WorldWideScience

Sample records for nuclear field effect

  1. Versatility of field theory motivated nuclear effective Lagrangian approach

    International Nuclear Information System (INIS)

    Arumugam, P.; Sharma, B.K.; Sahu, P.K.; Patra, S.K.; Sil, Tapas; Centelles, M.; Vinas, X.

    2004-01-01

    We analyze the results for infinite nuclear and neutron matter using the standard relativistic mean field model and its recent effective field theory motivated generalization. For the first time, we show quantitatively that the inclusion in the effective theory of vector meson self-interactions and scalar-vector cross-interactions explains naturally the recent experimental observations of the softness of the nuclear equation of state, without losing the advantages of the standard relativistic model for finite nuclei

  2. The Hoyle state in nuclear lattice effective field theory

    Indian Academy of Sciences (India)

    We review the calculation of the Hoyle state of 12C in nuclear lattice effective field theory (NLEFT) and its ... trum of 12C, which plays an important role in resonantly enhancing the reaction rate for the so-called triple-α ..... The errors are one-standard-deviation estimates which include statistical Monte Carlo errors and ...

  3. Nuclear Parity-Violation in Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Shi-Lin Zhu; C.M. Maekawa; B.R. Holstein; M.J. Ramsey-Musolf; U van Kolck

    2005-02-21

    We reformulate the analysis of nuclear parity-violation (PV) within the framework of effective field theory (EFT). To order Q, the PV nucleon-nucleon (NN) interaction depends on five a priori unknown constants that parameterize the leading-order, short-range four-nucleon operators. When pions are included as explicit degrees of freedom, the potential contains additional medium- and long-range components parameterized by PV piNN couplings. We derive the form of the corresponding one- and two-pion-exchange potentials. We apply these considerations to a set of existing and prospective PV few-body measurements that may be used to determine the five independent low-energy constants relevant to the pionless EFT and the additional constants associated with dynamical pions. We also discuss the relationship between the conventional meson-exchange framework and the EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing nuclear PV.

  4. The ``Folk Theorem'' on effective field theory: How does it fare in nuclear physics?

    Science.gov (United States)

    Rho, Mannque

    2017-10-01

    This is a brief history of what I consider as very important, some of which truly seminal, contributions made by young Korean nuclear theorists, mostly graduate students working on PhD thesis in 1990s and early 2000s, to nuclear effective field theory, nowadays heralded as the first-principle approach to nuclear physics. The theoretical framework employed is an effective field theory anchored on a single scale-invariant hidden local symmetric Lagrangian constructed in the spirit of Weinberg's "Folk Theorem" on effective field theory. The problems addressed are the high-precision calculations on the thermal np capture, the solar pp fusion process, the solar hep process — John Bahcall's challenge to nuclear theorists — and the quenching of g A in giant Gamow-Teller resonances and the whopping enhancement of first-forbidden beta transitions relevant in astrophysical processes. Extending adventurously the strategy to a wild uncharted domain in which a systematic implementation of the "theorem" is far from obvious, the same effective Lagrangian is applied to the structure of compact stars. A surprising, unexpected, result on the properties of massive stars, totally different from what has been obtained up to day in the literature, is predicted, such as the precocious onset of conformal sound velocity together with a hint for the possible emergence in dense matter of hidden symmetries such as scale symmetry and hidden local symmetry.

  5. Nuclear dipole polarizability from mean-field modeling constrained by chiral effective field theory

    Science.gov (United States)

    Zhang, Zhen; Lim, Yeunhwan; Holt, Jeremy W.; Ko, Che Ming

    2018-02-01

    We construct a new Skyrme interaction Skχm* by fitting the equation of state and nucleon effective masses in asymmetric nuclear matter from chiral two- and three-body forces as well as the binding energies of finite nuclei. Employing this interaction to study the electric dipole polarizabilities of 48Ca, 68Ni, 120Sn, and 208Pb in the random-phase approximation, we find that the theoretical predictions are in good agreement with experimentally measured values without additional fine tuning of the Skyrme interaction, thus confirming the usefulness of the new Skyrme interaction in studying the properties of nuclei. We further use this interaction to study the neutron skin thicknesses of 48Ca and 208Pb, and they are found to be consistent with the experimental data.

  6. The characters of radiation fields and effects for protection monitoring in nuclear-powered submarine

    International Nuclear Information System (INIS)

    Wang Yuexing; Ma Xiaoling; Lu Yongjie; Zhang Jianguo

    1999-01-01

    The characters of the radiation fields in nuclear-powered submarine have been described. The characters are: the range of γ-rays energy is from 0 to 10 MeV, there are thermal and fast neutrons in it, and space changes of energy spectra and flux rates for γ-rays and neutrons are rapid. The characters have markedly an effect on the design of individual dosimeter measuring neutron dose, on evaluating accident-dose, and on the calibration of the instruments used to radiation protection in nuclear-powered submarine

  7. Baryonic forces and hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan Karl

    2016-02-12

    In this work the baryon-baryon interaction is studied at next-to-leading order in SU(3) chiral effective field theory and applied to hyperon-nucleon scattering. The properties of hyperons in isospin-symmetric as well as asymmetric nuclear matter are calculated within the Bruecker-Hartree-Fock formalism. Moreover, the leading three-baryon interaction is derived and its low-energy constants are estimated from decuplet intermediate states. We conclude, that chiral effective field theory is a well-suited tool to describe the baryonic forces.

  8. Far from the intermediate nuclear field

    International Nuclear Information System (INIS)

    Dietrich, K.; Wagner, G.J.; Gregoire, C.; Campi, X.; Silvestre-Brac, B.; Platchkov, S.; Mayer, B.; Abgrall, Y.; Bohigas, O.; Grange, P.; Signarbieux, C.

    1988-01-01

    Pairing correlations in nuclear physics; the BCS state and quasi-particles; the layer model; collision effects on nuclear dynamics; the theory of cluster formation (application to nucleus fragmentation); short range correlations (few-particle systems); deuterium electron scattering; dibaryonic resonances; traditional and exotic hadron probes of nuclear structure; spectral fluctuations and chaotic motion; corrections to the intermediate nuclear field (nonrelativistic and other effects); and heavy nuclei splitting and nuclear superfluidity are introduced [fr

  9. Views of a devil's advocate -- Fundamental challenges to effective field theory treatments of nuclear physics

    International Nuclear Information System (INIS)

    Cohen, T.D.

    1998-04-01

    The physics goals of the effective field theory program for nuclear phenomena are outlined. It is pointed out that there are multiple schemes for implementing EFT and it is presently not clear if any of these schemes is viable. Most of the applications of effective field theory ideas have been on nucleon-nucleon scattering. It is argued that this is little more than curve fitting and that other quantities need to be calculated to test the ideas. It is shown that EFT methods work well for certain bound state properties of the deuteron electric form factor. However, it is also shown that this success depends sensitively on the fact that the majority of the probability of the deuteron's wave function is beyond the range of the potential. This circumstance is special to the deuteron suggesting that it will be very difficult to achieve the same kinds of success for tightly bound nuclei

  10. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffry Todd [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  11. Fields of nuclear power application

    International Nuclear Information System (INIS)

    Laue, H.J.

    1975-01-01

    The paper deals with nuclear power application in fields different from electricity generation, i.e. district heating, sea water desalination, coal gasification and nuclear splitting of water. (RW) [de

  12. The nuclear equation of state in effective relativistic field theories and pion yields in heavy-ion collisions

    International Nuclear Information System (INIS)

    Schoenhofen, M.; Cubero, M.; Gering, M.; Sambataro, M.; Feldmeier, H.; Noerenberg, W.

    1989-06-01

    Within the framework of relativistic field theory for nucleons, deltas, scalar and vector mesons, a systematic study of the nuclear equation of state and its relation to pion yields in heavy-ion collisions is presented. Not the compressibility but the effective nucleon mass at normal nuclear density turns out to be the most sensitive parameter. Effects from vaccum fluctuations are well modelled within the mean-field no-sea approximation by self-interaction terms for the scalar meson field. Incomplete thermalization in the fireball may be the reason for the low pion yields observed in heavy-ion collisions. (orig.)

  13. Boundary effects of molecular diffusion in nanoporous materials: A pulsed field gradient nuclear magnetic resonance study

    Science.gov (United States)

    Geier, Oliver; Snurr, Randall Q.; Stallmach, Frank; Kärger, Jörg

    2004-01-01

    The boundary conditions of intraparticle diffusion in nanoporous materials may be chosen to approach the limiting cases of either absorbing or reflecting boundaries, depending on the host-guest system under study and the temperature of measurement. Pulsed field gradient nuclear magnetic resonance is applied to monitor molecular diffusion of n-hexane and of an n-hexane-tetrafluoromethane mixture adsorbed in zeolite crystallites of type NaX under either of these limiting conditions. Taking advantage of the thus-established peculiarities of mass transfer at the interface between the zeolite bulk phase and the surrounding atmosphere, three independent routes for probing the crystal size are compared. These techniques are based on (i) the measurement of the effective diffusivity under complete confinement, (ii) the application of the so-called NMR tracer desorption technique, and (iii) an analysis of the time dependence of the effective diffusivity in the short-time limit where, by an appropriate variation of the adsorbate and the measuring conditions, the limiting cases of reflecting and adsorbing boundaries could be considered. All these techniques are found to yield coinciding results, which are in excellent agreement with the crystal sizes determined by microscopy.

  14. The effect of intense electromagnetic fields with complex configuration on nuclear betadecay

    International Nuclear Information System (INIS)

    Rodionov, V.N.

    1997-01-01

    This paper discusses how an electromagnetic field consisting of a superposition of a constant magnetic field and a field of laser type can affect nuclear beta decay. In general it is not assumed that the intensities of the two types of fields are small compared to the characteristic field H cr *=β 1 H cr , where H cr =m 2 c 3 /e(ℎ/2π) and the quantity β 1 depends on the energy liberated in the decay and the configuration of the electromagnetic field. For nonrelativistic decays the quantity β 1 is found to be of the same order as the maximum kinetic energy of an electron referenced to its rest energy β 1 ∼I 2 ≤I. The behavior of the probability for the process is studied over a wide range of the fundamental parameters that characterize the fields. Corresponding asymptotic expressions are derived in the 'weak'- and 'strong'-field regimes. Also discussed are so-called interference corrections to the unperturbed decay probability, which cannot in principle be studied by the methods of perturbation theory. It is shown that the times and distances that are important in generating these contributions exceed the parameters of the unperturbed processes, just as in the case of a plane-wave field previously investigated in detail by Nikishov and Ritus. However, in contrast to the case of a pure wave field, when a system is simultaneously subjected to a constant magnetic field and a wave field, the degree to which these characteristic regions are enlarged can depend not only on the intensities of the electromagnetic fields but also on their rates of change, even in the limit in which the wave field is slowly varying

  15. Effects of CO2 injection and Kerogen Maturation on Low-Field Nuclear Magnetic Resonance Response

    Science.gov (United States)

    Prasad, M.; Livo, K.

    2017-12-01

    Low-field Nuclear Magnetic Resonance (NMR) is commonly used in petrophysical analysis of petroleum reservoir rocks. NMR experiments record the relaxation and polarization of in-situ hydrogen protons present in gaseous phases such as free-gas intervals and solution gas fluids, bulk fluid phases such as oil and aquifer intervals, and immovable fractions of kerogen and bitumen. Analysis of NMR relaxation spectra is performed to record how fluid composition, maturity, and viscosity change NMR experimental results. We present T1-T2 maps as thermal maturity of a water-saturated, sub-mature Woodford shale is increased at temperatures from 125 to 400 degrees Celsius. Experiments with applied fluid pressure in paraffinic mineral oil and DI water with varying fluid pH have been performed to mimic reservoir conditions in analysis of the relaxation of bulk fluid phases. We have recorded NMR spectra, T1-T2 maps, and fluid diffusion coefficients using a low-field (2 MHz) MagritekTM NMR. CO2 was injected at a pressure of 900 psi in an in house developed NMR pressure vessel made of torlon plastic. Observable 2D NMR shifts in immature kerogen formations as thermal maturity is increased show generation of lighter oils with increased maturity. CO2 injection leads to a decrease in bulk fluid relaxation time that is attributed to viscosity modification with gas presence. pH variation with increased CO2 presence were shown to not effect NMR spectra. From this, fluid properties have been shown to greatly affect NMR readings and must be taken into account for more accurate NMR reservoir characterization.

  16. Turkey's status in nuclear field

    International Nuclear Information System (INIS)

    Aykol, F.; Oezkan, R.; Atila, B.; Hanguel, G.; Aksu, M.L.

    2002-01-01

    Full text: Turkey is a country with dynamic economic development and rapid population growth and nuclear energy is an integral part of these dynamics. Turkish Atomic Energy Authority (TAEA) is in charge of regulation and control of all activities related to nuclear field, including safety inspections and licensing. The TAEA is also responsible for the sensitive task of improving public awareness of nuclear technology which includes the use of nuclear power. Turkey's experience with nuclear power dates back to the 1960's, as the first nuclear research reactor started to operate in Istanbul in 1962. There were various plans for the introduction of nuclear power to the country. However the plans for the construction of the first nuclear power in the country were postponed for an indefinite period in 2000. In the wake of this decision TAEA initiated the activities to establish a nuclear policy in the country which includes creating the technical know-how and establishing new generation nuclear power plants in Turkey. The Authority is also responsible for the safe use of nuclear energy in medicine, agriculture, animal health, industry, food irradiation and in all kinds of research activities. The authority has carried or is currently continuing 12 National Technical Cooperation, 30 Research Contract, 21 Regional Europe ongoing IAEA projects and 31 State Planning Organization projects. There were 7571 radiological, 208 radiotherapy, 3792 industrial and 214 instruments licensed and registered by the Radiation Health and Safety Department of the Authority. We are in the opinion that developing a nuclear technology substructure in both Turkey and Turkish Countries will be of great benefit for the Euro-Asia region. We must emphasize that Turkey is the partner of all nonproliferation treaties and has no intention of using nuclear power for non peaceful purposes whatsoever

  17. Equations for effective nuclear fields taking account of 2p2h configurations

    International Nuclear Information System (INIS)

    Kamerdzhiev, S.P.

    1977-01-01

    Equations taking into account 1p1h and 2p2h configurations were obta+ned by means of effective fields in the nucleus. The consideration is restricted by the even-even Fermi system only with particle-hole interaction and by the first order with respect to an external field, which corresponds to the case of an even-even nucleus without pairing in a weak external field. The principal results of the investigation are as follows: a set of equations for effective fields V 2 and V 4 is obtained by the Green function method; the solutxon of the set makes it possible to consider 1p1h and 2p2h configurations consecutively and dispense with the Hartree-Fock self-consistence. The equations for V 2 and V 4 can be used to obtain quantum equations taking into account 2p2h configurations and their effect on 1p1h states. Allowance for integration regions far removed from the Fermi surface results in the appearance of the V 4 0 seed portion in the V 4 effective field. Taking into account 2p2h configurations at V 4 0 not equal to 0 changes the form of the seed multipole operator of a nucleus; a new term appears in the expression for transition probability. As a rule, the V 4 0 value was neglected in investigations dealing with the 2p2h configuration

  18. Nuclear weapons, nuclear effects, nuclear war

    Energy Technology Data Exchange (ETDEWEB)

    Bing, G.F.

    1991-08-20

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  19. Radiation effects on materials in the near-field of nuclear waste repository. 1998 annual progress report

    International Nuclear Information System (INIS)

    Ewing, R.C.; Wang, L.M.

    1998-01-01

    'Site restoration activities at DOE facilities and the permanent disposal of nuclear waste generated at DOE facilities involve working with and within various types and levels of radiation fields. Once the nuclear waste is incorporated into a final form, radioactive decay will decrease the radiation field over geologic time scales, but the alpha-decay dose for these solids will still reach values as high as 10 18 alpha-decay events/gm in periods as short as 1,000 years. This dose is well within the range for which important chemical (e.g., increased leach rate) and physical (e.g., volume expansion) changes may occur in crystalline ceramics. Release and sorption of long-lived actinides (e.g., 237 Np) can provide a radiation exposure to backfill materials, and changes in important properties (e.g., cation exchange capacity) may occur. The objective of this research program is to evaluate the long term radiation effects in the materials in the near-field of a nuclear waste repository with accelerated experiments in the laboratory using energetic particles (electrons, ions and neutrons). Experiments on the microstructural evolution during irradiation of two important groups of materials, sheet silicates (e.g., clays) and zeolites (analcime), have been conducted; and studies of radiation-induced changes in chemical properties (e.g. cation exchange capacity) are underway. As of the mid-2nd year of the 3-year project, experiments on the microstructural evolution during irradiation of two important group of materials, sheet silicates (mica) and zeolites (analcime), have been conducted; and studies of radiation-induced changes in chemical properties (e.g., cation exchange capacity) are underway.'

  20. Nuclear magnetic resonance relaxation and diffusion in the presence of internal gradients: the effect of magnetic field strength.

    Science.gov (United States)

    Mitchell, J; Chandrasekera, T C; Johns, M L; Gladden, L F; Fordham, E J

    2010-02-01

    It is known that internal magnetic field gradients in porous materials, caused by susceptibility differences at the solid-fluid interfaces, alter the observed effective Nuclear Magnetic Resonance transverse relaxation times T2,eff. The internal gradients scale with the strength of the static background magnetic field B0. Here, we acquire data at various magnitudes of B0 to observe the influence of internal gradients on T2-T2 exchange measurements; the theory discussed and observations made are applicable to any T2-T2 analysis of heterogeneous materials. At high magnetic field strengths, it is possible to observe diffusive exchange between regions of local internal gradient extrema within individual pores. Therefore, the observed exchange pathways are not associated with pore-to-pore exchange. Understanding the significance of internal gradients in transverse relaxation measurements is critical to interpreting these results. We present the example of water in porous sandstone rock and offer a guideline to determine whether an observed T2,eff relaxation time distribution reflects the pore size distribution for a given susceptibility contrast (magnetic field strength) and spin echo separation. More generally, we confirm that for porous materials T1 provides a better indication of the pore size distribution than T2,eff at high magnetic field strengths (B0>1 T), and demonstrate the data analysis necessary to validate pore size interpretations of T2,eff measurements.

  1. Nuclear axial current operators to fourth order in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, H., E-mail: hermann.krebs@rub.de [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Epelbaum, E., E-mail: evgeny.epelbaum@rub.de [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93016 (United States); Meißner, U.-G., E-mail: meissner@hiskp.uni-bonn.de [Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Institut für Kernphysik, Institute for Advanced Simulation, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2017-03-15

    We present the complete derivation of the nuclear axial charge and current operators as well as the pseudoscalar operators to fourth order in the chiral expansion relative to the dominant one-body contribution using the method of unitary transformation. We demonstrate that the unitary ambiguity in the resulting operators can be eliminated by the requirement of renormalizability and by matching of the pion-pole contributions to the nuclear forces. We give expressions for the renormalized single-, two- and three-nucleon contributions to the charge and current operators and pseudoscalar operators including the relevant relativistic corrections. We also verify explicitly the validity of the continuity equation.

  2. Testing the Standard Model and Fundamental Symmetries in Nuclear Physics with Lattice QCD and Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Walker-Loud, Andre [College of William and Mary, Williamsburg, VA (United States)

    2016-10-14

    The research supported by this grant is aimed at probing the limits of the Standard Model through precision low-energy nuclear physics. The work of the PI (AWL) and additional personnel is to provide theory input needed for a number of potentially high-impact experiments, notably, hadronic parity violation, Dark Matter direct detection and searches for permanent electric dipole moments (EDMs) in nucleons and nuclei. In all these examples, a quantitative understanding of low-energy nuclear physics from the fundamental theory of strong interactions, Quantum Chromo-Dynamics (QCD), is necessary to interpret the experimental results. The main theoretical tools used and developed in this work are the numerical solution to QCD known as lattice QCD (LQCD) and Effective Field Theory (EFT). This grant is supporting a new research program for the PI, and as such, needed to be developed from the ground up. Therefore, the first fiscal year of this grant, 08/01/2014-07/31/2015, has been spent predominantly establishing this new research effort. Very good progress has been made, although, at this time, there are not many publications to show for the effort. After one year, the PI accepted a job at Lawrence Berkeley National Laboratory, so this final report covers just a single year of five years of the grant.

  3. Effects of nuclear vibration on the ionization process of H2+ in ultrashort intense laser field

    International Nuclear Information System (INIS)

    Phan, Ngoc-Loan; Nguyen, Ngoc-Ty; Truong, Tran-Chau

    2015-01-01

    By numerically solving the time-dependent Schrödinger equation, we calculate the ionization probability of a vibrating H 2 + exposed to ultrashort intense laser fields. The results show that the ionization probability increases by time and gets a saturation value. We also find that with some first vibration levels, the ionization probability from a higher vibration level is larger than that from a lower one. However, with higher vibration levels, at a certain level the ionization probability will take maximum and decrease with next levels. (paper)

  4. The nuclear N-body problem and the effective interaction in self-consistent mean-field methods

    International Nuclear Information System (INIS)

    Duguet, Thomas

    2002-01-01

    This work deals with two aspects of mean-field type methods extensively used in low-energy nuclear structure. The first study is at the mean-field level. The link between the wave-function describing an even-even nucleus and the odd-even neighbor is revisited. To get a coherent description as a function of the pairing intensity in the system, the utility of the formalization of this link through a two steps process is demonstrated. This two-steps process allows to identify the role played by different channels of the force when a nucleon is added in the system. In particular, perturbative formula evaluating the contribution of time-odd components of the functional to the nucleon separation energy are derived for zero and realistic pairing intensities. Self-consistent calculations validate the developed scheme as well as the derived perturbative formula. This first study ends up with an extended analysis of the odd-even mass staggering in nuclei. The new scheme allows to identify the contribution to this observable coming from different channels of the force. The necessity of a better understanding of time-odd terms in order to decide which odd-even mass formulae extracts the pairing gap the most properly is identified. These terms being nowadays more or less out of control, extended studies are needed to make precise the fit of a pairing force through the comparison of theoretical and experimental odd-even mass differences. The second study deals with beyond mean-field methods taking care of the correlations associated with large amplitude oscillations in nuclei. Their effects are usually incorporated through the GCM or the projected mean-field method. We derive a perturbation theory motivating such variational calculations from a diagrammatic point of view for the first time. Resuming two-body correlations in the energy expansion, we obtain an effective interaction removing the hard-core problem in the context of configuration mixing calculations. Proceeding to a

  5. Mine-field clearance by nuclear weapons

    Energy Technology Data Exchange (ETDEWEB)

    Deeds, F.E.; Fleming, F.W.; Stump, R.K.

    1960-08-16

    The objective of the project was to investigate the behavior of pressure-activated antitank mines under air-blast loading from a nuclear detonation. Of particular interest were the reliability of current methods for predicting probability of land-mine actuation from nuclear detonations, the effect of burial depth on mine actuation, and the effect of sympathetic actuation in extending the range of mine clearance. In addition, a study was initiated to determine if special methods were needed for prediction of mine actuation at particular ranges of transition in the pressure-wave shape. Fifteen mine types, both United States and foreign, were employed. Test results indicated: (1) the procedures for predicting mine actuation under nuclear detonations were reasonably accurate; (2) in the live mine fields, sympathetic actuation occurred among mines; (3) the response of the Universal Indicator Mines (UIM) increased with burial depths to a maximum value between 6 and 9 in.; and (4) the reliability of the actuation curves can be improved by laboratory testing of adequate sampling mines.

  6. Occupational index for the nuclear energy field

    International Nuclear Information System (INIS)

    Barker, L.L.

    1979-01-01

    This study surveyed key nuclear employers to determine which journals and magazines were used to recruitment advertisement and to assess the credibility of advertisement as a recruitment technique. Volume of advertisement appearing in Physics Today was categorized and recorded for the years 1966 to 1977. Regression analysis was used to determine the relationships between the categories of advertisement and labor force information for physicists, physics instructors, and physicists in the nuclear field. The nuclear employers surveyed identified 166 journals in which they advertise for scientific, engineering, and technical personnel. Employers considered help-wanted advertising to be more effective and cost-effective than recruitment through state or private employment services. The employers as a group spent more money on help-wanted advertising in journals than on state and private employment services, recommendations from present staff, and professional meeting recruitment. Employers did spend more money on campus recruitment and help-wanted ads in newspapers than on help-wanted ads in journals. It was found that a help-wanted index for physicists in a disaggregated form could be constructed

  7. Internet map of the Hungarian nuclear field

    International Nuclear Information System (INIS)

    Besenyei, Elisabeth

    2001-01-01

    The increasing role of Internet in the dissemination of information cannot be questioned. The organisations dealing with public information have to face with this challenge. New methods and ways are needed in order to effectively use this opportunity. An effective communication requires certain knowledge on the characteristics of the target group. The present situation on the Internet use in Hungary has been studied by a number of public opinion polls. In Europe Hungary is the eleventh in the row concerning the population percentage of Internet users. At the same time it is hard to define the exact number as it is continuously increasing. From the public opinion polls it can be seen that about 49 % of active Internet users, about 37 percent seek for information on the Internet. The organisations playing role in nuclear field includes nuclear facilities, research institutes, regulatory bodies as well as civil associations. Almost all of them realised the importance of the appearance on the Internet and have their web site. Among the web-sites of the Hungarian nuclear facilities the new home page of the Paks NPP (www.npp.hu) is especially well designed and worth to visit. The Atomic Energy Research Institute operates the 10 MW Budapest Research Reactor. The main features of the reactor can be found on the web site of the institute (www.kfki.hu/~aekihp/). Information about the research possibilities of the training reactor of the Institute of Nuclear Techniques of the Technical University of Budapest is provided on the web site (www.reak.bme.hu). The web site of the Hungarian Atomic Energy Authority (www.haea.gov.hu) has been renewed recently. Certainly, the list of the web sites of the Hungarian organisations active in nuclear field cannot be complete as it is a continuously evolving area. Nevertheless one can see that the players realised the importance of the challenge given by the Internet. While considerable effort is needed to maintain and refresh the web site

  8. Application of effective field theory on nuclear matter and neutron matter; Anwendung effektiver Feldtheorie auf Kernmaterie und Neutronenmaterie

    Energy Technology Data Exchange (ETDEWEB)

    Saviankou, Pavel

    2009-05-15

    In the thesis the effective field theory in NLO and NNLO order is applied. The order NLO still knows no three-particle forces. The theory yields however already in this order the saturation behaviour of nuclear matter. This is due to the fact that in the NLO order the scattering phases are qualitatively correctly reproduced, especially the scattering phases {sup 1}S{sub 0} and {sup 3}S{sub 1} are for energies above 200 MeV negative, which is in all potentials by a so called hard core represented. In the NNLO orde three-particle forces occur, which lead to a larger improvement of the saturation curve, however the saturation point lies still at too high densities. A correction of the low-energy constants by scarcely three percent of the value in the vacuum generates however a saturation curve, which reproduces the empirical binding energy per particle, the density and the compressibility of nuclear matter. About the equation of state of neutron matter is empirically few known. At small densities of neutron matter (k{sub f}<1 fm{sup -1}) the NLO and NNLO orders scarcely differ, but indeed from the free Fermi gas. For applications in finite nuclei a simplified parametrization of the nucleon-nucleon interactions was developed, which reproduces both the known scattering phases with an NLO-comparable accuracy and the empirical saturation behaviour. [German] In der Arbeit wird die Effektive Feldtheorie in der Ordnung NLO und NNLO angewandt. Die Ordnung NLO kennt noch keine Dreiteilchenkraefte. Die Theorie liefert jedoch bereits in dieser Ordnung das Saettigungsverhalten von Kernmaterie. Dies liegt daran, dass bereits in der Ordnung NLO die Streuphasen qualitativ korrekt reproduziert werden, insbesondere sind die Streuphasen {sup 1}S{sub 0} und {sup 3}S{sub 1} fuer Energien oberhalb 200 MeV negativ, was in allen Potentialen durch einen sogenannten ''hard core'' dargestellt wird. In der Ordnung NNLO treten Dreiteilchenkraefte auf, die zu einer grossen

  9. Single-particle potential of the Λ hyperon in nuclear matter with chiral effective field theory NLO interactions including effects of Y N N three-baryon interactions

    Science.gov (United States)

    Kohno, M.

    2018-03-01

    Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ N -Σ N coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ N -Σ N correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N N -Λ N N and Λ N N -Σ N N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N N -Λ N N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N N -Σ N N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.

  10. Managing human resources in the field of nuclear energy

    International Nuclear Information System (INIS)

    2009-01-01

    . This is expected to continue to be the case in the future. However, there is also expected to be greater worldwide mobility of nuclear personnel in the future, making human resources management more demanding, particularly in continuing to ensure that organizations in the nuclear field are attractive employers compared with other related choices. The guidance provided in this publication is intended to comprehensively address aspects of managing human resources in the nuclear field; these include ensuring that individuals have the competence needed to perform their assigned tasks, organizing work effectively, anticipating human resources needs, and monitoring and continually improving performance. This publication is applicable to the entire life cycle of nuclear facilities. This guide is intended for use by decision makers and senior managers responsible for the reliable supply of a competent workforce for the nuclear field, and also by line managers of nuclear facilities, who are responsible for the training, qualification and performance of their personnel, as well as for HR specialists in the nuclear field

  11. Human resources development in nuclear field in Japan

    International Nuclear Information System (INIS)

    Seki, Y.

    2007-01-01

    to nuclear field. There is a strong concern in the future supply of capable human resources in the nuclear field. It is feared that the knowledge and expertise necessary for securing safety of nuclear power plants and radiation application could not be sufficiently preserved and transferred to the next generation. In order to cope with the above situation, several proposals are being considered and some new systems are already being worked out. The joint establishment of a graduate school to educate the core members of nuclear engineers and regulatory officers are being considered with close cooperation between some universities and the new unified corporation to be formed by JAERI and JNC in FY2005. There are several similar plans to jointly establish graduate schools for the nuclear technology and sciences in the areas having various nuclear installations and universities. One of such plans is to establish a graduate school aiming to utilize strong neutron beam generated by the intense proton accelerator, J-PARC which is being constructed in Tokai-mura jointly with JAERI and KEK. Furthermore, there is also a plan to establish a Nuclear Education System Network (NesNET) to serve as the focal organization to enhance better cooperation and coordination of maintenance teams for NPPs, nuclear education and training centers and infrastructures in the industries, universities and national research institutions. In addition, a new qualification system for Professional Engineers in the Nuclear and Radiation Field has been established. This will become effective in 2004 as a national qualification to certify the professional level of nuclear and radiation engineers

  12. Nuclear beta decay induced by intense electromagnetic fields: Basic theory

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1983-01-01

    A basic formalism is developed for the theory of the effect on nuclear beta decay of an intense, plane-wave electromagnetic field. Interactions of the field with both the nuclear particles and the decay electron are included. The formalism is developed from first principles, including a derivation of transition probabilities between explicitly time-dependent asymptotic states. Interaction of the field with the nucleus is analyzed in terms of separation of the nucleus into an inert core and a fragment. The field interacts with the fragment, consisting of the nucleons which are candidates for beta decay, plus any other nucleons angular-momentum coupled to them in initial or final states. A separation of variables in the dynamical equations for the nucleus into center-of-mass and relative coordinates for the core and fragment shows direct charge coupling even for a fragment consisting entirely of neutrons. The transition formalism involves specific intense-field wave functions both for the nucleus and for the beta particle. Complete results are presented for total transition probability per unit time for intense-field-coupled nuclear beta decay. A much simplified formalism is given for the special case of very high field intensity at very low frequency. The results then bear a formal resemblance to ordinary beta decay theory, but they contain specific field effects in the beta particle spectral function, and in the nuclear interaction matrix elements. This is the first of a series of papers on this subject

  13. Nuclear magnetic resonance in high magnetic fields: Study of singlet-ground-state due to 1-D quantum spin effect

    Science.gov (United States)

    Chiba, Meiro; Ajiro, Yoshitami; Satoh, Eiji; Kubo, Takeji

    1996-02-01

    In one-dimensional (1-D) magnets the singlet-ground-state (SGS) due to the quantum spin effect is one of the most interesting phenomena. The temperature and the field dependences of the proton spin-lattice relaxation under magnetic fields up to 15 T have been observed for SGS materials, namely, NENP (Haldane system) and CuCI 2(γ-picoline) 2 (alternating antiferromagnetic chain). The results clearly show the excitation of SGS with a characteristic energy gap in the magnetic excited state. The observed relaxation rate is discussed in terms of the number of magnetic excitons in focussing on the dissimilarity between two systems.

  14. Effects of nuclear electromagnetic pulse (EMP) on nuclear power plants

    International Nuclear Information System (INIS)

    Barnes, P.R.; Manweiler, R.W.; Davis, R.R.

    1977-09-01

    The electromagnetic pulse (EMP) from a high-altitude nuclear detonation consists of a transient pulse of high intensity electromagnetic fields. These intense fields induce current and voltage transients in electrical conductors. Although most nuclear power plant cables are not directly exposed to these fields, the attenuated EMP fields that propagate into the plant will couple some EMP energy to these cables. The report predicts the probable effects of the EMP transients that could be induced in critical circuits of safety-related systems. It was found that the most likely consequence of EMP for nuclear plants is an unscheduled shutdown. EMP could prolong the shutdown period by the unnecessary actuation of certain safety systems. In general, EMP could be a nuisance to nuclear power plants, but it is not considered a serious threat to plant safety

  15. Superalloy applications in the nuclear field

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Padilha, A.F.

    1984-01-01

    The process conditions in the areas of nuclear fuel processing, fabrication, utilization, reprocessing and disposal are severe, demanding therefore the use of materials with high temperature mechanical strength and corrosion resistance. A number of refractory metal containing superalloys have found application in the diferrent areas of the nuclear field. The main aspects of the microstructure, strengthening mechanisms and corrosion resistance of 3 superalloys, namely Incoloy 825, Inconel 718 and Hastelloy C have been discussed. The role of the refractory metal elements in influencing the mechanical strength and corrosion resistance of superalloys has been emphasised. (Author) [pt

  16. Using nitrogen-14 nuclear quadrupole resonance and electric field gradient information for the study of radiation effects

    International Nuclear Information System (INIS)

    Iselin, L.H.

    1995-12-01

    Nitrogen-14 nuclear quadrupole resonance (NQR) was used in an attempt to detect the effects of ionizing radiation on organic material. Previously reported resonances for urea were detected at 2,913.32 ± 0.01 kHz and 2,347.88 ± 0.08 kHz with associated T 2 * values 780 ± 20 micros and 523 ± 24 micros, respectively. The previously unreported ν - line for urea-d 4 was detected at 2,381 ± 0.04 Khz and used to determine accurately for the first time the values for the nuclear quadrupole coupling constant χ (3,548.74 ± 0.03 kHz) and the asymmetry parameter η (0.31571 ± 0.00007) for urea-d 4 . The inverse linewidth parameter T 2 * for ν + was measured at 928 ± 23 micros and for ν - at 721 ± 12 micros. Townes and Dailey analysis was performed and urea-d 4 exhibits a 0.004 increase in lone pair electronic density and a slight decrease in N-H bond electronic density, as compared to urea, probably due to the mass difference. A relationship is proposed, referred to as NQR linewidth analysis, between the dynamic spin relaxation times T 2 and T 2 * and the widths of the distributions of the NQR parameters. Linewidth analysis is presented as a tool for possible use in future NQR work in all area, not just radiation effects. This relationship is tested using sodium nitrite T 2 and T 2 * values for ν - and ν - as a function of temperature

  17. Using nitrogen-14 nuclear quadrupole resonance and electric field gradient information for the study of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Iselin, L.H.

    1995-12-01

    Nitrogen-14 nuclear quadrupole resonance (NQR) was used in an attempt to detect the effects of ionizing radiation on organic material. Previously reported resonances for urea were detected at 2,913.32 {+-} 0.01 kHz and 2,347.88 {+-} 0.08 kHz with associated T{sub 2}* values 780 {+-} 20 {micro}s and 523 {+-} 24 {micro}s, respectively. The previously unreported {nu}{sub {minus}} line for urea-d{sup 4} was detected at 2,381 {+-} 0.04 Khz and used to determine accurately for the first time the values for the nuclear quadrupole coupling constant {chi} (3,548.74 {+-} 0.03 kHz) and the asymmetry parameter {eta} (0.31571 {+-} 0.00007) for urea-d{sup 4}. The inverse linewidth parameter T{sub 2}* for {nu}{sub +} was measured at 928 {+-} 23 {micro}s and for {nu}{sub {minus}} at 721 {+-} 12 {micro}s. Townes and Dailey analysis was performed and urea-d{sup 4} exhibits a 0.004 increase in lone pair electronic density and a slight decrease in N-H bond electronic density, as compared to urea, probably due to the mass difference. A relationship is proposed, referred to as NQR linewidth analysis, between the dynamic spin relaxation times T{sub 2} and T{sub 2}* and the widths of the distributions of the NQR parameters. Linewidth analysis is presented as a tool for possible use in future NQR work in all area, not just radiation effects. This relationship is tested using sodium nitrite T{sub 2} and T{sub 2}* values for {nu}{sub {minus}} and {nu}{sub {minus}} as a function of temperature.

  18. Understanding radiation effects in SRAM-based field programmable gate arrays for implementing instrumentation and control systems of nuclear power plants

    Directory of Open Access Journals (Sweden)

    T.S. Nidhin

    2017-12-01

    Full Text Available Field programmable gate arrays (FPGAs are getting more attention in safety-related and safety-critical application development of nuclear power plant instrumentation and control systems. The high logic density and advancements in architectural features make static random access memory (SRAM-based FPGAs suitable for complex design implementations. Devices deployed in the nuclear environment face radiation particle strike that causes transient and permanent failures. The major reasons for failures are total ionization dose effects, displacement damage dose effects, and single event effects. Different from the case of space applications, soft errors are the major concern in terrestrial applications. In this article, a review of radiation effects on FPGAs is presented, especially soft errors in SRAM-based FPGAs. Single event upset (SEU shows a high probability of error in the dependable application development in FPGAs. This survey covers the main sources of radiation and its effects on FPGAs, with emphasis on SEUs as well as on the measurement of radiation upset sensitivity and irradiation experimental results at various facilities. This article also presents a comparison between the major SEU mitigation techniques in the configuration memory and user logics of SRAM-based FPGAs.

  19. Quantum field theory and nuclear structure

    International Nuclear Information System (INIS)

    Celenza, L.S.; Goulard, B.; Shakin, C.M.

