remains non-zero for the AFM-FM chain. This spin gap along with the string orders attribute to the Haldane phase. The Haldane phase is found to exist in most of the anisotropic region similar to the isotropic point.
Magnetostriction-driven ground-state stabilization in 2H perovskites
International Nuclear Information System (INIS)
Porter, D. G.; Senn, M. S.; University of Oxford; Khalyavin, D. D.; Cortese, A.
2016-01-01
In this paper, the magnetic ground state of Sr_3ARuO_6, with A =(Li,Na), is studied using neutron diffraction, resonant x-ray scattering, and laboratory characterization measurements of high-quality crystals. Combining these results allows us to observe the onset of long-range magnetic order and distinguish the symmetrically allowed magnetic models, identifying in-plane antiferromagnetic moments and a small ferromagnetic component along the c axis. While the existence of magnetic domains masks the particular in-plane direction of the moments, it has been possible to elucidate the ground state using symmetry considerations. We find that due to the lack of local anisotropy, antisymmetric exchange interactions control the magnetic order, first through structural distortions that couple to in-plane antiferromagnetic moments and second through a high-order magnetoelastic coupling that lifts the degeneracy of the in-plane moments. Finally, the symmetry considerations used to rationalize the magnetic ground state are very general and will apply to many systems in this family, such as Ca_3ARuO_6, with A = (Li,Na), and Ca_3LiOsO_6 whose magnetic ground states are still not completely understood.
Patterns of the ground states in the presence of random interactions : Nucleon systems
Zhao, YM; Arima, A; Shimizu, N; Ogawa, K; Yoshinaga, N; Scholten, O
We present our results on properties of ground states for nucleonic systems in the presence of random two-body interactions. In particular, we calculate probability distributions for parity, seniority, spectroscopic (i.e., in the laboratory frame) quadrupole moments, and discuss a clustering in the
Quantum double-well chain: Ground-state phases and applications to hydrogen-bonded materials
International Nuclear Information System (INIS)
Wang, X.; Campbell, D.K.; Gubernatis, J.E.
1994-01-01
Extrapolating the results of hybrid quantum Monte Carlo simulations to the zero temperature and infinite-chain-length limits, we calculate the ground-state phase diagram of a system of quantum particles on a chain of harmonically coupled, symmetric, quartic double-well potentials. We show that the ground state of this quantum chain depends on two parameters, formed from the ratios of the three natural energy scales in the problem. As a function of these two parameters, the quantum ground state can exhibit either broken symmetry, in which the expectation values of the particle's coordinate are all nonzero (as would be the case for a classical chain), or restored symmetry, in which the expectation values of the particle's coordinate are all zero (as would be the case for a single quantum particle). In addition to the phase diagram as a function of these two parameters, we calculate the ground-state energy, an order parameter related to the average position of the particle, and the susceptibility associated with this order parameter. Further, we present an approximate analytic estimate of the phase diagram and discuss possible physical applications of our results, emphasizing the behavior of hydrogen halides under pressure
Ground state structures and properties of Si3Hn (n= 1–6) clusters
Indian Academy of Sciences (India)
The ground state structures and properties of Si3H (1 ≤ ≤ 6) clusters have been calculated using Car–Parrinello molecular dynamics with simulated annealing and steepest descent optimization methods. We have studied cohesive energy per particle and first excited electronic level gap of the clusters as a function of ...
Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state
Sun, Zhe; Huang, Kuo-Wei; Wu, Jishan
2011-01-01
A soluble and stable heptazethrene derivative was synthesized and characterized for the first time. This molecule exhibits a singlet biradical character in the ground state, which is the first case among zethrene homologue series. Exceptional stability of this heptazethrenebis(dicarboximide) raises the likelihood of its practical applications in materials science. © 2011 American Chemical Society.
Long-range interactions of excited He atoms with ground-state noble-gas atoms
Zhang, J.-Y.; Qian, Ying; Schwingenschlö gl, Udo; Yan, Z.-C.
2013-01-01
The dispersion coefficients C6, C8, and C10 for long-range interactions of He(n1,3S) and He(n1,3P), 2≤n≤10, with the ground-state noble-gas atoms Ne, Ar, Kr, and Xe are calculated by summing over the reduced matrix elements of multipole transition
A nonlinear programming approach to lower bounds for the ground-state energy of helium
International Nuclear Information System (INIS)
Porras, I.; Feldmann, D.M.; King, F.W.
1999-01-01
Lower-bound estimates for the ground-state energy of the helium atom are determined using nonlinear programming techniques. Optimized lower bounds are determined for single-particle, radially correlated, and general correlated wave functions. The local nature of the method employed makes it a very severe test of the accuracy of the wave function
Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state
Sun, Zhe
2011-08-10
A soluble and stable heptazethrene derivative was synthesized and characterized for the first time. This molecule exhibits a singlet biradical character in the ground state, which is the first case among zethrene homologue series. Exceptional stability of this heptazethrenebis(dicarboximide) raises the likelihood of its practical applications in materials science. © 2011 American Chemical Society.
Rabi Oscillations between Ground and Rydberg States with Dipole-Dipole Atomic Interactions
International Nuclear Information System (INIS)
Johnson, T. A.; Urban, E.; Henage, T.; Isenhower, L.; Yavuz, D. D.; Walker, T. G.; Saffman, M.
2008-01-01
We demonstrate Rabi oscillations of small numbers of 87 Rb atoms between ground and Rydberg states with n≤43. Coherent population oscillations are observed for single atoms, while the presence of two or more atoms decoheres the oscillations. We show that these observations are consistent with van der Waals interactions of Rydberg atoms
Ground-state energy of an exciton-(LO) phonon system in a parabolic quantum well
Gerlach, B.; Wüsthoff, J.; Smondyrev, M. A.
1999-12-01
This paper presents a variational study of the ground-state energy of an exciton-(LO) phonon system, which is spatially confined to a quantum well. The exciton-phonon interaction is of Fröhlich type, the confinement potentials are assumed to be parabolic functions of the coordinates. Making use of functional integral techniques, the phonon part of the problem can be eliminated exactly, leading us to an effective two-particle system, which has the same spectral properties as the original one. Subsequently, Jensen's inequality is applied to obtain an upper bound on the ground-state energy. The main intention of this paper is to analyze the influence of the quantum-well-induced localization of the exciton on its ground-state energy (or its binding energy, respectively). To do so, we neglect any mismatch of the masses or the dielectric constants, but admit an arbitrary strength of the confinement potentials. Our approach allows for a smooth interpolation of the ultimate limits of vanishing and infinite confinement, corresponding to the cases of a free three-dimensional and a free two-dimensional exciton-phonon system. The interpolation formula for the ground-state energy bound corresponds to similar formulas for the free polaron or the free exciton-phonon system. These bounds in turn are known to compare favorably with all previous ones, which we are aware of.
The magnetic structure on the ground state of the equilateral triangular spin tube
International Nuclear Information System (INIS)
Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko
2016-01-01
The ground state of the frustrated equilateral triangular spin tube CsCrF_4 is still hidden behind a veil though NMR spectrum broaden into 2 T at low temperature. In order to investigate the spin structure in an ordered state by "1"9F-NMR, we have determined the anisotropic hyperfine coupling tensors for each three fluorine sites in the paramagnetic state. The measurement field was raised up to 10 T to achieve highest resolution. The preliminary analysis using the obtained hyperfine tensors has shown that the archetypal 120°-type structure in ab-plane does not accord with the NMR spectra of ordered state.
Global optimization of proteins using a dynamical lattice model: Ground states and energy landscapes
Dressel, F.; Kobe, S.
2004-01-01
A simple approach is proposed to investigate the protein structure. Using a low complexity model, a simple pairwise interaction and the concept of global optimization, we are able to calculate ground states of proteins, which are in agreement with experimental data. All possible model structures of small proteins are available below a certain energy threshold. The exact lowenergy landscapes for the trp cage protein (1L2Y) is presented showing the connectivity of all states and energy barriers.
Czech Academy of Sciences Publication Activity Database
Vackář, Jiří; Šipr, Ondřej; Šimůnek, Antonín
2008-01-01
Roč. 77, č. 4 (2008), 045112/1-045112/6 ISSN 1098-0121 R&D Projects: GA AV ČR IAA100100514; GA AV ČR(CZ) IAA100100637 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : core levels * ab-initio calculations * electronic states * ground state properties Subject RIV: BE - Theoretical Physics Impact factor: 3.322, year: 2008
Contribution of Rostechnadzor in Implementing the State Nuclear Safety Policy
International Nuclear Information System (INIS)
Ferapontov, A.
