WorldWideScience

Sample records for nuclear fuel wastes

  1. Waste Stream Analyses for Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    N. R. Soelberg

    2010-08-01

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  2. Advanced waste forms from spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; McPheeters, C.C.

    1995-12-31

    More than one hundred spent nuclear fuel types, having an aggregate mass of more than 5000 metric tons (2700 metric tons of heavy metal), are stored by the United States Department of Energy. This paper proposes a method for converting this wide variety of fuel types into two waste forms for geologic disposal. The method is based on a molten salt electrorefining technique that was developed for conditioning the sodium-bonded, metallic fuel from the Experimental Breeder Reactor-II (EBR-II) for geologic disposal. The electrorefining method produces two stable, optionally actinide-free, high-level waste forms: an alloy formed from stainless steel, zirconium, and noble metal fission products, and a ceramic waste form containing the reactive metal fission products. Electrorefining and its accompanying head-end process are briefly described, and methods for isolating fission products and fabricating waste forms are discussed.

  3. Monitoring methods for nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.B.; Barnard, J.W.; Bird, G.A. [and others

    1997-11-01

    This report examines a variety of monitoring activities that would likely be involved in a nuclear fuel waste disposal project, during the various stages of its implementation. These activities would include geosphere, environmental, vault performance, radiological, safeguards, security and community socioeconomic and health monitoring. Geosphere monitoring would begin in the siting stage and would continue at least until the closure stage. It would include monitoring of regional and local seismic activity, and monitoring of physical, chemical and microbiological properties of groundwater in rock and overburden around and in the vault. Environmental monitoring would also begin in the siting stage, focusing initially on baseline studies of plants, animals, soil and meteorology, and later concentrating on monitoring for changes from these benchmarks in subsequent stages. Sampling designs would be developed to detect changes in levels of contaminants in biota, water and air, soil and sediments at and around the disposal facility. Vault performance monitoring would include monitoring of stress and deformation in the rock hosting the disposal vault, with particular emphasis on fracture propagation and dilation in the zone of damaged rock surrounding excavations. A vault component test area would allow long-term observation of containers in an environment similar to the working vault, providing information on container corrosion mechanisms and rates, and the physical, chemical and thermal performance of the surrounding sealing materials and rock. During the operation stage, radiological monitoring would focus on protecting workers from radiation fields and loose contamination, which could be inhaled or ingested. Operational zones would be established to delineate specific hazards to workers, and movement of personnel and materials between zones would be monitored with radiation detectors. External exposures to radiation fields would be monitored with dosimeters worn by

  4. Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography

    CERN Document Server

    Jonkmans, G; Jewett, C; Thompson, M

    2012-01-01

    This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the contents of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy.

  5. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Science.gov (United States)

    2010-01-01

    ... fuel and nuclear waste. 71.97 Section 71.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... advance notification of transportation of nuclear waste was published in the Federal Register on June...

  6. National briefing summaries: Nuclear fuel cycle and waste management

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

    1991-04-01

    Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.

  7. Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering

    2016-09-20

    This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effects of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.

  8. Environmental Impact Statement on the concept for disposal of Canada's nuclear fuel waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-01

    This report describes the many fundamental issues relating to the strategy being proposed by Atomic Energy of Canada Limited for the long-term management of nuclear fuel waste. It discusses the need for a method for disposal of nuclear fuel waste that would permanently protect human health and the natural environment and that would not unfairly burden future generations. It also describes the background and mandate of the Nuclear Fuel Waste Management Program in Canada.

  9. Dynamic Analysis of Nuclear Waste Generation Based on Nuclear Fuel Cycle Transition Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S. R. [University of Science and Technology, Daejeon (Korea, Republic of); Ko, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    According to the recommendations submitted by the Public Engagement Commission on Spent Nuclear Fuel Management (PECOS), the government was advised to pick the site for an underground laboratory and interim storage facilities before the end of 2020 followed by the related research for permanent and underground disposal of spent fuel after 10 years. In the middle of the main issues, the factors of environmentally friendly and safe way to handle nuclear waste are inextricable from nuclear power generating nation to ensure the sustainability of nuclear power. For this purposes, the closed nuclear fuel cycle has been developed regarding deep geological disposal, pyroprocessing, and burner type sodium-cooled fast reactors (SFRs) in Korea. Among two methods of an equilibrium model and a dynamic model generally used for screening nuclear fuel cycle system, the dynamic model is more appropriate to envisage country-specific environment with the transition phase in the long term and significant to estimate meaningful impacts based on the timedependent behavior of harmful wastes. This study aims at analyzing the spent nuclear fuel generation based on the long-term nuclear fuel cycle transition scenarios considered at up-to-date country specific conditions and comparing long term advantages of the developed nuclear fuel cycle option between once-through cycle and Pyro-SFR cycle. In this study, a dynamic analysis was carried out to estimate the long-term projection of nuclear electricity generation, installed capacity, spent nuclear fuel arising in different fuel cycle scenarios based on the up-to-date national energy plans.

  10. National briefing summaries: Nuclear fuel cycle and waste management

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

    1988-12-01

    The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awareness to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.

  11. Environmental Justice, Place and Nuclear Fuel Waste Management in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Richard G. [Univ. of Guelph (Canada). Dept. of Geography; Murphy, Brenda L. [Wilfrid Launer Univ., Brantford (Canada)

    2006-09-15

    The purpose of this paper is to outline the basis of a Nuclear Fuel Waste management strategy for Canada, taking into account the unique legal tenets (Aboriginal rights; federal - provincial jurisdiction) and the orientation that the Nuclear Waste Management Organization (NWMO) has taken to date. The focus of the paper are grounded in notions of environmental justice. Bullard's definition provides a useful guideline: 'the fair treatment and meaningful involvement of all people regardless of race, colour, national origin or income with respect to the development, implementation and enforcement of environmental laws, regulations and policies'. The overriding concern is to work towards a process that is inclusive and just. Prior to developing a specific strategy to site a NFW disposal facility, we maintain that the NWMO needs to first address three fundamental issues: Expand its mandate to include the future of nuclear energy in Canada; Provide an inclusive role for First Nations (Aboriginal people) in all stages of the process; Adhere to the requirement of specifying an economic region and deal more overtly with the transportation of NF.

  12. RADIOACTIVE WASTE STREAMS FROM VARIOUS POTENTIAL NUCLEAR FUEL CYCLE OPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg; Steve Piet

    2010-11-01

    Five fuel cycle options, about which little is known compared to more commonly known options, have been studied in the past year for the United States Department of Energy. These fuel cycle options, and their features relative to uranium-fueled light water reactor (LWR)-based fuel cycles, include: • Advanced once-through reactor concepts (Advanced Once-Through, or AOT) – intended for high uranium utilization and long reactor operating life, use depleted uranium in some cases, and avoid or minimize used fuel reprocessing • Fission-fusion hybrid (FFH) reactor concepts – potential variations are intended for high uranium or thorium utilization, produce fissile material for use in power generating reactors, or transmute transuranic (TRU) and some radioactive fission product (FP) isotopes • High temperature gas reactor (HTGR) concepts - intended for high uranium utilization, high reactor thermal efficiencies; they have unique fuel designs • Molten salt reactor (MSR) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, use on-line reprocessing of the used fuel, produce lesser amounts of long-lived, highly radiotoxic TRU elements, and avoid fuel assembly fabrication • Thorium/U-233 fueled LWR (Th/U-233) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, and produce lesser amounts of long-lived, highly radiotoxic TRU elements. These fuel cycle options could result in widely different types and amounts of used or spent fuels, spent reactor core materials, and waste streams from used fuel reprocessing, such as: • Highly radioactive, high-burnup used metal, oxide, or inert matrix U and/or Th fuels, clad in Zr, steel, or composite non-metal cladding or coatings • Spent radioactive-contaminated graphite, SiC, carbon-carbon-composite, metal, and Be reactor core materials • Li-Be-F salts containing U, TRU, Th, and fission products • Ranges of separated or un-separated activation

  13. 78 FR 66858 - Waste Confidence-Continued Storage of Spent Nuclear Fuel

    Science.gov (United States)

    2013-11-07

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 51 RIN 3150-AJ20 Waste Confidence--Continued Storage of Spent Nuclear Fuel AGENCY: Nuclear Regulatory Commission. ACTION: Proposed rule; extension of comment period. SUMMARY: On September 13, 2013, the U. S. Nuclear Regulatory Commission (NRC) published for public...

  14. Origin and characteristics of low-level nontransuranic waste from the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, C.W.; Blomeke, J.O.

    1977-01-01

    Low-level nontransuranic wastes are generated in all nuclear fuel cycle operations. While the activity levels and radiotoxicities of these effluents are generally of a lower magnitude than other fuel cycle wastes, their large volumes and their appearance throughout the fuel cycle make their management a very real concern regardless of the fuel cycle option being considered. Low-level nontransuranic wastes are defined here as wastes that contain less than about 10 nCi of long-lived alpha radiation per gram and have gamma radiations low enough to require only minimal biological shielding and remote handling. Wastes from uranium mining and milling, UF/sub 6/ conversion, enrichment, fuel fabrication, and fuel reprocessing are examined with respect to their radionuclide content, volume, and chemical composition. Projections of total quantities through the end of this century are also presented. Fuel cycles based on recycling only uranium, and on recycling both uranium and plutonium, are considered.

  15. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  16. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    Science.gov (United States)

    Djokic, Denia

    The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission

  17. Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William [Univ. of Tennessee, Knoxville, TN (United States)

    2016-09-20

    This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effects of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied. Two model used-fuel materials, nanograined CeO2 and ZrO2, were fabricated as part of this study. To complement the work on damage evolution in nanocrystalline CeO2 and ZrO2 during helium implantation and heavy ion irradiation, additional irradiations were performed on single crystal CeO2 and ZrO2. Samples were irradiated to ion fluences corresponding to an irradiation dose ranging from 0.11 to 100 dpa (displacements per atom), which is comparable to the irradiated dose expected during interim and long-term storage. Detailed transmission electron microscopy, Rutherford backscattering and Raman spectroscopy analysis have been carried out on these irradiated materials. The critical helium concentration for formation of helium bubbles was found to be 0.15 atomic percent (at%) in these samples, which is similar to that found in 238Pu-doped UO2. This critical helium concentration for bubble formation will be achieved in less than 100 years for MOX used fuels, in about 1000

  18. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  19. Candidate waste forms for immobilisation of waste chloride salt from pyroprocessing of spent nuclear fuel

    Science.gov (United States)

    Vance, E. R.; Davis, J.; Olufson, K.; Chironi, I.; Karatchevtseva, I.; Farnan, I.

    2012-01-01

    Sodalite/glass bodies prepared by hot isostatic pressing (HIPing) at ˜850 °C/100 MPa are candidates for immobilising fission product-bearing waste KCl-LiCl pyroprocessing salts. To study the capacity of sodalite to structurally incorporate such pyroprocessing salts, K, Li, Cs, Sr, Ba and La were individually targeted for substitution in a Na site in sodalite (Na vacancies targeted as charge compensators for alkaline and rare earths) and studied by X-ray diffraction and scanning electron microscopy after sintering in the range of 800-1000 °C. K and Li appeared to enter the sodalite, but Cs, Sr and Ba formed aluminosilicate phases and La formed an oxyapatite phase. However these non-sodalite phases have reasonable resistance to water leaching. Pure chlorapatite gives superior leach resistance to sodalite, and alkalis, alkaline and rare earth ions are generally known to enter chlorapatite, but attempts to incorporate simulated waste salt formulations into HIPed chlorapatite-based preparations or to substitute Cs alone into the structure of Ca-based chlorapatite were not successful on the basis of scanning electron microscopy. The materials exhibited severe water leachability, mainly in regard to Cs release. Attempts to substitute Cs into Ba- and Sr-based chlorapatites also did not look encouraging. Consequently the use of apatite alone to retain fission product-bearing waste pyroprocessing salts from electrolytic nuclear fuel reprocessing is problematical, but chlorapatite glass-ceramics may be feasible, albeit with reduced waste loadings. Spodiosite, Ca 2(PO 4)Cl, does not appear to be suitable for incorporation of Cl-bearing waste containing fission products.

  20. Thoria-based nuclear fuels thermophysical and thermodynamic properties, fabrication, reprocessing, and waste management

    CERN Document Server

    Bharadwaj, S R

    2013-01-01

    This book presents the state of the art on thermophysical and thermochemical properties, fabrication methodologies, irradiation behaviours, fuel reprocessing procedures, and aspects of waste management for oxide fuels in general and for thoria-based fuels in particular. The book covers all the essential features involved in the development of and working with nuclear technology. With the help of key databases, many of which were created by the authors, information is presented in the form of tables, figures, schematic diagrams and flow sheets, and photographs. This information will be useful for scientists and engineers working in the nuclear field, particularly for design and simulation, and for establishing the technology. One special feature is the inclusion of the latest information on thoria-based fuels, especially on the use of thorium in power generation, as it has less proliferation potential for nuclear weapons. Given its natural abundance, thorium offers a future alternative to uranium fuels in nuc...

  1. STRUCTURAL CALCULATIONS FOR THE CODISPOSAL OF TRIGA SPENT NUCLEAR FUEL IN A WASTE PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    S. Mastilovic

    1999-07-28

    The purpose of this analysis is to determine the structural response of a TRIGA Department of Energy (DOE) spent nuclear fuel (SNF) codisposal canister placed in a 5-Defense High Level Waste (DHLW) waste package (WP) and subjected to a tipover design basis event (DBE) dynamic load; the results will be reported in terms of displacements and stress magnitudes. This activity is associated with the WP design.

  2. German Spent Nuclear Fuel Legacy: Characteristics and High-Level Waste Management Issues

    Directory of Open Access Journals (Sweden)

    A. Schwenk-Ferrero

    2013-01-01

    Full Text Available Germany is phasing-out the utilization of nuclear energy until 2022. Currently, nine light water reactors of originally nineteen are still connected to the grid. All power plants generate high-level nuclear waste like spent uranium or mixed uranium-plutonium dioxide fuel which has to be properly managed. Moreover, vitrified high-level waste containing minor actinides, fission products, and traces of plutonium reprocessing loses produced by reprocessing facilities has to be disposed of. In the paper, the assessments of German spent fuel legacy (heavy metal content and the nuclide composition of this inventory have been done. The methodology used applies advanced nuclear fuel cycle simulation techniques in order to reproduce the operation of the German nuclear power plants from 1969 till 2022. NFCSim code developed by LANL was adopted for this purpose. It was estimated that ~10,300 tonnes of unreprocessed nuclear spent fuel will be generated until the shut-down of the ultimate German reactor. This inventory will contain ~131 tonnes of plutonium, ~21 tonnes of minor actinides, and 440 tonnes of fission products. Apart from this, ca.215 tonnes of vitrified HLW will be present. As fission products and transuranium elements remain radioactive from 104 to 106 years, the characteristics of spent fuel legacy over this period are estimated, and their impacts on decay storage and final repository are discussed.

  3. Management of Salt Waste from Electrochemical Processing of Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Michael F. Simpson; Michael N. Patterson; Joon Lee; Yifeng Wang; Joshua Versey; Ammon Williams; Supathorn Phongikaroon; James Allensworth; Man-Sung Yim

    2013-10-01

    Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electrorefiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form.

  4. Estimation of the Waste Mass from a Pyro-Process of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Soo; Choi, Jong Won; Choi, Heui Joo (and others)

    2008-04-15

    Pyro-Process is now developing to retrieve reusable uranium and TRU, and to reduce the volume of high level waste from a nuclear power plant. In this situation, it is strongly required for the estimation of expected masses and their physical properties of the wastes. In this report, the amount of wastes and their physical properties are presupposed through some assumptions in regard to 10MTHM of Oxide Fuel with 4.5wt% U-235, 45,000 MWD/MTU, and 5yrs cooling. The produced wastes can be divided into three categories such as metal, CWF(Ceramic Waste Form), and VWF(Vitrified Waste Form). The 42 nuclrides in a spent nuclear fuel are distributed into the waste categories on the their physical and thermodynamic properties when they exist in metal, oxide, or chloride forms. The treated atomic groups are Uranium, TRU, Noble metal, Rare earth, Alkali metal, Halogens, and others. The mass of each waste is estimated by the distribution results. The off-gas waste is included into a CWF. The heat generations by the wastes in this Pyro-Process are calculated using a ORIGEN-ARP program. It is possible to estimate the amounts of wastes and their heat generation rates in this Pyro-Process analysis. These information are very helpful to design a waste container and its quantity also can be determined. The number of container and its heat generation rate will be key factor for the construction of interim storage facilities including a underground disposal site.

  5. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    Energy Technology Data Exchange (ETDEWEB)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  6. Management of radioactive waste gases from the nuclear fuel cycle. Volume I. Comparison of alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Evans, A.G.; Prout, W.E.; Buckner, J.T.; Buckner, M.R.

    1980-12-01

    Alternatives were compared for collection and fixation of radioactive waste gases released during normal operation of the nuclear fuel cycle, and for transportation and storage/disposal of the resulting waste forms. The study used a numerical rating scheme to evaluate and compare the alternatives for krypton-85, iodine-129, and carbon-14; whereas a subjective evaluation, based on published reports and engineering judgement, was made for transportation and storage/disposal options. Based on these evaluations, certain alternatives are recommended for an integrated scheme for waste management of each of the subject waste gases. Phase II of this project, which is concerned with the development of performance criteria for the waste forms associated with the subject gases, will be completed by the end of 1980. This work will be documented as Volume II of this report.

  7. Results from Nevada Nuclear Waste Storage Investigations (NNWSI) Series 3 spent fuel dissolution tests

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.N.

    1990-06-01

    The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Yucca Mountain Project (YMP), formerly the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Specimens prepared from pressurized water reactor fuel rod segments were tested in sealed stainless steel vessels in Nevada Test Site J-13 well water at 85{degree}C and 25{degree}C. The test matrix included three specimens of bare-fuel particles plus cladding hulls, two fuel rod segments with artificially defected cladding and water-tight end fittings, and an undefected fuel rod section with watertight end fittings. Periodic solution samples were taken during test cycles with the sample volumes replenished with fresh J-13 water. Test cycles were periodically terminated and the specimens restarted in fresh J-13 water. The specimens were run for three cycles for a total test duration of 15 months. 22 refs., 32 figs., 26 tabs.

  8. The role of Z-pinch fusion transmutation of waste in the nuclear fuel cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James Dean; Drennen, Thomas E. (Hobart & William Smith College, Geneva, NY); Rochau, Gary Eugene; Martin, William Joseph; Kamery, William (Hobart & William Smith College, Geneva, NY); Phruksarojanakun, Phiphat (University of Wisconsin, Madison, WI); Grady, Ryan (University of Wisconsin, Madison, WI); Cipiti, Benjamin B.; Wilson, Paul Philip Hood (University of Wisconsin, Madison, WI); Mehlhorn, Thomas Alan; Guild-Bingham, Avery (Texas A& M University, College Station, TX); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX)

    2007-10-01

    The resurgence of interest in reprocessing in the United States with the Global Nuclear Energy Partnership has led to a renewed look at technologies for transmuting nuclear waste. Sandia National Laboratories has been investigating the use of a Z-Pinch fusion driver to burn actinide waste in a sub-critical reactor. The baseline design has been modified to solve some of the engineering issues that were identified in the first year of work, including neutron damage and fuel heating. An on-line control feature was added to the reactor to maintain a constant neutron multiplication with time. The transmutation modeling effort has been optimized to produce more accurate results. In addition, more attention was focused on the integration of this burner option within the fuel cycle including an investigation of overall costs. This report presents the updated reactor design, which is able to burn 1320 kg of actinides per year while producing 3,000 MWth.

  9. Geological Disposal Options for the Radioactive Wastes from a Recycling Process of Spent Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Choi, H. J.; Lee, M. S.; Jeong, J. T.; Choi, J. W.; Kim, S. K.; Cho, D. K.; Kuk, D. H.; Cha, J. H

    2008-10-15

    The electricity from the nuclear power plants is around 40 % of total required electricity in Korea and according to the energy development plan, the proportion will be raised about 60 % in near future. To implement this plan, the most important factor is the back-end fuel cycle, namely the safe management of the spent fuel or high level radioactive wastes from the nuclear power plants. Various researches are being carried out to manage the spent fuel effectively in the world. In our country, as one of the management alternatives which is more effective and non-proliferation, pyro-processing method is being developed actively to retrieve reusable uranium and TRU, and to reduce the volume of high level waste from a Nuclear power plant. This is a new dry recycling process. In this report, the amount of various wastes and their characteristics are estimated in a Pyro-process. Based on these information, the geological disposal alternatives are developed. According to the amount and the characteristics of each waste, the concepts of waste packages and the disposal container are developed. And also from the characteristics of the radioactivity and the heat generation, multi-layer of the depth is considered to dispose these wastes. The proposed various alternatives in this report can be used as input data for design of the deep geological disposal system. And they will be improved through the application of the real site data and safety assessment in the future. After then, the final disposal concept will be selected with various assessment and the optimization will be carried out.

  10. Integrated data base report--1995: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The information in this report summarizes the U.S. Department of Energy (DOE) data base for inventories, projections, and characteristics of domestic spent nuclear fuel and radioactive waste. This report is updated annually to keep abreast of continual waste inventory and projection changes in both the government and commercial sectors. Baseline information is provided for DOE program planning purposes and to support DOE program decisions. Although the primary purpose of this document is to provide background information for program planning within the DOE community, it has also been found useful by state and local governments, the academic community, and some private citizens.

  11. Functionalized ultra-porous titania nanofiber membranes as nuclear waste separation and sequestration scaffolds for nuclear fuels recycle.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haiqing; Bell, Nelson S; Cipiti, Benjamin B.; Lewis, Tom Goslee,; Sava, Dorina Florentina; Nenoff, Tina Maria

    2012-09-01

    Advanced nuclear fuel cycle concept is interested in reducing separations to a simplified, one-step process if possible. This will benefit from the development of a one-step universal getter and sequestration material so as a simplified, universal waste form was proposed in this project. We have developed a technique combining a modified sol-gel chemistry and electrospinning for producing ultra-porous ceramic nanofiber membranes with controllable diameters and porous structures as the separation/sequestration materials. These ceramic nanofiber materials have been determined to have high porosity, permeability, loading capacity, and stability in extreme conditions. These porous fiber membranes were functionalized with silver nanoparticles and nanocrystal metal organic frameworks (MOFs) to introduce specific sites to capture gas species that are released during spent nuclear fuel reprocessing. Encapsulation into a durable waste form of ceramic composition was also demonstrated.

  12. Status of nuclear fuel reprocessing, spent fuel storage, and high-level waste disposal. Overview and summary

    Energy Technology Data Exchange (ETDEWEB)

    Varanini, E.E. III; Maullin, R.L.

    1978-01-11

    With regard to the specific question embodied in California's nuclear statutes about the demonstrated and approved permanent terminal disposal of nuclear waste (assuming that the reprocessing question is now most for legislative purposes), the finding of the Energy Commission is that such a technology has not been demonstrated and that it is even questionable to assume that one will be demonstrated before the mid 1980s. Following upon this finding and addressing the broader question of continued implementation of the policy expressed by the nuclear fuel cycle statutes, the evidence indicates that it is not prudent to continue siting nuclear powerplants based on an optimistic assumption that waste management technologies to handle nuclear waste will be developed and scientifically demonstrated. The California Legislature has questioned that optimistic assumption by placing the burden of proof on the developers of a demonstrated, scientifically tested process for the permanent and terminal disposal of nuclear wastes. Such a process does not exist at this time. There are many who are optimistic that the development of such a technology will become a reality in the near future. This overview and the supporting report indicate that this optimism is not warranted. Weapons proliferation and degradation of the biosphere by radioactive waste have proved to be unanticipated, difficult and possibly intractable problems in spite of an overriding confidence that nuclear technology would not present such problems. On the basis of the evidence received by this Commission, there are substantial scientific gaps which preclude proceeding on the basis of faith that all the attendant risks and issues will be resolved.

  13. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  14. Analog information and the Canadian concept for disposal of nuclear fuel waste

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, J.J. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1996-07-01

    AECL, with support from Ontario Hydro under auspices of the Candu Owners Group, has assessed a concept for the safe disposal of nuclear fuel waste in Canada. The disposal concept is to place nuclear fuel waste in corrosion-resistant containers and emplace the containers with sealing materials in an engineered vault at depths of 500 to 1000m in plutonic rock of the Canadian Shield. Humans and the environment would be protected from contaminants in the waste by several barriers; the waste itself, the container, the sealing materials, and the rock. This disposal concept permits a great deal of flexibility in its implementation, which means that a wide range of circumstances could be accommodated. Studies of natural analogues provide important information for evaluating and improving our knowledge and understanding of the disposal concept. Analogue information is used to develop the scenarios and conceptual models, to provide input to databases, and to test models, thereby enhancing the level of confidence in the safety predictions from the assessment models. In addition, natural analogues are valuable illustrative tools when presenting information on the disposal concept to the non-expert and the public.

  15. Uranium recovery from waste of the nuclear fuel cycle plants at IPEN-CNEN/SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Antonio A.; Ferreira, Joao C.; Zini, Josiane; Scapin, Marcos A.; Carvalho, Fatima Maria Sequeira de, E-mail: afreitas@ipen.b, E-mail: jcferrei@ipen.b, E-mail: jzini@ipen.b, E-mail: mascapin@ipen.b, E-mail: fatimamc@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Sodium diuranate (DUS) is a uranium concentrate produced in monazite industry with 80% typical average grade of U{sup 3}O{sup 8}, containing sodium, silicon, phosphorus, thorium and rare earths as main impurities. Purification of such concentrate was achieved at the nuclear fuel cycle pilot plants of uranium at IPEN by nitric dissolution and uranium extraction into an organic phase using TBP/Varsol, while the aqueous phase retains impurities and a small quantity of non extracted uranium; both can be recovered later by precipitation with sodium hydroxide. Then the residual sodium diuranate goes to a long term storage at a safeguards deposit currently reaching 20 tonnes. This work shows how uranium separation and purification from such bulk waste can be achieved by ion exchange chromatography, aiming at decreased volume and cost of storage, minimization of environmental impacts and reduction of occupational doses. Additionally, the resulting purified uranium can be reused in nuclear fuel cycle.(author)

  16. Rethinking nuclear fuel recycling.

    Science.gov (United States)

    von Hippel, Frank N

    2008-05-01

    Spent nuclear fuel contains plutonium which can be extracted and used in new fuel. To reduce the amount of long-lived radioactive waste, the U.S. Department of Energy has proposed reprocessing spent fuel in this way and then "burning" the plutonium in special reactors. But reprocesssing is very expensive. Also, spent fuel emits lethal radiation, whereas separated plutonium can be handled easily. So reprocessing invites the possibility that terrorists might steal plutonium and construct an atom bormb. The authors argue against reprocessing and for storing the waste in casks until an underground repository is ready.

  17. Spent fuel, plutonium and nuclear waste: long-term management; Le combustible use et le plutonium en tant que dechets nucleaires: gestion a long terme

    Energy Technology Data Exchange (ETDEWEB)

    Collard, G

    1998-11-01

    Different options for the management of nuclear waste arising from the nuclear fuel cycle are discussed. Special emphasis is on reprocessing followed by geological disposal, geological disposal of reprocessing waste, direct geological disposal of spent nuclear fuel, long term storage. Particular emphasis is on the management of plutonium including recycling, immobilisation and disposal, partitioning and transmutation.

  18. Thirteenth annual report of the Technical Advisory Committee on the Nuclear Fuel Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-15

    This report details activities since the last reporting period by the Technical Advisory Committee (TAC). The emphasis of the work in the Canadian Nuclear Fuel Waste Management Program (CNFWMP) has been on the writing of the Environmental Impact Statement (EIS) and the associated set of the primary reference document as well as supporting documents. These are in preparation for submission to the Environmental Assessment Review Panel who will lead the national evaluation of the disposal concept under the auspices of the Federal Environmental Assessment Review Office (FEARO).

  19. Treatment and recycling of spent nuclear fuel. Actinide partitioning - Application to waste management

    Energy Technology Data Exchange (ETDEWEB)

    Abonneau, E.; Baron, P.; Berthon, C.; Berthon, L.; Beziat, A.; Bisel, I.; Bonin, L.; Bosse, E.; Boullis, B.; Broudic, J.C.; Charbonnel, M.C.; Chauvin, N.; Den Auwer, C.; Dinh, B.; Duhamet, J.; Escleine, J.M.; Grandjean, S.; Guilbaud, P.; Guillaneux, D.; Guillaumont, D.; Hill, C.; Lacquement, J.; Masson, M.; Miguirditchian, M.; Moisy, P.; Pelletier, M.; Ravenet, A.; Rostaing, C.; Royet, V.; Ruas, A.; Simoni, E.; Sorel, C.; Vaudano, A.; Venault, L.; Warin, D.; Zaetta, A.; Pradel, P.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Forestier, A.; Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Sollogoob, P.; Vernaz, E.; Bazile, F.; Parisot, J.P.; Finot, P.; Roberts, J.F

    2008-07-01

    subsequent to its in-reactor dwell time, spent fuel still contains large amounts of materials that are recoverable, for value-added energy purposes (uranium, plutonium), together with fission products, and minor actinides, making up the residues from nuclear reactions. The treatment and recycling of spent nuclear fuel, as implemented in France, entail that such materials be chemically partitioned. The development of the process involved, and its deployment on an industrial scale stand as a high achievement of French science, and technology. Treatment and recycling allow both a satisfactory management of nuclear waste to be implemented, and substantial savings, in terms of fissile material. Bolstered of late as it has been, due to spectacularly skyrocketing uranium prices, this strategy is bound to become indispensable, with the advent of the next generation of fast reactors. This Monograph surveys the chemical process used for spent fuel treatment, and its variants, both current, and future. It outlines currently ongoing investigations, setting out the challenges involved, and recent results obtained by CEA. (authors)

  20. Limitation of the EIA Process for the assessment of nuclear fuel waste disposal in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B.L.; Kuhn, R.G. [Guelph Univ., ON (Canada). Dept. of Geography

    1999-12-01

    The Canadian environmental impact assessment process for the Nuclear Fuel Waste Management and Disposal Concept was completed in 1994. Almost four years later, in February 1998, the Review Panel released its report. The viewpoints of those who participated in the assessment process is archived in the thousands of pages of hearing testimony, meeting transcripts and written briefs. One of the most contentious issues raised, and one that continues to plague management in Canada, is the debate surrounding how the problem of NFW waste management should be defined. The purpose of this paper is to critically assess the problem frame of the Canadian NFW management disposal concept EIS. This will be accomplished through an analysis of stakeholder participation and views, and through an evaluation of the range and nature of the information considered legitimate or constrained in the Canadian process.

  1. Report on interim storage of spent nuclear fuel. Midwestern high-level radioactive waste transportation project

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  2. DEVELOPMENT OF CERAMIC WASTE FORMS FOR AN ADVANCED NUCLEAR FUEL CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Billings, A.; Brinkman, K.; Fox, K.

    2010-11-30

    A series of ceramic waste forms were developed and characterized for the immobilization of a Cesium/Lanthanide (CS/LN) waste stream anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3} and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores and other minor metal titanate phases. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy (SEM/EDS) results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. Identification of excess Al{sub 2}O{sub 3} via XRD and SEM/EDS in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms.

  3. Licensing procedures for a dedicated ship for carrying spent nuclear fuel and radioactive waste. Report from workshop held at GOSAOMNADZOR, Moscow 2 -3 July 2001

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, Margorzata K.; Bergman, Curt; Markarov, Valentin

    2001-07-01

    The report describes information exchange and discussion about the licensing principles and procedures for spent nuclear fuel and radioactive waste transportation at sea. Russian health, environment and safety requirements for transportation of waste by ships. (Author)

  4. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1.

  5. Swedish nuclear waste efforts

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981.

  6. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 3, Calculated activity profiles of spent nuclear fuel assembly hardware for boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Short, S.M.; Luksic, A.T.; Schutz, M.E.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel as required by the Nuclear Waste Policy Act of 1982. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly that is also radioactive and required disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report presents a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volume 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1.

  7. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 2, Calculated activity profiles of spent nuclear fuel assembly hardware for pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Short, S.M.; Luksic, A.T.; Lotz, T.L.; Schutz, M.E.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel as required by the Nuclear Waste Policy Act of 1982. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly remains that is also radioactive and requires disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report present a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from Laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volumes 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1.

  8. Issues related to the construction and operation of a geological disposal facility for nuclear fuel waste in crystalline rock - the Canadian experience

    Energy Technology Data Exchange (ETDEWEB)

    Allan, C.J.; Baumgartner, P.; Ohta, M.M.; Simmons, G.R.; Whitaker, S.H. [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs

    1997-12-31

    This paper covers the overview of the Canadian nuclear fuel waste management program, the general approach to the siting, design, construction, operation and closure of a geological disposal facility, the implementing disposal, and the public involvement in implementing geological disposal of nuclear fuel waste. And two appendices are included. 45 refs., 5 tabs., 10 figs.

  9. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

  10. Corrosion of copper containers prior to saturation of a nuclear fuel waste disposal vault

    Energy Technology Data Exchange (ETDEWEB)

    King, F.; Kolar, M

    1997-12-01

    The buffer material surrounding the containers in a Canadian nuclear fuel waste disposal vault will partially desiccate as a result of the elevated temperature at the container surface. This will lead to a period of corrosion in a moist air atmosphere. Corrosion will either take the form of slow oxidation if the container surface remains dry or aqueous electrochemical corrosion if the surface is wetted by a thin liquid film. The relevant literature is reviewed, from which it is concluded that corrosion should be uniform in nature, except if the surface is wetted, in which case localized corrosion is a possibility. A quantitative analysis of the extent and rate of uniform corrosion during the unsaturated period is presented. Two bounding cases are considered: first, the case of slow oxidation in moist air following either logarithmic or parabolic oxide-growth kinetics and, second, the case of electrochemically based corrosion occurring in a thin liquid film uninhibited by the growth of corrosion products. (author)

  11. Radionuclide composition in nuclear fuel waste. Calculations performed by ORIGEN2; Radionuklidinnehaall i utbraent kaernbraensle. Beraekningar med ORIGEN2

    Energy Technology Data Exchange (ETDEWEB)

    Lyckman, C.

    1996-01-01

    The report accounts for results from calculations on the content of radionuclides in nuclear fuel waste. It also accounts for the results from calculations on the neutron flow from spent fuel, which is very important during transports. The calculations have been performed using the ORIGEN2 software. The results have been compared to other results from earlier versions of ORIGEN and some differences have been discovered. This is due to the updating of the software. 7 refs, 10 figs, 15 tabs.

  12. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  13. 78 FR 56775 - Waste Confidence-Continued Storage of Spent Nuclear Fuel

    Science.gov (United States)

    2013-09-13

    ... generated in light-water nuclear power reactors. It also covers mixed oxide (MOX) fuel,\\4\\ since the MOX... (see Section 2.1.1.3 of the DGEIS). \\4\\ Mixed oxide fuel (often called MOX fuel) is a type of...

  14. A science-based approach to understanding waste form durability in open and closed nuclear fuel cycles

    Science.gov (United States)

    Peters, M. T.; Ewing, R. C.

    2007-05-01

    There are two compelling reasons for understanding source term and near-field processes in a radioactive waste geologic repository. First, almost all of the radioactivity is initially in the waste form, mainly in the spent nuclear fuel (SNF) or nuclear waste glass. Second, over long periods, after the engineered barriers are degraded, the waste form is a primary control on the release of radioactivity. Thus, it is essential to know the physical and chemical state of the waste form after hundreds of thousands of years. The United States Department of Energy's Yucca Mountain Repository Program has initiated a long-term program to develop a basic understanding of the fundamental mechanisms of radionuclide release and a quantification of the release as repository conditions evolve over time. Specifically, the research program addresses four critical areas: (a) SNF dissolution mechanisms and rates; (b) formation and properties of U6+-secondary phases; (c) waste form-waste package interactions in the near-field; and (d) integration of in-package chemical and physical processes. The ultimate goal is to integrate the scientific results into a larger scale model of source term and near-field processes. This integrated model will be used to provide a basis for understanding the behaviour of the source term over long time periods (greater than 105 years). Such a fundamental and integrated experimental and modelling approach to source term processes can also be readily applied to development of advanced waste forms as part of a closed nuclear fuel cycle. Specifically, a fundamental understanding of candidate waste form materials stability in high temperature/high radiation environments and near-field geochemical/hydrologic processes could enable development of advanced waste forms 'tailored' to specific geologic settings.

  15. Results from NNWSI [Nevada Nuclear Waste Storage Investigations] Series 2 bare fuel dissolution tests

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.N.

    1990-09-01

    The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Two bare spent fuel specimens plus the empty cladding hulls were tested in NNWSI J-13 well water in unsealed fused silica vessels under ambient hot cell air conditions (25{degree}C) in the currently reported tests. One of the specimens was prepared from a rod irradiated in the H. B. Robinson Unit 2 reactor and the other from a rod irradiated in the Turkey Point Unit 3 reactor. Results indicate that most radionuclides of interest fall into three groups for release modeling. The first group principally includes the actinides (U, Np, Pu, Am, and Cm), all of which reached solubility-limited concentrations that were orders of magnitude below those necessary to meet the NRC 10 CFR 60.113 release limits for any realistic water flux predicted for the Yucca Mountain repository site. The second group is nuclides of soluble elements such as Cs, Tc, and I, for which release rates do not appear to be solubility-limited and may depend on the dissolution rate of fuel. In later test cycles, {sup 137}Cs, {sup 90}Sr, {sup 99}Tc, and {sup 129}I were continuously released at rates between about 5 {times} 10{sup {minus}5} and 1 {times} 10{sup {minus}4} of inventory per year. The third group is radionuclides that may be transported in the vapor phase, of which {sup 14}C is of primary concern. Detailed test results are presented and discussed. 17 refs., 15 figs., 21 tabs.

  16. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  17. STATE OF THE ART OF DRILLING LARGE DIAMETER BOREHOLES FOR DEPOSITION OF HIGH LEVEL WASTE AND SPENT NUCLEAR FUEL

    Directory of Open Access Journals (Sweden)

    Trpimir Kujundžić

    2012-07-01

    Full Text Available Deep geological disposal is internationally recognized as the safest and most sustainable option for the long-term management of high-level radioactive waste. Mainly, clay rock, salt rock and crystalline rock are being considered as possible host rocks. Different geological environment in different countries led to the various repository concepts. Main feature of the most matured repository concept is that canisters with spent nuclear fuel are emplaced in vertical or horizontal large diameter deposition holes. Drilling technology of the deposition holes depends on repository concept and geological and geomechanical characteristics of the rock. The deposition holes are mechanically excavated since drill & blast is not a possible method due to requirements on final geometry like surface roughness etc. Different methods of drilling large diameter boreholes for deposition of high-level waste and spent nuclear fuel are described. Comparison of methods is made considering performance and particularities in technology.

  18. Expected environments in high-level nuclear waste and spent fuel repositories in salt

    Energy Technology Data Exchange (ETDEWEB)

    Claiborne, H.C.; Rickertsen, L.D., Graham, R.F.

    1980-08-01

    The purpose of this report is to describe the expected environments associated with high-level waste (HLW) and spent fuel (SF) repositories in salt formations. These environments include the thermal, fluid, pressure, brine chemistry, and radiation fields predicted for the repository conceptual designs. In this study, it is assumed that the repository will be a room and pillar mine in a rock-salt formation, with the disposal horizon located approx. 2000 ft (610 m) below the surface of the earth. Canistered waste packages containing HLW in a solid matrix or SF elements are emplaced in vertical holes in the floor of the rooms. The emplacement holes are backfilled with crushed salt or other material and sealed at some later time. Sensitivity studies are presented to show the effect of changing the areal heat load, the canister heat load, the barrier material and thickness, ventilation of the storage room, and adding a second row to the emplacement configuration. The calculated thermal environment is used as input for brine migration calculations. The vapor and gas pressure will gradually attain the lithostatic pressure in a sealed repository. In the unlikely event that an emplacement hole will become sealed in relatively early years, the vapor space pressure was calculated for three scenarios (i.e., no hole closure - no backfill, no hole closure - backfill, and hole closure - no backfill). It was assumed that the gas in the system consisted of air and water vapor in equilibrium with brine. A computer code (REPRESS) was developed assuming that these changes occur slowly (equilibrium conditions). The brine chemical environment is outlined in terms of brine chemistry, corrosion, and compositions. The nuclear radiation environment emphasized in this report is the stored energy that can be released as a result of radiation damage or crystal dislocations within crystal lattices.