    1981-01-01

    We discuss recent successful calculations of the properties of nuclear matter within the context of theories exhibiting mass generation through spontaneous symmetry breaking. We start with the sigma model of Gell-Mann and Levy and introduce the nucleon mass (in a vacuum) in the usual manner. We relate the expectation value of the sigma field in a vacuum to a finite value of the scalar density. If the vacuum is now filled with nucleons (nuclear matter) the scalar density is increased and the new value for the nucleon mass must be determined. We exhibit the equation whose solution determines the new mass, and we also define a perturbative scheme for the determination of this mass. This scheme involves an expansion of the various quantities of the theory in terms of matrix elements calculated with positive- and negative-energy spinors parametrized with the vacuum mass. Although the decrease in the mass upon going from vacuum to nuclear matter at the equilibrium density is quite large (approx.400 MeV), we are still able to exhibit a small parameter which allows for a perturbative expansion of the binding energy and other observables. The leading term in such an expansion reproduces the approximation widely used in other calculations of the properties of nuclear matter. The truncation of the expansion at the leading term is inadequate and this fact accounts for the lack of success in previous calculations using the standard formalism. We proceed to make a transformation to the Weinberg Lagrangian retaining the fluctuating parts of the sigma field. We further make a small-oscillation approximation, dropping the nonlinear terms in this Lagrangian

  20. Japanese status-quo and our activities in the field of nuclear fuel recycle

    International Nuclear Information System (INIS)

    Sada, Masao; Imai, Osamu

    1983-01-01

    Nuclear energy is expected to take the place of current petroleum-base-energy in the near future. In order to effectively utilize the nuclear energy, nuclear fuel recycle system has to be established. The technology for reprocessing the spent fuel, which is a part of this recycle system, is very similar to the ones in chemical industry. Our company has been keeping its eyes on the field of such nuclear energy as one of the future promising businesses and recentrly established Nuclear Energy Department as a center for further expanding the business opportunity in the field of such spent fuel reprocessing as well as other fields of nuclear fuel recycle system. (author)

  1. Nuclear spin Hall and Klein tunneling effects during oxidation with electric and magnetic field inductions in graphene.

    Science.gov (United States)

    Little, Reginald B; McClary, Felicia; Rice, Bria; Jackman, Corine; Mitchell, James W

    2012-12-14

    The recent observation of the explosive oxidation of graphene with enhancement for decreasing temperature and the requirements for synchronizing oxidants for collective oxidation-reduction (redox) reactions presented a chemical scenario for the thermal harvesting by the magnetic spin Hall Effect. More experimental data are presented to demonstrate such spin Hall Effect by determining the influence of spins of so-called spectator fermionic cations. Furthermore, the so-called spectator bosonic cations are discovered to cause a Klein tunneling effect during the redox reaction of graphene. The Na(+) and K(+), fermionic cations and the Mg(2+) and Ca(2+), bosonic cations were observed and compared under a variety of experimental conditions: adiabatic reactions with initial temperatures (18-22 °C); reactions toward infinite dilution; isothermal reactions under nonadiabatic conditions at low temperature of 18 °C; reactions under paramagnetic O(2) or diamagnetic N(2) atmospheres of different permeabilities; reactions in applied and no applied external magnetic field; and reactions toward excess concentrations of common and uncommon Na(+) and Mg(2+) cations. The observed reaction kinetics and dynamics under these various, diverse conditions are consistent with the spin Hall mechanism, energy harvesting and short time violation of Second Law of Thermodynamics for redox reactions of graphene by the Na(+)K(+) mixture and are consistent with the Klein tunnel mechanism for the redox reactions of graphene by the Mg(2+)Ca(2+) mixture. Mixed spin Hall and Klein tunnel mechanisms are discovered to slow and modulate explosive redox reactions. Such spin Hall Effect also gives explanation of recent tunneling of electrons through boron nitride.

  2. Psychological effects of nuclear warfare

    International Nuclear Information System (INIS)

    Mickley, G.A.

    1987-01-01

    This report is divided into five parts. (1) Discussion of the psychological milieu before a nuclear confrontation. (2) Acute psychological reactions to nuclear warfare (some of which may reflect, in part, direct radiogenic alteration of nervous system functions). (3) Chronic psychological effects of a nuclear confrontation. (4) Issues concerning treatment of these psychological changes. (5) Prevention of adverse psychological reactions to nuclear warfare

  3. Nuclear geophysics for studying oil fields

    International Nuclear Information System (INIS)

    Alekseev, F.A.; Golovatskaya, I.V.; Gulin, Yu.A.; Dvorkin, I.L.; Dyad'kin, I.G.; Srebrodol'skij, D.M.

    1978-01-01

    Considered are the theory of nuclear geophysics and analytical methods to be used in the study of neutron and gamma-quantum fields. The following questions of nuclear geology are discussed: the regularities of radioactive element distributions in oil/gas bearing sedimentary deposits of oils and underground waters; applications of natural gamma-radiation spectrometry in the study of sedimentary processes and etc. Also described are the nuclear geophysics stationary methods (gamma-logging, gamma-gamma-logging, neutron logging) to be followed when developing geological documentation for borehole profiles; the use and efficiency of stationary and impulse techniques in monitoring an oil minig in different geological/technical conditions; the technique to be used for an additional prospecting of layers (carbonate, primarily) in old cased-off holes; the methods to be used in performing a quality inspection of pipe casing cementation and making measurements of their inner diameter and wall thickness. The investigation technique data are provided to examine boreholes with the aid of radioactive isotopes

  4. Nonlinear mean field theory for nuclear matter and surface properties

    International Nuclear Information System (INIS)

    Boguta, J.; Moszkowski, S.A.

    1983-01-01

    Nuclear matter properties are studied in a nonlinear relativistic mean field theory. We determine the parameters of the model from bulk properties of symmetric nuclear matter and a reasonable value of the effective mass. In this work, we stress the nonrelativistic limit of the theory which is essentially equivalent to a Skyrme hamiltonian, and we show that most of the results can be obtained, to a good approximation, analytically. The strength of the required parameters is determined from the binding energy and density of nuclear matter and the effective nucleon mass. For realistic values of the parameters, the nonrelativistic approximation turns out to be quite satisfactory. Using reasonable values of the parameters, we can account for other key properties of nuclei, such as the spin-orbit coupling, surface energy, and diffuseness of the nuclear surface. Also the energy dependence of the nucleon-nucleus optical model is accounted for reasonably well except near the Fermi surface. It is found, in agreement with empirical results, that the Landau parameter F 0 is quite small in normal nuclear matter. Both density dependence and momentum dependence of the NN interaction, but especially the former, are important for nuclear saturation. The required scalar and vector coupling constants agree fairly well with those obtained from analyses of NN scattering phase shifts with one-boson-exchange models. The mean field theory provides a semiquantitative justification for the weak Skyrme interaction in odd states. The strength of the required nonlinear term is roughly consistent with that derived using a new version of the chiral mean field theory in which the vector mass as well as the nucleon mass is generated by the sigma-field. (orig.)

  5. Assessment of field training for nuclear operations personnel

    International Nuclear Information System (INIS)

    White, M.

    1995-08-01

    Training of station personnel is an important component of the safe operation of the nuclear generating station. On-the-job training (OJT) is an important component of training. The AECB initiated this project to develop a process to assess the effectiveness of OJT for field operators, and perform an initial trial of the developed process. This report describes the recommended process to assess the effectiveness of OJT for field operators, as well as the results of the initial assessment at Pickering Nuclear Generating Station. The assessment's conclusions included: (1) Ontario Hydro policies and procedures are generally consistent with industry guidelines requiring a systematic approach to training; (2) Pickering NGS field operator performance is not always consistent with documented station requirements and standards, nor industry guidelines and practices; and (3) The Pickering NGS field operator on-the-job training is not consistent with a systematic approach to training, a requirement recognized in Ontario Hydro's Policy NGD 113, and does not contribute to a high level of performance in field operator tasks. Recommendations are made regarding the use of the developed process for future assessments of on-the-job training at nuclear power plants. (author). 36 refs., 4 tabs., 3 figs

  6. Regional cooperation based on multilateral international agreements in nuclear field

    International Nuclear Information System (INIS)

    Valcic, I.

    1996-01-01

    Multilateral international agreements have defined the framework of behavior and cooperation in various fields and aspects of peaceful use of nuclear energy. Thus, obligations have been defined in the following areas: nonproliferation of nuclear weapons, physical protection of nuclear material, liability for nuclear damage, nuclear safety, early notification about a nuclear accident and assistance in case of nuclear accident. Obligations regarding radioactive waste management should be defined soon. This paper gives a review of obligations from particular agreements with a special emphasis on those which are being realized through mutual cooperation of concerned countries and are important for safe use of nuclear energy. (author)

  7. Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field.

    Science.gov (United States)

    Sallen, G; Kunz, S; Amand, T; Bouet, L; Kuroda, T; Mano, T; Paget, D; Krebs, O; Marie, X; Sakoda, K; Urbaszek, B

    2014-01-01

    Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain--that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations.

  8. In-field analysis and assessment of nuclear material

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, R.E.; Myers, W.S.; Olivares, J.A.; Phillips, J.R.; York, R.L.

    1996-05-01

    Los Alamos National Laboratory has actively developed and implemented a number of instruments to monitor, detect, and analyze nuclear materials in the field. Many of these technologies, developed under existing US Department of Energy programs, can also be used to effectively interdict nuclear materials smuggled across or within national borders. In particular, two instruments are suitable for immediate implementation: the NAVI-2, a hand-held gamma-ray and neutron system for the detection and rapid identification of radioactive materials, and the portable mass spectrometer for the rapid analysis of minute quantities of radioactive materials. Both instruments provide not only critical information about the characteristics of the nuclear material for law-enforcement agencies and national authorities but also supply health and safety information for personnel handling the suspect materials.

  9. In-field analysis and assessment of nuclear material

    International Nuclear Information System (INIS)

    Morgado, R.E.; Myers, W.S.; Olivares, J.A.; Phillips, J.R.; York, R.L.

    1996-01-01

    Los Alamos National Laboratory has actively developed and implemented a number of instruments to monitor, detect, and analyze nuclear materials in the field. Many of these technologies, developed under existing US Department of Energy programs, can also be used to effectively interdict nuclear materials smuggled across or within national borders. In particular, two instruments are suitable for immediate implementation: the NAVI-2, a hand-held gamma-ray and neutron system for the detection and rapid identification of radioactive materials, and the portable mass spectrometer for the rapid analysis of minute quantities of radioactive materials. Both instruments provide not only critical information about the characteristics of the nuclear material for law-enforcement agencies and national authorities but also supply health and safety information for personnel handling the suspect materials

  10. Application of plasma technology to nuclear engineering fields

    International Nuclear Information System (INIS)

    Suzuki, Masaaki; Akatsuka, Hiroshi

    1996-01-01

    In order to discuss about the application of the plasma technology to nuclear engineering fields, we mention two subjects, the oxygenation of metal chloride waste by oxygen plasma and the characterization of fine particles generated in the plasma process. Through the experimental results of two subjects, both of the advantage and the disadvantage of the plasma technology and their characteristics are shown and discussed. The following conclusions are obtained. The reactive plasma is effective to oxygenate the chloride wastes. The particle generation which is one of the disadvantages must not be specialized and its characteristics can be estimated. Consequently, the plasma technology should be applicable to nuclear engineering fields adopting its advantage and overcoming its disadvantage. (author)

  11. Modeling nuclear field shift isotope fractionation in crystals

    Science.gov (United States)

    Schauble, E. A.

    2013-12-01

    In this study nuclear field shift fractionations in solids (and chemically similar liquids) are estimated using calibrated density functional theory calculations. The nuclear field shift effect is a potential driver of mass independent isotope fractionation(1,2), especially for elements with high atomic number such as Hg, Tl and U. This effect is caused by the different shapes and volumes of isotopic nuclei, and their interactions with electronic structures and energies. Nuclear field shift isotope fractionations can be estimated with first principles methods, but the calculations are computationally difficult, limiting most theoretical studies so far to small gas-phase molecules and molecular clusters. Many natural materials of interest are more complex, and it is important to develop ways to estimate field shift effects that can be applied to minerals, solutions, in biomolecules, and at mineral-solution interfaces. Plane-wave density functional theory, in combination with the projector augmented wave method (DFT-PAW), is much more readily adapted to complex materials than the relativistic all-electron calculations that have been the focus of most previous studies. DFT-PAW is a particularly effective tool for studying crystals with periodic boundary conditions, and may also be incorporated into molecular dynamics simulations of solutions and other disordered phases. Initial calibrations of DFT-PAW calculations against high-level all-electron models of field shift fractionation suggest that there may be broad applicability of this method to a variety of elements and types of materials. In addition, the close relationship between the isomer shift of Mössbauer spectroscopy and the nuclear field shift isotope effect makes it possible, at least in principle, to estimate the volume component of field shift fractionations in some species that are too complex even for DFT-PAW models, so long as there is a Mössbauer isotope for the element of interest. Initial results

  12. Neutron albedo effects of underground nuclear explosion

    International Nuclear Information System (INIS)

    Yang Bo; Ying Yangjun; Li Jinhong; Bai Yun

    2013-01-01

    The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device.The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device. (authors)

  13. Romanian regulatory requirements on nuclear field specific education needs

    International Nuclear Information System (INIS)

    Biro, L.; Velicu, O.

    2004-01-01

    This work is intended as a general presentation of the educational system and research field, with reference to nuclear sciences, and the legal system, with reference to requirements established by the regulatory body for the professional qualification and periodic training of personnel involved in different activities in the nuclear field. Thus, part 2 and 3 of the work present only public information regarding the education in nuclear sciences and nuclear research in Romania; in part 4 the CNCAN requirements for the personnel training, specific to nuclear activities are slightly detailed; part 5 consists of few words about the public information activities in Romania; and part 6 tries to draw a conclusion. (authors)

  14. Nuclear resonance apparatus including means for rotating a magnetic field

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1983-01-01

    A nuclear magnetic resonance apparatus including magnet apparatus for generating a homogeneous static magnetic field between its magnetic poles, shims of a magnetic substance mounted on the magnetic poles to apply a first gradient magnetic field intensity distribution in a direction orthogonal as to the direction of line of magnetic force of the static magnetic field, gradient magnetic field generating electromagnetic apparatus for generating a second gradient magnetic field having a gradient magnetic field intensity distribution in superimposition with the static magnetic field and for changing the magnetic field gradient of the first gradient magnetic field, an oscillator for generating an oscillating output having a frequency corresponding to the nuclear magnetic resonance condition of an atomic nucleus to be measured, a coil wound around a body to be examined for applying the output of said oscillator as electromagnetic waves upon the body, a receiver for detecting the nuclear magnetic resonance signals received by the coil, a gradient magnetic field controller making a magnetic field line equivalent to the combined gradient magnetic fields and for rotating the line along the section of the body to be examined by controlling said gradient magnetic field generating electromagnetic apparatus and devices for recording the nuclear magnetic resonance signals, for reconstructing the concentration distribution of the specific atomic nuclei in the section of the body, and a display unit for depicting the result of reconstruction

  15. Effects of nuclear war on health and health services

    International Nuclear Information System (INIS)

    1990-01-01

    This report reviews the findings since 1987 in the field of research related to the possible impact of nuclear war and nuclear explosions on health and health services. An annex contains the finding and conclusions of a 1989 United Nations study on the climatic and other effects of nuclear war. 1 tab

  16. Circuit of automatic modulating field control for nuclear magnetometer

    International Nuclear Information System (INIS)

    Ivashkevich, S.A.

    1996-01-01

    A circuit is suggested for automatic adjustment of the modulation amplitude of the magnetic field to be measured for nuclear magnetometers, and necessary range of this adjustment is determined. Depending on the measured field inhomogeneity, the circuit can smoothly vary the modulating field amplitude approximately by a factor of 30 stabilizing it at an optimal level. 5 refs., 1 fig

  17. Educational Approach to Maintain a Suitable Knowledge and Expertise in Nuclear Field: Case of Morocco

    International Nuclear Information System (INIS)

    Choukri, A.; Hakam, O.K.

    2016-01-01

    Full text: Nuclear knowledge management has become an increasingly important element of the nuclear sector in recent years, resulting from a number of challenges and trends. The development of any national nuclear energy programme is dependent on the successful development of the workforce, through a sustainable nuclear educational and training programme supported by government and industry. Morocco has continuously provided educational programmes in nuclear field at its universities since 1967. These academic programmes focused on nuclear sciences, nuclear engineering, radiation protection, etc., and were intended to undergraduate and postgraduate students. Nuclear techniques have known also an increased contribution to medicine, agriculture, industry and research in Morocco. Some educational and training programmes have been elaborated to develop human resources needed in different domains. University of Ibn Tofail, has launched, since september 2010, a national master’s programme in the field of nuclear sciences which aims to provide knowledge directly used in the various sectors using nuclear techniques and requiring radiation protection, nuclear safety and security including notions on nuclear knowledge management. For an effective management of nuclear knowledge, the educational didactic has been improved increasingly. Some new techniques, materiel and styles have been employed such as demonstrations, group exercises, e-learning, visio-conferences. (author

  18. Some graphic systems in nuclear field

    International Nuclear Information System (INIS)

    1985-03-01

    In this report outlines of four systems for computer graphics are presented. These are (i)software and hardware system for color graphic movie, (ii)JGSP, a standard software interface library for various types of graphic terminals, (iii)GRASYS, a graphic package for two dimensional display of components of nuclear power plants, and (iv)CATS, a software package for computer aided tracing of graphs, mathematical formulae, English and Japanese sentences. The first system has been developed at Power Reactor and Nuclear Fuel Development Corporation and others are developed at Japan Atomic Energy Research Institute. Although some of the systems are still in development phases, it will be helpful for researchers and engineers who have concerns in design and use of similar systems to report the design concepts and techniques adopted in these systems. (author)

  19. French effort in field NDT nuclear plant

    International Nuclear Information System (INIS)

    Saglio, R.

    1983-12-01

    For the in-service inspection of nuclear generating stations, the French Atomic Commission has built up a program first to increase the defect detection probability, secondly to increase the reliability and recently to improve the characterization of defects. Focused Ultrasound and multiple frequency eddy current techniques, developped by French Atomic Energy Commission are well known. In this paper we will present the latest developments made in relation with defect characterization

  20. Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models

    Science.gov (United States)

    Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An

    2007-11-01

    Using various relativistic mean-field models, including nonlinear ones with meson field self-interactions, models with density-dependent meson-nucleon couplings, and point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compared the results with the constraints recently extracted from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions as well as from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes. Among the 23 parameter sets in the relativistic mean-field model that are commonly used for nuclear structure studies, only a few are found to give symmetry energies that are consistent with the empirical constraints. We have also studied the nuclear symmetry potential and the isospin splitting of the nucleon effective mass in isospin asymmetric nuclear matter. We find that both the momentum dependence of the nuclear symmetry potential at fixed baryon density and the isospin splitting of the nucleon effective mass in neutron-rich nuclear matter depend not only on the nuclear interactions but also on the definition of the nucleon optical potential.

  1. Predominance and Role of Myanmar Women in Nuclear Related Fields

    International Nuclear Information System (INIS)

    Nyein, T.N.; Tharn Diang, A.

    2015-01-01

    This poster reflects the current and future endeavor of Myanmar women in nuclear science and technology related fields. Though Myanmar has not yet planned for nuclear power program, but strongly interested in nuclear energy due to rising awareness of future energy demand. The DAE is central in conducting career development, (E&T) as well as (R&D) in nuclear application fields, cooperating with the international societies and local institutions. According to survey, the status of women power in administration, rule and regulation sector is 62%, that in research, 34%, that in radiation application and protection, 57% and that in education and training, 46%. The current trend indicates that female are perceptibly wider participants in DAE. Qualified personnel and sufficient human resource are of essence in nuclear engineering and science. Thus, so as not to face the shortage of personnel, we aim to promote the interest of young generation ,to make competent and efficient manpower based on current and future national nuclear programmes since the parliament agreed on decision for acceleration of human resource development in nuclear field in order to urge government on June 23, 2014. Moreover, activities should be undertaken by the government and associated departments to persuade the interest of secondary and high school level student, to enhance academic programme for nuclear engineering and other sciences in private and government technical schools and training centre, to develop infrastructure according to near future nuclear programs, to enlighten people the benefits of nuclear science and technology and applications, and to raise public awareness of zero carbon emitting energy resource. These potential efforts should be extended, upgraded and encouraged not only by government, stakeholders and also by the help of nuclear network of other international organizations, since larger numbers of WiN Myanmar are required to access practically and globally integrated

  2. Nuclear Weapons Effects Seminar

    Science.gov (United States)

    1987-04-10

    products. It will also blister paint and char wood.) 20 E a 2 ’a a a 𔃺 2 S 0 IZ SI IC GRAPH 3-2. Radiant exposures for law air bursts on a clear day as...SOLUTIONS 1. Determine the approximate number of fissions occurring in a 12KT fission explosion, using U2 3 8 . Using Avogadro ’ s number, the...FSCM NO. 82918 THIS DOCUMENT IS: CONTROLLED BY S /V Nuclear Hardentnq - - ALL REVISIONS TO- THIS DOCUMENT SHALL BE APPROVEO BY THE ABOVE ORGANIZATION

  3. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution.

    Science.gov (United States)

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E; Brunner, David O; Schmid, Thomas; Pruessmann, Klaas P

    2016-12-02

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10 -12 ). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets.

  4. Mean field approach to nuclear structure

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Tennessee Univ., Knoxville, TN

    1993-01-01

    Several examples of mean-field calculations, relevant to the recent and planned low-spin experimental works, are presented. The perspectives for future studies (mainly related to spectroscopy of exotic nuclei) are reviewd

  5. Effective field theories

    CERN Document Server

    Petrov, Alexey A

    2016-01-01

    This book is a broad-based text intended to help the growing student body interested in topics such as gravitational effective theories, supersymmetric effective theories, applications of effective theory techniques to problems in condensed matter physics (superconductivity) and quantum chromodynamics (such as soft-collinear effective theory). It begins with a review of the use of symmetries to identify the relevant degrees of freedom in a problem, and then presents a variety of methods that can be used to solve physical problems. A detailed discussion of canonical examples of effective field theories with increasing complexity is then conducted. Special cases such as supersymmetry and lattice EFT are discussed, as well as recently-found applications to problems in gravitation and cosmology. An appendix includes various factoids from group theory and other topics that are used throughout the text, in an attempt to make the book self-contained.

  6. Safety culture in the nuclear field

    International Nuclear Information System (INIS)

    2005-09-01

    The council of IAEA governors ratified twelve elemental principles of physical protection of nuclear matters and installations. These principles will be included in the future updating of the international convention on the physical protection. The F basic principle proposes a definition of the safety culture and recommends that its implementation and its perenniality to be a reality in the concerned organisms.It appears as necessary to precise the concept of safety culture. The twelve principles are as follow: A State liability, B liability during international transports, C legislative and regulatory framework, D competent authority, E operators liability, F safety culture, G threats, H graduated approach, I deep defence, J assurance of the quality, K emergency plan, L confidentiality. The present document is complementary of INSAG-4, 1991 (safety series number 75, INSAG-4 safety culture, a report by the international nuclear safety advisory group, IAEA, 1991) that presents a concept of safety culture. It proposes also, in a particular chapter, the comparisons( common points and specificities) between safety culture and security culture. (N.C.)

  7. Nuclear reorientation in static and radio-frequency electro-magnetic fields

    International Nuclear Information System (INIS)

    Dubbers, D.

    1976-01-01

    Nuclear reorientation by external electromagnetic fields is treated using Fano's irreducible tensor formulation of the problem. Although the main purpose of this paper is the description of the effects of nuclear magnetic resonance (NMR) on an ensemble of oriented nuclei in the presence of a crystal electric field gradient (efg), the results are applicable to all types of nuclear or atomic orientation or angular correlation work. The theory is applied to a number of exemplary cases: magnetic field dependence of nuclear orientation in the presence of quadrupole interactions; sign determination in electric quadrupole coupling; line shapes of nuclear acoustic resonance (NAR) signals; quadrupole splitting and multiquantum transitions in NMR with oriented nuclei. (orig./WBU) [de

  8. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 9

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-03-01

    140 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  9. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 8

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-03-01

    141 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  10. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 3

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-03-01

    137 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  11. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 2

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-02-01

    132 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  12. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 7

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-03-01

    139 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  13. The supervisions in the field develop nuclear professionals; Las supervisiones en campo desarrollan profesionales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez de la Casa, M.; Buedo, J. L.; Gonzalez, F.

    2015-07-01

    In 2011 Cofrentes Nuclear Power Plants began a training program for improving the supervision of managers in the field: the effort done not only has improved the quality of supervisions but also has defined a way to reinforce behavior expectations of Cofrentes Nuclear Power Plant. (Author)

  14. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 5

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-03-01

    133 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  15. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 6

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-03-01

    135 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  16. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 10

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-07-01

    142 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  17. Semiclassical description of the relativistic nuclear mean field theory

    International Nuclear Information System (INIS)

    Vinas, X.

    1995-01-01

    Semiclassical relativistic particle and energy densities for a set of fermions submitted to a scalar field and to the time-like component of a four-vector field are presented in the Wigner-Kirkwood and extended Thomas-Fermi mean field theories. The semiclassical approach is then applied to the non-linear σ - ω model and the resulting variational equations are solved for finite nuclei and semi-infinite symmetric nuclear matter. (orig.)

  18. The Effects of Nuclear Weapons

    Energy Technology Data Exchange (ETDEWEB)

    Glasstone, Samuel

    1964-02-01

    This book is a revision of "The Effects of Nuclear Weapons" which was issued in 1957. It was prepared by the Defense Atomic Support Agency of the Department of Defense in coordination with other cognizant governmental agencies and was published by the U.S. Atomc Energy Commission. Although the complex nature of nuclear weapons effects does not always allow exact evaluation, the conclusions reached herein represent the combined judgment of a number of the most competent scientists working the problem. There is a need for widespread public understanding of the best information available on the effects of nuclear weapons. The purpose of this book is to present as accurately as possible, within the limits of national security, a comprehensive summary of this information.

  19. Quark effects in nuclear physics

    International Nuclear Information System (INIS)

    Miller, G.A.

    1983-01-01

    A phenomenological approach which enables the size of quark effects in various nuclear processes is discussed. The principle of conservation of probability provides significant constraints on six quark wave functions. Using this approach, it is found that the low-energy proton-proton weak interaction can be explained in terms of W and Z boson exchanges between quarks. That the value of the asymptotic ratio of D to S state wave functions is influenced (at the 5% level) by quark effects, is another result of our approach. We have not discovered a nuclear effect that can be uniquely explained by quark-quark interactions. However it does seem that quark physics is very relevant for nuclear physics. 52 references

  20. Effects of retarded electrical fields on observables sensitive to the high-density behavior of the nuclear symmetry energy in heavy-ion collisions at intermediate energies

    Science.gov (United States)

    Wei, Gao-Feng; Li, Bao-An; Yong, Gao-Chan; Ou, Li; Cao, Xin-Wei; Liu, Xu-Yang

    2018-03-01

    Within the isospin- and momentum-dependent transport model IBUU11, we examine the relativistic retardation effects of electrical fields on the π-/π+ ratio and neutron-proton differential transverse flow in heavy-ion collisions at intermediate energies. Compared to the static Coulomb fields, the retarded electric fields of fast-moving charges are known to be anisotropic and the associated relativistic corrections can be significant. They are found to increase the number of energetic protons in the participant region at the maximum compression by as much as 25% but that of energetic neutrons by less than 10% in 197Au+197Au reactions at a beam energy of 400 MeV/nucleon. Consequently, more π+ and relatively fewer π- mesons are produced, leading to an appreciable reduction of the π-/π+ ratio compared to calculations with the static Coulomb fields. Also, the neutron-proton differential transverse flow, as another sensitive probe of high-density symmetry energy, is also decreased appreciably due to the stronger retarded electrical fields in directions perpendicular to the velocities of fast-moving charges compared to calculations using the isotropic static electrical fields. Moreover, the retardation effects on these observables are found to be approximately independent of the reaction impact parameter.

  1. Development of training courses in the field of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Young; Seo, In Seok; Lee, Eui Jin; Seo, Kyung Won; Won, Jong Yeol; Nam, Jae Yeol

    1996-02-01

    This report describes the final results of D evelopment of training courses in the field of nuclear energy . The scope and contents are as follows : 1. to develop specialized nuclear training programs. 2. to collect and analyze foreign training programs and materials. 3. to develop foreign assisted training courses. 4. to develop interregional training courses for developing country trainees. and 5. to develop text materials for the implementation of training courses. 16 refs. (Author)

  2. Solution of reverse problems in nuclear geophysics (equivalent field method)

    Energy Technology Data Exchange (ETDEWEB)

    Barenbaum, A.A.; Polyachenko, A.L.; Yakubson, K.I.

    1982-06-01

    The approach to the solution of reverse problems in nuclear geophysics based on special integration of two nuclear methods of near similar physical nature is theoretically substantiated. Taking into account the required accuracy of the reverse problem solution such an approach substantially simplifies the interpretation algorithm. The effectiveness of the approach is illustrated by numerical calculations on the example of several complexes of nuclear methods.

  3. Development and applications of NMR [nuclear magnetic resonance] in low fields and zero field

    International Nuclear Information System (INIS)

    Bielecki, A.

    1987-05-01

    This dissertation is about nuclear magnetic resonance (NMR) spectroscopy in the absence of applied magnetic fields. NMR is usually done in large magnetic fields, often as large as can be practically attained. The motivation for going the opposite way, toward zero field, is that for certain types of materials, particularly powdered or polycrystalline solids, the NMR spectra in zero field are easier to interpret than those obtained in high field. 92 refs., 60 figs., 1 tab

  4. Higgs Effective Field Theories

    CERN Document Server

    2016-01-01

    The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.

  5. The effective nuclear potential

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    An empirical analyses is made of the mean effective internucleon potential required in the shell-model description of nuclei, allowing for the presence of many-body effects as suggested by current theory. A consistent description is found in which the effective two-body interaction acts almost entirely in even states, and the many-body effects are simulated by a repulsive three-body contact interaction. The strength of the two-body interaction is consistent with that expressed by the free scattering matrix of the two-nucleon system, and that of the three-body interaction with the 'rearrangement energy' calculated in the many-body theory. (author). 21 refs, 2 figs, 7 tabs

  6. Effectiveness of Existing International Nuclear Liability Regime

    International Nuclear Information System (INIS)

    Al-Doais, Salwa; Kessel, Daivd

    2015-01-01

    The first convention was the Paris Convention on Third Party Liability in the Field of Nuclear Energy (the Paris Convention) had been adopted on 29 July 1960 under the auspices of the OECD, and entered into force on 1 April 1968. In 1963,the Brussels Convention - supplementary to the Paris Convention- was adopted in to provide additional funds to compensate damage as a result of a nuclear incident where Paris Convention funds proved to be insufficient. The IAEA's first convention was the Vienna Convention on Civil Liability for Nuclear Damage (the Vienna Convention) which adopted on 21 May 1963,and entered into force in 1977. Both the Paris Convention and the Vienna Convention laid down very similar nuclear liability rules based on the same general principles. The broad principles in these conventions can be summarized as follows: 1- The no-fault liability principle (strict liability) 2- Liability is channeled exclusively to the operator of the nuclear installation (legal channeling) 3- Only courts of the state in which the nuclear accident occurs would have jurisdiction (exclusive jurisdiction) 4- Limitation of the amount of liability and the time frame for claiming damages (limited liability) 5- The operator is required to have adequate insurance or financial guarantees to the extent of its liability amount (liability must be financially secured). 6- Liability is limited in time. Compensation rights are extinguished after specific time. 7- Non-discrimination of victims on the grounds of nationality, domicile or residence. Nuclear liability conventions objective is to provide adequate compensation payments to victims of a nuclear accident. Procedures for receiving these compensation are controlled by some rules such as exclusive jurisdiction, that rule need a further amendment to ensure the effectiveness of the exiting nuclear liability regime . Membership of the Conventions is a critical issue, because the existence of the conventions without being party to

  7. Isotope effects on nuclear shielding

    International Nuclear Information System (INIS)

    Hansen, P.E.

    1983-01-01

    This review concentrates upon empirical trends and practical uses of mostly secondary isotope effects, both of the intrinsic and equilibrium types. The text and the tables are arranged in the following fashion. The most 'popular' isotope effect is treated first, deuterium isotope effects on 13 C nuclear shielding, followed by deuterium on 1 H nuclear shieldings, etc. Focus is thus on the isotopes producing the effect rather than on the nuclei suffering the effect. After a brief treatment of each type of isotope effect, general trends are dealt with. Basic trends of intrinsic isotope effects such as additivity, solvent effects, temperature effects, steric effects, substituent effects and hyperconjugation are discussed. Uses of isotope effects for assignment purposes, in stereochemical studies, in hydrogen bonding and in isotopic tracer studies are dealt with. Kinetic studies, especially of phosphates, are frequently performed by utilizing isotope effects. In addition, equilibrium isotope effects are treated in great detail as these are felt to be new and very important and may lead to new uses of isotope effects. Techniques used to obtain isotope effects are briefly surveyed at the end of the chapter. (author)

  8. [ECG changes caused by the effect of static magnetic fields of nuclear magnetic resonance tomography using magnets with a field power of 0.5 to 4.0 Telsa].

    Science.gov (United States)

    Weikl, A; Moshage, W; Hentschel, D; Schittenhelm, R; Bachmann, K

    1989-09-01

    ECG-alterations under the influence of static magnetic fields were investigated in phantoms (1.5 Tesla), animals and volunteers (4.0 Tesla), as well as in 12 patients (0.5, 1.0, and 1.5 Tesla). Under the influence of static magnetic fields high- and low-frequency voltages are superimposed on the ECG. Motions of the electrical leads induce high-frequency waves, which can alter the ECG to the extent that only the QRS-complex can be recognized. Electrolytes moved by the blood stream in static magnetic fields also induce voltages (Hall-effect) which, according to the patient's position, result in ST-segment- and partial T-wave-elevations or depressions. All ECG-alterations are reversible after exposition to the static magnetic field. Rhythm disturbances do not occur. The results indicate that static magnetic fields up to 4.0 Tesla do not have permanent adverse effects on the human ECG.

  9. The relativistic mean-field description of nuclei and nuclear dynamics

    International Nuclear Information System (INIS)

    Reinhard, P.G.

    1989-01-01

    The relativistic mean-field model of the nucleus is reviewed. It describes the nucleus as a system of Dirac-Nucleons which interact in a relativistic covariant manner via meson fields. The meson fields are treated as mean fields, i.e. as non quantal c-number fields. The effects of the Dirac sea of the nucleons is neglected. The model is interpreted as a phenomenological ansatz providing a selfconsistent relativistic description of nuclei and nuclear dynamics. It is viewed, so to say, as the relativistic generalisation of the Skyrme-Hartree-Fock ansatz. The capability and the limitations of the model to describe nuclear properties are discussed. Recent applications to spherical and deformed nuclei and to nuclear dynamics are presented. (orig.)

  10. The field treatment of the nuclear spectrum. Historical foundation and two contributions to its ensuing development

    International Nuclear Information System (INIS)

    Bes, Daniel R

    2016-01-01

    The highlights of the model which was developed during the 1950s at the Niels Bohr Institute, Copenhagen, under the leadership of Aage Bohr and Ben Mottelson, are described in this contribution. Subsequently, it is shown that the field concept—the fundamental tool of the unified model—is not only an intelligent guess to describe the difficult many-body nuclear system. By means of a systematic expansion of field-coupling effects, the nuclear field theory (NFT) accounts for the overcompleteness of the initial product basis and the overlooking of the Pauli principle acting between constituents of the basis. Eventually it leads to the exact solution of the nuclear many-body problem. The description in terms of fields involves another problem if the field violates a symmetry inherent to the initial problem. The solution is borrowed from the BRST treatments of gauge systems, in which the lost symmetry is replaced by a more powerful one. (invited comment)

  11. The field treatment of the nuclear spectrum. Historical foundation and two contributions to its ensuing development

    Science.gov (United States)

    Bes, Daniel R.

    2016-06-01

    The highlights of the model which was developed during the 1950s at the Niels Bohr Institute, Copenhagen, under the leadership of Aage Bohr and Ben Mottelson, are described in this contribution. Subsequently, it is shown that the field concept—the fundamental tool of the unified model—is not only an intelligent guess to describe the difficult many-body nuclear system. By means of a systematic expansion of field-coupling effects, the nuclear field theory (NFT) accounts for the overcompleteness of the initial product basis and the overlooking of the Pauli principle acting between constituents of the basis. Eventually it leads to the exact solution of the nuclear many-body problem. The description in terms of fields involves another problem if the field violates a symmetry inherent to the initial problem. The solution is borrowed from the BRST treatments of gauge systems, in which the lost symmetry is replaced by a more powerful one.

  12. Effects of electric field strengths on fusion and in vitro development of domestic cat embryos derived by somatic cell nuclear transfer.

    Science.gov (United States)

    Karja, Ni Wayan Kurniani; Otoi, Takeshige; Wongsrikeao, Pimprapar; Shimizu, Ryohei; Murakami, Masako; Agung, Budiyanto; Fahrudin, Mokhamad; Nagai, Takashi

    2006-09-15

    The present study was conducted to determine the effect of electric field strength on the rate of membrane fusion between the somatic cell and cytoplast and on subsequent in vitro development of reconstructed embryos. Additionally, the in vitro developmental competence of cat oocytes artificially activated after 44 h of maturation culture was examined. An efficient fusion rate (64.2%) was obtained by applying a single pulse of 1.5 kV/cm for 50 micros, and the fusion rate remained almost constant at the higher field intensity (59.8 and 54.9% at 1.7 and 2.0 kV/cm, respectively). Although the cleavage rate of fused embryos increased with an increase of the electric field strength, there were no differences among the groups with respect to the proportion of development to the morula and blastocyst stages. In the additional experiment, oocytes at the metaphase II stage after culture for 44 h were activated by the combination of calcium ionophore (CaI) with cycloheximide (CHX). Some (11.8%) of activated oocytes developed to the blastocyst stage. Results from this study indicated that electric field strength affects the rates of fusion and cleavage but has no significant effects on the development to the blastocyst stage of reconstructed embryos. Prolonged maturation culture of cat oocytes (up to 44 h) decreased their ability to develop to the blastocyst stage.

  13. Relation between Romanian NGOs Acting in Nuclear Field and Other Stakeholders

    International Nuclear Information System (INIS)

    Andrei, V.; Pantazi, D.; Radulescu, G.; Bucur, C.; Stanciu, L.; Apostol Minodora, M.

    2015-01-01

    In Romania, three main NGOs act in promoting peaceful use of nuclear energy. The organization with the longest road is the Romanian Association for Nuclear Energy (AREN), created by individual persons acting in nuclear field in 1990. In 2001, a number of Romanian and foreign legal entities having core competence or unfolding nuclear energy related industrial and research activities created the Romanian Industrial Forum (Romatom). Both AREN and Romatom are active parts of European nuclear world: AREN is European Nuclear Society member and Romatom is Foratom member. The 3rd NGO is Women in Nuclear Romania (WiNRo) which registered in 2011. However, the women acting in nuclear field have become earlier active independent voices particularly in public communication on nuclear field matters. The debut was in 1993 when the women group acting in AREN became members of WiN Global, the organization that they trust would become a real opportunity to share their professional competences and improve their communication knowledge and skills in the light of the mission they decided to embrace, namely, that of clear, transparent and trustful communication with stakeholders, particularly the general public on peaceful use of nuclear energy. Today, WiN Ro is also part of WiN Europe where common European desiderates aim to establish and achieve. Today, Romanian NGOs act to continue the trustful relations they have built with a large portfolio of stakeholders adapting their endeavors for answering to various stakeholders needs for transparency and effective communication on nuclear matters at national level. At international level, the Romanian NGOs aim to register benefic experience for their organizational works and opportunities for promotion of the national good approaches, from relations with stakeholders acting in the international arena of nuclear world. Relevant aspects on how the Romanian NGOs have approached relations with stakeholders will be presented. (author)

  14. Foundation field bus in the Spanish nuclear sector

    International Nuclear Information System (INIS)

    Saez de Montagut Revenga, G.