2016-01-01
The report considers major areas of Rostechnadzor activities on implementation of the state policy in the area of nuclear safety, including actions to be implemented. Ensuring nuclear and radiation safety in the use of atomic energy is one of the most important components of the national security of the Russian Federation. On March 1, 2012, the President of the Russian Federation approved the Basics of State Policy in the Area of Nuclear and Radiation Safety aimed at consistent reduction of risks associated with man-made impact on the public and the environment in using atomic energy, as well as at prevention of emergencies and accidents in nuclear and radiation hazardous facilities. Rostechnadzor is an authorized body for state safety regulation in the use of atomic energy, which implements functions of regulatory and legal control, licensing of various types of activity and federal state supervision of the atomic energy facilities. The activity in the area of regulatory and legal control is implemented in compliance with the Concept of Enhancement of Regulatory and Legal Control of Safety and Standardization in the Area of the Use of Atomic Energy and the Plan of Implementation of this Concept, which envisages the completion of reviewing the regulatory and legal documents by 2023. Corresponding to the Basics of State Policy in the Area of Nuclear and Radiation Safety of the Russian Federation for the Period of 2025, Rostechnadzor successfully implemented the actions of the Federal Target Programme of Nuclear and Radiation Safety up to 2015, creating all conditions for phased reduction of the amounts of nuclear legacy and ensuring radical increase in their level of nuclear and radiation safety. In 2016, Rostechnadzor embarked on implementation of the Federal Target Programme of Nuclear and Radiation Safety up to 2030, with creation of infrastructure facilities for spent fuel and radioactive waste management and definitive response to the challenges of nuclear
Nuclear winter: The state of the science
International Nuclear Information System (INIS)
Carrier, G.F.
1986-01-01
From this discussion an the studies on which it is based, the authors find unavoidable the following three-part conclusion: 1. The uncertainties that pervade the quantitative assessment of the atmospheric effects of a major nuclear exchange are so numerous and so large that no definitive description of those effects is possible at this time. Nevertheless: 2. The model calculations that can be made suggest temperature changes of a size that could have very severe consequences. This possibility cannot and must not be ignored. Therefore: 3. It is incumbent on agencies having resources that can be allocated to such matters and on appropriate members of the scientific and technological community to support and conduct investigations that can narrow many of the uncertainties. Only in this way can we approach a posture from which a more definitive assessment can be made
Report of the State of Nevada Commission on Nuclear Projects
International Nuclear Information System (INIS)
1988-11-01
Chapter One of the report presents a brief overview of the commission's functions and statutory charges. It also contains a summary of developments which have affected the overall nuclear waste disposal issue since the last Commission report was published. This chapter summarizes the Nuclear Waste Policy Amendments Act of 1987 (NWPAA), which significantly modified federal waste disposal policy and identified Nevada's Yucca Mountain as the only site to be evaluated for suitability as a nuclear waste repository. Chapter Two contains a synthesis of Commission activities and reports on the findings of the Commission relative to the geotechnical, environmental, socioeconomic, transportation, intergovernmental and legal aspects of federal and state nuclear waste program efforts. Chapter Three of the report presents recommendations which the Commission is making to the 1989 Nevada Legislature, the governor, and others concerned with matters surrounding the proposed high-level nuclear waste repository at Yucca Mountain and with repository-related activities, such as the transportation of radioactive materials
Report of the State of Nevada Commission on Nuclear Projects
International Nuclear Information System (INIS)
1990-12-01
This third biennial Report of the Nevada Commission on Nuclear Projects has been prepared in fulfillment of the requirements of NRS 459.0092, which stipulates that the Commission shall report to the Governor and Legislature on any matter relating to radioactive waste disposal the Commission deems appropriate and advise and make recommendations on the policy of the State concerning nuclear waste disposal projects. Chapter One of the Report presents a brief overview of the Commission's functions and statutory charges. It also contains a summary of developments which have affected the overall nuclear waste disposl issue since the last Commission Report was published in November, 1988. Chapter Two contains a synthesis of Commission activities and reports on the findings of the Commission relative to the geotechnical, environmental, socioeconomic, transportation, intergovernmental and legal aspects of federal and State nuclear waste program efforts
Examination of State-Level Nuclear Security Evaluation Methods
International Nuclear Information System (INIS)
Kim, Chan Kim; Yim, Man-Sung
2015-01-01
An effective global system for nuclear materials security needs to cover all materials, employing international standards and best practices, to reduce risks by reducing weapons-usable nuclear material stocks and the number of locations where they are found. Such a system must also encourage states to accept peer reviews by outside experts in order to demonstrate that effective security is in place. It is thus critically important to perform state-level evaluation of nuclear security based on an integrative framework of risk assessment. Such evaluation provides a basis of measuring the level and progress of international effort to secure and control all nuclear materials. sensitivity test by differentiating weight factors of each of the indicators and categories will be performed in the future as well
Preparation of Act on State Surveillance of Nuclear Safety of Nuclear Installations
International Nuclear Information System (INIS)
Kyncl, J.
1983-01-01
The Czechoslovak Government Decree no. 179 of June 1982 approved the principles underlying the first Czechoslovak legal norm to complexly resolve the problem of State surveillance of nuclear safety of nuclear installations. In the introduction the law will define the concept of nuclear safety of nuclear installations and will justify the reasons for which it has to be assured. The individual parts of the law will deal with the establishment of State surveillance of nuclear safety, the tasks of the Czechoslovak Atomic Energy Commission in this area, the control activity of Commission personnel, the measures taken against responsible organizations and personnel for failing to observe their duties, the obligations of bodies and organizations, and the cooperation between inspection bodies. (A.K.)
Half-lives of ground and isomeric states in {sup 97}Cd and the astrophysical origin of {sup 96}Ru
Energy Technology Data Exchange (ETDEWEB)
Lorusso, G., E-mail: lorusso@ribf.riken.j [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Becerril, A.; Amthor, A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Baumann, T.; Bazin, D. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Berryman, J.S. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Brown, B.A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Cyburt, R.H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Crawford, H.L. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States)
2011-05-09
First experimental evidence for a high-spin isomer (25/2{sup +}) in {sup 97}Cd, a waiting point in the astrophysical rapid proton capture process, is presented. The data were obtained in {beta}-decay studies at NSCL using the new RF Fragment Separator system and detecting {beta}-delayed protons and {beta}-delayed {gamma} rays. Decays from ground and isomeric states were disentangled, and proton emission branches were determined for the first time. We find half-lives of 1.10(8) s and 3.8(2) s, and {beta}-delayed proton emission branches of 12(2)% and 25(4)% were deduced for the ground and isomeric states, respectively. With these results, the nuclear data needed to determine an rp-process contribution to the unknown origin of solar {sup 96}Ru are in place. When the new data are included in astrophysical rp-process calculations, one finds that an rp-process origin of {sup 96}Ru is unlikely.
One-group constant libraries for nuclear equilibrium state
Energy Technology Data Exchange (ETDEWEB)
Mizutani, Akihiko; Sekimoto, Hiroshi [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors
1997-03-01
One-group constant libraries for the nuclear equilibrium state were generated for both liquid sodium cooled MOX fuel type fast reactor and PWR type thermal reactor with Equilibrium Cell Iterative Calculation System (ECICS) using JENDL-3.2, -3, -2 and ENDF/B-VI nuclear data libraries. ECICS produced one-group constant sets for 129 heavy metal nuclides and 1238 fission products. (author)
Distinction of nuclear spin states with the scanning tunneling microscope.
Natterer, Fabian Donat; Patthey, François; Brune, Harald
2013-10-25
We demonstrate rotational excitation spectroscopy with the scanning tunneling microscope for physisorbed H(2) and its isotopes HD and D(2). The observed excitation energies are very close to the gas phase values and show the expected scaling with the moment of inertia. Since these energies are characteristic for the molecular nuclear spin states we are able to identify the para and ortho species of hydrogen and deuterium, respectively. We thereby demonstrate nuclear spin sensitivity with unprecedented spatial resolution.
Intervention of states in supplementary compensation for nuclear accidents
International Nuclear Information System (INIS)
Melchior, T.
1993-01-01
This paper describes the role played by the States in providing public funds for compensation under a civil liability regime. The main part gives an outline of some of the problems relating to joint intervention by Contracting States. Discussed is inter alia the geographical scope, the question of a global or a regional approach, the position of non nuclear States and the amounts and their revision
Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.