  19. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

  20. Assessment of the feasibility of indefinite containment of canadian nuclear fuel wastes; Evaluation de la faisabilite du confinement illimite des dechets de combustible nucleaire canadiens

    Energy Technology Data Exchange (ETDEWEB)

    Shoesmith, D.W.; King, F.; Ikeda, B.M.

    1995-05-01

    This report presents an analysis of the expected corrosion behavior of nuclear fuel waste containers in a conceptual Canadian disposal vault. The container materials considered are dilute Ti alloys (Grades-2, -12 and -16) and oxygen-free copper.

  1. Nuclear Waste Risk Perceptions and Attitudes in Siting a Final Repository for Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, Lennart [Stockholm School of Economics (Sweden). Center for Risk Research

    2006-09-15

    some extent unexplained as well. The reasons for the development towards more positive attitudes cannot be determined with any certainty at this point. However, it should be mentioned that attitude to nuclear power per se became more positive during the studied period, both in the two municipalities and in the nation as a whole. Nuclear power attitude was strongly correlated with policy intention in the present data (0.67). Yet, adding nuclear power attitude to the analysis of covariance model mentioned above did not result in a substantially weaker effect of the time factor (or of gender). This result suggests that whatever factor accounts for the changes observed, beyond the ones measured and investigated here, probably are area specific and possibly connected with the SKB program of information - a question for future research to answer.

  2. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  3. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  4. The future of the nuclear wastes and the spent fuels at the United States; Le devenir des dechets nucleaires et des combustibles uses aux Etats-Unis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The USA regulation distinguishes three classes of nuclear wastes: the low activity wastes under the federal states control, the wastes contaminated by long life radionuclides (transuranic elements) and the high activity wastes. The two last classes are controlled by the DOE (Department of energy). The different classes management are discussed as the DOE obligations towards the operators, the storage project of Yucca Mountain and Private fuel storage of Skull Valley. (A.L.B.)

  5. Disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste.

  6. Nuclear fuel reprocessing and high level waste disposal: informational hearings. Volume V. Reprocessing. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-03-08

    Testimony was presented by a four member panel on the commercial future of reprocessing. Testimony was given on the status of nuclear fuel reprocessing in the United States. The supplemental testimony and materials submitted for the record are included in this report. (LK)

  7. Storage and Reprocessing of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    Addressing the problem of waste, especially high-level waste (HLW), is a requirement of the nuclear fuel cycle that cannot be ignored. We explore the two options employed currently, long-term storage and reprocessing.

  8. Public acceptability of the use of gamma rays from spent nuclear fuel as a hazardous waste treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Mincher, B.J.; Wells, R.P.; Reilly, H.J.

    1992-01-01

    Three methods were used to estimate public reaction to the use of gamma irradiation of hazardous wastes as a hazardous waste treatment process. The gamma source of interest is spent nuclear fuel. The first method is Benefit-Risk Decision Making, where the benefits of the proposed technology are compared to its risks. The second analysis compares the proposed technology to the other, currently used nuclear technologies and estimates public reaction based on that comparison. The third analysis is called Analysis of Public Consent, and is based on the professional methods of the Institute for Participatory Management and Planning. The conclusion of all three methods is that the proposed technology should not result in negative public reaction sufficient to prevent implementation.

  9. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; Pierce, David A.; Ebert, William L.; Williams, Benjamin D.; Snyder, Michelle M. V.; Frank, Steven M.; George, Jaime L.; Kruska, Karen

    2017-11-01

    This paper provides an overview of research evaluating the use of tellurite glass as a waste form for salt wastes from electrochemical processing. The capacities to immobilize different salts were evaluated including: a LiCl-Li2O oxide reduction salt (for oxide fuel) containing fission products, a LiCl-KCl eutectic salt (for metallic fuel) containing fission products, and SrCl2. Physical and chemical properties of the glasses were characterized by using X-ray diffraction, bulk density measurements, chemical durability tests, scanning electron microscopy, and energy dispersive X-ray emission spectroscopy. These glasses were found to accommodate high concentrations of halide salts and have high densities. However, improvements are needed to meet chemical durability requirements.

  10. An analysis of the back end of the nuclear fuel cycle with emphasis on high-level waste management, volume 1

    Science.gov (United States)

    1977-01-01

    The programs and plans of the U.S. government for the "back end of the nuclear fuel cycle" were examined to determine if there were any significant technological or regulatory gaps and inconsistencies. Particular emphasis was placed on analysis of high-level nuclear waste management plans, since the permanent disposal of radioactive waste has emerged as a major factor in the public acceptance of nuclear power. The implications of various light water reactor fuel cycle options were examined including throwaway, stowaway, uranium recycle, and plutonium plus uranium recycle. The results of this study indicate that the U.S. program for high-level waste management has significant gaps and inconsistencies. Areas of greatest concern include: the adequacy of the scientific data base for geological disposal; programs for the the disposal of spent fuel rods; interagency coordination; and uncertainties in NRC regulatory requirements for disposal of both commercial and military high-level waste.

  11. Fully ceramic nuclear fuel and related methods

    Science.gov (United States)

    Venneri, Francesco; Katoh, Yutai; Snead, Lance Lewis

    2016-03-29

    Various embodiments of a nuclear fuel for use in various types of nuclear reactors and/or waste disposal systems are disclosed. One exemplary embodiment of a nuclear fuel may include a fuel element having a plurality of tristructural-isotropic fuel particles embedded in a silicon carbide matrix. An exemplary method of manufacturing a nuclear fuel is also disclosed. The method may include providing a plurality of tristructural-isotropic fuel particles, mixing the plurality of tristructural-isotropic fuel particles with silicon carbide powder to form a precursor mixture, and compacting the precursor mixture at a predetermined pressure and temperature.

  12. Semi-annual status report of the Canadian Nuclear Fuel Waste Management Program, April 1--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, E.D. [comp.

    1992-02-01

    This report is the eleventh in a series of semi-annual status reports on the research and development program for the safe management and disposal of Canada's nuclear fuel waste. it describes progress achieved in the three major subprograms, engineered systems, natural systems and performance assessment, from 1991 April 1 to September 30. It also gives a brief description of the activities being carried out in preparation for the public and governmental review of the disposal concept. Since 1987, this program has been jointly funded by AECL and Ontario Hydro under the auspices of the CANDU Owners Group (COG).

  13. Modeling the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  14. STABILIZING GLASS BONDED WASTE FORMS CONTAINING FISSION PRODUCTS SEPARATED FROM SPENT NUCLEAR FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth J. Bateman; Charles W. Solbrig

    2008-07-01

    A model has been developed to represent the stresses developed when a molten, glass-bonded brittle cylinder (used to store nuclear material) is cooled from high temperature to working temperature. Large diameter solid cylinders are formed by heating glass or glass-bonded mixtures (mixed with nuclear waste) to high temperature (915°C). These cylinders must be cooled as the final step in preparing them for storage. Fast cooling time is desirable for production; however, if cooling is too fast, the cylinder can crack into many pieces. To demonstrate the capability of the model, cooling rate cracking data were obtained on small diameter (7.8 cm diameter) glass-only cylinders. The model and experimental data were combined to determine the critical cooling rate which separates the non-cracking stable glass region from the cracked, non-stable glass regime. Although the data have been obtained so far only on small glass-only cylinders, the data and model were used to extrapolate the critical-cooling rates for large diameter ceramic waste form (CWF) cylinders. The extrapolation estimates long term cooling requirements. While a 52-cm diameter cylinder (EBR-II-waste size) can be cooled to 100°C in 70 hours without cracking, a 181.5-cm diameter cylinder (LWR waste size) requires 35 days to cool to 100°C. These cooling times are long enough that verification of these estimates are required so additional experiments are planned on both glass only and CWF material.

  15. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  16. Vented nuclear fuel element

    Science.gov (United States)

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  17. CESAR5.3: An Industrial Tool for Nuclear Fuel and Waste Characterization with Associated Qualification - 12067

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, Jean-Marc; Eschbach, Romain [CEA, DEN, DER, SPRC, LECy, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Launay, Agnes; Binet, Christophe [AREVA-NC La Hague, F-50444 Beaumont-Hague (France); THRO, Jean-Francois [AREVA-NC BU Recyclage, Tour AREVA, F-92084 Paris-La-Defense (France)

    2012-07-01

    CEA and AREVA-NC have developed and used a depletion code named CESAR for 30 years. This user-friendly industrial tool provides fast characterizations for all types of nuclear fuel (PWR / UOX or MOX or reprocess Uranium, BWR / UOX or MOX, MTR and SFR) and the wastes associated. CESAR can evaluate 100 heavy nuclides, 200 fission products and 150 activation products (with Helium and Tritium formation). It can also characterize the structural material of the fuel (Zircalloy, stainless steel, M5 alloy). CESAR provides depletion calculations for any reactor irradiation history and from 3 months to 1 million years of cooling time. CESAR5.3 is based on the latest calculation schemes recommended by the CEA and on an international nuclear data base (JEFF-3.1.1). It is constantly checked against the CEA referenced and qualified depletion code DARWIN. CESAR incorporates the CEA qualification based on the dissolution analyses of fuel rod samples and the 'La Hague' reprocessing plant feedback experience. AREVA-NC uses CESAR intensively at 'La Hague' plant, not only for prospective studies but also for characterizations at different industrial facilities all along the reprocessing process and waste conditioning (near 150 000 calculations per year). CESAR is the reference code for AREVA-NC. CESAR is used directly or indirectly with other software, data bank or special equipment in many parts of the La Hague plants. The great flexibility of CESAR has rapidly interested other projects. CESAR became a 'tool' directly integrated in some other softwares. Finally, coupled with a Graphical User Interface, it can be easily used independently, responding to many needs for prospective studies as a support for nuclear facilities or transport. An English version is available. For the principal isotopes of U and Pu, CESAR5 benefits from the CEA experimental validation for the PWR UOX fuels, up to a burnup of 60 GWd/t and for PWR MOX fuels, up to 45 GWd/t. CESAR

  18. Risk-informed assessment of radionuclide release from dissolution of spent nuclear fuel and high-level waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae M., E-mail: tae.ahn@nrc.gov

    2017-06-15

    Highlights: • Dissolution of HLW waste form was assessed with long-term risk informed approach. • The radionuclide release rate decreases with time from the initial release rate. • Fast release radionuclides can be dispersed with discrete container failure time. • Fast release radionuclides can be restricted by container opening area. • Dissolved radionuclides may be further sequestered by sorption or others means. - Abstract: This paper aims to detail the different parameters to be considered for use in an assessment of radionuclide release. The dissolution of spent nuclear fuel and high-level nuclear waste glass was considered for risk and performance insights in a generic disposal system for more than 100,000 years. The probabilistic performance assessment includes the waste form, container, geology, and hydrology. Based on the author’s previous extended work and data from the literature, this paper presents more detailed specific cases of (1) the time dependence of radionuclide release, (2) radionuclide release coupled with container failure (rate-limiting process), (3) radionuclide release through the opening area of the container and cladding, and (4) sequestration of radionuclides in the near field after container failure. These cases are better understood for risk and performance insights. The dissolved amount of waste form is not linear with time but is higher at first. The radionuclide release rate from waste form dissolution can be constrained by container failure time. The partial opening area of the container surface may decrease radionuclide release. Radionuclides sequestered by various chemical reactions in the near field of a failed container may become stable with time as the radiation level decreases with time.

  19. DOCUMENTATION OF NATIONAL WEATHER CONDITIONS AFFECTING LONG-TERM DEGRADATION OF COMMERCIAL SPENT NUCLEAR FUEL AND DOE SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE

    Energy Technology Data Exchange (ETDEWEB)

    W. L. Poe, Jr.; P.F. Wise

    1998-11-01

    The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facility pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage.

  20. Nuclear fuels - Present and future

    Science.gov (United States)

    Olander, D.

    2009-06-01

    The important developments in nuclear fuels and their problems are reviewed and compared with the status of present light-water reactor fuels. The limitations of LWR fuels are reviewed with respect to important recent concerns, namely provision of outlet coolant temperatures high enough for use in H 2 production, destruction of plutonium to eliminate proliferation concerns, and burning of the minor actinides to reduce the waste repository heat load and long-term radiation hazard. In addition to current oxide-based fuel rod designs, the hydride fuel with liquid-metal thermal bonding of the fuel-cladding gap is covered. Finally, two of the most promising Generation IV reactor concepts, the very high temperature reactor and the sodium fast reactor, and the accompanying reprocessing technologies, aqueous-based UREX+1a and pyrometallurgical, are summarized. In all of the topics covered, the thermodynamics involved in the fuel's behavior under irradiation and in the reprocessing schemes are emphasized.

  1. Toward a Greenish Nuclear Fuel Cycle: Ionic Liquids as Solvents for Spent Nuclear Fuel Reprocessing and Other Decontamination Processes for Contaminated Metal Waste

    Science.gov (United States)

    Straka, Martin

    2016-12-01

    The final disposition of spent nuclear fuel (SNF) is an area that requires innovative solutions. The use of ionic liquids (ILs) has been examined as one means to remediate SNF in a variety of different chemical environments and with different chemical starting materials. The effectiveness of various ILs for SNF reprocessing, as well as the reaction chemistry that occurs in them, is discussed.

  2. Composite nuclear fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Dollard, W.J.; Ferrari, H.M.

    1982-04-27

    An open lattice elongated nuclear fuel assembly including small diameter fuel rods disposed in an array spaced a selected distance above an array of larger diameter fuel rods for use in a nuclear reactor having liquid coolant flowing in an upward direction. Plenums are preferably provided in the upper portion of the upper smaller diameter fuel rods and in the lower portion of the lower larger diameter fuel rods. Lattice grid structures provide lateral support for the fuel rods and preferably the lowest grid about the upper rods is directly and rigidly affixed to the highest grid about the lower rods.

  3. Extraction and reductive stripping of pertechnetate from spent nuclear fuel waste streams.

    Energy Technology Data Exchange (ETDEWEB)

    Shkrob, I.; Marin, T.; Stepinski, D.; Vandegrift, G.; Muntean, J.; Dietz, M. (Chemical Sciences and Engineering Division); (Univ. of Wisconsin)

    2011-01-01

    An approach directed at rapid sequestration and disposal of technetium-99 from UREX (uranium extraction) liquid waste streams is presented. This stream is generated during reprocessing of light-water-reactor spent fuel to recycle the actinides and separate fission products for waste disposal. U and Tc are co-extracted from a nitric acid solution using tri-n-butylphosphate in dodecane, so that Tc(VII) is present in the strip solution after the actinide separations. The goal is to separate uranyl from the pertechnetate in this U-Tc stream and then sequester Tc in the metallic form. Our approach is based on reductive stripping of pertechnetate either from aqueous solution (for column extractions) or organic solvents (for liquid-liquid extractions). In both of these methods, metallic zinc in the presence of formic acid serves as a reducing agent, and {sup 99}Tc is recovered as a co-precipitate of Zn(II) hydroxide and hydrous Tc(IV) oxide, with a Zn:Tc ratio between 1:1 and 2:1 mol/mol. This solid residue can be reduced to a Zn-Tc alloy by high temperature (500-700 C) hydrogenation, and the resulting heterophase alloy can be added to a metallic Fe-Zr-Mo waste form that is processed at 1600 C, with subsequent loss of Zn by evaporation. Alternatively, Zn and Tc can be separated and {sup 99}Tc sequestered as NH{sub 4}TcO{sub 4} for further reduction to Tc(0) metal. The aqueous Zn reduction process removes {approx}90% of {sup 99}Tc per cycle. The nonaqueous Zn reduction in 1:1 methanol-formic acid removes 60-70% of {sup 99}Tc per cycle, depending on the extracting agent (such as a tetraalkylammonium nitrate). The extracting agent is recycled in the process. The pertechnetate is extracted from the aqueous phase into 1,2-dichloroethane, which is removed by evaporation and reused. The residue is either calcined and steam reformed to Tc(0) or processed by the nonaqueous Zn reduction method. These methods can be used not only to remove the pertechnetate from the U-Tc product

  4. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  5. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  6. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  7. EQ6 Calculations for Chemical Degradation Of N Reactor (U-Metal) Spent Nuclear Fuel Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2001-02-27

    The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the N Reactor, a graphite moderated reactor at the Department of Energy's (DOE) Hanford Site (ref. 1). The N Reactor core was fueled with slightly enriched (0.947 wt% and 0.947 to 1.25 wt% {sup 235}U in Mark IV and Mark IA fuels, respectively) U-metal clad in Zircaloy-2 (Ref. 1, Sec. 3). Both types of N Reactor SNF have been considered for disposal at the proposed Yucca Mountain site. For some WPs, the outer shell and inner shell may breach (Ref. 3) allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing two multi-canister overpacks (MCO) with either six baskets of Mark IA or five baskets of Mark IV intact N Reactor SNF rods (Ref. 1, Sec. 4) and two high-level waste (HLW) glass pour canisters (GPCs) arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which fissile uranium will remain in the WP after corrosion/dissolution of the initial WP configuration (2) The extent to which fissile uranium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations) of the simulations, is limited

  8. Hazard Evaluation for Storage of Spent Nuclear Fuel (SNF) Sludge at the Solid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    SCHULTZ, M.V.

    2000-08-22

    As part of the Spent Nuclear Fuel (SNF) storage basin clean-up project, sludge that has accumulated in the K Basins due to corrosion of damaged irradiated N Reactor will be loaded into containers and placed in interim storage. The Hanford Site Treatment Complex (T Plant) has been identified as the location where the sludge will be stored until final disposition of the material occurs. Long term storage of sludge from the K Basin fuel storage facilities requires identification and analysis of potential accidents involving sludge storage in T Plant. This report is prepared as the initial step in the safety assurance process described in DOE Order 5480.23, Nuclear Safety Analysis Reports and HNF-PRO-704, Hazards and Accident Analysis Process. This report documents the evaluation of potential hazards and off-normal events associated with sludge storage activities. This information will be used in subsequent safety analyses, design, and operations procedure development to ensure safe storage. The hazards evaluation for the storage of SNF sludge in T-Plant used the Hazards and Operability Analysis (HazOp) method. The hazard evaluation identified 42 potential hazardous conditions. No hazardous conditions involving hazardous/toxic chemical concerns were identified. Of the 42 items identified in the HazOp study, eight were determined to have potential for onsite worker consequences. No items with potential offsite consequences were identified in the HazOp study. Hazardous conditions with potential onsite worker or offsite consequences are candidates for quantitative consequence analysis. The hazardous conditions with potential onsite worker consequences were grouped into two event categories, Container failure due to overpressure - internal to T Plant, and Spill of multiple containers. The two event categories will be developed into accident scenarios that will be quantitatively analyzed to determine release consequences. A third category, Container failure due to

  9. Radiological protection regulation during spent nuclear fuel and radioactive waste management in the western branch of the Federal State Unitary Enterprise 'SevRAO'.

    Science.gov (United States)

    Simakov, A V; Sneve, M K; Abramov, Yu V; Kochetkov, O A; Smith, G M; Tsovianov, A G; Romanov, V V

    2008-12-01

    The site of temporary storage of spent nuclear fuel and radioactive waste, situated at Andreeva Bay in Northwest Russia, was developed in the 1960s, and it has carried out receipt and storage of fresh and spent nuclear fuel, and solid and liquid radioactive waste generated during the operation of nuclear submarines and nuclear-powered icebreakers. The site is now operated as the western branch of the Federal State Unitary Enterprise, SevRAO. In the course of operation over several decades, the containment barriers in the Spent Nuclear Fuel and Radioactive Waste storage facilities partially lost their containment effectiveness, so workshop facilities and parts of the site became contaminated with radioactive substances. This paper describes work being undertaken to provide an updated regulatory basis for the protection of workers during especially hazardous remediation activities, necessary because of the unusual radiation conditions at the site. It describes the results of recent survey work carried out by the Burnasyan Federal Medical Biophysical Centre, within a programme of regulatory cooperation between the Norwegian Radiation Protection Authority and the Federal Medical-Biological Agency of Russia. The survey work and subsequent analyses have contributed to the development of special regulations setting out radiological protection requirements for operations planned at the site. Within these requirements, and taking account of a variety of other factors, a continuing need arises for the implementation of optimisation of remediation at Andreeva Bay.

  10. Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Michael F. Simpson; Jack D. Law

    2010-02-01

    This is an a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. No formal abstract was required for the article. The full article will be attached.

  11. Politics of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Colglazier, E.W. Jr. (eds.)

    1982-01-01

    In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administration as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments. (DP)

  12. Nuclear fuel element

    Science.gov (United States)

    Meadowcroft, Ronald Ross; Bain, Alastair Stewart

    1977-01-01

    A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

  13. Nuclear Waste and Ethics

    Energy Technology Data Exchange (ETDEWEB)

    Damveld, Herman [Groningen (Netherlands)

    2003-10-01

    In the past years in almost all conferences on storage of nuclear waste, ethics has been considered as an important theme. But what is ethics? We will first give a sketch of this branch of philosophy. We will then give a short explanation of the three principal ethical theories. In the discussion about storage of nuclear waste, the ethical theory of utilitarianism is often implicitly invoked. In this system future generations weigh less heavily than the present generation, so that people of the future are not considered as much as those now living. We reject this form of reasoning. The discussion about nuclear waste is also sometimes pursued from ethical points of departure such as equality and justice. But many loose ends remain in these arguments, which gives rise to the question of whether the production and storage of nuclear waste is responsible.

  14. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: reprocessing light-water reactor fuel. [Radiation dose commitment to human populations from radioactive effluents released to environment

    Energy Technology Data Exchange (ETDEWEB)

    Finney, B.C.; Blanco, R.E.; Dahlman, R.C.; Hill, G.S.; Kitts, F.G.; Moore, R.E.; Witherspoon, J.P.

    1976-10-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from a model nuclear fuel reprocessing plant which processes light-water reactor (LWR) fuels, and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term as low as reasonably achievable in relation to limiting the release of radioactive materials from nuclear facilities. The base case model plant is representative of current plant technology and has an annual capacity of 1500 metric tons of LWR fuel. Additional radwaste treatment systems are added to the base case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The cost for the added waste treatment operations and the corresponding dose commitments are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases is in an early stage of development and is not suitable for immediate use. The methodology used in estimating the costs, and the radiological doses, detailed calculations, and tabulations are presented in Appendix A and ORNL-4992. This report is a revision of the original study (ORNL/TM-4901).

  15. Modeling minor actinide multiple recycling in a lead-cooled fast reactor to demonstrate a fuel cycle without long-lived nuclear waste

    Directory of Open Access Journals (Sweden)

    Stanisz Przemysław

    2015-09-01

    Full Text Available The concept of closed nuclear fuel cycle seems to be the most promising options for the efficient usage of the nuclear energy resources. However, it can be implemented only in fast breeder reactors of the IVth generation, which are characterized by the fast neutron spectrum. The lead-cooled fast reactor (LFR was defined and studied on the level of technical design in order to demonstrate its performance and reliability within the European collaboration on ELSY (European Lead-cooled System and LEADER (Lead-cooled European Advanced Demonstration Reactor projects. It has been demonstrated that LFR meets the requirements of the closed nuclear fuel cycle, where plutonium and minor actinides (MA are recycled for reuse, thereby producing no MA waste. In this study, the most promising option was realized when entire Pu + MA material is fully recycled to produce a new batch of fuel without partitioning. This is the concept of a fuel cycle which asymptotically tends to the adiabatic equilibrium, where the concentrations of plutonium and MA at the beginning of the cycle are restored in the subsequent cycle in the combined process of fuel transmutation and cooling, removal of fission products (FPs, and admixture of depleted uranium. In this way, generation of nuclear waste containing radioactive plutonium and MA can be eliminated. The paper shows methodology applied to the LFR equilibrium fuel cycle assessment, which was developed for the Monte Carlo continuous energy burnup (MCB code, equipped with enhanced modules for material processing and fuel handling. The numerical analysis of the reactor core concerns multiple recycling and recovery of long-lived nuclides and their influence on safety parameters. The paper also presents a general concept of the novel IVth generation breeder reactor with equilibrium fuel and its future role in the management of MA.

  16. Questioning nuclear waste substitution: a case study.

    Science.gov (United States)

    Marshall, Alan

    2007-03-01

    This article looks at the ethical quandaries, and their social and political context, which emerge as a result of international nuclear waste substitution. In particular it addresses the dilemmas inherent within the proposed return of nuclear waste owned by Japanese nuclear companies and currently stored in the United Kingdom. The UK company responsible for this waste, British Nuclear Fuels Limited (BNFL), wish to substitute this high volume intermediate-level Japanese-owned radioactive waste for a much lower volume of much more highly radioactive waste. Special focus is given to ethical problems that they, and the UK government, have not wished to address as they move forward with waste substitution. The conclusion is that waste substitution can only be considered an ethical practice if a set of moderating conditions are observed by all parties. These conditions are listed and, as of yet, they are not being observed.

  17. Nuclear wastes. The spent fuel using as false problem; Alquimica de los Residuos Nucleares: de pecado a virtud. El combustible usado como falso problema

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Gomez, A.

    2006-07-01

    Firstly this article presents the energy potential and advantages of nuclear waste in comparison with other types of energy residues. As a consequences the existing denomination of residue or waste applied to the uranium used in nuclear power plants is discussed. This semantic issue is relevant when analysing present opposition to nuclear energy and also favours the arguments against its viability posed by antinuclear groups. (Author)

  18. Corrosion Behaviour of Mg Alloys in Various Basic Media: Application of Waste Encapsulation of Fuel Decanning from UNGG Nuclear Reactor

    Science.gov (United States)

    Lambertin, David; Frizon, Fabien; Blachere, Adrien; Bart, Florence

    The dismantling of UNGG nuclear reactor generates a large volume of fuel decanning. These materials are based on Mg-Zr alloy. The dismantling strategy could be to encapsulate these wastes into an ordinary Portland cement (OPC) or geopolymer (aluminosilicate material) in a form suitable for storage. Studies have been performed on Mg or Mg-Al alloy in basic media but no data are available on Mg-Zr behaviour. The influence of representative pore solution of both OPC and geopolymer with Mg-Zr alloy has been studied on corrosion behaviour. Electrochemical methods have been used to determine the corrosion densities at room temperature. Results show that the corrosion densities of Mg-Zr alloy in OPC solution is one order of magnitude more important than in a geopolymer solution environment and the effect of an inhibiting agent has been undertaken with Mg-Zr alloy. Evaluation of corrosion hydrogen production during the encapsulation of Mg-Zr alloy in both OPC and geopolymer has also been done.

  19. Experimental investigation of hydrous pyrolysis of diesel fuel and the effect of pyrolysis products on performance of the candidate nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K.J.; Carroll, S.A. [Lawrence Livermore National Lab., CA (United States)

    1994-12-31

    It is thought that a significant amount of diesel fuel and other hydrocarbon-rich phases may remain inside the candidate nuclear waste repository at Yucca Mountain after construction and subsequent emplacement of radioactive waste. Although the proposed repository horizon is above the water table, the remnant hydrocarbon phases may react with hydrothermal solutions generated by high temperature conditions that will prevail for a period of time in the repository. The preliminary experimental results of this study show that diesel fuel hydrous pyrolysis is minimal at 200{degrees}C and 70 bars. The composition of the diesel fuel remained constant throughout the experiment and the concentration of carboxylic acids in the aqueous phases was only slightly above the detection limit (1-2 ppm) of the analytical technique.

  20. Alternative solidified forms for nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, J.L.; Ross, W.A.

    1976-01-01

    Radioactive wastes will occur in various parts of the nuclear fuel cycle. These wastes have been classified in this paper as high-level waste, intermediate and low-level waste, cladding hulls, and residues. Solidification methods for each type of waste are discussed in a multiple barrier context of primary waste form, applicable coatings or films, matrix encapsulation, canister, engineered structures, and geological storage. The four major primary forms which have been most highly developed are glass for HLW, cement for ILW, organics for LLW, and metals for hulls.

  1. Environmental Hazards of Nuclear Wastes

    Science.gov (United States)

    Micklin, Philip P.

    1974-01-01

    Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)

  2. Closed Fuel Cycle Waste Treatment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, E. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crum, J. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, S. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gombert, D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maio, V. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Matyas, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nenoff, T. M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Riley, B. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sevigny, G. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strachan, D. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, P. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, J. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form

  3. Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Harold F. McFarlane; Terry Todd

    2013-11-01

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore. Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor

  4. Development of database for spent fuel and special waste from the Spanish nuclear power plants; Desarrollo de la base de datos para el combustible gastado y residuos especiales de las centrales nucleares espanolas

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Gandal, R.; Rodriguez Gomez, M. A.; Serrano, G.; Lopez Alvarez, G.

    2013-07-01

    GNF Engineering is developing together with ENRESA and with the UNESA participation, the spent fuel and high activity radioactive waste data base of Spanish nuclear power plants. In the article is detailed how this strategic project essential to carry out the CTS (centralized temporary storage) future management and other project which could be emerged is being dealing with, This data base will serve as mechanics of relationship between ENRESA and Spanish NPPS, covering the expected necessary information to deal with mentioned future management of spent fuel and high activity radioactive waste. (Author)

  5. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  6. Nuclear waste management. Quarterly progress report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A. (comps.)

    1980-06-01

    Reported are: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, criteria for defining waste isolation, and spent fuel and pool component integrity. (DLC)

  7. A federalist strategy for nuclear waste management.

    Science.gov (United States)

    Lee, K N

    1980-05-16

    The federal government plans to rely on a policy of "consultation and concurrence" with state governments in developing nuclear waste repositories. The weaknesses of the concurrence approach are analyzed, and an alternative institutional framework for locating a waste repository is proposed: a siting jury that provides representation for state and local interests, while maintaining a high level of technical review. The proposal could be tested in the siting of away-from-reactor storage facilities for spent nuclear fuel.

  8. On the Impact of the Fuel Dissolution Rate Upon Near-Field Releases From Nuclear Waste Disposal

    Directory of Open Access Journals (Sweden)

    A Pereira

    2016-09-01

    Full Text Available Calculations of the impact of the dissolution of spent nuclear fuel on the release from a damaged canister in a KBS-3 repository are presented. The dissolution of the fuel matrix is a complex process and the dissolution rate is known to be one of the most important parameters in performance assessment models of the near-field of a geological repository. A variability study has been made to estimate the uncertainties associated with the process of fuel dissolution. The model considered in this work is a 3D model of a KBS-3 copper canister. The nuclide used in the calculations is Cs-135. Our results confirm that the fuel degradation rate is an important parameter, however there are considerable uncertainties associated with the data and the conceptual models. Consequently, in the interests of safety one should reduce, as far as possible, the uncertainties coupled to fuel degradation.

  9. Nuclear Fuels: Present and Future

    Directory of Open Access Journals (Sweden)

    Donald R. Olander

    2009-02-01

    Full Text Available The important new developments in nuclear fuels and their problems are reviewed and compared with the status of present light-water reactor fuels. The limitations of these fuels and the reactors they power are reviewed with respect to important recent concerns, namely provision of outlet coolant temperatures high enough for use in H2 production, destruction of plutonium to eliminate proliferation concerns, and burning of the minor actinides to reduce the waste repository heat load and long-term radiation hazard. In addition to current oxide-based fuel-rod designs, the hydride fuel with liquid metal thermal bonding of the fuel-cladding gap is covered. Finally, two of the most promising Generation IV reactor concepts, the Very High Temperature Reactor and the Sodium Fast Reactor, and the accompanying reprocessing technologies, aqueous-based UREX and pyrometallurgical, are summarized. In all of the topics covered, the thermodynamics involved in the material's behavior under irradiation and in the reprocessing schemes are emphasized.

  10. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

  11. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

  12. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: fabrication of high-temperature gas-cooled reactor fuel containing uranium-233 and thorium

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, J.W.; Blanco, R.E.; Hill, G.S.; Moore, R.E.; Seagren, R.D.; Witherspoon, J.P.

    1976-06-01

    A cost/benefit study was made to determine the cost and effectiveness of various radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from model High-Temperature Gas-Cooled (HTGR) fuel fabrication plants and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term ''as low as reasonably achievable'' as it applies to these nuclear facilities. The base cases of the two model plants, a fresh fuel fabrication plant and a refabrication plant, are representative of current proposed commercial designs or are based on technology that is being developed to fabricate uranium, thorium, and graphite into fuel elements. The annual capacities of the fresh fuel plant and the refabrication plant are 450 and 245 metric tons of heavy metal (where heavy metal is uranium plus thorium), as charged to about fifty 1000-MW(e) HTGRs. Additional radwaste treatment systems are added to the base case plants in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The capital and annual costs for the added waste treatment operations and the corresponding reductions in dose commitments are calculated for each case. In the final analysis, the cost/benefit of each case, calculated as additional cost of radwaste system divided by the reduction in dose commitment, is tabulated or the dose commitment is plotted with cost as the variable. The status of each of the radwaste treatment methods is discussed. 48 figures, 74 tables.

  13. Technetium: A toxic waste product of the nuclear fuel cycle: Effects on soybean growth and development

    Science.gov (United States)

    Berlyn, Graeme P.; Dhillon, Sukhraj S.; Koslow, Evan E.

    1980-03-01

    Technetium-99 (99Tc) is formed in significant amounts (6.2% fission yield) during fission in both nuclear reactors and nuclear bombs. The effects of technetium on soybeans ( Glycine max) were studied in relation to ( a) cytochemical events in the apical meristems of germinating seedlings; ( b) growth responses to 0, 0.04, 0.2, 1.0, 5.0, and 20.0 ppm Tc; ( c) growth responses to varying levels of Tc after a prior 5-day germination on Tc-free media, and ( d) response to Tc in the presence of added manganese. By 20 days, reductions in growth were evident at all levels of Tc except 0.04 ppm (Experiment 2). Root growth was most severely affected, and seedling abnormality at 20 ppm was fivefold greater than that of the controls. The effect of 20 ppm Tc was evident at 10 days when the accumulated absorption dose was approximately 25 rads. The first evidence of damage at this dose was a delay in the initiation of the first trifoliate leaf. The shoot meristem size was 1.2-fold smaller than that of the control; however, there was no cytological evidence of radiation-induced damage. Observation of mitotic figures did not reveal any chromosome aberrations, micronuclei, or chromosome bridges. The lowest level of Tc showing toxicity was 0.2 ppm which resulted in a 31% reduction in growth at 20 days. The accumulated dose was 0.5 rad (0.025 rad/day) and thus it seems unlikely that the rapid inhibition of growth and development is due to radiological toxicity. It is quite probable that the growth effects are due to chemical toxicity possibly due to nutrient competition and/or substitution in uptake or metabolism. However, extremely low doses of radiation have been shown to delay the onset of DNA synthesis (possibly by membrane effects) in Tradescantia and until the actual mechanism of Tc inhibition is determined a radiation effect cannot be totally ruled out.

  14. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  15. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  16. Considerations affecting deep-well disposal of tritium-bearing low-level aqueous waste from nuclear fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Trevorrow, L. E.; Warner, D. L.; Steindler, M. J.

    1977-03-01

    Present concepts of disposal of low-level aqueous wastes (LLAW) that contain much of the fission-product tritium from light water reactors involve dispersal to the atmosphere or to surface streams at fuel reprocessing plants. These concepts have been challenged in recent years. Deep-well injection of low-level aqueous wastes, an alternative to biospheric dispersal, is the subject of this presentation. Many factors must be considered in assessing its feasibility, including technology, costs, environmental impact, legal and regulatory constraints, and siting. Examination of these factors indicates that the technology of deep-well injection, extensively developed for other industrial wastes, would require little innovation before application to low-level aqueous wastes. Costs would be low, of the order of magnitude of 10/sup -4/ mill/kWh. The environmental impact of normal deep-well disposal would be small, compared with dispersal to the atmosphere or to surface streams; abnormal operation would not be expected to produce catastrophic results. Geologically suitable sites are abundant in the U.S., but a well would best be co-located with the fuel-reprocessing plant where the LLAW is produced. Legal and regulatory constraints now being developed will be the most important determinants of the feasibility of applying the method.

  17. Materials in Nuclear Waste Disposition

    Science.gov (United States)

    Rebak, Raul B.

    2014-03-01

    Commercial nuclear energy has been used for over 6 decades; however, to date, none of the 30+ countries with nuclear power has opened a repository for high-level waste (HLW). All countries with nuclear waste plan to dispose of it in metallic containers located in underground geologically stable repositories. Some countries also have liquid nuclear waste that needs to be reduced and vitrified before disposition. The five articles included in this topic offer a cross section of the importance of alloy selection to handle nuclear waste at the different stages of waste processing and disposal.

  18. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: reprocessing of high-temperature gas-cooled reactor fuel containing U-233 and thorium

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W. Jr.; Blanco, R.E.; Finney, B.C.; Hill, G.S.; Moore, R.E.; Witherspoon, J.P.

    1976-05-01

    A cost/benefit study was made to determine the cost and effectiveness of various radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from a model high-temperature gas-cooled reactor (HTGR) fuel reprocessing plant and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist the U. S. Nuclear Regulatory Commission in defining the term as low as reasonably achievable as it applies to this nuclear facility. The base case is representative of conceptual, developing technology of head-end graphite-burning operations and of extensions of solvent-extraction technology of current designs for light-water-reactor (LWR) fuel reprocessing plants. The model plant has an annual capacity of 450 metric tons of heavy metal (MTHM, where heavy metal is uranium plus thorium), as charged to about fifty 1000-MW(e) HTGRs. Additional radwaste treatment systems are added to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The capital and annual costs for the added waste treatment operations and the corresponding reductions in dose commitments are calculated for each case. In the final analysis, the cost/benefit of each case, calculated as additional cost of radwaste system divided by the reduction in dose commitment, is tabulated or the dose commitment is plotted with cost as the variable. The status of each of the radwaste treatment methods used in the case studies is discussed.

  19. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  20. Risks from nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Liljenzin, J.O.; Rydberg, J. [Radiochemistry Consultant Group, Vaestra Froelunda (Sweden)

    1996-11-01

    The first part of this review discusses the importance of risk. If there is any relation between the emotional and rational risk perceptions (for example, it is believed that increased knowledge will decrease emotions), it will be a desirable goal for society, and the nuclear industry in particular, to improve the understanding by the laymen of the rational risks from nuclear energy. This review surveys various paths to a more common comprehension - perhaps a consensus - of the nuclear waste risks. The second part discusses radioactivity as a risk factor and concludes that it has no relation in itself to risk, but must be connected to exposure leading to a dose risk, i.e. a health detriment, which is commonly expressed in terms of cancer induction rate. Dose-effect relations are discussed in light of recent scientific debate. The third part of the report describes a number of hazard indexes for nuclear waste found in the literature and distinguishes between absolute and relative risk scales. The absolute risks as well as the relative risks have changed over time due to changes in radiological and metabolic data and by changes in the mode of calculation. To judge from the literature, the risk discussion is huge, even when it is limited to nuclear waste. It would be very difficult to make a comprehensive review and extract the essentials from that. Therefore, we have chosen to select some publications, out of the over 100, which we summarize rather comprehensively; in some cases we also include our remarks. 110 refs, 22 figs.

  1. Evaluation of thorium based nuclear fuel. Chemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Konings, R.J.M.; Blankenvoorde, P.J.A.M.; Cordfunke, E.H.P.; Bakker, K.

    1995-07-01

    This report describes the chemical aspects of a thorium-based fuel cycle. It is part of a series devoted to the study of thorium-based fuel as a means to achieve a considerable reduction of the radiotoxicity of the waste from nuclear power production. Therefore special emphasis is placed on fuel (re-)fabrication and fuel reprocessing in the present work. (orig.).