    2013-01-01

    This paper deals with the modification made in power plants nuclear ASCO 1 and 2 in which scans is the level Control system of Heaters to implementing an Ovation system, as well as the standard Foundation Field bus for field communications. This digitalisation has required a detailed study of the implications on security that could have the centralization of control loops in main feedwater system.

  15. NMR magnetic field controller for pulsed nuclear magnetic resonance experiments

    International Nuclear Information System (INIS)

    Scheler, G.; Anacker, M.

    1975-01-01

    A nuclear magnetic resonance controller for magnetic fields, which can also be used for pulsed NMR investigations, is described. A longtime stability of 10 -7 is achieved. The control signal is generated by a modified time sharing circuit with resonance at the first side band of the 2 H signal. An exact calibration of the magnetic field is achieved by the variation of the H 1 - or of the time-sharing frequency. (author)

  16. Analysis of the Effect of Chronic and Low-Dose Radiation Exposure on Spermatogenic Cells of Male Large Japanese Field Mice ( Apodemus speciosus ) after the Fukushima Daiichi Nuclear Power Plant Accident.

    Science.gov (United States)

    Takino, Sachio; Yamashiro, Hideaki; Sugano, Yukou; Fujishima, Yohei; Nakata, Akifumi; Kasai, Kosuke; Hayashi, Gohei; Urushihara, Yusuke; Suzuki, Masatoshi; Shinoda, Hisashi; Miura, Tomisato; Fukumoto, Manabu

    2017-02-01

    In this study we analyzed the effect of chronic and low-dose-rate (LDR) radiation on spermatogenic cells of large Japanese field mice ( Apodemus speciosus ) after the Fukushima Daiichi Nuclear Power Plant (FNPP) accident. In March 2014, large Japanese field mice were collected from two sites located in, and one site adjacent to, the FNPP ex-evacuation zone: Tanashio, Murohara and Akogi, respectively. Testes from these animals were analyzed histologically. External dose rate from radiocesium (combined 134 Cs and 137 Cs) in these animals at the sampling sites exhibited 21 μGy/day in Tanashio, 304-365 μGy/day in Murohara and 407-447 μGy/day in Akogi. In the Akogi group, the numbers of spermatogenic cells and proliferating cell nuclear antigen (PCNA)-positive cells per seminiferous tubule were significantly higher compared to the Tanashio and Murohara groups, respectively. TUNEL-positive apoptotic cells tended to be detected at a lower level in the Murohara and Akogi groups compared to the Tanashio group. These results suggest that enhanced spermatogenesis occurred in large Japanese field mice living in and around the FNPP ex-evacuation zone. It remains to be elucidated whether this phenomenon, attributed to chronic exposure to LDR radiation, will benefit or adversely affect large Japanese field mice.

  17. Contribution to the Brazilian legislation in nuclear energy field

    International Nuclear Information System (INIS)

    Barbosa, Jose Alberto Maia

    2009-01-01

    Nuclear technology: to keep its domain is actually considered a differential for a country in relation to other ones, being able to represent an international threat to be contained or an aspect on technological and political valorization for those ones with recognized international credibility. Face to a raising use of new technologies in the field and the requirement asking for regulation in accordance with international safety standards, in order to assure its employment, the objective of this study was to demonstrate whether occupational and environmental radioprotection performed in our country is within radiological and nuclear safety international standards, and so it was updated and revised the Brazilian law in nuclear energy area, by comparing it with European Union, contextualized strong and weak points from national law, indicating criticisms and suggestions, in order that modifications will be able to be accomplished, aiming to its adequacy to international standards. The considered hypothesis showed that are required changes in the regulation structure in Brazilian nuclear area, aiming to the creation of a regulator agency of nuclear activities, with the purpose of assuring that the state of art and of technology, in terms of nuclear safety, to be the basis of the exercise related to their normative, control and safety assessment activities, on environment preservation, public and workers health, face to nuclear energy applications. (author)

  18. Country report on human resource development in nuclear field

    International Nuclear Information System (INIS)

    Wanitsuksombut, Warapon; Noochpramool, Kovit

    2000-01-01

    The short-term plan is to promote utilization of the new research reactor in Thailand. The long-term plan is to gain public understanding and acceptance of nuclear technology. Since 1991, the office has conducted training and seminars in nuclear related field. The major training is in radiation protection, and training in nuclear reactor was at noticeably smaller portion. For ten years of training, 3,649 persons passed different radiation protection courses. Education programs in universities are outlined with the curriculums in the paper. It is clear that the manpower produced in nuclear field in Thailand is inadequate. Further more, most of them are working in limited areas in specific institutes, research laboratories, modern hospitals, and academic teaching. They seldom contact with the public. Hence communication to the public is lacking. After the training course for schoolteachers in our research reactor site, many of them appreciate new knowledge of nuclear technology. They became to realize that they had been involved with the nuclear technology before in their everyday well being. The urgent need is to arrange various suitable courses on research reactor utilization. In this effort, the exchange of information, equipment as well as teaching materials form developed institutes are necessary. The urgent need is a system of qualification for Radiation Protection Officer. By exchange of information and seminars, it may help the country to decide whether the harmonization and accreditation of training courses or the accredited examination is adopted. For long-term achievement, a regular seminar for schoolteacher should be formulated, and a program for social and economics curriculum in nuclear field should be initiated. (Tanaka, Y.)

  19. Renormalizability of the nuclear many-body problem with the Skyrme interaction beyond mean field

    Science.gov (United States)

    Yang, C. J.; Grasso, M.; Moghrabi, K.; van Kolck, U.

    2017-05-01

    Phenomenological effective interactions like Skyrme forces are currently used in mean-field calculations in nuclear physics. Mean-field models have strong analogies with the first order of the perturbative many-body problem and the currently used effective interactions are adjusted at the mean-field level. In this work, we analyze the renormalizability of the nuclear many-body problem in the case where the effective Skyrme interaction is employed in its standard form and the perturbative problem is solved up to second order. We focus on symmetric nuclear matter and its equation of state, which can be calculated analytically at this order. It is shown that only by applying specific density dependence and constraints to the interaction parameters can renormalizability be guaranteed in principle. This indicates that the standard Skyrme interaction does not in general lead to a renormalizable theory. To achieve renormalizability, other terms should be added to the interaction and employed perturbatively only at first order.

  20. Numerical simulation of interior flow field of nuclear model pump

    International Nuclear Information System (INIS)

    Wang Chunlin; Peng Na; Kang Can; Zhao Baitong; Zhang Hao

    2009-01-01

    Reynolds time-averaged N-S equations and the standard k-ε turbulent model were adopted, and three-dimensional non-structural of tetrahedral mesh division was used for modeling. Multiple reference frame model of rotating fluid mechanical model was used, under the design condition, the three-dimensional incompressible turbulent flow of nuclear model pump was simulated, and the results preferably post the characteristics of the interior flow field. This paper first analyzes the total pressure and velocity distribution in the flow field, and then describes the interior flow field characteristics of each part such as the impeller, diffuser and spherical shell, and also discusses the reasons that cause these characteristics. The study results can be used to estimate the performance of nuclear model pump, and will provide some useful references for its hydraulic optimized design. (authors)

  1. Application and development of reliability-centered maintenance (RCM) in worldwide nuclear power field

    International Nuclear Information System (INIS)

    Chen Yu; Huang Lijun

    2010-01-01

    Reliability-centered Maintenance (RCM) is widely applied and plays important part in maintenance fields of industrial enterprises, the achievements of which including improving equipment reliability and availability, and reducing the cost of operation and maintenance. Implementation of RCM is well popularized in foreign nuclear power fields, however, the processes of relevant studies and applications in domestic nuclear power fields are still relatively backward. Based on investigation and comparison, this paper presented the introduction of applications of RCM in nuclear power fields all over the world, such as America, France, South Africa, Korea, Spain, Britain and China, and analyzed the innovations and effects resulted from RCM experiences in different countries. The developments and prospects of RCM were discussed and predicted at the last. (authors)

  2. Economic effect of applied nuclear-agricultural science in China

    International Nuclear Information System (INIS)

    Ji Xiaobing; Zhou Zhihong; Zhao Shoufeng

    1998-01-01

    The economic effect of applied nuclear-agricultural science for 40 years in China have been summarized, analyzed and appraised. The economic regularity and features which are followed by research-development-production in the field of applied nuclear agricultural science in China are explored according to the essential characteristics of economics for input-output ratio and the itself-features of nuclear agricultural science. Some propositions for promoting the development and the economic effect of the applied nuclear-agricultural science in China are also given

  3. Modeling nuclear volume isotope effects in crystals

    Science.gov (United States)

    Schauble, Edwin A.

    2013-01-01

    Mass-independent isotope fractionations driven by differences in volumes and shapes of nuclei (the field shift effect) are known in several elements and are likely to be found in more. All-electron relativistic electronic structure calculations can predict this effect but at present are computationally intensive and limited to modeling small gas phase molecules and clusters. Density functional theory, using the projector augmented wave method (DFT-PAW), has advantages in greater speed and compatibility with a three-dimensional periodic boundary condition while preserving information about the effects of chemistry on electron densities within nuclei. These electron density variations determine the volume component of the field shift effect. In this study, DFT-PAW calculations are calibrated against all-electron, relativistic Dirac–Hartree–Fock, and coupled-cluster with single, double (triple) excitation methods for estimating nuclear volume isotope effects. DFT-PAW calculations accurately reproduce changes in electron densities within nuclei in typical molecules, when PAW datasets constructed with finite nuclei are used. Nuclear volume contributions to vapor–crystal isotope fractionation are calculated for elemental cadmium and mercury, showing good agreement with experiments. The nuclear-volume component of mercury and cadmium isotope fractionations between atomic vapor and montroydite (HgO), cinnabar (HgS), calomel (Hg2Cl2), monteponite (CdO), and the CdS polymorphs hawleyite and greenockite are calculated, indicating preferential incorporation of neutron-rich isotopes in more oxidized, ionically bonded phases. Finally, field shift energies are related to Mössbauer isomer shifts, and equilibrium mass-independent fractionations for several tin-bearing crystals are calculated from 119Sn spectra. Isomer shift data should simplify calculations of mass-independent isotope fractionations in other elements with Mössbauer isotopes, such as platinum and uranium

  4. The Effects of Nuclear Weapons

    Science.gov (United States)

    1977-01-01

    34Nuclear Explosion Effects Practice No. 42, 1961. on Structui’es and Protective Construction-A * ARMOUR RESEARCH FOUNDATION, "A Sim- Selected Bibliography...34 U.S. Atomic Energy p1e Method of Evaluating Blast Effects on Commission, April 1961, TID-3092. Buildihigs," Armour Research Foundation, PI(KERINU, E...object or those that burn is a reversible injdry; that is to say, would ac~ ompany (or 6e caused by) any healing is complete with no scar forma

  5. The Effects of Nuclear Weapons

    Energy Technology Data Exchange (ETDEWEB)

    Glasstone, Samuel

    1957-06-01

    This handbook prepared by the Armed Forces Special Weapons Project of the Department of Defense in coordination with other cognizant government agencies and published by the United States Atomic Energy Commission, is a comprehensive summary of current knowledge on the effects of nuclear weapons. The effects information contained herein is calculated for yields up to 20 megatons and the scaling laws for hypothetically extending the calculations beyond this limit are given. The figure of 20 megatons however is not be taken as an indication of capabilities or developments.

  6. Research study on public relations and public participation in the nuclear energy field

    International Nuclear Information System (INIS)

    Gunji, Ikuko; Tabata, Rimiko; Otoshi, Sachio; Kuwagaki, Reiko; Ishibashi, Yoichiro

    2006-01-01

    The purpose of this research is to clarify the effect of public relations activities in the nuclear energy field and public participation toward the improvement of the risk literacy of nuclear energy. According to the survey results of the actual public relations activities taken by nuclear energy industry, the opportunity for interactive communications between the public and the industry is insufficient. Consequently, we propose building up more opportunities for participation and collaboration of citizens and industries in order to improve interactive communications reflecting public opinions and points of view. (author)

  7. Finland and international cooperation in the field of nuclear energy

    International Nuclear Information System (INIS)

    Luoma, H.

    1991-01-01

    The report is an index of international cooperational contacts of Finnish state, industry and organizations in the field of nucelar energy. The index contains information on international nuclear organizations which Finland is participating, the agreements of both the Finnish state and industry on nuclear research and development programs. It also contains information on connections to international professional and intellectual associations, industrial cooperational associations of industry related with nuclear energy, and other cooperation in the field of nuclear energy. The collected data contains the official names of organizations in Finnish, Swedish and English, as well as the official abbreviation, the contact information, the date of establishment, the year when Finland joined the organization. The report also contains the list of members participating the cooperation, the purpose, the tasks, and operation of the organization, the management and administrative organs, the official languages, budget information of the organization, and the Finnish representatives in the management and administrative organs, main projects and working groups of the organization, the coordinators of Finnish activities, and the place where the organizational documents are held in Finland. The contractional data contains the subject, date of agreement and validity of it. The number of contraction series of the Finnish statute of the state level contracts, the participating and possible leading organizations, the joint organizations and countries, responsible persons and organizations

  8. Collision effects on the nuclear dynamics

    International Nuclear Information System (INIS)

    Gregoire, C.

    1987-01-01

    The lectures on the collision effects on the nuclear dynamics are reported. A kinetic equation, describing the nuclear dynamics in a microscopical way, is deduced. The Vlasov equation and methods, allowing the obtention of approached solutions, are indicated. Concerning one dimensional and spherical symmetric systems, these solutions applied to the matter slab collisions and to the expansion of the excited spherical cores, are discussed. Moreover, the phenomenology of the collision terms and their application on the heavy ions collisions, are considered. The respective parts of the mean field and the collision term in different cases, are indicated. A link with the transport theories is given by the calculations of dispersions and by means of the Landau-Vlasov equation [fr

  9. Nordic projects in the field of nuclear safety

    International Nuclear Information System (INIS)

    Soerensen, H.C.

    1988-05-01

    This report deseribes the work in 1987 within the Nordic program concerning nuclear safety 1985-1989. The report has the form of a handbook meant for those in Scandinavia who are involved in nuclear safety, and it is based on statements from the constituent subject fields of the program. The first chapter is a short summary of the work and results over the year. In the next chapter an account is given of the ongoing projects within each of the subject fields. An economic survey of the entire program and a list of the reports and articles published in 1987 is included in the publication as well. Chapter 5 is a complete list of adresses comprising participants, project managers, program coordinators and members of the advisory group. (SH) 74 refs

  10. Nordic projects in the field of nuclear safety

    International Nuclear Information System (INIS)

    Soerensen, H.C.

    1989-07-01

    This report describes the work in 1988 within the Nordic program concerning nuclear safety 1985-1989. The report has the form of a handbook meant for those in Scandinavia who are involeved in nuclear safety, and it is based on statements from the constituent subject fields of the program. The first chapter is a short summary of the work and results over the year. In the next chapter an account is given of the ongoing projects within each of the subject fields. An economic survey of the entire program and a list of the reports and articles published in 1988 is included in the publicaltion as well. Chapter 5 is a complete list of adresses comprising participants, project managers, program coordinators and members of the advirosy group. (SH)

  11. Status of Korean nuclear industry and Romania-Korea cooperation in the field of nuclear power

    International Nuclear Information System (INIS)

    Lee, Myung Key

    2005-01-01

    The Kyoto Protocol on climate change has urged the world to explore ways of cutting down the greenhouse emissions, and it also boosted a number of nuclear power projects that is so-called the renaissance of nuclear power. Nuclear power has proven to be the cleanest energy source and one of the cheapest types of energies, compared with other energy sources. Korea began developing its nuclear power projects from the early 1970's. Since the first nuclear power plant Kori Unit 1, started commercial operation in 1978, Korea has continuously promoted the development of nuclear power projects, and today it operates 20 nuclear power units (17,716 MW), including 4 units of CANDU plants. Korea ranked No. 6 in the world in terms of installed capacity of nuclear power plants, and 40% of its domestic electricity generation comes from nuclear power plants. The average plant capacity factor was 95.5% in 2005, which is about 16% than the world average of around 79%. All the Korean nuclear power projects are led and implemented by Korea Hydro and Nuclear Power Co. (KHNP) which is the sole state-owned nuclear power project company spun off from Korea Electric Power Corporation (KEPCO) in 2001 as part of the government's program for electric industry restructuring. The cooperation between Romania and Korea in the nuclear power field began in March 2001. At industrial level a technical agreement between the Romanian Company Nuclearelectrica S.A. (SNN) and KHNP was signed in July 2003 for cooperation in Cernavoda NPP projects. The joint development of the Cernavoda NPP unit 3 was one of the major topics. Heavy water produced by Romanian Heavy Water plant at Drobeta Turnu Severin was supplied to KHNP (16 tones in 2001 and another 16 tones in 2004). The feasibility study for units 3 and 4 is being performed in two phases under leadership of SNN in cooperation with KHNP, AECL, ANSALDO and Deloitte and Touche as a financial advisor in Phase 2. It is expected that the appropriate securities

  12. Climatic effects of nuclear war

    International Nuclear Information System (INIS)

    Crutzen, P.J.

    1987-01-01

    Although considerable further research has been conducted since the writing of the Scientific Committee on Problems of the Environment (SCOPE) study, the main conclusions reached in early 1986 about the potential climatic, atmospheric, chemical, ecological, and agricultural consequences of a nuclear war are still valid, also taking into account the latest research results by Thompson and Schneider (1986). The main finding of the SCOPE study is that severe, large-scale, possibly global, climatic disturbances could result from a nuclear war in which a substantial fraction (10% or more) of the combustible materials in the NATO and Warsaw Pact nations would burn, producing several tens of million tonnes of soot. This could be caused by nuclear attacks on less than a hundred of the most important urban and industrial centres of these nations. As a consequence, it is estimated that surface temperatures might drop by more than 10 deg. C over a large fraction of the continents in the northern hemisphere and that rainfall could also be strongly reduced. These effects could last for weeks, maybe years. In many parts of the northern hemisphere agricultural productivity would be severely reduced, contributing to serious food shortages. 37 refs, 5 figs, 4 tabs

  13. Nuclear famine: The indirect effects of nuclear war

    International Nuclear Information System (INIS)

    Harwell, M.A.; Harwell, C.C.

    1986-01-01

    The indirect effects of a nuclear war, especially as mediated by disruption in food availability, could be much more extensive than the direct effects. Furthermore, this risk is especially severe for noncombatant countries - for the 4 billion or so humans expected to survive the immediate period after a nuclear war relatively physically unharmed. Thus, a fundamentally different picture of the post-nuclear-war world results, where a large-scale nuclear war between the United States and the Soviet Union would probably result in more eventual fatalities in India than in the United States and the Soviet Union combined, and more people would die on the African continent than in all of Europe. Rather than reflecting images of Hiroshima and Nagasaki, a modern nuclear war would, for most of the people of the world, much more resemble current images of Ethiopia and the Sudan

  14. Nuclear matter calculations of finite and infinite nuclear systems from relativistic field theory

    International Nuclear Information System (INIS)

    Kerman, A.K.

    1974-01-01

    A new direction for the calculation of nuclear properties with current knowledge of finite nuclei is briefly discussed. Main emphasis is on developing a framework in which the meson field can be made self-consistent. Three types of worthwhile experiments are suggested. 1 figure

  15. Application of probabilistic methods in the field of nuclear safety

    International Nuclear Information System (INIS)

    Carnino, Annick

    1976-01-01

    Beyond the determination of the risks of accident to the reactors (Rasmussen Report), the probabilistic methods have other fields of application insofar as nuclear safety is concerned. These different fields of application are studied, i.e.: analysis of the accidents and of system performance, research for solutions to obtain an improved reliability, determination of the operating rules of the plants and drawing up of the regulations. In order to illustrate the work tending to improve the reliability, the studies concerning the design of the emergency shutdown system of the Super-Phenix are presented as an example [fr

  16. Effective Giromagnetic Ratios in Artifical Nuclear Magnetization Pumping of the Noble Gases Mix

    Directory of Open Access Journals (Sweden)

    Popov E.N.

    2015-01-01

    Full Text Available Dynamic of the nuclear magnetization of the two noble gases mix was studied in this research. Nuclear magnetization pumped along the induction of external magnetic field. Vector of nuclear magnetization is given a tilt by the week rotational magnetic field, which makes NMR for noble gases. Interaction between the nuclear magnetic moments of the different noble gases adducted to shifts at the frequency of nuclear moments precession in external magnetic field. Effective gyromagnetic ratios of the nuclear of noble gases is defined and it different from the tabulated value. There is theoretical calculation of effective gyromagnetic ratios in this research.

  17. Health and environmental effects of nuclear weapons

    International Nuclear Information System (INIS)

    1993-01-01

    This report briefly reviews previous WHO work on the health consequences of nuclear war and concentrates on current information about the effects of nuclear weapons on health, and related environmental problems. 15 refs

  18. Overview of climatic effects of nuclear winter

    International Nuclear Information System (INIS)

    Jones, E.M.; Malone, R.C.

    1985-01-01

    A general description of the climatic effects of a nuclear war are presented. This paper offers a short history of the subject, a discussion of relevant parameters and physical processes, and a description of plausible nuclear winter scenario. 9 refs

  19. Nuclear β decay with a massive neutrino in an external electromagnetic field

    International Nuclear Information System (INIS)

    Ternov, I.M.; Rodionov, V.N.; Zhulego, V.G.; Lobanov, A.E.; Pavlova, O.S.; Dorofeev, O.F.

    1986-01-01

    Beta decay in the presence of an external electromagnetic field is investigated, taking into account the non-zero neutrino rest mass. The spectrum of electrons and polarisation effects of different orientations of nuclear spin are considered. It is shown that the electromagnetic wave substantially modifies the boundaries of the spectrum of β electrons. The results, which include an analysis of the total decay probability in intense magnetic fields, may have various astrophysical implications. (author)

  20. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    Science.gov (United States)

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  1. The Effects of Nuclear Weapons. Third edition

    Energy Technology Data Exchange (ETDEWEB)

    Glasstone, S; Dolan, P J

    1977-01-01

    Since the last edition of ''The Effects of Nuclear Weapons'' in 1962 much new information has become available concerning nuclear weapon effects. This has come in part from the series of atmospheric tests, including several at very high altitudes, conducted in the Pacific Ocean area in 1962. In addition, laboratory studies, theoretical calculations, and computer simulations have provided a better understanding of the various effects. A new chapter has been added on the electromagnetic pulse. The chapter titles are as follows: general principles of nuclear explosions; descriptions of nuclear explosions; air blast phenomena in air and surface bursts; air blast loading; structural damage from air blast; shock effects of surface and subsurface bursts; thermal radiation and its effects; initial nuclear radiation; residual nuclear radiation and fallout; radio and radar effects; the electromagnetic pulse and its effects; and biological effects. (LTN)

  2. Survey of large-scale isotope applications: nuclear technology field

    Energy Technology Data Exchange (ETDEWEB)

    Dewitt, R.

    1977-01-21

    A preliminary literature survey of potential large-scale isotope applications was made according to topical fields; i.e., nuclear, biological, medical, environmental, agricultural, geological, and industrial. Other than the possible expansion of established large-scale isotope applications such as uranium, boron, lithium, and hydrogen, no new immediate isotope usage appears to be developing. Over the long term a change in emphasis for isotope applications was identified which appears to be more responsive to societal concerns for health, the environment, and the conservation of materials and energy. For gram-scale applications, a variety of isotopes may be required for use as nonradioactive ''activable'' tracers. A more detailed survey of the nuclear field identified a potential need for large amounts (tons) of special isotopic materials for advanced reactor components and structures. At this need for special materials and the development of efficient separation methods progresses, the utilization of isotopes from nuclear wastes for beneficial uses should also progress.

  3. 1986 Agreement on third party liability in the nuclear field

    International Nuclear Information System (INIS)

    1986-01-01

    This Agreement intends to facilitate the settlement of disputes, if they are due to an event (caused by the peaceful utilisation of nuclear energy) which occurs on the territory of one State and gives rise to damage on the territory of the other State. Unlike the Federal Republic of Germany, Switzerland has neither ratified the Paris Convention of 29th July 1960 on Third Party Liability in the Field of Nuclear Energy nor the Brussels Supplementary Convention of 31st January 1963. This might result in diverging interpretations by the German and Swiss courts, in particular, regarding the competent courts and the laws applicable if a third party liability problem were to arise between both countries. The Agreement therefore aims to settle these matters directly by treaty between the States before the courts are confronted by an occurrence of damage and have to seek a solution which conforms to international private law. (NEA) [fr

  4. Exploring medium effects on the nuclear force

    International Nuclear Information System (INIS)

    Sammarruca, F.

    2004-01-01

    This STI product contains a description of results from theoretical studies in nuclear physics. The goal is a systematic investigation of the nuclear force in the nuclear medium. The problems addressed are: density-dependent effective interactions as seen through proton-nucleus reactions, nuclear matter with unequal densities of protons and neutrons, applications to asymmetric nuclei through predictions of neutron radii and neutron skins

  5. Mesonic effects in nuclear physics

    International Nuclear Information System (INIS)

    Johnson, M.

    1978-01-01

    The relation between mesons and nucleons and the properties of nuclear matter, as presently understood, is considered in these lectures. Feynman diagrams, meson theoretical nucleon-nucleon interactions, mesonic components in nuclear wave functions, direct observation of mesonic components in NN scattering above the pion production threshold, nuclear matter theory, and pion condensation are treated. 120 references

  6. DC SQUID Spectrometers for Nuclear Quadrupole and Low-Field Nuclear Magnetic Resonance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    TonThat, Dinh M. [Univ. of California, Berkeley, CA (United States)

    1998-04-01

    The dc Superconducting Quantum Interference Device (SQUJD) is a very sensitive detector of magnetic flux, with a typical flux noise of the order of 1 μΦ0Hz-1/2 at liquid helium temperature (Φ0=h/2e). This inherent flux sensitivity of the SQUID is used in a spectrometer for the detection of nuclear magnetic resonance (NMR.)and nuclear quadruple resonance (NQR). The processing magnetic field from the nuclear spins is coupled to the SQUID by mean of a flux transformer. The SQUID NMR spectrometer is used to measure the longitudinal relaxation time T1 of solid 129Xe at 4.2 K down to 0.1 mT.

  7. Nonadiabatic effects in electronic and nuclear dynamics

    Directory of Open Access Journals (Sweden)

    Martin P. Bircher

    2017-11-01

    Full Text Available Due to their very nature, ultrafast phenomena are often accompanied by the occurrence of nonadiabatic effects. From a theoretical perspective, the treatment of nonadiabatic processes makes it necessary to go beyond the (quasi static picture provided by the time-independent Schrödinger equation within the Born-Oppenheimer approximation and to find ways to tackle instead the full time-dependent electronic and nuclear quantum problem. In this review, we give an overview of different nonadiabatic processes that manifest themselves in electronic and nuclear dynamics ranging from the nonadiabatic phenomena taking place during tunnel ionization of atoms in strong laser fields to the radiationless relaxation through conical intersections and the nonadiabatic coupling of vibrational modes and discuss the computational approaches that have been developed to describe such phenomena. These methods range from the full solution of the combined nuclear-electronic quantum problem to a hierarchy of semiclassical approaches and even purely classical frameworks. The power of these simulation tools is illustrated by representative applications and the direct confrontation with experimental measurements performed in the National Centre of Competence for Molecular Ultrafast Science and Technology.

  8. System and Field Devices (non Nuclear) in Agriculture Research in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Shyful Azizi Abdul Rahman; Abdul Rahim Harun

    2015-01-01

    Research to improve productivity on an ongoing basis in the agricultural sector is essential to ensure and guarantee the country's food security. Malaysian Nuclear Agency, agricultural research had begun in 1981 in which the focus of research is related to mutation breeding, irradiation and the use of isotopes in the study of plant nutrition. Although projects agricultural research carried out based on nuclear technology, other information relating to agricultural research such as agronomy, plant physiology, meteorology and ecology, soil characteristics and water is essential to obtain the understanding and research results that are relevant and significant. Data acquisition for other aspects also need a system and a modern and efficient equipment, in accordance with current technological developments. This paper describes the use, function and capabilities of the existing field equipment available in Agrotechnology and Biosciences Division, Malaysian Nuclear Agency in acquiring data related to weather, measurement and control of ground water, soil nutrients assessment and monitoring of plant physiology. The latest technological developments in sensor technology, computer technology and communication is very helpful in getting data more easily, quickly and accurately. Equipment and the data obtained is also likely to be used by researchers in other fields in Nuclear Malaysia. (author)

  9. Application of radioisotopes in the field of nuclear medicine

    International Nuclear Information System (INIS)

    Nayak, D.; Lahiri, S.

    1999-01-01

    A comprehensive review has been made to discuss the role of various radionuclides of lanthanide series elements in the field of nuclear medicine. The role of several pharmaceuticals labeled with radiolanthanides and used for investigative purposes like measurement of cerebral blood flow, bone density measurement, bone marrow imaging, etc., have been described. The role of lanthanide radionuclides in radiation synovectomy, radioimmunotherapy, etc., have also been discussed. Methods of preparation of some representative radiopharmaceuticals like 153 Sm-EDTMP, 153 Sm-HYP, have been presented. An outline on the production of carrier free radioisotopes of lanthanide series elements has been given. (author)

  10. Incineration in the nuclear field. The SGN experience

    International Nuclear Information System (INIS)

    Carpentier, S.

    1993-01-01

    The operation of power reactors, like that of fuel fabrication and nuclear fuel reprocessing plants, generated substantial quantities of waste. A large share of this waste is low- and medium-level waste, which is also combustible. Similarly, a number of institutes, laboratories, and hospitals, in the course of their activities, generated waste which a portion is radioactive and combustible. The chief advantage of incineration is to minimize the volume of burnable waste treated, and to produce a residue termed 'ash'. SGN has built up 25 years of experience in this field. The incinerators have been designed and the incineration processes are specially studied by SGN

  11. Nuclear threshold effects and neutron strength function

    International Nuclear Information System (INIS)

    Hategan, Cornel; Comisel, Horia

    2003-01-01

    One proves that a Nuclear Threshold Effect is dependent, via Neutron Strength Function, on Spectroscopy of Ancestral Neutron Threshold State. The magnitude of the Nuclear Threshold Effect is proportional to the Neutron Strength Function. Evidence for relation of Nuclear Threshold Effects to Neutron Strength Functions is obtained from Isotopic Threshold Effect and Deuteron Stripping Threshold Anomaly. The empirical and computational analysis of the Isotopic Threshold Effect and of the Deuteron Stripping Threshold Anomaly demonstrate their close relationship to Neutron Strength Functions. It was established that the Nuclear Threshold Effects depend, in addition to genuine Nuclear Reaction Mechanisms, on Spectroscopy of (Ancestral) Neutron Threshold State. The magnitude of the effect is proportional to the Neutron Strength Function, in their dependence on mass number. This result constitutes also a proof that the origins of these threshold effects are Neutron Single Particle States at zero energy. (author)

  12. Procedures for field measurements in the case of nuclear accident

    International Nuclear Information System (INIS)

    Barisic, D.; Lulic, S.

    2000-01-01

    Very simplified, reduced and shorted procedures for main objectives of emergency field monitoring in case of nuclear accident are given only. They could be implemented in Croatia using resources nowadays available. Procedures for gamma/beta dose rates in plume and ground deposition survey and unknown situation evaluation, procedures for alpha and gamma/beta surface contamination measurement, field personnel/equipment contamination and decontamination measurement as well as for in-situ gamma spectrometry measurements are presented. Purpose, short discussion, general precautions and limitations as well as basic equipment and supplies needed are given for all of procedures discussed also. Only measuring steps are given with more details in form of short and clear instructions. (author)

  13. A novel variable field system for field-cycled dynamic nuclear polarization spectroscopy

    Science.gov (United States)

    Shet, Keerthi; Caia, George L.; Kesselring, Eric; Samouilov, Alexandre; Petryakov, Sergey; Lurie, David J.; Zweier, Jay L.

    2010-08-01

    Dynamic nuclear polarization (DNP) is an NMR-based technique which enables detection and spectral characterization of endogenous and exogenous paramagnetic substances measured via transfer of polarization from the saturated unpaired electron spin system to the NMR active nuclei. A variable field system capable of performing DNP spectroscopy with NMR detection at any magnetic field in the range 0-0.38 T is described. The system is built around a clinical open-MRI system. To obtain EPR spectra via DNP, partial cancellation of the detection field B0NMR is required to alter the evolution field B0EPR at which the EPR excitation is achieved. The addition of resistive actively shielded field cancellation coils in the gap of the primary magnet provides this field offset in the range of 0-100 mT. A description of the primary magnet, cancellation coils, power supplies, interfacing hardware, RF electronics and console are included. Performance of the instrument has been evaluated by acquiring DNP spectra of phantoms with aqueous nitroxide solutions (TEMPOL) at three NMR detection fields of 97 G, 200 G and 587 G corresponding to 413 kHz, 851.6 kHz and 2.5 MHz respectively and fixed EPR evolution field of 100 G corresponding to an irradiation frequency of 282.3 MHz. This variable-field DNP system offers great flexibility for the performance of DNP spectroscopy with independent optimum choice of EPR excitation and NMR detection fields.

  14. Nuclear reaction inputs based on effective interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S.; Peru, S.; Dubray, N.; Dupuis, M.; Bauge, E. [CEA, DAM, DIF, Arpajon (France); Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)

    2016-11-15

    Extensive nuclear structure studies have been performed for decades using effective interactions as sole input. They have shown a remarkable ability to describe rather accurately many types of nuclear properties. In the early 2000 s, a major effort has been engaged to produce nuclear reaction input data out of the Gogny interaction, in order to challenge its quality also with respect to nuclear reaction observables. The status of this project, well advanced today thanks to the use of modern computers as well as modern nuclear reaction codes, is reviewed and future developments are discussed. (orig.)

  15. Status of Korean nuclear industry and Romania-Korea cooperation in nuclear field

    International Nuclear Information System (INIS)

    Myung-Key, Lee

    2005-01-01

    , constructed by AECL turnkey contract, started commercial operations in 1983. Units 2,3 and 4 were constructed by a non turn-key contract scheme, which was constructed by KHNP with assistance from AECL for some areas. The second part of the paper deals with the Romania-Korea cooperation status. The cooperation between Romania-Korea in the nuclear power field got into stride in March 2001. A technical agreement was signed between Romanian Company SNN and KHNP in March 2002 for cooperation in the Cernavoda projects. An amount of 32 tones of Romanian heavy water was supplied to KHNP, The Technical Assistance Agreement between SNN and KHNP stipulates provisions for technical services for operation of Unit 1, construction and commissioning of Cernavoda Unit 2. This Technical Assistance Agreement will be the basis to enhance economy and safety of Cernavoda Units 1,2 and 3. In the frame of the cooperation in Cernavoda Unit 3 Project Romania can enjoy benefits from Korea's world-top class technologies and experience. Korea can support Romania utilizing the systematically established nuclear infrastructure. Korea, both government and nuclear power industry represented by KHNP, will fully support Romania so that new feasibility study may proceed in accordance with the required schedule. The paper has the following structure: Part 1- Korean nuclear industry status: 1. Current status of electric power in Korea; 2. Long term energy plan; 3. Status of nuclear power projects; 4. Operational performance; 5. Outlines of Wolsong CANDU units; Part 2 - Romania-Korea cooperation status: 1. History for cooperation; 2. Technical assistance for Cernavoda Units 1 and 2; 3. Joint development of Cernavoda Unit 3 Project; 4. Cooperation in Cernavoda Unit 3 Project

  16. The use of nuclear data in the field of nuclear fuel recycling

    Directory of Open Access Journals (Sweden)

    Martin Julie-Fiona

    2017-01-01

    Full Text Available AREVA NC La Hague facility is the first step of the nuclear fuel recycling process implemented in France. The processing of the used fuel is governed by high standards of criticality-safety, and strong expectations on the quality of end-products. From the received used fuel assemblies, the plutonium and the uranium are extracted for further energy production purposes within the years following the reprocessing. Furthermore, the ultimate waste – fission products and minor actinides on the one hand, and hulls and end-pieces on the other hand – is adequately packaged for long term disposal. The used fuel is therefore separated into very different materials, and time scales which come into account may be longer than in some other nuclear fields of activity. Given the variety of the handled nuclear materials, as well as the time scales at stake, the importance given to some radionuclides, and hence to the associated nuclear data, can also be specific to the AREVA NC La Hague plant. A study has thus been led to identify a list of the most important radionuclides for the AREVA NC La Hague plant applications, relying on the running constraints of the facility, and the end-products expectations. The activities at the AREVA NC La Hague plant are presented, and the methodology to extract the most important radionuclides for the reprocessing process is detailed.

  17. The use of nuclear data in the field of nuclear fuel recycling

    Science.gov (United States)

    Martin, Julie-Fiona; Launay, Agnès; Grassi, Gabriele; Binet, Christophe; Lelandais, Jacques; Lecampion, Erick

    2017-09-01

    AREVA NC La Hague facility is the first step of the nuclear fuel recycling process implemented in France. The processing of the used fuel is governed by high standards of criticality-safety, and strong expectations on the quality of end-products. From the received used fuel assemblies, the plutonium and the uranium are extracted for further energy production purposes within the years following the reprocessing. Furthermore, the ultimate waste - fission products and minor actinides on the one hand, and hulls and end-pieces on the other hand - is adequately packaged for long term disposal. The used fuel is therefore separated into very different materials, and time scales which come into account may be longer than in some other nuclear fields of activity. Given the variety of the handled nuclear materials, as well as the time scales at stake, the importance given to some radionuclides, and hence to the associated nuclear data, can also be specific to the AREVA NC La Hague plant. A study has thus been led to identify a list of the most important radionuclides for the AREVA NC La Hague plant applications, relying on the running constraints of the facility, and the end-products expectations. The activities at the AREVA NC La Hague plant are presented, and the methodology to extract the most important radionuclides for the reprocessing process is detailed.