Fahrenbach, Albert C; Bruns, Carson J; Li, Hao; Trabolsi, Ali; Coskun, Ali; Stoddart, J Fraser
2014-02-18
The ability to design and confer control over the kinetics of theprocesses involved in the mechanisms of artificial molecular machines is at the heart of the challenge to create ones that can carry out useful work on their environment, just as Nature is wont to do. As one of the more promising forerunners of prototypical artificial molecular machines, chemists have developed bistable redox-active donor-acceptor mechanically interlocked molecules (MIMs) over the past couple of decades. These bistable MIMs generally come in the form of [2]rotaxanes, molecular compounds that constitute a ring mechanically interlocked around a dumbbell-shaped component, or [2]catenanes, which are composed of two mechanically interlocked rings. As a result of their interlocked nature, bistable MIMs possess the inherent propensity to express controllable intramolecular, large-amplitude, and reversible motions in response to redox stimuli. In this Account, we rationalize the kinetic behavior in the ground state for a large assortment of these types of bistable MIMs, including both rotaxanes and catenanes. These structures have proven useful in a variety of applications ranging from drug delivery to molecular electronic devices. These bistable donor-acceptor MIMs can switch between two different isomeric states. The favored isomer, known as the ground-state co-conformation (GSCC) is in equilibrium with the less favored metastable state co-conformation (MSCC). The forward (kf) and backward (kb) rate constants associated with this ground-state equilibrium are intimately connected to each other through the ground-state distribution constant, KGS. Knowing the rate constants that govern the kinetics and bring about the equilibration between the MSCC and GSCC, allows researchers to understand the operation of these bistable MIMs in a device setting and apply them toward the construction of artificial molecular machines. The three biggest influences on the ground-state rate constants arise from
Nuclear accidents. Three mile Island (United States)
International Nuclear Information System (INIS)
Duco, J.
2004-01-01
This paper describes the accident of Three Miles Island power plant which occurred the 28 march 1979 in the United States. The accident scenario, the consequences and the reactor core and vessel, after the accident, are analyzed. (A.L.B.)
Nuclear power reactor licensing and regulation in the United States
International Nuclear Information System (INIS)
Shapar, H.K.
1979-01-01
The report is devoted to four subjects: an explanation of the origins, statutory basis and development of the present regulatory system in the United States; a description of the various actions which must be taken by a license applicant and by the Nuclear Regulatory Commission before a nuclear power plant can be constructed and placed on-line, an account of the current regulatory practices followed by the US NRC in licensing nuclear power reactors; an identification of some of the 'lessons learned' from the Three Mile Island accident and some proposed regulatory and legislative solutions. (NEA) [fr
Nuclear power plant decommissioning: state-of-the-art review
International Nuclear Information System (INIS)
Williams, D.H.
1984-01-01
A brief orientation to the state-of-the-art of nuclear power plant decommissioning discusses the related areas of experience, tools and techniques, and planning. There have been 68 nuclear reactor decommissionings to date, including 9 power plants, some of which were mothballed. The picture suggests that the term art may be misapplied since decommissioning is now more of a mature commercial industrial than a research and development endeavor. It also suggests that the nuclear industry has shown foresight by preparing for it before a crisis situation developed. Some of this has already influenced operators of coal power plants, especially where hazardous materials may be involved. 33 references, 1 table
Ground state shape and crossing of near spherical and deformed bands in 182Hg
International Nuclear Information System (INIS)
Ma, W.C.; Ramayya, A.V.; Hamilton, J.H.; Robinson, S.J.; Barclay, M.E.; Zhao, K.; Cole, J.D.; Zganjar, E.F.; Spejewski, E.H.
1983-01-01
The energy levels of 182 Hg have been identified for the first time through comparison of in-beam studies of the reactions 156 154 Gd( 32 S,4n) 184 182 Hg. Levels up to 12 + in 182 Hg were established from γ-γ coincidence and singles measurement. The data establish that the ground state shape is near spherical, and that the ground band is crossed by a well deformed band at 4 + . In contrast to IBA model predictions that the deformed band will rise in energy in 182 Hg compared to 184 Hg, the energies of the deformed levels in 182 Hg continue to drop. 7 references
Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico
International Nuclear Information System (INIS)
Villalba, L.; Colmenero Sujo, L.; Montero Cabrera, M.E.; Cano Jimenez, A.; Renteria Villalobos, M.; Delgado Mendoza, C.J.; Jurado Tenorio, L.A.; Davila Rangel, I.; Herrera Peraza, E.F.
2005-01-01
This paper reports 222 Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited 222 Rn concentrations exceeding 11 Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of 222 Rn found may be entirely attributed to the nature of aquifer rocks
Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico
Energy Technology Data Exchange (ETDEWEB)
Villalba, L. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Colmenero Sujo, L. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Instituto Tecnologico de Chihuahua II, Ave. de las Industrias 11101, Chihuahua, Chih. (Mexico); Montero Cabrera, M.E. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico)]. E-mail: elena.montero@cimav.edu.mx; Cano Jimenez, A. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Renteria Villalobos, M. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Delgado Mendoza, C.J. [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Ciudad Universitaria S/N, Chihuahua, Chih. (Mexico); Jurado Tenorio, L.A. [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Ciudad Universitaria S/N, Chihuahua, Chih. (Mexico); Davila Rangel, I. [Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 20, Zacatecas, Zac. (Mexico); Herrera Peraza, E.F. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico)
2005-07-01
This paper reports {sup 222}Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited {sup 222}Rn concentrations exceeding 11 Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of {sup 222}Rn found may be entirely attributed to the nature of aquifer rocks.
Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico.
Villalba, L; Colmenero Sujo, L; Montero Cabrera, M E; Cano Jiménez, A; Rentería Villalobos, M; Delgado Mendoza, C J; Jurado Tenorio, L A; Dávila Rangel, I; Herrera Peraza, E F
2005-01-01
This paper reports (222)Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited (222)Rn concentrations exceeding 11Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of (222)Rn found may be entirely attributed to the nature of aquifer rocks.
Nuclear energy policy in the United States 1990–2010: A federal or state responsibility?
International Nuclear Information System (INIS)
Heffron, Raphael J.
2013-01-01
This paper examines from a policy perspective nuclear energy policy in the United States (US) from 1990 to 2010 and questions whether it is or has become a Federal or State responsibility. The present study, as befits policy research, engages with many disciplines (for example, in particular, law and politics) and hence the contributions move beyond that of nuclear energy policy literature and in particular to that on nuclear new build and other assessments of large infrastructure projects. Several examples at the Federal level are identified that demonstrate that the nuclear industry has evolved to a stage where it requires a focus on the power of actions at a more localised (state) level in order to re-ignite the industry. The research concludes that there remains a misunderstanding of the issue of project management for complex construction projects, and it is highly arguable whether many of its issues have been resolved. Further, the research asserts that the economics of nuclear energy are not the most influential reason for no nuclear new build in the US. -- Highlights: •Examines the US nuclear energy sector, 1990–2010. •Nuclear industry has evolved to a stage where an individual state is the key driver. •Misunderstanding of the project management and public administration. •Potential of the power of more localised (state) actions to re-ignite the industry
Theory of Nonlinear Dispersive Waves and Selection of the Ground State
International Nuclear Information System (INIS)
Soffer, A.; Weinstein, M.I.
2005-01-01
A theory of time-dependent nonlinear dispersive equations of the Schroedinger or Gross-Pitaevskii and Hartree type is developed. The short, intermediate and large time behavior is found, by deriving nonlinear master equations (NLME), governing the evolution of the mode powers, and by a novel multitime scale analysis of these equations. The scattering theory is developed and coherent resonance phenomena and associated lifetimes are derived. Applications include Bose-Einstein condensate large time dynamics and nonlinear optical systems. The theory reveals a nonlinear transition phenomenon, 'selection of the ground state', and NLME predicts the decay of excited state, with half its energy transferred to the ground state and half to radiation modes. Our results predict the recent experimental observations of Mandelik et al. in nonlinear optical waveguides
Magnetic ground and remanent states of synthetic metamagnets with perpendicular anisotropy
International Nuclear Information System (INIS)
Kiselev, N S; Roessler, U K; Bogdanov, A N; Hellwig, O
2011-01-01
In this work, we summarize our theoretical results within a phenomenological micromagnetic approach for magnetic ground state and nonequilibrium states as topological magnetic defects in multilayers with strong perpendicular anisotropy and antiferromagnetic (AF) interlayer exchange coupling (IEC), e.g. [Co/Pt(Pd)]/Ru(Ir, NiO). We give detailed analysis of our model together with the most representative results which elucidate common features of such systems. We discuss phase diagrams of the magnetic ground state, and compare solutions of our model with experimental data. A model to assess the stability of so-called tiger tail patterns is presented. It is found that these modulated topological defect cannot be stabilized by an interplay between magnetostatic and IEC energies only. It is argued that tiger tail patterns arise as nuclei of ferro-stripe structure in AF domain walls and that they are stabilized by domain wall pinning.
The ground state energy of 3He droplet in the LOCV framework
International Nuclear Information System (INIS)
Modarres, M.; Motahari, S.; Rajabi, A.
2012-01-01
The (extended) lowest order constrained variational method was used to calculate the ground state energy of liquid helium 3 ( 3 He) droplets at zero temperature. Different types of density distribution profiles, such as the Gaussian, the Quasi-Gaussian and the Woods-Saxon were used. It was shown that at least, on average, near 20 3 He atoms are needed to get the bound state for 3 He liquid droplet. Depending on the choice of the density profiles and the atomic radius of 3 He, the above estimate can increase to 300. Our calculated ground state energy and the number of atoms in liquid 3 He droplet were compared with those of Variational Monte Carlo method, Diffusion Monte Carlo method and Density Functional Theory, for which a reasonable agreement was found.