  2. Nuclear fuel cycle facility accident analysis handbook

    Energy Technology Data Exchange (ETDEWEB)

    Ayer, J E; Clark, A T; Loysen, P; Ballinger, M Y; Mishima, J; Owczarski, P C; Gregory, W S; Nichols, B D

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH.

  3. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  4. Spent nuclear fuel rods encapsulated in copper

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, H.D.

    1984-04-01

    Using hot isostatic pressing, spent nuclear fuel rods and other radioactive wastes can be encapsulated in solid copper. The copper capsule which is formed is free of pores and cracks, and is highly resistant to attack by reducing ground waters. Such capsules should contain radioactive materials safely for hundreds of thousands of years in underground storage.

  5. Are there options for nuclear waste?

    Science.gov (United States)

    Bell, Peter M.

    The problems of storage of nuclear wastes are reaching crisis proportions. Although conceding that a measure of the crises has been caused by the ‘enormous emotion’ of ‘protesting green ecologists,’ (ISR, Interdisciplinary Science Reviews, 5(4), 1980), the bottom line is that nuclear wastes have been and continue to be dumped into the oceans and scattered in leaking and leakable containers on the surface. There is a fear among members of the nuclear engineering community that the U.S., under recent government restrictions, has placed itself in a compromising position on the development of nuclear power facilities. One area of concern is that of nuclear waste disposal. Other countries are subject to the same problems and fears. For example, in the Federal Republic of Germany the term ‘Enstorgungszentrum’ has been coined to describe the total process of reprocessing and disposal of spent nuclear fuel elements. The concern is that spent fuel continues to accumulate because restrictions and laws have affected efforts to resolve the problems of reprocessing and disposal. Right now the environment is subject to damage from the inadequate storage practices of the past. Geoscientists working on the problem of waste disposal await the answers to questions about the projected quantity of waste to be disposed. The options to be explored depend on the volumes to be handled.

  6. Is Yucca Mountain a long-term solution for disposing of US spent nuclear fuel and high-level radioactive waste?

    Science.gov (United States)

    Thorne, M C

    2012-06-01

    On 26 January 2012, the Blue Ribbon Commission on America's Nuclear Future released a report addressing, amongst other matters, options for the managing and disposal of high-level waste and spent fuel. The Blue Ribbon Commission was not chartered as a siting commission. Accordingly, it did not evaluate Yucca Mountain or any other location as a potential site for the storage or disposal of spent nuclear fuel and high-level waste. Nevertheless, if the Commission's recommendations are followed, it is clear that any future proposals to develop a repository at Yucca Mountain would require an extended period of consultation with local communities, tribes and the State of Nevada. Furthermore, there would be a need to develop generally applicable regulations for disposal of spent fuel and high-level radioactive waste, so that the Yucca Mountain site could be properly compared with alternative sites that would be expected to be identified in the initial phase of the site-selection process. Based on what is now known of the conditions existing at Yucca Mountain and the large number of safety, environmental and legal issues that have been raised in relation to the DOE Licence Application, it is suggested that it would be imprudent to include Yucca Mountain in a list of candidate sites for future evaluation in a consent-based process for site selection. Even if there were a desire at the local, tribal and state levels to act as hosts for such a repository, there would be enormous difficulties in attempting to develop an adequate post-closure safety case for such a facility, and in showing why this unsaturated environment should be preferred over other geological contexts that exist in the USA and that are more akin to those being studied and developed in other countries.

  7. Turning nuclear waste into glass

    Energy Technology Data Exchange (ETDEWEB)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  8. 76 FR 35137 - Vulnerability and Threat Information for Facilities Storing Spent Nuclear Fuel and High-Level...

    Science.gov (United States)

    2011-06-16

    ... Storing Spent Nuclear Fuel and High-Level Radioactive Waste AGENCY: U.S. Nuclear Regulatory Commission... Independent Storage of Spent Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater Than...-based security regulations for Spent Nuclear Fuel (SNF) and High-Level Radioactive Waste (HLW) storage...

  9. Biodegradation of radioactive organic liquid waste from spent fuel reprocessing; Biodegradacao de rejeitos radioativos liquidos organicos provenientes do reprocessamento do combustivel nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Rafael Vicente de Padua

    2008-07-01

    The research and development program in reprocessing of low burn-up spent fuel elements began in Brazil in 70's, originating the lab-scale hot cell, known as Celeste located at Nuclear and Energy Research Institute, IPEN - CNEN/SP. The program was ended at the beginning of 90's, and the laboratory was closed down. Part of the radioactive waste generated mainly from the analytical laboratories is stored waiting for treatment at the Waste Management Laboratory, and it is constituted by mixture of aqueous and organic phases. The most widely used technique for the treatment of radioactive liquid wastes is the solidification in cement matrix, due to the low processing costs and compatibility with a wide variety of wastes. However, organics are generally incompatible with cement, interfering with the hydration and setting processes, and requiring pre -treatment with special additives to stabilize or destroy them. The objective of this work can be divided in three parts: organic compounds characterization in the radioactive liquid waste; the occurrence of bacterial consortia from Pocos de Caldas uranium mine soil and Sao Sebastiao estuary sediments that are able to degrade organic compounds; and the development of a methodology to biodegrade organic compounds from the radioactive liquid waste aiming the cementation. From the characterization analysis, TBP and ethyl acetate were chosen to be degraded. The results showed that selected bacterial consortia were efficient for the organic liquid wastes degradation. At the end of the experiments the biodegradation level were 66% for ethyl acetate and 70% for the TBP. (author)

  10. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, Robert P.

    2014-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.

  11. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  12. International nuclear fuel cycle fact book. Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  13. Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge, CA 91330 (United States)

    2013-07-01

    Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail

  14. Managing Nuclear Waste: Options Considered

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2002-05-02

    Starting in the 1950s, U.S. scientists began to research ways to manage highly radioactive materials accumulating at power plants and other sites nationwide. Long-term surface storage of these materials poses significant potential health, safety, and environmental risks. Scientists studied a broad range of options for managing spent nuclear fuel and high-level radioactive waste. The options included leaving it where it is, disposing of it in various ways, and making it safer through advanced technologies. International scientific consensus holds that these materials should eventually be disposed of deep underground in what is called a geologic repository. In a recent special report, the National Academy of Sciences summarized the various studies and emphasized that geologic disposal is ultimately necessary.

  15. Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain reporsitory.

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. E.

    2006-01-31

    The results of laboratory testing and modeling activities conducted to support the development of waste forms to immobilize wastes generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel and their qualification for disposal in the federal high-level radioactive waste repository are summarized in this report. Tests and analyses were conducted to address issues related to the chemical, physical, and radiological properties of the waste forms relevant to qualification. These include the effects of composition and thermal treatments on the phase stability, radiation effects, and methods for monitoring product consistency. Other tests were conducted to characterize the degradation and radionuclide release behaviors of the ceramic waste form (CWF) used to immobilize waste salt and the metallic waste form (MWF) used to immobilize metallic wastes and to develop models for calculating the release of radionuclides over long times under repository-relevant conditions. Most radionuclides are contained in the binder glass phase of the CWF and in the intermetallic phase of the MWF. The release of radionuclides from the CWF is controlled by the dissolution rate of the binder glass, which can be tracked using the same degradation model that is used for high-level radioactive waste (HLW) glass. Model parameters measured for the aqueous dissolution of the binder glass are used to model the release of radionuclides from a CWF under all water-contact conditions. The release of radionuclides from the MWF is element-specific, but the release of U occurs the fastest under most test conditions. The fastest released constituent was used to represent all radionuclides in model development. An empirical aqueous degradation model was developed to describe the dependence of the radionuclide release rate from a MWF on time, pH, temperature, and the Cl{sup -} concentration. The models for radionuclide release from the CWF and MWF are both bounded by the HLW glass

  16. Nuclear waste disposal in space

    Science.gov (United States)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  17. Nuclear Fuel Cycle Evaluation and Real Options

    Directory of Open Access Journals (Sweden)

    L. Havlíček

    2008-01-01

    Full Text Available The first part of this paper describes the nuclear fuel cycle. It is divided into three parts. The first part, called Front-End, covers all activities connected with fuel procurement and fabrication. The middle part of the cycle includes fuel reload design activities and the operation of the fuel in the reactor. Back-End comprises all activities ensuring safe separation of spent fuel and radioactive waste from the environment. The individual stages of the fuel cycle are strongly interrelated. Overall economic optimization is very difficult. Generally, NPV is used for an economic evaluation in the nuclear fuel cycle. However the high volatility of uranium prices in the Front-End, and the large uncertainty of both economic and technical parameters in the Back-End, make the use of NPV difficult. The real option method is able to evaluate the value added by flexibility of decision making by a company under conditions of uncertainty. The possibility of applying this method to the nuclear fuel cycle evaluation is studied. 

  18. Geological disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed. (AT)

  19. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.

    1992-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  20. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I W; Mitchell, S J

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  1. International nuclear fuel cycle fact book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.

    1988-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  2. A Transportation Risk Assessment Tool for Analyzing the Transport of Spent Nuclear Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    Ralph Best; T. Winnard; S. Ross; R. Best

    2001-08-17

    The Yucca Mountain Transportation Database was developed as a data management tool for assembling and integrating data from multiple sources to compile the potential transportation impacts presented in the Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DEIS). The database uses the results from existing models and codes such as RADTRAN, RISKIND, INTERLINE, and HIGHWAY to estimate transportation-related impacts of transporting spent nuclear fuel and high-level radioactive waste from commercial reactors and U. S. Department of Energy (DOE) facilities to Yucca Mountain. The source tables in the database are compendiums of information from many diverse sources including: radionuclide quantities for each waste type; route and route characteristics for rail, legal-weight truck, heavy haul. truck, and barge transport options; state-specific accident and fatality rates for routes selected for analysis; packaging and shipment data by waste type; unit risk factors; the complex behavior of the packaged waste forms in severe transport accidents; and the effects of exposure to radiation or the isotopic specific effects of radionclides should they be released in severe transportation accidents. The database works together with the codes RADTRAN (Neuhauser, et al, 1994) and RISKlND (Yuan, et al, 1995) to calculate incident-free dose and accident risk. For the incident-free transportation scenario, the database uses RADTRAN and RISKIND-generated data to calculate doses to offlink populations, onlink populations, people at stops, crews, inspectors, workers at intermodal transfer stations, guards at overnight stops, and escorts, as well as non-radioactive pollution health effects. For accident scenarios, the database uses RADTRAN-generated data to calculate dose risks based on ingestion, inhalation, resuspension, immersion (cloudshine), and groundshine as

  3. Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy

    Science.gov (United States)

    Smith, K. R.; Weyant, J.; Holdren, J. P.

    1975-01-01

    The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.

  4. The nuclear fuel cycle; Le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  5. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  6. Vacuum arc with a distributed cathode spot as a plasma source for plasma separation of spent nuclear fuel and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Amirov, R. Kh., E-mail: ravus46@yandex.ru; Vorona, N. A.; Gavrikov, A. V.; Lizyakin, G. D.; Polishchuk, V. P.; Samoilov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    Results from experimental studies of a vacuum arc with a distributed cathode spot on the heated cathode are presented. Such an arc can be used as a plasma source for plasma separation of spent nuclear fuel and radioactive waste. The experiments were performed with a gadolinium cathode, the properties of which are similar to those of an uranium arc cathode. The heat flux from the plasma to the cathode (and its volt equivalent) at discharge voltages of 4-15 V and discharge currents of 44-81 A, the radial distribution of the emission intensity of gadolinium atoms and singly charged ions in the arc channel at a voltage of 4.3 V, and the plasma electron temperature behind the anode were measured. The average charge of plasma ions at arc voltages of 3.5-8 V and a discharge current of 52 A and the average rate of gadolinium evaporation in the discharge were also determined.

  7. Issues related to the construction and operation of a geological disposal facility for nuclear fuel waste in crystalline rock - the Canadian experience

    Energy Technology Data Exchange (ETDEWEB)

    Allan, C.J.; Baumgartner, P.; Ohta, M.M.; Simmons, G.R.; Whitaker, S.H

    1997-12-01

    The siting, design, construction, operation, decommissioning, and closure of a geological facility for the disposal of nuclear fuel waste is a complex undertaking that will span many decades. Both technical and social issues must be taken into account simultaneously and many factors must be considered. Based on studies carried out in Canada and elsewhere, it appears that these factors can be accommodated and that geological disposal is both technically and socially feasible. But throughout the different stages of implementing disposal, technical and social issues will continue to arise and these will have to be dealt with successfully if progress is to continue. This paper discusses these issues and a proposed approach for dealing with them. (author)

  8. Fuel Cell Power Plants Renewable and Waste Fuels

    Science.gov (United States)

    2011-01-13

    Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean Report...2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Fuel Cell Power Plants Renewable and Waste Fuels 5a. CONTRACT...Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES presented at the DOE-DOD Waste-to-Energy using Fuel Cells Workshop held

  9. Space disposal of nuclear wastes

    Science.gov (United States)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  10. Nuclear Fuel Cycle & Vulnerabilities

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Brian D. [Los Alamos National Laboratory

    2012-06-18

    The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

  11. International nuclear waste management fact book

    Energy Technology Data Exchange (ETDEWEB)

    Abrahms, C W; Patridge, M D; Widrig, J E

    1995-11-01

    The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

  12. Antineutrino monitoring of spent nuclear fuel

    CERN Document Server

    Brdar, Vedran; Kopp, Joachim

    2016-01-01

    Military and civilian applications of nuclear energy have left a significant amount of spent nuclear fuel over the past 70 years. Currently, in many countries world wide, the use of nuclear energy is on the rise. Therefore, the management of highly radioactive nuclear waste is a pressing issue. In this letter, we explore antineutrino detectors as a tool for monitoring and safeguarding nuclear waste material. We compute the flux and spectrum of antineutrinos emitted by spent nuclear fuel elements as a function of time, and we illustrate the usefulness of antineutrino detectors in several benchmark scenarios. In particular, we demonstrate how a measurement of the antineutrino flux can help to re-verify the contents of a dry storage cask in case the monitoring chain by conventional means gets disrupted. We then comment on the usefulness of antineutrino detectors at long-term storage facilities such as Yucca mountain. Finally, we put forward antineutrino detection as a tool in locating underground "hot spots" in ...

  13. Alternatives for nuclear fuel disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Badillo A, V.; Palacios H, J.; Celis del Angel, L., E-mail: ramon.ramirez@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2010-10-15

    The spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments in the construction of repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution? or, What is the best technology for a specific solution? Many countries have deferred the decision on selecting an option, while other works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However, currently is under process an extended power up rate to 20% of their original power and also there are plans to extend operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. So this work describes some different alternatives that have been studied in Mexico to define which will be the best alternative to follow. (Author)

  14. Distribution and Solubility of Radionuclides and Neutron Absorbers in Waste Forms for Disposition of Plutonium Ash and Scraps, Excess Plutonium, and Miscellaneous Spent Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Denis M. Strachan; Dr. David K. Shuh; Dr. Rodney C. Ewing; Dr. Eric R. Vance

    2002-09-23

    The initial goal of this project was to investigate the solubility of radionuclides in glass and other potential waste forms for the purpose of increasing the waste loading in glass and ceramic waste forms. About one year into the project, the project decided to focus on two potential waste forms - glass at PNNL and itianate ceramics at the Australian Nuclear Science and Technology Organisation (ANSTO).

  15. Nuclear wastes; Dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Here is made a general survey of the situation relative to radioactive wastes. The different kinds of radioactive wastes and the different way to store them are detailed. A comparative evaluation of the situation in France and in the world is made. The case of transport of radioactive wastes is tackled. (N.C.)

  16. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of recycle uranium to UF/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, J.W.; Blanco, R.E.; Finney, B.C.; Hill, G.S.; Moore, R.E.; Witherspoon, J.P.

    1977-04-01

    A cost/benefit study was made to determine the cost and effectiveness of various radioactive waste (radwaste) treatment systems for decreasing the amount of radioactive materials released from a model recycle uranium conversion and uranium hexafluoride (UF/sub 6/) production plant and to determine the radiological impact (dose commitment) of the released radioactive materials on the environment. This study is designed to assist the US NRC in defining the term ''as low as reasonably achievable'' as it applies to these nuclear facilities. The base case model plant is representative of a licensable UF/sub 6/ production plant and has an annual capacity of 1500 metric tons of uranium. Additional radwaste treatment systems are added to the base case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The cost for the added waste treatment operations and the corresponding dose commitments is calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. The methodology used in estimating the costs is presented. (34 tables, 11 figs.)

  17. Nuclear Fuel Cycle Introductory Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  18. Alternative Approaches to Recycling Nuclear Wastes

    Science.gov (United States)

    Hannum, William H.

    2007-04-01

    Nuclear power exists, and as the demand for non-fossil electricity generation increases, many more nuclear plants are being planned and built. The result is growing inventories of spent nuclear fuel containing plutonium that -- in principle, at least -- can be used to make nuclear explosives. There are countries and organizations that are believed to want nuclear weapons, posing a knotty proliferation problem that calls for realistic control of nuclear materials. Phasing out nuclear power and sequestering all dangerous materials in guarded storage or in geological formations would not be a realistic approach. Plutonium from commercial spent fuel is very hard to make into a weapon. However, a rogue nation could operate a power plant so as to produce plutonium with weapons-quality isotopics, and then chemically purify it. IAEA safeguards are designed to discourage this, but the only enforcement is referral to the United Nations General Assembly. The traditional reprocessing method, PUREX, produces plutonium that has the chemical purity needed for weapons. However, there are alternative approaches that produce only highly radioactive blends of fissionable materials and fission products. Recycle offers a market for spent nuclear fuel, promoting more rigorous accounting of these materials. Unlike PUREX, the new technologies permit the recycle and consumption of essentially all of the high-hazard transuranics, and will reduce the required isolation time for the waste to less than 500 years. Facilities for recovering recyclable materials from LWR spent fuel will be large and expensive. Only a very few such plants will be needed, leading to appropriate concentration of safeguards measures. Plants for recycling the spent fuel from fast burner reactors can be collocated with the power plants and share the safeguards.

  19. Recycling as an option of used nuclear fuel management strategy

    Energy Technology Data Exchange (ETDEWEB)

    Zagar, Tomaz, E-mail: tomaz.zagar@gen-energija.s [GEN energija, d.o.o., Cesta 4. julija 42, 8270 Krsko (Slovenia); Institute Jozef Stefan, Jamova 39, 1000 Ljubljana (Slovenia); Bursic, Ales; Spiler, Joze [GEN energija, d.o.o., Cesta 4. julija 42, 8270 Krsko (Slovenia); Kim, Dana; Chiguer, Mustapha; David, Gilles; Gillet, Philippe [AREVA, 33 rue La Fayette, 75009 Paris (France)

    2011-04-15

    The paper presents recycling as an option of used nuclear fuel management strategy with specific focus on the Slovenia. GEN energija is an independent supplier of integral and competitive electricity for Slovenia. In response to growing energy needs, GEN has conducted several feasibility and installation studies of a new nuclear power plant in Slovenia. With sustainable development, the environment, and public acceptance in mind, GEN conducted a study with AREVA concerning the options for the management of its' new plant's used nuclear fuel. After a brief reminder of global political and economic context, solutions for used nuclear fuel management using current technologies are presented in the study as well as an economic assessment of a closed nuclear fuel cycle. The paper evaluates and proposes practical solutions for mid-term issues on used nuclear fuel management strategies. Different scenarios for used nuclear fuel management are presented, where used nuclear fuel recycling (as MOX, for mixed oxide fuel, and ERU, for enriched reprocessed uranium) are considered. The study concludes that closing the nuclear fuel cycle will allow Slovenia to have a supplementary fuel supply for its new reactor via recycling, while reducing the radiotoxicity, thermal output, and volume of its wastes for final disposal, reducing uncertainties, gaining public acceptance, and allowing time for capitalization on investments for final disposal.

  20. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Solonin, M.I.; Polyakov, A.S.; Zakharkin, B.S.; Smelov, V.S.; Nenarokomov, E.A.; Mukhin, I.V. [SSC, RF, A.A. Bochvar ALL-Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2000-07-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  1. World nuclear capacity and fuel cycle requirements, November 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-30

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

  2. The Swedish Nuclear Power Inspectorate's Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RD and D Programme 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-09-01

    According to the Act on Nuclear Activities, the holder of a licence to operate a nuclear reactor must adopt all necessary measures to manage and dispose of spent nuclear fuel and nuclear waste. The Act stipulates requirements on a research programme which is to be submitted to the competent regulatory authority once every three years. The Swedish Nuclear Power Inspectorate (SKI) is the competent authority that evaluates and reviews the programme. SKI distributes the programme to a wide circle of reviewing bodies for comment, including authorities, municipalities, universities and NGOs. The Swedish programme for final disposal of spent nuclear fuel started about 25 years ago. According to the Swedish Nuclear Waste Management Co. (SKB), the planned repository will not be closed until sometime in the 2050's. A series of decisions must be made before this goal is attained. The decision process can therefore be described as a multi-stage process. During each stages, safety will be evaluated and there is a possibility of taking additional time for development work or of selecting improved solutions. SKI's task is to ensure safety compliance throughout all of these stages. In its decision in January 2000, the Government explained that the Programme for Research, Development and Demonstration for the Treatment and Final Disposal of Nuclear Waste (RD and D Programme 98) complied with legislative requirements but that certain supplementary reporting should be conducted by SKB and submitted no later than when the next programme, in accordance with paragraph 12 of the Act on Nuclear Activities, was prepared (September 2001). The supplementary reporting requested by the Government, and which was submitted by SKB to SKI in December 2000, dealt with issues relating to method selection, site selection and the site investigation programme. SKI submitted its review of the supplement to the Government in June 2001 and the Government made a decision on the matter on November

  3. Challenges in spent nuclear fuel final disposal:conceptual design models

    Institute of Scientific and Technical Information of China (English)

    Mukhtar Ahmed RANA

    2008-01-01

    The disposal of spent nuclear fuel is a long-standing issue in nuclear technology. Mainly, UO2 and metallic U are used as a fuel in nuclear reactors. Spent nuclear fuel contains fission products and transuranium elements, which would remain radioactive for 104 to 108 years. In this brief communication, essential concepts and engineering elements related to high-level nuclear waste disposal are described. Conceptual design models are described and discussed considering the long-time scale activity of spent nuclear fuel or high level waste. Notions of physical and chemical barriers to contain nuclear waste are highlightened. Concerns regarding integrity, self-irradiation induced decomposition and thermal effects of decay heat on the spent nuclear fuel are also discussed. The question of retrievability of spent nuclear fuel after disposal is considered.

  4. PROGRAMMATIC ASSESSMENT OF RADIOACTIVE WASTE MANAGEMENT NUCLEAR FUEL AND WASTE PROGRAMS. Operational Planning and Development (Activity No. AR OS 10 05 K; ONL-WN06)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-30

    Gilbert/Commonwealth (G/C) has performed an assessment of the waste management operations at Oak Ridge National Laboratory (ORNL). The objective of this study was to review radioactive waste management as practiced at ORNL and to recommend improvements or alternatives for further study. The study involved: 1) an on-site survey of ORNL radioactive waste management operations; 2) a review of radioactive waste source data, records, and regulatory requirements; 3) an assessment of existing and planned treatment, storage, and control facilities; and 4) identification of alternatives for improving waste management operations. Information for this study was obtained from both personal interviews and written reports. The G/C suggestions for improving ORNL waste management operations are summarized. Regulatory requirements governing ORNL waste management operations are discussed. Descriptions and discussions of the radioactive liquid, solid, and gaseous waste systems are presented. The waste operations control complex is discussed.

  5. Preliminary waste acceptance criteria for the ICPP spent fuel and waste management technology development program

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.L.; Shikashio, R.

    1993-09-01

    The purpose of this document is to identify requirements to be met by the Producer/Shipper of Spent Nuclear Fuel/High-LeveL Waste SNF/HLW in order for DOE to be able to accept the packaged materials. This includes defining both standard and nonstandard waste forms.

  6. Gaseous fuel nuclear reactor research

    Science.gov (United States)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  7. A TRANSPORTATION RISK ASSESSMENT TOOL FOR ANALYZING THE TRANSPORT OF SPENT NUCLEAR FUEL AND HIGH-LEVEL RADIOACTIVE WASTE TO THE PROPOSED YUCCA MOUNTAIN REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2001-02-15

    The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis addressed the potential for transporting spent nuclear fuel and high-level radioactive waste from 77 origins for 34 types of spent fuel and high-level radioactive waste, 49,914 legal weight truck shipments, and 10,911 rail shipments. The analysis evaluated transportation over 59,250 unique shipment links for travel outside Nevada (shipment segments in urban, suburban or rural zones by state), and 22,611 links in Nevada. In addition, the analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The analysis also used mode-specific accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. This complex mix of data and information required an innovative approach to assess the transportation impacts. The approach employed a Microsoft{reg_sign} Access database tool that incorporated data from many sources, including unit risk factors calculated using the RADTRAN IV transportation risk assessment computer program. Using Microsoft{reg_sign} Access, the analysts organized data (such as state-specific accident and fatality rates) into tables and developed queries to obtain the overall transportation impacts. Queries are instructions to the database describing how to use data contained in the database tables. While a query might be applied to thousands of table entries, there is only one sequence of queries that is used to calculate a particular transportation impact. For example, the incident-free dose to off-link populations in a state is calculated by a query that uses route segment lengths for each route in a state that could be used by shipments, populations for each segment, number of shipments on each segment, and an incident-free unit risk factor calculated using RADTRAN IV. In addition to providing a method for using large volumes of data in the calculations, the

  8. International trade and waste and fuel managment issue, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal (ed.)

    2007-01-15

    The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: New plants with high safety and availability, by Bill Poirier, Westinghouse Electric Company; Increased reliability and competitiveness, by Russell E. Stachowski, GE Energy, Nuclear; Fuel for long-term supply of nuclear power, by Kumiaki Moriya, Hitachi, Ltd., Japan; Super high burnup fuel, By Noboru Itagaki and Tamotsu Murata, Nuclear Fuel Industries LTD., Japan; Zero fuel failures by 2010, by Tom Patten, AREVA NP Inc.; Decommissioning opportunities in the UK, by David Brown and William Thorn, US Department of Commerce; Industry's three challenges, by Dale E. Klein, US Nuclear Regulatory Commission; and, A step ahead of the current ABWR's, compiled by Claire Zurek, GE Energy.

  9. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  10. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  11. Nuclear reactor composite fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Donn M. (Richland, WA); Marr, Duane R. (West Richland, WA); Cappiello, Michael W. (Richland, WA); Omberg, Ronald P. (Richland, WA)

    1980-01-01

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  12. Can shale safely host US nuclear waste?

    Science.gov (United States)

    Neuzil, C.E.

    2013-01-01

    "Even as cleanup efforts after Japan’s Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America’s Nuclear Future, 2012].However, abandoning Yucca Mountain could also result in broadening geologic options for hosting America’s nuclear waste. Shales and other argillaceous formations (mudrocks, clays, and similar clay-rich media) have been absent from the U.S. repository program. In contrast, France, Switzerland, and Belgium are now planning repositories in argillaceous formations after extensive research in underground laboratories on the safety and feasibility of such an approach [Blue Ribbon Commission on America’s Nuclear Future, 2012; Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (NAGRA), 2010; Organisme national des déchets radioactifs et des matières fissiles enrichies, 2011]. Other nations, notably Japan, Canada, and the United Kingdom, are studying argillaceous formations or may consider them in their siting programs [Japan Atomic Energy Agency, 2012; Nuclear Waste Management Organization (NWMO), (2011a); Powell et al., 2010]."

  13. Protected Nuclear Fuel Element

    Science.gov (United States)

    Kittel, J. H.; Schumar, J. F.

    1962-12-01

    A stainless steel-clad actinide metal fuel rod for use in fast reactors is reported. In order to prevert cladding failures due to alloy formation between the actinide metal and the stainless steel, a mesh-like sleeve of expanded metal is interposed between them, the sleeve metal being of niobium, tantalum, molybdenum, tungsten, zirconium, or vanadium. Liquid alkali metal is added as a heat transfer agent. (AEC)

  14. Update to Assessment of Direct Disposal in Unsaturated Tuff of Spent Nuclear Fuel and High-Level Waste Owned by U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    P. D. Wheatley (INEEL POC); R. P. Rechard (SNL)

    1998-09-01

    The overall purpose of this study is to provide information and guidance to the Office of Environmental Management of the U.S. Department of Energy (DOE) about the level of characterization necessary to dispose of DOE-owned spent nuclear fuel (SNF). The disposal option modeled was codisposal of DOE SNF with defense high-level waste (DHLW). A specific goal was to demonstrate the influence of DOE SNF, expected to be minor, in a predominately commercial repository using modeling conditions similar to those currently assumed by the Yucca Mountain Project (YMP). A performance assessment (PA) was chosen as the method of analysis. The performance metric for this analysis (referred to as the 1997 PA) was dose to an individual; the time period of interest was 100,000 yr. Results indicated that cumulative releases of 99Tc and 237Np (primary contributors to human dose) from commercial SNF exceed those of DOE SNF both on a per MTHM and per package basis. Thus, if commercial SNF can meet regulatory performance criteria for dose to an individual, then the DOE SNF can also meet the criteria. This result is due in large part to lower burnup of the DOE SNF (less time for irradiation) and to the DOE SNF's small percentage of the total activity (1.5%) and mass (3.8%) of waste in the potential repository. Consistent with the analyses performed for the YMP, the 1997 PA assumed all cladding as failed, which also contributed to the relatively poor performance of commercial SNF compared to DOE SNF.

  15. Nuclear waste management. Quarterly progress report, April-June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A.

    1981-09-01

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  16. The Public and Nuclear Waste Management.

    Science.gov (United States)

    Zinberg, Dorothy

    1979-01-01

    Discusses the public's negative attitude towards nuclear energy development. Explains the perceptions for the nuclear waste disposal problem, and the concern for the protection of the environment. (GA)

  17. Spent fuel data for waste storage programs

    Energy Technology Data Exchange (ETDEWEB)

    Greene, E M

    1980-09-01

    Data on LWR spent fuel were compiled for dissemination to participants in DOE-sponsored waste storage programs. Included are mechanical descriptions of the existing major types of LWR fuel assemblies, spent LWR fuel fission product inventories and decay heat data, and inventories of LWR spent fuel currently in storage, with projections of future quantities.

  18. Assessment of the impacts of spent fuel disassembly alternatives on the Nuclear Waste Isolation System. [Preparing and packaging spent fuel assemblies for geologic disposal

    Energy Technology Data Exchange (ETDEWEB)

    1984-07-01

    The objective of this report was to evaluate four possible alternative methods of preparing and packaging spent fuel assemblies for geologic disposal against the Reference Process of unmodified spent fuel. The four alternative processes were: (1) End fitting removal, (2) Fission gas venting and resealing, (3) Fuel bundle disassembly and close packing of fuel pins, and (4) Fuel shearing and immobilization. Systems analysis was used to develop a basis of comparison of the alternatives. Conceptual processes and facility layouts were devised for each of the alternatives, based on technology deemed feasible for the purpose. Assessments were made of 15 principal attributes from the technical, operational, safety/risk, and economic considerations related to each of the alternatives, including both the surface packaging and underground repository operations. Specific attributes of the alternative processes were evaluated by assigning a number for each that expressed its merit relative to the corresponding attribute of the Reference Process. Each alternative process was then ranked by summing the numbers for attributes in each of the four assessment areas and collectively. Fuel bundle disassembly and close packing of fuel pins was ranked the preferred method of disposal of spent fuel. 63 references, 46 figures, 46 tables.

  19. The Geopolitics of Nuclear Waste.

    Science.gov (United States)

    Marshall, Eliot

    1991-01-01

    The controversy surrounding the potential storage of nuclear waste at Yucca Mountain, Nevada, is discussed. Arguments about the stability of the site and the groundwater situation are summarized. The role of the U.S. Department of Energy and other political considerations are described. (CW)

  20. Nuclear waste management in Canada : critical issues, critical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Durant, D.; Fuji Johnson, G. (eds.)

    2009-07-01

    As Canada plans to build more nuclear reactors to increase energy production, the benefits and hazards of nuclear power and nuclear waste management continue to be debated. This book provided a discerning opposition to the supportive position taken by government and industry regarding the management of high-level nuclear fuel waste and the nuclear generation of electricity. The contributors explored key issues associated with nuclear energy development, such as safety, risk assessment, site selection and the public consultation process in Canada and its failure to address ethical and social issues. The technical challenges of nuclear waste management were reviewed along with the nature and means of developing social and ethical frameworks within which to assess technical options, consultative practices and decision-making processes. Strategies for thinking of the long term were also discussed. refs.

  1. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  2. Handbook on process and chemistry on nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki (ed.) [Tokyo Univ., Tokyo (Japan); Asakura, Toshihide; Adachi, Takeo (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO{sub 2} fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  3. Compositions and methods for treating nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2014-01-28

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  4. Compositions and methods for treating nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2013-08-13

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  5. Equipment for the management of spent fuels and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Bower, C. C. F.; Carter, C. C.; Doubt, H. A. [GEC Alsthom Engineering System Ltd., Leicester (United Kingdom)

    1996-04-15

    UK experience over the last thirty years with the design and implementation of equipment for the management of spent fuels and radioactive wastes has ranged from remote handling, through encapsulation and containerisation, to the medium-term storage of heat-producing fuels and wastes in the dry state. The design principles involved in handling, transporting and storing hazardous materials safely and reliably, while ensuring biological shielding, containment and cooling of radioactive materials, are common to the various kinds of equipment presented in this paper, even though the individual requirements may be very different. The UK nuclear programme over the last thirty years has encouraged the development of extensive expertise in the engineering of equipment for the management of spent fuel and radioactive waste. This expertise can be applied with benefit to the Korean nuclear programme.

  6. Laser induced nuclear waste transmutation

    CERN Document Server

    Hirlimann, Charles

    2016-01-01

    When producing electricity that collects the mass energy that is available at the time of the induced disintegration of radioactive elements, other unstable elements are produced with half-life span durations ranging from less than one second to hundreds of thousands of years and which are considered as waste. Managing nuclear waste with a half-life of less than 30 years is an easy task, as our societies clearly know how to keep buildings safe for more than a century, the time it takes for the activity to be divided by a factor of 8. High-activity, long-lasting waste that can last for thousands of years or even longer, up to geological time laps, cannot be taken care of for such long durations. Therefore, these types of waste are socially unacceptable; nobody wants to leave a polluted planet to descendants.

  7. Fuel Cycle Services the Heart of Nuclear Energy

    Directory of Open Access Journals (Sweden)

    S. Soentono

    2007-01-01

    Full Text Available Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant, management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services worldwide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international co-operations are central for proceeding with the utilization of nuclear energy, while this advantageous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically.

  8. 75 FR 45167 - Notice of Public Workshop on a Potential Rulemaking for Spent Nuclear Fuel Reprocessing Facilities

    Science.gov (United States)

    2010-08-02

    ... civilian nuclear power globally and close the nuclear fuel cycle through reprocessing spent fuel and... Requirements for the Independent Storage of Spent Nuclear Fuel, High-Level Radioactive Waste, and Reactor... regulations in 10 CFR Part 171, ``Annual Fees for Reactor Licenses and Fuel Cycle Licenses and......

  9. Proliferation Resistant Nuclear Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount

  10. Milestones for Selection Characterization and Analysis of the Performance of a Repository for Spent Nuclear Fuel and HIh-Level Radioactive Waste at Yucca Mountain.

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, Robert P.

    2015-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis throu gh 2009 of the performance of a repository for spent nuclear fuel and high - level radi oactive waste at Yucca Mou ntain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and an alogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment - specific laboratory experiments, in - situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site - specific characterization . The current sixth period beyond 2010 represents a new effort to set waste management policy in the United States. Because the relationship is important to understanding the evolution of the Yucca Mountain Project , the tabulation also shows the interaction between the policy realm and technical realm using four broad categories of events : (a ) R egulatory requirements and related federal policy in laws and court decisions, (c ) Presidential and agency directives, (c) technical milestones of implemen ting institutions, and (d ) critiques of the Yucca Mountai n P roject and pertinent national and world events related to nuclear energy and radioactive waste. Preface The historical progression of technical milestones for the Yucca Mountain Project was originally developed for 10 journal articles in a special issue of Reliability Engineering System Safe ty on the performance assessment for the Yucca Mountain

  11. Expected brine movement at potential nuclear waste repository salt sites

    Energy Technology Data Exchange (ETDEWEB)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

  12. 75 FR 75641 - Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste

    Science.gov (United States)

    2010-12-06

    ... Tribes of Transportation of Certain Types of Nuclear Waste AGENCY: Nuclear Regulatory Commission. ACTION...'s designee, of certain shipments of irradiated reactor fuel and certain nuclear waste passing... notification to Native American Tribes of transportation of certain types of nuclear waste (64 FR...

  13. Stakeholder involvement in Swedish nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark; Sundqvist, Goeran [Goeteborg Univ. (Sweden). Section for Science and Technology Studies

    2006-09-15

    This report concerning Swedish nuclear waste management has been produced as part of a cross national research project: CARL - A Social Science Research Project into the Effects of Stakeholder involvement on Decision-Making in Radioactive Waste Management. Besides Sweden, the participating countries are Belgium, Canada, Finland, Slovenia and United Kingdom. A social science research team, working for three years, is in the first phase conducting research in their own countries in order to produce 6 country reports. During the next years the focus will shift to comparisons of stakeholder involvement practices in the participating countries. The report addresses current practices of Swedish nuclear waste management and their historical development. The main focus is on past, current and emerging patterns of stakeholder involvement in the siting of a deep repository for the final disposal of Sweden's spent nuclear fuel. The general questions attended to in the report are: Who are the main stakeholders, and how have they emerged and gained recognition as such? What are the issues currently subject to stakeholder involvement and how have these been decided upon? How is stakeholder involvement organized locally and nationally and how has this changed over time? How has stakeholder involvement gained acceptance as an activity of value in the siting of major waste facilities? The report have attempted to show the development of stakeholder involvement in the siting of a final repository for Sweden's spent nuclear fuel as resembling something other than a straightforward linear process of improvement and refinement. Stakeholder involvement has developed, over the past 15 years or so, into something more like a patchwork of different shapes and forms. Some of the forces that may well contribute to the further elaboration of the patchwork of stakeholder involvement have been pointed out, contingently modifying once more its overall colour and orientation. Questions

  14. FUEL COMPOSITION FOR NUCLEAR REACTORS

    Science.gov (United States)

    Andersen, J.C.

    1963-08-01

    A process for making refractory nuclear fuel elements involves heating uranium and silicon powders in an inert atmosphere to 1600 to 1800 deg C to form USi/sub 3/; adding silicon carbide, carbon, 15% by weight of nickel and aluminum, and possibly also molybdenum and silicon powders; shaping the mixture; and heating to 1700 to 2050 deg C again in an inert atmosphere. Information on obtaining specific compositions is included. (AEC)

  15. Predicting the Lifetimes of Nuclear Waste Containers

    Science.gov (United States)

    King, Fraser

    2014-03-01

    As for many aspects of the disposal of nuclear waste, the greatest challenge we have in the study of container materials is the prediction of the long-term performance over periods of tens to hundreds of thousands of years. Various methods have been used for predicting the lifetime of containers for the disposal of high-level waste or spent fuel in deep geological repositories. Both mechanical and corrosion-related failure mechanisms need to be considered, although until recently the interactions of mechanical and corrosion degradation modes have not been considered in detail. Failure from mechanical degradation modes has tended to be treated through suitable container design. In comparison, the inevitable loss of container integrity due to corrosion has been treated by developing specific corrosion models. The most important aspect, however, is to be able to justify the long-term predictions by demonstrating a mechanistic understanding of the various degradation modes.

  16. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.