  18. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    Science.gov (United States)

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  19. The Characteristics of an Effective Nuclear Regulator

    International Nuclear Information System (INIS)

    Cheok, Michael; Wertelaers, An; Lojk, Robert; Santini, Miguel; Alm-Lytz, Kirsi; Rigail, Anne-Cecile; Weidenbruck, Kai-Jochen; Stoppa, Gisela; Rainieri, Roberto; Aoki, Masahiro; Gonzalez-Mercado; Miroshnichenko, Mikhail; Kuznetsov, Nikolay; Kudryavtsev, Evgeny; Cid, Rafael; Franzen, Anna; Skanberg, Lars; Gibson, Steve; Golshan, Mina; Cheok, Michael; Nicic, Adriana; Salgado, Nancy; Creswell, Len

    2014-01-01

    Both national and international organisations agree that the fundamental objective of all nuclear safety regulatory bodies - the regulator's prime purpose - is to ensure that nuclear licensees operate their facilities at all times in a safe manner. Much has been written about ways to improve regulatory processes or to improve the effectiveness of a regulatory body, including in previous OECD/NEA regulatory guidance booklets. But until now, none have focused on the characteristics of an effective nuclear safety regulator. Effective organisations are those that have good leadership and are able to transform strategic direction into operational programmes. Effectiveness is about how well the organisation is achieving its fundamental purpose - in the case of a nuclear safety regulator, ensuring that licensees operate their facilities and discharge their obligations in a safe manner. This regulatory guidance booklet describes the characteristics of an effective nuclear safety regulator in terms of roles and responsibilities, principles and attributes. Each of the characteristics discussed in this report is a necessary feature of an effective nuclear safety regulator but no one characteristic is sufficient on its own. It is the combination of these characteristics that leads to the effectiveness of a nuclear regulatory body. The report provides a unique resource to countries with existing, mature regulators and can be used for benchmarking as well as training and developing staff. It will also be useful for new entrant countries in the process of developing and maintaining an effective nuclear safety regulator. (authors)

  20. Solid Tumor-Targeting Theranostic Polymer Nanoparticle in Nuclear Medicinal Fields

    Directory of Open Access Journals (Sweden)

    Akira Makino

    2014-01-01

    Full Text Available Polymer nanoparticles can be prepared by self-assembling of amphiphilic polymers, and various types of molecular assemblies have been reported. In particular, in medicinal fields, utilization of these polymer nanoparticles as carriers for drug delivery system (DDS has been actively tried, and some nanoparticulate drugs are currently under preclinical evaluations. A radionuclide is an unstable nucleus and decays with emission of radioactive rays, which can be utilized as a tracer in the diagnostic imaging systems of PET and SPECT and also in therapeutic purposes. Since polymer nanoparticles can encapsulate most of diagnostic and therapeutic agents with a proper design of amphiphilic polymers, they should be effective DDS carriers of radionuclides in the nuclear medicinal field. Indeed, nanoparticles have been recently attracting much attention as common platform carriers for diagnostic and therapeutic drugs and contribute to the development of nanotheranostics. In this paper, recent developments of solid tumor-targeting polymer nanoparticles in nuclear medicinal fields are reviewed.

  1. The effect of divalent ions on the elasticity and pore collapse of chalk evaluated from compressional wave velocity and low-field Nuclear Magnetic Resonance (NMR)

    DEFF Research Database (Denmark)

    Katika, Konstantina; Addassi, Mouadh; Alam, Mohammad Monzurul

    2015-01-01

    density and ultrasonic velocities measured on core plugs. Low-field NMR spectroscopy was used in addition to the mechanical testing to prove any changes observed after the saturation related to the surface-to-volume ratio of the pore space in each of the samples or to surface relaxivity. Backscatter...... rich in magnesium and calcium ions softens the contact among the mineral grains. Pore collapse strength is deteriorating after the saturation of chalk with water rich in divalent ions. The presence of calcium and sulfate ions in the saturating fluid results in pore collapse at lower stresses than...

  2. Effective citizen advocacy of beneficial nuclear technologies

    International Nuclear Information System (INIS)

    McKibben, J. Malvyn; Wood, Susan

    2007-01-01

    In 1991, a small group of citizens from communities near the Savannah River Site (SRS) formed a pro-nuclear education and advocacy group, Citizens for Nuclear Technology Awareness (CNTA). Their purpose was to: (1) counter nuclear misinformation that dominated the nation's news outlets, (2) provide education on nuclear subjects to area citizens, students, elected officials, and (3) provide informed citizen support for potential new missions for SRS when needed. To effectively accomplish these objectives it is also essential to establish and maintain good relations with community leaders and reporters that cover energy and nuclear subjects. The organization has grown considerably since its inception and has expanded its sphere of influence. We believe that our experiences over these fifteen years are a good model for effectively communicating nuclear subjects with the public. This paper describes the structure, operation and some of the results of CNTA. (authors)

  3. Nuclear quantum effects in water

    Science.gov (United States)

    Morrone, Joseph; Car, Roberto

    2008-03-01

    In this work, a path integral Car-Parrinello molecular dynamicsootnotetextCPMD V3.11 Copyright IBM Corp 1990-2006, Copyright MPI fuer Festkoerperforschung Stuttgart 1997-2001. simulation of liquid water is performed. It is found that the inclusion of nuclear quantum effects systematically improves the agreement of first-principles simulations of liquid water with experiment. In addition, the proton momentum distribution is computed utilizing a recently developed ``open'' path integral molecular dynamics methodologyootnotetextJ.A. Morrone, V. Srinivasan, D. Sebastiani, R. Car J. Chem. Phys. 126 234504 (2007).. It is shown that these results, which are consistent with our computations of the liquid structure, are in good agreement with neutron Compton scattering dataootnotetextG.F. Reiter, J.C. Li, J. Mayers, T. Abdul-Redah, P. Platzman Braz. J. Phys. 34 142 (2004).. The remaining discrepancies between experiment and the present results are indicative of some degree of over-binding in the hydrogen bond network, likely engendered by the use of semi-local approximations to density functional theory in order to describe the electronic structure.

  4. Renormalization and effective field theory

    CERN Document Server

    Costello, Kevin

    2011-01-01

    This book tells mathematicians about an amazing subject invented by physicists and it tells physicists how a master mathematician must proceed in order to understand it. Physicists who know quantum field theory can learn the powerful methodology of mathematical structure, while mathematicians can position themselves to use the magical ideas of quantum field theory in "mathematics" itself. The retelling of the tale mathematically by Kevin Costello is a beautiful tour de force. --Dennis Sullivan This book is quite a remarkable contribution. It should make perturbative quantum field theory accessible to mathematicians. There is a lot of insight in the way the author uses the renormalization group and effective field theory to analyze perturbative renormalization; this may serve as a springboard to a wider use of those topics, hopefully to an eventual nonperturbative understanding. --Edward Witten Quantum field theory has had a profound influence on mathematics, and on geometry in particular. However, the notorio...

  5. Nuclear Weapons Effects (Self-Teaching Materials).

    Science.gov (United States)

    Defense Civil Preparedness Agency (DOD), Battle Creek, MI.

    Developed by the Civil Defense Preparedness Agency, this autoinstructional text deals with nuclear weapons effects. The destructive effects of an atomic blast are first introduced, and then long-term radioactive consequences are stressed. (CP)

  6. Unstable three dimensional nuclear matter in stochastic mean field approach

    International Nuclear Information System (INIS)

    Colonna, M.; Chomaz, Ph.

    1993-01-01

    A semi-classical stochastic mean-field approach is discussed. In the case of unstable infinite nuclear matter, the characteristic time of the exponential growing of fluctuations and the diffusion coefficients associated to the unstable modes are calculated in the framework of the Boltzmann-Langevin theory. In order to make realistic 3D calculations feasible, the complicated Boltzmann-Langevin theory is suggested to be replaced by a simpler stochastic meanfield approach corresponding to a standard Boltzmann evolution, complemented by a simple noise chosen to reproduce the dynamics of the most unstable modes. Finally, it is explained how to approximately implement this method by simply tuning the noise associated to the use of a finite number of test particles in Boltzmann-like calculations. (authors) 17 refs., 5 figs

  7. Principles and foundation: national standards on quantities and units in nuclear science field

    International Nuclear Information System (INIS)

    Chen Lishu

    1993-11-01

    The main contents of National Standards on Quantities and units of atomic and nuclear physics (GB 3102.9) and Quantities and Units of nuclear reactions and ionizing radiations (GB 310.10) are presented in which most important quantities with their symbols and definitions in the nuclear scientific field are given. The principles and foundation, including the International System of Units (SI) and its application to the nuclear scientific field, in the setting of the National Standards are explained

  8. Widespread after-effects of nuclear war

    International Nuclear Information System (INIS)

    Teller, E.

    1984-01-01

    Radioactive fallout and depletion of the ozone layer, once believed catastrophic consequences of nuclear war, are now proved unimportant in comparison to immediate war damage. Today, ''nuclear winter'' is claimed to have apocalyptic effects. Uncertainties in massive smoke production and in meteorological phenomena give reason to doubt this conclusion. (author)

  9. Tunneling field effect transistor technology

    CERN Document Server

    Chan, Mansun

    2016-01-01

    This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.

  10. Technical Papers Presented at the Defense Nuclear Agency Global Effects Review. Held at Moffett Field, California on 25-27 February 1986. Volume 1.

    Science.gov (United States)

    1986-05-15

    REPRESENTATIVE: SIGNATURE: p°."" % ., Director\\ Defene Nulear genc ATN: TITI Washington, DC2305100 Director DefenseNuclea Agenc ATTN: TITI Washington. DC...of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. 149 5 I. Introduction. The climate effects...0c E w cr a-dC/ al C ( on I In 0 to to NOI1LVHWN3:DNO: 3U1:li6d(c~u~)NP ඏL. 177 - P Jr.%W -jg-j -x"Vwx"XK. MIXING RATIO CONTOURS FOR ENERGY FLUX OF

  11. The environmental effects of nuclear war

    Energy Technology Data Exchange (ETDEWEB)

    MacCracken, M.C.

    1988-09-01

    Substantial environmental disruption will significantly add to the disastrous consequences caused by the direct thermal, blast, and radiological effects brought on by a major nuclear war. Local fallout could cover several percent of the Northern Hemisphere with potentially lethal doses. Smoke from post-nuclear fires could darken the skies and induce temperature decreases of tens of degrees in continental interiors. Stratospheric ozone could be significantly reduced due to nitric oxide injections and smoke-induced circulation changes. The environmental effects spread the consequences of a nuclear war to the world population, adding to the potentially large disruptive effects a further reason to avoid such a catastrophe. 27 refs., 4 figs.

  12. The environmental effects of nuclear war

    International Nuclear Information System (INIS)

    MacCracken, M.C.

    1988-09-01

    Substantial environmental disruption will significantly add to the disastrous consequences caused by the direct thermal, blast, and radiological effects brought on by a major nuclear war. Local fallout could cover several percent of the Northern Hemisphere with potentially lethal doses. Smoke from post-nuclear fires could darken the skies and induce temperature decreases of tens of degrees in continental interiors. Stratospheric ozone could be significantly reduced due to nitric oxide injections and smoke-induced circulation changes. The environmental effects spread the consequences of a nuclear war to the world population, adding to the potentially large disruptive effects a further reason to avoid such a catastrophe. 27 refs., 4 figs

  13. Future of international cooperative activity for graduate school education in nuclear field

    International Nuclear Information System (INIS)

    Obara, Toru

    2008-01-01

    Further improvement of graduate school education in nuclear field is one of the important issues in universities in nuclear field. The COE-INES program has performed international cooperative activities for graduate school education with foreign universities in nuclear field. There are a lot of possibilities in international cooperation with foreign universities for graduate school education. The use of Internet can be a strong tool for the activities. (author)

  14. Effect of nuclear education on public attitude

    International Nuclear Information System (INIS)

    Ohnishi, Teruaki

    1995-01-01

    A method is proposed to assess the effect of nuclear education. In this method, the nuclear education is treated as a part of the activities for public acceptance (PA), and a unit PA activity is assumed to give the same effect on the public, in essence, as a unit of nuclear information given by the newsmedia. Moreover, the change of attitude to nuclear energy is assumed to originate from enhanced understanding which, in turn, is brought by the stimulus given by the nuclear education. With the values of constants determined by using the data in Japan, example calculations were made for the educational time b 0 and the infiltration rate of education into minors B as parameters. It became clear from this calculation that the attitude to nuclear energy formed in the age of school children plays an essential role in shaping future public opinion since it is held in individuals without any notable modification for a long time after its formation, and that the effect of nuclear education to minors emerges depending on the variables b 0 and B in a highly non-linear manner. It was also found that there exists an optimum condition for nuclear education to attain the maximum amelioration of public opinion under a given condition of man-power for educational workers. (author)

  15. Effects of electrospun chitosan wrapping for dry-ageing of beef, as studied by microbiological, physicochemical and low-field nuclear magnetic resonance analysis

    DEFF Research Database (Denmark)

    Guðjónsdóttir, María; Gacutan, Manuel D.; Mendes, Ana Carina Loureiro

    2015-01-01

    The effects of using electrospun chitosan fibres as a wrapping material for dry-ageing beef was studied and compared to traditional dry-ageing and wet-ageing of beef for up to 21 days. The chitosan treatment showed improved results in terms of yield, reduction of microbial counts, yeasts and moulds......, and lighter appearance compared to traditional dry-ageing. Weight and trimming losses were minimal in the wet-ageing beef. However, significant growth of lactic acid bacteria was observed in this group. Transverse relaxation times indicated a lower degree of muscle denaturation during ageing in the chitosan...... chitosan fibre mats have potential as a wrapping material for improved quality during dry-ageing of beef....

  16. The Role of the Regulator in the Field of Safety Culture to Shun Nuclear Accident

    International Nuclear Information System (INIS)

    Kandil, M.M.

    2016-01-01

    The 2011 accident at the Fukushima Daiichi nuclear power plant in Japan has, as might be expected, led to improvements in equipment at plants around the world that have fortified safety systems and allowed for better protection against rare, extreme natural events. Equally important to the process of improving nuclear safety is the emphasis placed on implementing quality improvements to the human side of nuclear safety, a crucial element that is often not considered by those outside the nuclear sector. Ensuring nuclear reactor safety is not only a question of physical protection against all credible threats, enhancing robustness of important safety systems and increasing redundancy of back-up power and water cooling systems, but also one of making certain that qualified and trained staff are supported by effective procedures. However, these assets are valued only in an organizational culture that places a premium on ensuring high levels of safety, or implementing what is called an effectivenuclear safety culture”. Principles, characteristics and factors for effective safety culture are to great extent similar between licencees and regulatory bodies and can be applied for developing RB’s safety. Safety is the primary purpose of the regulatory body, Regulator plays a significant role in the field of nuclear safety even though the prime responsibility for safety belongs to the operator, and it is the regulator which actually decides what is considered to be safe. In order to effectively implement the international principle of high level of nuclear safety, nuclear safety culture should be clearly named as an objective in international nuclear legal acts and the regulator’s responsibility for promotion of nuclear safety culture should be established. What is more difficult for the regulator is finding the right balance of firmness but fairness in dealing with the operator. In addition to enforcing safety regulations, the regulator should have a positive

  17. On the feasibility of neurocurrent imaging by low-field nuclear magnetic resonance

    Science.gov (United States)

    Burghoff, Martin; Albrecht, Hans-Helge; Hartwig, Stefan; Hilschenz, Ingo; Körber, Rainer; Höfner, Nora; Scheer, Hans-Jürgen; Voigt, Jens; Trahms, Lutz; Curio, Gabriel

    2010-06-01

    We describe a nuclear magnetic resonance (NMR) spectrometer operating at 20 μT with a frequency resolution of 2 mHz to determine the intrinsic linewidth of the proton resonance in the human brain to be about 3 Hz. Using the same system we measured a biomagnetic field of 0.5 to 1 pT amplitude, which was generated by sustained brain activity evoked during repetitive median nerve stimulation. From these data, the effect of neuronal currents on the proton NMR signal was estimated. We conclude that neuronal currents may cause a measurable shift of the proton NMR line of brain tissue in low-fields.

  18. Biological effects of electromagnetic fields

    International Nuclear Information System (INIS)

    David, E.

    1993-01-01

    In this generally intelligible article, the author describes at first the physical fundamentals of electromagnetic fields and their basic biological significance and effects for animals and human beings before dealing with the discussion regarding limiting values and dangers. The article treats possible connections with leukaemia as well as ith melatonine production more detailed. (vhe) [de

  19. Skyrme-Hartree-Fock in the realm of nuclear mean field models

    International Nuclear Information System (INIS)

    Reinhard, P.G.; Reiss, C.; Maruhn, J.; Bender, M.; Buervenich, T.; Greiner, W.

    2000-01-01

    We discuss and compare two brands of nuclear mean field models, the Skyrme-Hartree-Fock scheme (SHF) and the relativistic mean field model (RMF). Similarities and differences are worked out on a formal basis and with respect to the models performance in describing nuclear data. The bulk observables of stable nuclei are all described very well. Differences come up when extrapolating to exotic nuclei. The typically larger asymmetry energy in RMF leads to a larger neutron skin. Superheavy nuclei are found to be very sensitive on the single particle levels particularly on the spin orbit splitting. Ground state correlations from collective surface vibrations can have a significant effect on difference observables, as two-nucleon separation energy and two-nucleon shell gap. (author)

  20. The building of strategic information service in nuclear field facing to decision making

    International Nuclear Information System (INIS)

    Wang Yong; Xue Enjie; Yuan Huibin

    2010-01-01

    Objective: To study the structure of strategic information service system in nuclear field for decision making supporting. Methods: Investigating and studying the strategic information systems at different levels-domestic and overseas, regional and national, governmental and industrial as well as information departmental, putting forward the envisioning of strategic information service system in nuclear field. Results: The system is consisted of three parts: data part, data operating part using IT technology and service function part. The system can produce varied information outputs automatically based on rich information resources and IT technology under mathematical models. The information workers can analyze and study special strategic information needed based on this system. Conclusions: The envisioning for the system structure is feasible and it can be realized at present technology level. The service effect will be visible and the supporting to decision making will be weighty. (authors)

  1. Microscopic and Beyond-Mean-Field Constraints for a New Generation of Nuclear Energy Density Functionals

    International Nuclear Information System (INIS)

    Lesinski, Th.

    2008-09-01

    Nuclear structure is subject to a major renewal linked with the development of radioactive ion beams (such as the SPIRAL 1 and 2 beams at GANIL). Mean-field and density-functional methods are among the best suited for studying nuclei produced at such facilities. The present work aims at demonstrating how existing functionals can be improved so as to exhibit a better predictive power in little-explored regions of the nuclear chart. We propose a better description of the isospin-dependence of the effective interaction, and examine the relevance of adding a tensor coupling. We also show how a new generation of functionals can be better constrained by considering results obtained beyond the mean-field approximation. Finally, we attempt establishing a link with the bare nucleon-nucleon potential for the description of pairing, thus participating in the construction of a non-empirical functional. (author)

  2. Inflating with Large Effective Fields

    CERN Document Server

    Burgess, C P; Quevedo, F; Williams, M

    2014-01-01

    We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset $G/H$ (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple {\\em large-field} power laws (like $V \\propto \\phi^2$) and exponential potentials, $V(\\phi) = \\sum_{k} V_k \\; e^{-k \\phi/M}$. Both of these can describe the data well and give slo...

  3. Magnetic pseudo-fields in a rotating electron-nuclear spin system

    Science.gov (United States)

    Wood, A. A.; Lilette, E.; Fein, Y. Y.; Perunicic, V. S.; Hollenberg, L. C. L.; Scholten, R. E.; Martin, A. M.

    2017-11-01

    Analogous to the precession of a Foucault pendulum observed on the rotating Earth, a precessing spin observed in a rotating frame of reference appears frequency-shifted. This can be understood as arising from a magnetic pseudo-field in the rotating frame that nevertheless has physically significant consequences, such as the Barnett effect. To detect these pseudo-fields, a rotating-frame sensor is required. Here we use quantum sensors, nitrogen-vacancy (NV) centres, in a rapidly rotating diamond to detect pseudo-fields in the rotating frame. Whereas conventional magnetic fields induce precession at a rate proportional to the gyromagnetic ratio, rotation shifts the precession of all spins equally, and thus primarily affect 13C nuclear spins in the sample. We are thus able to explore these effects via quantum sensing in a rapidly rotating frame, and define a new approach to quantum control using rotationally induced nuclear spin-selective magnetic fields. This work provides an integral step towards realizing precision rotation sensing and quantum spin gyroscopes.

  4. Coordinated research project of the use of nuclear and related techniques in assessment of irrigation schedules of field crops to increase effective use of water in irrigation projects

    International Nuclear Information System (INIS)

    Anac, M.S.; Tuzel, I.H.; Anac, D.

    1995-01-01

    The study aimed at determining the followings; water consumptions. irrigation water requirements of new cotton variety N 84; specific growth stages of cotton which are less sensitive to stress so that the irrigation could be avoided without significant yield decrease; and interactions between deficit irrigation and nitrogen fertilizer use. The experiment was set up with 6 irrigation and three nitrogen fertilizer (0.60 , 120 kg.ha sup -1 ) treatments. The irrigation treatments employed single stress at vegetative, flowering and boll formation stages, in addition to full irrigation, continuous stress and the traditional practice. In stress conditions available soil water depleted to 75 - 80 %, whereas in normal irrigation the depletion was 40 % in 0.90 m. of root zone. In full irrigation treatment 8 irrigations were applied, whereas 3 or 4 irrigations were needed in continuous stress conditions. The number of irrigations were 6 or 7 for other stress treatments. Irrigation water applications varied form 424 to 751 mm. Seasonal ET were ranged between 659 and 899 mm. The highest monthly ET in august for all of the treatments. Daily ET were found to vary from 2.2 to 12.1 mm/day. The seed cotton yields, ky values and yield - N indices have indicated that the vegetative state was more sensitive to water stress. The stress at boll formation stage had slight effects on these parameters. Under limited water resource conditions, vegetative growth period of cotton should be given preference for irrigation, followed by flowering period. Omitting irrigation in boll formation period would result in 4.3 to 9.1 % water savings. Yield changes with respect to N rates showed that high N doses are accompanied by high yields. Nitrogen recoveries either from fertilizers or soil revealed high uptakes in full irrigation conditions. Nitrogen use efficiencies were also high in these conditions. Average of three years put forth that 19% of N in stress conditions and 29% in full irrigation were

  5. Atmospheric effects of a nuclear war

    International Nuclear Information System (INIS)

    Birks, J.W.

    1983-01-01

    The subject is discussed under the headings: nuclear war scenario (assumptions of size and place of explosions); fires; urban and forest fires; smoke and soot; darkness; meteorological and climatic effects; photochemical smog; ozone shield depletion; conclusions. (U.K.)

  6. Effective hamiltonian of the nuclear moments electronic shielding

    International Nuclear Information System (INIS)

    Zentsov, V.P.

    1990-01-01

    An information is given allowing to use the second quantization and the effective operator methods in the ligand field theory. The operator was constructed accounting for the interaction of the multi-shell electronic configurations through a one-particle perturbation V 0 . The expression obtained is believed to be useful in microscopic calculations and phenomenological interpretation of spectroscopic experiments. As an illustration, the effective hamiltonian of the nuclear moments electronic shielding has been deduced. It was found, in particular, that the dipolar part of the hyperfine interaction contributes to the shift of the nuclear g-factor in the systems with the electronic spin S>0. (orig.)

  7. Recent EU institutional developments in the nuclear field: outlook positive

    International Nuclear Information System (INIS)

    Ivens, Richard

    2008-01-01

    The main topics presented and discussed are:European Nuclear Energy Forum (ENEF); European Nuclear Installations Safety Standards (ENISS); High Level Group on Safety and Radioactive Waste (HLG); Sustainable Nuclear Energy Technology Platform (SNETP); Strategic Energy Technology Plan (SETP); EP report on Conventional Energies Forthcoming EU developments

  8. The nuclear energy and the greenhouse effect

    International Nuclear Information System (INIS)

    Marignac, Y.; Legrand, V.

    2003-01-01

    This article tackles the problem of greenhouse effect and asks the question to know if the development of nuclear energy constitutes the answer to this problem. It appears that the nuclear energy cannot solve in itself the problem of greenhouse effect. Others actions on energy demand, on transport ( that is a big consumer of petroleum and that represents 25% of world emissions) have to studied and need a real policy will. (N.C.)

  9. Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival.

    Science.gov (United States)

    Stacey, M; Fox, P; Buescher, S; Kolb, J

    2011-10-01

    We investigated the effects of nanosecond pulsed electric fields (nsPEF) on three human cell lines and demonstrated cell shrinkage, breakdown of the cytoskeleton, nuclear membrane and chromosomal telomere damage. There was a differential response between cell types coinciding with cell survival. Jurkat cells showed cytoskeleton, nuclear membrane and telomere damage that severely impacted cell survival compared to two adherent cell lines. Interestingly, disruption of the actin cytoskeleton in adherent cells prior to nsPEF exposure significantly reduced cell survival. We conclude that nsPEF applications are able to induce damage to the cytoskeleton and nuclear membrane. Telomere sequences, regions that tether and stabilize DNA to the nuclear membrane, are severely compromised as measured by a pan-telomere probe. Internal pore formation following nsPEF applications has been described as a factor in induced cell death. Here we suggest that nsPEF induced physical changes to the cell in addition to pore formation need to be considered as an alternative method of cell death. We suggest nsPEF electrochemical induced depolymerization of actin filaments may account for cytoskeleton and nuclear membrane anomalies leading to sensitization. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Expectation to nuclear medicine in the field of respiratory diseases

    International Nuclear Information System (INIS)

    Nishimoto, Yukio; Kambe, Masayuki; Miyazawa, Teruomi

    1981-01-01

    This paper describes an expectation to the nuclear medicine for the early detection of pulmonary function abnormalities. The expectation includes: (1) To fill up the functional and qualitative diagnosis of respiratory diseases, (2) To improve the clinical nuclear laboratory tests by such methods like no effort and no risk for examinee, (3) To detect in the early stage of local pulmonary abnormalities, (4) To develop the clinical nuclear laboratory tests in order to measure some pulmonary functions at the same times and continuously, (5) To simplify the procedures in the clinical nuclear laboratory tests, and (6) To combine the clinical pulmonary function tests and clinical nuclear laboratory tests. (author)

  11. Inflating with large effective fields

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P. [PH-TH Division, CERN, CH-1211, Genève 23 (Switzerland); Cicoli, M. [Dipartimento di Fisica e Astronomia, Università di Bologna, Via Irnerio 46, 40126 Bologna (Italy); Quevedo, F. [Abdus Salam ICTP, Strada Costiera 11, Trieste 34014 (Italy); Williams, M., E-mail: cburgess@perimeterinstitute.ca, E-mail: mcicoli@ictp.it, E-mail: f.quevedo@damtp.cam.ac.uk, E-mail: mwilliams@perimeterinsititute.ca [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton ON (Canada)

    2014-11-01

    We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset G/H (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple large-field power laws (like V ∝ φ{sup 2}) and exponential potentials, V(φ) = ∑{sub k}V{sub x}e{sup −kφ/M}. Both of these can describe the data well and give slow-roll inflation for large fields without the need for a precise balancing of terms in the potential. The exponential potentials achieve large r through the limit |η| || ε and so predict r ≅ (8/3)(1-n{sub s}); consequently n{sub s} ≅ 0.96 gives r ≅ 0.11 but not much larger (and so could be ruled out as measurements on r and n{sub s} improve). We examine the naturalness issues for these models and give simple examples where symmetries protect these forms, using both pseudo-Goldstone inflatons (with non-abelian non-compact shift symmetries following familiar techniques from chiral perturbation theory) and extra-dimensional models.

  12. Inflating with large effective fields

    Science.gov (United States)

    Burgess, C. P.; Cicoli, M.; Quevedo, F.; Williams, M.

    2014-11-01

    We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset G/H (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple large-field power laws (like V propto phi2) and exponential potentials, V(phi) = ∑kVxe-kphi/M. Both of these can describe the data well and give slow-roll inflation for large fields without the need for a precise balancing of terms in the potential. The exponential potentials achieve large r through the limit |η| ll epsilon and so predict r simeq (8/3)(1-ns) consequently ns simeq 0.96 gives r simeq 0.11 but not much larger (and so could be ruled out as measurements on r and ns improve). We examine the naturalness issues for these models and give simple examples where symmetries protect these forms, using both pseudo-Goldstone inflatons (with non-abelian non-compact shift symmetries following familiar techniques from chiral perturbation theory) and extra-dimensional models.

  13. Development of training courses in the field of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Young; Soe, In Seok; Lee, Ui Jin; Park, Jae Chang; Kim, Ik Hyeon; Won, Jong Yeol; Nam, Jae Yeol

    1993-12-01

    The nuclear training center provides various training courses in such areas of nuclear energy as nuclear power technology, radioisotope applications technology, non-destructive technology, nuclear safety, etc. The center also provides in-house staff training courses in project management, computer applications, and other research areas. The objective of the project is to develop new specialized training courses not only nuclear energy areas but also in management, so that localization of nuclear project can be accomplished as early as possible. The scope and contents of the project envision the following aims; 1. to develop specialized nuclear training programs; 2. to develop project management training courses for KAERI staff; 3. to collect and analyze foreign training programs and materials; 4. to develop foreign-assisted training courses; and 5. to develop international training courses for developing country trainese

  14. Nuclear energy and the greenhouse effect

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1990-01-01

    The extent and nature of the greenhouse effect are examined and placed in an environmental and historical context. The effect of energy policies on the greenhouse effect are discussed and the offending countries are identified. What energy policies would mitigate the greenhouse effect, and yet make good sense whether or not the effect proves to be real? Conservation is a desirable though not completely understood strategy. Conservation may not be a better bet in every instance than is increase in supply. If the greenhouse effect turns out to be real, nuclear energy can be one of the supply options that we turn to. If the greenhouse effect turns out to be false, and acceptable, economic nuclear option is surely better than one that does nothing but create strife and dissension. Let us remember that nuclear energy is the only large-scale non-fossil source other than hydropower that has been demonstrated to be practical. (author)

  15. Modeling quantization effects in field effect transistors

    CERN Document Server

    Troger, C

    2001-01-01

    Numerical simulation in the field of semiconductor device development advanced to a valuable, cost-effective and flexible facility. The most widely used simulators are based on classical models, as they need to satisfy time and memory constraints. To improve the performance of field effect transistors such as MOSFETs and HEMTs these devices are continuously scaled down in their dimensions. Consequently the characteristics of such devices are getting more and more determined by quantum mechanical effects arising from strong transversal fields in the channel. In this work an approach based on a two-dimensional electron gas is used to describe the confinement of the carriers. Quantization is considered in one direction only. For the derivation of a one-dimensional Schroedinger equation in the effective mass framework a non-parabolic correction for the energy dispersion due to Kane is included. For each subband a non-parabolic dispersion relation characterized by subband masses and subband non-parabolicity coeffi...

  16. Neutrino detector for the nuclear power plant in Belarus and description of the neutrino field

    Science.gov (United States)

    Gilewsky, V. V.

    2017-11-01

    The possibility and desirability of constructing a neutrino detector near the Belarus Nuclear Power Plant are justified. Possible ways of describing the neutrino field are analyzed. A convenient decomposition of the Dirac field into two Majorana ones is found.

  17. Status, prospects and possibilities of international harmonization in the field of nuclear energy law

    International Nuclear Information System (INIS)

    Pelzer, N.

    1986-01-01

    In September 1985, the 7th international conference of the Association Internationale du Droit Nucleaire (AIDN)/International Nuclear Law Association (INLA), Nuclear Inter Jura '85, was held in Constance (Lake Constance), with the title 'Status, prospects and possibilities of international harmonization in the field of nuclear energy law'. Four working sessions were devoted to the issues 'Licensing and decommissioning of nuclear installations', 'Nuclear liability', 'Nuclear exportation and importation', and 'International standards of radiation protection'. In the fields of liability and radiation protection, harmonization has been achieved to a high degree, in the two remaining fields harmonization is deemed useful. The volume provides for a handbook of the international nuclear law in force. (CW) [de

  18. Isospin-dependent properties of asymmetric nuclear matter in relativistic mean-field models

    OpenAIRE

    Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An

    2007-01-01

    Using various relativistic mean-field models, including the nonlinear ones with meson field self-interactions, those with density-dependent meson-nucleon couplings, and the point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compare the results with the constra...

  19. Pion propagator in relativistic quantum field theories of the nuclear many-body problem

    International Nuclear Information System (INIS)

    Matsui, T.; Serot, B.D.

    1982-01-01

    Pion interactions in the nuclear medium are studied using renormalizable relativistic quantum field theories. Previous studies using pseudoscalar πN coupling encountered difficulties due to the large strength of the πNN vertex. We therefore formulate renormalizable field theories with pseudovector πN coupling using techniques introduced by Weinberg and Schwinger. Calculations are performed for two specific models; the scalar-vector theory of Walecka, extended to include π and rho mesons in a non-chiral fashion, and the linear sigma-model with an additional neutral vector meson. Both models qualitatively reproduce low-energy πN phenomenology and lead to nuclear matter saturation in the relativistic Hartree formalism, which includes baryon vacuum fluctuations. The pions propagator is evaluated in the one-nucleon-loop approximation, which corresponds to a relativistic random-phase approximation built on the Hartree ground state. Virtual NN-bar loops are included, and suitable renormalization techniques are illustrated. The local-density approximation is used to compare the threshold pion self-energy to the s-wave pion-nucleus optical potential. In the non-chiral model, s-wave pion-nucleus scattering is too large in both pseudoscalar and pseudovector calculations, indicating that additional constraints must be imposed on the Lagrangian. In the chiral model, the threshold self-energy vanishes automatically in the pseudovector case, but does so for pseudoscalar coupling only if the baryon effective mass is chosen self-consistently Since extrapolation from free space to nuclear density can lead to large effects, pion propagation in the medium can determine which πN coupling is more suitable for the relativistic nuclear many-body problem. Conversely, pion interactions constrain the model Lagrangian and the nuclear matter equation of state. An approximately chiral model with pseudovector coupling is favored

  20. Field Effect Transistor in Nanoscale

    Science.gov (United States)

    2017-04-26

    significant alteration in transport behaviour of these molecular junctions. 15. SUBJECT TERMS Theory , Nanoscale, Field Effect Transistor (FET), Devices...Density Functional Theory (DFT), Non-equilibrium Green Function 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES     13...Keep in mind the amount of funding you received relative to the amount of effort you put into the report. References: 1. J. R. Heath and M

  1. Effective potentials for twisted fields

    International Nuclear Information System (INIS)

    Banach, R.

    1981-01-01

    Minus the density of the effective action, evaluated at the lowest eigenfunction of the (space-time) derivative part of the second (functional) derivative of the classical action, is proposed as a generalised definition of the effective potential, applicable to twisted as well as untwisted sectors of a field theory. The proposal is corroborated by several specific calculations in the twisted sector, namely phi 4 theory (real and complex) and wrong-sign-Gordon theory, in an Einstein cylinder, where the exact integrability of the static solutions confirms the effective potential predictions. Both models exhibit a phase transition, which the effective potential locates, and the one-loop quantum shift in the critical radius is computed for the real phi 4 model, being a universal result. Topological mass generation at the classical level is pointed out, and the exactness of the classical effective potential approximation for complex phi 4 is discussed. (author)

  2. The effective crystal field potential

    CERN Document Server

    Mulak, J

    2000-01-01

    As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, ar...

  3. Isospin effects on collective nuclear dynamics

    CERN Document Server

    Di Toro, M; Baran, V; Larionov, A B

    1999-01-01

    We suggest several ways to study properties of the symmetry term in the nuclear equation of state, EOS, from collective modes in beta-unstable nuclei. After a general discussion on compressibility and saturation density in asymmetric nuclear matter we show some predictions on the collective response based on the solution of generalized Landau dispersion relations. Isoscalar-isovector coupling, disappearance of collectivity and possibility of new instabilities in low and high density regions are discussed with accent on their relation to the symmetry term of effective forces. The onset of chemical plus mechanical instabilities in a dilute asymmetric nuclear matter is discussed with reference to new features in fragmentation reactions.

  4. Activities and cooperation in nuclear data field in China during 2000

    International Nuclear Information System (INIS)

    Zhuang Youxiang

    2001-01-01

    The paper includes follow contents: 1. meetings held in China in 2000, 2. the international meetings and workshops in nuclear data field attended by staffs of CNDC in 2000, 3. the foreign scientists in nuclear data field visited CNDC/CIAE in 2000, 4. staff of CNDC worked in or visited foreign country

  5. Casimir effect for interacting fields

    International Nuclear Information System (INIS)

    Kay, B.S.

    1982-01-01

    The author discusses some recent work on the Casimir effect: that is the problem of renormalizing Tsub(μγ) on locally-flat space-times. That is on space-times which, while topologically non-trivial are locally Minkowskian - with vanishing local curvature. The author has developed a systematic method for calculating this Casimir effect for interacting fields to arbitrary order in perturbation theory - and for arbitrary components of Tsub(μγ) which he describes in general and then illustrates it by describing first order perturbation theory calculations for a lambdaphi 4 theory for the two models: the cylinder space-time and the parallel plates. (Auth.)

  6. The civil liability insurance in the nuclear field

    International Nuclear Information System (INIS)

    Francis, H.W.

    1980-01-01

    The total civil liability of the nuclear facilities operator by nuclear damages against a thirty party is analysed, based on the rules of Paris, Vienna and Brussels conventions. It is also commented the nuclear facilities' operator responsability for the risks caused the reactor and other local installations. Besides, it is mentioned how an insurance policy of civil liability must be made, emphasizing that the insurance contract will always be based on the nuclear legislation of each country according to the international conventions. (A.L.) [pt

  7. The Hungarian youth's knowledge and attitude in the nuclear field

    International Nuclear Information System (INIS)

    Petoefi, G.; Legradi, G.

    2000-01-01

    The Hungarian Youth for Nuclear (FINE) was established in 1999 as the Hungarian branch of the Young Generation Network. Our purpose is to remove the misconceptions and fears that have arisen around the nuclear techniques, mainly nuclear energetics, and to reply to the questions brought up by the Hungarian youth on this topic. This year, our main activity was to take part in the Student Island with a Nuclear-tent. In this paper we delineate our experience that we have gained with the help of our programmes about the attitude and knowledge of the Hungarian youth. (authors)

  8. The Hungarian youth's knowledge and attitude in the nuclear field

    International Nuclear Information System (INIS)

    Petofi, G.; Legradi, G.

    2001-01-01

    The Young People for the Nuclear Energetics (FINE) was established in 1999 as the Hungarian branch of the Young Generation Network. Our purpose is to remove the misbelieves and fears arisen around the nuclear techniques and mainly the nuclear energetics and to reply the questions brought up by the Hungarian youth in this topic. In this year our main activity was to take part in the Student Island festival with a Nuclear-tent. In this paper our experience is delineated what we drawn with the help of our programmes about the attitude and the knowledge of the youth. (authors)

  9. Gamma decay and nuclear reactions in a field of an intensive electromagnetic wave

    International Nuclear Information System (INIS)

    Dobrynin, Yu.L.; Zaretskij, D.F.; Lomonosov, V.V.

    1979-01-01

    The effect of a laser radiation field on the value of nuclear reaction cross sections is investigated. In the dipole nonrelativistic approximation considered is the interaction of an electromagnetic field with an ion, in the nucleus of which γ transition occurs from one energy level to another. The expression for the probability of γ transition in the laser field has been obtained. Resonance neutron scattering on the isolated level of a compound nucleus is considered. The conclusion has been done, that in strong electromagnetic fields the amplitudes of inelastic neutron scattering at the excited level of the compound nucleus obtain additional satellites, which are away the value, equal to +-ω (approximately 0.12 eV energy of CO 2 laser) from the main pole. It is shown, that in the field of a strong electromagnetic wave a nonrecoil emission of γ quanta is possible in laser plasma resulted from the stimulated emission (absorption) of quanta of an electromagnetic field by an ion. Considered is the effect of a strong electromagnetic wave on the value of the cross sections of inelastic neutron interaction with nucleus near the level of the compound nucleus. Laser parameters, which is necessary for the observation of the effects considered, are estimated

  10. Isospin effects in nuclear vibrations

    International Nuclear Information System (INIS)

    Madsen, V.A.; Brown, V.R.