Non-Gaussian ground-state deformations near a black-hole singularity
Hofmann, Stefan; Schneider, Marc
2017-03-01
The singularity theorem by Hawking and Penrose qualifies Schwarzschild black holes as geodesic incomplete space-times. Albeit this is a mathematically rigorous statement, it requires an operational framework that allows us to probe the spacelike singularity via a measurement process. Any such framework necessarily has to be based on quantum theory. As a consequence, the notion of classical completeness needs to be adapted to situations where the only adequate description is in terms of quantum fields in dynamical space-times. It is shown that Schwarzschild black holes turn out to be complete when probed by self-interacting quantum fields in the ground state and in excited states. The measure for populating quantum fields on hypersurfaces in the vicinity of the black-hole singularity goes to zero towards the singularity. This statement is robust under non-Gaussian deformations of and excitations relative to the ground state. The physical relevance of different completeness concepts for black holes is discussed.
2D XXZ model ground state properties using an analytic Lanczos expansion
International Nuclear Information System (INIS)
Witte, N.S.; Hollenberg, L.C.L.; Weihong Zheng
1997-01-01
A formalism was developed for calculating arbitrary expectation values for any extensive lattice Hamiltonian system using a new analytic Lanczos expansion, or plaquette expansion, and a recently proved exact theorem for ground state energies. The ground state energy, staggered magnetisation and the excited state gap of the 2D anisotropic antiferromagnetic Heisenberg Model are then calculated using this expansion for a range of anisotropy parameters and compared to other moment based techniques, such as the t-expansion, and spin-wave theory and series expansion methods. It was found that far from the isotropic point all moment methods give essentially very similar results, but near the isotopic point the plaquette expansion is generally better than the others. 20 refs., 6 tabs
Hylleraas-Configuration Interaction study of the 1S ground state of the negative Li ion.
Sims, James S
2017-12-28
In a previous work Sims and Hagstrom [J. Chem. Phys. 140, 224312 (2014)] reported Hylleraas-Configuration Interaction (Hy-CI) method variational calculations for the neutral atom and positive ion 1 S ground states of the beryllium isoelectronic sequence. The Li - ion, nominally the first member of this series, has a decidedly different electronic structure. This paper reports the results of a large, comparable calculation for the Li - ground state to explore how well the Hy-CI method can represent the more diffuse L shell of Li - which is representative of the Be(2sns) excited states as well. The best non-relativistic energy obtained was -7.500 776 596 hartree, indicating that 10 - 20 nh accuracy is attainable in Hy-CI and that convergence of the r 12 r 34 double cusp is fast and that this correlation type can be accurately represented within the Hy-CI model.
Influence of mass-asymmetry and ground state spin on fission fragment angular distributions
International Nuclear Information System (INIS)
Thomas, R.G.; Biswas, D.C.; Saxena, A.; Pant, L.M.; Nayak, B.K.; Vind, R.P.; Sahu, P.K.; Sinha, Shrabani; Choudhury, R.K.
2001-01-01
The strong influence of the target or/and projectile ground state spin on the anomalously large anisotropies of fission fragments produced in the heavy-ion induced fission of actinide targets were reported earlier. Interestingly, all those systems studied were having a mass asymmetry greater than the Businaro-Gallone critical asymmetry and hence the presence of pre-equilibrium fission was unambiguously ruled out. The observed anisotropies were successfully explained using the ECD-K-States model. It is of interest to know the influence of the target/projectile ground state spin on systems having an entrance channel mass asymmetry less than the critical value where pre-equilibrium fission cannot be ignored. With this motivation we performed measurements of fission fragment angular distributions of the 16 O+ 235 U (spin=7/2) system
Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy
Lievens, P; Rajabali, M M; Krieger, A R
By combining high-resolution laser spectroscopy with $\\beta$-NMR spectroscopy on polarized K-beams we aim to establish the ground-state spins and magnetic moments of the neutron-rich $^{48,49,50,51}$K isotopes from N=29 to N=32. Spins and magnetic moments of the odd-K isotopes up to N=28 reveal an inversion of the ground-state, from the normal $\\,{I}$=3/2 ($\\pi{d}_{3/2}^{-1}$) in $^{41-45}$K$\\to\\,{I}$=1/2 ($\\pi{s}_{1/2}^{-1}$) in $^{47}$K. This inversion of the proton single particle levels is related to the strong proton $d_{3/2}$ - neutron $f_{7/2}$ interaction which lowers the energy of the $\\pi{d}_{3/2}$ single particle state when filling the $\
International Nuclear Information System (INIS)
Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad; Aghamohammadi, Amir
2011-01-01
A complete classification is given for one-dimensional chains with nearest-neighbor interactions having two states in each site, for which a matrix product ground state exists. The Hamiltonians and their corresponding matrix product ground states are explicitly obtained.
Normal ground state of dense relativistic matter in a magnetic field
International Nuclear Information System (INIS)
Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.
2011-01-01
The properties of the ground state of relativistic matter in a magnetic field are examined within the framework of a Nambu-Jona-Lasinio model. The main emphasis of this study is the normal ground state, which is realized at sufficiently high temperatures and/or sufficiently large chemical potentials. In contrast to the vacuum state, which is characterized by the magnetic catalysis of chiral symmetry breaking, the normal state is accompanied by the dynamical generation of the chiral shift parameter Δ. In the chiral limit, the value of Δ determines a relative shift of the longitudinal momenta (along the direction of the magnetic field) in the dispersion relations of opposite chirality fermions. We argue that the chirality remains a good approximate quantum number even for massive fermions in the vicinity of the Fermi surface and, therefore, the chiral shift is expected to play an important role in many types of cold dense relativistic matter, relevant for applications in compact stars. The qualitative implications of the revealed structure of the normal ground state on the physics of protoneutron stars are discussed. A noticeable feature of the Δ parameter is that it is insensitive to temperature when T 0 , where μ 0 is the chemical potential, and increases with temperature for T>μ 0 . The latter implies that the chiral shift parameter is also generated in the regime relevant for heavy ion collisions.
Aaron, Jean-Jacques; Diabou Gaye, Mame; Párkányi, Cyril; Cho, Nam Sook; Von Szentpály, László
1987-01-01
The ground-state dipole moments of seven biologically important purines (purine, 6-chloropurine, 6-mercaptopurine, hypoxanthine, theobromine, theophylline and caffeine) were determined at 25°C in acetic acid (all the above compounds with the exception of purine) and in ethyl acetate (purine, theophylline and caffeine). Because of its low solubility, it was not possible to measure the dipole moment of uric acid. The first excited singlet-state dipole moments were obtained on the basis of the Bakhshiev and Chamma—Viallet equations using the variation of the Stokes shift with the solvent dielectric constant-refractive index term. The theoretical dipole moments for all the purines listed above and including uric acid were calculated by combining the use of the PPP (π-LCI-SCF-MO) method for the π-contribution to the overall dipole moment with the σ-contribution obtained as a vector sum of the σbond moments and group moments. The experimental and theoretical values were compared with the data available in the literature for some of the purines under study. For several purines, the calculations were carried out for different tautomeric forms. Excited singlet-state dipole moments are smaller than the ground-state values by 0.8 to 2.2 Debye units for all purines under study with the exception of 6-chloropurine. The effects of the structure upon the ground- and excited-state dipole moments of the purines are discussed.
Ground state properties of a spin chain within Heisenberg model with a single lacking spin site
International Nuclear Information System (INIS)
Mebrouki, M.
2011-01-01
The ground state and first excited state energies of an antiferromagnetic spin-1/2 chain with and without a single lacking spin site are computed using exact diagonalization method, within the Heisenberg model. In order to keep both parts of a spin chain with a lacking site connected, next nearest neighbors interactions are then introduced. Also, the Density Matrix Renormalization Group (DMRG) method is used, to investigate ground state energies of large system sizes; which permits us to inquire about the effect of large system sizes on energies. Other quantum quantities such as fidelity and correlation functions are also studied and compared in both cases. - Research highlights: → In this paper we compute ground state and first excited state energies of a spin chain with and without a lacking spin site. The next nearest neighbors are introduced with the antiferromagnetic Heisenberg spin-half. → Exact diagonalization is used for small systems, where DMRG method is used to compute energies for large systems. Other quantities like quantum fidelity and correlation are also computed. → Results are presented in figures with comments. → E 0 /N is computed in a function of N for several values of J 2 and for both systems. First excited energies are also investigated.
Incentive regulation of nuclear power plants by state regulators
International Nuclear Information System (INIS)
Martin, R.L.; Baker, K.; Olson, J.