    2013-09-30

    This report fulfills the M2 milestone M2FT-13PN0912022, “Stranded Sites De-Inventorying Report.” In January 2013, the U.S. Department of Energy (DOE) issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013). Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America’s Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses (BRC 2012). Shutdown sites are defined as those commercial nuclear power reactor sites where the nuclear power reactors have been shut down and the site has been decommissioned or is undergoing decommissioning. In this report, a preliminary evaluation of removing used nuclear fuel from 12 shutdown sites was conducted. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. These sites have no other operating nuclear power reactors at their sites and have also notified the U.S. Nuclear Regulatory Commission that their reactors have permanently ceased power operations and that nuclear fuel has been permanently removed from their reactor vessels. Shutdown reactors at sites having other operating reactors are not included in this evaluation.

  17. Nuclear waste treatment program: Annual report for FY 1987

    Energy Technology Data Exchange (ETDEWEB)

    Brouns, R.A.; Powell, J.A. (comps.)

    1988-09-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs.

  18. Nuclear waste treatment program. Annual report for FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.A. (ed.)

    1986-04-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are: (1) to ensure that waste management is not an obstacle to the further deployment of light-water reactors (LWR) and the closure of the nuclear fuel cycle and (2) to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Terminal Waste Disposal and Remedial Action of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory (PNL) during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide (1) documented technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and (2) problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required, to treat existing wastes. This annual report describes progress during FY 1985 toward meeting these two objectives. The detailed presentation is organized according to the task structure of the program.

  19. Corrosion experience in calcination of liquid nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, C A

    1980-01-01

    The Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory became operational in 1963. Since that time, approximately 13,337,137 litres (3,523,375 gallons) of liquid nuclear wastes, generated during the reprocessing of spent nuclear fuel materials, have been reduced to dry granular solids. The volume reduction is about seven or eight gallons of liquid waste to one gallon of dry granular solids. This paper covers some of the corrosion experiences encountered in over fifteen years of operating that calcination facility. 7 figures, 7 tables.

  20. Spray calcination of nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-01-01

    The spray calciner is a relatively simple machine; operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of all commercial fuel reprocessor high-level liquid wastes and mixed high and intermediate-level wastes have been demonstrated. Wastes have been calcined containing over 2M sodium. Thus waste generated during plant startup and shutdown can be blended with normal waste and calcined. Spray calcination of ILLW has also been demonstrated. A remotely replaceable atomizing nozzle has been developed for use in plant scale equipment. The 6 mm (0.25 inch) orifice and ceramic tip offer freedom from plugging and erosion thus nozzle replacement should be required only after several months operation. Calciner capacity of over 75 l/h (20 gal/h) has been demonstrated in pilot scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. Since such a small amount of radionuclides escape the calciner the volume of recycle required from the effluent treatment system is very small. The noncondensable off-gas volume is also low, less than 0.5 m/sup 3//min (15 scfm) for a liquid feedrate of 75 l/hr (20 gal/hr). Calcine holdup in the calciner is less than 1 kg, thus the liquid feedrate is directly relatable to calcine flowrate. The calcine produced is very fine and reactive. Successful remote operation and maintenance of a heated wall spray calciner has been demonstrated while processing actual high-level waste. During these operations radionuclide volatilization from the calciner was acceptably low. 8 figures. (DLC)

  1. The waste originating from nuclear energy peaceful applications and its management; Os rejeitos provenientes de aplicacoes pacificas da energia nuclear e o seu gerenciamento

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jair Albo Marques de [E-mail: jairalbo at ax.apc.org (Brazil)] [and others

    1997-05-01

    This work presents the waste originating from nuclear energy and its management. It approaches the following main topics: nature and classification of the wastes; security requirements to the waste management; state of the art related to the wastes derivates of the uses of the nuclear energy; wastes in the fuel cycle; wastes of the industrial, medical and research and development applications; costs of the waste management.

  2. Spent fuel and high-level radioactive waste transportation report

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  3. Spent Fuel and High-Level Radioactive Waste Transportation Report

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  4. Spent fuel and high-level radioactive waste transportation report

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  5. Nuclear waste and hazardous waste in the public perception

    Energy Technology Data Exchange (ETDEWEB)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael [ETH Zurich (Switzerland). Inst. for Environmental Decisions

    2015-07-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  6. External cost assessment for nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Korea National University of Transportation, Chungju (Korea, Republic of); Ko, Won Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    Nuclear power is currently the second largest power supply method in Korea and the number of nuclear power plants are planned to be increased as well. However, clear management policy for spent fuels generated from nuclear power plants has not yet been established. The back-end fuel cycle, associated with nuclear material flow after nuclear reactors is a collection of technologies designed for the spent fuel management and the spent fuel management policy is closely related with the selection of a nuclear fuel cycle. Cost is an important consideration in selection of a nuclear fuel cycle and should be determined by adding external cost to private cost. Unlike the private cost, which is a direct cost, studies on the external cost are focused on nuclear reactors and not at the nuclear fuel cycle. In this research, external cost indicators applicable to nuclear fuel cycle were derived and quantified. OT (once through), DUPIC (Direct Use of PWR SF in CANDU), PWR-MOX (PWR PUREX reprocessing), and Pyro-SFR (SFR recycling with pyroprocessing) were selected as nuclear fuel cycles which could be considered for estimating external cost in Korea. Energy supply security cost, accident risk cost, and acceptance cost were defined as external cost according to precedent and estimated after analyzing approaches which have been adopted for estimating external costs on nuclear power generation.

  7. Spent nuclear fuel discharges from US reactors 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-05

    This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactive Waste Management.

  8. Minerals as natural analogues for crystalline nuclear waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Giere, R. [Purdue University West Lafayette, Earth and Atmospheric Sciences (United States)

    2000-07-01

    Between the mining of uranium ore (mostly as uraninite) and the final disposal of nuclear waste, there are many processes and steps which together comprise the nuclear fuel cycle. Radioactive waste will be generated as long as nuclear reactors are in operation, but it is also produced by other means, e.g., during certain medical, scientific and industrial procedures. The most dangerous wastes are those resulting from the reprocessing of spent nuclear fuel and from some processes in the production and dismantling of nuclear weapons. A large part of this highly radioactive waste is present as a liquid and thus, its safe isolation from the biosphere requires immobilization of the radionuclides in a durable matrix (waste form). This is a solid which must be resistant to heat, radiation and corrosion over a geologic time scale. Three main categories of waste forms have been developed for the immobilization of radioactive waste, namely glasses, crystalline and multibarrier waste forms. One of the key properties of a nuclear waste form is its chemical durability (or resistance to corrosion), because the waste form represents the primary barrier to radionuclide release. The sciences of mineralogy and petrology have both contributed significantly to the development, characterization and performance assessment of such waste forms. The most important goal of safe nuclear waste disposal is to ensure that practically no radioactive materials reach the biosphere and, ultimately, human beings. Therefore, the design of final repositories is based on an approach that places several obstacles, or barriers, between waste and biosphere, whereby each barrier has a specific role in preventing or delaying migration of radioactive material. This multibarrier concept is different for each type of waste but, for the option of geological disposal, it generally comprises the following five barriers: (1) waste form (contains the actual waste); (2) canister (surrounds waste form; composed of a

  9. Plasma filtering techniques for nuclear waste remediation

    CERN Document Server

    Gueroult, Renaud; Fisch, Nathaniel J

    2015-01-01

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  10. Plasma filtering techniques for nuclear waste remediation.

    Science.gov (United States)

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  11. International nuclear fuel cycle fact book. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  12. International Nuclear Fuel Cycle Fact Book. Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  13. ALD coating of nuclear fuel actinides materials

    Energy Technology Data Exchange (ETDEWEB)

    Yacout, A. M.; Pellin, Michael J.; Yun, Di; Billone, Mike

    2017-09-05

    The invention provides a method of forming a nuclear fuel pellet of a uranium containing fuel alternative to UO.sub.2, with the steps of obtaining a fuel form in a powdered state; coating the fuel form in a powdered state with at least one layer of a material; and sintering the powdered fuel form into a fuel pellet. Also provided is a sintered nuclear fuel pellet of a uranium containing fuel alternative to UO.sub.2, wherein the pellet is made from particles of fuel, wherein the particles of fuel are particles of a uranium containing moiety, and wherein the fuel particles are coated with at least one layer between about 1 nm to about 4 nm thick of a material using atomic layer deposition, and wherein the at least one layer of the material substantially surrounds each interfacial grain barrier after the powdered fuel form has been sintered.

  14. Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts

    Energy Technology Data Exchange (ETDEWEB)

    S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

    2010-09-01

    The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse

  15. Case for retrievable high-level nuclear waste disposal

    Science.gov (United States)

    Roseboom, Eugene H.

    1994-01-01

    Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.

  16. Nuclear reactor high-level waste: origin and safe disposal

    Energy Technology Data Exchange (ETDEWEB)

    Chua, C.; Tsipis, K. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

    High-level waste (HLW) is a natural component of the nuclear fuel cycle. Because of its radioactivity, HLW needs to be handled with great care. Different alternatives for permanently storing HLW are evaluated. Studies have shown that the disposal of HLW is safest when the waste is first vitrified before storage. Simple calculations show that vitrified HLW that is properly buried in deep, carefully chosen crystalline rock structures poses insignificant health risks. (author).

  17. Demonstration and Dialogue: Mediation in Swedish Nuclear Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark, e-mail: mark.elam@sociology.gu.se; Lidberg, Maria; Soneryd, Linda; Sundqvist, Goeran

    2009-07-01

    This report analyses mediation and mediators in Swedish nuclear waste management. Mediation is about establishing agreement and building common knowledge. It is argued that demonstrations and dialogue are the two prominent approaches to mediation in Swedish nuclear waste management. Mediation through demonstration is about showing, displaying, and pointing out a path to safe disposal for inspection. It implies a strict division between demonstrator and audience. Mediation through dialogue on the other hand, is about collective acknowledgements of uncertainty and suspensions of judgement creating room for broader discussion. In Sweden, it is the Swedish Nuclear Fuel and Waste Management Co. (SKB) that is tasked with finding a method and a site for the final disposal of the nation's nuclear waste. Two different legislative frameworks cover this process. In accordance with the Act on Nuclear Activities, SKB is required to demonstrate the safety of its planned nuclear waste management system to the government, while in respect of the Swedish Environmental Code, they are obliged to organize consultations with the public. How SKB combines these requirements is the main question under investigation in this report in relation to materials deriving from three empirical settings: 1) SKB's safety analyses, 2) SKB's public consultation activities and 3) the 'dialogue projects', initiated by other actors than SKB broadening the public arena for discussion. In conclusion, an attempt is made to characterise the long- term interplay of demonstration and dialogue in Swedish nuclear waste management

  18. Nuclear fuel grid outer strap

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, R.; Craver, J.E.

    1989-10-10

    This patent describes a nuclear reactor fuel assembly grid. It comprises a first outer grip strap segment end. The first end having a first tab arranged in substantially the same plane as the plane defined by the first end; a second outer grip strap end. The second end having a second slot arranged in substantially the same plane as the plane defined by the second end, with the tab being substantially disposed in the slot, defining a socket therebetween; and a fort tine interposed substantially perpendicularly in the socket.

  19. International Source Book: Nuclear Fuel Cycle Research and Development Vol 1 Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lakey, L. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    1983-07-01

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This first volume includes the overview and the program summaries of those countries listed alphabetically from Argentina to Italy.

  20. International trade and waste and fuel managment issue, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal (ed.)

    2006-01-15

    The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: HLW management in France, by Michel Debes, EDF, France; Breakthroughs from future reactors, by Jacques Bouchard, CEA, France; 'MOX for peace' a reality, by Jean-Pierre Bariteau, AREVA Group, France; Swedish spent fuel and radwaste, by Per H. Grahn and Marie Skogsberg, SKB, Sweden; ENC2005 concluding remarks, by Larry Foulke, 'Nuclear Technology Matters'; Fuel crud formation and behavior, by Charles Turk, Entergy; and, Plant profile: major vote of confidence for NP, by Martti Katka, TVO, Finland.

  1. Studies of nuclear fuel by means of nuclear spectroscopy methods

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter

    2000-02-01

    This paper is a summary text of several works performed by the author regarding spectroscopic measurements on spent nuclear fuel. Methods for determining the decay heat of spent nuclear fuel by means of gamma-ray spectroscopy and for verifying the integrity of nuclear fuel by means of tomography is presented. A summary of work performed regarding gamma-ray detector technology for studies of fission gas release is presented.

  2. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  3. Dismantlement and radioactive waste management of North Korean nuclear facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Whang, Jooho (Kyung Hee University, South Korea); Baldwin, George Thomas

    2004-07-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement', or 'CVID'. It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and

  4. Evaluation of thorium based nuclear fuel. Extended summary

    Energy Technology Data Exchange (ETDEWEB)

    Franken, W.M.P.; Bultman, J.H.; Konings, R.J.M.; Wichers, V.A.

    1995-04-01

    Application of thorium based nuclear fuels has been evaluated with emphasis on possible reduction of the actinide waste. As a result three ECN-reports are published, discussing in detail: - The reactor physics aspects, by comparing the operation characteristics of the cores of Pressurized Water Reactors and Heavy Water Reactors with different fuel types, including equilibrium thorium/uranium free, once-through uranium fuel and equilibrium uranium/plutonium fuel, - the chemical aspects of thorium based fuel cycles with emphasis on fuel (re)fabrication and fuel reprocessing, - the possible reduction in actinide waste as analysed for Heavy Water Reactors with various types of thorium based fuels in once-through operation and with reprocessing. These results are summarized in this report together with a short discussion on non-proliferation and uranium resource utilization. It has been concluded that a substantial reduction of actinide radiotoxicity of the disposed waste may be achieved by using thorium based fuels, if very efficient partitioning and multiple recycling of uranium and thorium can be realized. This will, however, require large efforts to develop the technology to the necessary industrial scale of operation. (orig.).

  5. Nuclear waste management. Quarterly progress report, January-March, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A. (comp.)

    1981-06-01

    Reports and summaries are provided for the following programs: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclide in soils; low-level waste generation reduction handbook; waste management system studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  6. Dangers associated with civil nuclear power programmes: weaponization and nuclear waste.

    Science.gov (United States)

    Boulton, Frank

    2015-07-24

    The number of nuclear power plants in the world rose exponentially to 420 by 1990 and peaked at 438 in 2002; but by 2014, as closed plants were not replaced, there were just 388. In spite of using more renewable energy, the world still relies on fossil fuels, but some countries plan to develop new nuclear programmes. Spent nuclear fuel, one of the most dangerous and toxic materials known, can be reprocessed into fresh fuel or into weapons-grade materials, and generates large amounts of highly active waste. This article reviews available literature on government and industry websites and from independent analysts on world energy production, the aspirations of the 'new nuclear build' programmes in China and the UK, and the difficulties in keeping the environment safe over an immense timescale while minimizing adverse health impacts and production of greenhouse gases, and preventing weaponization by non-nuclear-weapons states acquiring civil nuclear technology.

  7. International trade and waste and fuel managment issue, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal (ed.)

    2008-01-15

    The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: A global solution for clients, by Yves Linz, AREVA NP; A safer, secure and economical plant, by Andy White, GE Hitachi Nuclear; Robust global prospects, by Ken Petrunik, Atomic Energy of Canada Limited; Development of NPPs in China, by Chen Changbing and Li Huiqiang, Huazhong University of Science and Technology; Yucca Mountain update; and, A class of its own, by Tyler Lamberts, Entergy Nuclear. The Industry Innovation articles in this issue are: Fuel assembly inspection program, by Jim Lemons, Tennessee Valley Authority; and, Improved in-core fuel shuffle for reduced refueling duration, by James Tusar, Exelon Nuclear.

  8. Long-term nuclear waste management: Present status and alternatives

    Science.gov (United States)

    Schapira, J. P.

    1989-08-01

    Long-term nuclear waste management deals with the final and irreversible stage of waste disposal, on surface and in deep geological formations (according to the waste type), when institutional surveillance is over. There are presently two main options available to deal with the wastes generated by spent nuclear fuel unloaded from reactors and containing most of the radiotoxicity produced all along the nuclear fuel cycle. Since the end of Word War II, spent-fuel reprocessing technology has gone through three different stages, ending up with considerable technical achievements and large investments (construction of large facilities, UP3 in France and THORP in the UK). However, having to face spent-fuel risings and lack of reprocessing capacities, since the mid-seventies some countries are considering the possibility of direct spent-fuel disposal without reprocessing. These two options are discussed in terms of long-term waste management. Because of the types of waste conditioning and packaging adopted with present reprocessing technology, in that case long-term safety, after a few centuries, relies completely on the geological barriers. On the other hand, long-term safety with the second option is based essentially on the retention properties of uranium oxide with respect to actinides. Finally, alternatives such as chemical partitioning of minor actinides followed by their transmutation, either in reactors or using high-energy particle accelerators, are under discussion. Apart from the standard reprocessing (after a cooling period of 3-5 years), all the other options called for a long period (50 years) of interim storage, preventing the adoption of irreversible, costly and not well proved waste management solutions, and leaving time to develop and assess these alternative methods.

  9. OECD - HRP Summer School on Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures.

  10. International Summer School on Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures.

  11. Nuclear Fusion Fuel Cycle Research Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin [KAERI, Daejeon (Korea, Republic of); Yun, Sei-Hun [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants.

  12. Variants of closing the nuclear fuel cycle

    Science.gov (United States)

    Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.; Tsibulskiy, S. V.

    2015-12-01

    Influence of the nuclear energy structure, the conditions of fuel burnup, and accumulation of new fissile isotopes from the raw isotopes on the main parameters of a closed fuel cycle is considered. The effects of the breeding ratio, the cooling time of the spent fuel in the external fuel cycle, and the separation of the breeding area and the fissile isotope burning area on the parameters of the fuel cycle are analyzed.

  13. Scientific Solutions to Nuclear Waste Environmental Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Bradley R.

    2014-01-30

    The Hidden Cost of Nuclear Weapons The Cold War arms race drove an intense plutonium production program in the U.S. This campaign produced approximately 100 tons of plutonium over 40 years. The epicenter of plutonium production in the United States was the Hanford site, a 586 square mile reservation owned by the Department of Energy and located on the Colombia River in Southeastern Washington. Plutonium synthesis relied on nuclear reactors to convert uranium to plutonium within the reactor fuel rods. After a sufficient amount of conversion occurred, the rods were removed from the reactor and allowed to cool. They were then dissolved in an acid bath and chemically processed to separate and purify plutonium from the rest of the constituents in the used reactor fuel. The acidic waste was then neutralized using sodium hydroxide and the resulting mixture of liquids and precipitates (small insoluble particles) was stored in huge underground waste tanks. The byproducts of the U.S. plutonium production campaign include over 53 million gallons of high-level radioactive waste stored in 177 large underground tanks at Hanford and another 34 million gallons stored at the Savannah River Site in South Carolina. This legacy nuclear waste represents one of the largest environmental clean-up challenges facing the world today. The nuclear waste in the Hanford tanks is a mixture of liquids and precipitates that have settled into sludge. Some of these tanks are now over 60 years old and a small number of them are leaking radioactive waste into the ground and contaminating the environment. The solution to this nuclear waste challenge is to convert the mixture of solids and liquids into a durable material that won't disperse into the environment and create hazards to the biosphere. What makes this difficult is the fact that the radioactive half-lives of some of the radionuclides in the waste are thousands to millions of years long. (The half-life of a radioactive substance is the

  14. Implications of theories of asteroid and comet impact for policy options for management of spent nuclear fuel and high-level radioactive wastes

    Science.gov (United States)

    Trask, Newell J.

    1994-01-01

    Concern with the threat posed by terrestrial asteroid and comet impacts has heightened as the catastrophic consequences of such events have become better appreciated. Although the probabilities of such impacts are very small, a reasonable question for debate is whether such phenomena should be taken into account in deciding policy for the management of spent fuel and high-level radioactive waste. The rate at which asteroid or comet impacts would affect areas of surface storage of radioactive waste is about the same as the estimated rate at which volcanic activity would affect the Yucca Mountain area. The Underground Retrievable Storage (URS) concept could satisfactorily reduce the risk from cosmic impact with its associated uncertainties in addition to providing other benefits described by previous authors.

  15. Plasma filtering techniques for nuclear waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    Gueroult, Renaud, E-mail: rgueroul@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08540 (United States); Hobbs, David T. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Fisch, Nathaniel J. [Princeton Plasma Physics Laboratory, Princeton, NJ 08540 (United States)

    2015-10-30

    Highlights: • A detailed economic study on plasma mass filtering techniques is presented. • Comparison with chemical techniques shows similar costs for solid-waste pretreatment. • Significant savings potential is identified through superior waste minimization. - Abstract: Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  16. Waste disposal[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-07-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure.

  17. Waste Plastic Converting into Hydrocarbon Fuel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Mamunor Rashid, Mohammad; Molla, Mohammad

    2010-09-15

    The increased demand and high prices for energy sources are driving efforts to convert organic compounds into useful hydrocarbon fuels. Although much of this work has focused on biomass, there are strong benefits to deriving fuels from waste plastic material. Natural State Research Inc. (NSR) has invented a simple and economically viable process to decompose the hydrocarbon polymers of waste plastic into the shorter chain hydrocarbon of liquid fuel (patent pending). The method and principle of the production / process will be discussed. Initial tests with several widely used polymers indicate a high potential for commercialization.

  18. Transmutation of radioactive nuclear waste – present status and requirement for the problem-oriented nuclear data base

    Indian Academy of Sciences (India)

    Yu A Korovin; V V Artisyuk; A V Ignatyuk; G B Pilnov; A Yu Stankovsky; Yu E Titarenko; S G Yavshits

    2007-02-01

    Transmutation of long-lived actinides and fission products becomes an important issue of the overall nuclear fuel cycle assessment, both for existing and future reactor systems. Reliable nuclear data are required for analysis of associated neutronics. The present paper gives a review of the status of nuclear data analysis focusing on the waste transmutation problem.

  19. The IFR modern nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs.

  20. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  1. Spent Nuclear Fuel (SNF) Project Execution Plan

    Energy Technology Data Exchange (ETDEWEB)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  2. Future nuclear fuel cycles: Prospect and challenges for actinide recycling

    Science.gov (United States)

    Warin, Dominique

    2010-03-01

    The global energy context pleads in favour of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel. In this context, nuclear power has the worldwide potential to curtail the dependence on fossil fuels and thereby to reduce the amount of greenhouse gas emissions while promoting energy independence. How we deal with nuclear radioactive waste is crucial in this context. In France, the public's concern regarding the long-term waste management made the French Governments to prepare and pass the 1991 and 2006 Acts, requesting in particular the study of applicable solutions for still minimizing the quantity and the hazardousness of final waste. This necessitates High Active Long Life element (such as the Minor Actinides MA) recycling, since the results of fuel cycle R&D could significantly change the challenges for the storage of nuclear waste. HALL recycling can reduce the heat load and the half-life of most of the waste to be buried to a couple of hundred years, overcoming the concerns of the public related to the long-life of the waste and thus aiding the "burying approach" in securing a "broadly agreed political consensus" of waste disposal in a geological repository. This paper presents an overview of the recent R and D results obtained at the CEA Atalante facility on innovative actinide partitioning hydrometallurgical processes. For americium and curium partitioning, these results concern improvements and possible simplifications of the Diamex-Sanex process, whose technical feasibility was already demonstrated in 2005. Results on the first tests of the Ganex process (grouped actinide separation for homogeneous recycling) are also discussed. In the coming years, next steps will involve both better in-depth understanding of the basis of these actinide partitioning processes and, for the new promising

  3. Modeling and Simulation of Nuclear Fuel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ramaswami; Van Brutzel, Laurent; Chartier, Alan; Gueneau, Christine; Mattsson, Ann E.; Tikare, Veena; Bartel, Timothy; Besmann, T. M.; Stan, Marius; Van Uffelen, Paul

    2010-10-01

    We review the state of modeling and simulation of nuclear fuels with emphasis on the most widely used nuclear fuel, UO2. The hierarchical scheme presented represents a science-based approach to modeling nuclear fuels by progressively passing information in several stages from ab initio to continuum levels. Such an approach is essential to overcome the challenges posed by radioactive materials handling, experimental limitations in modeling extreme conditions and accident scenarios, and the small time and distance scales of fundamental defect processes. When used in conjunction with experimental validation, this multiscale modeling scheme can provide valuable guidance to development of fuel for advanced reactors to meet rising global energy demand.

  4. 78 FR 77606 - Security Requirements for Facilities Storing Spent Nuclear Fuel

    Science.gov (United States)

    2013-12-24

    ... COMMISSION 10 CFR Parts 72 and 73 RIN 3150-AI78 Security Requirements for Facilities Storing Spent Nuclear... requirements for storing spent nuclear fuel (SNF) in an independent spent fuel storage installation (ISFSI), and for storing SNF and/or high-level radioactive waste (HLW) in a monitored retrievable storage...

  5. Safe management of non-nuclear radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Lindhe, J.C. [Swedish Radiation Protection Authority, Stockholm (Sweden)

    2005-09-15

    In May 2002, the Swedish Government set up a non-standing committee for the management of radioactive waste unrelated to nuclear technology i.e. outside the nuclear fuel cycle - in this report called non-nuclear radioactive waste. The objective was to elaborate proposals for a national system for the management of all types of non-nuclear radioactive wastes with special consideration of inter alia the polluter pays principle and the responsibility of the producers. The author was principal secretary in the Committee. The proposals from the Committee was delivered to the Government by December 3, 2003. Funds for future costs for the management and final storage of waste from nuclear power are collected in a state-governed funding system. The power sector pays a flat fee per kilowatt-hour nuclear power. For non-nuclear radioactive waste, however, there are no means today to secure the funding. If a company goes bankrupt and leaves radioactive waste behind it might be up to the taxpayers to pay for its safe management. This is because the holder of the waste is responsible for its disposal. The costs appear at the time of disposal and it is usually the last owner/holder of a radioactive product that has to pay. Sometimes the costs come as a surprise and the owner might not have the money available. Thus the waste might be kept longer than warranted or end up as orphan waste. To solve this dilemma and other weaknesses in the Swedish system the Committee proposes a funding system paralleling the system for nuclear waste. The cost for the waste should be paid up front, i.e. when a customer buys a product using a radioactive source, the cost for the future waste management should be included in the price. In this way the consumer will not have to pay for this the day he disposes of the product by returning it to the original producer or leaving it to some waste treatment organization. It should be the responsibility of the producer (manufacturer, importer) to guarantee

  6. Nuclear Methods for Transmutation of Nuclear Waste: Problems, Perspextives, Cooperative Research - Proceedings of the International Workshop

    Science.gov (United States)

    Khankhasayev, Zhanat B.; Kurmanov, Hans; Plendl, Mikhail Kh.

    1996-12-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. Review of Current Status of Nuclear Transmutation Projects * Accelerator-Driven Systems — Survey of the Research Programs in the World * The Los Alamos Accelerator-Driven Transmutation of Nuclear Waste Concept * Nuclear Waste Transmutation Program in the Czech Republic * Tentative Results of the ISTC Supported Study of the ADTT Plutonium Disposition * Recent Neutron Physics Investigations for the Back End of the Nuclear Fuel Cycle * Optimisation of Accelerator Systems for Transmutation of Nuclear Waste * Proton Linac of the Moscow Meson Factory for the ADTT Experiments * II. Computer Modeling of Nuclear Waste Transmutation Methods and Systems * Transmutation of Minor Actinides in Different Nuclear Facilities * Monte Carlo Modeling of Electro-nuclear Processes with Nonlinear Effects * Simulation of Hybrid Systems with a GEANT Based Program * Computer Study of 90Sr and 137Cs Transmutation by Proton Beam * Methods and Computer Codes for Burn-Up and Fast Transients Calculations in Subcritical Systems with External Sources * New Model of Calculation of Fission Product Yields for the ADTT Problem * Monte Carlo Simulation of Accelerator-Reactor Systems * III. Data Basis for Transmutation of Actinides and Fission Products * Nuclear Data in the Accelerator Driven Transmutation Problem * Nuclear Data to Study Radiation Damage, Activation, and Transmutation of Materials Irradiated by Particles of Intermediate and High Energies * Radium Institute Investigations on the Intermediate Energy Nuclear Data on Hybrid Nuclear Technologies * Nuclear Data Requirements in Intermediate Energy Range for Improvement of Calculations of ADTT Target Processes * IV. Experimental Studies and Projects * ADTT Experiments at the Los Alamos Neutron Science Center * Neutron Multiplicity Distributions for GeV Proton Induced Spallation Reactions on Thin and Thick Targets of Pb and U * Solid State Nuclear Track Detector and

  7. Concept for Underground Disposal of Nuclear Waste

    Science.gov (United States)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  8. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Staiger

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  9. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    Energy Technology Data Exchange (ETDEWEB)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D. [General Atomics 3550 General Atomics Court San Diego, CA 92130 (United States)

    2013-07-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  10. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement; Volume 1, Appendix F, Nevada Test Site and Oak Ridge Reservation Spent Nuclear Fuel Management Programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering.

  11. International Nuclear Fuel Cycle Fact Book. Revision 12

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.

    1992-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  12. International nuclear fuel cycle fact book. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

    1987-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  13. International nuclear fuel cycle fact book: Revision 9

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.

    1989-01-01

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. The Fact Book contains: national summaries in which a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; and international agencies in which a section for each of the international agencies which has significant fuel cycle involvement, and a listing of nuclear societies. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter is presented from the perspective of the Fact Book user in the United States.

  14. Nuclear waste disposal educational forum

    Energy Technology Data Exchange (ETDEWEB)

    1982-10-18

    In keeping with a mandate from the US Congress to provide opportunities for consumer education and information and to seek consumer input on national issues, the Department of Energy's Office of Consumer Affairs held a three-hour educational forum on the proposed nuclear waste disposal legislation. Nearly one hundred representatives of consumer, public interest, civic and environmental organizations were invited to attend. Consumer affairs professionals of utility companies across the country were also invited to attend the forum. The following six papers were presented: historical perspectives; status of legislation (Senate); status of legislation (House of Representatives); impact on the legislation on electric utilities; impact of the legislation on consumers; implementing the legislation. All six papers have been abstracted and indexed for the Energy Data Base.

  15. Establishment of China Nuclear Fuel Assembly Database

    Institute of Scientific and Technical Information of China (English)

    CHENPeng; ZHANGYing-chao; LIUTing-jin; JINYong-li

    2003-01-01

    During researching, designing, manufacturing and post irradiation, a large amount of data on fuel assembly of China nuclear power plants has been accumulated. It is necessary to collect the data together,so that the researchers, designers, manufactures and managers could use the data conveniently. It was proposed to establish a China Nuclear Fuel Assembly Database through the Internet on workstations during the year of 2003 to 2006, so the data would be shared in China nuclear industry.

  16. Spent fuel treatment and mineral waste form development at Argonne National Laboratory-West

    Energy Technology Data Exchange (ETDEWEB)

    Goff, K.M.; Benedict, R.W.; Bateman, K. [Argonne National Lab., Idaho Falls, ID (United States); Lewis, M.A.; Pereira, C. [Argonne National Lab., IL (United States); Musick, C.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1996-07-01

    At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Conditioning Facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. Both mineral and metal high-level waste forms will be produced. The mineral waste form will contain the active metal fission products and the transuranics. Cold small-scale waste form testing has been on-going at Argonne in Illinois. Large-scale testing is commencing at ANL-West.

  17. Legal, institutional, and political issues in transportation of nuclear materials at the back end of the LWR nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lippek, H.E.; Schuller, C.R.

    1979-03-01

    A study was conducted to identify major legal and institutional problems and issues in the transportation of spent fuel and associated processing wastes at the back end of the LWR nuclear fuel cycle. (Most of the discussion centers on the transportation of spent fuel, since this activity will involve virtually all of the legal and institutional problems likely to be encountered in moving waste materials, as well.) Actions or approaches that might be pursued to resolve the problems identified in the analysis are suggested. Two scenarios for the industrial-scale transportation of spent fuel and radioactive wastes, taken together, high-light most of the major problems and issues of a legal and institutional nature that are likely to arise: (1) utilizing the Allied General Nuclear Services (AGNS) facility at Barnwell, SC, as a temporary storage facility for spent fuel; and (2) utilizing AGNS for full-scale commercial reprocessing of spent LWR fuel.

  18. Direct Investigations of the Immobilization of Radionuclides in the Alteration Products of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Burns; Robert J. Finch; David J. Wronkiewicz

    2004-12-27

    Safe disposal of the nation's nuclear waste in a geological repository involves unique scientific and engineering challenges owing to the very long-lived radioactivity of the waste. The repository must retain a variety of radionuclides that have vastly different chemical characters for several thousand years. Most of the radioactivity that will be housed in the proposed repository at Yucca Mountain will be associated with spent nuclear fuel, much of which is derived from commercial reactors. DOE is custodian of approximately 8000 tons of spent nuclear fuel that is also intended for eventual disposal in a geological repository. Unlike the spent fuel from commercial reactors, the DOE fuel is diverse in composition with more than 250 varieties. Safe disposal of spent fuel requires a detailed knowledge of its long-term behavior under repository conditions, as well as the fate of radionuclides released from the spent fuel as waste containers are breached.

  19. Direct Investigations of the Immobilization of Radionuclides in the Alteration Products of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Burns; Robert J. Finch; David J. Wronkiewicz

    2004-12-27

    Safe disposal of the nation's nuclear waste in a geological repository involves unique scientific and engineering challenges owing to the very long-lived radioactivity of the waste. The repository must retain a variety of radionuclides that have vastly different chemical characters for several thousand years. Most of the radioactivity that will be housed in the proposed repository at Yucca Mountain will be associated with spent nuclear fuel, much of which is derived from commercial reactors. DOE is custodian of approximately 8000 tons of spent nuclear fuel that is also intended for eventual disposal in a geological repository. Unlike the spent fuel from commercial reactors, the DOE fuel is diverse in composition with more than 250 varieties. Safe disposal of spent fuel requires a detailed knowledge of its long-term behavior under repository conditions, as well as the fate of radionuclides released from the spent fuel as waste containers are breached.

  20. A Historical Review of the Safe Transport of Spent Nuclear Fuel, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Kevin J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pope, Ronald [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    This report is a revision to M3 milestone M3FT-16OR090402028 for the former Nuclear Fuels Storage and Transportation Planning Project (NFST), “Safety Record of SNF Shipments.” The US Department of Energy (DOE) has since established the Office of Integrated Waste Management (IWM), which builds on the work begun by NFST, to develop an integrated waste management system for spent nuclear fuel (SNF), including the developm

  1. Analysis of nuclear material flow for experimental DUPIC fuel fabrication process at DFDF

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Lee, J. W.; Yang, M. S.; Baik, S. Y.; Lee, E. P

    1999-08-01

    This report describes facilities necessary for manufacturing experiment for DUPIC fuel, manufacturing process and equipment. Nuclear material flows among facilities, in PIEF and IMEF, for irradiation test, for post examination of DUPIC fuel, for quality control, for chemical analysis and for treatment of radioactive waste have been analyzed in details. This may be helpful for DUPIC project participants and facility engineers working in related facilities to understand overall flow for nuclear material and radioactive waste. (Author). 14 refs., 15 tabs., 41 figs.

  2. Joint Russian-Norwegian expedition to the dumping sites for radioactive waste and spent nuclear fuel in the Stepovogo fjord of the Kara sea, August - September 2012: investigations performed and main results

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Aleksandr; Shershakov, Viacheslav; Valetova, Nailja; Petrenko, Galina; Katrich, Ivan; Fedorova, Anastasia [Research and Production Association ' Typhoon' , 249038, Obninsk, Kaluga Region (Russian Federation); Kazennov, Alexey [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation); Lind, Bjorn; Gwynn, Justin; Rudjord, Anne Liv [Norwegian Radiation Protection Authority, Oesteraas (Norway); Heldal, Hilde Elise [Institute of Marine Research, Bergen (Norway); Blinova, Oxana; Osvath, Iolanda; Levy, Isabelle; Bartocci, Jean; Khanh Pham, Mai; Sam, Adam; Nies, Hartmut [IAEA-MEL (Monaco); Grishin, Denis [Krylov State Research Centre, St. Petersburg (Russian Federation); Salbu, Brit; Ole- Christian, Lind; Teien, Hans-Cristian [Norwegian University of Life Sciences, Aas (Norway); Sidhu, Rajdeep Singh; Straalberg, Elisabeth [Institute for Energy Technology, Kjeller (Norway); Logoyda, Igor [State Scientific Centre ' Yuzhmorgeologiya' , Gelendzhik (Russian Federation)

    2014-07-01

    Stepovogo fjord, located on the Eastern coast of Novaya Zemlya, is one of the most important former Soviet Union dumping sites for radioactive waste in the Kara Sea. In addition to some 2000 dumped containers with conventional radioactive wastes, the nuclear submarine K-27 was dumped in Stepovogo fjord with two reactors loaded with spent nuclear fuel (SNF).Joint Russian and Norwegian surveys of the marine environment in Stepovogo fjord were first conducted in 1993 and 1994. In accordance with the working plan of the Joint Russian-Norwegian Expert Group on the Investigation of Radioactive Contamination in the Northern Areas, a follow up expedition into the radioecological status of Stepovogo fjord was carried out in August and September of 2012 onboard the R.V. 'Ivan Petrov' of the Roshydromet Northern Department. Investigations carried out in Stepovogo fjord during the expedition included: Sonar surveys, ROV inspections and in situ gamma measurements of the dumped nuclear submarine K-27 and dumped containers with radioactive waste Sampling of seawater, bottom sediments and marine biota. Results of the analysis of marine environmental samples performed by Russia, Norway and the IAEA, are presented and discussed in the paper. Preliminary measurements on surface sediments and water samples showed that the level of {sup 137}Cs contamination was generally low. However, slightly enhanced levels of {sup 137}Cs were detected in bottom seawater and sediment collected in the area with dumped containers. Measurements taken around the dumped nuclear submarine K-27 did not indicate any leakage of radioactive substances from the submarine. A similar picture for the level of radioactive contamination in Stepovogo fjord was observed in the first joint Russian-Norwegian expedition in 1993-94. (authors)

  3. Nuclear fuel elements having a composite cladding

    Science.gov (United States)

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  4. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  5. Plasma Mass Filters For Nuclear Waste Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Fisch, Nathaniel J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2011-05-01

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  6. Plasma Mass Filters For Nuclear Waste Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-05-26

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  7. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  8. 'When you use the term 'long term', how long is that term'. Risk, Exclusion, and the Politics of Knowledge Production in Canadian Nuclear Fuel Waste Management Policy Making

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Anna [Univ. of Guelph (Canada). Dept. of Geography

    2006-09-15

    Risk operates within Canadian Nuclear Fuel Waste (NFW) management policy making as a heuristic for knowledge production about its effects which reconciles the knowledge of the nuclear industry with the outcomes of the NFW management process. In so doing it marginalizes the present and historical experiences of Aboriginal peoples with the nuclear industry, and removes from view the ways in which they have been implicated in the geography and political economy of the nuclear industry. Risk is a discursive form that protects a particular group's claims about the effects of NFW by providing it a universalizing epistemological structure with which to obscure its connection to context. Further risk discourse provides the nuclear industry with a conceptual vocabulary that deliberately casts all competing knowledge as perceptions, values, or as an object of inquiry. The arguments of Aboriginal peoples about the residual effects of radiation in their lands which hosted nuclear activities, such as uranium mining and disposal, have no representation in how the discourse of risk defines and represents knowledge, and thus no purchase in the policy debate. As a result the challenge they present to the nuclear industry's claims are contained. The arrangements which permit the unloading of the negative effects of nuclear power generation onto Aboriginal peoples are thus reproduced (both materially and conceptually), but not shown, by the policy making process and likely, its outcome. In order to raise critical questions about the democratic abilities of risk, this paper has examined the role of 'risk' in Canadian NFW policy making. I have shown how when the politics of knowledge production within the philosophy of risk is analyzed, and the use and role of the notion of risk are interrogated, difficult questions are posed for the democratic potential of risk. I have suggested, through an analysis of the NWMO's representations of Aboriginal content in their

  9. Security risks in nuclear waste management: Exceptionalism, opaqueness and vulnerability.

    Science.gov (United States)

    Vander Beken, Tom; Dorn, Nicholas; Van Daele, Stijn

    2010-01-01

    This paper analyses some potential security risks, concerning terrorism or more mundane forms of crime, such as fraud, in management of nuclear waste using a PEST scan (of political, economic, social and technical issues) and some insights of criminologists on crime prevention. Nuclear waste arises as spent fuel from ongoing energy generation or other nuclear operations, operational contamination or emissions, and decommissioning of obsolescent facilities. In international and EU political contexts, nuclear waste management is a sensitive issue, regulated specifically as part of the nuclear industry as well as in terms of hazardous waste policies. The industry involves state, commercial and mixed public-private bodies. The social and cultural dimensions--risk, uncertainty, and future generations--resonate more deeply here than in any other aspect of waste management. The paper argues that certain tendencies in regulation of the industry, claimed to be justified on security grounds, are decreasing transparency and veracity of reporting, opening up invisible spaces for management frauds, and in doing allowing a culture of impunity in which more serious criminal or terrorist risks could arise. What is needed is analysis of this 'exceptional' industry in terms of the normal cannons of risk assessment - a task that this paper begins.