    1984-09-01

    A review of the evidence that the ratio of neutron and proton multipole matrix elements for collective vibrations in single-closed-shell nuclei differ systematically from N/Z is presented. A theoretical framework is given for understanding the data on the basis of the ideas of core polarization. It follows that nuclear deformation parameters are probe dependent and that analysis of excitations by two different probes such as (p,p') and (n,n') can, in principle, give the ratio M/sub n//M/sub p/. Application is made to first 2 + states of open shell nuclei. Trends of M/sub n//M/sub p/ for higher 2 + states are presented. Expected systematics of M/sub n//M/sub p/ ratios for giant isoscalar quadrupole transitions are presented. 22 references

  11. Fringing-field effects in acceleration columns

    International Nuclear Information System (INIS)

    Yavor, M.I.; Weick, H.; Wollnik, H.

    1999-01-01

    Fringing-field effects in acceleration columns are investigated, based on the fringing-field integral method. Transfer matrices at the effective boundaries of the acceleration column are obtained, as well as the general transfer matrix of the region separating two homogeneous electrostatic fields with different field strengths. The accuracy of the fringing-field integral method is investigated

  12. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  13. An Effective Method For Nuclear Technology Transfer

    International Nuclear Information System (INIS)

    Jeon, Jan Pung

    1987-01-01

    Three basic entities involved in the implementation of nuclear projects are the Owner, Regulatory Authority and Nuclear Industry. Their ultimate objective is to secure the safe, reliable and economical nuclear energy. For s successful nuclear power program, the owner should maintain a good relationship with the other entities and pursue an optimization of the objectives. On the other hand, he should manage projects along the well - planned paths in order to effectively learn the nuclear technology. One of the problems in the nuclear projects of developing countries was the absence of long - term technology development program, a limited local participation and the technical incapability. For the effective technology transfer, a motivation of the technology supplier and a readiness of the recipient to accommodate such technologies are required. Advanced technology is usually developed at considerable expense with the expectation that the developer will use it in furthering his own business. Therefore, he tends to be reluctant to transfer it to the others, particularly, to the potential competitors. There is a disinclination against further technology transfer beyond the minimum contractual obligation or the requirements by Government Regulatory. So, an additional commercial incentive must be provided to the developer

  14. Deregulation and Nuclear Training: Cost Effective Alternatives

    International Nuclear Information System (INIS)

    Richard P. Coe; Patricia A. Lake

    2000-01-01

    Training is crucial to the success of any organization. It is also expensive, with some estimates exceeding $50 billion annually spent on training by U.S. corporations. Nuclear training, like that of many other highly technical organizations, is both crucial and costly. It is unlikely that the amount of training can be significantly reduced. If anything, current trends indicate that training needs will probably increase as the industry and workforce ages and changes. With the advent of energy deregulation in the United States, greater pressures will surface to make the costs of energy more cost-competitive. This in turn will drive businesses to more closely examine existing costs and find ways to do things in a more cost-effective way. The commercial nuclear industry will be no exception, and nuclear training will be equally affected. It is time for nuclear training and indeed the entire nuclear industry to begin using more aggressive techniques to reduce costs. This includes the need for nuclear training to find alternatives to traditional methods for the delivery of cost-effective high-quality training that meets regulatory requirements and produces well-qualified personnel capable of working in an efficient and safe manner. Computer-based and/or Web-based training are leading emerging technologies

  15. Ambipolar phosphorene field effect transistor.

    Science.gov (United States)

    Das, Saptarshi; Demarteau, Marcel; Roelofs, Andreas

    2014-11-25

    In this article, we demonstrate enhanced electron and hole transport in few-layer phosphorene field effect transistors (FETs) using titanium as the source/drain contact electrode and 20 nm SiO2 as the back gate dielectric. The field effect mobility values were extracted to be ∼38 cm(2)/Vs for electrons and ∼172 cm(2)/Vs for the holes. On the basis of our experimental data, we also comprehensively discuss how the contact resistances arising due to the Schottky barriers at the source and the drain end effect the different regime of the device characteristics and ultimately limit the ON state performance. We also propose and implement a novel technique for extracting the transport gap as well as the Schottky barrier height at the metal-phosphorene contact interface from the ambipolar transfer characteristics of the phosphorene FETs. This robust technique is applicable to any ultrathin body semiconductor which demonstrates symmetric ambipolar conduction. Finally, we demonstrate a high gain, high noise margin, chemical doping free, and fully complementary logic inverter based on ambipolar phosphorene FETs.

  16. Studies of Health Effects from Nuclear Testing near the Semipalatinsk Nuclear Test Site, Kazakhstan

    Directory of Open Access Journals (Sweden)

    Bernd Grosche

    2015-05-01

    Full Text Available The nuclear bomb testing conducted at the Semipalatinsk nuclear test site in Kazakhstan is of great importance for today’s radiation protection research, particularly in the area of low dose exposures. This type of radiation is of particular interest due to the lack of research in this field and how it impacts population health. In order to understand the possible health effects of nuclear bomb testing, it is important to determine what studies have been conducted on the effects of low dose exposure and dosimetry, and evaluate new epidemiologic data and biological material collected from populations living in proximity to the test site. With time, new epidemiological data has been made available, and it is possible that these data may be linked to biological samples. Next to linking existing and newly available data to examine health effects, the existing dosimetry system needs to be expanded and further developed to include residential areas, which have not yet been taken into account. The aim of this paper is to provide an overview of previous studies evaluating the health effects of nuclear testing, including some information on dosimetry efforts, and pointing out directions for future epidemiologic studies.

  17. Shell effects in the nuclear deformation energy

    International Nuclear Information System (INIS)

    Ross, C.K.

    1973-01-01

    A new approach to shell effects in the Strutinsky method for calculating nuclear deformation energy is evaluated and the suggestion of non-conservation of angular momentum in the same method is resolved. Shell effects on the deformation energy in rotational bands of deformed nuclei are discussed. (B.F.G.)

  18. Nuclear force and the EMC effect

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2015-04-01

    Full Text Available A linear correlation is shown quantitatively between the magnitude of the EMC effect measured in electron deep inelastic scattering (DIS and the nuclear residual strong interaction energy (RSIE obtained from nuclear binding energy subtracting the Coulomb energy contribution. This phenomenological relationship is used to extract the size of in-medium correction (IMC effect on deuteron and to predict the EMC slopes |dREMC/dx| of various nuclei. We further investigate the correlations between RSIE and other quantities which are related to the EMC effect. The observed correlations among RSIE, EMC slope and SRC ratio R2NNtotal/Nnp(S13 imply that the local nuclear environment drives the modification of quark distributions.

  19. Novel 1H low field nuclear magnetic resonance applications for the field of biodiesel

    Science.gov (United States)

    2013-01-01

    Background Biodiesel production has increased dramatically over the last decade, raising the need for new rapid and non-destructive analytical tools and technologies. 1H Low Field Nuclear Magnetic Resonance (LF-NMR) applications, which offer great potential to the field of biodiesel, have been developed by the Phyto Lipid Biotechnology Lab research team in the last few years. Results Supervised and un-supervised chemometric tools are suggested for screening new alternative biodiesel feedstocks according to oil content and viscosity. The tools allowed assignment into viscosity groups of biodiesel-petrodiesel samples whose viscosity is unknown, and uncovered biodiesel samples that have residues of unreacted acylglycerol and/or methanol, and poorly separated and cleaned glycerol and water. In the case of composite materials, relaxation time distribution, and cross-correlation methods were successfully applied to differentiate components. Continuous distributed methods were also applied to calculate the yield of the transesterification reaction, and thus monitor the progress of the common and in-situ transesterification reactions, offering a tool for optimization of reaction parameters. Conclusions Comprehensive applied tools are detailed for the characterization of new alternative biodiesel resources in their whole conformation, monitoring of the biodiesel transesterification reaction, and quality evaluation of the final product, using a non-invasive and non-destructive technology that is new to the biodiesel research area. A new integrated computational-experimental approach for analysis of 1H LF-NMR relaxometry data is also presented, suggesting improved solution stability and peak resolution. PMID:23590829

  20. Regulatory aspects of emergency action in the nuclear field

    International Nuclear Information System (INIS)

    Glaize, G.

    1981-10-01

    This paper describes in detail, on the basis of French national legislation and international recommendations and agreements, emergency schemes to be implemented in the event of a nuclear or radiological incident. (NEA) [fr

  1. Covariance methods and practices in the field of nuclear data

    International Nuclear Information System (INIS)

    Piksaikin, V.

    1988-01-01

    This document contains the 14 invited papers presented at the quoted meeting and summarizes the conclusions and recommendations that arose from the discussions during this meeting. Special emphasis was given to the treatment of correlated neutron nuclear data in fission and fusion reactor applications including computations related to neutron dosimetry and neutron spectra, fission-product yield data, and evaluated nuclear data files. (author). Refs, figs and tabs

  2. Construction of new education system on nuclear energy and radiation after experience of Fukushima Daiichi Nuclear Power Plant accident. Improvement of response capability of educational fields against nuclear power plant accident

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Chida, Mitsuhisa; Sakurai, Fumio; Hirose, Masami

    2011-01-01

    Fukushima Daiichi Nuclear Power Plant (NPP) accident brought about confusion in elementary and secondary educational fields due to lack of teacher's knowledge of nuclear power, radiation safety and protection, and information about regional radiation and radioactivity data. In order to improve their response capability against NPP accident to secure safety of the pupil and student, new education system on nuclear energy and radiation was constructed such as educational course of 'nuclear energy and radiation safety' for pre-service teacher training system faculty students and training course of 'radiation dose measurement and evaluation' for in-service teacher and professors. Feasibility studies were also performed to construct information network for supporting schools at NPP accident so as to provide effective information about radiation and radioactivity data for educational fields. (T. Tanaka)

  3. Biological effects of nuclear radiation

    International Nuclear Information System (INIS)

    Hotz, G.

    1975-01-01

    After a brief survey about the main radiobiological effects caused by ionizing radiation, human symptoms after irradiation and incorporation are shown. The special radiotoxic effect of radionuclides which are chemically associated with metabolism-specific elements such as calcium and potassium is shown and methods of treatment are indicated. (ORU) [de

  4. Realistic effective interactions for nuclear systems

    International Nuclear Information System (INIS)

    Hjort-Jensen, M.; Osnes, E.; Kuo, T.T.S.

    1994-09-01

    A review of perturbative many-body descriptions of several nuclear systems is presented. Symmetric and asymmetric nuclear matter and finite nuclei with few valence particles are examples of systems considered. The many-body description starts with the most recent meson-exchange potential models for the nucleon-nucleon interaction, an interaction which in turn is used in perturbative schemes to evaluate the effective interaction for finite nuclei and infinite nuclear matter. A unified perturbative approach based on time-dependent perturbation theory is elaborated. For finite nuclei new results are presented for the effective interaction and the energy spectra in the mass areas of oxygen, calcium and tin. 166 refs., 83 refs., 21 tabs

  5. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.; Corrales, L. Rene; Ness, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Thevuthasan, Suntharampillai; Icenhower, Jonathan P.; McGrail, B. Peter; Devanathan, Ramaswami; Van Ginhoven, Renee M.; Song, Jakyoung; Park, Byeongwon; Jiang, Weilin; Begg, Bruce D.; Birtcher, R. B.; Chen, X.; Conradson, Steven D.

    2000-10-02

    Radiation effects from the decay of radionuclides may impact the long-term performance and stability of nuclear waste forms and stabilized nuclear materials. In an effort to address these concerns, the objective of this project was the development of fundamental understanding of radiation effects in glasses and ceramics, particularly on solid-state radiation effects and their influence on aqueous dissolution kinetics. This study has employed experimental, theoretical and computer simulation methods to obtain new results and insights into radiation damage processes and to initiate the development of predictive models. Consequently, the research that has been performed under this project has significant implications for the High-Level Waste and Nuclear Materials focus areas within the current DOE/EM mission. In the High-Level Waste (HLW) focus area, the results of this research could lead to improvements in the understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials focus area, the results of this research could lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. Ultimately, this research could result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  6. Effective Methods of Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Shave, D. F.; Kent, G. F.; Giambusso, A.

    1987-01-01

    An effective technology transfer program is a necessary and significant step towards independence in nuclear power technology. Attaining success in the conduct of such a program is a result of a) the donor and recipient jointly understanding the fundamental concepts of the learning process, b) sharing a mutual philosophy involving a partnership relationship, c) joint and careful planning, d) rigorous adherence to proven project management techniques, and e) presence of adequate feedback to assure continuing success as the program proceeds. Several years ago, KEPCO President Park, Jung-KI presented a paper on technology in which he stated, 'Nuclear technology is an integration of many unit disciplines, and thus requires extensive investment and training in order to establish the base for efficient absorption of transferred technology.' This paper addresses President Park's observations by discussing the philosophy, approach, and mechanisms that are necessary to support an efficient and effective process of nuclear power technology transfer. All technical content and presentation methods discussed are based on a technology transfer program developed by Stone and Webster, as an Engineer/Constructor for nuclear power plants, and are designed and implemented to promote the primary program goal - the ability of the trainees and the organization to perform specific nuclear power related multi-discipline function independently and competitively

  7. International Cooperation of the Republic of Croatia in the Field of Nuclear Safety

    International Nuclear Information System (INIS)

    Novosel, N.; Rosandic, L.

    2010-01-01

    International cooperation of the Republic of Croatia in the field of nuclear safety can be divided in two parts - political part, for which the Ministry of Foreign Affairs and European Integration is responsible, and technical part, for which the State Office for Nuclear Safety is responsible, in cooperation with other state administration bodies, where applicable. According to the Nuclear Safety Act (OG 73/2003) the State Office for Nuclear Safety: 'coordinates technical cooperation with the International Atomic Energy Agency for all participants from the Republic of Croatia'; 'fulfills the obligations which the Republic of Croatia has assumed through international conventions and bilateral agreements concerning nuclear safety and the application of protective measures aimed at the non-proliferation of nuclear weapons' and 'cooperates with international organizations and associations in the area of nuclear safety, and appoints its own expert representatives to take part in the work of such organizations and associations or to monitor their work'. In this paper various aspects of the technical cooperation with the International Atomic Energy Agency, as well as international conventions and bilateral agreements in the field of nuclear safety, will be presented. Also, cooperation with other international organizations and associations in the nuclear area, such as Nuclear Suppliers Group, Zangger Committee, Wassenaar Arrangement, Comprehensive Nuclear-Test-Ban Treaty Organization, Euratom and certain civil expert groups of NATO, will be described.(author).

  8. Engineering effects of underground nuclear explosions

    International Nuclear Information System (INIS)

    Boardman, Charles R.

    1970-01-01

    Useful effects of contained underground nuclear explosions are discussed in light of today's most promising potential applications. Relevant data obtained through exploration of explosion environments of nine U.S. tests in competent rock are summarized and presented as a practical basis for estimating magnitudes of effects. Effects discussed include chimney configuration, permeability, and volume as well as rubble particle size distributions and extents of permeability change in the chimney wall rock. Explosion mediums include shale, granite, dolomite, and salt. (author)

  9. Effectively Managing Nuclear Risk Through Human Performance Improvement

    International Nuclear Information System (INIS)

    Coe, Richard; Lake, Patricia

    2003-01-01

    The U.S. commercial nuclear industry has just completed an outstanding decade of plant performance. Safety levels and electric production are at unprecedented high levels and continue to exceed even high industry goals. Nuclear energy continues to keep the highest priority on performance improvement programs and highly trained and qualified people that maintain its record setting safety and reliability of operations. While the industry has maintained a high level of performance, the advent of deregulation and the consolidation of nuclear power plant ownership, as well as the current climate for concern about both rising energy costs and the availability of power, have raised the standard for nuclear energy's level of competitiveness in today's market place. The resulting challenge is how to more effectively manage risk and to improve performance even further in a generally high-performing industry. One of the most effective ways to develop this culture is to apply the principles of Hum an Performance Technology, or HPT. HPT is a relatively new field. Its principles are derived from the research and practice of behavioral and cognitive psychologists, instructional technologists, training designers, organizational developers, and various human resource specialists. Using the principles of HPT can help the nuclear industry successfully meet ever-changing environmental and business demands

  10. Nuclear deformation: a proton-neutron effect

    International Nuclear Information System (INIS)

    Dobaczewski, J.

    1988-01-01

    The Hartree-Fock plus BCS method with the Skyrme interaction is used to analyse the equilibrium deformations of nuclei in the A≅100 region. It is shown that the theoretical results are consistent with the N n N p classification scheme. Relations between the nuclear deformation effects and the neutron-proton interaction are discussed

  11. Consequences of the center-of-mass correction in nuclear mean-field models

    International Nuclear Information System (INIS)

    Bender, M.; Rutz, K.; Reinhard, P.G.; Maruhn, J.A.

    2000-01-01

    We study the influence of the scheme for the correction for spurious center-of-mass motion on the fit of effective interactions for self-consistent nuclear mean-field calculations. We find that interactions with very simple center-of-mass correction have significantly larger surface coefficients than interactions for which the center-of-mass correction was calculated for the actual many-body state during the fit. The reason for that is that the effective interaction has to counteract the wrong trends with nucleon number of all simplified schemes for center-of-mass correction which puts a wrong trend with mass number into the effective interaction itself. The effect becomes clearly visible when looking at the deformation energy of largely deformed systems, e.g. superdeformed states or fission barriers of heavy nuclei. (orig.)

  12. A Study on Human Resources Development in Nuclear Field

    International Nuclear Information System (INIS)

    Moon, Keehwan; Lee, M. K.; Kim, S. S.; Nam, J. H.; Won, B. C.; Lee, D. S; Hwang, I. A.; Seo, M. W.

    2011-11-01

    The study encompasses 4 major parts, each results being described here under: Various policy alternatives through supply-demand analysis of domestic nuclear skilled manpower are suggested. Human resources development programs of main educational organizations in domestic and overseas are comprehensively reviewed. Establishment of 'Integrated Management Organization' which can combine and manage domestic educational organizations' educational functions is necessary to efficiently deal with the increased educational demand and the shift of educational paradigm from supply-driven to needs-driven education and to make nuclear energy export sustainable. And road map on human resource development to efficiently accomplish 'Integrated Management Organization's mission is suggested. It is provided that an overall strategies for the reasonable educational program reflecting the good practices with their implications in overseas nuclear education programs

  13. ILK statement about the preservation of competence in the nuclear field in Germany

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The rapid expansion of nuclear power in many countries was accompanied by an equally rapid buildup of personnel in research and education. German universities had established curricula tailored to the needs of nuclear technology. When the buildup phase had come to an end, manpower was reduced especially in the vendor industries. Over the past ten years, many German universities have adapted to this development by either discontinuing or greatly restricting courses in nuclear technology. ILK is afraid that the progressive reduction of nuclear technology education - also against the background of the opt-out of the use of nuclear power preferred by the German federal government - and a persistently low level of interest, especially among qualified young scientists and engineers, in nuclear technology studies could give rise to a situation in which the preservation of knowledge and know-how in nuclear technology as well as that of a core of competent personnel could be jeopardized. Today's requirements include not only in-depth education in nuclear technology but also the ability to acquire elementary knowledge in the field within the framework of basic studies, or a general studies course, as an interdisciplinary approach. Moreover, education in nuclear technology should not be limited to 'classical' nuclear reactor technology and reactor physics, but increasingly take into account aspects of radiation protection, radiobiology, waste management, systems analysis, risk management, and also nuclear law. More detailed recommendations are given of a systematic approach to the requirements of qualified, comprehensive education in nuclear technology and its structural requirements. (orig.)

  14. Ecological effects of nuclear radiation

    International Nuclear Information System (INIS)

    Jordan, C.F.

    1986-01-01

    Particular kinds of environmental perturbation are essentially replicated in many places. Because no two sites are identical, detailed prediction of effects requires knowledge of the ecosystem in question. Much can be learned, however, by carrying out generic studies designed to discover results of general applicability to many conditions. Studies supported by the U.S. Atomic Energy Commission to determine the effects of radiation on living organisms and how radionuclides move through natural environments have been the most extensive attempts to use a generic approach to obtain information required for making major policy decisions. This case study summarizes and analyzes these studies and their contributions both to the solution of problems at which they were directed and to ecological theory generally

  15. Recommendable Practices for Effective Nuclear Crisis Communication

    International Nuclear Information System (INIS)

    Lee, Chang Ju; Hah, Yeon Hee

    2011-01-01

    'Crisis communication' refers one of the activities done by the Nuclear Regulatory Organizations (NROs) in order to protect the public and the environment from the possible harmful effects. As denoted by the BMU, German NRO, crisis communication is not only 'public information' or 'information for the public', but also communication between authorities in order to guarantee that public information is consistent. This study proposes some recommendable practices for developing a guideline of well-prepared nuclear crisis communication system, including its management framework, and for introducing good insights, based on the study of international aspects provided by relevant OECD/NEA WPGC (Working Group on Public Communication for Nuclear Regulatory Organizations)i working group

  16. Climatic Effects of Regional Nuclear War

    Science.gov (United States)

    Oman, Luke D.

    2011-01-01

    We use a modern climate model and new estimates of smoke generated by fires in contemporary cities to calculate the response of the climate system to a regional nuclear war between emerging third world nuclear powers using 100 Hiroshima-size bombs (less than 0.03% of the explosive yield of the current global nuclear arsenal) on cities in the subtropics. We find significant cooling and reductions of precipitation lasting years, which would impact the global food supply. The climate changes are large and longlasting because the fuel loadings in modern cities are quite high and the subtropical solar insolation heats the resulting smoke cloud and lofts it into the high stratosphere, where removal mechanisms are slow. While the climate changes are less dramatic than found in previous "nuclear winter" simulations of a massive nuclear exchange between the superpowers, because less smoke is emitted, the changes seem to be more persistent because of improvements in representing aerosol processes and microphysical/dynamical interactions, including radiative heating effects, in newer global climate system models. The assumptions and calculations that go into these conclusions will be described.

  17. Effective Nuclear Regulatory Systems Facing Safety and Security Challenges

    International Nuclear Information System (INIS)

    Debbabi, K.

    2016-01-01

    Nuclear regulators should not actively take part in issues concerning nuclear energy policy. Their essential function is to contribute as effectively as possible to nuclear safety. The principal focus will be on the application of this concept since the Fukushima Daiichi nuclear accident. By using a comparative approach, this paper will address the measures taken by various countries to ensure the independence of their respective nuclear regulator, especially in light of the recent nuclear accident. (author)

  18. Surface effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

    1997-06-01

    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  19. Dosimetry of the Embalse nuclear power plant neutron/gamma mixed fields

    International Nuclear Information System (INIS)

    Salas, C.A.

    1990-01-01

    The aim of this work is to describe the method used at the Embalse nuclear power plant for carrying out personal dosimetry of the agents affected to the tasks on the Embalse nuclear power plant neutron-gamma mixed fields. (Author) [es

  20. Optimal usage of computing grid network in the fields of nuclear fusion computing task

    International Nuclear Information System (INIS)

    Tenev, D.

    2006-01-01

    Nowadays the nuclear power becomes the main source of energy. To make its usage more efficient, the scientists created complicated simulation models, which require powerful computers. The grid computing is the answer to powerful and accessible computing resources. The article observes, and estimates the optimal configuration of the grid environment in the fields of the complicated nuclear fusion computing tasks. (author)

  1. The Romanian educational system in nuclear engineering field - experience and new approaches

    International Nuclear Information System (INIS)

    Dragusin, O.; Burghelea, A.

    2001-01-01

    In this paper we would like to present the actual status of the education in the nuclear engineering field at 'Pantholic' University Bucharest, Romania, Power Engineering Faculty, Nuclear Power Plant Department, and also the efforts of integration of the educational system of Romania into the international system and the development of new concepts concerning the education of the new specialists generation. (authors)

  2. The romanian educational system in nuclear engineering field - experience and new approaches

    International Nuclear Information System (INIS)

    Dragusin, O.; Burghelea, A.

    2000-01-01

    In this paper we would like to present the actual status of the education in the nuclear engineering field at 'POLITEHNICA' University Bucharest, Nuclear Power Plant Department, and also the efforts of integration of the educational system of Romania into the international system and the development of new concepts concerning the education of the new specialists generation. (authors)

  3. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    1989-01-01

    Carbon dioxide from fossil fuel combustion accounts for about 40% of the global warming due to the 'greenhouse effect'. Thus national energy policies of the fuels used to generate electricity can have a significant effect on the levels of gas emissions which contribute to the 'greenhouse effect'. The more efficient use of energy is the first way of controlling the increase in gas emissions. The use of natural gas instead of coal or oil would also be beneficial but the reserves of natural gas are limited. The use of nuclear-generated electricity has already reduced the level of global warming by 3% but could have a greater effect in the future. Ways in which the government could reduce 'greenhouse' gas emissions are listed. These include the more extensive use of nuclear power for generating electricity not only for domestic but industrial uses. (U.K.)

  4. Application of transient magnetic field to the measurement of nuclear magnetic moments

    International Nuclear Information System (INIS)

    Ribas, R.V.

    1987-01-01

    A review on: the mechanism for producing transient magnetic field; techniques for measuring nuclear gyromagnetic factor; and some examples of recent measurements using this technique is presented. (M.C.K.) [pt

  5. Activities of Brazilian Nuclear Energy Commission in the field of nuclear power plant licesing

    International Nuclear Information System (INIS)

    Alves, R.N.

    1986-01-01

    The objectives, the procedures and the ways of implementation of measures aiming at safety use of nuclear energy are presented. The juridical aspects in the licensing area and the regulatory activities used by CNEN. The description of nuclear power plants and the methodology used in studies of environmental protection and radiation protection are presented [pt

  6. Thermodynamic coupling of heat and matter flows in near-field regions of nuclear waste repositories

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1983-11-01

    In near-field regions of nuclear waste repositories, thermodynamically coupled flows of heat and matter can occur in addition to the independent flows in the presence of gradients of temperature, hydraulic potential, and composition. The following coupled effects can occur: thermal osmosis, thermal diffusion, chemical osmosis, thermal filtration, diffusion thermal effect, ultrafiltration, and coupled diffusion. Flows of heat and matter associated with these effects can modify the flows predictable from the direct effects, which are expressed by Fourier's law, Darcy's law, and Fick's law. The coupled effects can be treated quantitatively together with the direct effects by the methods of the thermodynamics of irreversible processes. The extent of departure of fully coupled flows from predictions based only on consideration of direct effects depends on the strengths of the gradients driving flows, and may be significant at early times in backfills and in near-field geologic environments of repositories. Approximate calculations using data from the literature and reasonable assumptions of repository conditions indicate that thermal-osmotic and chemical-osmotic flows of water in semipermeable backfills may exceed Darcian flows by two to three orders of magnitude, while flows of solutes may be reduced greatly by ultrafiltration and chemical osmosis, relative to the flows predicted by advection and diffusion alone. In permeable materials, thermal diffusion may contribute to solute flows to a smaller, but still significant, extent

  7. Study on temperature field airborne remote sensing survey along shore nuclear power station in different tide status

    International Nuclear Information System (INIS)

    Liang Chunli; Li Mingsong

    2010-01-01

    Nuclear Power Station needs to let large quantity of cooling water to the near sea area when it is running. Whether the cooling water has effect to surrounding environment and the running of Nuclear Power Station needs further research. Temperature Drainage Mathematic Model and Physical Analogue Model need to acquire the distribution characteristic of near Station sea surface temperature field in different seasons and different tide status. Airborne Remote Sending Technique has a advantage in gaining high resolution sea surface temperature in different tide status, and any other manual method with discrete point survey can not reach it. After a successful implementation of airborne remote sensing survey to gain the near-shore temperature drainage information in Qinshan Nuclear Power Station, it provides the reference methods and ideas for temperature drainage remote sensing survey of Nuclear Power Station. (authors)

  8. Organic tunnel field effect transistors

    KAUST Repository

    Tietze, Max Lutz

    2017-06-29

    Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer; source (or drain) contact stacks disposed on portions of the first i-layer; a second i-layer of organic semiconductor material disposed on the first i-layer surrounding the source (or drain) contact stacks; an n-doped organic semiconductor layer disposed on the second i-layer; and a drain (or source) contact layer disposed on the n-doped organic semiconductor layer. The source (or drain) contact stacks can include a p-doped injection layer, a source (or drain) contact layer, and a contact insulating layer. In another example, a method includes disposing a first i-layer over a gate insulating layer; forming source or drain contact stacks; and disposing a second i-layer, an n-doped organic semiconductor layer, and a drain or source contact.

  9. Ambipolar Phosphorene Field Effect Transistor

    Energy Technology Data Exchange (ETDEWEB)

    Das, Saptarshi [Center for Nanoscale Material and ‡Division of High Energy Physics, Argonne National Laboratory, Argonne, Illinois 60439, United States; Demarteau, Marcel [Center for Nanoscale Material and ‡Division of High Energy Physics, Argonne National Laboratory, Argonne, Illinois 60439, United States; Roelofs, Andreas [Center for Nanoscale Material and ‡Division of High Energy Physics, Argonne National Laboratory, Argonne, Illinois 60439, United States

    2014-10-23

    Two dimensional materials provide an intriguing platform to investigate rich physical phenomena which could ultimately lead to the development of innovative nanotechnologies (1-17). Semiconducting black phosphorous (BP) with high carrier mobility (18-20), anisotropic transport (21, 22) and tunable bandgap (23, 24) is the most recent addition to this exotic class of two dimensional materials. In this article we experimentally demonstrate room temperature quasi ballistic transport of both holes and electrons in ionic liquid gated black phosphorous (BP) field effect transistors (FET) with sub-100nm channel length. The carrier mean free path (mfp) was found to be 15nm for the holes and 5nm for the electrons. By improving the carrier injection through superior electrostatic gate control (EOT=1.5nm), highly symmetric ambipolar conduction with record high hole current of ~0.78mA/µm and electron current of ~0.68mA/µm are achieved for VDD=0.2V. The extracted record low contact resistance of 220Ω-µm is similar to the state of the art Si technology. This is also the best contact resistance value achieved for any two dimensional metal-semiconductor interfaces. Finally, we provide an analytical framework to compare the experimental results with ballistic simulations which includes quantum capacitance considerations.

  10. Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy

    International Nuclear Information System (INIS)

    Kim, Younghwan; Kim, Minki; Kim, Wonjoon

    2013-01-01

    The Fukushima nuclear disaster has significantly changed public attitudes toward nuclear energy. It is important to understand how this change has occurred in different countries before the global community revises existing nuclear policies. This study examines the effect of the Fukushima disaster on public acceptance of nuclear energy in 42 countries. We find that the operational experience of nuclear power generation which has significantly affected positive public opinion about nuclear energy became considerably negative after the disaster, suggesting fundamental changes in public acceptance regardless of the level of acceptance before the disaster. In addition, contrary to our expectation, the proportion of nuclear power generation is positively and significantly related to public acceptance of nuclear energy after the Fukushima accident and government pressure on media content led to a greater decrease in the level of public acceptance after the accident. Nuclear energy policymakers should consider the varied factors affecting public acceptance of nuclear energy in each country depending on its historical, environmental, and geographical circumstances before they revise nuclear policy in response to the Fukushima accident. - Highlights: • Fukushima accident has negatively changed public attitudes toward nuclear energy. • Effect of operational experience became considerably negative after the accident. • Effect of proportion of nuclear power generation is positive after the accident. • Effect of government pressure on media content became negative after the accident. • Country specific policy responses on nuclear public acceptance are required

  11. Bilateral agreements in the field of nuclear trade and technology

    International Nuclear Information System (INIS)

    Di Primio, J.C.

    1989-03-01

    This report analyses the evolution of the Non-Proliferation Treaty and the non-proliferation regime since the nineteen sixties from the angle of an interdisciplinary approach. The medium- and long-term issues of non-proliferation are identified and discussed in connection with the NPT revisional conference to be held in 1990, and the NPT extension conference in 1995. The major subjects under review include: the international safeguards system; NP aspects of new technologies; bilateral agreements on cooperation in nuclear energy; developments on the international nuclear market; arms control issues of relevance to the NPT; the non-proliferation interests of the Federal Republic of Germany. Looking ahead to the conferences in 1990 and 1995, the report reveals some major aspects and recommendations for consideration in decisions on the future line of non-proliferation policy pursued by the Federal German government. (orig./HP) [de

  12. Gluon field fluctuations in nuclear collisions: Multiplicity and eccentricity distributions

    Energy Technology Data Exchange (ETDEWEB)

    Schenke, Björn [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Tribedy, Prithwish [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Venugopalan, Raju [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-06-15

    We discuss different sources of fluctuations in nuclear collisions and their realization in the IP-Glasma model. We present results for multiplicity distributions in p+p and p+A collisions and compare eccentricity (ε{sub 2}, ε{sub 3}, ε{sub 4}) distributions in A + A collisions to the v{sub n} distributions in 10 centrality classes measured by the ATLAS Collaboration.

  13. Near-field chemistry of the spent nuclear fuel repository; Kemialliset vuorovaikutukset kaeytetyn ydinpolttoaineen loppusijoitustilan laehialueella

    Energy Technology Data Exchange (ETDEWEB)

    Kumpulainen, H.; Lehikoinen, J.; Muurinen, A.; Ollila, K. [VTT Chemical Technology, Espoo (Finland). Industrial Physics

    1998-07-01

    Factors affecting near-field chemistry of the spent nuclear fuel repository as well as the involved mutual interactions are described on the basis of literature. The most important processes in the near-field (spent-fuel, canister and bentonite) are presented. The related examples on near-field chemistry models shed light on the extensive problematics of near-field chemistry. (authors) 80 refs.

  14. Quantum Nuclear Extension of Electron Nuclear Dynamics on Folded Effective-Potential Surfaces

    DEFF Research Database (Denmark)

    Hall, B.; Deumens, E.; Ohrn, Y.

    2014-01-01

    A perennial problem in quantum scattering calculations is accurate theoretical treatment of low energy collisions. We propose a method of extracting a folded, nonadiabatic, effective potential energy surface from electron nuclear dynamics (END) trajectories; we then perform nuclear wave packet...

  15. Political aspects of nuclear test effects at Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Sydykov, E.B.; Panin, M.S.

    2003-01-01

    The paper describes tense struggle of Kazakhstan people for closure of the Semipalatinsk Nuclear Test Site. It reveals major foreign policy aspects and nuclear test effects for both Kazakhstan and the world community. (author)

  16. RADIATION EFFECTS IN NUCLEAR WASTE MATERIALS

    International Nuclear Information System (INIS)

    Weber, William J.

    2000-01-01

    The objective of this research was to develop fundamental understanding and predictive models of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels, as well as an understanding of the effects of these radiation-induced solid-state changes on dissolution kinetics (i.e., radionuclide release). The research performed during the duration of this project has addressed many of the scientific issues identified in the reports of two DOE panels [1,2], particularly those related to radiation effects on the structure of glasses and ceramics. The research approach taken by this project integrated experimental studies and computer simulations to develop comprehensive fundamental understanding and capabilities for predictive modeling of radiation effects and dissolution kinetics in both glasses and ceramics designed for the stabilization and immobilization of high-level tank waste (HLW), plutonium residues and scraps, surplus weapons plutonium, other actinides, and other highly radioactive waste streams. Such fundamental understanding is necessary in the development of predictive models because all experimental irradiation studies on nuclear waste materials are ''accelerated tests'' that add a great deal of uncertainty to predicted behavior because the damage rates are orders of magnitude higher than the actual damage rates expected in nuclear waste materials. Degradation and dissolution processes will change with damage rate and temperature. Only a fundamental understanding of the kinetics of all the physical and chemical processes induced or affected by radiation will lead to truly predictive models of long-term behavior and performance for nuclear waste materials. Predictive models of performance of nuclear waste materials must be scientifically based and address both radiation effects on structure (i.e., solid-state effects) and the effects of these solid-state structural changes on dissolution kinetics. The ultimate goal of this

  17. Higgs effective field theories. Systematics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Claudius G.

    2016-07-28

    Researchers of the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) announced on July 4th, 2012, the observation of a new particle. The properties of the particle agree, within the relatively large experimental uncertainties, with the properties of the long-sought Higgs boson. Particle physicists around the globe are now wondering, ''Is it the Standard Model Higgs that we observe; or is it another particle with similar properties?'' We employ effective field theories (EFTs) for a general, model-independent description of the particle. We use a few, minimal assumptions - Standard Model (SM) particle content and a separation of scales to the new physics - which are supported by current experimental results. By construction, effective field theories describe a physical system only at a certain energy scale, in our case at the electroweak-scale v. Effects of new physics from a higher energy-scale, Λ, are described by modified interactions of the light particles. In this thesis, ''Higgs Effective Field Theories - Systematics and Applications'', we discuss effective field theories for the Higgs particle, which is not necessarily the Higgs of the Standard Model. In particular, we focus on a systematic and consistent expansion of the EFT. The systematics depends on the dynamics of the new physics. We distinguish two different consistent expansions. EFTs that describe decoupling new-physics effects and EFTs that describe non-decoupling new-physics effects. We briefly discuss the first case, the SM-EFT. The focus of this thesis, however, is on the non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in the second case. We introduce the concept of chiral dimensions, equivalent to the loop expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian up to next-to-leading order, O(f{sup 2}/Λ{sup 2})=O(1/16π{sup 2}). Further, we discuss how different

  18. The effects of nuclear war. 2. rev. enl. ed.

    International Nuclear Information System (INIS)

    Rodejohann, J.

    1982-01-01

    Possible and probable effects of a nuclear war in Europe are described on the basis of a study by the Office of Technology Assessment, US Kongress ('The effects of nuclear war', Wash. D.C. 1979). (HP) [de

  19. Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect

    KAUST Repository

    Danon, Jeroen

    2013-08-06

    Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.