1991-02-01
The Nuclear Regulatory Commission (NRC) monitors incentive programs established by state regulators in order to obtain current information and to consider the potential safety effects of the incentive programs as applied to nuclear units. The current report is an update of NUREG/CR-5509, Incentive Regulation of Nuclear Power Plants by State Public Utility Commissions, published in December 1989. The information in this report was obtained from interviews conducted with each state regulator and each utility with a minimum entitlement of 10%. The agreements, orders, and settlements from which each incentive program was implemented were reviewed as required. The interviews and supporting documentation form the basis for the individual state reports describing the structure and financial impact of each incentive program. The programs currently in effect represent the adoption of an existing nuclear performance incentive program proposal and one new program. In addition, since 1989 a number of nuclear units have been included in one existing program; while one program was discontinued and another one concluded. 6 refs., 27 tabs
Nuclear structure investigations with inclusion of continuum states
International Nuclear Information System (INIS)
Rotter, I.
1983-09-01
The influence of the continuum on the properties of discrete nuclear states is reviewed. It is described on the basis of a continuum shell model. The coupling of the discrete states to the continuum results in an additional term to the Hamiltonian, commonly used in the study of nuclear structure, and an additional term to the wavefunction of the discrete state. These additional terms characterise finite nuclei in contrast to nuclear matter. They result in some symmetry violation of the residual nuclear interaction such as charge symmetry violation, and describe the nuclear surface, respectively. The energies and widths of resonance states result from the complex eigenvalues of the Hamiltonian. The partial widths are shown to be factorisable into a spectroscopic factor and into a penetration factor if the spectroscopic factor is large. An expression for the S-matrix is derived in which instead of the so-called resonance parameters, functions appear which are calculated in the framework of the model. The line shape of resonances is also influenced by these functions. As an extreme case, a resonance may have the appearance of a cusp. The conclusions drawn are supported by the results of numerical calculations performed in the continuum shell model for light nuclei with realistic shell model wavefunctions. (author)
International Nuclear Information System (INIS)
Crow, N.B.
1976-01-01
Abnormal levels of radionuclides had not been detected in ground water at the Nevada Test Site beyond the immediate vicinity of underground nuclear explosions until April 1974, when above-background tritium activity levels were detected in ground-water inflow from the tuff beneath Yucca Flat to an emplacement chamber being mined in hole U2aw in the east-central part of Area 2. No other radionuclides were detected in a sample of water from the chamber. In comparison with the amount of tritium estimated to be present in the ground water in nearby nuclear chimneys, the activity level at U2aw is very low. To put the tritium activity levels at U2aw into proper perspective, the maximum tritium activity level observed was significantly less than the maximum permissible concentration (MPC) for a restricted area, though from mid-April 1974 until the emplacement chamber was expended in September 1974, the tritium activity exceeded the MPC for the general public. Above-background tritium activity was also detected in ground water from the adjacent exploratory hole, Ue2aw. The nearest underground nuclear explosion detonated beneath the water table, believed to be the source of the tritium observed, is Commodore (U2am), located 465 m southeast of the emplacement chamber in U2aw. Commodore was detonated in May 1967. In May 1975, tritium activity May significantly higher than regional background. was detected in ground water from hole Ue2ar, 980 m south of the emplacement chamber in U2aw and 361 m from a second underground nuclear explosion, Agile (U2v), also detonated below the water table, in February 1967. This paper describes these occurrences of tritium in the ground water. A mechanism to account for the movement of tritium is postulated
International Nuclear Information System (INIS)
1999-05-01
The legislative basis of the authority of the State Office for Nuclear Safety as the Czech national regulatory body is outlined, its organizational scheme is presented, and the responsibilities of the various departments are highlighted. The operation of major Czech nuclear facilities, including the Dukovany NPP which is in operation and the Temelin NPP which is under construction, is described with respect to nuclear safety. Since the Office's responsibilities also cover radiation protection in the Czech Republic, a survey of ionizing radiation sources and their supervision is given. Other topics include, among other things, nuclear material transport, the state system for nuclear materials accountancy and control, central registries for radiation protection, nuclear waste management, the National Radiation Monitoring Network, personnel qualification and training, emergency planning, legislative activities, international cooperation, and public information. (P.A.)
Ground-state candidate for the classical dipolar kagome Ising antiferromagnet
Chioar, I. A.; Rougemaille, N.; Canals, B.
2016-06-01
We have investigated the low-temperature thermodynamic properties of the classical dipolar kagome Ising antiferromagnet using Monte Carlo simulations, in the quest for the ground-state manifold. In spite of the limitations of a single-spin-flip approach, we managed to identify certain ordering patterns in the low-temperature regime and we propose a candidate for this unknown state. This configuration presents some intriguing features and is fully compatible with the extrapolations of the at-equilibrium thermodynamic behavior sampled so far, making it a very likely choice for the dipolar long-range ordered state of the classical kagome Ising antiferromagnet.
Public acceptance of nuclear power generation in the United States
International Nuclear Information System (INIS)
Liverman, J.L.; Thorne, R.D.
1977-01-01
Within the United States environmental awareness has spread and matured since the early 1960's. Evidence of this is found in cautious attitudes toward the installation of nuclear power reactors and other components of the nuclear fuel cycle. Hazards associated with nuclear energy technologies appear to attract a greater share of public attention than the hazards of nonnuclear counterparts. The association of nuclear power with nuclear weapons may be at the root of this concern. The explicit identification of increased incidences of cancer and genetic effects in humans as potential consequences of exposure to ionizing radiation and knowledge that radiation exposures and health consequences arising from nuclear power operations might occur many generations after operations cease also underlie this concern. Based in large part on these concerns, a number of actions have been taken in the United States to prevent and to delay installation and development of nuclear technology. These actions are reviewed and analyzed with emphasis on the 1976 California nuclear moratorium referendum and other more recent actions at state and national levels. They are compared with the status and outcome of similar actions in other nations as is possible. Additionally, ERDA's current approaches to public involvement in the decision making process is discussed, including the value of comprehensive analyses of health, environmental, and socioeconomic aspects of alternative energy sources in responding to public needs. U.S. plans for providing such analyses for all installed and developing energy technologies are presented with special reference to areas which require international cooperation for implementation. The value of international analysis and internationally accepted environmental control strategies for all energy technologies is also addressed
Changing Perceptions of Nuclear Power in The United States
International Nuclear Information System (INIS)
Taylor, John
1989-01-01
Although many new nuclear power plants have been brought on line in that time, resulting in a capacity of 110 plants with operating permits and another twelve in the last stages of completion, all of these plants were authorized before 1978. The fundamental reason for this moratorium in new orders was the precipitous reduction in electricity demand, arising from the OPEC embargo and Iran revolution, which created excess electric capacity throughout the United States. In fact, many nuclear and coal plants were cancelled to minimize the over capacity problem and no large base load generating units have been ordered of any kind in the past decade. So the 'moratorium' is not really unique to nuclear power. Progress, coupled with increased awareness that nuclear power is one of the keys to solving atmospheric environmental problems, will swing political and public acceptance back to being favorable. Successful progress in these matters will be of benefit to public acceptance around the world and, conversely, serious technical difficulties, particularly entailing any major incident with a nuclear power plants anywhere in the world, will adversely affect the improvement in political and public acceptance in the United States. It is vitally important, therefore, that we continue to further enhance international cooperation in nuclear power. We are pleased the Korea Electric power Corporation and the Korea Advanced Energy Research Institute are participating in EPRI development programs, and hope that cooperation will increase in the future. We're most encouraged by the formation of the World Association of Nuclear Operators, which will be initiated in Moscow next month. The nuclear electric utilities and their governments around the world, the International Atomic Energy Agency, and the Nuclear Energy Agency of OECD should be commended for their initiative in international cooperation
Cardiovascular nuclear medicine: state of the art
International Nuclear Information System (INIS)
Milcinski, M.
1994-01-01
Evaluation of myocardial function: first pass studies can be obtained at time of almost every investigation. Assessment of myocardial function is improved using short living isotopes and repeated stress studies as well as gated tomographic imaging and technetium perfusion agents. Nonimaging probes have limited value in continuous monitoring of cardiac function. Stress-echo (transoesophageal) is competitive to nuclear techniques in assessment of contractility. Myocardial perfusion imaging using knowledge from PET and available tomographic or planar imaging modalities gives unique possibilities to detect viable myocardium. Thallium remains the tracer for myocardial viability evaluation on convenient systems when new imaging protocols are applied. New technetium labeled radiopharmaceuticals allow better imaging possibilities for SPECT techniques. Several pharmacological agents are available in addition to traditional physical stress for assessing hemodynamic importance of coronary artery stenoses for diagnosis and in treatment evaluation. Imaging myocardial necrosis is marginal in conformation of majority of acute myocardial infarctions. It is used to assess area at risk after thrombolytic therapy for evolving myocardial infarction using dual-isotope techniques (perfusion agent with infarct-avid tracer in dual isotope technique). Antimyosin antibodies are useful also for confirmation of subacute or remote infarction, myocarditis or rejection after cardiac transplantation. Metabolic and receptor imaging are promising in evaluation of cardiomyopathies and myocardial viability not only on positron emission tomography but also on available imaging systems. In conclusion, new techniques and new radiopharmaceuticals for cardiovascular imaging allow more accurate answers to clinical problems. As the possibilities for research and clinical PET are limited, further transfer of PET-results to convenient imaging modalities is promising. (author)
Inspection of licensed nuclear power plants in the United States
International Nuclear Information System (INIS)
Thornburg, H. D.