  10. Annotated Bibliography for Drying Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rebecca E. Smith

    2011-09-01

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  11. Globalisation of the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rougeau, J.-P.; Durret, L.-F.

    1995-12-31

    Three main features of the globalisation of the nuclear fuel cycle are identified and discussed. The first is an increase in the scale of the nuclear fuel cycle materials and services markets in the past 20 years. This has been accompanied by a growth in the sophistication of the fuel cycle. Secondly, the nuclear industry is now more vulnerable to outside pressures; it is no longer possible to make strategic decisions on the industry within a country solely on national considerations. Thirdly, there are changes in the decision-making process at the political, regulatory, operational and industrial level which are the consequence of global factors. (UK).

  12. Mixed waste paper to ethanol fuel

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  13. ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Skutnik, Steven E. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering

    2017-06-19

    The goal of this project, “ORIGEN-based Nuclear Fuel Depletion Module for Fuel Cycle Assessment" is to create a physics-based reactor depletion and decay module for the Cyclus nuclear fuel cycle simulator in order to assess nuclear fuel inventories over a broad space of reactor operating conditions. The overall goal of this approach is to facilitate evaluations of nuclear fuel inventories for a broad space of scenarios, including extended used nuclear fuel storage and cascading impacts on fuel cycle options such as actinide recovery in used nuclear fuel, particularly for multiple recycle scenarios. The advantages of a physics-based approach (compared to a recipe-based approach which has been typically employed for fuel cycle simulators) is in its inherent flexibility; such an approach can more readily accommodate the broad space of potential isotopic vectors that may be encountered under advanced fuel cycle options. In order to develop this flexible reactor analysis capability, we are leveraging the Origen nuclear fuel depletion and decay module from SCALE to produce a standalone “depletion engine” which will serve as the kernel of a Cyclus-based reactor analysis module. The ORIGEN depletion module is a rigorously benchmarked and extensively validated tool for nuclear fuel analysis and thus its incorporation into the Cyclus framework can bring these capabilities to bear on the problem of evaluating long-term impacts of fuel cycle option choices on relevant metrics of interest, including materials inventories and availability (for multiple recycle scenarios), long-term waste management and repository impacts, etc. Developing this Origen-based analysis capability for Cyclus requires the refinement of the Origen analysis sequence to the point where it can reasonably be compiled as a standalone sequence outside of SCALE; i.e., wherein all of the computational aspects of Origen (including reactor cross-section library processing and interpolation, input and output

  14. Environmental Impact Statement. March 2011. Interim storage, encapsulation and final disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    An Environmental Impact Statement (EIS) shall be prepared and submitted along with applications for permissibility and a licence under the Environmental Code and a licence under the Nuclear Activities Act for new nuclear facilities. This Environmental Impact Statement has been prepared by Svensk Kaernbraenslehantering AB (the Swedish Nuclear Fuel and Waste Management Co, SKB) to be included in the licence applications for continued operation of Clab (central interim storage facility for spent nuclear fuel) in Simpevarp in Oskarshamn Municipality and construction and operation of facilities for encapsulation (integrated with Clab) and final disposal of spent nuclear fuel in Forsmark in Oesthammar Municipality

  15. Effects of Fuel to Synthesis of CaTiO3 by Solution Combustion Synthesis for High-Level Nuclear Waste Ceramics.

    Science.gov (United States)

    Jung, Choong-Hwan; Kim, Yeon-Ku; Han, Young-Min; Lee, Sang-Jin

    2016-02-01

    A solution combustion process for the synthesis of perovskite (CaTiO3) powders is described. Perovskite is one of the crystalline host matrics for the disposal of high-level radioactive wastes (HLW) because it immobilizes Sr and Lns elements by forming solid solutions. Solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between nitrate and organic fuel, the exothermic reaction, and the heat evolved convert the precursors into their corresponding oxide products above 1100 degrees C in air. To investigate the effects of amino acid on the combustion reaction, various types of fuels were used; a glycine, amine and carboxylic ligand mixture. Sr, La and Gd-nitrate with equivalent amounts of up to 20% of CaTiO3 were mixed with Ca and Ti nitrate and amino acid. X-ray diffraction analysis, SEM and TEM were conducted to confirm the formed phases and morphologies. While powders with an uncontrolled shape are obtained through a general oxide-route process, Ca(Sr, Lns)TiO3 powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using this method.

  16. A review and overview of nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1984-12-31

    An understanding of the status and issues in the management of radioactive wastes is based on technical information on radioactivity, radiation, biological hazard of radiation exposure, radiation standards, and methods of protection. The fission process gives rise to radioactive fission products and neutron bombardment gives activation products. Radioactive wastes are classified according to source: defense, commercial, industrial, and institutional; and according to physical features: uranium mill tailings, high-level, transuranic, and low-level. The nuclear fuel cycle, which contributes a large fraction of annual radioactive waste, starts with uranium ore, includes nuclear reactor use for electrical power generation, and ends with ultimate disposal of residues. The relation of spent fuel storage and reprocessing is governed by technical, economic, and political considerations. Waste has been successfully solidified in glass and other forms and choices of the containers for the waste form are available. Methods of disposal of high-level waste that have been investigated are transmutation by neutron bombardment, shipment to Antartica, deep-hole insertion, subseabed placement, transfer by rocket to an orbit in space, and disposal in a mined cavity. The latter is the favored method. The choices of host geological media are salt, basalt, tuff, and granite.

  17. The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150

    Energy Technology Data Exchange (ETDEWEB)

    Gulik, V.I. [Institute for Nuclear Research, pr. Nauky 47, Kyiv, 03680 (Ukraine); Biland, A.B. [HHK Technologies, 3535 Wilcreast Dr., Houston TX 77042 (United States)

    2012-07-01

    New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spent nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)

  18. Preliminary concepts: materials management in an internationally safeguarded nuclear-waste geologic repository

    Energy Technology Data Exchange (ETDEWEB)

    Ostenak, C.A.; Whitty, W.J.; Dietz, R.J.

    1979-11-01

    Preliminary concepts of materials accountability are presented for an internationally safeguarded nuclear-waste geologic repository. A hypothetical reference repository that receives nuclear waste for emplacement in a geologic medium serves to illustrate specific safeguards concepts. Nuclear wastes received at the reference repository derive from prior fuel-cycle operations. Alternative safeguards techniques ranging from item accounting to nondestructive assay and waste characteristics that affect the necessary level of safeguards are examined. Downgrading of safeguards prior to shipment to the repository is recommended whenever possible. The point in the waste cycle where international safeguards may be terminate depends on the fissile content, feasibility of separation, and practicable recoverability of the waste: termination may not be possible if spent fuels are declared as waste.

  19. Railroad transportation of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wooden, D.G.

    1986-03-01

    This report documents a detailed analysis of rail operations that are important for assessing the risk of transporting high-level nuclear waste. The major emphasis of the discussion is towards ''general freight'' shipments of radioactive material. The purpose of this document is to provide a basis for selecting models and parameters that are appropriate for assessing the risk of rail transportation of nuclear waste.

  20. Supported liquid inorganic membranes for nuclear waste separation

    Energy Technology Data Exchange (ETDEWEB)

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  1. Fast facility spent-fuel and waste assay instrument. [Fluorinel Dissolution and Fuel Storage (FAST) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Eccleston, G.W.; Johnson, S.S.; Menlove, H.O.; Van Lyssel, T.; Black, D.; Carlson, B.; Decker, L.; Echo, M.W.

    1983-01-01

    A delayed-neutron assay instrument was installed in the Fluorinel Dissolution and Fuel Storage Facility at Idaho National Engineering Laboratory. The dual-assay instrument is designed to measure both spent fuel and waste solids that are produced from fuel processing. A set of waste standards, fabricated by Los Alamos using uranium supplied by Exxon Nuclear Idaho Company, was used to calibrate the small-sample assay region of the instrument. Performance testing was completed before installation of the instrument to determine the effects of uranium enrichment, hydrogenous materials, and neutron poisons on assays. The unit was designed to measure high-enriched uranium samples in the presence of large neutron backgrounds. Measurements indicate that the system can assay low-enriched uranium samples with moderate backgrounds if calibrated with proper standards.

  2. Transmutation of radioactive nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Toor, A; Buck, R

    2000-03-15

    Lack of a safe disposal method for radioactive nuclear waste (RNW) is a problem of staggering proportion and impact. A typical LWR fission reactor will produce the following RNW in one year: minor actinides (i.e. {sup 237}Np, {sup 242-243}Am, {sup 243-245}Cm) {approx}40 kg, long-lived fission products (i.e, {sup 99}Tc, {sup 93}Zr, {sup 129}I, {sup 135}Cs) {approx}80 kg, short lived fission products (e.g. {sup 137}Cs, {sup 90}Sr) {approx}50kg and plutonium {approx}280 kg. The total RNW produced by France and Canada amounts to hundreds of metric tonnes per year. Obtaining a uniform policy dealing with RNW has been blocked by the desire on one hand to harvest the energy stored in plutonium to benefit society and on the other hand the need to assure that the stockpile of plutonium will not be channeled into future nuclear weapons. In the meantime, the quantity and handling of these materials represents a potential health hazard to the world's population and particularly to people in the vicinity of temporary storage facilities. In the U.S., societal awareness of the hazards associated with RNW has effectively delayed development of U.S. nuclear fission reactors during the past decade. As a result the U.S. does not benefit from the large investment of resources in this industry. Reluctance to employ nuclear energy has compelled our society to rely increasingly on non-reusable alternative energy sources; coal, oil, and natural gas. That decision has compounded other unresolved global problems such as air pollution, acid rain, and global warming. Relying on these energy sources to meet our increasing energy demands has led the U.S. to increase its reliance on foreign oil; a policy that is disadvantageous to our economy and our national security. RNW can be simplistically thought of as being composed of two principal components: (1) actinides with half lives up to 10{sup 6} years and (2) the broad class of fission fragments with typical half lives of a few hundred

  3. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1999-01-13

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  4. Public policy issues in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Nealey, S.M.; Radford, L.M.

    1978-10-01

    This document aims to raise issues and to analyze them, not resolve them. The issues were: temporal equity, geographic and socioeconomic equity, implementation of a nuclear waste management system, and public involvement.

  5. Public policy issues in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Nealey, S.M.; Radford, L.M.

    1978-10-01

    This document aims to raise issues and to analyze them, not resolve them. The issues were: temporal equity, geographic and socioeconomic equity, implementation of a nuclear waste management system, and public involvement.

  6. Final report, Task 3: possible uses of the Nuclear Fuel Services, Inc. reprocessing plant at West Valley, New York. [For research on alternative fuel cycles, spiking, coprocessing, waste solidification, and recovery of radioactive gases

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-14

    The West Valley Plant could readily be used for work on reprocessing of alternative fuels, spiking, coprocessing (including CIVEX), waste solidification, and the recovery of radioactive gases. The plant could be easily modified for any scale between small-scale experimental work to production-scale demonstration, involving virtually any combination of fissile/fertile fuel materials that might be used in the future. The use of this plant for the contemplated experimental work would involve lower capital costs than the use of other facilities at DOE sites, except possibly for spiking of recovered products; the operating costs would be no greater than at other sites. The work on reprocessing of alternative fuels and coprocessing could commence within about one year; on recovery of radioactive gases, in 3 to 5 years; on spiking, in 4 years; and on waste solidification demonstration, in about 5 years. The contemplated work could be begun at this plant at least as early as at Barnwell, although work on spiking of recovered products could probably be started in existing hot cells earlier than at West Valley. (DLC)

  7. Spent Nuclear Fuel Project Technical Databook

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, M.A.

    1998-10-23

    The Spent Nuclear Fuel (SNF) Project Technical Databook is developed for use as a common authoritative source of fuel behavior and material parameters in support of the Hanford SNF Project. The Technical Databook will be revised as necessary to add parameters as their Databook submittals become available.

  8. 10 CFR 1.18 - Advisory Committee on Nuclear Waste.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18... Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee on Nuclear Waste (ACNW) provides advice to the Commission on all aspects of nuclear waste management,...

  9. Safety research in nuclear fuel cycle at PNC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF{sub 6}, uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  10. Safety research in nuclear fuel cycle at PNC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF{sub 6}, uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  11. From waste to traffic fuel (W-fuel)

    Energy Technology Data Exchange (ETDEWEB)

    Kask, Ue.; Andrijevskaja, J.; Kask, L. [and others

    2012-11-01

    The EU directive on the promotion of the use of energy from renewable sources (Directive 2009/28/EC) sets a mandatory minimum target for the use of fuels produced using renewable energy sources of 10% of total petrol and diesel consumption in the transport sector by the year 2020. In addition, it states that production of renewable fuels should be consistent with sustainable development and must not endanger biodiversity. In the INTERREG IVA Southern Finland - Estonia Sub-programme, efforts towards finding solutions to the tasks set by the EU were undertaken in co-operation with Finnish and Estonian researchers. The purpose of the 'From Waste to Traffic Fuel' (W-Fuel) project was to promote the sustainable production and use of biogas using locally-sourced biodegradable waste materials from the food and beverage industry and the agricultural and municipal sectors. The ultimate aim of the project was to upgrade the biogas (produced based on anaerobic digestion of biodegradable wastes, sludge, manure, slurry and energy crops) to biomethane with a methane content similar to natural gas, to be further used as transport fuel with the aim of reducing traffic-borne emissions, in particular CO{sub 2}. The project combined waste, energy and traffic solutions in order to decrease emissions, costs and the use of materials. Six case areas in southern Finland and northern Estonia were selected. The two case areas in Estonia were the counties of Harju and Laeaene-Viru in northern Estonia. The project aimed to promote waste and sludge prevention and to commence biogas production and its subsequent upgrading to biomethane for use as a renewable fuel. The project promoted regional businesses and employment in waste treatment and 'green energy' production. On basis of the gathered data, the biogas potentials and prerequisites of each case county were analysed. Furthermore, the environmental, economic and other regional effects of the different options were

  12. Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities, Sections 15-19

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.

    1982-09-01

    Information is presented under the following section headings: fuel reprocessing; spent fuel and high-level and transuranic waste storage; spent fuel and high-level and transuranic waste disposal; low-level and intermediate-level waste disposal; and, transportation of radioactive materials in the nuclear fuel cycle. In each of the first three sections a description is given on the mainline process, effluent processing and waste management systems, plant layout, and alternative process schemes. Safety information and a summary are also included in each. The section on transport of radioactive materials includes information on the transportation of uranium ore, uranium ore concentrate, UF/sub 6/, PuO/sub 2/ powder, unirradiated uranium and mixed-oxide fuel assemblies, spent fuel, solidified high-level waste, contact-handled transuranic waste, remote-handled transuranic waste, and low and intermediate level nontransuranic waste. A glossary is included. (JGB)

  13. Nuclear Waste Primer: A Handbook for Citizens.

    Science.gov (United States)

    Weber, Isabelle P.; Wiltshire, Susan D.

    This publication was developed with the intention of offering the nonexpert a concise, balanced introduction to nuclear waste. It outlines the dimensions of the problem, discussing the types and quantities of waste. Included are the sources, types, and hazards of radiation, and some of the history, major legislation, and current status of both…

  14. Enduring Nuclear Fuel Cycle, Proceedings of a panel discussion

    Energy Technology Data Exchange (ETDEWEB)

    Walter, C. E., LLNL

    1997-11-18

    The panel reviewed the complete nuclear fuel cycle in the context of alternate energy resources, energy need projections, effects on the environment, susceptibility of nuclear materials to theft, diversion, and weapon proliferation. We also looked at ethical considerations of energy use, as well as waste, and its effects. The scope of the review extended to the end of the next century with due regard for world populations beyond that period. The intent was to take a long- range view and to project, not forecast, the future based on ethical rationales, and to avoid, as often happens, long-range discussions that quickly zoom in on only the next few decades. A specific nuclear fuel cycle technology that could satisfy these considerations was described and can be applied globally.

  15. Locational conflict and the siting of nuclear waste disposal repositories: an international appraisal

    OpenAIRE

    F M Shelley; B D Solomon; M J Pasqualetti; G T Murauskas

    1988-01-01

    The industrialized nations of the world have begun to plan for the storage and eventual disposal of their increasing volumes of nuclear wastes. In this paper the authors inventory the progress made by these nations in planning for nuclear waste disposal. A typology based on the adoption of spent-fuel reprocessing programs and of progress toward selection of permanent disposal sites is developed, and the world's nuclear nations are located within this typology. However, those countries which h...

  16. SACSESS – the EURATOM FP7 project on actinide separation from spent nuclear fuels

    Directory of Open Access Journals (Sweden)

    Bourg Stéphane

    2015-12-01

    Full Text Available Recycling of actinides by their separation from spent nuclear fuel, followed by transmutation in fast neutron reactors of Generation IV, is considered the most promising strategy for nuclear waste management. Closing the fuel cycle and burning long-lived actinides allows optimizing the use of natural resources and minimizing the long-term hazard of high-level nuclear waste. Moreover, improving the safety and sustainability of nuclear power worldwide. This paper presents the activities striving to meet these challenges, carried out under the Euratom FP7 collaborative project SACSESS (Safety of Actinide Separation Processes. Emphasis is put on the safety issues of fuel reprocessing and waste storage. Two types of actinide separation processes, hydrometallurgical and pyrometallurgical, are considered, as well as related aspects of material studies, process modeling and the radiolytic stability of solvent extraction systems. Education and training of young researchers in nuclear chemistry is of particular importance for further development of this field.

  17. Spent Nuclear Fuel Transport Reliability Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Jiang, Hao [ORNL

    2016-01-01

    This conference paper was orignated and shorten from the following publisehd PTS documents: 1. Jy-An Wang, Hao Jiang, and Hong Wang, Dynamic Deformation Simulation of Spent Nuclear Fuel Assembly and CIRFT Deformation Sensor Stability Investigation, ORNL/SPR-2015/662, November 2015. 2. Jy-An Wang, Hong Wang, Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications, NUREG/CR-7198, ORNL/TM-2014/214, May 2015. 3. Jy-An Wang, Hong Wang, Hao Jiang, Yong Yan, Bruce Bevard, Spent Nuclear Fuel Vibration Integrity Study 16332, WM2016 Conference, March 6 10, 2016, Phoenix, Arizona.

  18. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.

    2005-09-30

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  19. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.

    2005-06-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  20. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  1. Accelerated reduction of used CANDU fuel waste with fast-neutron reactors: fuel cycle strategy cuts TRU waste lifespan from 400,000 years to less than 80 years

    Energy Technology Data Exchange (ETDEWEB)

    Ottensmeyer, P., E-mail: peter.ottensmeyer@utoronto.ca [Univ. of Toronto, Toronto, Ontario, (Canada)

    2013-07-01

    Canada's 45,000 tonnes of nuclear fuel waste contain over 99% heavy atoms whose nuclear energy can provide $50 trillion of non-carbon electricity in fast-neutron reactors (FNRs), equivalent to 4000 years of nuclear power at present levels. FNRs can utilize the 98.9% uranium in CANDU fuel waste and also the 0.38% transuranic actinides which impose its 400,000-year radiotoxicity. Separation of uranium from CANDU nuclear fuel waste would permit refueling of FNRs primarily with transuranics, hugely accelerating the elimination of the long-term radiotoxicity of the CANDU fuel waste. Practicable separations of uranium would result in the complete elimination of the transuranics in about 80 years using FNRs at current Canadian nuclear energy output, while ideal separations could lower this to 16 years. (author)

  2. Nuclear Fuels & Materials Spotlight Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    I. J. van Rooyen,; T. M. Lillo; Y. Q. WU; P.A. Demkowicz; L. Scott; D.M. Scates; E. L. Reber; J. H. Jackson; J. A. Smith; D.L. Cottle; B.H. Rabin; M.R. Tonks; S.B. Biner; Y. Zhang; R.L. Williamson; S.R. Novascone; B.W. Spencer; J.D. Hales; D.R. Gaston; C.J. Permann; D. Anders; S.L. Hayes; P.C. Millett; D. Andersson; C. Stanek; R. Ali; S.L. Garrett; J.E. Daw; J.L. Rempe; J. Palmer; B. Tittmann; B. Reinhardt; G. Kohse; P. Ramuhali; H.T. Chien; T. Unruh; B.M. Chase; D.W. Nigg; G. Imel; J. T. Harris

    2014-04-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • The first identification of silver and palladium migrating through the SiC layer in TRISO fuel • A description of irradiation assisted stress corrosion testing capabilities that support commercial light water reactor life extension • Results of high-temperature safety testing on coated particle fuels irradiated in the ATR • New methods for testing the integrity of irradiated plate-type reactor fuel • Description of a 'Smart Fuel' concept that wirelessly provides real time information about changes in nuclear fuel properties and operating conditions • Development and testing of ultrasonic transducers and real-time flux sensors for use inside reactor cores, and • An example of a capsule irradiation test. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps to spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at INL, and hope that you find this issue informative.

  3. Social dimensions of nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis

    2015-07-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  4. A review on the status of development in thorium-based nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Woo; Na, S. H.; Lee, Y. W.; Kim, H. S.; Kim, S. H.; Joung, C.Y

    2000-02-01

    Thorium as an alternative nuclear energy source had been widely investigated in the 1950s-1960s because it is more abundant than uranium, but the studies of thorium nuclear fuel cycle were discontinued by political and economic reasons in the 1970s. Recently, however, renewed interest was vested in thorium-based nuclear fuel cycle because it may generate less long-lived minor actinides and has a lower radiotoxicity of high level wastes after reprocessing compared with the thorium fuel cycle. In this state-of the art report, thorium-based nuclear cycle. In this state-of the art report, thorium-based nuclear fuel cycle and fuel fabrication processes developed so far with different reactor types are reviewed and analyzed to establish basic technologies of thorium fuel fabrication which could meet our situation. (author)

  5. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    William j. Weber; Lumin Wang; Jonathan Icenhower

    2004-07-09

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials.

  6. International trade and waste and fuel management issue, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal (ed.)

    2009-01-15

    The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: Innovative financing and workforce planning, by Donna Jacobs, Entergy Nuclear; Nuclear power - a long-term need, by John C. Devine, Gerald Goldsmith and Michael DeLallo, WorleyParsons; Importance of loan guarantee program, by Donald Hintz; EPC contracts for new plants, by Dave Barry, Shaw Power Group; GNEP and fuel recycling, by Alan Hanson, AREVA NC Inc.; Safe and reliable reactor, by Kiyoshi Yamauchi, Mitsubishi Heavy Industries, Ltd.; Safe, small and simple reactors, by Yoshi Sakashita, Toshiba Corporation; Nuclear power in Thailand, by Tatchai Sumitra, Thailand Institute of Nuclear Technology; and, Nuclear power in Vietnam, by Tran Huu Phat, Vietnam Atomic Energy Commission. The Industry Innovation article this issue is Rectifying axial-offset-anomaly problems, by Don Adams, Tennessee Valley Authority. The Plant Profile article is Star of Stars Excellence, by Tyler Lamberts, Entergy Nuclear Operations, Inc.

  7. Environmental survey of the reprocessing and waste management portions of the LWR fuel cycle: a task force report

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, W.P.; Miraglia, F.J. Jr. (eds.)

    1976-10-01

    This Supplement deals with the reprocessing and waste management portions of the nuclear fuel cycle for uranium-fueled reactors. The scope of the report is limited to the illumination of fuel reprocessing and waste management activities, and examination of the environmental impacts caused by these activities on a per-reactor basis. The approach is to select one realistic reprocessing and waste management system and to treat it in enough depth to illuminate the issues involved, the technology available, and the relationships of these to the nuclear fuel cycle in general and its environmental impacts.

  8. Fundamental aspects of nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO/sub 2/, fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO/sub 2/, radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies. (DG)

  9. Dry Transfer Systems for Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  10. Nuclear waste: too much too soon

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, T B; Tamplin, A R

    1978-01-01

    While it is agreed that now is the time to find a solution to the disposal of radioactive wastes which are stored in tanks and are, at the same time, accumulating at an increasing rate at nuclear power reactor, it is not the time for hurried and inappropriate action. To illustrate the magnitude of the problem, this report begins with a discussion of the looming logistical problem involving the management of nuclear waste materials. This is followed by the historical background of the nuclear bureaucracy and industry that will be charged with the responsibility of disposition of the waste. The report concludes with a discussion of the evolving criteria for waste disposal and the depressing implication of this evolution. This report is intended as an environment alert to call this problem to the attention of the citizenry and Congress and to indicate that their close involvement in its solution is absolutely essential. 23 references, 2 figures.

  11. Nuclear waste incineration technology status

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  12. Fuel Pellets Production from Biodiesel Waste

    Directory of Open Access Journals (Sweden)

    Kawalin Chaiyaomporn

    2010-01-01

    Full Text Available This research palm fiber and palm shell were used as raw materials to produce pelletised fuel, and waste glycerol were used as adhesive to reduce biodiesel production waste. The aim of this research is to find optimum ratio of raw material (ratio of palm fiber and palm shell, raw material size distribution, adhesive temperature, and ratio of ingredients (ratio of raw material, waste glycerol, and water. The optimum ratio of pelletized fuel made only by palm fiber was 50:10:40; palm fiber, water, and waste glycerol respectively. In the best practice condition; particle size was smaller than 2 mm, adhesive glycerol was heated. From the explained optimum ratio and ingredient, pelletizing ratio was 62.6%, specific density was 982.2 kg/m3, heating value was 22.5 MJ/kg, moisture content was 5.9194%, volatile matter was 88.2573%, fix carbon content was 1.5894%, and ash content was 4.2339% which was higher than the standard. Mixing palm shell into palm fiber raw material reduced ash content of the pellets. The optimum raw material ratio, which minimizes ash content, was 80 to 20 palm fiber and palm shell respectively. Adding palm shell reduced ash content to be 2.5247% which was higher than pelletized fuel standard but followed cubed fuel standard. At this raw material ratio, pelletizing ratio was 70.5%, specific density was 774.8 kg/m3, heating value was 19.71 MJ/kg, moisture content was 9.8137%, volatile matter was 86.2259%, fix carbon content was 1.4356%, and compressive force was 4.83 N. Pelletized fuel cost at optimum condition was 1.14 baht/kg.

  13. The disposal of nuclear waste in space

    Science.gov (United States)

    Burns, R. E.

    1978-01-01

    The important problem of disposal of nuclear waste in space is addressed. A prior study proposed carrying only actinide wastes to space, but the present study assumes that all actinides and all fission products are to be carried to space. It is shown that nuclear waste in the calcine (oxide) form can be packaged in a container designed to provide thermal control, radiation shielding, mechanical containment, and an abort reentry thermal protection system. This package can be transported to orbit via the Space Shuttle. A second Space Shuttle delivers an oxygen-hydrogen orbit transfer vehicle to a rendezvous compatible orbit and the mated OTV and waste package are sent to the preferred destination. Preferred locations are either a lunar crater or a solar orbit. Shuttle traffic densities (which vary in time) are given and the safety of space disposal of wastes discussed.

  14. Supervision of Waste Management and Environmental Protection at the Swedish Nuclear Facilities 2001

    CERN Document Server

    Persson, M

    2003-01-01

    The report summarizes the supervision of waste management and environmental protection at the nuclear facilities that was carried out by the Swedish Radiation Protection Authority in 2001. A summary of the inspections and a description of important issues connected with the supervision of the nuclear facilities are given.The inspections during 2001 have focused on theme inspections of waste management, environmental inspections considering the environmental monitoring at the Swedish nuclear facilities and review safety analysis and research programs from the Swedish Nuclear Fuel and Waste Management Co.The Swedish Radiation Protection Authority finds that the operations are mainly performed according to current regulations

  15. Nuclear Waste--Physics and Policy

    Science.gov (United States)

    Ahearne, John H.

    1996-03-01

    Managing and disposing of radioactive waste are major policy and financial issues in the United States and many other countries. Low-level waste sites, once thought to be possible in many states, remain fixed at the few sites that have been operating for decades. High-level waste remains at former nuclear weapons facilities and at nuclear power plants, and the DOE estimates a repository is unlikely before 2010, at the earliest. Physics and chemistry issues relate to criticality, plutonium loading in glass, leach rates, and diffusion. The public policy issues concern non-proliferation, states' rights, stakeholder participation, and nuclear power. Cleaning up the legacy of cold war driven nuclear weapons production is estimated to cost at least $250 billion and take three-quarters of a century. Some possible steps towards resolution of these issues will be described.

  16. Spent nuclear fuel retrieval system fuel handling development testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, D.R.; Meeuwsen, P.V.

    1997-09-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin, clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge), remove the contents from the canisters and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. This report describes fuel handling development testing performed from May 1, 1997 through the end of August 1997. Testing during this period was mainly focused on performance of a Schilling Robotic Systems` Conan manipulator used to simulate a custom designed version, labeled Konan, being fabricated for K-Basin deployment. In addition to the manipulator, the camera viewing system, process table layout, and fuel handling processes were evaluated. The Conan test manipulator was installed and fully functional for testing in early 1997. Formal testing began May 1. The purposes of fuel handling development testing were to provide proof of concept and criteria, optimize equipment layout, initialize the process definition, and identify special needs/tools and required design changes to support development of the performance specification. The test program was set up to accomplish these objectives through cold (non-radiological) development testing using simulated and prototype equipment.

  17. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (eds.)

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  18. 76 FR 34007 - Draft Regulatory Basis for a Potential Rulemaking on Spent Nuclear Fuel Reprocessing Facilities

    Science.gov (United States)

    2011-06-10

    ...: NUREG-1909, a white paper authored by the Advisory Committee on Nuclear Waste and Materials, titled... waste through developing more sophisticated reprocessing technologies. During the Bush Administration... reprocessing spent fuel and deploying fast reactors to burn long-lived actinides. In response to these...

  19. Integrated data management system for radioactive waste and spent fuel in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Ho [Korea Power Engineering Co., Inc., Yongin (Korea, Republic of)

    2001-03-15

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. So through the system, the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized, and public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information, it can ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management), the system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control and finally re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal. For this objectives, benchmark study was performed on similar data base system worldwide and data specification with major input/output data during the first phase of this project.

  20. Nuclear fuel supply view in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Cirimello, R.O. [Comision Nacional de Energia Atomica, Conuar SA (Argentina)

    1997-07-01

    The Argentine Atomic Energy Commission promoted and participated in a unique achievement in the R and D system in Argentina: the integration of science technology and production based on a central core of knowledge for the control and management of the nuclear fuel cycle technology. CONUAR SA, as a fuel manufacturer, FAE SA, the manufacturer of Zircaloy tubes, CNEA and now DIOXITEC SA producer of Uranium Dioxide, have been supply, in the last ten years, the amount of products required for about 1300 Tn of equivalent U content in fuels. The most promising changes for the fuel cycle economy is the Slight Enriched Uranium project which begun in Atucha I reactor. In 1997 seventy five fuel assemblies, equivalent to 900 Candu fuel bundles, will complete its irradiation. (author)

  1. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River National Laboratory, Aiken, SC (United States); Marra, J. [Savannah River National Laboratory, Aiken, SC (United States)

    2014-10-02

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing.

  2. National Waste Terminal Storage Program. Office of Nuclear Waste Isolation technical program plan

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The National Waste Terminal Storage Program (NWTS) was established in 1976 with the objective of developing a system for the permanent isolation of nuclear wastes. DOE is charged with developing programs for the long term management of highly radioactive nuclear wastes by federal law. This legislation specifies that DOE must provide facilities for the successful isolation of these wastes from the biosphere in federally licensed and owned repositories for as long as they represent a significant hazard. The scope of NWTS activities includes providing the technology and facilities for the terminal isolation of commercial wastes by disposal in stable geologic repositories deep underground. Steps leading to the accomplishment of this purpose include: site exploration, characterization, and recommendation; design, licensing, construction, and operation of a geologic repository (or repositories); provision of spent fuel packaging and transportation facilities; technology to support these steps; and coordination of studies of altenate disposal concepts (i.e., deep hole, seabed, space, etc.). Emphasis is being placed on a system of multiple barriers - natural and man-made - to isolate nuclear waste from the environment. Because the nature of the host rock is basic to determination of other barriers, work in the geologic aspects of the multiple barrier system is well under way in several candidate media. Throughout the process, the NWTS Program has the responsibility to provide public information on all aspects of the program and to encourage public interaction.

  3. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    Science.gov (United States)

    Settle, Frank A.

    2009-01-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…

  4. Summary of non-US national and international fuel cycle and radioactive waste management programs 1982

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Kelman, J.A.

    1982-08-01

    Brief program overviews of fuel cycle, spent fuel, and waste management activities in the following countries are provided: Argentina, Australia, Austria, Belgium, Brazil, Canada, China, Denmark, Finland, France, German Federal Republic, India, Italy, Japan, Republic of Korea, Mexico, Netherlands, Pakistan, South Africa, Spain, Sweden, Switzerland, Taiwan, USSR, and the United Kingdom. International nonproliferation activities, multilateral agreements and projects, and the international agencies specifically involved in the nuclear fuel cycle are also described.

  5. Questions concerning the nuclear wastes; Les dechets nucleaires en questions

    Energy Technology Data Exchange (ETDEWEB)

    Daures, Pierre [ed.] [Electricite de France (EDF), 75 - Paris (France)

    1998-07-01

    At present, 75% of the electricity in France is of nuclear origin. Most of French people approve this mode of energy production and agree upon the continuation of the electronuclear sector exploitation. However, as any industry, the nuclear industry produces wastes which constitute a keen preoccupation of the public opinion. The nuclear program, even at its very inception, has provided the appropriate mastering of radioactive wastes by reducing their volume, by conditioning, reprocessing and storing, expressing continually its carefulness for population protection as well as for environment defence against the radiological effects. Pursuing its policy of transparency the EDF demonstrated openness and understanding towards questions raised by anyone. This brochure gives answers to the following 17 questions: -what the nuclear wastes are, which is their origin? - what is their amount? - are the nuclear waste dangerous? - how to treat the nuclear wastes? - are the radioactive waste storage sure? - is the nuclear waste transportation sure? - are these solutions sure? - why searches for long-lived radioactive wastes? - what is transmutation? - shall we bequeath to the next generations our nuclear wastes? - are there particular problems in nuclear power plant decommissioning? - what the wastes issued from decommissioning become? - are the costs of reprocessing and decommissioning taken into account in the price of the kWh? - were the nuclear wastes taken into account since the nuclear program inception? - who manages the nuclear wastes? - why France accepted the reprocessing of nuclear wastes produced in foreign countries? - is there an international policy for nuclear wastes?.

  6. International Source Book: Nuclear Fuel Cycle Research and Development Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K. M.; Lakey, L. T.

    1982-11-01

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This second volume includes the program summaries of those countries listed alphabetically from Japan to Yugoslavia. Information on international agencies and associations, particularly the IAEA, NEA, and CEC, is provided also.

  7. Preliminary Evaluation of Removing Used Nuclear Fuel From Nine Shutdown Sites

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul

    2013-04-30

    The Blue Ribbon Commission on America’s Nuclear Future identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses. In this report, a preliminary evaluation of removing used nuclear fuel from nine shutdown sites was conducted. The shutdown sites included Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion. At these sites a total of 7649 used nuclear fuel assemblies and a total of 2813.2 metric tons heavy metal (MTHM) of used nuclear fuel are contained in 248 storage canisters. In addition, 11 canisters containing greater-than-Class C (GTCC) low-level radioactive waste are stored at these sites. The evaluation was divided in four components: • characterization of the used nuclear fuel and GTCC low-level radioactive waste inventory at the shutdown sites • an evaluation of the onsite transportation conditions at the shutdown sites • an evaluation of the near-site transportation infrastructure and experience relevant to the shipping of transportation casks containing used nuclear fuel from the shutdown sites • an evaluation of the actions necessary to prepare for and remove used nuclear fuel and GTCC low-level radioactive waste from the shutdown sites. Using these evaluations the authors developed time sequences of activities and time durations for removing the used nuclear fuel and GTCC low-level radioactive waste from a single shutdown site, from three shutdown sites located close to each other, and from all nine shutdown sites.

  8. Nuclear fuel supply: challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Lowen, S. [Cameco Corp., Saskatoon, Saskatchewan (Canada)

    2006-07-01

    Prices of uranium, conversion services and enrichment services have all significantly increased in the last few years. These price increases have generally been driven by a tightening in the supply of these products and services, mostly due to long lead times required to bring these products and services to the market. This paper will describe the various steps in the nuclear fuel cycle for natural and enriched uranium fuel, will discuss the development of the front-end fuel cycle for low void reactivity fuel, and will address the challenges faced in the long-term supply of each component, particularly in the light of potential demand increases as a result of a nuclear renaissance. The opportunities for new capacity and uranium production will be outlined and the process required to achieve sufficient new supply will be discussed. (author)

  9. Current state of nuclear fuel cycles in nuclear engineering and trends in their development according to the environmental safety requirements

    Science.gov (United States)

    Vislov, I. S.; Pischulin, V. P.; Kladiev, S. N.; Slobodyan, S. M.