  20. Permeabilization of the nuclear envelope following nanosecond pulsed electric field exposure

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Gary L., E-mail: gary.l.thompson.3@gmail.com [Oak Ridge Institute for Science & Education, Joint Base San Antonio Fort Sam Houston, TX, 78234 (United States); Roth, Caleb C. [Department of Radiological Sciences, University of Texas Health Science Center at San Antonio, TX, 78234 (United States); Kuipers, Marjorie A. [Radio Frequency Radiation Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio Fort Sam Houston, TX, 78234 (United States); Tolstykh, Gleb P. [General Dynamics IT, Joint Base San Antonio Fort Sam Houston, TX, 78234 (United States); Beier, Hope T. [Optical Radiation Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio Fort Sam Houston, TX, 78234 (United States); Ibey, Bennett L. [Radio Frequency Radiation Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio Fort Sam Houston, TX, 78234 (United States)

    2016-01-29

    Permeabilization of cell membranes occurs upon exposure to a threshold absorbed dose (AD) of nanosecond pulsed electric fields (nsPEF). The ultimate, physiological bioeffect of this exposure depends on the type of cultured cell and environment, indicating that cell-specific pathways and structures are stimulated. Here we investigate 10 and 600 ns duration PEF effects on Chinese hamster ovary (CHO) cell nuclei, where our hypothesis is that pulse disruption of the nuclear envelope membrane leads to observed cell death and decreased viability 24 h post-exposure. To observe short-term responses to nsPEF exposure, CHO cells have been stably transfected with two fluorescently-labeled proteins known to be sequestered for cellular chromosomal function within the nucleus – histone-2b (H2B) and proliferating cell nuclear antigen (PCNA). H2B remains associated with chromatin after nsPEF exposure, whereas PCNA leaks out of nuclei permeabilized by a threshold AD of 10 and 600 ns PEF. A downturn in 24 h viability, measured by MTT assay, is observed at the number of pulses required to induce permeabilization of the nucleus. - Highlights: • The ability of nsPEF to damage nuclear structures within cells is investigated. • Leakage of proliferating nuclear antigen from nuclei is induced by nsPEF. • High doses of nsPEF disrupt cortical lamin and cause chromatin decompaction. • Histone H2B remains attached to chromatin following nsPEF exposure. • DNA does not leak out of nsPEF-permeabilized nuclei.

  1. The Nuclear Weapons Effects National Enterprise

    Science.gov (United States)

    2010-06-01

    spirals, which is likely to be cost prohibitive .27 Some notable progress, however, is starting to occur. The Army elevated its watchdog agency, the...widespread high-altitude electromagnetic pulse ( HEMP ). These tests were hastily planned and among the last to occur prior to the 1962 moratorium on nuclear... HEMP levels and system response for different weapon yields and burst altitudes did not occur. The observed effects on systems at the time of the

  2. Preface: Special Topic on Nuclear Quantum Effects

    Science.gov (United States)

    Tuckerman, Mark; Ceperley, David

    2018-03-01

    Although the observable universe strictly obeys the laws of quantum mechanics, in many instances, a classical description that either ignores quantum effects entirely or accounts for them at a very crude level is sufficient to describe a wide variety of phenomena. However, when this approximation breaks down, as is often the case for processes involving light nuclei, a full quantum treatment becomes indispensable. This Special Topic in The Journal of Chemical Physics showcases recent advances in our understanding of nuclear quantum effects in condensed phases as well as novel algorithmic developments and applications that have enhanced the capability to study these effects.

  3. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kansal, Anuj Kumar, E-mail: akansal@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Maheshwari, Naresh Kumar, E-mail: nmahesh@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vijayan, Pallippattu Krishnan, E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2015-06-15

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated.

  4. Nuclear energy: a new action field for the ITCR

    International Nuclear Information System (INIS)

    1992-01-01

    This congress has the objective to give new orientations, which can consolidate the Instituto Tecnologico de Costa Rica, as an institution for superior education, that can asume leadership in the field of science and technology

  5. Information about the field of nuclear waste 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The Consultative Committee for Nuclear Waste Management (KASAM) reports about the knowledge 1986 concerning the management and the ultimate storage of radioactive wastes. In the report discusses ethical aspects, technical and scientific problems related to the radioactive waste disposal. Still there is no plant in the world build for ultimate storage of high-level radioactive wastes, but many states have plans for building such plants. The report gives a survey of different storage technics, chemical, hydrochemical and radioecological problems. Some international and national programs are reviewed. (K.A.E.)

  6. Nuclear compression effects on pion production in nuclear collisions

    International Nuclear Information System (INIS)

    Sano, M.; Gyulassy, M.; Wakai, M.; Kitazoe, Y.

    1985-01-01

    We show that the method of analyzing the pion excitation function proposed by Stock et al. may determine only a part of the nuclear matter equation of state. With the addition of missing kinetic energy terms the implied high density nuclear equation of state would be much stiffer than expected from conventional theory. A stiff equation of state would also follow if shock dynamics with early chemical freeze out were valid. (orig.)

  7. Multi-fields' coordination information integrated platform for nuclear power plant operation preparation

    International Nuclear Information System (INIS)

    Yuan Chang; Li Yong; Ye Zhiqiang

    2011-01-01

    To realize the coordination in multi-fields' work and information sharing, by applying the method of Enterprise Architecture (EA), the business architecture, functional flow and application architecture of Nuclear Power Plant's operation preparation information integrated platform are designed, which can realize the information sharing and coordination of multi fields. (authors)

  8. Uses of Effective Field Theory in Lattice QCD

    OpenAIRE

    Kronfeld, Andreas S.

    2002-01-01

    Several physical problems in particle physics, nuclear physics, and astrophysics require information from non-perturbative QCD to gain a full understanding. In some cases the most reliable technique for quantitative results is to carry out large-scale numerical calculations in lattice gauge theory. As in any numerical technique, there are several sources of uncertainty. This chapter explains how effective field theories are used to keep them under control and, then, obtain a sensible error ba...

  9. Pre-polarization enhancement by dynamic nuclear polarization in SQUID-based ultra-low-field nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong-Joo; Kim, Kiwoong; Kang, Chan Seok; Hwang, Seong-min; Lee, Yong-Ho, E-mail: kwkim@kriss.re.k [Brain and Cognition Measurement Laboratory, Korea Research Institute of Standards and Science (KRISS), Doryong-dong, Yuseong-gu, Daejeon 305-340 (Korea, Republic of)

    2010-11-15

    We achieved enhanced pre-polarization in a superconducting quantum interference device (SQUID)-based microtesla nuclear magnetic resonance (NMR) experiment by using dynamic nuclear polarization (DNP). The pre-polarization field is necessary to provide enough signal to noise to perform SQUID-based ultra-low-field (ULF) NMR/magnetic resonance imaging (MRI) experiments. However, it is quite tricky to deal with the strong transient magnetic field when operating the SQUID in a magnetically shielded room (MSR); besides the direct interference with the sensitive SQUID sensor, the strong magnetic field and its abrupt change generate magnetization in local areas in the MSR and eddy currents along the wall, which makes the NMR measurement difficult. The enhanced {sup 1}H NMR signals of water in TEMPOL and TEMPO solutions were obtained with a relatively weak radio-frequency (rf) field and double-relaxation oscillation SQUIDs (DROS) at a few mT pre-polarization fields. In our experimental condition, the enhancement factor was near ten in spite of the rf power far below the saturation in both samples.

  10. Pre-polarization enhancement by dynamic nuclear polarization in SQUID-based ultra-low-field nuclear magnetic resonance

    Science.gov (United States)

    Lee, Seong-Joo; Kim, Kiwoong; Kang, Chan Seok; Hwang, Seong-min; Lee, Yong-Ho

    2010-11-01

    We achieved enhanced pre-polarization in a superconducting quantum interference device (SQUID)-based microtesla nuclear magnetic resonance (NMR) experiment by using dynamic nuclear polarization (DNP). The pre-polarization field is necessary to provide enough signal to noise to perform SQUID-based ultra-low-field (ULF) NMR/magnetic resonance imaging (MRI) experiments. However, it is quite tricky to deal with the strong transient magnetic field when operating the SQUID in a magnetically shielded room (MSR); besides the direct interference with the sensitive SQUID sensor, the strong magnetic field and its abrupt change generate magnetization in local areas in the MSR and eddy currents along the wall, which makes the NMR measurement difficult. The enhanced 1H NMR signals of water in TEMPOL and TEMPO solutions were obtained with a relatively weak radio-frequency (rf) field and double-relaxation oscillation SQUIDs (DROS) at a few mT pre-polarization fields. In our experimental condition, the enhancement factor was near ten in spite of the rf power far below the saturation in both samples.

  11. Outline of results of safety research (in nuclear fuel cycle field in fiscal year 1996)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The safety research in Power Reactor and Nuclear Fuel Development Corporation in fiscal year 1996 has been carried out based on the basic plan of safety research (from fiscal year 1996 to 2000) which was decided in March, 1996. In this report, on nuclear fuel cycle field, namely all the subjects in the fields of nuclear fuel facilities, environmental radioactivity and waste disposal, and the subjects related to nuclear fuel facilities among the fields of aseismatic and probabilistic safety assessments, the results of research in fiscal year 1996, the first year of the 5-year project, are summarized together with the outline of the basic plan of safety research. The basic policy, objective and system for promotion of the safety research are described. The objectives of the safety research are the advancement of safety technology, the safety of facilities, stable operation techniques, the safety design and the evaluation techniques of next generation facilities, and the support of transferring nuclear fuel cycle to private businesses. The objects of the research are uranium enrichment, fuel fabrication and reprocessing, and waste treatment and storage. 52 investigation papers of the results of the safety research in nuclear fuel cycle field in fiscal year 1996 are collected in this report. (K.I.)

  12. Situation and role of industrial fields in nuclear fusion reactor development

    International Nuclear Information System (INIS)

    Suzuki, Gen-ichi

    1983-01-01

    Japan Atomic Industrial Forum (JAIF) established the nuclear fusion technical committee in October, 1980, and has investigated the attitude of industrial fields in progressing nuclear fusion research and development and the measures to cooperate with national development plans. Corresponding to the new long term plan and the establishment of the basic policy for nuclear fusion research and development by Atomic Energy Commission of Japan in June, 1982, JAIF has settled the policy on the situation and role of industrial fields. In this report, first the necessity of firmly grasping the position of nuclear fusion research in atomic energy development is described, next, the present status of the research and development in Japan is reported, and it is mentioned that the role of manufacturers in reinforcing engineering has become more important in industrial fields. In the stage of the construction of a nuclear fusion reactor, the experiences in the engineering safety in fission reactors, environmental safety and system engineering will be utilized. Japanese industrial fields feature that they have made larger cooperation with national projects even in the research and development stage as compared to foreign countries. When the plan of next phase system will be promoted in the future, the cooperating methods in the past should be evaluated, investigated and improved, and the experiences in fast breeder reactors and advanced heavy water reactors should be referred to. Finally, the problems and the countermeasures in nuclear fusion development are described. (Wakatsuki, Y.)

  13. Considerations about decision processes in the nuclear field

    International Nuclear Information System (INIS)

    Borges, J.C.

    1986-01-01

    In all the countries of the world, official energy policies and programs are criticized by experts from the academic community and by the population at large. It is quite normal that people censure their government, but under the cloak of scientific arguments, one can usually find political objectives. The parameters which are an influence in this power game: up to what point can or should technocrats decide in the name of the people when and how can or should the people demonstrate their preference are presented. As this is a vast and polemic theme, and in order that some concrete conclusion could be drawn, we tried to concentrate our analysis on a specific case: the Brazilian decision to use nuclear energy. (Author) [pt

  14. French achievements in the field of nuclear electronics

    International Nuclear Information System (INIS)

    Doireau, M.; Fabre, R.; Guillon, H.; Guyot, C.

    1958-01-01

    Nuclear electronic equipment used by the french Atomic Energy Commission has been developed, with an increasing participation of the radioelectric industry (manufacture under AEC license, contracts for prototypes). The equipment for general use has been standardized and satisfies the technical specification sheets in which are specified more particularly, the conditions for construction, the choice of the spare parts and the conditions for acceptance by the french AEC at factory. The electronic equipment is classified in nine classes, and a brief description of the principal instruments is given in each class. The reliability of the equipment in use is satisfactory, as it is shown by the mean frequency of faults per 1000 hours operation. (author) [fr

  15. Effective theories of single field inflation when heavy fields matter

    CERN Document Server

    Achucarro, Ana; Hardeman, Sjoerd; Palma, Gonzalo A; Patil, Subodh P

    2012-01-01

    We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbat...

  16. Genetic effects of nonionizing electromagnetic fields

    International Nuclear Information System (INIS)

    Lai, Henry

    2001-01-01

    Due to the increased use of electricity and wireless communication devices, there is a concern on whether exposure to nonionizing electromagnetic fields (50/60 Hz fields and radiofrequency radiation) can lead to harmful health effects, particularly, genetic effects and cancer development. This presentation will review recent research on genetic effects of power line frequency and radiofrequency electromagnetic fields. Even though the mechanism of interaction is still unknown, there is increasing evidence that these electromagnetic fields at low intensities can cause genetic damage in cells. There is also evidence suggesting that the effects are caused by oxidative stress. (author)

  17. Progress in nuclear structure beyond the mean-field approximation

    International Nuclear Information System (INIS)

    Colò, G; Bortignon, P F; Brenna, M; Roca-Maza, X; Vigezzi, E; Moghrabi, K; Grasso, M; Mizuyama, K

    2014-01-01

    Although self-consistent mean-field methods, or implementations of the density functional theory for atomic nuclei, are becoming increasingly accurate, some observables are not well reproduced by those models. In particular, the fragmentation and the decay properties of both single-particle and vibrational states cannot be accounted for. Models based on the introduction of further correlations or, in other words, that go beyond the mean-field approximation, have often been discussed in the past. We have recently developed a consistent model based on the use of a Skyrme-type force without the intervention of any other ad hoc parameter. A few typical results are discussed, after we have mentioned briefly the essential features of the model. Moreover, we discuss the necessity of fitting a new force within this context, the difficulties arising because of divergences that need to be renormalized, and our roadmap for curing these divergences

  18. Introduction to workshop on radiation effects in nuclear waste materials

    International Nuclear Information System (INIS)

    Matzke, H.

    1988-01-01

    The workshop consisted of an invited lecture for REI-4, treating radiation damage in nuclear fuels as well as giving an introduction to the field of damage in waste matrices, of invited and contributed lectures to the workshop and to REI as well as of discussions and round table meetings. The contributions available as manuscripts are included on the following pages of these proceedings. At the end, a short summary with recommendations for future work has been added. It is hoped that the stimulating discussions of the workshop will help to continue the work in the field of radiation effects in waste matrices in an effective way. The organizer believes that there are good reasons for this hope and he thanks all scientists who contributed to the success of the workshop, as well as members of the organizing committee of REI-4 for their help. (orig.)

  19. Visualization system for grid environment in the nuclear field

    International Nuclear Information System (INIS)

    Suzuki, Yoshio; Matsumoto, Nobuko; Idomura, Yasuhiro; Tani, Masayuki

    2006-01-01

    An innovative scientific visualization system is needed to integratedly visualize large amount of data which are distributedly generated in remote locations as a result of a large-scale numerical simulation using a grid environment. One of the important functions in such a visualization system is a parallel visualization which enables to visualize data using multiple CPUs of a supercomputer. The other is a distributed visualization which enables to execute visualization processes using a local client computer and remote computers. We have developed a toolkit including these functions in cooperation with the commercial visualization software AVS/Express, called Parallel Support Toolkit (PST). PST can execute visualization processes with three kinds of parallelism (data parallelism, task parallelism and pipeline parallelism) using local and remote computers. We have evaluated PST for large amount of data generated by a nuclear fusion simulation. Here, two supercomputers Altix3700Bx2 and Prism installed in JAEA are used. From the evaluation, it can be seen that PST has a potential to efficiently visualize large amount of data in a grid environment. (author)

  20. Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals

    DEFF Research Database (Denmark)

    Ruud, Kenneth; Helgaker, Trygve; Kobayashi, Rika

    1994-01-01

    to corresponding individual gauges for localized orbitals (IGLO) results. The London results show better basis set convergence than IGLO, especially for heavier atoms. It is shown that the choice of active space is crucial for determination of accurate nuclear shielding constants.......Nuclear shielding calculations are presented for multiconfigurational self-consistent field wave functions using London atomic orbitals (gauge invariant atomic orbitals). Calculations of nuclear shieldings for eight molecules (H2O, H2S, CH4, N2, CO, HF, F2, and SO2) are presented and compared...

  1. International co-operation in the nuclear field. Europe and OCDE countries

    International Nuclear Information System (INIS)

    Strohl, P.

    1981-05-01

    This report highlights the political factors underlying nuclear cooperation in the European context. It analyses the institutional structure for such cooperation and describes the different vocations of international organisations in the nuclear field (NEA, IAEA, Euratom). Finally the report gives concrete examples of international nuclear cooperation, with an emphasis on its legal aspects. (NEA) []Le present expose fait ressortir les facteurs politiques de la cooperation nucleaire notamment dans le contexte europeen. Il analyse la structure institutionnelle de cette cooperation et evoque les differentes vocations des organismes internationaux dans le domaine nucleaire (AEN, AIEA, Euratom). Il donne enfin des exemples concrets en mettant l'accent sur ses aspects juridiques

  2. More effective field theory for non-relativistic scattering

    International Nuclear Information System (INIS)

    Kaplan, D.B.

    1997-01-01

    An effective field theory treatment of nucleon-nucleon scattering at low energy shows much promise and could prove to be a useful tool in the study of nuclear matter at both ordinary and extreme densities. The analysis is complicated by the existence a large length scale - the scattering length -which arises due to couplings in the short distance theory being near critical values. I show how this can be dealt with by introducing an explicit s-channel state in the effective field theory. The procedure is worked out analytically in a toy example. I then demonstrate that a simple effective field theory excellently reproduces the 1 S 0 np phase shift up to the pion production threshold. (orig.)

  3. Present status and needs of human resource development in nuclear field in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young-Myung; Lee, Eui-Jin [Nuclear Training Center, Korea Atomic Energy Research Institute, Taejon (Korea)

    2000-12-01

    The Nuclear Training Center (NTC) of KAERI (Korea Atomic Energy Research Institute) began training technical personnel in the field of radioisotope utilization and radiation protection during the 1960's. During the first stage of the nation's nuclear power project in the 1970's, the main effort of the Center focused on training those in nuclear power and nuclear engineering. During a stage of increased technical self-reliance in the 1980's, the Center extended its training role to implement more specific training courses on nuclear power and safety fields. Since 1983, the Center has been empowered at the request of government to provide retraining courses for nuclear-related license holders and qualified engineers. The Center has offered IAEA regional training course annually for Asia and Pacific region member states since 1988. Since 1967, the total number of trainees is up to 27,777 as of the end of 1998. KEPCO (Korea Electric Power Corporation) started Nuclear Power Education Center (NPEC) in 1990. The outlines of KEPCO's in-house training programs are presented in the report. The reactor operators, and the persons engaged in nuclear fuel materials, radioisotope or radiation generating devices need particular licenses in accordance with Korean Atomic Energy Laws and Regulation. NTC/KAERI and NPEC/KEPCO should report annual retraining programs for licensed personnel to Ministry Of Science and Technology (MOST) every year. The outlines of projects, which are directly related to human resources development in nuclear field in Korea, are described in the paper. The International Atomic Energy Agency (IAEA) has made efforts to provide training programs for technical personnel of developing countries for the peaceful uses of nuclear energy. Korea has also received lots of assistance for her manpower development from the Agency. Korea is now on the verge of transforming herself from a technology recipient country in some practical and

  4. Present status and needs of human resource development in nuclear field in Korea

    International Nuclear Information System (INIS)

    Choi, Young-Myung; Lee, Eui-Jin

    2000-01-01

    The Nuclear Training Center (NTC) of KAERI (Korea Atomic Energy Research Institute) began training technical personnel in the field of radioisotope utilization and radiation protection during the 1960's. During the first stage of the nation's nuclear power project in the 1970's, the main effort of the Center focused on training those in nuclear power and nuclear engineering. During a stage of increased technical self-reliance in the 1980's, the Center extended its training role to implement more specific training courses on nuclear power and safety fields. Since 1983, the Center has been empowered at the request of government to provide retraining courses for nuclear-related license holders and qualified engineers. The Center has offered IAEA regional training course annually for Asia and Pacific region member states since 1988. Since 1967, the total number of trainees is up to 27,777 as of the end of 1998. KEPCO (Korea Electric Power Corporation) started Nuclear Power Education Center (NPEC) in 1990. The outlines of KEPCO's in-house training programs are presented in the report. The reactor operators, and the persons engaged in nuclear fuel materials, radioisotope or radiation generating devices need particular licenses in accordance with Korean Atomic Energy Laws and Regulation. NTC/KAERI and NPEC/KEPCO should report annual retraining programs for licensed personnel to Ministry Of Science and Technology (MOST) every year. The outlines of projects, which are directly related to human resources development in nuclear field in Korea, are described in the paper. The International Atomic Energy Agency (IAEA) has made efforts to provide training programs for technical personnel of developing countries for the peaceful uses of nuclear energy. Korea has also received lots of assistance for her manpower development from the Agency. Korea is now on the verge of transforming herself from a technology recipient country in some practical and fundamental fields. The

  5. Unified description of structure and reactions: implementing the nuclear field theory program

    International Nuclear Information System (INIS)

    Broglia, R A; Bortignon, P F; Barranco, F; Vigezzi, E; Idini, A; Potel, G

    2016-01-01

    The modern theory of the atomic nucleus results from the merging of the liquid drop model of Niels Bohr and Fritz Kalckar, and of the shell model of Marie Goeppert Meyer and Hans Jensen. The first model contributed the concepts of collective excitations. The second, those of independent-particle motion. The unification of these apparently contradictory views in terms of the particle-vibration and particle-rotation couplings carried out by Aage Bohr and Ben Mottelson has allowed for an ever more complete, accurate and detailed description of nuclear structure. Nuclear field theory (NFT), developed by the Copenhagen–Buenos Aires collaboration, provided a powerful quantal embodiment of this unification. Reactions are not only at the basis of quantum mechanics (statistical interpretation, Max Born), but also the specific tools to probe the atomic nucleus. It is then natural that NFT is being extended to deal with processes which involve the continuum in an intrinsic fashion, so as to be able to treat them on an equal footing with those associated with bound states (structure). As a result, spectroscopic studies of transfer to continuum states could eventually make use of the NFT rules, properly extended to take care of recoil effects. In the present contribution we review the implementation of the NFT program of structure and reactions, setting special emphasis on open problems and outstanding predictions. (invited comment)

  6. Unified description of structure and reactions: implementing the nuclear field theory program

    Science.gov (United States)

    Broglia, R. A.; Bortignon, P. F.; Barranco, F.; Vigezzi, E.; Idini, A.; Potel, G.

    2016-06-01

    The modern theory of the atomic nucleus results from the merging of the liquid drop model of Niels Bohr and Fritz Kalckar, and of the shell model of Marie Goeppert Meyer and Hans Jensen. The first model contributed the concepts of collective excitations. The second, those of independent-particle motion. The unification of these apparently contradictory views in terms of the particle-vibration and particle-rotation couplings carried out by Aage Bohr and Ben Mottelson has allowed for an ever more complete, accurate and detailed description of nuclear structure. Nuclear field theory (NFT), developed by the Copenhagen-Buenos Aires collaboration, provided a powerful quantal embodiment of this unification. Reactions are not only at the basis of quantum mechanics (statistical interpretation, Max Born), but also the specific tools to probe the atomic nucleus. It is then natural that NFT is being extended to deal with processes which involve the continuum in an intrinsic fashion, so as to be able to treat them on an equal footing with those associated with bound states (structure). As a result, spectroscopic studies of transfer to continuum states could eventually make use of the NFT rules, properly extended to take care of recoil effects. In the present contribution we review the implementation of the NFT program of structure and reactions, setting special emphasis on open problems and outstanding predictions.

  7. Real-time calculation and visualization of spectra in field-cycled dynamic nuclear polarization spectroscopy.

    Science.gov (United States)

    Deng, Yuanmu; Shet, Keerthi; Li, Haihong; Kuppusamy, Periannan; Zweier, Jay L

    2006-04-01

    Field-cycled dynamic nuclear polarization (FC-DNP), which is based on the Overhauser effect, provides a new way to perform in vivo measurements of free radicals in biological systems. Since it measures the alterations of the nuclear magnetic resonance (NMR) signal in the presence of paramagnetic molecules, a customized program is usually needed in FC-DNP experiments to extract spectral information from the acquired NMR signals. While this program can be designed to calculate the spectrum after all the NMR signals are collected, the batch-processing mode inevitably causes delay and is not convenient for in vivo applications. In this paper, we report the development of a real-time DNP spectrum calculation and visualization program, called RT_DNP, for FC-DNP experiments. A dynamic data exchange (DDE) client was implemented to enable real-time receipt of the system information and the NMR signals from a commercial NMR console. The received NMR signals and experimental parameters were then used to calculate the DNP spectrum during the data acquisition. The real-time DNP spectrum calculation and visualization program was tested in experiments. A seamless integration of the program into a commercial NMR console has been achieved.

  8. Strengthening of the nuclear safety regulatory body. Field evaluation review

    International Nuclear Information System (INIS)

    1996-10-01

    As a result of a request from the Preparation Committee of the Nuclear Regulatory Authority (NRA) in 1992, and as recommended by the CEC/RAMG (Commission of European Communities/Regulatory Assistance Management Group) and the Agency mission in July 1993 to the Slovak Republic, the project SLR/9/005 was approved in 1993 as a model project for the period 1994-1996. Current budge is $401,340 and disbursements to date amount to $312,873. The project time schedule has been extended to 1997. The major conclusions of this evaluation are as follows: The project responded to an urgent national need, as well as to a statutory mandate of the Agency, and was adequately co-ordinated with other international assistance programmes to NRA. The project was designed as a structured programme of assistance by means of expert missions, scientific visits and a limited amount of equipment, acting upon several key areas of NRA regulatory responsibilities. Agency assistance was provided in a timely manner. A high concentration of expert missions was noticed at the initial stages of the project, which posed some managements problems. This was corrected to some extent in the course of implementation. Additionally, some overlapping of expert mission recommendations suggests that improvements are needed in the design of such missions. The exposure to international regulatory practice and expertise has resulted in substantial developments of NRA, both in organizational and operational terms. The project can claim to have contributed to NRA having gained governmental and international confidence. NRA's role in the safety assessment of Bohunice V1 reconstruction, as well as in Bohunice V2 safety review, Bohunice A1 decommissioning and in informing the public, also points at the success achieved by the project. The institutional and financial support of the Government contributed decisively to the project achievements. (author). Figs, tabs

  9. Towards accurate simulation of fringe field effects

    International Nuclear Information System (INIS)

    Berz, M.; Erdelyi, B.; Makino, K.

    2001-01-01

    In this paper, we study various fringe field effects. Previously, we showed the large impact that fringe fields can have on certain lattice scenarios of the proposed Neutrino Factory. Besides the linear design of the lattice, the effects depend strongly on the details of the field fall off. Various scenarios are compared. Furthermore, in the absence of detailed information, we study the effects for the LHC, a case where the fringe fields are known, and try to draw some conclusions for Neutrino Factory lattices

  10. Effective Field Theory on Manifolds with Boundary

    Science.gov (United States)

    Albert, Benjamin I.

    In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.

  11. [Electromagnetic fields--effects on health].

    Science.gov (United States)

    Stepansky, R; Jahn, O; Windischbauer, G; Zeitlhofer, J

    2000-01-01

    This literature review shows the current knowledge of health effects on humans concerning static, low frequency electric and magnetic fields and high frequency electromagnetic fields up to 300 GHz. Basic physical knowledge and the current thresholds are demonstrated. Different frequency ranges of electromagnetic fields, their natural and technical origins and the different biological effects, especially possible hazards such as cancerogenity or risks for the brain, are discussed. Open questions and future research aspects are demonstrated. Finally electrosensibility and psychological aspects are shown.

  12. Artificial intelligence applications in the nuclear field: Achievements and prospects: The new challenge

    International Nuclear Information System (INIS)

    Thomas, J.B.

    1993-01-01

    The first applications of Artificial Intelligence in the nuclear field were expert systems dedicated to off-line problems of diagnosis and maintenance. A second step aimed at solving more ambitious problems related to plant design and operation, which improved methodologies and tools. By the end of this period, new limits appeared. To solve the problems faced in the late eighties, powerful principles and methods became available. These require extensive sources. The present book describes examples of large-scale applications of Artificial Intelligence in the nuclear field

  13. Nanowire Field-Effect Transistors : Sensing Simplicity?

    NARCIS (Netherlands)

    Mescher, M.

    2014-01-01

    Silicon nanowires are structures made from silicon with at least one spatial dimension in the nanometer regime (1-100 nm). From these nanowires, silicon nanowire field-effect transistors can be constructed. Since their introduction in 2001 silicon nanowire field-effect transistors have been studied

  14. The mechanisms of the effects of magnetic fields on cells

    Science.gov (United States)

    Kondrachuk, A.

    presented in the cells. 5) Electronic interactions. Static magnetic fields can alter energy levels and spin orientation of electrons. Similar interactions can also occur with nuclear spins, but these are very weak compared to electron interactions. 6) Free radicals. Magnetic fields alter the spin states of the radicals, which, in turn, changes the relative probabilities of recombination and other interactions, possibly with biological consequences. 7) Non-linear effects. A number of non-linear mechanisms of magnetic effects on cells were recently proposed to explain how the cell could extract a weak magnetic signal from noise (e.g. stochastic non-linear resonance, self-tuned Hopf bifurcations). These new models need further experimental testing.

  15. Effect of pairing on nuclear dynamics

    International Nuclear Information System (INIS)

    Scamps, Guillaume

    2014-01-01

    Pairing correlations is an essential component for the description of the atomic nuclei. The effects of pairing on static property of nuclei are now well known. In this thesis, the effect of pairing on nuclear dynamics is investigated. Theories that includes pairing are benchmarked in a model case. The TDHF+BCS theory turns out to be a good compromise between the physics taken into account and the numerical cost. This TDHF+BCS theory was retained for realistic calculations. Nevertheless, the application of pairing in the BCS approximation may induce new problems due to (1) the particle number symmetry breaking, (2) the non-conservation of the continuity equation. These difficulties are analysed in detail and solutions are proposed. In this thesis, a 3 dimensional TDHF+BCS code is developed to simulate the nuclear dynamic. Applications to giant resonances show that pairing modify only the low lying peaks. The high lying collective components are only affected by the initial conditions. An exhaustive study of the giant quadrupole resonances with the TDHF+BCS theory is performed on more than 700 spherical or deformed nuclei. Is is shown that the TDHF+BCS theory reproduces well the collective energy of the resonance. After validation on the small amplitude limit problem, the approach was applied to study nucleon transfer in heavy ion reactions. A new method to extract transfer probabilities is introduced. It is demonstrated that pairing significantly increases the two-nucleon transfer probability. (author) [fr

  16. Nuclear spin optical rotation and Faraday effect in gaseous and liquid water.

    Science.gov (United States)

    Pennanen, Teemu S; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2012-05-14

    Nuclear spin optical rotation (NSOR) of linearly polarized light, due to the nuclear spins through the Faraday effect, provides a novel probe of molecular structure and could pave the way to optical detection of nuclear magnetization. We determine computationally the effects of the liquid medium on NSOR and the Verdet constant of Faraday rotation (arising from an external magnetic field) in water, using the recently developed theory applied on a first-principles molecular dynamics trajectory. The gas-to-liquid shifts of the relevant antisymmetric polarizability and, hence, NSOR magnitude are found to be -14% and -29% for (1)H and (17)O nuclei, respectively. On the other hand, medium effects both enhance the local electric field in water and, via bulk magnetization, the local magnetic field. Together these two effects partially cancel the solvation influence on the single-molecular property. We find a good agreement for the hydrogen NSOR with a recent pioneering experiment on H(2)O(l).

  17. Effective interaction: From nuclear reactions to neutron stars

    Indian Academy of Sciences (India)

    Abstract. An equation of state (EoS) for symmetric nuclear matter is constructed using the density-dependent M3Y effective interaction and extended for isospin asymmetric nuclear matter. Theoretically obtained values of symmetric nuclear matter incompressibility, isobaric incompress- ibility, symmetry energy and its slope ...

  18. Nuclear techniques to assess irrigation schedules for field crops. Results of a co-ordinated research programme

    International Nuclear Information System (INIS)

    1996-06-01

    This TECDOC summarizes the results of a Co-ordinated Research Programme on The Use of Nuclear and Related Techniques in Assessment of Irrigation Schedules of Field Crops to Increase Effective Use of Water in Irrigation Projects. The programme was carried out between 1990 and 1995 through the technical co-ordination of the Soil Fertility, Irrigation and Crop Production Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture of the International Atomic Energy Agency. Fourteen Member States of the IAEA and FAO carried out a series of field experiments aimed at improving irrigation water use efficiency through a type of irrigation scheduling known as deficit irrigation. Refs, figs, tabs

  19. Three-loop corrections in a covariant effective field theory

    International Nuclear Information System (INIS)

    McIntire, Jeff

    2008-01-01

    Chiral effective field theories have been used with success in the study of nuclear structure. It is of interest to systematically improve these energy functionals (particularly that of quantum hadrodynamics) through the inclusion of many-body correlations. One possible source of improvement is the loop expansion. Using the techniques of Infrared Regularization, the short-range, local dynamics at each order in the loops is absorbed into the parameterization of the underlying effective Lagrangian. The remaining nonlocal, exchange correlations must be calculated explicitly. Given that the interactions of quantum hadrodynamics are relatively soft, the loop expansion may be manageable or even perturbative in nuclear matter. This work investigates the role played by the three-loop contributions to the loop expansion for quantum hadrodynamics

  20. Adolescents' knowledge of nuclear issues and the effects of nuclear war

    International Nuclear Information System (INIS)

    Roscoe, B.; Goodwin, M.P.

    1987-01-01

    Three hundred fifty-seven college students were surveyed to assess later adolescents' awareness of the status of nuclear arms development and possible effects of a nuclear war on people and the environment. Chi-square analyses were performed to determine whether the frequency of correct responses differed with regard to participants' sex, political orientation, and position toward the United States' possession of nuclear weapons. Results suggest that later adolescents are extremely uninformed regarding the current status of nuclear issues and the consequences of a nuclear war. These data, coupled with findings from previous studies reporting children's and adolescents' concerns and fears about nuclear war, indicate that there is a strong need to educate young people concerning nuclear issues

  1. EDF, a utility and its own needs in the field of transport of nuclear materials

    International Nuclear Information System (INIS)

    Gouin, P.; Mignot, E.; Hoang, L.P.

    1989-01-01

    As one of the most important producers of nuclear electricity in the world, EDF is concerned by all the aspects of the transport of nuclear materials and more particularly by those related to the nuclear fuel cycle. EDF is not itself a specialist in this field and most of the transports along the nuclear fuel cycle is done for their own account by their usual partners such as COGEMA or TRANSNUCLEAIRE. Since the beginning of the French nuclear program, they have generally used for these transports casks that already exist on the market and which were well suited to their needs. Nevertheless, new and specific needs appeared during the progress of their nuclear program and have lead them to: study and build new casks or packages, use existing casks for new purposes, develop a device for the measurement of fuel assemblies burn up, develop a software to optimize the evacuation of irradiated fuel for reprocessing. The purpose of this paper is to describe these realization but as a preliminary, they will present briefly the importance of the transport of nuclear materials for EDF

  2. Country report present status and need of human resource development in nuclear field in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Ngo Qui Viet [Department of Organization and Scientific Human Resource Development, The Ministry of Science, Technology and Environment, Hanoi (Viet Nam); Vu Dang Ninh [Department of Administration and Personnel, The Vietnam Atomic Energy Commission, Hanoi (Viet Nam)

    2000-12-01

    Vietnam Atomic Energy Commission (VAEC) was officially established in 1976, and is a national research and development organization in the field of nuclear science and technology for peaceful purposes in Vietnam. Under the VAEC, there are three institutes and one center. Status of main facilities, such as TRIGA MARK II, neutron generator, electron accelerator MT-17, and irradiation facilities are outlined in the paper. At present, the VAEC has a total staff of about 540 persons. The number of staff appears adequate to fulfill the present task on application of isotopes and nuclear techniques. When Vietnam decides to develop nuclear power program, the demand for human resources will be significantly high. During the last five years, Vietnam has been developing and implementing a national regulatory program on Radiation Protection and Nuclear Safety. The Ministry of Science, Technology and Environment (MOSTE) have established independent Vietnam Radiation Protection and Nuclear Safety Authority (VRPA) in 1994. If the Vietnamese Government approves the proposed nuclear power program, human resources training should be a key point for all research and development directions at all revel of personnel. When looking back in the history of formation and development of nuclear science and technology in Vietnam, the international cooperation has played an extremely important role in promoting the program. The exchange of information and direct participation in concrete cooperation activities under the framework of the Forum are expected. (Tanaka, Y.)

  3. Country report present status and need of human resource development in nuclear field in Vietnam

    International Nuclear Information System (INIS)

    Ngo Qui Viet; Vu Dang Ninh

    2000-01-01

    Vietnam Atomic Energy Commission (VAEC) was officially established in 1976, and is a national research and development organization in the field of nuclear science and technology for peaceful purposes in Vietnam. Under the VAEC, there are three institutes and one center. Status of main facilities, such as TRIGA MARK II, neutron generator, electron accelerator MT-17, and irradiation facilities are outlined in the paper. At present, the VAEC has a total staff of about 540 persons. The number of staff appears adequate to fulfill the present task on application of isotopes and nuclear techniques. When Vietnam decides to develop nuclear power program, the demand for human resources will be significantly high. During the last five years, Vietnam has been developing and implementing a national regulatory program on Radiation Protection and Nuclear Safety. The Ministry of Science, Technology and Environment (MOSTE) have established independent Vietnam Radiation Protection and Nuclear Safety Authority (VRPA) in 1994. If the Vietnamese Government approves the proposed nuclear power program, human resources training should be a key point for all research and development directions at all revel of personnel. When looking back in the history of formation and development of nuclear science and technology in Vietnam, the international cooperation has played an extremely important role in promoting the program. The exchange of information and direct participation in concrete cooperation activities under the framework of the Forum are expected. (Tanaka, Y.)

  4. Safety targets and public risk perceptions in the nuclear field - technical treadmill or institutional responses?

    International Nuclear Information System (INIS)

    Wynne, B.