1977-01-01
Inspection of licensed nuclear power plants in the United States is performed by the Office of Inspection and Enforcement (IE), United States Nuclear Regulatory Commission. IE has several key functions : a) Inspection of licensees and investigation of incidents, occurrences and allegations. b) Detection and correction of safety and security problems. c) Enforcement of rules, regulations, and Commission orders. d) Feedback to the industry and others regarding safety experience. e) Informing the public and others. Major enforcement actions and events involving operating power reactors for the past several years will be summarized. (author)
International Nuclear Information System (INIS)
2015-01-01
This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Special nuclear material; Source material; By-product material; Agreement state programmes); 4. Nuclear installations (Initial licensing; Operation and inspection, including nuclear safety; Operating licence renewal; Decommissioning; Emergency response); 5. Radiological protection (Protection of workers; Protection of the public); 6. Radioactive waste management (High-level waste; Low-level waste; Disposal at sea; Uranium mill tailings; Formerly Utilized Sites Remedial Action Program - FUSRAP); 7. Non-proliferation and exports (Exports of source material, special nuclear material, production or utilisation facilities and sensitive nuclear technology; Exports of components; Exports of by-product material; Exports and imports of radiation sources; Conduct resulting in the termination of exports or economic assistance; Subsequent arrangements; Technology exports; Information and restricted data); 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Nuclear Regulatory Commission - NRC; Department of Energy - DOE; Department of Labor - DOL; Department of Transportation - DOT; Environmental Protection Agency - EPA); 2. Public and semi-public agencies: A. Cabinet-level departments (Department of
International Nuclear Information System (INIS)
Olsen, K.H.; Peratt, A.L.
1994-01-01
Since 1987, we have installed fixed arrays of tri-axial accelerometers in the fire-field near the shot horizons for low-yield (≤ 20 kt) nuclear events in the N-tunnel complex beneath Rainier Mesa. For the Nonproliferation Experiment (NPE) we augmented the array to achieve 23 free-field stations. Goals are: (a) to examine robustness and stability of various free-field source function estimates -- e.g., reduced displacement potentials (RDP) and spectra; (b) to compare close-in with regional estimates to test whether detailed close-in free-field and/or surface ground motion data can improve predictability of regional-teleseismic source functions; (c) to provide experimental data for checking two-dimensional numerical simulations. We report preliminary comparisons between experimental free-field data for NPE (1993) and three nearby nuclear events (MISTY ECHO, 1988; MINERAL QUARRY, 1990; HUNTERS TROPHY, 1992). All four working points are within 1 km of each other in the same wet tuff bed, thus reducing concerns about possible large differences in material properties between widely separated shots. Initial comparison of acceleration and velocity seismograms for the four events reveals: (1) There is a large departure from the spherical symmetry commonly assumed in analytic treatments of source theory; both vertical and tangential components are surprisingly large. (2) All shots show similar first-peak particle-velocity amplitude decay rates suggesting significant attenuation even in the supposedly purely elastic region. (3) Sharp (>20 Hz) arrivals are not observed at tunnel level from near-surface pP reflections or spall-closure sources -- but broadened peaks are seen that suggest more diffuse reflected energy from the surface and from the Paleozoic limestone basement below tunnel level
Structural instability and ground state of the U{sub 2}Mo compound
Energy Technology Data Exchange (ETDEWEB)
Losada, E.L., E-mail: losada@cab.cnea.gov.ar [SIM" 3, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (Argentina); Garcés, J.E. [Gerencia de Investigación y Aplicaciones Nucleares, Comisión Nacional de Energía Atómica (Argentina)
2015-11-15
This work reports on the structural instability at T = 0 °K of the U{sub 2}Mo compound in the C11{sub b} structure under the distortion related to the C{sub 66} elastic constant. The electronic properties of U{sub 2}Mo such as density of states (DOS), bands and Fermi surface (FS) are studied to understand the source of the instability. The C11{sub b} structure can be interpreted as formed by parallel linear chains along the z-directions each one composed of successive U–Mo–U blocks. Hybridization due to electronic interactions inside the U–Mo–U blocks is slightly modified under the D{sub 6} distortion. The change in distance between chains modifies the U–U interaction and produces a split of f-states. The distorted structure is stabilized by a decrease in energy of the hybridized states, mainly between d-Mo and f-U states, together with the f-band split. Consequently, an induced Peierls distortion is produced in U{sub 2}Mo due to the D{sub 6} distortion. It is important to note that the results of this work indicate that the structure of the ground state of the U{sub 2}Mo compound is not the assumed C11{sub b} structure. It is suggested for the ground state a structure with hexagonal symmetry (P6 #168), ∼0.1 mRy below the energy of the recently proposed Pmmn structure. - Highlights: • Structural instability of the C11b compound due to the D6 deformation. • Induced Peierls distortion due to the D6 deformation. • Distorted structure is stabilized by hybridization and split of f-Uranium state. • P6 (#168) suggested ground state for the U{sub 2}Mo compound.
Structural instability and ground state of the U_2Mo compound
International Nuclear Information System (INIS)
Losada, E.L.; Garcés, J.E.
2015-01-01
This work reports on the structural instability at T = 0 °K of the U_2Mo compound in the C11_b structure under the distortion related to the C_6_6 elastic constant. The electronic properties of U_2Mo such as density of states (DOS), bands and Fermi surface (FS) are studied to understand the source of the instability. The C11_b structure can be interpreted as formed by parallel linear chains along the z-directions each one composed of successive U–Mo–U blocks. Hybridization due to electronic interactions inside the U–Mo–U blocks is slightly modified under the D_6 distortion. The change in distance between chains modifies the U–U interaction and produces a split of f-states. The distorted structure is stabilized by a decrease in energy of the hybridized states, mainly between d-Mo and f-U states, together with the f-band split. Consequently, an induced Peierls distortion is produced in U_2Mo due to the D_6 distortion. It is important to note that the results of this work indicate that the structure of the ground state of the U_2Mo compound is not the assumed C11_b structure. It is suggested for the ground state a structure with hexagonal symmetry (P6 #168), ∼0.1 mRy below the energy of the recently proposed Pmmn structure. - Highlights: • Structural instability of the C11b compound due to the D6 deformation. • Induced Peierls distortion due to the D6 deformation. • Distorted structure is stabilized by hybridization and split of f-Uranium state. • P6 (#168) suggested ground state for the U_2Mo compound.
Ground state structure of U2Mo: static and lattice dynamics study
International Nuclear Information System (INIS)
Mukherjee, D.; Sahoo, B.D.; Joshi, K.D.; Kaushik, T.C.
2016-01-01
According to experimental reports, the ground state stable structure of U 2 Mo is tetragonal. However, various theoretical studies performed in past do not get tetragonal phase as the stable structure at ambient conditions. Therefore, the ground state structure of U 2 Mo is still unresolved. In an attempt to understand the ground state properties of this system, we have carried out first principle electronic band structure calculations. The structural stability analysis carried out using evolutionary structure search algorithm in conjunction with ab-inito method shows that a hexagonal structure (space group P6/mmm) is the lowest enthalpy structure at ambient condition and remains stable upto 200 GPa. The elastic and lattice dynamical stability further supports the stability of this phase at ambient condition. Further, using the 0 K calculations in conjunction with finite temperature corrections, we have derived the isotherm and shock adiabat (Hugoniot) of this material. Various equilibrium properties such as ambient pressure volume, bulk modulus, pressure derivative of bulk modulus etc. are derived from equation of state. (author)
Guidelines for earthquake ground motion definition for the eastern United States
International Nuclear Information System (INIS)
Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.