    2016-08-01

    The state and trends in the development of nuclear fuel cycles in nuclear engineering, taking into account the ecological aspects of using nuclear power plants, are considered. An analysis of advantages and disadvantages of nuclear engineering, compared with thermal engineering based on organic fuel types, was carried out. Spent nuclear fuel (SNF) reprocessing is an important task in the nuclear industry, since fuel unloaded from modern reactors of any type contains a large amount of radioactive elements that are harmful to the environment. On the other hand, the newly generated isotopes of uranium and plutonium should be reused to fabricate new nuclear fuel. The spent nuclear fuel also includes other types of fission products. Conditions for SNF handling are determined by ecological and economic factors. When choosing a certain handling method, one should assess these factors at all stages of its implementation. There are two main methods of SNF handling: open nuclear fuel cycle, with spent nuclear fuel assemblies (NFAs) that are held in storage facilities with their consequent disposal, and closed nuclear fuel cycle, with separation of uranium and plutonium, their purification from fission products, and use for producing new fuel batches. The development of effective closed fuel cycles using mixed uranium-plutonium fuel can provide a successful development of the nuclear industry only under the conditions of implementation of novel effective technological treatment processes that meet strict requirements of environmental safety and reliability of process equipment being applied. The diversity of technological processes is determined by different types of NFA devices and construction materials being used, as well as by the composition that depends on nuclear fuel components and operational conditions for assemblies in the nuclear power reactor. This work provides an overview of technological processes of SNF treatment and methods of handling of nuclear fuel

  10. Selenium electrochemistry. Applications in the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Maslennikov, A.; Peretroukhine, V. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry; David, F. [Centre National de la Recherche Scientifique (CNRS), 91 - Orsay (France); Lecomte, M. [CEA Centre d' Etudes de la Valle du Rhone, 30 - Marcoule (France). Direction du Cycle du Combustible

    1999-07-01

    Modern state of selenium electrochemistry is reviewed in respect of the application of electrochemical methods for the study of the behavior of this element and its quantitative analysis in the solutions of nuclear fuel cycle. The review includes the data on the redox potentials of Se in aqueous solutions, and the data on Se redox reactions, occurring at mercury and solid electrodes. Analysis of the available literature data shows that the inverse stripping voltammetry technique for trace Se concentration and determination seems to be the most promising in application for the Se determination in PUREX solutions and in radioactive wastes. The adaptation of the ISV technique for the trace Se concentration and determination in the solutions of the nuclear fuel cycle is indicated as the most prospective goal of the future experimental study. (author)

  11. Double-clad nuclear fuel safety rod

    Science.gov (United States)

    McCarthy, William H.; Atcheson, Donald B.; Vaidyanathan, Swaminathan

    1984-01-01

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  12. Spent nuclear fuel project integrated schedule plan

    Energy Technology Data Exchange (ETDEWEB)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  13. Spent nuclear fuel project integrated schedule plan

    Energy Technology Data Exchange (ETDEWEB)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  14. Fuel and Combustion Characteristics of Organic Wastes

    Science.gov (United States)

    Namba, Kunihiko; Ida, Tamio

    From a viewpoint of environmental preservation and resource protection, the recycling of wastes has been promoting. Expectations to new energy resource are growing by decrease of fossil fuel. Biomass is one of new energies for prevent global warning. This study is an attempt to burn biomass lamps made from residues in order to thermally recycle waste products of drink industries. The pyrolytic properties of shochu dregs and used tea leaves were observed by thermo-gravimertic analysis (TG) to obtained fundamental data of drink waste pyrolysis. It observed that shochu dregs pyrolyze under lower temperature than used tea leaves. These wastes were compressed by hot press apparatus in the temperature range from 140 to 180 °C for use as Bio-fuel (BF). The combustion behavior of BF was observed in fall-type electric furnace, where video-recording was carried out at sequential steps, such as ignition, visible envelope flame combustion and char combustion to obtain combustion characteristics such as ignition delay, visible flame combustion time and char combustion time.

  15. End crop sealing method for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Kiyoshi

    1998-12-04

    End crops of spent nuclear fuels and glass materials are sealed in a corrosion and heat resistant vessel having an upper portion opened, and the corrosion and heat resistant vessel is heated from outside to melt the glass materials and they are solidified to form glass solidification products in which the end crops and radioactive materials deposited on the end crops are sealed. Then, the opened portion is closed. Since the end crops and radioactive materials deposited on end crops are sealed as glass solidification products in the vessel, sealing property for radioactive materials can be enhanced. Accordingly, radioactive materials can be prevented from transferring to the outside upon storing wastes or processing them into underground. In addition, since a large quantity of end crops can be filled into the corrosion and heat resistant vessel to form high level wastes, the space for the storage of wastes and processing facilities can be reduced. (T.M.)

  16. Conversion of cellulosic wastes to liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuester, J.L.

    1980-09-01

    The current status and future plans for a project to convert waste cellulosic (biomass) materials to quality liquid hydrocarbon fuels is described. The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, diesel fuel and/or high octane gasoline. A fluidized bed pyrolysis system is used for gasification. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. The following tasks were specified in the statement of work for the contract period: (1) feedstock studies; (2) gasification system optimization; (3) waste stream characterization; and (4) liquid fuels synthesis. In addition, several equipment improvements were implemented.

  17. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  18. Computational Design of Advanced Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Savrasov, Sergey [Univ. of California, Davis, CA (United States); Kotliar, Gabriel [Rutgers Univ., Piscataway, NJ (United States); Haule, Kristjan [Rutgers Univ., Piscataway, NJ (United States)

    2014-06-03

    The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

  19. Reference Neutron Radiographs of Nuclear Reactor Fuel

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    Reference neutron radiographs of nuclear reactor fuel were produced by the Euraton Neutron Radiography Working Group and published in 1984 by the Reidel Publishing Company. In this collection a classification is given of the various neutron radiographic findings, that can occur in different parts...... of pelletized, annular and vibro-conpacted nuclear fuel pins. Those parts of the pins are shown where changes of appearance differ from those for the parts as fabricated. Also radiographs of those as fabricated parts are included. The collection contains 158 neutron radiographs, reproduced on photographic paper...

  20. Nuclear waste storage and environmental intergenerational externalities

    OpenAIRE

    Fodha, Mouez

    2015-01-01

    International audience; This article analyzes the long-term consequences of nuclear waste storage within a general equilibrium framework. The objective is to determine the conditions for which the storage of waste, and thus the transfer of externalities towards the future, can be optimal. These conditions could explain the implementation of intergenerational externalities, justifying an intertemporal Not In My Back Yard behaviour. We first show that the choice of the policy instruments determ...

  1. Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RDandD Programme 2004. Programme for Research, Development and Demonstration of Methods for the Management and Disposal of Nuclear Waste, including Social Science Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    SKB has submitted RDandD Programme 2004 to SKI for review in accordance with the Act (1984:3) on Nuclear Activities. Based on SKI's review and the review statements received, SKI considers that: - SKB, and thereby the reactor owners, have fulfilled their obligations in accordance with paragraph 12 of the Act (1984:3) on Nuclear Activities, - Disposal in accordance with the KBS-3 concept seems to still be the most suitable way of disposing of spent nuclear fuel from the Swedish nuclear power programme. SKI would like to draw the Government's attention to the following evaluations and comments: - The question of who is responsible after the closure of a repository for spent nuclear fuel needs to be clarified. - SKB's plan of action is incomplete and its structure needs to be improved. The revised plan of action needs a more detailed account of the content of the basis for decision-making that SKB intends to present on different decision-making occasions. - As soon as possible, SKB should develop design premises for the canister and verify these premises in the next safety assessment which is planned for 2006. A clear and logical link between the detailed design premises for the canister and the requirements on long-term safety of the repository is still lacking. - SKB should specify the limits for different parameters that are of importance for the canister function. The account must be based on an identification of defects that can occur and their consequences for canister integrity and repository function. - SKB should clarify how the work on KBS-3H (horizontal deposition of the canisters) is to be developed. An estimate of how much time and resources will be required is needed in order to prepare a body of material corresponding to that for KBS-3V (vertical deposition which is, so far, the most studied concept). - SKB should continue to participate in and contribute to the development of methodology for safeguards in connection with the disposal

  2. Seismic response of nuclear fuel assembly

    Directory of Open Access Journals (Sweden)

    Hlaváč Z.

    2014-06-01

    Full Text Available The paper deals with mathematical modelling and computer simulation of the seismic response of fuel assembly components. The seismic response is investigated by numerical integration method in time domain. The seismic excitation is given by two horizontal and one vertical synthetic accelerograms at the level of the pressure vessel seating. Dynamic response of the hexagonal type nuclear fuel assembly is caused by spatial motion of the support plates in the reactor core investigated on the reactor global model. The modal synthesis method with condensation is used for calculation of the fuel assembly component displacements and speeds on the level of the spacer grid cells.

  3. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.; Corrales, L. Rene; Ness, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Thevuthasan, Suntharampillai; Icenhower, Jonathan P.; McGrail, B. Peter; Devanathan, Ramaswami; Van Ginhoven, Renee M.; Song, Jakyoung; Park, Byeongwon; Jiang, Weilin; Begg, Bruce D.; Birtcher, R. B.; Chen, X.; Conradson, Steven D.

    2000-10-02

    Radiation effects from the decay of radionuclides may impact the long-term performance and stability of nuclear waste forms and stabilized nuclear materials. In an effort to address these concerns, the objective of this project was the development of fundamental understanding of radiation effects in glasses and ceramics, particularly on solid-state radiation effects and their influence on aqueous dissolution kinetics. This study has employed experimental, theoretical and computer simulation methods to obtain new results and insights into radiation damage processes and to initiate the development of predictive models. Consequently, the research that has been performed under this project has significant implications for the High-Level Waste and Nuclear Materials focus areas within the current DOE/EM mission. In the High-Level Waste (HLW) focus area, the results of this research could lead to improvements in the understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials focus area, the results of this research could lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. Ultimately, this research could result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  4. SOLID GAS SUSPENSION NUCLEAR FUEL ASSEMBLY

    Science.gov (United States)

    Schluderberg, D.C.; Ryon, J.W.

    1962-05-01

    A fuel assembly is designed for use in a gas-suspension cooled nuclear fuel reactor. The coolant fluid is an inert gas such as nitrogen or helium with particles such as carbon suspended therein. The fuel assembly is contained within an elongated pressure vessel extending down into the reactor. The fuel portion is at the lower end of the vessel and is constructed of cylindrical segments through which the coolant passes. Turbulence promotors within the passageways maintain the particles in agitation to increase its ability to transfer heat away from the outer walls. Shielding sections and alternating passageways above the fueled portion limit the escape of radiation out of the top of the vessel. (AEC)

  5. Nuclear reactor composite fuel assembly. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, D.M.; Cappiello, M.W.; Marr, D.R.; Omberg, R.P.

    1980-11-25

    A core and composite fuel assembly are described for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  6. Nuclear Fuels & Materials Spotlight Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-10-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system. • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.

  7. A proliferation of nuclear waste for the Southeast.

    Science.gov (United States)

    Alvarez, Robert; Smith, Stephen

    2007-12-01

    The U.S. Department of Energy's (DOE) Global Nuclear Energy Partnership (GNEP) is being promoted as a program to bring about the expansion of worldwide nuclear energy. Here in the U.S. much of this proposed nuclear power expansion is slated to happen in the Southeast, including here in South Carolina. Under the GNEP plan, the United States and its nuclear partners would sell nuclear power plants to developing nations that agree not to pursue technologies that would aid nuclear weapons production, notably reprocessing and uranium enrichment. As part of the deal, the United States would take highly radioactive spent ("used") fuel rods to a reprocessing center in this country. Upon analysis of the proposal, it is clear that DOE lacks a credible plan for the safe management and disposal of radioactive wastes stemming from the GNEP program and that the high costs and possible public health and environmental impacts from the program pose significant risks, especially to this region. Given past failures to address waste problems before they were created, DOE's rush to invest major public funds for deployment of reprocessing should be suspended.

  8. Nuclear Waste Disposal: Can Government Cope?

    Science.gov (United States)

    1983-12-01

    reprocess spent fuel--the Hanford plant in Washington, the Savannah River plant in South Carolina, and the -. Idaho National Engineering Laboratory...HLW from reprocessing at the Nuclear Fuel Services plant at West Valley, New York paralleled the technology used at Hanford and Savannah River with...rely on decision rules for evaluating the technical acceptability of sites (e.g., seismic [121 Fieldwork was supposed to be conducted in 13 of the 36

  9. Framing ethical acceptability: a problem with nuclear waste in Canada.

    Science.gov (United States)

    Wilding, Ethan T

    2012-06-01

    Ethical frameworks are often used in professional fields as a means of providing explicit ethical guidance for individuals and institutions when confronted with ethically important decisions. The notion of an ethical framework has received little critical attention, however, and the concept subsequently lends itself easily to misuse and ambiguous application. This is the case with the 'ethical framework' offered by Canada's Nuclear Waste Management Organization (NWMO), the crown-corporation which owns and is responsible for the long-term management of Canada's high-level nuclear fuel waste. It makes a very specific claim, namely that it is managing Canada's long-lived radioactive nuclear fuel waste in an ethically responsible manner. According to this organization, what it means to behave in an ethically responsible manner is to act and develop policy in accordance with its ethical framework. What, then, is its ethical framework, and can it be satisfied? In this paper I will show that the NWMO's ethical and social framework is deeply flawed in two respects: (a) it fails to meet the minimum requirements of a code of ethic or ethical framework by offering only questions, and no principles or rules of conduct; and (b) if posed as principles or rules of conduct, some of its questions are unsatisfiable. In particular, I will show that one of its claims, namely that it seek informed consent from individuals exposed to risk of harm from nuclear waste, cannot be satisfied as formulated. The result is that the NWMO's ethical framework is not, at present, ethically acceptable.

  10. Thorium nuclear fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Tae Yoon; Do, Jae Bum; Choi, Yoon Dong; Park, Kyoung Kyum; Choi, In Kyu; Lee, Jae Won; Song, Woong Sup; Kim, Heong Woo

    1998-03-01

    Since thorium produces relatively small amount of TRU elements after irradiation in the reactor, it is considered one of possible media to mix with the elements to be transmuted. Both solid and molten-salt thorium fuel cycles were investigated. Transmutation concepts being studied involved fast breeder reactor, accelerator-driven subcritical reactor, and energy amplifier with thorium. Long-lived radionuclides, especially TRU elements, could be separated from spent fuel by a pyrochemical process which is evaluated to be proliferation resistance. Pyrochemical processes of IFR, MSRE and ATW were reviewed and evaluated in detail, regarding technological feasibility, compatibility of thorium with TRU, proliferation resistance, their economy and safety. (author). 26 refs., 22 figs

  11. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S. R. [University of Science and Technology, Daejeon (Korea, Republic of); Choi, S. Y. [UNIST, Ulju (Korea, Republic of); Koc, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle.

  12. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.

  13. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Best, Ralph E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buxton, Kenneth A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); England, Jeffery L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Massaro, Lawrence M. [Federal Railroad Administration (FRA) (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-10-01

    This report presents a preliminary evaluation of removing used nuclear fuel (UNF) from 12 shutdown nuclear power plant sites. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites are Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. The evaluation was divided into four components: characterization of the UNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory; a description of the on-site infrastructure and conditions relevant to transportation of UNF and GTCC waste; an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing UNF and GTCC waste, including identification of gaps in information; and, an evaluation of the actions necessary to prepare for and remove UNF and GTCC waste. The primary sources for the inventory of UNF and GTCC waste are the U.S. Department of Energy (DOE) RW-859 used nuclear fuel inventory database, industry sources such as StoreFUEL and SpentFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of site and near-site transportation infrastructure and experience included observations and information collected during visits to the Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion sites; information provided by managers at the shutdown sites; Facility Interface Data Sheets compiled for DOE in 2005; Services Planning Documents prepared for DOE in 1993 and 1994; industry publications such as Radwaste Solutions; and Google Earth. State and Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative participated in six of the shutdown site

  14. Reactor-based management of used nuclear fuel: assessment of major options.

    Science.gov (United States)

    Finck, Phillip J; Wigeland, Roald A; Hill, Robert N

    2011-01-01

    This paper discusses the current status of the ongoing Advanced Fuel Cycle Initiative (AFCI) program in the U.S. Department of Energy that is investigating the potential for using the processing and recycling of used nuclear fuel to improve radioactive waste management, including used fuel. A key element of the strategies is to use nuclear reactors for further irradiation of recovered chemical elements to transmute certain long-lived highly-radioactive isotopes into less hazardous isotopes. Both thermal and fast neutron spectrum reactors are being studied as part of integrated nuclear energy systems where separations, transmutation, and disposal are considered. Radiotoxicity is being used as one of the metrics for estimating the hazard of used fuel and the processing of wastes resulting from separations and recycle-fuel fabrication. Decay heat from the used fuel and/or wastes destined for disposal is used as a metric for use of a geologic repository. Results to date indicate that the most promising options appear to be those using fast reactors in a repeated recycle mode to limit buildup of higher actinides, since the transuranic elements are a key contributor to the radiotoxicity and decay heat. Using such an approach, there could be much lower environmental impact from the high-level waste as compared to direct disposal of the used fuel, but there would likely be greater generation of low-level wastes that will also require disposal. An additional potential waste management benefit is having the ability to tailor waste forms and contents to one or more targeted disposal environments (i.e., to be able to put waste in environments best-suited for the waste contents and forms).

  15. Nuclear Energy and Synthetic Liquid Transportation Fuels

    Science.gov (United States)

    McDonald, Richard

    2012-10-01

    This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.

  16. Spent Nuclear Fuel (SNF) Project Product Specification

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    2000-01-20

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

  17. Spent nuclear fuel project product specification

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    1999-02-25

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

  18. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Best, Ralph E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buxton, Kenneth A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); England, Jeffery L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McConnell, Paul E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Massaro, Lawrence M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-30

    A preliminary evaluation of removing spent nuclear fuel (SNF) from 13 shutdown nuclear power reactor sites was conducted. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, San Onofre, and Vermont Yankee. The evaluation was divided into four components: (1) characterization of the SNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory, (2) a description of the on-site infrastructure and conditions relevant to transportation of SNF and GTCC waste, (3) an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing SNF and GTCC waste, including identification of gaps in information, and (4) an evaluation of the actions necessary to prepare for and remove SNF and GTCC waste. Every site was found to have at least one off-site transportation mode option for removing its SNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. It is expected that additional site visits will be conducted to add to the information presented in the evaluation.

  19. The Nuclear Waste Policy Act, as amended, with appropriations acts appended. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This act provides for the development of repositories for the disposal of high-level radioactive wastes, low-level radioactive wastes, and spent nuclear fuels. In addition, it establishes research and development programs, as well as demonstration programs regarding the disposal of these wastes. This Act consists of the Act of Jan. 7, 1983 (Public Law 97-425; 96 Stat. 2201), as amended by Public Law 100-203 and Public Law 102-486.

  20. Multidimensional multiphysics simulation of nuclear fuel behavior

    Science.gov (United States)

    Williamson, R. L.; Hales, J. D.; Novascone, S. R.; Tonks, M. R.; Gaston, D. R.; Permann, C. J.; Andrs, D.; Martineau, R. C.

    2012-04-01

    Nuclear fuel operates in an environment that induces complex multiphysics phenomena, occurring over distances ranging from inter-atomic spacing to meters, and times scales ranging from microseconds to years. This multiphysics behavior is often tightly coupled and many important aspects are inherently multidimensional. Most current fuel modeling codes employ loose multiphysics coupling and are restricted to 2D axisymmetric or 1.5D approximations. This paper describes a new modeling tool able to simulate coupled multiphysics and multiscale fuel behavior, for either 2D axisymmetric or 3D geometries. Specific fuel analysis capabilities currently implemented in this tool are described, followed by a set of demonstration problems which include a 10-pellet light water reactor fuel rodlet, three-dimensional analysis of pellet clad mechanical interaction in the vicinity of a defective fuel pellet, coupled heat transfer and fission product diffusion in a TRISO-coated fuel particle, a demonstration of the ability to couple to lower-length scale models to account for material property variation with microstructural evolution, and a demonstration of the tool's ability to efficiently solve very large and complex problems using massively-parallel computing. A final section describes an early validation exercise, comparing simulation results to a light water reactor fuel rod experiment.

  1. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  2. The cycle of the nuclear fuel used in EDF power plants; Le cycle du combustible nucleaire utilise dans les centrales EDF

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    This document briefly indicates the different stages of the nuclear fuel cycle, from the purchase of natural uranium to waste storage. It also indicates the main responsibilities of EDF regarding this fuel cycle (to secure supplies, to organise material transportation, to process and store used fuels and associated wastes). It presents the different associated processes: uranium extraction, purification and concentration, conversion or fluoridation, enrichment. It briefly describes the fuel assembly fabrication, and indicates the main uranium producers in the world. Other addressed steps are: the transportation of fuel assembly, fuel loading, and spent fuel management, the processing of spent fuel and radioactive wastes

  3. Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

  4. Nuclear reactor fuel element. Kernreaktorbrennelement

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, H.J.

    1985-03-28

    The fuel element box for a BWR is situated with a corner bolt on the inside in one corner of its top on the top side of the top plate. This corner bolt is screwed down with a bolt with a corner part which is provided with leaf springs outside on two sides, where the bolt has a smaller diameter and an expansion shank. The bolt is held captive to the bolt head on the top and the holder on the bottom of the corner part. The holder is a locknut. If the expansion forces are too great, the bolt can only break at the expansion shank.

  5. RED-IMPACT. Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Lensa, Werner von; Nabbi, Rahim; Rossbach, Matthias (eds.) [Forschungszentrum Juelich GmbH (Germany)

    2008-07-01

    The impact of partitioning and transmutation (P and T) and waste reduction technologies on the nuclear waste management and particularly on the final disposal has been analysed within the EU-funded RED-IMPACT project. Five representative scenarios, ranging from direct disposal of the spent fuel to fully closed cycles (including minor actinide (MA) recycling) with fast neutron reactors or accelerator-driven systems (ADS), were chosen in the project to cover a wide range of representative waste streams, fuel cycle facilities and process performances. High and intermediate level waste streams have been evaluated for all of these scenarios with the aim of analysing the impact on geological disposal in different host formations such as granite, clay and salt. For each scenario and waste stream, specific waste package forms have been proposed and their main characteristics identified. Both equilibrium and transition analyses have been applied to those scenarios. The performed assessments have addressed parameters such as the total radioactive and radiotoxic inventory, discharges during reprocessing, thermal power and radiation emission of the waste packages, corrosion of matrices, transport of radioisotopes through the engineered and geological barriers or the resulting doses from the repository. The major conclusions of include the fact, that deep geological repository to host the remaining high level waste (HLW) and possibly the long-lived intermediate level waste (ILW) is unavoidable whatever procedure is implemented to manage waste streams from different fuel cycle scenarios including P and T of long-lived transuranic actinides.

  6. Nuclear Waste Management under Approaching Disaster

    NARCIS (Netherlands)

    Ilg, Patrick; Gabbert, Silke; Weikard, Hans Peter

    2016-01-01

    This article compares different strategies for handling low- and medium-level nuclear waste buried in a retired potassium mine in Germany (Asse II) that faces significant risk of uncontrollable brine intrusion and, hence, long-term groundwater contamination. We survey the policy process that has

  7. Nuclear Waste Management under Approaching Disaster

    NARCIS (Netherlands)

    Ilg, Patrick; Gabbert, Silke; Weikard, Hans Peter

    2017-01-01

    This article compares different strategies for handling low- and medium-level nuclear waste buried in a retired potassium mine in Germany (Asse II) that faces significant risk of uncontrollable brine intrusion and, hence, long-term groundwater contamination. We survey the policy process that has

  8. Permanent Disposal of Nuclear Waste in Salt

    Science.gov (United States)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  9. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part I. The fluorination-fractionation process

    Energy Technology Data Exchange (ETDEWEB)

    Sears, M.B.; Blanco, R.E.; Finney, B.C.; Hill, G.S.; Moore, R.E.; Witherspoon, J.P.

    1977-07-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the fluorination-fractionation (dry hydrofluor) process, and to evaluate the radiological impact (dose commitment) of the released materials on the environment. This study is designed to assist in defining the term as low as is reasonably achievable (ALARA) in relation to limiting the release of radioactive materials from nuclear facilities. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose commitment are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  10. Corrosion of Spent Nuclear Fuel: The Long-Term Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rodney C. Ewing

    2004-10-07

    Spent nuclear fuel, essentially U{sub 2}, accounts for over 95% of the total radioactivity of all of the radioactive wastes in the United States that require disposal, disposition or remediation. The UO{sub 2} in SNF is not stable under oxiding conditions and may also be altered under reducing conditions. The alteration of SNF results in the formation of new uranium phases that can cause the release or retardation of actinide and fission product radionuclides. Over the long term, and depending on the extent to which the secondary uranium phases incorporate fission products and actinides, these alteration phases become the near-field source term.

  11. A present status for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Park, H. Y.; Seo, K. S

    2003-04-01

    National policy for management of a spent nuclear fuel does not establish in Korea yet. A storage capacity of a storage pool that is to store the spent nuclear fuel will be exceeded an amount of accumulation from the first Woljin nuclear power plant in 2007. Therefore it is necessary that dry storage facility is secured to store safely the spent nuclear fuel on site of the nuclear power plant until national policy for a back-end spent nuclear fuel cycle is established. In order to store safely spent nuclear fuel, it is important that the present status and technology on dry storage of spent nuclear fuel is looked over. Therefore, the present status on dry storage of spent nuclear fuel was analyzed so as to develop dry storage system and choose a proper dry storage method domestic.

  12. Application of gaseous core reactors for transmutation of nuclear waste

    Science.gov (United States)

    Schnitzler, B. G.; Paternoster, R. R.; Schneider, R. T.

    1976-01-01

    An acceptable management scheme for high-level radioactive waste is vital to the nuclear industry. The hazard potential of the trans-uranic actinides and of key fission products is high due to their nuclear activity and/or chemical toxicity. Of particular concern are the very long-lived nuclides whose hazard potential remains high for hundreds of thousands of years. Neutron induced transmutation offers a promising technique for the treatment of problem wastes. Transmutation is unique as a waste management scheme in that it offers the potential for "destruction" of the hazardous nuclides by conversion to non-hazardous or more manageable nuclides. The transmutation potential of a thermal spectrum uranium hexafluoride fueled cavity reactor was examined. Initial studies focused on a heavy water moderated cavity reactor fueled with 5% enriched U-235-F6 and operating with an average thermal flux of 6 times 10 to the 14th power neutrons/sq cm-sec. The isotopes considered for transmutation were I-129, Am-241, Am-242m, Am-243, Cm-243, Cm-244, Cm-245, and Cm-246.

  13. Application of gaseous core reactors for transmutation of nuclear waste

    Science.gov (United States)

    Schnitzler, B. G.; Paternoster, R. R.; Schneider, R. T.

    1976-01-01

    An acceptable management scheme for high-level radioactive waste is vital to the nuclear industry. The hazard potential of the trans-uranic actinides and of key fission products is high due to their nuclear activity and/or chemical toxicity. Of particular concern are the very long-lived nuclides whose hazard potential remains high for hundreds of thousands of years. Neutron induced transmutation offers a promising technique for the treatment of problem wastes. Transmutation is unique as a waste management scheme in that it offers the potential for "destruction" of the hazardous nuclides by conversion to non-hazardous or more manageable nuclides. The transmutation potential of a thermal spectrum uranium hexafluoride fueled cavity reactor was examined. Initial studies focused on a heavy water moderated cavity reactor fueled with 5% enriched U-235-F6 and operating with an average thermal flux of 6 times 10 to the 14th power neutrons/sq cm-sec. The isotopes considered for transmutation were I-129, Am-241, Am-242m, Am-243, Cm-243, Cm-244, Cm-245, and Cm-246.

  14. Nuclear waste issues: a perspectives document

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.J.; Smith, C.F.; Ciminese, F.J.

    1983-02-01

    This report contains the results of systematic survey of perspectives on the question of radioactive waste management. Sources of information for this review include the scientific literature, regulatory and government documents, pro-nuclear and anti-nuclear publications, and news media articles. In examining the sources of information, it has become evident that a major distinction can be made between the optimistic or positive viewpoints, and the pessimistic or negative ones. Consequently, these form the principal categories for presentation of the perspectives on the radioactive waste management problem have been further classified as relating to the following issue areas: the physical aspects of radiation, longevity, radiotoxicity, the quantity of radioactive wastes, and perceptual factors.

  15. Spent nuclear fuel project product specification

    Energy Technology Data Exchange (ETDEWEB)

    Pajunen, A.L.

    1998-01-30

    Product specifications are limits and controls established for each significant parameter that potentially affects safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for transport to dry storage. The product specifications in this document cover the spent fuel packaged in MultiCanister Overpacks (MCOs) to be transported throughout the SNF Project. The SNF includes N Reactor fuel and single-pass reactor fuel. The FRS removes the SNF from the storage canisters, cleans it, and places it into baskets. The MCO loading system places the baskets into MCO/Cask assembly packages. These packages are then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the MCO cask packages are transferred to the Canister Storage Building (CSB), where the MCOs are removed from the casks, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The key criteria necessary to achieve these goals are documented in this specification.

  16. Supply Security in Future Nuclear Fuel Markets

    Energy Technology Data Exchange (ETDEWEB)

    Seward, Amy M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Thomas W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gitau, Ernest T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ford, Benjamin E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-11-18

    Previous PNNL work has shown the existing nuclear fuel markets to provide a high degree of supply security, including the ability to respond to supply disruptions that occur for technical and non-technical reasons. It is in the context of new reactor designs – that is, reactors likely to be licensed and market ready over the next several decades – that fuel supply security is most relevant. Whereas the fuel design and fabrication technology for existing reactors are well known, the construction of a new set of reactors could stress the ability of the existing market to provide adequate supply redundancy. This study shows this is unlikely to occur for at least thirty years, as most reactors likely to be built in the next three decades will be evolutions of current designs, with similar fuel designs to existing reactors.

  17. Groundwater chemistry of a nuclear waste reposoitory in granite bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J.

    1981-09-01

    This report concerns the prediction of the maximum dissolution rate for nuclear waste stored in the ground. That information is essential in judging the safety of a nuclear waste repository. With a limited groundwater flow, the maximum dissolution rate coincides with the maximum solubility. After considering the formation and composition of deep granite bedrock groundwater, the report discusses the maximum solubility in such groundwater of canister materials, matrix materials and waste elements. The parameters considered are pH, Eh and complex formation. The use of potential-pH (Pourbaix) diagrams is stressed; several appendixes are included to help in analyzing such diagrams. It is repeatedly found that desirable basic information on solution chemistry is lacking, and an international cooperative research effort is recommended. The report particularly stresses the lack of reliable data about complex formation and hydrolysis of the actinides. The Swedish Nuclear Fuel Safety (KBS) study has been used as a reference model. Notwithstanding the lack of reliable chemical data, particularly for the actinides and some fission products, a number of essential conclusions can be drawn about the waste handling model chosen by KBS. (1) Copper seems to be highly resistant to groundwater corrosion. (2) Lead and titanium are also resistant to groundwater, but inferior to copper. (3) Iron is not a suitable canister material. (4) Alumina (Al/sub 2/O/sub 3/) is not a suitable canister material if groundwater pH goes up to or above 10. Alumina is superior to copper at pH < 9, if there is a risk of the groundwater becoming oxidizing. (5) The addition of vivianite (ferrous phosphate) to the clay backfill around the waste canisters improves the corrosion resistance of the metal canisters, and reduces the solubility of many important waste elements. This report does not treat the migration of dissolved species through the rock.

  18. Outline of results of safety research (in nuclear fuel cycle field in fiscal year 1996)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The safety research in Power Reactor and Nuclear Fuel Development Corporation in fiscal year 1996 has been carried out based on the basic plan of safety research (from fiscal year 1996 to 2000) which was decided in March, 1996. In this report, on nuclear fuel cycle field, namely all the subjects in the fields of nuclear fuel facilities, environmental radioactivity and waste disposal, and the subjects related to nuclear fuel facilities among the fields of aseismatic and probabilistic safety assessments, the results of research in fiscal year 1996, the first year of the 5-year project, are summarized together with the outline of the basic plan of safety research. The basic policy, objective and system for promotion of the safety research are described. The objectives of the safety research are the advancement of safety technology, the safety of facilities, stable operation techniques, the safety design and the evaluation techniques of next generation facilities, and the support of transferring nuclear fuel cycle to private businesses. The objects of the research are uranium enrichment, fuel fabrication and reprocessing, and waste treatment and storage. 52 investigation papers of the results of the safety research in nuclear fuel cycle field in fiscal year 1996 are collected in this report. (K.I.)

  19. 77 FR 19278 - Informational Meeting on Nuclear Fuel Cycle Options

    Science.gov (United States)

    2012-03-30

    ... criteria or the pros and cons of any particular fuel cycle option. Opportunity for providing input on the... Informational Meeting on Nuclear Fuel Cycle Options AGENCY: Office of Fuel Cycle Technologies, Office of Nuclear Energy, Department of Energy. ACTION: Notice of meeting. SUMMARY: The Office of Fuel Cycle...

  20. Ethical Issues in Nuclear Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Oughton, Deborah [Agricultural Univ. of Norway, Aas (Norway). Dept. of Chemistry and Biotechnology

    2001-07-01

    Nuclear experts claim that the health risks from radioactive waste disposal are low compared to other environmental hazards, yet the general public is sceptical of the industry's ability to guarantee acceptable safety standards. Many allude to what might be deemed morally relevant factors, such as potential harms to future generations, possibly catastrophic consequences and environmental effects. Industry has often tended to respond with a claim that the public has an irrational perception of radiation risks, particularly those from man-made rather than natural sources. From a philosophical point of view it is interesting to consider exactly how nuclear risks might differ from other hazards, not least to evaluate which ethically relevant factors could be used to defend the stringent demands made by society for nuclear waste disposal.

  1. Microwave energy for post-calcination treatment of high-level nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary.

  2. Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions

    Science.gov (United States)

    Carlsen, Robert W.

    Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors

  3. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  4. Korean efforts towards an environment friendly back-end nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.S.; Hwang, Y.S. [Korea Atomic Energy Research Inst., Daejon (Korea, Republic of)

    2001-07-01

    In Korea, sixteen nuclear reactors are in operation and by 2015, a total of twenty-six nuclear reactors will be in operation. The current nuclear share occupies about 29.2 % of the total generating capacity of electricity and 43.1 % of the total production of electricity. The active nuclear program causes an inevitable increase in the build-up of radioactive waste, including spent fuel. Therefore, reliable and effective management of radioactive waste and spent fuel has become a key to the continuous growth of the nuclear power program. By the end of 2000, a total of 57,270 drums of LILW were generated from the nuclear power plants (NPPs) and the total amount of LILW from NPPs, RI applications from more than 1,500 users, and decommissioning shall increase to around a quarter of a million drums by 2020. Also, the cumulative amount of spent fuel reached 4,760 MTU by the end of 2000 and will jump to 18,615 MTU by 2020. According to the new national planning, AFR storage facilities for spent fuels shall be built by 2016 and a repository for LILW radioactive disposal shall be in operation by 2008. Even though Korea has a ''wait and see policy'' for spent fuel management, several alternative studies on spent fuel management such as DUPIC have been carried out. In parallel, R and D activities to develop the needed technologies for the permanent disposal of spent fuel and HLW have been implemented. In addition, active R and D on the treatment of radioactive waste from the various nuclear fuel cycles as well as the decontamination and decommissioning of nuclear facilities are in progress. Many of these studies are pursued in the form of regional as well as international cooperation. (author)

  5. Debate heats up over potential Interim Nuclear Waste Repository, as studies of Yucca Mountain continue

    Science.gov (United States)

    Showstack, Randy

    With spent nuclear fuel piling up at power plants around the United States, and with a potential permanent nuclear waste repository at Nevada's Yucca Mountain not scheduled to accept waste until 11 years from now in the year 2010, the nuclear energy industry and many members of Congress have renewed their push to establish an interim repository at the adjacent Nevada Test Site of nuclear bombs.At a sometimes contentious March 12 hearing to consider the Nuclear Waste Policy Act of 1999 (House Resolution 45) that would require an interim facility to begin accepting waste in 2003, bill cosponsor Rep. Jim Barton (R-Tex.) told Energy Secretary Bill Richardson that he preferred that Congress and the Clinton Administration negotiate rather than fight over the measure.

  6. National strategy for disposal of high level waste and spent fuel in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Borys Zlobenko; Emlen Sobotovich [IEG NASU, Ukraine (Ukraine)

    2006-07-01

    Full text of publication follows: Nuclear energy remains the most important component in the fuel energy system of Ukraine. As a result of the previous and ongoing nuclear power programmes, Ukraine accumulates substantial amounts of spent fuel and radioactive wastes. While these wastes will be stored in temporary facilities, it is envisaged that final disposal will take place in a deep geological repository. The Law of Ukraine 'On Radioactive Waste Management' provides for the ultimate disposal of high- and intermediate-level waste in deep geological formations. To solve the problem of radioactive waste disposal in geological repositories, the first-priority tasks are the following: implementation of regulatory and legal framework for managing radioactive waste to be disposed of in deep geological formations, and develop a regulation to govern the general provisions on safe disposal of radioactive waste in geological repositories. The regulation entitled 'General Provisions on Safe Disposal of Radioactive Waste in Geological Repositories' has been developed in compliance with the Comprehensive Programme of Radioactive Waste Management. The regulation establishes basic criteria, requirements and conditions for nuclear and radiation safety to be applied for radioactive waste disposal in stable geological formations (geological repositories) at all life stages of repositories with the purpose of protecting personnel, the public and the environment. The 'Programme on Management of NPP Spent Nuclear Fuel' does not identify measures on treatment of spent nuclear fuel for disposal up to 2010. Ukraine implements the so-called 'deferred decision', which means that the decision on spent fuel disposal or processing is deferred to future when it can be made with greater confidence taking into account relevant worldwide experience and progress of science and industry of the State. The concept and a programme for radioactive waste disposal

  7. U.S. program assessing nuclear waste disposal in space - A 1981 status report

    Science.gov (United States)

    Rice, E. E.; Edgecombe, D. S.; Best, R. E.; Compton, P. R.

    1982-01-01

    Concepts, current studies, and technology and equipment requirements for using the STS for space disposal of selected nuclear wastes as a complement to geological storage are reviewed. An orbital transfer vehicle carried by the Shuttle would kick the waste cannister into a 0.85 AU heliocentric orbit. One flight per week is regarded as sufficient to dispose of all high level wastes chemically separated from reactor fuel rods from 200 GWe nuclear power capacity. Studies are proceeding for candidate wastes, the STS system suited to each waste, and the risk/benefits of a space disposal system. Risk assessments are being extended to total waste disposal risks for various disposal programs with and without a space segment, and including side waste streams produced as a result of separating substances for launch.

  8. Geological safety aspects of nuclear waste disposalin in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, L.; Hakkarainen, V.; Kaija, J.; Kuivamaki, A.; Lindberg, A.; Paananen, M.; Paulamaki, S.; Ruskeeniemi, T., e-mail: lasse.ahonen@gtk.fi

    2011-07-01

    The management of nuclear waste from Finnish power companies is based on the final geological disposal of encapsulated spent fuel at a depth of several hundreds of metres in the crystalline bedrock. Permission for the licence requires that the safety of disposal is demonstrated in a safety case showing that processes, events and future scenarios possibly affecting the performance of the deep repository are appropriately understood. Many of the safety-related issues are geological in nature. The Precambrian bedrock of Finland has a long history, even if compared with the time span considered for nuclear waste disposal, but the northern location calls for a detailed study of the processes related to Quaternary glaciations. This was manifested in an extensive international permafrost study in northern Canada, coordinated by GTK. Hydrogeology and the common existence of saline waters deep in the bedrock have also been targets of extensive studies, because water chemistry affects the chemical stability of the repository near-field, as well as radionuclide transport. The Palmottu natural analogue study was one of the international high-priority natural analogue studies in which transport phenomena were explored in a natural geological system. Currently, deep biosphere processes are being investigated in support of the safety of nuclear waste disposal. (orig.)

  9. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    N. E. Pettit

    2001-07-13

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident.

  10. Corrosion of Spent Nuclear Fuel: The Long-Term Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Rodney C.

    2003-09-14

    The successful disposal of spent nuclear fuel (SNF) is one of the most serious challenges to the successful completion of the nuclear fuel cycle and the future of nuclear power generation. In the United States, 21 percent of the electricity is generated by 107 commercial nuclear power plants (NPP), each of which generates 20 metric tons of spent nuclear fuel annually. In 1996, the total accumulation of spent nuclear fuel was 33,700 metric tons of heavy metal (MTHM) stored at 70 sites around the country. The end-of-life projection for current nuclear power plants (NPP) is approximately 86,000 MTHM. In the proposed nuclear waste repository at Yucca Mountain over 95% of the radioactivity originates from spent nuclear fuel. World-wide in 1998, approximately 130,000 MTHM of SNF have accumulated, most of it located at 236 NPP in 36 countries. Annual production of SNF is approximately 10,000 MTHM, containing about 100 tons of ''reactor grade'' plutonium. Any reasonable increase in the proportion of energy production by NPP, i.e., as a substitute for hydrocarbon-based sources of energy, will significantly increase spent nuclear fuel production. Spent nuclear fuel is essentially UO{sub 2} with approximately 4-5 atomic percent actinides and fission product elements. A number of these elements have long half-lives hence, the long-term behavior of the UO{sub 2} is an essential concern in the evaluation of the safety and risk of a repository for spent nuclear fuel. One of the unique and scientifically most difficult aspects of the successful disposal of spent nuclear fuel is the extrapolation of short-term laboratory data (hours to years) to the long time periods (10{sup 3} to 10{sup 5} years) as required by the performance objectives set in regulations, i.e. 10 CFR 60. The direct verification of these extrapolations or interpolations is not possible, but methods must be developed to demonstrate compliance with government regulations and to satisfy the

  11. Technical summary: Nuclear Waste Vitrification Project

    Energy Technology Data Exchange (ETDEWEB)

    Wheelwright, E.J.; Bjorklund, W.J.; Browne, L.M.; Bryan, G.H.; Holton, L.K.; Irish, E.R.; Siemens, D.H.