    1989-01-01

    The context of our treatment of risk perceptions and safety targets is the apparently wide gap between expert judgements of 'objective risks' and public perceptions of those risks. In the nuclear field the latter appear to so multiply the objective risks as seen by the experts, as to make safety targets vastly too strict (whether for routine discharges or for large accidents), thus design extravagantly expensive on any 'rational' criteria. In recent years the nuclear industry has come to terms more with the public perceptions problem, and has accepted that it is legitimate to exercise different, more severe and costly safety standards in the nuclear field if that is what society wants, as it appears to do. Whilst retaining the conviction that this is scientifically unwarranted, the industry has therefore reconciled itself somewhat to more stringent technical safety targets. (author)

  5. Strategy of the Romanian Public Information Policy in the Nuclear Field

    International Nuclear Information System (INIS)

    Stiopol, Mihaela; Manole, Felicia; Paunescu, Aurelia; Petran, Catalina; Chiper, Livia

    1998-01-01

    In the framework the Romania's nuclear power program the first Romanian NPP has been built at Cernavoda and the Unit 1, based on a CANDU type reactor, was commissioned on December 2, 1996. The start of the entire nuclear program in Romania, some 20 years ago, was a high level government decision with no public hearing or acceptance, either, but obviously based on economic and political considerations. After 1990 favorable and unfavorable articles in the mass media, most of them lacking of technical background, had led to distorted and false perception of information. The strategy of public information policy in the nuclear field should be guided by the following facts: a) the public perception of the nuclear energy problems in general, and of nuclear power, in particular, is deeply deformed by the ignorance in the domain; b) first of all the public fears for its health menaced by radiation and radioactive wastes; c) the public due not know the actual dimension and potential of the Romanian industry in this field, the qualitative progress brought about by the implementation of the nuclear program in the Romania's economy; d) the public vulnerability when exposed to the mass media which, owing to its rush towards sensational or due to the lack of knowledge in the field, rather often have launched simple, unfounded speculations. The paper presents the basic principles which are underlying the public information program and lists suggestions for the future activity concerning: A - the educational programs addressed to young people; B - development of computer-assisted educational programs; C - the relationship with mass media; D - accomplishing an adequate information through publications; E - organizing and/or participating in exhibitions displaying nuclear power development; F - advertising actions related to promotion of Unit 2 - 5 project at Cernavoda NPP

  6. Assessment of structural changes of human teeth by low-field nuclear magnetic resonance (NMR)

    International Nuclear Information System (INIS)

    Ni, Qingwen; Chen, Shuo

    2010-01-01

    A technique of low-field pulsed proton nuclear magnetic resonance (NMR) spin relaxation is described for assessment of age-related structural changes (dentin and pulp) of human teeth in vitro. The technique involves spin–spin relaxation measurement and inversion spin–spin spectral analysis methods. The spin–spin relaxation decay curve is converted into a T 2 distribution spectrum by a sum of single exponential decays. The NMR spectra from the extracted dentin-portion-only and dental pulp-cells-only were compared with the whole extracted teeth spectra, for the dentin and pulp peak assignments. While dentin and pulp are highly significant parameters in determining tooth quality, variations in these parameters with age can be used as an effective tool for estimating tooth quality. Here we propose an NMR calibration method—the ratio of the amount of dentin to the amount of pulp obtained from NMR T 2 distribution spectra can be used for measuring the age-related structural changes in teeth while eliminating any variations in size of teeth. Eight teeth (third molars) extracted from humans, aged among 17–67 years old, were tested in this study. It is found that the intensity ratio of dentin to pulp sensitively changes from 0.48 to 3.2 approaching a linear growth with age. This indicates that age-related structural changes in human teeth can be detected using the low-field NMR technique

  7. The separation of heavy ion tracks in nuclear emulsions by means of the pulsed electric field

    International Nuclear Information System (INIS)

    Akopova, A.B.; Magradze, N.V.; Melkumyan, L.V.; Prokhorenko, Y.P.

    1976-01-01

    The pulsed electric field (PEF) technique is developed for the separation of heavy ion tracks from the intense background caused by high energy electrons, protons and γ-radiation. The tracks of Ne, Cr, Ar-ions accelerated at the Dubna Nuclear Reactions Laboratory have been separated from the background, the voltage of the applied PEF being 10 5 V/cm. (orig.) [de

  8. Summary of OECD survey of education in the nuclear energy field in Finland

    International Nuclear Information System (INIS)

    Kalli, H.

    1999-01-01

    This summary is a part of the work in the OECD/NEA/NDC expert group on the survey and analysis of education in the nuclear field. The text will later be published as a country report in the final report by expert group. (author)

  9. Computer-based measurement and automatizatio aplication research in nuclear technology fields

    International Nuclear Information System (INIS)

    Jiang Hongfei; Zhang Xiangyang

    2003-01-01

    This paper introduces computer-based measurement and automatization application research in nuclear technology fields. The emphasis of narration are the role of software in the development of system, and the network measurement and control software model which has optimistic application foreground. And presents the application examples of research and development. (authors)

  10. Development of Career Opportunities for Technicians in the Nuclear Medicine Field. Final Report.

    Science.gov (United States)

    Technical Education Research Center, Cambridge, MA.

    This report describes a nationally coordinated program development project whose purpose was to catalyze the implementation of needed postsecondary educational programs in the field of nuclear medicine technology (NMT). The NMT project was carried out during the six year period 1968-74 in cooperation with more than 36 community/junior colleges and…

  11. Effective field theory for NN interactions

    International Nuclear Information System (INIS)

    Tran Duy Khuong; Vo Hanh Phuc

    2003-01-01

    The effective field theory of NN interactions is formulated and the power counting appropriate to this case is reviewed. It is more subtle than in most effective field theories since in the limit that the S-wave NN scattering lengths go to infinity. It is governed by nontrivial fixed point. The leading two body terms in the effective field theory for nucleon self interactions are scale invariant and invariant under Wigner SU(4) spin-isospin symmetry in this limit. Higher body terms with no derivatives (i.e. three and four body terms) are automatically invariant under Wigner symmetry. (author)

  12. Ductal carcinoma in situ of the breast (DCIS) with heterogeneity of nuclear grade: prognostic effects of quantitative nuclear assessment

    International Nuclear Information System (INIS)

    Chapman, Judith-Anne W; Miller, Naomi A; Lickley, H Lavina A; Qian, Jin; Christens-Barry, William A; Fu, Yuejiao; Yuan, Yan; Axelrod, David E

    2007-01-01

    Previously, 50% of patients with breast ductal carcinoma in situ (DCIS) had more than one nuclear grade, and neither worst nor predominant nuclear grade was significantly associated with development of invasive carcinoma. Here, we used image analysis in addition to histologic evaluation to determine if quantification of nuclear features could provide additional prognostic information and hence impact prognostic assessments. Nuclear image features were extracted from about 200 nuclei of each of 80 patients with DCIS who underwent lumpectomy alone, and received no adjuvant systemic therapy. Nuclear images were obtained from 20 representative nuclei per duct, from each of a group of 5 ducts, in two separate fields, for 10 ducts. Reproducibility of image analysis features was determined, as was the ability of features to discriminate between nuclear grades. Patient information was available about clinical factors (age and method of DCIS detection), pathologic factors (DCIS size, nuclear grade, margin size, and amount of parenchymal involvement), and 39 image features (morphology, densitometry, and texture). The prognostic effects of these factors and features on the development of invasive breast cancer were examined with Cox step-wise multivariate regression. Duplicate measurements were similar for 89.7% to 97.4% of assessed image features. For the pooled assessment with ~200 nuclei per patient, a discriminant function with one densitometric and two texture features was significantly (p < 0.001) associated with nuclear grading, and provided 78.8% correct jackknifed classification of a patient's nuclear grade. In multivariate assessments, image analysis nuclear features had significant prognostic associations (p ≤ 0.05) with the development of invasive breast cancer. Texture (difference entropy, p < 0.001; contrast, p < 0.001; peak transition probability, p = 0.01), densitometry (range density, p = 0.004), and measured margin (p = 0.05) were associated with

  13. Predictive power of theoretical modelling of the nuclear mean field: examples of improving predictive capacities

    Science.gov (United States)

    Dedes, I.; Dudek, J.

    2018-03-01

    We examine the effects of the parametric correlations on the predictive capacities of the theoretical modelling keeping in mind the nuclear structure applications. The main purpose of this work is to illustrate the method of establishing the presence and determining the form of parametric correlations within a model as well as an algorithm of elimination by substitution (see text) of parametric correlations. We examine the effects of the elimination of the parametric correlations on the stabilisation of the model predictions further and further away from the fitting zone. It follows that the choice of the physics case and the selection of the associated model are of secondary importance in this case. Under these circumstances we give priority to the relative simplicity of the underlying mathematical algorithm, provided the model is realistic. Following such criteria, we focus specifically on an important but relatively simple case of doubly magic spherical nuclei. To profit from the algorithmic simplicity we chose working with the phenomenological spherically symmetric Woods–Saxon mean-field. We employ two variants of the underlying Hamiltonian, the traditional one involving both the central and the spin orbit potential in the Woods–Saxon form and the more advanced version with the self-consistent density-dependent spin–orbit interaction. We compare the effects of eliminating of various types of correlations and discuss the improvement of the quality of predictions (‘predictive power’) under realistic parameter adjustment conditions.

  14. Psychotherapist countertransference in the nuclear age: Effects on therapeutic interventions

    International Nuclear Information System (INIS)

    Oderberg, N.A.

    1991-01-01

    Since the early 1980s, there has been considerable attention in the psychology literature to mental health problems related to living in a world threatened by nuclear destruction. Questionnaires were mailed to 630 psychotherapists from the Colorado Psychological Association, California Psychotherapists for Social Responsibility, California Psychologists for Social Responsibility, the US Army, and the APA Division of Military Psychology; 174 questionnaires were returned. It was hypothesized that liberalism, nuclear weapons opposition, nuclear concern, nuclear awareness, and anti-nuclear activism in psychotherapists would facilitate perception of, and openness to working with, a client's nuclear concerns and thus, would be positively correlated with intentions to discuss nuclear issues with clients in three different clinical vignettes. Results indicated that when controlling for subject group, psychotherapy orientation, age, sex, and income, all five independent variables were positively correlated with responses to all three clinical vignettes, with nuclear concern having the strongest unique effect in accounting for variance in responses to the vignettes

  15. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    Donaldson, D; Tolland, H.; Grimston, M.

    1990-01-01

    The greenhouse effect is first explained. The evidence is shown in global warming and changing weather patterns which are generally believed to be due to the emission of greenhouse gases, including carbon dioxide. Serious consequences are predicted if emission of the greenhouse gases is not reduced. Sources of these gases are identified - agriculture, carbon fluorocarbons, coal-fired power stations, vehicle exhausts. The need is to use energy more efficiently but such measures as combined heat and power stations, more fuel efficient cars and better thermal insulation in homes is advocated. The expansion of renewable energy sources such as wind and water power is also suggested. Nuclear power is promoted as it reduces the carbon dioxide emissions and in both the short and long-term will reduce the emission of greenhouse gases. (author)

  16. Graphene Field Effect Transistors for Radiation Detection

    Data.gov (United States)

    National Aeronautics and Space Administration — This is propose to develop Graphene Field Effect Transistor based Radiation Sensors (GFET-RS) for NASA Manned Spaceflight Missions anticipated in next several...

  17. Effectiveness of the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    Schwarz, G.

    2016-01-01

    The Convention on Nuclear Safety (CNS) has been established after the Chernobyl accident with the primary objective of achieving and maintaining a high level of nuclear safety worldwide, through the enhancement of national measures and international cooperation. The CNS is an incentive convention. It defines the basic safety standard which shall be met by the Contracting Parties. The verification of compliance is based on a self-assessment by the Countries and a Peer Review by the other Contracting Parties. As of July 2015, there are 78 Contracting Parties. Among the Contracting Parties of the Convention are all countries operating nuclear power plants except the Islamic Republic of Iran and Taiwan, all countries constructing nuclear power plants, all countries having nuclear power plants in long term shutdown and all countries having signed contracts for the construction of nuclear power plants. The National Reports under the CNS therefore cover almost all nuclear power plants of the world. The peer review of reports, questions and answers that are exchanged in connection with the Review Meetings provided a unique overview of nuclear safety provisions and issues in countries planning or operating nuclear power plants. This is especially important for neighbouring countries to those operating nuclear power plants.

  18. In-medium effective chiral lagrangians and the pion mass in nuclear matter

    International Nuclear Information System (INIS)

    Wirzba, A.

    1995-01-01

    We argue that the effective pion mass in nuclear matter obtained from chiral effective lagrangians is unique and does not depend on off-mass-shell extensions of the pion fields as e.g. the PCAC choice. The effective pion mass in isospin symmetric nuclear matter is predicted to increase slightly with increasing nuclear density, whereas the effective time-like pion decay constant and the magnitude of the density-dependent quark condensate decrease appreciably. The in-medium Gell-Mann-Oakes-Renner relation as well as other in-medium identities are studied in addition. Finally, several constraints on effective lagrangians for the description of the pion propagation in isospin symmetric, isotropic and homogeneous nuclear matter are discussed. (orig.)

  19. On-the-fly, electric-field-driven, coupled electron-nuclear dynamics.

    Science.gov (United States)

    Jones, Garth A; Acocella, Angela; Zerbetto, Francesco

    2008-10-09

    An on-the-fly, electric field driven, coupled electron-nuclear dynamics approach is developed and applied to model the photodissociation of water in the A((1)B1) excited state. In this method, a quantum propagator evolves the photon-induced electronic dynamics in the ultrafast time scale, and a quasi-classical surface hopping approach describes the nuclear dynamics in the slower time scale. In addition, strong system-field interactions are explicitly included in the electronic propagator. This theoretical development enables us to study rapid photon-induced bond dissociation dynamics and demonstrates the partial breakdown of electronic coherence as well as electronic population trapping in the excited state when the molecular vibrations detune the system with respect to the applied field. The method offers a practical way to use on-the-fly dynamics for modeling light-molecule interactions that lead to interesting photochemical events.

  20. Electrical Initialization of Electron and Nuclear Spins in a Single Quantum Dot at Zero Magnetic Field.

    Science.gov (United States)

    Cadiz, Fabian; Djeffal, Abdelhak; Lagarde, Delphine; Balocchi, Andrea; Tao, Bingshan; Xu, Bo; Liang, Shiheng; Stoffel, Mathieu; Devaux, Xavier; Jaffres, Henri; George, Jean-Marie; Hehn, Michel; Mangin, Stephane; Carrere, Helene; Marie, Xavier; Amand, Thierry; Han, Xiufeng; Wang, Zhanguo; Urbaszek, Bernhard; Lu, Yuan; Renucci, Pierre

    2018-04-11

    The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X + ) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.

  1. Thermo field dynamics in the treatment of the nuclear pairing problem at finite temperature

    International Nuclear Information System (INIS)

    Civitarese, O.; DePaoli, A.L.

    1993-01-01

    The use of the thermo field dynamics, in dealing with the study of nuclear properties at finite temperature, is discussed for the case of a nuclear Hamiltonian which includes a single-particle term and a monopole pairing residual two-body interaction. The rules of the thermo fields dynamics are applied to double the Hilbert space, thus accounting for the thermal occupation of single-particle states, and to construct dual spaces, both for single-particle (BCS) and collective (RPA) degrees of freedom. It is shown that the rules of the thermo field dynamics yield to a temperature dependence of the equations describing quasiparticle and phonon excitations which is similar to the one found in the more conventional finite temperature Wick's theorem approach, namely: By dealing with thermal averages. (orig.)

  2. Numerical forecast test on local wind fields at Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Chen Xiaoqiu

    2005-01-01

    Non-hydrostatic, full compressible atmospheric dynamics model is applied to perform numerical forecast test on local wind fields at Qinshan nuclear power plant, and prognostic data are compared with observed data for wind fields. The results show that the prognostic of wind speeds is better than that of wind directions as compared with observed results. As the whole, the results of prognostic wind field are consistent with meteorological observation data, 54% of wind speeds are within a factor of 1.5, about 61% of the deviation of wind direction within the 1.5 azimuth (≤33.75 degrees) in the first six hours. (authors)

  3. Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe.

    Science.gov (United States)

    Nanni, Emilio A; Barnes, Alexander B; Matsuki, Yoh; Woskov, Paul P; Corzilius, Björn; Griffin, Robert G; Temkin, Richard J

    2011-05-01

    We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B(1S)) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4mm diameter sapphire rotor containing the sample. The predicted average B(1S) field is 13μT/W(1/2), where S denotes the electron spin. For a routinely achievable input power of 5W the corresponding value is γ(S)B(1S)=0.84MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement (ϵ) vs. ω(1S)/(2π) for a sample of (13)C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Graphene Field Effect Transistor for Radiation Detection

    Science.gov (United States)

    Li, Mary J. (Inventor); Chen, Zhihong (Inventor)

    2016-01-01

    The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.

  5. Electrically tunable dynamic nuclear spin polarization in GaAs quantum dots at zero magnetic field

    Science.gov (United States)

    Manca, M.; Wang, G.; Kuroda, T.; Shree, S.; Balocchi, A.; Renucci, P.; Marie, X.; Durnev, M. V.; Glazov, M. M.; Sakoda, K.; Mano, T.; Amand, T.; Urbaszek, B.

    2018-04-01

    In III-V semiconductor nano-structures, the electron and nuclear spin dynamics are strongly coupled. Both spin systems can be controlled optically. The nuclear spin dynamics are widely studied, but little is known about the initialization mechanisms. Here, we investigate optical pumping of carrier and nuclear spins in charge tunable GaAs dots grown on 111A substrates. We demonstrate dynamic nuclear polarization (DNP) at zero magnetic field in a single quantum dot for the positively charged exciton X+ state transition. We tune the DNP in both amplitude and sign by variation of an applied bias voltage Vg. Variation of ΔVg on the order of 100 mV changes the Overhauser splitting (nuclear spin polarization) from -30 μeV (-22%) to +10 μeV (+7%) although the X+ photoluminescence polarization does not change sign over this voltage range. This indicates that absorption in the structure and energy relaxation towards the X+ ground state might provide favourable scenarios for efficient electron-nuclear spin flip-flops, generating DNP during the first tens of ps of the X+ lifetime which is on the order of hundreds of ps. Voltage control of DNP is further confirmed in Hanle experiments.

  6. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    Donaldson, D.M.; Tolland, H.G.

    1989-05-01

    Global levels of the ''Greenhouse'' gases - carbon dioxide, the chlorofluorocarbons (CFCs), methane, nitrous oxide and tropospheric ozone are increasing as a result of man's activities. This increase is widely expected to bring about a rise in global temperature with concomitant environmental impacts. Global warming has been observed over the last century, and the last decade has seen seven of the warmest years on record. There has also been increased variability in the weather (an expected consequence of global warming). However, these possible manifestations of the Greenhouse Effect are within natural variations and proof must await more definitive indications. A brief outline of current views on the Greenhouse Effect is given. This report addresses the energy sector using CO 2 emissions as a measure of its ''Greenhouse'' contribution. This approach understates the energy sector contribution. However, the difference is within the error band. It seems likely that the warming effect of non-energy related emissions will remain the same and there will be more pressure to reduce the emissions from the energy sector. To assess policy options the pattern of future energy demand is estimated. Two scenarios have been adopted to provide alternative frameworks. Both assume low energy growth projections based on increased energy efficiency. The role of nuclear power in reducing carbon dioxide emissions is considered. (author)

  7. Status of effective field theory of NN scattering

    International Nuclear Information System (INIS)

    Beane, S.R.

    1998-06-01

    There exist many nucleon-nucleon potentials which reproduce phase shifts and nuclear properties with remarkable accuracy. Three fundamental features are shared by these potential models: (1) pions are important at long distances, (2) there is a source of intermediate-range attraction, and (3) there is a source of short-distance repulsion. However, in general, distinct physical mechanisms in these models account for the same feature of the nuclear force. Agreement with experiment is maintained in spite of these differences because of the large number of fit parameters. Systematic approaches to the scattering of strongly interacting particles, such as chiral perturbation theory, are based on the ideas of effective field theory (EFT). The author reviews recent progress in developing a systematic power counting scheme for scattering processes involving more than one nucleon

  8. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    Energy Technology Data Exchange (ETDEWEB)

    Heather D. Medema; Ronald K. Farris

    2012-09-01

    This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  9. Radionuclide observables during the Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, Jonathan L.; Miley, Harry S.; Milbrath, Brian D.

    2016-03-01

    In 2014 the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) undertook the Integrated Field Exercise (IFE) in Jordan. The exercise consisted of a simulated 0.5 – 2 kT underground explosion triggering an On-site Inspection (OSI) to search for evidence of a Treaty violation. This research evaluates two of the OSI techniques, including laboratory-based gamma-spectrometry of soil samples and in situ gamma-spectrometry for 17 particulate radionuclides indicative of nuclear weapon tests. The detection sensitivity is evaluated using real IFE and model data. It indicates that higher sensitivity laboratory measurements are the optimum technique during the IFE and OSI timeframes.

  10. Study on the survey and analysis of education in the nuclear field

    International Nuclear Information System (INIS)

    Minguez, E.

    1998-01-01

    It has been identified on many occasions that human resources is one of the most important elements for nuclear energy deployment. Major activities include attracting sufficient number of bright and interested students to the field, and maintaining research activities for both current and future nuclear power utilisation, associated with the successful transfer of knowledge and know-how to the next generation. Even if some countries are not now developing additional nuclear power, there is a need for expertise in operating and then decommissioning existing plants and in radioactive waste management. Universities and in-house training which is provided by nuclear research institutes and companies, have both played significant roles in the history of nuclear development by educating and training young qualified people. It has been observed, however, that universities, nuclear programmes and courses are being merged with other subjects, or in the worst cases, simply closed down. The main reasons for this trend are that universities cannot maintain nuclear-related courses because of lack of students and budget cuts. Research institutes as well as private companies are facing similar budgetary constraints and they are also considerably diversifying into non-nuclear research fields. This loss of educational possibilities needs to be quantified so that governments can take a considered view as to need to remedy the situation. It would also be helpful to review actions already undertaken by governments, universities and research institutes to improve this situation. It should be noted that qualified manpower is a resource available for use on the global scale, even if supply tends to be matter for national decisions. An Expert Group has been created under the auspices of the Committee for Technical and Economic Studies on Nuclear Energy Development and Fuel Cycle (NDC) of the Nuclear Energy Agency (NEA) of the OECD. The Group consists of 24 experts from 17 Member countries

  11. Direct coupled amplifiers using field effect transistors

    International Nuclear Information System (INIS)

    Fowler, E.P.

    1964-03-01

    The concept of the uni-polar field effect transistor (P.E.T.) was known before the invention of the bi-polar transistor but it is only recently that they have been made commercially. Being produced as yet only in small quantities, their price imposes a restriction on use to circuits where their peculiar properties can be exploited to the full. One such application is described here where the combination of low voltage drift and relatively low input leakage current are necessarily used together. One of the instruments used to control nuclear reactors has a logarithmic response to the mean output current from a polarised ionisation chamber. The logarithmic signal is then differentiated electrically, the result being displayed on a meter calibrated to show the reactor divergence or doubling time. If displayed in doubling time the scale is calibrated reciprocally. Because of the wide range obtained in the logarithmic section and the limited supply voltage, an output of 1 volt per decade change in ionisation current is used. Differentiating this gives a current of 1.5 x 10 -8 A for p.s.D. (20 sec. doubling time) in the differentiating amplifier. To overcome some of the problems of noise due to statistical variations in input current, the circuit design necessitates a resistive path to ground at the amplifier input of 20 M.ohms. A schematic diagram is shown. 1. It is evident that a zero drift of 1% can be caused by a leakage current of 1.5 x 10 -10 A or an offset voltage of 3 mV at the amplifier input. Although the presently used electrometer valve is satisfactory from the point of view of grid current, there have been sudden changes in grid to grid voltage (the valve is a double triode) of up to 10 m.V. It has been found that a pair of F.E.T's. can be used to replace the electrometer valve so long as care is taken in correct balance of the two devices. An investigation has been made into the characteristics of some fourteen devices to see whether those with very

  12. Study of hydrogenated amorphous silicon devices under intense electric field: application to nuclear detection

    International Nuclear Information System (INIS)

    Ilie, A.

    1996-01-01

    The goal of this work was the study, development and optimization of hydrogenated amorphous silicon (a-Si:H) devices for use in detection of ionizing radiation in applications connected to the nuclear industry. Thick p-i-n devices, capable of withstanding large electric fields (up to 10 6 V/cm) with small currents (nA/cm 2 ), were proposed and developed. In order to decrease fabrication time, films were made using the 'He diluted' PECVD process and compared to standard a-Si:H films. Aspects connected to specific detector applications as well as to the fundamental physics of a-Si:H were considered: the internal electric field technique, in which the depletion charge was measured as a function of the applied bias voltage; study of the leakage current of p-i-n devices permitted us to demonstrate different regimes: depletion, field-enhanced thermal generation and electronic injection across the p layer. The effect of the electric field on the thermal generation of the carriers was studied considering the Poole-Frenkel and tunneling mechanisms. A model was developed taking under consideration the statistics of the correlated states and electron-phonon coupling. The results suggest that mechanisms not included in the 'standard model' of a Si:h need to be considered, such as defect relaxation, a filed-dependent mobility edge etc...; a new metastable phenomenon, called 'forming', induced by prolonged exposure to a strong electric field, was observed and studied. It is characterized by marked decrease of the leakage current and the detector noise, and increase in the breakdown voltage, as well as an improvement of carrier collection efficiency. This forming process appears to be principally due to an activation of the dopants in the p layer; finally, the capacity of thick p-i-n a Si:H devices to detect ionizing radiation has been evaluated. We show that it is possible, with 20-50 micron thick p-i-n devices, to detect the full spectrum of alpha and beta particles. With an

  13. Skills for development of nuclear professional for field observations; Competencias para el desarrollo de profesionales nucleares para las observaciones en el campo

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Gutierrez, N.; Buedo, J. L.

    2012-07-01

    The presence of commanders in the field is a growing need in the nuclear sector. The education, training and monitoring of the leaders involved in monitoring programs, allow have a group of nuclear professionals that offer specific and useful feedback and helps improve plant safety.

  14. Dynamically assisted Sauter-Schwinger effect in inhomogeneous electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Christian; Schützhold, Ralf [Fakultät für Physik, Universität Duisburg-Essen,Lotharstrasse 1, 47057 Duisburg (Germany)

    2016-02-24

    Via the world-line instanton method, we study electron-positron pair creation by a strong (but sub-critical) electric field of the profile E/cosh{sup 2} (kx) superimposed by a weaker pulse E{sup ′}/cosh{sup 2} (ωt). If the temporal Keldysh parameter γ{sub ω}=mω/(qE) exceeds a threshold value γ{sub ω}{sup crit} which depends on the spatial Keldysh parameter γ{sub k}=mk/(qE), we find a drastic enhancement of the pair creation probability — reporting on what we believe to be the first analytic non-perturbative result for the interplay between temporal and spatial field dependences E(t,x) in the Sauter-Schwinger effect. Finally, we speculate whether an analogous effect (drastic enhancement of tunneling probability) could occur in other scenarios such as stimulated nuclear decay, for example.

  15. Phase II: Field Detector Development For Undeclared/Declared Nuclear Testing For Treaty Verfiation Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kriz, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-02

    Radioactive xenon isotopes are a critical part of the Comprehensive Nuclear Test Ban Treaty (CTBT) for the detection or confirmation of nuclear weapons tests as well as on-site treaty verification monitoring. On-site monitoring is not currently conducted because there are no commercially available small/robust field detector devices to measure the radioactive xenon isotopes. Xenon is an ideal signature to detect clandestine nuclear events since they are difficult to contain and can diffuse and migrate through soils due to their inert nature. There are four key radioxenon isotopes used in monitoring: 135Xe (9 hour half-life), 133mXe (2 day half-life), 133Xe (5 day half-life) and 131mXe (12 day half-life) that decay through beta emission and gamma emission. Savannah River National Laboratory (SRNL) is a leader in the field of gas collections and has developed highly selective molecular sieves that allow for the collection of xenon gas directly from air. Phase I assessed the development of a small, robust beta-gamma coincidence counting system, that combines collection and in situ detection methodologies. Phase II of the project began development of the custom electronics enabling 2D beta-gamma coincidence analysis in a field portable system. This will be a significant advancement for field detection/quantification of short-lived xenon isotopes that would not survive transport time for laboratory analysis.

  16. Nuclear shell effects at high temperatures

    International Nuclear Information System (INIS)

    Davidson, N.J.; Miller, H.G.

    1993-01-01

    In discussing the disappearance of nuclear shell effects at high temperatures, it is important to distinguish between the ''smearing out'' of the single-particle spectrum with increasing temperature and the vanishing of shell related structures in many-body quantities such as the excitation energy per nucleon. We propose a semiempirical method to obtain an upper bound on the temperature required to smooth the single-particle spectrum, and point out that shell effects in many-body parameters may persist above this temperature. We find that the temperature required to smear out the single-particle spectrum is approximately 1 MeV for heavy nuclei (A approx-gt 150) and about 3--4 MeV for light nuclei (A approx-lt 50), in reasonable agreement with the estimate of 41/πA 1/3 obtained from calculations with harmonic oscillator potentials. These temperatures correspond to many-body excitation energies of approximately 20 and 60 MeV, respectively

  17. Nuclear power's effects on electric rate making

    International Nuclear Information System (INIS)

    Smith, D.S.; Lancaster, A.A.

    1978-01-01

    Government and the electric utility industry are re-evaluating nuclear power's contribution to the total U.S. energy supplies. This article addresses how the recently increased nuclear plant construction and operation costs are translated into the prices that consumers pay for electricity. The electric rates that consumers pay must reflect the costs of producing electricity, as well as the costs of transmission, distribution, metering, and billing. The use of nuclear power for electric production is anticipated to grow rapidly so as to meet a larger portion of our country's electricity needs through the end of the century; so nuclear power costs are expected to be an even larger portion of the total electricity price. There are certain rate-making issues that are actively being discussed in public forums and before state and Federal regulatory bodies. These issues are not unique to nuclear power, but take on added significance when nuclear power is used by utilities to produce electricity because of the technology required and because of the type, timing, and magnitude of the costs involved. These are: (1) inclusion of construction work in progress in the rate base; (2) fuel adjustment clauses and treatment of nuclear fuel cycle costs; (3) treatment of certain taxes under the rate-making method called normalization or deferral accounting (sometimes referred to as ''phantom taxes''); and (4) rate treatment for particular nuclear expense items reflecting costs of delays, plant cancellations, and operational slowdowns

  18. Magnetic field effects on microwave absorbing materials

    Science.gov (United States)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  19. Field Induced Memory Effects in Random Nematics

    Directory of Open Access Journals (Sweden)

    Amid Ranjkesh

    2014-01-01

    Full Text Available We studied numerically external field induced memory effects in randomly perturbed nematic liquid crystals. Random anisotropy nematic-type lattice model was used. The impurities imposing orientational disorder were randomly spatially distributed with the concentration p below the percolation threshold. Simulations were carried for finite temperatures, where we varied p, interaction strength between LC molecules, and impurities and external field B. In the {B,T} plane we determined lines separating short range—quasi long range and quasi long range—long range order. Furthermore, crossover regime separating external field and random field dominated regime was estimated. We calculated remanent nematic ordering in samples at B=0 as a function of the previously experienced external field strength B.

  20. Nuclear electric quadrupole moment of 9Li using zero-field β-detected NQR

    Science.gov (United States)

    Voss, A.; Pearson, M. R.; Billowes, J.; Buchinger, F.; Chow, K. H.; Crawford, J. E.; Hossein, M. D.; Kiefl, R. F.; Levy, C. D. P.; MacFarlane, W. A.; Mané, E.; Morris, G. D.; Parolin, T. J.; Saadaoui, H.; Salman, Z.; Smadella, M.; Song, Q.; Wang, D.

    2011-07-01

    A β-detected nuclear quadrupole resonance (NQR) spectrometer becomes a powerful tool to study changes in nuclear ground-state properties along isotopic chains when coupled to a laser excitation beamline to polarize the nuclei of interest. Recently, the β-NQR technique in a zero magnetic field has been applied for the first time to measure the ratio of static nuclear quadrupole moments of 8, 9Li, Q9/Q8 = 0.966 75(9) denoted by Q8 for 8Li and Q9 for 9Li, respectively. This shows agreement with present literature values but with significantly improved precision. Based on the literature, the quadrupole moment for 8Li has been re-evaluated to be |Q8| = 32.6(5) mb. From this, the quadrupole moment for 9Li is calculated as |Q9| = 31.5(5) mb with the error being dominated by the error of Q8.

  1. New Developments of the Law of the Sea in the Nuclear Field

    International Nuclear Information System (INIS)

    Lampe, W.H.

    1977-01-01

    Following the 6th Session (July 1977) of the Conference on the Law of the Sea an Informal Composite Negotiating Text was released which has a direct bearing on several aspects of the peaceful uses of nuclear energy. These are, in particular, navigation of nuclear-powered merchant ships and their right of passage in territorial waters, their safety and the sea disposal of radioactive waste. It seems from the present status of the work of the Conference that the amendments likely to be made to the Law of the Sea will not impede the development of nuclear-powered navigation and the discussions stress the importance of the role international organisations should continue to play in this field. (NEA) [fr

  2. Radionuclide observables during the Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty.

    Science.gov (United States)

    Burnett, Jonathan L; Miley, Harry S; Milbrath, Brian D

    2016-03-01

    In 2014 the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) undertook an Integrated Field Exercise (IFE14) in Jordan. The exercise consisted of a simulated 0.5-2 kT underground nuclear explosion triggering an On-site Inspection (OSI) to search for evidence of a Treaty violation. This research paper evaluates two of the OSI techniques used during the IFE14, laboratory-based gamma-spectrometry of soil samples and in-situ gamma-spectrometry, both of which were implemented to search for 17 OSI relevant particulate radionuclides indicative of nuclear explosions. The detection sensitivity is evaluated using real IFE and model data. It indicates that higher sensitivity laboratory measurements are the optimum technique during the IFE and within the Treaty/Protocol-specified OSI timeframes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Seismic effects on technological equipment and systems of nuclear power plants

    International Nuclear Information System (INIS)

    Masopust, R.; Pecinka, L.; Podrouzek, J.

    1983-01-01

    A survey is given of problems related to the construction of nuclear power plants with regard to seismic resistance. Sei--smic resistance of technological equipment is evaluated by experimental trials, calculation or the combination of both. Existing and future standards are given for the given field. The Czechoslovak situation is discussed as related to the construction of the Mochovce nuclear power plant. Procedures for testing seismic resistance, types of tests and methods of simulating seismic excitation are described. Antiseismic measures together with structural elements for limiting the seismic effects on technological equipment and nuclear power plant systems are summed up on the basis of foreign experience. (E.F.)

  4. Radionuclide observables during the Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty

    International Nuclear Information System (INIS)

    Burnett, Jonathan L.; Miley, Harry S.; Milbrath, Brian D.

    2016-01-01

    In 2014 the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) undertook an Integrated Field Exercise (IFE14) in Jordan. The exercise consisted of a simulated 0.5–2 kT underground nuclear explosion triggering an On-site Inspection (OSI) to search for evidence of a Treaty violation. This research paper evaluates two of the OSI techniques used during the IFE14, laboratory-based gamma-spectrometry of soil samples and in-situ gamma-spectrometry, both of which were implemented to search for 17 OSI relevant particulate radionuclides indicative of nuclear explosions. The detection sensitivity is evaluated using real IFE and model data. It indicates that higher sensitivity laboratory measurements are the optimum technique during the IFE and within the Treaty/Protocol-specified OSI timeframes. - Highlights: • The 2014 Integrated Field Exercise occurred in Jordan. • The detection sensitivity for two On-site Inspection techniques was evaluated. • The techniques search for 17 particulate radionuclides indicative of nuclear explosions. • Laboratory-based gamma-spectrometry of soil samples was the optimum technique.

  5. Acceptance of nuclear power: The Fukushima effect

    International Nuclear Information System (INIS)

    Siegrist, Michael; Visschers, Vivianne H.M.

    2013-01-01

    Utilizing a longitudinal study design, the impact of the 2011 accident in Fukushima on acceptance of nuclear power and the evaluation of several scenarios with different percentages of nuclear power were examined. Mail surveys were conducted in the German-speaking part of Switzerland. The first survey took place before the accident in Fukushima (Autumn 2010), the second survey immediately after the accident (March 2011), and the third survey half a year after the accident (October 2011). A sample of 463 persons participated in all three surveys. The accident had a negative impact on the acceptance of nuclear power. The mean change was moderate, and high correlations between the measurement points were observed. Overall, participants thus showed rather stable attitudes towards nuclear power across the three measurement waves. Results of the present study demonstrate the importance of prior beliefs and attitudes for the interpretation of an accident. The evaluation of the various scenarios was strongly influenced by participants’ pre-Fukushima attitudes towards nuclear power. - Highlights: ► Longitudinal studies are important for risk perception research. ► The accident in Fukushima had only a moderate impact on acceptance. ► Acceptance of nuclear power before and after Fukushima was highly correlated. ► People have stable attitudes towards nuclear power

  6. Evaluation of poly(vinylpyrrolidone) and collagen by Low Field Nuclear Magnetic Resonance Spectroscopy

    International Nuclear Information System (INIS)

    Costa, Paula de M.; Tavares, Maria I.B.

    2005-01-01

    Blends of natural and synthetic polymers represent a new class of materials with better mechanical properties and biocompatibility than those of the single components. Collagen and poly(vinylpyrrolidone) are well known for their important biological properties. The blending of collagen with poly(vinylpyrrolidone) makes it possible to obtain new materials in which strong interactions between the synthetic and biological components occur. Do to the excellent biocompatibility of these polymers, this blend has been much studied intending biomedical applications. And a one technique that can provide important information on molecular mobility, compatibility and even evaluate the interactions that can occur with these polymers is the Low Field Nuclear Magnetic Resonance Spectroscopy. Thus, the purpose of this work is to evaluate collagen and poly(vinylpyrrolidone) by Low Field Nuclear Magnetic Resonance Spectroscopy. From the values of relaxation times obtained, we can conclude that these materials have different interactions, and different mobility domains, confirming the heterogeneity and complexity of these materials. (author)

  7. The Romanian experience on public information in the nuclear power field

    International Nuclear Information System (INIS)

    Stiopol, M.; Bilegan, I.C.; Chirica, T.

    2000-01-01

    The start of the entire nuclear program in Romania some 20 years ago, was a high-level government decision without any commitment and acceptance of the people but obviously based on economic and political considerations. No one asked and nobody explained to the people why a nuclear power plant is so much required. Since 1992 a Public Information Program has been initiated, at the level of the former RENEL - GEN (Romanian Electricity Authority-Nuclear Power Group), at present, the Societatea Nationala ''Nuclearelectrica'' SA (SNN SA). The starting point was the possibility that a false perception and misunderstanding of facts, associated with the lack of a minimum ''education'' in the field, may generate a hostile attitude, both on the part of the authorities and the people. The main target of this program has been and is still the education and information of the public, namely, the presentation of all aspects related to nuclear energy, closely connected to explaining the need for this form of energy, in view of its benefits in economy, environment and social life, the improvement of nuclear power plant safety and reliability. The paper underlined the main activities we have developed under this program and their results. It is also presented the perspectives of the program in the future. (author)

  8. Effects of nuclear elastic scattering in magnetic confinement plasmas

    International Nuclear Information System (INIS)

    Matsuura, Hideaki

    2015-01-01

    When the parameter regions of magnetically confined D-T and D- 3 He nuclear fusion plasma are assumed, the nuclear elastic scattering appearing in these plasmas is as follows. The following are quantitatively explained: (1) formation of knock-on tail on the ion velocity distribution function due to nuclear elastic scattering, (2) change in nuclear fusion reaction rate coefficient due to the change in velocity distribution function via nuclear elastic scattering, (3) effects of nuclear elastic scattering on the reaction product ions and neutron emission spectrum, and (4) effects of nuclear elastic scattering on the energy distribution ratio toward the ion group and electron group in the deceleration process of fast ions in the plasma. The formation of the knock-on tail is an energy addition process to the bulk ion group due to the nuclear elastic scattering of fast ions. When nuclear elastic scattering is neglected, the deceleration of reaction product protons is underestimated, and so the equilibrium distribution function of high-speed region is overestimated by up to about 40%. On the other hand, thermal component is underestimated by about 40%. Nuclear elastic scattering possibly affects the trajectory of fast ions in magnetic configuration. (A.O.)

  9. A Study on the Field Data Communication Structure under Harsh Environment in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hur, Seop; Hong, S. B.; Lee, J. K.; Kim, D. H.; Chung, K. I.; Kim, C. H.; Koo, I. S.; Cho, J. W.; Lee, J. C.; Choi, Y. S.