1985-01-01
Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., 2 figs., 1 tab
Patil, S K; Wari, M N; Panicker, C Yohannan; Inamdar, S R
2014-04-05
The absorption and fluorescence spectra of three medium sized dipolar laser dyes: coumarin 478 (C478), coumarin 519 (C519) and coumarin 523 (C523) have been recorded and studied comprehensively in various solvents at room temperature. The absorption and fluorescence spectra of C478, C519 and C523 show a bathochromic and hypsochromic shifts with increasing solvent polarity indicate that the transitions involved are π→π(∗) and n→π(∗). Onsager radii determined from ab initio calculations were used in the determination of dipole moments. The ground and excited state dipole moments were evaluated by using solvatochromic correlations. It is observed that the dipole moment values of excited states (μe) are higher than corresponding ground state values (μg) for the solvents studied. The ground and excited state dipole moments of these probes computed from ab initio calculations and those determined experimentally are compared and the results are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Random interactions, isospin, and the ground states of odd-A and odd-odd nuclei
International Nuclear Information System (INIS)
Horoi, Mihai; Volya, Alexander; Zelevinsky, Vladimir
2002-01-01
It was recently shown that the ground state quantum numbers of even-even nuclei have a high probability to be reproduced by an ensemble of random but rotationally invariant two-body interactions. In the present work we extend these investigations to odd-A and odd-odd nuclei, considering in particular the isospin effects. Studying the realistic shell model as well as the single-j model, we show that random interactions have a tendency to assign the lowest possible total angular momentum and isospin to the ground state. In the sd shell model this reproduces correctly the isospin but not the spin quantum numbers of actual odd-odd nuclei. An odd-even staggering effect in probability of various ground state quantum numbers is present for even-even and odd-odd nuclei, while it is smeared out for odd-A nuclei. The observed regularities suggest the underlying mechanism of bosonlike pairing of fermionic pairs in T=0 and T=1 states generated by the off-diagonal matrix elements of random interactions. The relation to the models of random spin interactions is briefly discussed
Accurate adiabatic energy surfaces for the ground and first excited states of He2+
International Nuclear Information System (INIS)
Lee, E.P.F.
1993-01-01
Different factors affecting the accuracy of the computed energy surfaces of the ground and first excited state of He 2 + have been examined, including the choice of the one-and many-particle bases, the configurational space in the MRCI (multi-reference configuration interaction) calculations and other corrections such as the Davidson and the full counterpoise (CP) correction. From basis-variation studies, it was concluded that multi-reference direct-CI calculations (MRDCI) using CASSCF MOs and/or natural orbitals (NOs) from a smaller CISD calculation, gave results close to full CI. The computed dissociation energies, D e , for the ground and first excited state of He 2 + were 2.4670 (2.4659) eV and 17.2 (17.1) cm -1 , respectively, at the highest level [without and with CP correction for basis-set superposition errors (BSSE)] of calculation with an [11s8p3d1f] GTO contraction, in reasonably good agreement with previous calculations, and estimated correct values, where available. It is believed that the computed D e , and the energy surface for the first excited state should be reasonably accurate. However, for the ground state, the effects of multiple f functions and/or functions of higher angular momentum have not been investigated owing to limitation of the available computing resources. This is probably the only weakness is the present study. (Author)
Guidelines for earthquake ground motion definition for the Eastern United States
International Nuclear Information System (INIS)
Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.
1985-01-01
Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors
Induced quadrupolar singlet ground state of praseodymium in a modulated pyrochlore
van Duijn, J.; Kim, K. H.; Hur, N.; Ruiz-Bustos, R.; Adroja, D. T.; Bridges, F.; Daoud-Aladine, A.; Fernandez-Alonso, F.; Wen, J. J.; Kearney, V.; Huang, Q. Z.; Cheong, S.-W.; Perring, T. G.; Broholm, C.
2017-09-01
The complex structure and magnetism of Pr2 -xBixRu2O7 was investigated by neutron scattering and extended x-ray absorption fine structure. Pr has an approximate doublet ground state and the first excited state is a singlet. While the B -site (Ru) is well ordered throughout, this is not the case for the A -site (Pr/Bi). A broadened distribution for the Pr-O2 bond length at low temperature indicates the Pr environment varies from site to site even for x =0 . The environment about the Bi site is highly disordered ostensibly due to the 6 s lone pairs on Bi3 +. Correspondingly, we find that the non-Kramers doublet ground-state degeneracy, otherwise anticipated for Pr in the pyrochlore structure, is lifted so as to produce a quadrupolar singlet ground state with a spatially varying energy gap. For x =0 , below TN, the Ru sublattice orders antiferromagnetically, with propagation vector k =(0 ,0 ,0 ) as for Y2Ru2O7 . No ordering associated with the Pr sublattice is observed down to 100 mK. The low-energy magnetic response of Pr2 -xBixRu2O7 features a broad spectrum of magnetic excitations associated with inhomogeneous splitting of the Pr quasidoublet ground state. For x =0 (x =0.97 ), the spectrum is temperature dependent (independent). It appears disorder associated with Bi alloying enhances the inhomogeneous Pr crystal-field level splitting so that intersite interactions become irrelevant for x =0.97 . The structural complexity for the A -site may be reflected in the hysteretic uniform magnetization of B -site ruthenium in the Néel phase.
International Nuclear Information System (INIS)
Navrotskaya-Rybarska, V.; Stoyanova, O.; Stoyanov, Ch.
1980-01-01
The influence of ground state correlations and of their coupling with the phonon amplitudes on the properties of the first collective states is investigated in some Sm isotopes. Equations for the eXcited state energies are derived using the variational principle. Formulae for the gap and quasiparticle energies are given. The numerical calculations are performed for sup(144-150)Sm. The energies of the 2 + - and 3 - - states and the B(E2) and B(E3) electric transition probability values are presented. The effects studied are shown to be small for sup(144-146)Sm but the collectivity of the 2sub(1)sup(+) and 3sub(1)sup(-) states decreases strongly for 150 Sm [ru
Kvaal, Simen; Helgaker, Trygve
2015-11-14
The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.
Evaluating Russian space nuclear reactor technology for United States applications
International Nuclear Information System (INIS)
Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.
1994-01-01
Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch
Statistical density of nuclear excited states
Directory of Open Access Journals (Sweden)
V. M. Kolomietz
2015-10-01
Full Text Available A semi-classical approximation is applied to the calculations of single-particle and statistical level densities in excited nuclei. Landau's conception of quasi-particles with the nucleon effective mass m* < m is used. The approach provides the correct description of the continuum contribution to the level density for realistic finite-depth potentials. It is shown that the continuum states does not affect significantly the thermodynamic calculations for sufficiently small temperatures T ≤ 1 MeV but reduce strongly the results for the excitation energy at high temperatures. By use of standard Woods - Saxon potential and nucleon effective mass m* = 0.7m the A-dependency of the statistical level density parameter K was evaluated in a good qualitative agreement with experimental data.
CSIR Research Space (South Africa)
de Clercq, L
2010-09-01
Full Text Available Coherent control of the upper vibrational level populations in the electronic ground state of a polyatomic molecule was simulated. Results indicate that selective excitation of a specific upper state level is possible...
International Nuclear Information System (INIS)
Molayem, M.; Tayebi-Rad, Gh.; Esmaeli, L.; Namiranian, A.; Fouladvand, M. E.; Neek-Amal, M.
2006-01-01
Using the diffusion quantum monte Carlo method, the ground state energy of an Hydrogen atom confined in a carbon nano tube and a C60 molecule is calculated. For Hydrogen atom confined in small diameter tubes, the ground state energy shows significant deviation from a free Hydrogen atom, while with increasing the diameter this deviation tends to zero.
Luo, Ding; Lee, Sangsu; Zheng, Bin; Sun, Zhe; Zeng, Wangdong; Huang, Kuo-Wei; Furukawa, Ko; Kim, Dongho; Webster, Richard D.; Wu, Jishan
2014-01-01
and showed different ground states. Based on variable-temperature NMR/ESR measurements and density functional theory calculations, it was found that the indolo[2,3-b]carbazole derivative 1 is a persistent singlet biradical in the ground state with a moderate
State of the art and prospects of nuclear power development
International Nuclear Information System (INIS)
Egorov, Yu.V.; Glushenkova, S.Z.
1984-01-01
State of the art and prospects of nuclear power development abroad except the COMECON countries and Yugoslavia, are considered. Both average electric power of power units and load factor (LF) are shown to increase. Data on both the total generating capacity and nuclear power generation in certain countries are given. The number of commissioned NPPs in the USA decreases but terms of their construction and licensing are reduced, program of fast breeder reactor construction is being realized, prohibition of nuclear fuel reprocessing in cancelled. France came to the second place in the world as regards the operating NPPs. The nuclear power generation in Japan makes up 13% of the total generating capacity in the country. The LF of the Japan NPPs with BWR and PWR in 1982 made up 70.7 and 69.8%, respectively. A higher reliability of NPPs, decrease in the time for periodical inspections and prolongation of the operating cycle have promoted an increase in the LF
The political economy of nuclear energy in the United States
International Nuclear Information System (INIS)
Nivola, P.S.