    1979-05-01

    Six PWR fuel assemblies, containing 2.3 metric tons uranium from Point Beach, have been processed by a conventional Purex-type process. U and other chemicals were added to the dilute HLLW, and the waste was then vitrified to produce two canisters of glass. The on-stream efficiency of the waste preparation facility exceeded 90% for the first 3 weeks; the overall average was 62%. The only processing difficulty in the vitrification facility was a partial failure in the spray calciner nozzle. The Pu byproduct of waste preparation was purified by ion exchange and calcined to oxide; one can of oxide ruptured due to self-heating. 27 figures, 16 tables. (DLC)

  12. Letter Report: Looking Ahead at Nuclear Fuel Resources

    Energy Technology Data Exchange (ETDEWEB)

    J. Stephen Herring

    2013-09-01

    The future of nuclear energy and its ability to fulfill part of the world’s energy needs for centuries to come depend on a reliable input of nuclear fuel, either thorium or uranium. Obviously, the present nuclear fuel cycle is completely dependent on uranium. Future thorium cycles will also depend on 235U or fissile isotopes separated from used fuel to breed 232Th into fissile 233U. This letter report discusses several emerging areas of scientific understanding and technology development that will clarify and enable assured supplies of uranium and thorium well into the future. At the most fundamental level, the nuclear energy community needs to appreciate the origins of uranium and thorium and the processes of planetary accretion by which those materials have coalesced to form the earth and other planets. Secondly, the studies of geophysics and geochemistry are increasing understanding of the processes by which uranium and thorium are concentrated in various locations in the earth’s crust. Thirdly, the study of neutrinos and particularly geoneutrinos (neutrinos emitted by radioactive materials within the earth) has given an indication of the overall global inventories of uranium and thorium, though little indication for those materials’ locations. Crustal temperature measurements have also given hints of the vertical distribution of radioactive heat sources, primarily 238U and 232Th, within the continental crust. Finally, the evolving technologies for laser isotope separation are indicating methods for reducing the energy input to uranium enrichment but also for tailoring the isotopic vectors of fuels, burnable poisons and structural materials, thereby adding another tool for dealing with long-term waste management.

  13. Workshop on the source term for radionuclide migration from high-level waste or spent nuclear fuel under realistic repository conditions: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, T.O.; Muller, A.B. (eds.)

    1985-07-01

    Sixteen papers were presented at the workshop. The fourteen full-length papers included in the proceedings were processed separately. Only abstracts were included for the following two papers: Data Requirements Based on Performance Assessment Analyses of Conceptual Waste Packages in Salt Repositories, and The Potential Effects of Radiation on the Source Term in a Salt Repository. (LM)

  14. Two Approaches to the Geologic Disposal of Long-Lived Nuclear Waste: Yucca Mountain, Nevada and the Waste Isolation Pilot Plant, Carlsbad, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Levich, R. A.; Patterson, R. L.; Linden, R. M.

    2002-02-26

    A key component of the US energy program is to provide for the safe and permanent isolation of spent nuclear fuel and long-lived radioactive waste produced through programs related to national defense and the generation of electric power by nuclear utilities. To meet this challenge, the US Department of Energy (DOE) has developed a multi-faceted approach to the geologic disposal of long-lived nuclear wastes. Two sites are being developed or studied as current or potential deep geologic repositories for long lived radioactive wastes, the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico and Yucca Mountain, Nevada.

  15. Nuclear-waste-management. Quarterly progress report, July-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A. (comps.)

    1981-12-01

    Progress reports and summaries are presented for the following: high-level waste process development, alternate waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and fuel pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  16. Nuclear-waste-management. Quarterly progress report, July-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A. (comps.)

    1981-12-01

    Progress reports and summaries are presented for the following: high-level waste process development, alternate waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and fuel pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  17. EUROSAFE forum 2013. Safe disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The proceedings of the EUROSAFE forum 2013 - safe disposal of nuclear waste include contributions to the following topics: Nuclear installation safety - assessment; nuclear installation safety - research; waste and decommissioning - dismantling; radiation protection, 3nvironment and emergency preparedness; security of nuclear installations and materials.

  18. VISION -- A Dynamic Model of the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    J. J. Jacobson; A. M. Yacout; S. J. Piet; D. E. Shropshire; G. E. Matthern

    2006-02-01

    The Advanced Fuel Cycle Initiative’s (AFCI) fundamental objective is to provide technology options that – if implemented – would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deploy¬ment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential “exit” or “off ramp” approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

  19. Managing the Nuclear Fuel Cycle, The Big Picture

    Energy Technology Data Exchange (ETDEWEB)

    Brett W Carlsen

    2010-07-01

    The nuclear industry, at least in the United States, has failed to deliver on its promise of cheap, abundant energy. After pioneering the science and application and becoming a primary exporter of nuclear technologies, domestic use of nuclear power fell out-of-favor with the public and has been relatively stagnant for several decades. Recently, renewed interest has generated optimism and talk of a nuclear renaissance characterized by a new generation of safe, clean nuclear plants in this country. But, as illustrated by recent policy shifts regarding closure of the fuel cycle and geologic disposal of high-level radioactive wastes, significant hurdles have yet to be overcome. Using the principles of system dynamics, this paper will take a holistic look at the nuclear industry and the interactions between the key players to explore both the intended and unintended consequences of efforts to address the issues that have impeded the growth of the industry and also to illustrate aspects which must be effectively addressed if the renaissance of our industry is to be achieved and sustained.

  20. Nuclear rocket using indigenous Martian fuel NIMF

    Science.gov (United States)

    Zubrin, Robert

    1991-01-01

    In the 1960's, Nuclear Thermal Rocket (NTR) engines were developed and ground tested capable of yielding isp of up to 900 s at thrusts up to 250 klb. Numerous trade studies have shown that such traditional hydrogen fueled NTR engines can reduce the inertial mass low earth orbit (IMLEO) of lunar missions by 35 percent and Mars missions by 50 to 65 percent. The same personnel and facilities used to revive the hydrogen NTR can also be used to develop NTR engines capable of using indigenous Martian volatiles as propellant. By putting this capacity of the NTR to work in a Mars descent/acent vehicle, the Nuclear rocket using Indigenous Martian Fuel (NIMF) can greatly reduce the IMLEO of a manned Mars mission, while giving the mission unlimited planetwide mobility.

  1. Survey of nuclear fuel-cycle codes

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.R.; de Saussure, G.; Marable, J.H.

    1981-04-01

    A two-month survey of nuclear fuel-cycle models was undertaken. This report presents the information forthcoming from the survey. Of the nearly thirty codes reviewed in the survey, fifteen of these codes have been identified as potentially useful in fulfilling the tasks of the Nuclear Energy Analysis Division (NEAD) as defined in their FY 1981-1982 Program Plan. Six of the fifteen codes are given individual reviews. The individual reviews address such items as the funding agency, the author and organization, the date of completion of the code, adequacy of documentation, computer requirements, history of use, variables that are input and forecast, type of reactors considered, part of fuel cycle modeled and scope of the code (international or domestic, long-term or short-term, regional or national). The report recommends that the Model Evaluation Team perform an evaluation of the EUREKA uranium mining and milling code.

  2. Holdup measurement for nuclear fuel manufacturing plants

    Energy Technology Data Exchange (ETDEWEB)

    Zucker, M.S.; Degen, M.; Cohen, I.; Gody, A.; Summers, R.; Bisset, P.; Shaub, E.; Holody, D.

    1981-07-13

    The assay of nuclear material holdup in fuel manufacturing plants is a laborious but often necessary part of completing the material balance. A range of instruments, standards, and a methodology for assaying holdup has been developed. The objectives of holdup measurement are ascertaining the amount, distribution, and how firmly fixed the SNM is. The purposes are reconciliation of material unbalance during or after a manufacturing campaign or plant decommissioning, to decide security requirements, or whether further recovery efforts are justified.

  3. Holdup measurement for nuclear fuel manufacturing plants

    Energy Technology Data Exchange (ETDEWEB)

    Zucker, M.S.; Degen, M.; Cohen, I.; Gody, A.; Summers, R.; Bisset, P.; Shaub, E.; Holody, D.

    1981-07-13

    The assay of nuclear material holdup in fuel manufacturing plants is a laborious but often necessary part of completing the material balance. A range of instruments, standards, and a methodology for assaying holdup has been developed. The objectives of holdup measurement are ascertaining the amount, distribution, and how firmly fixed the SNM is. The purposes are reconciliation of material unbalance during or after a manufacturing campaign or plant decommissioning, to decide security requirements, or whether further recovery efforts are justified.

  4. Current Comparison of Advanced Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Steven Piet; Trond Bjornard; Brent Dixon; Robert Hill; Gretchen Matthern; David Shropshire

    2007-04-01

    This paper compares potential nuclear fuel cycle strategies – once-through, recycling in thermal reactors, sustained recycle with a mix of thermal and fast reactors, and sustained recycle with fast reactors. Initiation of recycle starts the draw-down of weapons-usable material and starts accruing improvements for geologic repositories and energy sustainability. It reduces the motivation to search for potential second geologic repository sites. Recycle in thermal-spectru

  5. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    Science.gov (United States)

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  6. {sup 129}I targets for studies of nuclear waste transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Ingelbrecht, C. E-mail: ingelbrecht@irmm.jrc.be; Lupo, J.; Raptis, K.; Altzitzoglou, T.; Noguere, G

    2002-03-11

    Nuclear incineration of long-lived fission products and minor actinides is being investigated as an alternative means of reactor waste disposal. {sup 129}I is of particular interest because of its long half-life and high mobility in the environment. Lead iodide targets of {sup 129}I for neutron capture cross-section measurements were prepared from 210 l fuel reprocessing waste solution containing 1.3 g l{sup -1} iodine and other fission products. The iodine was separated by oxidation to I{sub 2} and extraction into chloroform, reduction to iodide by sodium sulphite and re-extraction into an aqueous phase. Iodide was precipitated using lead nitrate and dried. The chemistry was carried out batch-wise using 400 ml starting solution each time and recycling the chloroform. An extraction efficiency of about 90%, determined by {gamma}-ray spectrometry, was achieved.

  7. Melt processed multiphase ceramic waste forms for nuclear waste immobilization

    Science.gov (United States)

    Amoroso, Jake; Marra, James C.; Tang, Ming; Lin, Ye; Chen, Fanglin; Su, Dong; Brinkman, Kyle S.

    2014-11-01

    Ceramic waste forms are promising hosts for nuclear waste immobilization as they have the potential for increased durability and waste loading compared with conventional borosilicate glass waste forms. Ceramics are generally processed using hot pressing, spark plasma sintering, and conventional solid-state reaction, however such methods can be prohibitively expensive or impractical at production scales. Recently, melt processing has been investigated as an alternative to solid-state sintering methods. Given that melter technology is currently in use for High Level Waste (HLW) vitrification in several countries, the technology readiness of melt processing appears to be advantageous over sintering methods. This work reports the development of candidate multi-phase ceramic compositions processed from a melt. Cr additions, developed to promote the formation and stability of a Cs containing hollandite phase were successfully incorporated into melt processed multi-phase ceramics. Control of the reduction-oxidation (Redox) conditions suppressed undesirable Cs-Mo containing phases, and additions of Al and Fe reduced the melting temperature.

  8. Melt processed multiphase ceramic waste forms for nuclear waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, Jake, E-mail: jake.amoroso@srs.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Marra, James C. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Tang, Ming [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lin, Ye; Chen, Fanglin [University of South Carolina, Columbia, SC 29208 (United States); Su, Dong [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brinkman, Kyle S. [Clemson University, Clemson, SC 29634 (United States)

    2014-11-15

    Highlights: • We explored the feasibility of melt processing multiphase titanate-based ceramics. • Melt processing produced phases obtained by alternative processing methods. • Phases incorporated multiple lanthanides and transition metals. • Processing in reducing atmosphere suppressed un-desirable Cs–Mo coupling. • Cr partitions to and stabilizes the hollandite phase, which promotes Cs retention. - Abstract: Ceramic waste forms are promising hosts for nuclear waste immobilization as they have the potential for increased durability and waste loading compared with conventional borosilicate glass waste forms. Ceramics are generally processed using hot pressing, spark plasma sintering, and conventional solid-state reaction, however such methods can be prohibitively expensive or impractical at production scales. Recently, melt processing has been investigated as an alternative to solid-state sintering methods. Given that melter technology is currently in use for High Level Waste (HLW) vitrification in several countries, the technology readiness of melt processing appears to be advantageous over sintering methods. This work reports the development of candidate multi-phase ceramic compositions processed from a melt. Cr additions, developed to promote the formation and stability of a Cs containing hollandite phase were successfully incorporated into melt processed multi-phase ceramics. Control of the reduction–oxidation (Redox) conditions suppressed undesirable Cs–Mo containing phases, and additions of Al and Fe reduced the melting temperature.

  9. Report on interim storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  10. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Best, Ralph E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buxton, Kenneth A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); England, Jeffery L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Massaro, Lawrence M. [Fermi Research Alliance (FRA), Batavia, IL (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-30

    A preliminary evaluation of removing spent nuclear fuel (SNF) from 13 shutdown nuclear power plant sites was performed. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, San Onofre, and Vermont Yankee. The evaluation was divided into four components: Characterization of the SNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory A description of the on-site infrastructure at the shutdown sites An evaluation of the near-site transportation infrastructure and transportation experience at the shutdown sites An evaluation of the actions necessary to prepare for and remove SNF and GTCC waste. The primary sources for the inventory of SNF and GTCC waste were the U.S. Department of Energy (DOE) spent nuclear fuel inventory database, industry publications such as StoreFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of on-site infrastructure and near-site transportation infrastructure and experience included information collected during site visits, information provided by managers at the shutdown sites, Facility Interface Data Sheets compiled for DOE in 2005, Services Planning Documents prepared for DOE in 1993 and 1994, industry publications such as Radwaste Solutions, and Google Earth. State staff, State Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative have participated in nine of the shutdown site visits. Every shutdown site was found to have at least one off-site transportation mode option for removing its SNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an

  11. Nuclear fact book

    Energy Technology Data Exchange (ETDEWEB)

    Hill, O. F.; Platt, A. M.; Robinson, J. V. [comps

    1983-05-01

    This reference provides significant highlights and summary facts in the following areas: general energy; nuclear energy; nuclear fuel cycle; uranium supply and enrichment; nuclear reactors; spent fuel and advanced repacking concepts; reprocessing; high-level waste; gaseous waste; transuranic waste; low-level waste; remedial action; transportation; disposal; radiation information; environment; legislation; socio-political aspects; conversion factors; and a glossary. (GHT)

  12. Biomass fuel based on wastes from the paper industry

    OpenAIRE

    Budzyń Stanisław; Tora Barbara

    2016-01-01

    Wastes from paper industry are mostly combustible. It is possible to recycle them with energy recovery. These wastes have a high moisture content (up to 60%) and thus a small calorific value. An alternative to waste incineration is the production of solid recovered fuel. The benefits are: easy adjustment of the physical and chemical properties of the fuel (via the change of proportions of ingredients), low moisture and high calorific value. The study involved the following types of cellulose ...

  13. USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, V.

    2013-06-03

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national

  14. SKI's and SSI's joint review of the Swedish Nuclear Fuel and Waste Management Co's (SKB) safety report SR-Can; SKIs och SSIs gemensamma granskning av SKBs saekerhetsrapport SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Dverstorp, Bjoern; Stroemberg, Bo (and others)

    2008-03-15

    This report summarizes SKI's and SSI's joint review of the Swedish Nuclear Fuel and Waste Management Co's (SKB) safety report SR-Can (SKB TR-06-09). SR-Can is the first assessment of post-closure safety for a KBS-3 spent nuclear fuel repository at the candidate sites Forsmark and Laxemar, respectively. The analysis builds on data from the initial stage of SKB's surface-based site investigations and on data from full-scale manufacturing and testing of buffer and copper canisters. SR-Can can be regarded as a preliminary version of the safety report that will be required in connection with SKB's planned license application for a final repository in late 2009. The main purpose of the authorities' review is to provide feedback to SKB on their safety reporting as part of the pre-licensing consultation process. However, SR-Can is not part of the formal licensing process. In support of the authorities' review three international peer review teams were set up to make independent reviews of SR-Can from three perspectives, namely integration of site data, representation of the engineered barriers and safety assessment methodology, respectively. Further, several external experts and consultants have been engaged to review detailed technical and scientific issues in SR-Can. The municipalities of Oesthammar and Oskarshamn where SKB is conducting site investigations, as well NGOs involved in SKB's programme, have been invited to provide their views on SR-Can as input to the authorities' review. Finally, the authorities themselves, and with the help of consultants, have used independent models to reproduce part of SKB's calculations and to make complementary calculations. All supporting review documents are published in SKI's and SSI's report series. The main findings of the review are: SKB's safety assessment methodology is overall in accordance with applicable regulations, but part of the methodology needs to be

  15. Optimally moderated nuclear fission reactor and fuel source therefor

    Science.gov (United States)

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  16. Ultrasonic spectral analysis for nuclear fuel characterization

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, Douglas B.; Bittencourt, Marcelo S.Q.; Leal, Antonio M.M., E-mail: douglasbaroni@ien.gov.b, E-mail: bittenc@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Ceramic materials have been widely used for various purposes in many different industries due to certain characteristics, such as high melting point and high resistance to corrosion. Concerning the areas of applications, automobile, aeronautics, naval and even nuclear, the characteristics of these materials should be strictly controlled. In the nuclear area, ceramics are of great importance once they are the nuclear fuel pellets and must have, among other features, a well controlled porosity due to mechanical strength and thermal conductivity required by the application. Generally, the techniques used to characterize nuclear fuel are destructive and require costly equipment and facilities. This paper aims to present a nondestructive technique for ceramic characterization using ultrasound. This technique differs from other ultrasonic techniques because it uses ultrasonic pulse in frequency domain instead of time domain, associating the characteristics of the analyzed material with its frequency spectrum. In the present work, 40 Alumina (Al{sub 2}O{sub 3}) ceramic pellets with porosities ranging from 5% to 37%, in absolute terms measured by Archimedes technique, were tested. It can be observed that the frequency spectrum of each pellet varies according to its respective porosity and microstructure, allowing a fast and non-destructive association of the same characteristics with the same spectra pellets. (author)

  17. Analysis of Spent Nuclear Fuel Imaging Using Multiple Coulomb Scattering of Cosmic Muons

    CERN Document Server

    Chatzidakis, Stylianos; Tsoukalas, Lefteri H

    2016-01-01

    Cosmic ray muons passing through matter lose energy from inelastic collisions with electrons and are deflected from nuclei due to multiple Coulomb scattering. The strong dependence of scattering on atomic number Z and the recent developments on position sensitive muon detectors indicate that multiple Coulomb scattering could be an excellent candidate for spent nuclear fuel imaging. Muons present significant advantages over existing monitoring and imaging techniques and can play a central role in monitoring nuclear waste and spent nuclear fuel stored in dense well shielded containers. The main purpose of this paper is to investigate the applicability of multiple Coulomb scattering for imaging of spent nuclear fuel dry casks stored within vertical and horizontal commercial storage dry casks. Calculations of muon scattering were performed for various scenarios, including vertical and horizontal fully loaded dry casks, half loaded dry casks, dry casks with one row of fuel assemblies missing, dry casks with one fu...

  18. Overview of the International R&D Recycling Activities of the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Paviet-Hartmann

    2012-10-01

    Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK

  19. Direct Carbon Fuel Cells: Converting Waste to Electricity

    Science.gov (United States)

    2007-09-01

    provide waste heat for hot water and energy to drive absorption chillers for cooling. If no attractive opportunities exist for energy savings as a result...07-32 2 Table 1. Operating characteristics of conventional fuel cells vs. DCFCs. PEMFC PAFC MCFC SOFC DCFC Electrolyte Polymer Phosphoric acid...consuming facilities. Currently, waste heat generated by 200–250 kW Phosphoric Acid Fuel Cell (PAFC) and Molten Carbonate Fuel Cell ( MCFC ) units

  20. Fuel cycle analysis of once-through nuclear systems.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

    2010-08-10

    Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium

  1. Uranium in the Nuclear Fuel Cycle: Creation of Plutonium (Invited)

    Science.gov (United States)

    Ewing, R. C.

    2009-12-01

    One of the important properties of uranium is that it can be used to “breed” higher actinides, particularly plutonium. During the past sixty years, more than 1,800 metric tonnes of Pu, and substantial quantities of the “minor” actinides, such as Np, Am and Cm, have been generated in nuclear reactors - a permanent record of nuclear power. Some of these transuranium elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., 239Pu and 237Np). In fact, the new strategies of the Advance Fuel Cycle Initiative (AFCI) are, in part, motivated by an effort to mitigate some of the challenges of the disposal of these long-lived actinides. There are two basic strategies for the disposition of these heavy elements: 1.) to “burn” or transmute the actinides using nuclear reactors or accelerators; 2.) to “sequester” the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, such as zircon or isometric pyrochlore, A2B2O7 (A= rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage1. The radiation stability of these compositions is closely related to the structural distortions that can be accommodated for specific pyrochlore compositions and the electronic structure of the B-site cation. Recent developments in the understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms.

  2. Transportation capabilities study of DOE-owned spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-10-01

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  3. Towards implementation of spent nuclear fuel management in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Eero, Patrakka

    2007-07-01

    The final disposal of spent fuel from the Finnish nuclear power plants will be implemented by Posiva Oy, a company owned jointly by the two nuclear power producers Fortum Oyj and Teollisuuden Voima Oy. Preparations for nuclear waste management were started already in the 1970s. Potential sites for the disposal of spent fuel were screened in the 1980s, followed by detailed site investigations in the 1990s. In May 2001, the Finnish Parliament ratified the Decision-in-Principle that was a prerequisite for the selection of Olkiluoto as the site of the final disposal facility. The disposal project has progressed to the next stage -- constructing an underground characterization facility, known as ONKALO, at Olkiluoto, which has also been designed to serve as an access route to the repository when constructed. Work on the entire final disposal project is progressing so that disposal can commence in 2020. ONKALO will be used to obtain further information for the repository design, and it will also enable final disposal technology to be tested under actual conditions. Once ONKALO has been completed, work will start on building the encapsulation plant and final disposal repository in the 2010s. (auth)

  4. Advantages on dry interim storage for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, L.S. [Centro Tecnologico da Marinha em Sao Paulo, Av. Professor Lineu Prestes 2468, 05508-900 Sao Paulo (Brazil); Rzyski, B.M. [IPEN/ CNEN-SP, 05508-000 Sao Paulo (Brazil)]. e-mail: romanato@ctmsp.mar.mil.br

    2006-07-01

    When the nuclear fuel lose its ability to efficiently create energy it is removed from the core reactor and moved to a storage unit waiting for a final destination. Generally, the spent nuclear fuel (SNF) remains inside concrete basins with water within the reactors facility for the radioactive activity decay. Water cools the generated heat and shields radioactivity emissions. After some period of time in water basins the SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing installations, or still wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet installations, depending on the method adopted by the nuclear power plant or other plans of the country. In many SNF wet storage sites the capacity can be fulfilled very quickly. If so, additional area or other alternative storage system should be given. There are many options to provide capacity increase in the wet storage area, but dry storages are worldwide preferred since it reduces corrosion concerns. In the wet storage the temperature and water purity should be constantly controlled whereas in the dry storage the SNF stands protected in specially designed canisters. Dry interim storages are practical and approved in many countries especially that have the 'wait and see' philosophy (wait to see new technologies development). This paper shows the advantages of dry interim storages sites in comparison with the wet ones and the nowadays problems as terrorism. (Author)

  5. 10 CFR 51.52 - Environmental effects of transportation of fuel and waste-Table S-4.

    Science.gov (United States)

    2010-01-01

    ... encapsulated in zircaloy rods; (3) The average level of irradiation of the irradiated fuel from the reactor...-water-cooled nuclear power reactor, and submitted after February 4, 1975, shall contain a statement concerning transportation of fuel and radioactive wastes to and from the reactor. That statement...

  6. Storage facilities of spent nuclear fuel in dry for Mexican nuclear facilities; Instalaciones de almacenamiento de combustible nuclear gastado en seco para instalaciones nucleares mexicanas

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.; Mendoza F, J. E.; Sanchez J, J., E-mail: juan.salmeron@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2013-10-15

    In this article the relevant aspects of the spent fuel storage and the questions that should be taken in consideration for the possible future facilities of this type in the country are approached. A brief description is proposed about the characteristics of the storage systems in dry, the incorporate regulations to the present Nuclear Regulator Standard, the planning process of an installation, besides the approaches considered once resolved the use of these systems; as the modifications to the system, the authorization periods for the storage, the type of materials to store and the consequent environmental impact to their installation. At the present time the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) considers the possible generation of two authorization types for these facilities: Specific, directed to establish a new nuclear installation with the authorization of receiving, to transfer and to possess spent fuel and other materials for their storage; and General, focused to those holders that have an operation license of a reactor that allows them the storage of the nuclear fuel and other materials that they possess. Both authorizations should be valued according to the necessities that are presented. In general, this installation type represents a viable solution for the administration of the spent fuel and other materials that require of a temporary solution previous to its final disposal. Its use in the nuclear industry has been increased in the last years demonstrating to be appropriate and feasible without having a significant impact to the health, public safety and the environment. Mexico has two main nuclear facilities, the nuclear power plant of Laguna Verde of the Comision Federal de Electricidad (CFE) and the facilities of the TRIGA Reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) that will require in a future to use this type of disposition installation of the spent fuel and generated wastes. (Author)

  7. Integrated data management system for radioactive waste and spent fuel in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Taek [Korea Power Engineering Co., Inc., Yongin (Korea, Republic of)

    2002-05-15

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Through the system, the five principles(independence, openness, clearance, efficiency and reliance) of safety regulation can be realized and public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted. By providing reliable information and openness within the international nuclear community can be ensured and efficient support of international agreements among contracting parties can be ensured. By operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management), the system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible for holistic control and reorganization of the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy so as to integrate safe management and unit safe disposal. To meet this objectives, design of the database system structure and the study of input/output data validation and verification methodology was performed during the second phase of this project.

  8. A method for producing solid fuel from agricultural wastes

    Energy Technology Data Exchange (ETDEWEB)

    Khigasikuni, T.; Fudziki, A.; Koisi, K.

    1982-10-18

    A method is proposed for producing fuel from agricultural wastes (SOt), which includes a stage of rough grinding of the agricultural wastes, a stage for drying them and a stage for molding into products with a total density of greater than or equal to 1 in which the water which remains in the agricultural wastes or water added to the agricultural wastes is used as the binder. It is proposed that a fuel gas, generated in the process of solvent processing, that is, neutralization, aging and subsequent fermentation of part of the agricultural waste, be used as a source of heat in the stage for drying the ground agricultural wastes. It is best to use organic wastes from the food industry, for instance, citrus rinds and so on, as the agricultural waste. The water content in the agricultural wastes is regulated within 15 plus or minus percent in the stage for shaping the solid fuel. The fuel gas generated from part of the agricultural waste and used in the drying stage chiefly includes CH/sub 4/ and EtOH, MeOH, CO/sub 2/ and other admixtures, whose content varies relative to the composition of the agricultural wastes.

  9. Agricultural waste derived fuel from oil meal and waste cooking oil.

    Science.gov (United States)

    Chang, Fang-Chih; Tsai, Ming-Jer; Ko, Chun-Han

    2017-05-27

    Oil meal is a by-product of the oil industry (peanut meal, sesame meal, and camellia meal). Oil is extracted from seeds, and the leftover meal is then pelletized, and this process generates a large amount of waste oil meal in Taiwan. In this study, peanut meal, sesame meal, and camellia meal derived fuels were prepared from the waste oil meal with waste cooking oil. The combustion behaviors of the oil meal derived fuels were also investigated. The characteristics of the derived fuel made from oil meal with waste cooking oil showed that the ash content is less than 10% and its calorific value reached 5000 kcal/kg. Additionally, the activation energy of the oil meal and waste cooking oil was analyzed by the Kissinger method. The results show that the fuel prepared in this work from the oil meal mixed with waste cooking oil is suitable for use as an alternative fuel and also avoids food safety issues.

  10. Spent Nuclear Fuel Alternative Technology Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  11. Nuclear Waste, Risks and Sustainable Development

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Mikael [Swedish Society for Nature Conservation, Stockholm (Sweden); Swahn, Johan [Swedish NGO Office for Nuclear Waste Review (MKG), Goeteborg (Sweden)

    2006-09-15

    The proposed Swedish nuclear waste project is not in line with the three principles of sustainable development. In some aspects, it is not even compatible with Swedish law and ought therefore not to be given a permit under present circumstances. In our view, a number of measures need to be taken to improve the likelihood that the waste repository will promote and not further jeopardise sustainable development. One obvious measure would be to follow the recommendations concerning polluter pays principle put forward by the 2004 governmental committee. Further, it can be credible argued that the focus of the present disposal process has not been to find the best site and method from environmental point of view. If the precautionary principle is to be applied (and Swedish law is to be followed), alternative methods and sites have to be examined to see if they could provide better long-term safety. Concerning method, there are options that deserve much more attention such as so called 'deep boreholes'. In this approach the nuclear waste is placed in deep boreholes at depths of 2-4 km. Studies show that the long-term environmental safety and the possibility of hindering intentional intrusion may improve using the deep borehole method. Regarding localisation, one option would be to avoid siting the repository on the coast, but in what is called a 'recharge area'. In such an area groundwater on a regional scale travels downwards into the bedrock and it may take 50 000 years for a release of radioactivity to reach the surface, compared to less than 100 years with a coastal siting. Evidently, there may be better methods and sites than those now proposed by the Swedish nuclear industry. These options must be examined in detail before a decision is taken to implement the KBS method at a coastal site. If such methods or sites are found better they have to be used in the first place. Improvements are also necessary when it comes to public participation. We

  12. Summary of national and international fuel cycle and radioactive waste management programs, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-07-01

    Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treat and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.

  13. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  14. Simulation of alpha dose for predicting radiolytic species at the surface of spent nuclear fuel pellets

    OpenAIRE

    Becker Frank; Kienzler Bernhard

    2014-01-01

    In many countries, spent nuclear fuel is considered as a waste form to be disposed of in underground disposal. Under deep host rock conditions, a reducing environment prevails. In the case of water contact, long-term radionuclide release from the fuel depends on dissolution processes of the UO2 matrix. The dissolution rate of irradiated UO2 is controlled by oxidizing processes facilitated by dissolved species formed by alpharadiolysis of water in contact with spent nuc...

  15. Biomass fuel based on wastes from the paper industry

    Directory of Open Access Journals (Sweden)

    Budzyń Stanisław

    2016-01-01

    Full Text Available Wastes from paper industry are mostly combustible. It is possible to recycle them with energy recovery. These wastes have a high moisture content (up to 60% and thus a small calorific value. An alternative to waste incineration is the production of solid recovered fuel. The benefits are: easy adjustment of the physical and chemical properties of the fuel (via the change of proportions of ingredients, low moisture and high calorific value. The study involved the following types of cellulose wastes: - Belmer - the rejects from recovered paper, Krofta - deinking sludge, sludge - wastewater treatment sludge, bark - the rejects from virgin pulps. The results of investigations of waste produced in one of the biggest Polish paper mill - are shown. Following aspects were investigated: energy properties, content of carbon, hydrogen, sulfur, chlorine and nitrogen, chemical composition of ash. Authors proposed two formulas of the biomass fuel. The properties of the fuel such as the content of carbon, hydrogen, sulfur, chlorine or nitrogen, the chemical composition of the ash were investigated. Due to the fact that the combustion of the biomass fuel is preferred in view of law regulations (zero CO2 emission, green certificates the content of biodegradable fraction was examined. It has been shown that the fuel is a biomass one. Fuel from waste can be a substitute for approx. 25% of primary fuel (coal used by the paper mill.

  16. The crucial role of nomothetic and idiographic conceptions of time: interdisciplinary collaboration in nuclear waste management.

    Science.gov (United States)

    Moser, Corinne; Stauffacher, Michael; Krütli, Pius; Scholz, Roland W

    2012-01-01

    The disposal of nuclear waste involves extensive time scales. Technical experts consider up to 1 million years for the disposal of spent fuel and high-level waste in their safety assessment. Yet nuclear waste is not only a technical but also a so-called sociotechnical problem and, therefore, requires interdisciplinary collaboration between technical, natural, social sciences, and the humanities in its management. Given that these disciplines differ in their language, epistemics, and interests, such collaboration might be problematic. Based on evidence from cognitive psychology, we suggest that, in particular, a concept like time is presumably critical and can be understood differently. This study explores how different scientific disciplines understand extensive time scales in general and then focuses on nuclear waste. Eighteen qualitative exploratory interviews were conducted with experts for time-related phenomena of different disciplines, among them experts working in nuclear waste management. Analyses revealed two distinct conceptions of time corresponding to idiographic and nomothetic research approaches: scientists from the humanities and social sciences tend to have a more open, undetermined conception of time, whereas natural scientists tend to focus on a more determined conception that includes some undetermined aspects. Our analyses lead to reflections on potential difficulties for interdisciplinary teams in nuclear waste management. We focus on the understanding of the safety assessment, on potential implications for communication between experts from different disciplines (e.g., between experts from the humanities and engineering for risk assessment and risk communication), and we reflect on the roles of different disciplines in nuclear waste management.

  17. Internal Mainland Nuclear Power Liquid Waste Treatment Technology

    Institute of Scientific and Technical Information of China (English)

    YOU; Xin-feng; ZHANG; Zhen-tao; ZHENG; Wen-jun; WANG; Lei; YANG; Lin-yue; HUA; Xiao-hui; ZHENG; Yu; YANG; Yong-gang; WU; Yan

    2013-01-01

    Taohuajiang power station is the first internal mainland nuclear power station,and it adopts AP1000nuclear technology belongs to the Westinghouse Electric Corporation.To ensure the safety of the environment around the station and satisfy the radio liquid waste discharge standards,our team has researched the liquid waste treatment technology for the internal mainland nuclear power plant.According

  18. Spent Nuclear Fuel Vibration Integrity Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Jiang, Hao [ORNL; Yan, Yong [ORNL; Bevard, Bruce Balkcom [ORNL

    2016-01-01

    The objective of this research is to collect dynamic experimental data on spent nuclear fuel (SNF) under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT), the hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL). The collected CIRFT data will be utilized to support ongoing spent fuel modeling activities, and support SNF transportation related licensing issues. Recent testing to understand the effects of hydride reorientation on SNF vibration integrity is also being evaluated. CIRFT results have provided insight into the fuel/clad system response to transportation related loads. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance, Fuel structure contributes to the SNF system stiffness, There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interaction, and SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous. Because of the non-homogeneous composite structure of the SNF system, finite element analyses (FEA) are needed to translate the global moment-curvature measurement into local stress-strain profiles. The detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained directly from a CIRFT system measurement. Therefore, detailed FEA is used to understand the global test response, and that data will also be presented.

  19. Fuel cycle analysis of once-through nuclear systems.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

    2010-08-10

    Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium

  20. Demonstration and Dialogue: Mediation in Swedish Nuclear Waste Management. Deliverable D10

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark; Sundqvist, Goeran (Univ. of Goeteborg, Goeteborg (Sweden)); Lidberg, Maria; Soneryd, Linda (Stockholm Univ., Stockholm (Sweden))

    2008-10-15

    This report analyses mediation and mediators in Swedish nuclear waste management. Mediation is about establishing agreement and building common knowledge. It is argued that demonstrations and dialogue are the two prominent approaches to mediation in Swedish nuclear waste management. Mediation through demonstration is about showing, displaying, and pointing out a path to safe disposal for inspection. It implies a strict division between demonstrator and audience. Mediation through dialogue on the other hand, is about collective acknowledgements of uncertainty and suspensions of judgement creating room for broader discussion. In Sweden, it is the Swedish Nuclear Fuel and Waste Management Co. (SKB) that is tasked with finding a method and a site for the final disposal of the nation's nuclear waste. Two different legislative frameworks cover this process. In accordance with the Act on Nuclear Activities, SKB is required to demonstrate the safety of its planned nuclear waste management system to the government, while in respect of the Swedish Environmental Code, they are obliged to organize consultations with the public. How SKB combines these requirements is the main question under investigation in this report in relation to materials deriving from three empirical settings: 1) SKB's safety analyses, 2) SKB's public consultation activities and 3) the 'dialogue projects', initiated by other actors than SKB broadening the public arena for discussion. In conclusion, an attempt is made to characterise the long-term interplay of demonstration and dialogue in Swedish nuclear waste management

  1. Nuclear Data for Safe Operation and Waste Transmutation: ANDES (Accurate Nuclear Data for nuclear Energy Sustainability); Datos nucleares para la operacion segura y la transmutacion de residuos: Andes (Datos Nucleares Precisos para la Sostenibilidad de la Energia Nuclear)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, E. M.

    2014-07-01

    Nuclear research within the 7th Framework Program (FP7 and FP7+2) of EURATOM has devoted a significant fraction of its efforts to the development of advanced nuclear fuel cycles and reactor concepts, mainly fast reactors, aiming to improve the long term sustainability by reduction of the final wastes, optimal use of natural resources and improvement of safety in the present and future nuclear installations. The new design need more accurate basic nuclear data for isotopes, like minor actinides, potentially playing an important role in the operation, fuel concept, safety or final wastes of those reactors and fuel cycles. Four projects, ANDES, ERINDA, EUFRAT and CHANDA, supported by EURATOM within the FP7 and FP7+2, have put together most of the European Nuclear Data community to respond efficiently and in a coordinated way to those needs. This paper summarizes the objectives, and main achievements of ANDES, the project responsible for most of the measurements and technical achievements that was coordinated by CIEMAT. Indeed, CIEMAT has coordinated the nuclear data R and D projects within EURATOM during the last 7 years (NUDATRA domain of EUROTRANS, and ANDES) and will continue this coordination in the CHANDA project till 2017. (Author)

  2. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    Energy Technology Data Exchange (ETDEWEB)

    E. R. Johnson; R. E. Best

    2009-12-28

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount

  3. FY2001 Final Report Laboratory Directed Research and Development (LDRD) on Advanced Nuclear Fuel Design in the Future Nuclear Energy Market

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, D.; Choi, J.-S.; DiSabatino, A.; Wirth, B.

    2001-09-30

    This study is to research the maturity of advanced nuclear fuel and cladding technology and to explore the suitability of existing technology for addressing the emerging requirements for Generation IV reactors and emerging thermal/fast spectrum reactors, while simultaneously addressing nuclear waste management, and proliferation resistance concerns.

  4. Radioactive Semivolatiles in Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Strachan, D. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ilas, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, B. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    In nuclear fuel reprocessing, various radioactive elements enter the gas phase from the unit operations found in the reprocessing facility. In previous reports, the pathways and required removal were discussed for four radionuclides known to be volatile, 14C, 3H, 129I, and 85Kr. Other, less volatile isotopes can also report to the off-gas streams in a reprocessing facility. These were reported to be isotopes of Cs, Cd, Ru, Sb, Tc, and Te. In this report, an effort is made to determine which, if any, of 24 semivolatile radionuclides could be released from a reprocessing plant and, if so, what would be the likely quantities released. As part of this study of semivolatile elements, the amount of each generated during fission is included as part of the assessment for the need to control their emission. Also included in this study is the assessment of the cooling time (time out of reactor) before the fuel is processed. This aspect is important for the short-lived isotopes shown in the list, especially for cooling times approaching 10 y. The approach taken in this study was to determine if semivolatile radionuclides need to be included in a list of gas-phase radionuclides that might need to be removed to meet Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. A list of possible elements was developed through a literature search and through knowledge and literature on the chemical processes in typical aqueous processing of nuclear fuels. A long list of possible radionuclides present in irradiated fuel was generated and then trimmed by considering isotope half-life and calculating the dose from each to a maximum exposed individual with the US EPA airborne radiological dispersion and risk assessment code CAP88 (Rosnick 1992) to yield a short list of elements that actually need to be considered for control because they require high decontamination factors to meet a reasonable fraction of the regulated release. Each of these elements is

  5. Perspectives on the closed fuel cycle Implications for high-level waste matrices

    Science.gov (United States)

    Gras, Jean-Marie; Quang, Richard Do; Masson, Hervé; Lieven, Thierry; Ferry, Cécile; Poinssot, Christophe; Debes, Michel; Delbecq, Jean-Michel

    2007-05-01

    Nuclear energy accounts for 80% of electricity production in France, generating approximately 1150 t of spent fuel for an electrical output of 420 TWh. Based on a reprocessing-conditioning-recycling strategy, the orientations taken by Électricité de France (EDF) for the mid-term and the far-future are to keep the fleet performances at the highest level, and to maintain the nuclear option fully open by the replacement of present pressurized water reactor (PWR) by new light water reactor (LWR), such as the evolutionary pressurized reactor (EPR) and future Generation IV designs. Adaptations of waste materials to new requirements will come with these orientations in order to meet long-term energy sustainability. In particular, waste materials and spent fuels are expected to meet increased requirements in comparison with the present situation. So the treatment of higher burn-up UO2 spent fuel and MOX fuel requires determining the performances of glass and other matrices according to several criteria: chemical 'digestibility' (i.e. capacity of glass to incorporate fission products and minor actinides without loss of quality), resistance to alpha self-irradiation, residual power in view of disposal. Considering the long-term evolution of spent MOX fuel in storage, the helium production, the influence of irradiation damages accumulation and the evolution of the microstructure of the fuel pellet need to be known, as well as for the future fuels. Further, the eventual transmutation of minor actinides in fast neutron reactors (FR) of Generation IV, if its interest in optimising high-level waste management is proven, may also raise new challenges about the materials and fuel design. Some major questions in terms of waste materials and spent fuel are discussed in this paper.

  6. Nanoporous Glasses for Nuclear Waste Containment

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2016-01-01

    Full Text Available Research is in progress to incorporate nuclear waste in new matrices with high structural stability, resistance to thermal shock, and high chemical durability. Interactions with water are important for materials used as a containment matrix for the radio nuclides. It is indispensable to improve their chemical durability to limit the possible release of radioactive chemical species, if the glass structure is attacked by corrosion. By associating high structural stability and high chemical durability, silica glass optimizes the properties of a suitable host matrix. According to an easy sintering stage, nanoporous glasses such as xerogels, aerogels, and composite gels are alternative ways to synthesize silica glass at relatively low temperatures (≈1,000–1,200°C. Nuclear wastes exist as aqueous salt solutions and we propose using the open pore structure of the nanoporous glass to enable migration of the solution throughout the solid volume. The loaded material is then sintered, thereby trapping the radioactive chemical species. The structure of the sintered materials (glass ceramics is that of nanocomposites: actinide phases (~100 nm embedded in a vitreous silica matrix. Our results showed a large improvement in the chemical durability of glass ceramic over conventional nuclear glass.

  7. Descriptions of reference LWR facilities for analysis of nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Kabele, T.J.

    1979-09-01

    To contribute to the Department of Energy's identification of needs for improved environmental controls in nuclear fuel cycles, a study was made of a light water reactor system. A reference LWR fuel cycle was defined, and each step in this cycle was characterized by facility description and mainline and effluent treatment process performance. The reference fuel cycle uses fresh uranium in light water reactors. Final treatment and ultimate disposition of waste from the fuel cycle steps were not included, and the waste is assumed to be disposed of by approved but currently undefined means. The characterization of the reference fuel cycle system is intended as basic information for further evaluation of alternative effluent control systems.

  8. Descriptions of reference LWR facilities for analysis of nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Kabele, T.J.

    1979-09-01

    To contribute to the Department of Energy's identification of needs for improved environmental controls in nuclear fuel cycles, a study was made of a light water reactor system. A reference LWR fuel cycle was defined, and each step in this cycle was characterized by facility description and mainline and effluent treatment process performance. The reference fuel cycle uses fresh uranium in light water reactors. Final treatment and ultimate disposition of waste from the fuel cycle steps were not included, and the waste is assumed to be disposed of by approved but currently undefined means. The characterization of the reference fuel cycle system is intended as basic information for further evaluation of alternative effluent control systems.

  9. Foreign travel report: Visits to UK, Belgium, Germany, and France to benchmark European spent fuel and waste management technology

    Energy Technology Data Exchange (ETDEWEB)

    Ermold, L.F.; Knecht, D.A.

    1993-08-01

    The ICPP WINCO Spent Fuel and Waste Management Development Program recently was funded by DOE-EM to develop new technologies for immobilizing ICPP spent fuels, sodium-bearing liquid waste, and calcine to a form suitable for disposal. European organizations are heavily involved, in some cases on an industrial scale in areas of waste management, including spent fuel disposal and HLW vitrification. The purpose of this trip was to acquire first-hand European efforts in handling of spent reactor fuel and nuclear waste management, including their processing and technical capabilities as well as their future planning. Even though some differences exist in European and U.S. DOE waste compositions and regulations, many aspects of the European technologies may be applicable to the U.S. efforts, and several areas offer potential for technical collaboration.

  10. An analysis of the technical status of high level radioactive waste and spent fuel management systems

    Science.gov (United States)

    English, T.; Miller, C.; Bullard, E.; Campbell, R.; Chockie, A.; Divita, E.; Douthitt, C.; Edelson, E.; Lees, L.

    1977-01-01

    The technical status of the old U.S. mailine program for high level radioactive nuclear waste management, and the newly-developing program for disposal of unreprocessed spent fuel was assessed. The method of long term containment for both of these waste forms is considered to be deep geologic isolation in bedded salt. Each major component of both waste management systems is analyzed in terms of its scientific feasibility, technical achievability and engineering achievability. The resulting matrix leads to a systematic identification of major unresolved technical or scientific questions and/or gaps in these programs.

  11. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    Energy Technology Data Exchange (ETDEWEB)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  12. Conditions inside Water Pooled in a Failed Nuclear Waste Container and its Effect on Radionuclide Release

    Science.gov (United States)

    Hamdan, L. K.; Walton, J. C.; Woocay, A.

    2009-12-01

    Nuclear power use is expected to expand in the future, as part of the global clean energy initiative, to meet the world’s surging energy demand, and attenuate greenhouse gas emissions, which are mainly caused by fossil fuels. As a result, it is estimated that hundreds of thousands of metric tons of spent nuclear fuel (SNF) will accumulate. SNF disposal has major environmental (radiation exposure) and security (nuclear proliferation) concerns. Storage in unsaturated zone geological repositories is a reasonable solution for dealing with SNF. One of the key factors that determine the performance of the geological repository is the release of radionuclides from the engineered barrier system. Over time, the nuclear waste containers are expected to fail gradually due to general and localized corrosions and eventually infiltrating water will have access to the nuclear waste. Once radionuclides are released, they will be transported by water, and make their way to the accessible environment. Physical and chemical disturbances in the environment over the container will lead to different corrosion rates, causing different times and locations of penetration. One possible scenario for waste packages failure is the bathtub model, where penetrations occur on the top of the waste package and water pools inside it. In this paper the bathtub-type failed waste container is considered. We shed some light on chemical and physical processes that take place in the pooled water inside a partially failed waste container (bathtub category), and the effects of these processes on radionuclide release. Our study considers two possibilities: temperature stratification of the pooled water versus mixing process. Our calculations show that temperature stratification of the pooled water is expected when the waste package is half (or less) filled with water. On the other hand, when the waste package is fully filled (or above half) there will be mixing in the upper part of water. The effect of

  13. The status of nuclear waste from NPP in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Mauna, T. [Romanian Nuclear Energy Association Council, Asociatia Romana Energia Nucleara AREN, Bucharest (Romania)]. E-mail: tmauna@nuclearelectrica.ro

    2006-07-01

    AREN founded in 1990 is a Romanian NGO focused to sustain its employees or corporate members to develop all kinds of nuclear activities in connection with environmental protection as a scientific organization, having as the first objective activities with respect to Cernavoda NPP. As the only CANDU type reactor equipped Nuclear Power Plant (NPP) in Europe, we pay very much attention to all aspects regarding implementation of this concept in our country and the consequences of this implementation. From July 1996 the first unit in operation supplied into the grid around 40 TWh electric power and around 400 Tcal of thermal power for district heating until September 2004. The second unit is still under construction managed also by the Canadian project team, having a finalization target year of 2007. The temporary LILW, and spent fuel dry storage facilities are also on Cernavoda NPP site inside the safety exclusion area boundary of the first unit. The capacity of temporary LILW warehouse concrete building, practically located into the security plant fence, is around 2,400 m{sup 3}. T he occupied capacity is estimated as 140 m{sup 3} until the end of 2004. The spent fuel dry storage MACSTOR type (a Canadian solution for spent fuel storage) with about 12,000 spent fuel bundles capacity is in operation on Cernavoda NPP site, since May 2003. Nuclearelectrica as the owner implemented all the projects based on the licenses and permits granted by the National Commission for Nuclear Activities Control (CNCAN) for each step: the sitting, construction, commissioning and operation. According to the specific Romanian regulations, every project on the site, like the interim dry storage facility, was also subject to the licensing process by the Environmental and Public Health authorities. The public acceptance has been an important step of the licensing procedure. Cernavoda NPP used different legal procedures for public debate including announcements in local and national newspapers

  14. Fabrication and Characterization of UN-USix Nuclear Fuel

    OpenAIRE

    Raftery, Alicia Marie

    2015-01-01

    In this thesis, UN-U3Si2 nuclear fuel was fabricated using spark plasma sintering and characterized to analyze the microstructure and crystal structure of the resulting pellets. This work was done in collaboration with accident tolerant fuel research, an effort which aims at developing nuclear fuel with superior safety and performance compared to currently used oxide fuels. Uranium silicide was manufactured by arc melting to produce U3Si2 and uranium mononitride was synthesized by using the h...

  15. Nuclear Waste Treatment Program: Annual report for FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, H.C.; Brouns, R.A. (comps.); Powell, J.A. (ed.)

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs.

  16. Technology readiness levels for advanced nuclear fuels and materials development

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J., E-mail: jon.carmack@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States); Braase, L.A.; Wigeland, R.A. [Idaho National Laboratory, Idaho Falls, ID (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-03-15

    Highlights: • Definition of nuclear fuels system technology readiness level. • Identification of evaluation criteria for nuclear fuel system TRLs. • Application of TRLs to fuel systems. - Abstract: The Technology Readiness process quantitatively assesses the maturity of a given technology. The National Aeronautics and Space Administration (NASA) pioneered the process in the 1980s to inform the development and deployment of new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications. It was also adopted by the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is needed to improve the performance and safety of current and advanced reactors, and ultimately close the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the assessment process to advanced fuel development is useful as a management, communication, and tracking tool. This article provides definition of technology readiness levels (TRLs) for nuclear fuel technology as well as selected examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).

  17. Remediation of Groundwater Contaminated by Nuclear Waste

    Science.gov (United States)

    Parker, Jack; Palumbo, Anthony

    2008-07-01

    A Workshop on Accelerating Development of Practical Field-Scale Bioremediation Models; An Online Meeting, 23 January to 20 February 2008; A Web-based workshop sponsored by the U.S. Department of Energy Environmental Remediation Sciences Program (DOE/ERSP) was organized in early 2008 to assess the state of the science and knowledge gaps associated with the use of computer models to facilitate remediation of groundwater contaminated by wastes from Cold War era nuclear weapons development and production. Microbially mediated biological reactions offer a potentially efficient means to treat these sites, but considerable uncertainty exists in the coupled biological, chemical, and physical processes and their mathematical representation.

  18. Nuclear wastes management; Gestion des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document is the proceedings of the debate that took place at the French Senate on April 13, 2005 about the long-term French policy of radioactive wastes management. The different points tackled during the debate concern: the 3 axes of research of the 1991 law, the public acceptance about the implementation of repositories, the regional economic impact, the cost and financing, the lack of experience feedback, the reversibility or irreversibility of the storage, the share of nuclear energy in the sustainable development policy, the European Pressurized Reactor (EPR) project, the privatization of Electricite de France (EdF) etc. (J.S.)

  19. International Approaches for Nuclear Waste Disposal in Geological Formations: Geological Challenges in Radioactive Waste Isolation—Fifth Worldwide Review

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sassani, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-26

    The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included in the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.

  20. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    Science.gov (United States)

    Sultana, M.; Al-Mamun, M. R.; Hasan, M. R.

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel. PMID:27433168

  1. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2016-01-01

    Full Text Available The authors introduced waste plastic pyrolysis oil (WPPO as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%, and carbon residue of 0.5 (wt%, and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.

  2. Influence of the New Spanish Legislation concerning the Management of Nuclear Waste

    Directory of Open Access Journals (Sweden)

    B. Yolanda Moratilla Soria

    2013-01-01

    Full Text Available The aim of the present paper is to present and analyse the results obtained from a comparative economic feasibility study performed for the two main nuclear spent fuel management cycles: Once-Through Cycle and Twice-Through Cycle in a Spanish scenario, taking into account the new Spanish legislation with which new tax provisions for generation and storage of nuclear waste must be included in the cycle costs.

  3. Sequestration of radioactive iodine in silver-palladium phases in commercial spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Edgar C.; Mausolf, Edward J.; McNamara, Bruce K.; Soderquist, Chuck Z.; Schwantes, Jon M.

    2016-12-01

    Radioactive iodine is the Achilles’ heel in the design for the safe geological disposal of spent UO2 nuclear fuel. Iodine’s high solubility and anticipated instant release during waste package compromise jeopardize performance assessment calculations. However, dissolution studies have indicated that the instant release fraction (IRF) of radioiodine (I) does not correlate with increasing fuel burn-up. In fact, there is a peak in the release iodine at around 50-60 Mwd/kgU and with increasing burn-up the instant release of iodine decreases. Detailed electron microscopy analysis of high burn-up fuel (~80 MWd/kgU) has revealed the presence of (Pd,Ag)(I,Br) nano-particles. As UO2 fuels are irradiated, the Ag and Pd content increases, from 239Pu fission, enabling radioiodine to be retained. The occurrence of these phases in nuclear fuels may have significant implications for the long-term behavior of iodine.

  4. Roles of Radiolytic and Externally Generated H2 in the Corrosion of Fractured Spent Nuclear Fuel.

    Science.gov (United States)

    Liu, Nazhen; Wu, Linda; Qin, Zack; Shoesmith, David W

    2016-11-15

    A 2-D model for the corrosion of spent nuclear fuel inside a failed nuclear waste container has been modified to determine the influence of various redox processes occurring within fractures in the fuel. The corrosion process is driven by reaction of the fuel with the dominant α radiolysis product, H2O2. A number of reactions are shown to moderate or suppress the corrosion rate, including H2O2 decomposition and a number of reactions involving dissolved H2 produced either by α radiolysis or by the corrosion of the steel container vessel. Both sources of H2 lead to the suppression of fuel corrosion, with their relative importance being determined by the radiation dose rate, the steel corrosion rate, and the dimensions of the fractures in the fuel. The combination of H2 from these two sources can effectively prevent corrosion when only micromolar quantities of H2 are present.

  5. Degree of Sustainability of Various Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Brogli, R.; Krakowski, R.A. [Los Alamos National Laboratory, New Mexico (United States)

    2002-08-01

    The focus of this study is on a 'top-level' examination of the sustainability of nuclear energy in the context of the overall nuclear fuel cycle (NFC). This evaluation is conducted according to a set of established sustainability criteria that encompasses key economic (energy generation costs), environmental (resource utilization, long-term waste accumulations), and societal (nuclear-weapons proliferation risk) concerns associated with present and future NFC approaches. In this study, key NFCs are assessed according to a simplified and limited set of criteria that attempts to quantify NFC concerns related to cost, resource, waste, and proliferation. The overarching aim of this study is to examine a representative set of NFC options on a relative basis according to the adopted set of criteria to aid in the assessment and decision-making process. These criteria were then aggregated into a single, composite metric to examine the impacts of specific 'stakeholder' preferences. The study architecture is based on sets of nuclear process components. These sets are assembled around a particular nuclear reactor technology for the generation of electricity. Selections are made from the resulting sets of reactor-centric technologies and grouped to form nine central NFC scenarios. The above-described sustainability metrics are evaluated using a steady-state (equilibrium), highly aggregated model that is applied through mass and energy conservation to evaluate each NFC scenario. Six NFC scenarios examined to varying degrees are adaptations or extensions of scenarios used in a recent OECD study (OECD, 2002) of partitioning and transmutation (P and T) schemes based on accelerator-driven systems (ADS) or fast reactors (FR). Three NFC scenarios are based entirely on present-day or near-term LWR technologies. In addition to these near-term scenarios, more advanced systems considered in the original OECD study on which this model is based were retained using a

  6. Legislative and Regulatory Timeline for Fossil Fuel Combustion Wastes

    Science.gov (United States)

    This timeline walks through the history of fossil fuel combustion waste regulation since 1976 and includes information such as regulations, proposals, notices, amendments, reports and meetings and site visits conducted.

  7. Radiation induced corrosion of copper for spent nuclear fuel storage

    Science.gov (United States)

    Björkbacka, Åsa; Hosseinpour, Saman; Johnson, Magnus; Leygraf, Christofer; Jonsson, Mats

    2013-11-01

    The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.

  8. Characterization of Hydrogen Content in ZIRCALOY-4 Nuclear Fuel Cladding

    Science.gov (United States)

    Pfeif, E. A.; Lasseigne, A. N.; Krzywosz, K.; Mader, E. V.; Mishra, B.; Olson, D. L.

    2010-02-01

    Assessment of hydrogen uptake of underwater nuclear fuel clad and component materials will enable improved monitoring of fuel health. Zirconium alloys are used in nuclear reactors as fuel cladding, fuel channels, guide tubes and spacer grids, and are available for inspection in spent fuel pools. With increasing reactor exposure zirconium alloys experience hydrogen ingress due to neutron interactions and water-side corrosion that is not easily quantified without destructive hot cell examination. Contact and non-contact nondestructive techniques, using Seebeck coefficient measurements and low frequency impedance spectroscopy, to assess the hydrogen content and hydride formation within zircaloy 4 material that are submerged to simulate spent fuel pools are presented.

  9. Nuclear spent fuel management scenarios. Status and assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Dufek, J.; Arzhanov, V.; Gudowski, W. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2006-06-15

    The strategy for management of spent nuclear fuel from the Swedish nuclear power programme is interim storage for cooling and decay for about 30 years followed by direct disposal of the fuel in a geologic repository. In various contexts it is of interest to compare this strategy with other strategies that might be available in the future as a result of ongoing research and development. In particular partitioning and transmutation is one such strategy that is subject to considerable R and D-efforts within the European Union and in other countries with large nuclear programmes. To facilitate such comparisons for the Swedish situation, with a planned phase out of the nuclear power programme, SKB has asked the team at Royal Inst. of Technology to describe and explore some scenarios that might be applied to the Swedish programme. The results of this study are presented in this report. The following scenarios were studied by the help of a specially developed computer programme: Phase out by 2025 with direct disposal. Burning plutonium and minor actinides as MOX in BWR. Burning plutonium and minor actinides as MOX in PWR. Burning plutonium and minor actinides in ADS. Combined LWR-MOX plus ADS. For the different scenarios nuclide inventories, waste amounts, costs, additional electricity production etc have been assessed. As a general conclusion it was found that BWR is more efficient for burning plutonium in MOX fuel than PWR. The difference is approximately 10%. Furthermore the BWR produces about 10% less americium inventory. An ADS reactor park can theoretically in an ideal case burn (transmute) 99% of the transuranium isotopes. The duration of such a scenario heavily depends on the interim time needed for cooling the spent fuel before reprocessing. Assuming 10 years for cooling of nuclear fuel from ADS, the duration will be at least 200 years under optimistic technical assumptions. The development and use of advanced pyro-processing with an interim cooling time of only

  10. Used nuclear fuel separations process simulation and testing

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, C.; Krebs, J.F.; Copple, J.M.; Frey, K.E.; Maggos, L.E.; Figueroa, J.; Willit, J.L.; Papadias, D.D. [Argonne National Laboratory: 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2013-07-01

    Recent efforts in separations process simulation at Argonne have expanded from the traditional focus on solvent extraction flowsheet design in order to capture process dynamics and to simulate other components, processing and systems of a used nuclear fuel reprocessing plant. For example, the Argonne Model for Universal Solvent Extraction (AMUSE) code has been enhanced to make it both more portable and more readily extensible. Moving away from a spreadsheet environment makes the addition of new species and processes simpler for the expert user, which should enable more rapid implementation of chemical models that simulate evolving processes. The dyAMUSE (dynamic AMUSE) version allows the simulation of transient behavior across an extractor. Electrochemical separations have now been modeled using spreadsheet codes that simulate the electrochemical recycle of fast reactor fuel. The user can follow the evolution of the salt, products, and waste compositions in the electro-refiner, cathode processors, and drawdown as a function of fuel batches treated. To further expand capabilities in integrating multiple unit operations, a platform for linking mathematical models representing the different operations that comprise a reprocessing facility was adapted to enable systems-level analysis and optimization of facility functions. (authors)

  11. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-02-26

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used.

  12. MMSNF 2005. Materials models and simulations for nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Freyss, M.; Durinck, J.; Carlot, G.; Sabathier, C.; Martin, P.; Garcia, P.; Ripert, M.; Blanpain, P.; Lippens, M.; Schut, H.; Federov, A.V.; Bakker, K.; Osaka, M.; Miwa, S.; Sato, I.; Tanaka, K.; Kurosaki, K.; Uno, M.; Yamanaka, S.; Govers, K.; Verwerft, M.; Hou, M.; Lemehov, S.E.; Terentyev, D.; Govers, K.; Kotomin, E.A.; Ashley, N.J.; Grimes, R.W.; Van Uffelen, P.; Mastrikov, Y.; Zhukovskii, Y.; Rondinella, V.V.; Kurosaki, K.; Uno, M.; Yamanaka, S.; Minato, K.; Phillpot, S.; Watanabe, T.; Shukla, P.; Sinnott, S.; Nino, J.; Grimes, R.; Staicu, D.; Hiernaut, J.P.; Wiss, T.; Rondinella, V.V.; Ronchi, C.; Yakub, E.; Kaye, M.H.; Morrison, C.; Higgs, J.D.; Akbari, F.; Lewis, B.J.; Thompson, W.T.; Gueneau, C.; Gosse, S.; Chatain, S.; Dumas, J.C.; Sundman, B.; Dupin, N.; Konings, R.; Noel, H.; Veshchunov, M.; Dubourg, R.; Ozrin, C.V.; Veshchunov, M.S.; Welland, M.T.; Blanc, V.; Michel, B.; Ricaud, J.M.; Calabrese, R.; Vettraino, F.; Tverberg, T.; Kissane, M.; Tulenko, J.; Stan, M.; Ramirez, J.C.; Cristea, P.; Rachid, J.; Kotomin, E.; Ciriello, A.; Rondinella, V.V.; Staicu, D.; Wiss, T.; Konings, R.; Somers, J.; Killeen, J

    2006-07-01

    The MMSNF Workshop series aims at stimulating research and discussions on models and simulations of nuclear fuels and coupling the results into fuel performance codes.This edition was focused on materials science and engineering for fuel performance codes. The presentations were grouped in three technical sessions: fundamental modelling of fuel properties; integral fuel performance codes and their validation; collaborations and integration of activities. (A.L.B.)

  13. Decommissioning, radioactive waste management and nuclear public information issues in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Enrico Mainardi [AIN - ENEA (Italy)

    2006-07-01

    Full text of publication follows: AIN (Associazione Italiana Nucleare or Italian Nuclear Association) is a non-profit organization that includes a wide range of competence and expertise in the field of nuclear science and technology in Italy. A leading role among AIN members is now covered by SOGIN a company mainly involved in waste treatment and conditioning together with dismantling of the Italian nuclear power plants and installations. The same company detains most of the national competences on Nuclear Power Plants operation and safety that have allowed to provide services to a number of domestic and international clients. Radioactive waste management is a major issue for the acceptability of nuclear power energy and nuclear technologies in general. A solution to the disposal of nuclear waste from the past operation of four NPP and of the Fuel Cycle Facilities together with all the other nuclear waste from hospitals, medical facilities, industries and research centres is today essential. A nuclear-waste storage facilities located in one secured place is a national priority, given the increased risks of possible terrorist attacks, accidents or natural disasters. The Italian decision needs to follow the guidelines and paths decided at the international and European level without delegating to future generations the problems and waste connected to previous use of nuclear technologies. This issue needs to be addressed and solved before starting any discussion on nuclear power in Italy as the recent case of the strong opposition against the site proposed by the Italian Government demonstrates. The site that was selected by the Italian Government is Scanzano Jonico (Matera province in the Basilicata region). The decision is based on a study by SOGIN in cooperation with other institutions such as ENEA and Italian universities, and considering a previous work of the National Geological Service. The study follows the guidelines of ONU-IAEA and the solutions adopted at

  14. Nuclear waste - where to go?; Atommuell - wohin?

    Energy Technology Data Exchange (ETDEWEB)

    Dornsiepen, Ulrich

    2015-07-01

    The question of the final di9sposal of nuclear waste is a problem of international importance. The solution of the problem is of increasing urgency; the discussion is controversial and implies a lot of emotions. In Germany there is consensus that the nuclear wastes have to be disposed within the country in deep geological formations. This kind of final disposal is predominantly a geological problem and has to be solved from the geological point of view. The geologist Ulrich Dornsiepen presents the problems of the final disposal in an objective way without ideology and generally understandable. Such a presentation is necessary since the public information and participation is demanded but the open geological questions and their scientific solutions are never explained for the public. [German] Die Frage der endgueltigen Lagerung von Atommuell ist ein Problem von nationaler Tragweite, dessen Loesung immer dringender wird, bisher aber sehr kontrovers diskutiert wird und mit vielen Emotionen verknuepft ist. Es besteht in Deutschland ein Konsens, diese Abfaelle innerhalb der Landesgrenzen dauerhaft in tief liegenden Gesteinsschichten abzulagern. Diese Art der Endlagerung ist aber in erster Linie ein geologisches Problem und so auch nur von geologischer Seite her zu loesen. Daher stellt der Geologe Ulrich Dornsiepen die Problematik der Endlagerung objektiv, ideologiefrei und allgemein verstaendlich dar. Ein solches Hoerbuch ist dringend noetig, da zwar die Information und Beteiligung breiter, betroffener Bevoelkerungsteile eingefordert, aber niemals versucht wird, die offenen geologischen Fragen und ihre wissenschaftliche Loesung verstaendlich zu machen.

  15. Survey of nuclear fuel cycle economics: 1970--1985

    Energy Technology Data Exchange (ETDEWEB)

    Prince, B. E.; Peerenboom, J. P.; Delene, J. G.

    1977-03-01

    This report is intended to provide a coherent view of the diversity of factors that may affect nuclear fuel cycle economics through about 1985. The nuclear fuel cycle was surveyed as to past trends, current problems, and future considerations. Unit costs were projected for each step in the fuel cycle. Nuclear fuel accounting procedures were reviewed; methods of calculating fuel costs were examined; and application was made to Light Water Reactors (LWR) over the next decade. A method conforming to Federal Power Commission accounting procedures and used by utilities to account for backend fuel-cycle costs was described which assigns a zero net salvage value to discharged fuel. LWR fuel cycle costs of from 4 to 6 mills/kWhr (1976 dollars) were estimated for 1985. These are expected to reach 6 to 9 mills/kWr if the effect of inflation is included.

  16. Transmutation of Nuclear Waste and the future MYRRHA Demonstrator

    CERN Document Server

    Mueller, Alex C

    2012-01-01

    While a considerable and world-wide growth of the nuclear share in the global energy mix is desirable for many reasons, there are also, in particular in the "old world" major objections. These are both concerns about safety, in particular in the wake of the Fukushima nuclear accident and concerns about the long-term burden that is constituted by the radiotoxic waste from the spent fuel. With regard to the second topic, the present contribution will outline the concept of Partitioning & Transmutation (P&T), as scientific and technological answer. Deployment of P&T may use dedicated "Transmuter" or "Burner" reactors, using a fast neutron spectrum. For the transmutation of waste with a large content (up to 50%) of (very long-lived) Minor Actinides, a sub-critical reactor, using an external neutron source is a most attractive solution. It is constituted by coupling a proton accelerator, a spallation target and a subcritical core. This promising new technology is named ADS, for accelerator-driven syste...

  17. Nuclear fuels: Development, processing and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Allday, C.

    1982-08-01

    The successful development of the world's energy resources has enabled industries in the more advanced countries to provide the economic basis on which improved living standards are based. As the less well-developed countries seek to improve their standards of living the pressure on existing energy resources will increase. In this context it is essential not to allow the current industrial recession in the developed countries, with its associated apparent abundancy of coal, oil and gas, to mask the longer-term energy situation. It is not here proposed to discuss the role of nuclear power in the energy scene except to say that, with the continuing need to develop energy resources, nuclear as a proven safe and economic system - will have a vital role to fulfil in meeting the world's future energy demands. This paper is concerned with the development of nuclear fuel and the industry which has grown around it during the last 30 years. It shall concentrate on its development in this country and describe the history and activities of BNFL.

  18. Waste-to-Energy and Fuel Cell Technologies Overview

    Science.gov (United States)

    2011-01-13

    Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Global Approach for Using Biogas Innovation for Our Energy Future Source Production I...Cleanup Distribution I Utilization Dairy Waste Water Treat Plant Anaerobic Digester Reformation I Fuel Cell Systems ... • Biogas .... ,-1...8217 / ----------- Grid Anaerobic Digestion of Organic Wastes is a Good Source of Methane. Organic waste + methanogenic bacteria → methane (CH4) Issues

  19. Land and Water Use, CO2 Emissions, and Worker Radiological Exposure Factors for the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Brett W Carlsen; Brent W Dixon; Urairisa Pathanapirom; Eric Schneider; Bethany L. Smith; Timothy M. AUlt; Allen G. Croff; Steven L. Krahn

    2013-08-01

    The Department of Energy Office of Nuclear Energy’s Fuel Cycle Technologies program is preparing to evaluate several proposed nuclear fuel cycle options to help guide and prioritize Fuel Cycle Technology research and development. Metrics are being developed to assess performance against nine evaluation criteria that will be used to assess relevant impacts resulting from all phases of the fuel cycle. This report focuses on four specific environmental metrics. • land use • water use • CO2 emissions • radiological Dose to workers Impacts associated with the processes in the front-end of the nuclear fuel cycle, mining through enrichment and deconversion of DUF6 are summarized from FCRD-FCO-2012-000124, Revision 1. Impact estimates are developed within this report for the remaining phases of the nuclear fuel cycle. These phases include fuel fabrication, reactor construction and operations, fuel reprocessing, and storage, transport, and disposal of associated used fuel and radioactive wastes. Impact estimates for each of the phases of the nuclear fuel cycle are given as impact factors normalized per unit process throughput or output. These impact factors can then be re-scaled against the appropriate mass flows to provide estimates for a wide range of potential fuel cycles. A companion report, FCRD-FCO-2013-000213, applies the impact factors to estimate and provide a comparative evaluation of 40 fuel cycles under consideration relative to these four environmental metrics.

  20. Fuel element concept for long life high power nuclear reactors

    Science.gov (United States)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  1. Updated projections of radioactive wastes to be generated by the U. S. nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Kee, C.W.; Croft, A.G.; Blomeke, J.O.

    1976-12-01

    Eleven types of radioactive wastes to be generated within the fuel cycle operations of the U.S. nuclear power industry are defined, and projections are presented of their annual generation rates, shipping requirements, and accumulated characteristics over the remainder of this century. The power reactor complex is assumed to consist of uranium- and plutonium-fueled LWRs, HTGRs, and LMFBRs, and the installed nuclear electric capacity of the U.S. is taken as 68.1, 252, and 510 GW at the ends of calendar years 1980, 1990, and 2000, respectively. 72 tables.

  2. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Jackson; G.R. Kiebel

    1999-08-24

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

  3. Reframing nuclear power in the UK energy debate: nuclear power, climate change mitigation and radioactive waste.

    Science.gov (United States)

    Bickerstaff, K; Lorenzoni, I; Pidgeon, N F; Poortinga, W; Simmons, P

    2008-04-01

    In the past decade, human influence on the climate through increased use of fossil fuels has become widely acknowledged as one of the most pressing issues for the global community. For the United Kingdom, we suggest that these concerns have increasingly become manifest in a new strand of political debate around energy policy, which reframes nuclear power as part of the solution to the need for low-carbon energy options. A mixed-methods analysis of citizen views of climate change and radioactive waste is presented, integrating focus group data and a nationally representative survey. The data allow us to explore how UK citizens might now and in the future interpret and make sense of this new framing of nuclear power--which ultimately centers on a risk-risk trade-off scenario. We use the term "reluctant acceptance" to describe how, in complex ways, many focus group participants discursively re-negotiated their position on nuclear energy when it was positioned alongside climate change. In the concluding section of the paper, we reflect on the societal implications of the emerging discourse of new nuclear build as a means of delivering climate change mitigation and set an agenda for future research regarding the (re)framing of the nuclear energy debate in the UK and beyond.

  4. Nuclear waste disposal utilizing a gaseous core reactor

    Science.gov (United States)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  5. For Sale: Nuclear Waste Sites--Anyone Buying?

    Science.gov (United States)

    Hancock, Don

    1992-01-01

    Explores why the United States Nuclear Waste Program has been unable to find a volunteer state to host either a nuclear waste repository or monitored retrieval storage facility. Discusses the Department of Energy's plans for Nevada's Yucca Mountain as a repository and state and tribal responses to the plan. (21 references) (MCO)

  6. Characterization plan for Hanford spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Abrefah, J.; Thornton, T.A.; Thomas, L.E.; Berting, F.M.; Marschman, S.C.

    1994-12-01

    Reprocessing of spent nuclear fuel (SNF) at the Hanford Site Plutonium-Uranium Extraction Plant (PUREX) was terminated in 1972. Since that time a significant quantity of N Reactor and Single-Pass Reactor SNF has been stored in the 100 Area K-East (KE) and K-West (KW) reactor basins. Approximately 80% of all US Department of Energy (DOE)-owned SNF resides at Hanford, the largest portion of which is in the water-filled KE and KW reactor basins. The basins were not designed for long-term storage of the SNF and it has become a priority to move the SNF to a more suitable location. As part of the project plan, SNF inventories will be chemically and physically characterized to provide information that will be used to resolve safety and technical issues for development of an environmentally benign and efficient extended interim storage and final disposition strategy for this defense production-reactor SNF.

  7. Spent nuclear fuel project technical databook

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, M.A.

    1998-07-22

    The Spent Nuclear Fuel (SNF) project technical databook provides project-approved summary tables of selected parameters and derived physical quantities, with nominal design and safety basis values. It contains the parameters necessary for a complete documentation basis of the SNF Project technical and safety baseline. The databook is presented in two volumes. Volume 1 presents K Basins SNF related information. Volume 2 (not yet available) will present selected sludge and water information, as it relates to the sludge and water removal projects. The values, within this databook, shall be used as the foundation for analyses, modeling, assumptions, or other input to SNF project safety analyses or design. All analysis and modeling using a parameter available in this databook are required to use and cite the appropriate associated value, and document any changes to those values (i.e., analysis assumptions, equipment conditions, etc). Characterization and analysis efforts are ongoing to validate, or update these values.

  8. The utility of system-level RAM analysis and standards for the US nuclear waste management system

    Energy Technology Data Exchange (ETDEWEB)

    Rod, S.R.; Adickes, M.D.; Paul, B.K.

    1992-03-01

    The Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing a system to manage spent nuclear fuel and high-level radioactive waste in accordance with the Nuclear Waste Policy Act of 1982 and its subsequent amendments. Pacific Northwest Laboratory (PNL) is assisting OCRWM in its investigation of whether system-level reliability, availability, and maintainability (RAM) requirements are appropriate for the waste management system and, if they are, what appropriate form should be for such requirements. Results and recommendations are presented.

  9. Savannah River Site Spent Nuclear Fuel Management Final Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-04-14

    The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel 20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some Americium/Curium Targets stored at SRS. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional processing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE would prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using chemical separation. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts.

  10. Advantages of dry hardened cask storage over wet storage for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, Luiz Sergio, E-mail: romanato@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil). Dept. da Qualidade

    2011-07-01

    Pools are generally used to store and maintain spent nuclear fuel assemblies for cooling, after removed from reactors. After three to five years stored in the pools, spent fuel can be reprocessed or sent to a final disposition in a geological repository and handled as radioactive waste or sent to another site waiting for future solution. Spent fuel can be stored in dry or wet installations, depending on the method adopted by the nuclear plant. If this storage were exclusively wet, at the installation decommissioning in the future, another solution for storage will need to be found. Today, after a preliminary cooling, the spent fuel assemblies can be removed from the pool and sent to dry hardened storage installations. This kind of storage does not need complex radiation monitoring and it is safer than wet storage. Brazil has two nuclear reactors in operation, a third reactor is under construction and they use wet spent fuel storage . Dry hardened casks use metal or both metal and concrete for radiation shielding and they are safe, especially during an earthquake. An earthquake struck Japan on March 11, 2011 damaging Fukushima Daiichi nuclear power plant. The occurrence of earthquakes in Brazil is very small but dry casks can resist to other events, including terrorist acts, better than pools. This paper shows the advantages of dry hardened cask storage in comparison with the wet storage (water pools) for spent nuclear fuel. (author)

  11. Designing the microturbine engine for waste-derived fuels.

    Science.gov (United States)

    Seljak, Tine; Katrašnik, Tomaž

    2016-01-01

    Presented paper deals with adaptation procedure of a microturbine (MGT) for exploitation of refuse derived fuels (RDF). RDF often possess significantly different properties than conventional fuels and usually require at least some adaptations of internal combustion systems to obtain full functionality. With the methodology, developed in the paper it is possible to evaluate the extent of required adaptations by performing a thorough analysis of fuel combustion properties in a dedicated experimental rig suitable for testing of wide-variety of waste and biomass derived fuels. In the first part key turbine components are analyzed followed by cause and effect analysis of interaction between different fuel properties and design parameters of the components. The data are then used to build a dedicated test system where two fuels with diametric physical and chemical properties are tested - liquefied biomass waste (LW) and waste tire pyrolysis oil (TPO). The analysis suggests that exploitation of LW requires higher complexity of target MGT system as stable combustion can be achieved only with regenerative thermodynamic cycle, high fuel preheat temperatures and optimized fuel injection nozzle. Contrary, TPO requires less complex MGT design and sufficient operational stability is achieved already with simple cycle MGT and conventional fuel system. The presented approach of testing can significantly reduce the extent and cost of required adaptations of commercial system as pre-selection procedure of suitable MGT is done in developed test system. The obtained data can at the same time serve as an input for fine-tuning the processes for RDF production.

  12. Coupon Surveillance For Corrosion Monitoring In Nuclear Fuel Basin

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J. I.; Murphy, T. R.; Deible, R.

    2012-10-01

    Aluminum and stainless steel coupons were put into a nuclear fuel basin to monitor the effect of water chemistry on the corrosion of fuel cladding. These coupons have been monitored for over ten years. The corrosion and pitting data is being used to model the kinetics and estimate the damage that is occurring to the fuel cladding.

  13. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    Science.gov (United States)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  14. Nuclear waste management technical support in the development of nuclear waste form criteria for the NRC. Task 1. Waste package overview

    Energy Technology Data Exchange (ETDEWEB)

    Dayal, R.; Lee, B.S.; Wilke, R.J.; Swyler, K.J.; Soo, P.; Ahn, T.M.; McIntyre, N.S.; Veakis, E.</