2004-05-01
A tendency among commentators, even experts like the author of the sentence above, is to regard the complicated story of nuclear energy in the United States as exceptionally troubled and frustrating. The root cause of the troubles and frustrations, moreover, is commonly thought to be more political than economic. The promise of nuclear power in this country is said to have been dimmed primarily by an eccentrically risk-averse public and an unusually hostile regulatory climate. Practically nowhere else, it is said, have political and legal institutions been so uncooperative. Supposedly the central governments of most other advanced countries have lent far more support to their nuclear industries. And because those governments are assumed to be more aggressive in combating pollution, including greenhouse gas emissions from burning fossil fuels, surely 'the rest of the world' has been doing much more than America to level the playing field for the development of nuclear energy. The following paper challenges this conventional picture. (author)
Effect of hydroelastic coupling on the response of a nuclear reactor to ground acceleration
International Nuclear Information System (INIS)
Au-Yang, M.K.; Skinner, D.A.
1977-01-01
The dynamical characteristics of a nuclear reactor vessel and its internal components is affected by the coolant inside the vessel. Recent studies in flow-induced vibration of reactor internal components show that the effect of the entrapped coolant can be properly accounted for by adding a 'hydrodynamic mass' matrix to the physical mass of the fluid structure system. In the past few years, analytical expressions for this hydrodynamic mass matrix have been derived, usually under greatly simplifying assumptions on the geometry of the structure. Typical examples are slender-cylinder and simply-supported-cylinder assumptions. While expressions derived based on these assumptions can still bring out the general characteristics of hydroelastic coupling of structure, their application to seismic analysis of reactor components is limited because these structutres, even though generally cylindrical, are usually neither slender nor simply supported. This paper presents an anlytical and experimental study of the effects of hydroelastic coupling on the seismic response of a reactor vessel and its internal components. The hydrodynamic mass matrix for cylindrical shell structures with arbitrary D/l ratios. Two specific examples are included to illustrate the effect of hydroelastic coupling on the response of a PWR to ground acceleration. (Auth.)
Spin-polarized ground state and exact quantization at ν=5/2
Pan, Wei
2002-03-01
The nature of the even-denominator fractional quantum Hall effect at ν=5/2 remains elusive, in particular, its ground state spin-polarization. An earlier, so-called "hollow core" model arrived at a spin-unpolarized wave function. The more recent calculations based on a model of BCS-like pairing of composite fermions, however, suggest that its ground state is spin-polarized. In this talk, I will first review the earlier experiments and then present our recent experimental results showing evidence for a spin-polarized state at ν=5/2. Our ultra-low temperature experiments on a high quality sample established the fully developed FQHE state at ν=5/2 as well as at ν=7/3 and 8/3, manifested by a vanishing R_xx and exact quantization of the Hall plateau. The tilted field experiments showed that the added in-plane magnetic fields not only destroyed the FQHE at ν=5/2, as seen before, but also induced an electrical anisotropy, which is now interpreted as a phase transition from a paired, spin-polarized ν=5/2 state to a stripe phase, not unlike the ones at ν=9/2, 11/2, etc in the N > 1 higher Landau levels. Furthermore, in the experiments on the heterojunction insulated-gate field-effect transistors (HIGFET) at dilution refrigerator temperatures, a strong R_xx minimum and a concomitant developing Hall plateau were observed at ν=5/2 in a magnetic field as high as 12.6 Tesla. This and the subsequent density dependent studies of its energy gap largely rule out a spin-singlet state and point quite convincingly towards a spin-polarized ground state at ν=5/2.
The influence of nonlocal hybridization on ground-state properties of the Falicov-Kimball model
International Nuclear Information System (INIS)
Farkasovsky, Pavol
2005-01-01
The density matrix renormalization group is used to examine effects of nonlocal hybridization on ground-state properties of the Falicov-Kimball model (FKM) in one dimension. Special attention is devoted to the problem of hybridization-induced insulator-metal transition. It is shown that the picture of insulator-metal transitions found for the FKM with nonlocal hybridization strongly differs from one found for the FKM without hybridization (as well as with local hybridization). The effect of nonlocal hybridization is so strong that it can induce the insulator-metal transition, even in the half-filled band case where the ground states of the FKM without hybridization are insulating for all finite Coulomb interactions. Outside the half-filled band case the metal-insulator transition driven by pressure is found for finite values of nonlocal hybridization
The Ground State Energy of a Dilute Bose Gas in Dimension $n\\geq 3$
DEFF Research Database (Denmark)
Aaen, Anders Gottfred
We consider a Bose gas in spatial dimension n≥3 with a repulsive, radially symmetric two-body potential V. In the limit of low density ρ, the ground state energy per particle in the thermodynamic limit is shown to be (n−2)|Sn−1|an−2ρ, where |Sn−1| denotes the surface measure of the unit sphere...... in Rn, and a is the scattering length of V. Furthermore, for smooth and compactly supported two-body potentials, we derive an upper bound to the ground state energy with a correction term (1+γ)8π4a6ρ2|ln(a4ρ)| in 4 dimensions, where 0... dimensions. Finally, we use a grand canonical construction to give a simplified proof of the second order upper bound to the Lee-Huang-Yang formula, a result first obtained by Yau and Yin. We also test this method in 4 dimensions, but with a negative outcome....
Ground state properties of new element Z=113 and its alpha decay chain
International Nuclear Information System (INIS)
Tai Fei; Chen Dinghan; Xu Chang; Ren Zhongzhou
2005-01-01
The authors investigate the ground state properties of the new element 278 113 and of the α-decay chain with different models, where the new element Z=113 has been produced at RIKEN in Japan by cold-fusion reaction. The experimental decay energies are reproduced by the deformed relativistic mean-field model, by the Skyrme-Hartree-Fock (SHF) model, and by the macroscopic-microscopic model. Theoretical half-lives also reasonably agree with the data. Calculations further show that prolate deformation is important for the ground states of the nuclei in the α-decay chain of 278 113. The common points and differences among different models are compared and discussed. (author)
The resonating group method three cluster approach to the ground state 9 Li nucleus structure
International Nuclear Information System (INIS)
Filippov, G.F.; Pozdnyakov, Yu.A.; Terenetsky, K.O.; Verbitsky, V.P.
1994-01-01
The three-cluster approach for light atomic nuclei is formulated in frame of the algebraic version of resonating group method. Overlap integral and Hamiltonian matrix elements on generating functions are obtained for 9 Li nucleus. All permissible by Pauli principle 9 Li different cluster nucleon permutations were taken into account in the calculations. The results obtained can be easily generalised on any three-cluster system up to 12 C. Matrix elements obtained in the work were used in the variational calculations of the ground state energetic and geometric 9 Li characteristics. It is shown that 9 Li ground state is not adequate to the shell model limit and has pronounced three-cluster structure. (author). 16 refs., 4 tab., 2 figs
Towards the measurement of the ground-state hyperfine splitting of antihydrogen
Energy Technology Data Exchange (ETDEWEB)
Juhasz, Bertalan, E-mail: bertalan.juhasz@oeaw.ac.at [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)
2012-12-15
The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, which will consist of a superconducting cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of better than {approx} 10{sup - 6}. The first preliminary measurements of the hyperfine transitions will start in 2011.
Ground state of a hydrogen ion molecule immersed in an inhomogeneous electron gas
International Nuclear Information System (INIS)
Diaz-Valdes, J.; Gutierrez, F.A.; Matamala, A.R.; Denton, C.D.; Vargas, P.; Valdes, J.E.
2007-01-01
In this work we have calculated the ground state energy of the hydrogen molecule, H 2 + , immersed in the highly inhomogeneous electron gas around a metallic surface within the local density approximation. The molecule is perturbed by the electron density of a crystalline surface of Au with the internuclear axis parallel to the surface. The surface spatial electron density is calculated through a linearized band structure method (LMTO-DFT). The ground state of the molecule-ion was calculated using the Born-Oppenheimer approximation for a fixed-ion while the screening effects of the inhomogeneous electron gas are depicted by a Thomas-Fermi like electrostatic potential. We found that within our model the molecular ion dissociates at the critical distance of 2.35a.u. from the first atomic layer of the solid
Green function iterative solution of ground state wave function for Yukawa potential
International Nuclear Information System (INIS)
Zhang Zhao
2003-01-01
The newly developed single trajectory quadrature method is applied to solve central potentials. First, based on the series expansion method an exact analytic solution of the ground state for Hulthen potential and an approximate solution for Yukawa potential are obtained respectively. Second, the newly developed iterative method based on Green function defined by quadratures along the single trajectory is applied to solve Yukawa potential using the Coulomb solution and Hulthen solution as the trial functions respectively. The results show that a more proper choice of the trial function will give a better convergence. To further improve the convergence the iterative method is combined with the variational method to solve the ground state wave function for Yukawa potential, using variational solutions of the Coulomb and Hulthen potentials as the trial functions. The results give much better convergence. Finally, the obtained critical screen coefficient is applied to discuss the dissociate temperature of J/ψ in high temperature QGP