    2009-01-01

    As digitizing the I and C systems in nuclear plants, The SMART sensors/ actuators are considered as a alternative of the conventional field devices. Because the digitization of the filed level devises is still primitive, it is necessary to perform the relative R and D. Especially, it is difficult to adopt the digital devices in a containment building of the nuclear plants due to the harsh environment conditions such as high level radiation and high temperature. Considering the tendency of the reliability enhancement, from now on, the digital device will be adopted in the harsh environment. The major technical issues of the field level digitization are a SMART transmitter/actuator technology, a network technology and an equipment qualification in harsh environment. This report describes the study results regarding the field level data network. There are many merits such as an automatic test, a diagnostics and auto-calibration when digitizing of the I and C systems. While, the data capacity will be much increased compare to the conventional systems. The future field data network should have larger data transmission speed compare to the current sensor networks such as HART and deviceNET. The candidate commercial network has been selected considering the nuclear requirements. Based on the this network, a protocol structure and a access control structure are recommended. Instruments in containment building are analyzed and the design bases and requirements have been setup to assure the safety and performance of the field data communication. According to the design bases, requirements and the node allocation criteria, the field network has been divided by functional segmentation and each instrument has been allocated to each individual data network

  10. Pulsed-field gradient nuclear magnetic resonance study of transport properties of fluid catalytic cracking catalysts

    Czech Academy of Sciences Publication Activity Database

    Kortunov, P.; Vasenkov, S.; Kärger, J.; Fé Elía, M.; Perez, M.; Stöcker, M.; Papadopoulos, G. K.; Theodorou, D.; Drescher, B.; McElhiney, G.; Bernauer, B.; Krystl, V.; Kočiřík, Milan; Zikánová, Arlette; Jirglová, Hana; Berger, C.; Gläser, R.; Weitkamp, J.; Hansen, E. W.

    2005-01-01

    Roč. 23, č. 2 (2005), s. 233-237 ISSN 0730-725X Grant - others:TROCAT project - European Community(DE) G5RD-CT-2001-00520 Institutional research plan: CEZ:AV0Z40400503 Keywords : pulsed-field gradient * nuclear magnetic resonance * fluid catalytic cracking catalyst Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.361, year: 2005

  11. Status of the French research in the field of molten salt nuclear reactors

    International Nuclear Information System (INIS)

    Hery, M.; Israel, M.; Fauger, P.; Lecocq, A.

    1977-01-01

    The research program of the CEA in the field of molten salt nuclear reactors has been concerned with MSBR type reactors (Molten Salt Breeder Reactor). The papers written after having performed the theoretical analysis are entitled: core, circuits, chemistry and economy; they include some criticisms and suggestions. The experimental studies consisted in: graphite studies, chemical studies of the salt, metallic materials, the salt loop and the lead loop [fr

  12. Effective field theory for triaxially deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.B. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Kaiser, N. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Juelich (Germany); Meng, J. [Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)

    2017-10-15

    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation. (orig.)

  13. Fundamentals of nanoscaled field effect transistors

    CERN Document Server

    Chaudhry, Amit

    2013-01-01

    Fundamentals of Nanoscaled Field Effect Transistors gives comprehensive coverage of the fundamental physical principles and theory behind nanoscale transistors. The specific issues that arise for nanoscale MOSFETs, such as quantum mechanical tunneling and inversion layer quantization, are fully explored. The solutions to these issues, such as high-κ technology, strained-Si technology, alternate devices structures and graphene technology are also given. Some case studies regarding the above issues and solution are also given in the book. In summary, this book: Covers the fundamental principles behind nanoelectronics/microelectronics Includes chapters devoted to solutions tackling the quantum mechanical effects occurring at nanoscale Provides some case studies to understand the issue mathematically Fundamentals of Nanoscaled Field Effect Transistors is an ideal book for researchers and undergraduate and graduate students in the field of microelectronics, nanoelectronics, and electronics.

  14. On the field determination of effective porosity

    International Nuclear Information System (INIS)

    Javandel, I.

    1989-03-01

    Effective porosity of geologic materials is a very important parameter for estimating groundwater travel time and modeling contaminant transport in hydrologic systems. Determination of a representative effective porosity for nonideal systems is a problem still challenging hydrogeologists. In this paper, some of the conventional field geophysical and hydrological methods for estimating effective porosity of geologic materials are reviewed. The limitations and uncertainties associated with each method are discussed. 30 refs., 8 figs

  15. Effective field theory and the quark model

    International Nuclear Information System (INIS)

    Durand, Loyal; Ha, Phuoc; Jaczko, Gregory

    2001-01-01

    We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections

  16. Review of radiation effects in solid-nuclear-waste forms

    International Nuclear Information System (INIS)

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10 3 to 10 6 years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references

  17. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    Science.gov (United States)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  18. Natural geochemical analogues of the near field of high-level nuclear waste repositories

    International Nuclear Information System (INIS)

    Apps, J.A.

    1995-01-01

    United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100 degrees C and could reach 250 degrees C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinement of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields

  19. Novel QCD effects in nuclear collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1991-12-01

    Heavy ion collisions can provide a novel environment for testing fundamental dynamical processes in QCD, including minijet formation and interactions, formation zone phenomena, color filtering, coherent co-mover interactions, and new higher twist mechanisms which could account for the observed excess production and anomalous nuclear target dependence of heavy flavor production. The possibility of using light-cone thermodynamics and a corresponding covariant temperature to describe the QCD phases of the nuclear fragmentation region is also briefly discussed

  20. A systematic study of even-even nuclei in the nuclear chart by the relativistic mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sumiyoshi, K.; Hirata, D.; Tanihata, I.; Sugahara, Y.; Toki, H. [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    We study systematically the properties of nuclei in the whole mass range up to the drip lines by the relativistic mean field (RMF) theory with deformations as a microscopic framework to provide the data of nuclear structure in the nuclear chart. The RMF theory is a phenomenological many-body framework, in which the self-consistent equations for nucleons and mesons are solved with arbitrary deformation, and has a potential ability to provide all the essential information of nuclear structure such as masses, radii and deformations together with single particle states and wave functions from the effective lagrangian containing nuclear interaction. As a first step toward the whole project, we study the ground state properties of even-even nuclei ranging from Z=8 to Z=120 up to the proton and neutron drip lines in the RMF theory. We adopt the parameter set TMA, which has been determined by the experimental masses and charge radii in a wide mass range, for the effective lagrangian of the RMF theory. We take into account the axially symmetric deformation using the constrained method on the quadrupole moment. We provide the properties of all even-even nuclei with all the possible ground state deformations extracted from the deformation energy curves by the constrained calculations. By studying the calculated ground state properties systematically, we aim to explore the general trend of masses, radii and deformations in the whole region of the nuclear chart. We discuss the agreement with experimental data and the predictions such as magicness and triaxial deformations beyond the experimental frontier. (author)

  1. DOSIMETRIC response of a REM-500 in low energy neutron fields typical of nuclear power plants.

    Science.gov (United States)

    Aslam; Matysiak, W; Atanackovic, J; Waker, A J

    2012-06-01

    This study investigates the response of a REM-500 to assess neutron quality factor and dose equivalent in low energy neutron fields, which are commonly encountered in the workplace environment of nuclear power stations. The McMaster University 3 MV Van de Graaff accelerator facility was used to measure the response of the instrument in monoenergetic neutron fields in the energy range 51 to 727 keV by bombarding a thin LiF target with 1.93-2.50 MeV protons. The energy distribution of the neutron fields produced in the facility was measured by a (3)He filled gas ionization chamber. The MCA mode of the REM-500 instrument was used to collect lineal energy distributions at varying neutron energies and to calculate the frequency and dose-mean lineal energies. The effective quality factor, Q-, was also calculated using the values of Q(y)listed in the REM-500 operation manual and compared with those of ICRP 60. The authors observed a continuously increasing trend in y - F, y-D, and Q-with an increase in neutron energy. It is interesting to note that standard tissue equivalent proportional counters (TEPCs) filled with tissue equivalent(TE) gas give rise to a similar trend for these microdosimetric quantities of interest in the same energy range; however, the averages calculated in this study are larger by about 15%compared to a TEPC filled with propane-based TE gas probably because of the larger stopping power of protons in propane compared to TE gas. These somewhat larger event sizes did not result in any significant increase in the Q-compared to those obtained from a TEPC filled with TE gas and were found to be in good agreement with other measurements reported earlier at corresponding neutron energies. The instrument quality factor response, R(Q), defined as the ratio of measured quality factor to the calculated quality factor in an ICRU tissue sphere,was found to vary with neutron energy. The instrument response,R(Q), was ~0.6 at 727 keV, which deteriorates further to

  2. Electric Field Effects in RUS Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  3. Effective field theory for magnetic compactifications

    Science.gov (United States)

    Buchmuller, Wilfried; Dierigl, Markus; Dudas, Emilian; Schweizer, Julian

    2017-04-01

    Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N = 1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.

  4. Effective field theory for magnetic compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Buchmuller, Wilfried; Dierigl, Markus; Schweizer Julian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Dudas, Emilian [Univ. Paris-Saclay, Palaiseau (France). Ecole Polytechnique

    2016-12-15

    Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.

  5. Effective field theory for magnetic compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Buchmuller, Wilfried; Dierigl, Markus [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany); Dudas, Emilian [Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay,F-91128 Palaiseau (France); Schweizer, Julian [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany)

    2017-04-10

    Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.

  6. Effects on the atmosphere of a major nuclear exchange

    International Nuclear Information System (INIS)

    Pittock, A.B.

    1985-01-01

    Several groups have published studies on the possible environmental and atmospheric consequence of a nuclear war. The major theory is that a nuclear war would produce a hemispherewide climatic disaster. This disaster, called nuclear winter, would arise as a result of changes in the earth's radiation balance due to a tremendous increase in smoke and dusts in the earth's atmosphere generated by numerous explosions and ensuing fires. This paper reviews a study ''The Effects on the Atmosphere of a Major Nuclear Exchange'' issued by the National Research Council of the National Academy of Sciences. The report is basically a very conservative document, but it gives credibility to the theory that a major nuclear war would result in a Nuclear Winter

  7. Effect of δ meson and ρ-ω cross couplings in effective field theory motivated Lagrangian approach

    International Nuclear Information System (INIS)

    Jagota, R.K.; Dhiman, S.K.; Sharma, B.K.; Arumugam, P.; Patra, S.K.

    2005-01-01

    It is shown that the self and cross couplings of ω meson plays an important role to make the nuclear equation of state (EOS) softer. The parameter set G2, obtained from the effective field theory motivated Lagrangian (E-RMF) approach, is very successful to reproduce the nuclear matter properties including the structure of neutron star as well as of finite nuclei. The motivation of the present report is to see the effects of these terms in the E-RMF Lagrangian on infinite nuclear matter as well as finite nuclei

  8. Spatial effects on the fluctuations of a nuclear power reactor

    International Nuclear Information System (INIS)

    Salinas-Rodriguez, E.; Rodriguez, R.F.; Wio, H.S.

    1990-01-01

    The effects of spatial inhomogeneities in a nuclear system are studied by using the compounding moments method. In particular, the neutron density and temperature equilibrium correlation functions are explicitly calculated for a realistic linearized nuclear reactor model described in terms of a master equation. (author)

  9. Individual SWCNT based ionic field effect transistor

    Science.gov (United States)

    Pang, Pei; He, Jin; Park, Jae Hyun; Krstic, Predrag; Lindsay, Stuart

    2011-03-01

    Here we report that the ionic current through a single-walled carbon nanotube (SWCNT) can be effectively gated by a perpendicular electrical field from a top gate electrode, working as ionic field effect transistor. Both our experiment and simulation confirms that the electroosmotic current (EOF) is the main component in the ionic current through the SWCNT and is responsible for the gating effect. We also studied the gating efficiency as a function of solution concentration and pH and demonstrated that the device can work effectively in the physiological relevant condition. This work opens the door to use CNT based nanofluidics for ion and molecule manipulation. This work was supported by the DNA Sequencing Technology Program of the National Human Genome Research Institute (1RC2HG005625-01, 1R21HG004770-01), Arizona Technology Enterprises and the Biodesign Institute.

  10. Environmental effects from the nuclear industry

    International Nuclear Information System (INIS)

    1975-01-01

    Since 1969 several meetings have been convened to study the possibility of using high-level radiation in waste treatment. It was agreed that ionizing radiation offered some compromise as a feasible technology for a certain unique purpose, but economic considerations mitigated any overwhelming enthusiasm for early industrial realization. Recently a significant change has taken place in the world energy supply picture, and the expanded projection of nuclear power generation affects the analysis of comparative economic feasibility of ionizing radiation treatment of wastes. In addition, increased consideration of environmental quality not only calls for the re-evaluation of conventional waste treatment technologies, but also the development of more effective means where conventional methods might be unsatisfactory. As a result of several allied considerations, it was thought necessary and timely to review the status of research and development in the application of ionizing radiation to waste treatment and to consider the environmental implication of the proposed technology. Accordingly, the Symposium on the Use of High-Level Radiation in Waste Treatment - Status and Prospects was convened by the IAEA, in co-operation with the Government of the Federal Republic of Germany and the Bayerische Landesanstalt fur Bodenkultur und Pflanzenbau. Forty-eight papers were presented in eight sessions covering the current technology of waste-water treatment and re-use, radiosensitivity of micro-organisms, disinfection and microbiological control, physical and chemical modification of aqueous pollutants, technological and economic considerations, pilot-plant design and operating experiences, and radiation treatment of gaseous and solid wastes

  11. Planar graphene tunnel field-effect transistor

    OpenAIRE

    Katkov, V. L.; Osipov, V. A.

    2013-01-01

    We propose a concept for a graphene tunnel field-effect transistor. The main idea is based on the use of two graphene electrodes with zigzag termination divided by a narrow gap under the influence of the common gate. Our analysis shows that such device will have a pronounced switching effect at low gate voltage and high on/off current ratio at room temperature.

  12. Rock mechanical, thermomechanical and hydraulic behaviour of the near field for spent nuclear fuel

    International Nuclear Information System (INIS)

    Johansson, E.; Hakala, M.; Lorig, L.J.

    1991-10-01

    Teollisuuden Voima Oy (TVO) is investigating the feasibility of disposing high level nuclear waste in crystalline rock at depths of 400 to 600 meters below the ground surface. Two explicit distinct element computer codes UDEC and 3DEC were used to simulate the mechanical response associated with excavation and the thermomechanical response associated with waste emplacement. Model input data are mostly based on preliminary design of the repository and on field data from on-going site investigations in Finland. The results showed that the overall stability of the repository near-field appears to be good during the studied time period 0 - 900 years. The maximum displacements after excavation are about 2 mm on the walls of the disposal tunnel. Joint openings are only a few micrometers. The hydraulic conductivity increases by 4 to 6 times within the zone of 0,3 m around the tunnel and emplacement hole, and farther away the average increase in conductivity is 1,2 to 1,7 times. After 60 years the heating increases the stresses in the vicinity of the excavated rooms, and closes the joints decreasing the hydraulic conductivity by 93 - 99 % when assuming 10 μm in-situ hydraulic aperture. However, when assuming 50 μm in-situ hydraulic aperture the hydraulic conductivity increases 10 - 40 % because the change in dynamic viscosity of water has a larger effect than the joint aperture change. After 900 years in the cooling stage the stresses and displacements come back almost to the same level as after the excavation. Some permanent displacements remain in the joints due to the shearing. The hydraulic conductivity at 900 years is 10 - 70 % of the conductivity after the excavation. The comparisons between the 2-D and 3-D results show that the two-dimensional modeling, if sufficient cross-sections have been analyzed, is enough to describe mechanical behaviour of the near-field, whereas the three-dimensional modeling is needed in some cases to assess the thermomechanical behaviour

  13. Summary of USSR reports on mechanical and radioactivity effects of underground nuclear explosions

    International Nuclear Information System (INIS)

    Kruger, Paul

    1970-01-01

    Two reports have been issued by the USSR which examine the mechanical effects and radioactive contamination of the environment from underground nuclear explosions. In reviewing the mechanical effects, the institute of Terrestrial Physics of the USSR Academy of Sciences emphasizes the advantages of nuclear explosives, namely the tremendous power and small dimensions, in the industrial and construction fields. The authors note that the mechanical effects are based not only upon the explosive yield but also upon the thermodynamic properties of the cavity gases during expansion. These properties may vary widely depending upon the rock material. A list of the basic parameters affecting the mechanical effects of contained nuclear explosions includes: cavity volume, dimensions of the chimney, degree of rock fracturing, intensity of the compression wave as a function of distance from shot point, and seismic effects. The second paper describes the phenomenology of radioactive contamination of the environment for both contained and excavation explosions

  14. Research in the field of neutronics and nuclear data for fusion

    International Nuclear Information System (INIS)

    Batistoni, P.

    2001-01-01

    A reliable and validated nuclear database is required for the design of a fusion reactor. Neutrons produced by the fusion reactions between deuterium and tritium have a very peaked energy spectrum at 14 MeV, requiring a substantial extrapolation with respect to the database made available from fission studies. The correct evaluation of shielding properties, damage, nuclear heating and of tritium breeding performance in the blanket surrounding the reaction chamber is crucial to the correct reactor design. Moreover, the attractiveness of fusion relies in the low activation of the reactor components and in the minimal production of long-term radioactive waste that is pursued with development of low activation materials. Beside the materials development, Europe is carrying out a co-ordinated program for the development of adequate nuclear database and numerical tools, directed to evaluations, processing, application, and benchmarking of cross sections including uncertainty information. Experimental validation of data and of the relative uncertainties is also pursued, both on material samples and on more design-oriented experiments. A general view of the research work in the field of neutronics and nuclear data for fusion will be given in the presentation, with emphasis to the experimental validation activity.(author)

  15. Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering

    2016-09-20

    This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effects of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.

  16. Icelandic basaltic geothermal field: A natural analog for nuclear waste isolation in basalt

    International Nuclear Information System (INIS)

    Ulmer, G.C.; Grandstaff, D.E.

    1984-01-01

    Analog studies of Icelandic geothermal fields have shown that the design of nuclear waste repositories in basalt can benefit by comparison to the data base already available from the development of these geothermal fields. A high degree of similarity exists between these two systems: their petrology, groundwater geochemistry, mineral solubilities, hydrologic parameters, temperature ranges, water-rock redox equilibria, hydrothermal pH values, and secondary mineralogies all show considerable overlap in the range of values. The experimentally-simulated hydrothermal studies of the basaltic nuclear waste repository rocks have, at this time, produced a data base that receives a strong confirmation from the Icelandic analog. Furthermore, the Icelandic analog should eventually be employed to extrapolate into higher and lower temperatures, into longer time-base chemical comparisons, and into more realistic mineral deposition studies, than have been possible in the laboratory evaluations of the nuclear waste repository designs. This eventual use of the Icelandic analog will require cooperative work with the Icelandic Geological Survey. 46 refs., 4 figs., 2 tabs

  17. Study of the convergence of the nuclear field theory and its application on the lead isotopes

    International Nuclear Information System (INIS)

    Scoccola, N.N.

    1985-01-01

    It is shown that highly satisfactory results can be obtained not only in schematic problems (four particles in a degenerate j-shell), but in realistic ones (low lying 204 Pb spectrum), provided second order diagrams and/or diagonalization procedures are used. In both cases energies and two-body transfer amplitudes are calculated and compared with exact and other approximate results. In the second part, the electromagnetic emission of the giant quadrupole resonance (GQR) in 208 Pb after its excitation by inelastic scattering of 17 O to 380 MeV is studied. As the GQR is unstable with respect to the decay to compound nucleous, the reaction mechanism is carefully analized. A formalism is proposed in which the emission probability is factorized in three independent contributions: one due to the electromagnetic field, another to the nuclear reaction and the third to the nuclear structure. The last one is carefully studied in the lowest order of the nuclear field theory, taking into account the mixture of the different isospin states. The results are consistent with the upper experimental limit of the ratio between the transition populating the 3 - (2.62 MeV) state and the one that populates the ground state. However, they failed to reproduce the strong dipole transition to the 3 - (4.97 MeV) state. (Author) [es

  18. Magnetic Catalysis in Graphene Effective Field Theory.

    Science.gov (United States)

    DeTar, Carleton; Winterowd, Christopher; Zafeiropoulos, Savvas

    2016-12-23

    We report on the first calculation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle.

  19. Functional organic field-effect transistors.

    Science.gov (United States)

    Guo, Yunlong; Yu, Gui; Liu, Yunqi

    2010-10-25

    Functional organic field-effect transistors (OFETs) have attracted increasing attention in the past few years due to their wide variety of potential applications. Research on functional OFETs underpins future advances in organic electronics. In this review, different types of functional OFETs including organic phototransistors, organic memory FETs, organic light emitting FETs, sensors based on OFETs and other functional OFETs are introduced. In order to provide a comprehensive overview of this field, the history, current status of research, main challenges and prospects for functional OFETs are all discussed.

  20. Toroidal field ripple effects in large tokamaks

    International Nuclear Information System (INIS)

    Uckan, N.A.; Tsang, K.T.; Callen, J.D.

    1975-01-01

    In an experimental power reactor, the ripple produced by the finite number of toroidal field coils destroys the ideal axisymmetry of the configuration and is responsible for additional particle trapping, loss regions and plasma transport. The effects of toroidal field ripple on the plasma transport coefficient, the loss of alpha particles and energetic injection ions, and the relaxation of toroidal flows are investigated in a new and systematic way. The relevant results are applied to the ORNL-EPR reference design; the maximum ripple there of about 2.2 percent at the outer edge of the plasma column is found to be tolerable from plasma physics considerations

  1. Dielectric Engineered Tunnel Field-Effect Transistor

    OpenAIRE

    Ilatikhameneh, Hesameddin; Ameen, Tarek A.; Klimeck, Gerhard; Appenzeller, Joerg; Rahman, Rajib

    2015-01-01

    The dielectric engineered tunnel field-effect transistor (DE-TFET) as a high performance steep transistor is proposed. In this device, a combination of high-k and low-k dielectrics results in a high electric field at the tunnel junction. As a result a record ON-current of about 1000 uA/um and a subthreshold swing (SS) below 20mV/dec are predicted for WTe2 DE-TFET. The proposed TFET works based on a homojunction channel and electrically doped contacts both of which are immune to interface stat...

  2. Renormalizability of effective scalar field theory

    CERN Document Server

    Ball, R D

    1994-01-01

    We present a comprehensive discussion of the consistency of the effective quantum field theory of a single $Z_2$ symmetric scalar field. The theory is constructed from a bare Euclidean action which at a scale much greater than the particle's mass is constrained only by the most basic requirements; stability, finiteness, analyticity, naturalness, and global symmetry. We prove to all orders in perturbation theory the boundedness, convergence, and universality of the theory at low energy scales, and thus that the theory is perturbatively renormalizable in the sense that to a certain precision over a range of such scales it depends only on a finite number of parameters. We then demonstrate that the effective theory has a well defined unitary and causal analytic S--matrix at all energy scales. We also show that redundant terms in the Lagrangian may be systematically eliminated by field redefinitions without changing the S--matrix, and discuss the extent to which effective field theory and analytic S--matrix theory...

  3. Experiments performed with a functional model based on statistical discrimination in mixed nuclear radiation field

    International Nuclear Information System (INIS)

    Valcov, N.; Celarel, A.; Purghel, L.

    1999-01-01

    By using the statistical discrimination technique, the components of on ionization current, due to a mixed radiation field, may be simultaneously measured. A functional model, including a serially manufactured gamma-ray ratemeter was developed, as an intermediate step in the design of specialised nuclear instrumentation, in order to check the concept of statistical discrimination method. The obtained results are in good agreement with the estimations of the statistical discrimination method. The main characteristics of the functional model are the following: - dynamic range of measurement: >300: l; - simultaneous measurement of natural radiation background and gamma-ray fields; - accuracy (for equal exposure rates from gamma's and natural radiation background): 17%, for both radiation fields; - minimum detectable exposure rate: 2μR/h. (authors)

  4. Measurement of the 14N nuclear quadrupole resonance frequencies by the solid effect

    Science.gov (United States)

    Seliger, J.; Žagar, V.

    2008-07-01

    1H- 14N nuclear quadrupole double resonance using magnetic field cycling between high and low magnetic field and solid effect in the low magnetic field is analyzed in details. The transition probabilities per unit time for the solid-effect transitions are calculated. The double resonance spectra are calculated in the limiting cases of fast and slow nitrogen spin-lattice relaxation. The double resonance spectra are measured in histamine and quinolinic acid. The experimental spectra are analyzed and the 14N NQR frequencies are determined.

  5. Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Silver, E G [ed.

    1989-01-01

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  6. Field Effect Microparticle Generation for Cell Microencapsulation.

    Science.gov (United States)

    Hsu, Brend Ray-Sea; Fu, Shin-Huei

    2017-01-01

    The diameter and sphericity of alginate-poly-L-lysine-alginate microcapsules, determined by the size and the shape of calcium alginate microspheres, affect their in vivo durability and biocompatibility and the results of transplantation. The commonly used air-jet spray method generates microspheres with a wider variation in diameter, larger sphere morphology, and evenly distributed encapsulated cells. In order to overcome these drawbacks, we designed a field effect microparticle generator to create a stable electric field to prepare microparticles with a smaller diameter and more uniform morphology. Using this electric field microparticle generator the encapsulated cells will be located at the periphery of the microspheres, and thus the supply of oxygen and nutrients for the encapsulated cells will be improved compared with the centrally located encapsulated cells in the air-jet spray method.

  7. Technology, Effects and Doctrines of Nuclear Warfare

    International Nuclear Information System (INIS)

    Broda, E.

    1981-01-01

    The development and the status of the nuclear weapons systems and of the systems for their delivery are explained. All these systems have made tremendous progress since the 1960s. Available destructive power now is literally millions of times larger than at the time of Hiroshima. Moreover, technical progress has had, especially through the MIRV principle and the cruise missile, a destabilizing influence and threatens the equilibrium of terror. New strategic doctrines for winning rather than preventing nuclear war have come to the foreground. Plans for the tactical first-use of nuclear weapons have been accepted. Alternatively, the retaliation capacity of the opponent could be destroyed by surprise attack - The First Strike. In a nuclear conflict, the commanders-in-chief are overburdened by the need for ultra-urgent decisions. This applies especially to a First Strike situation. As a consequence tendencies in the direction of increasing automatization become ever more conspicuous. In the extreme ease, decisions may be left entirely to machines, and men would not any more be included in decision-making. The increasing automatization leads to further escalation of insecurity for the whole world. Solutions for the principal problem of the world, war or peace, cannot be found On the level of technology, but only on that of practical policy of detente, disarmament, collaboration and reconciliation. (author)

  8. Look back and look forward to the future of computer applications in the field of nuclear science and technology

    International Nuclear Information System (INIS)

    Yang Yanming; Dai Guiling

    1988-01-01

    All previous National Conferences on computer application in the field of nuclear science and technology sponsored by the Society of Nuclear Electronics and Detection Technology are reviewed. Surveys are geiven on the basic situations and technique levels of computer applications for each time period. Some points concerning possible developments of computer techniques are given as well

  9. Weak gravity conjecture and effective field theory

    Science.gov (United States)

    Saraswat, Prashant

    2017-01-01

    The weak gravity conjecture (WGC) is a proposed constraint on theories with gauge fields and gravity, requiring the existence of light charged particles and/or imposing an upper bound on the field theory cutoff Λ . If taken as a consistency requirement for effective field theories (EFTs), it rules out possibilities for model building including some models of inflation. I demonstrate simple models which satisfy all forms of the WGC, but which through Higgsing of the original gauge fields produce low-energy EFTs with gauge forces that badly violate the WGC. These models illustrate specific loopholes in arguments that motivate the WGC from a bottom-up perspective; for example the arguments based on magnetic monopoles are evaded when the magnetic confinement that occurs in a Higgs phase is accounted for. This indicates that the WGC should not be taken as a veto on EFTs, even if it turns out to be a robust property of UV quantum gravity theories. However, if the latter is true, then parametric violation of the WGC at low energy comes at the cost of nonminimal field content in the UV. I propose that only a very weak constraint is applicable to EFTs, Λ ≲(log 1/g )-1 /2Mpl , where g is the gauge coupling, motivated by entropy bounds. Remarkably, EFTs produced by Higgsing a theory that satisfies the WGC can saturate but not violate this bound.

  10. Field theory approach to quantum hall effect

    International Nuclear Information System (INIS)

    Cabo, A.; Chaichian, M.

    1990-07-01

    The Fradkin's formulation of statistical field theory is applied to the Coulomb interacting electron gas in a magnetic field. The electrons are confined to a plane in normal 3D-space and also interact with the physical 3D-electromagnetic field. The magnetic translation group (MTG) Ward identities are derived. Using them it is shown that the exact electron propagator is diagonalized in the basis of the wave functions of the free electron in a magnetic field whenever the MTG is unbroken. The general tensor structure of the polarization operator is obtained and used to show that the Chern-Simons action always describes the Hall effect properties of the system. A general proof of the Streda formula for the Hall conductivity is presented. It follows that the coefficient of the Chern-Simons terms in the long-wavelength approximation is exactly given by this relation. Such a formula, expressing the Hall conductivity as a simple derivative, in combination with diagonal form of the full propagator allows to obtain a simple expressions for the filling factor and the Hall conductivity. Indeed, these results, after assuming that the chemical potential lies in a gap of the density of states, lead to the conclusion that the Hall conductivity is given without corrections by σ xy = νe 2 /h where ν is the filling factor. In addition it follows that the filling factor is independent of the magnetic field if the chemical potential remains in the gap. (author). 21 ref, 1 fig

  11. Survey of basic data on human resources development (HRD) in the nuclear field in FNCA countries (Contract research)

    International Nuclear Information System (INIS)

    2005-03-01

    In the 3rd FNCA* (Forum for Nuclear Cooperation in Asia) Coordinator Meeting held on March 2002, it was proposed to carry out 'Survey of the Basic Data on Human Resources Development in the Nuclear Field'. It was considered to be the first step for developing the HRD strategy by producing the quantitative data on HRD in nuclear field. The survey results were introduced by Project Leaders during the 2002 FNCA Workshop on HRD held on October 2002. The follow-up survey was conducted with the cooperation of other Project Leaders in the respective field of FNCA such as medical and agriculture applications in each member countries. The collected survey data was analyzed in 2003, and summarized as 'Summary of the Survey Data'. This report consists of the summary of 'Survey of the Basic Data on Human Resources Development in Nuclear Field'. It was reported during the 2003 FNCA Workshop on HRD held on October 2003 and updated until early 2004. (author)

  12. Small unmanned aircraft system for remote contour mapping of a nuclear radiation field

    Science.gov (United States)

    Guss, Paul; McCall, Karen; Malchow, Russell; Fischer, Rick; Lukens, Michael; Adan, Mark; Park, Ki; Abbott, Roy; Howard, Michael; Wagner, Eric; Trainham, Clifford P.; Luke, Tanushree; Mukhopadhyay, Sanjoy; Oh, Paul; Brahmbhatt, Pareshkumar; Henderson, Eric; Han, Jinlu; Huang, Justin; Huang, Casey; Daniels, Jon

    2017-09-01

    For nuclear disasters involving radioactive contamination, small unmanned aircraft systems (sUASs) equipped with nuclear radiation detection and monitoring capability can be very important tools. Among the advantages of a sUAS are quick deployment, low-altitude flying that enhances sensitivity, wide area coverage, no radiation exposure health safety restriction, and the ability to access highly hazardous or radioactive areas. Additionally, the sUAS can be configured with the nuclear detecting sensor optimized to measure the radiation associated with the event. In this investigation, sUAS platforms were obtained for the installation of sensor payloads for radiation detection and electro-optical systems that were specifically developed for sUAS research, development, and operational testing. The sensor payloads were optimized for the contour mapping of a nuclear radiation field, which will result in a formula for low-cost sUAS platform operations with built-in formation flight control. Additional emphases of the investigation were to develop the relevant contouring algorithms; initiate the sUAS comprehensive testing using the Unmanned Systems, Inc. (USI) Sandstorm platforms and other acquired platforms; and both acquire and optimize the sensors for detection and localization. We demonstrated contour mapping through simulation and validated waypoint detection. We mounted a detector on a sUAS and operated it initially in the counts per second (cps) mode to perform field and flight tests to demonstrate that the equipment was functioning as designed. We performed ground truth measurements to determine the response of the detector as a function of source-to-detector distance. Operation of the radiation detector was tested using different unshielded sources.

  13. Origin of the neutron skin thickness of 208Pb in nuclear mean-field models

    International Nuclear Information System (INIS)

    Centelles, M.; Roca-Maza, X.; Vinas, X.; Warda, M.

    2010-01-01

    We study whether the neutron skin thickness Δr np of 208 Pb originates from the bulk or from the surface of the nucleon density distributions, according to the mean-field models of nuclear structure, and find that it depends on the stiffness of the nuclear symmetry energy. The bulk contribution to Δr np arises from an extended sharp radius of neutrons, whereas the surface contribution arises from different widths of the neutron and proton surfaces. Nuclear models where the symmetry energy is stiff, as typical of relativistic models, predict a bulk contribution in Δr np of 208 Pb about twice as large as the surface contribution. In contrast, models with a soft symmetry energy like common nonrelativistic models predict that Δr np of 208 Pb is divided similarly into bulk and surface parts. Indeed, if the symmetry energy is supersoft, the surface contribution becomes dominant. We note that the linear correlation of Δr np of 208 Pb with the density derivative of the nuclear symmetry energy arises from the bulk part of Δr np . We also note that most models predict a mixed-type (between halo and skin) neutron distribution for 208 Pb. Although the halo-type limit is actually found in the models with a supersoft symmetry energy, the skin-type limit is not supported by any mean-field model. Finally, we compute parity-violating electron scattering in the conditions of the 208 Pb parity radius experiment (PREX) and obtain a pocket formula for the parity-violating asymmetry in terms of the parameters that characterize the shape of the 208 Pb nucleon densities.

  14. The development of the time dependence of the nuclear EMP electric field

    International Nuclear Information System (INIS)

    Eng, C.

    2009-01-01

    The nuclear electromagnetic pulse (EMP) electric field calculated with the legacy code CHAP is compared with the field given by an integral solution of Maxwell's equations, also known as the Jefimenko equation, to aid our current understanding on the factors that affect the time dependence of the EMP. For a fair comparison the CHAP current density is used as a source in the Jefimenko equation. At first, the comparison is simplified by neglecting the conduction current and replacing the standard atmosphere with a constant density air slab. The simplicity of the resultant current density aids in determining the factors that affect the rise, peak and tail of the EMP electric field versus time. The three dimensional nature of the radiating source, i.e. sources off the line-of-sight, and the time dependence of the derivative of the current density with respect to time are found to play significant roles in shaping the EMP electric field time dependence. These results are found to hold even when the conduction current and the standard atmosphere are properly accounted for. Comparison of the CHAP electric field with the Jefimenko electric field offers a direct validation of the high-frequency/outgoing wave approximation.

  15. Development of mean field theories in nuclear physics and in desordered media

    International Nuclear Information System (INIS)

    Orland, Henri.

    1981-04-01

    This work, in two parts, deals with the development of mean field theories in nuclear physics (nuclei in balance and collisions of heavy ions) as well as in disordered media. In the first part, two different ways of tackling the problem of developments around mean field theories are explained. Possessing an approach wave function for the system, the natural idea for including the correlations is to develop the exact wave function of the system around the mean field wave function. The first two chapters show two different ways of dealing with this problem: the perturbative approach - Hartree-Fock equations with two body collisions and functional methods. In the second part: mean field theory for spin glasses. The problem for spin glasses is to construct a physically acceptable mean field theory. The importance of this problem in statistical mechanics is linked to the fact that the mean field theory provides a qualitative description of the low temperature phase and is the starting point needed for using more sophisticated methods (renormalization group). Two approaches to this problem are presented, one based on the Sherrington-Kirkpatrick model and the other based on a model of spins with purely local disorder and competitive interaction between the spins [fr

  16. A table-top PXI based low-field spectrometer for solution dynamic nuclear polarization.

    Science.gov (United States)

    Biller, Joshua R; Stupic, Karl F; Moreland, J

    2018-03-01

    We present the development of a portable dynamic nuclear polarization (DNP) instrument based on the PCI eXtensions for Instrumentation platform. The main purpose of the instrument is for study of 1 H polarization enhancements in solution through the Overhauser mechanism at low magnetic fields. A DNP probe set was constructed for use at 6.7 mT, using a modified Alderman-Grant resonator at 241 MHz for saturation of the electron transition. The solenoid for detection of the enhanced 1 H signal at 288 kHz was constructed with Litz wire. The largest observed 1 H enhancements (ε) at 6.7 mT for 14 N-CTPO radical in air saturated aqueous solution was ε~65. A concentration dependence of the enhancement is observed, with maximum ε at 5.5 mM. A low resonator efficiency for saturation of the electron paramagnetic resonance transition results in a decrease in ε for the 10.3 mM sample. At high incident powers (42 W) and long pump times, capacitor heating effects can also decrease the enhancement. The core unit and program described here could be easily adopted for multi-frequency DNP work, depending on available main magnets and selection of the "plug and play" arbitrary waveform generator, digitizer, and radiofrequency synthesizer PCI eXtensions for Instrumentatione cards. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  17. Goal direction and effectiveness, emotional maturity, and nuclear family functioning.

    Science.gov (United States)

    Klever, Phillip

    2009-07-01

    Differentiation of self, a cornerstone concept in Bowen theory, has a profound influence over time on the functioning of the individual and his or her family unit. This 5-year longitudinal study tested this hypothesis with 50 developing nuclear families. The dimensions of differentiation of self that were examined were goal direction and effectiveness and emotional maturity. A qualitative analysis of participants' goals demonstrated that couples with higher functioning developing nuclear families, when compared with couples with lower functioning families, placed more emphasis on family goals, had more balance between family and personal goals, and pursued more goals over the 5 years. The quantitative analysis supported the hypothesis that goal effectiveness and emotional maturity influenced variation in nuclear family functioning. In addition, couple goal effectiveness and emotional maturity were associated with nuclear family functioning more strongly than individual goal effectiveness and emotional maturity were associated with individual functioning.

  18. Effects on the atmosphere of a major nuclear exchange

    International Nuclear Information System (INIS)

    1985-01-01

    The Committee on the Atmospheric Effects of Nuclear Explosions addressed the following charge: (1) determine the manner in which the atmosphere of the earth would be modified by a major exchange of nuclear weapons and, insofar as the current state of knowledge and understanding permits, give a quantitative description of the more important of the changes; and (2) recommend research and exploratory work appropriate to a better understanding of the question. Recent calculations by different investigators suggest that the climatic effects from a major nuclear exchange could be large in scale. Although there are enormous uncertainties involved in the calculations, the committee believes that long-term climatic effects with severe implications for the biosphere could occur, and these effects should be included in any analysis of the consequences of nuclear war. The estimates are necessarily rough and can only be used as a general indication of the seriousness of what might occur

  19. Use of PRA in the nuclear regulatory field in South Africa

    International Nuclear Information System (INIS)

    Hill, T.F.

    1994-01-01

    The nuclear regulatory authority in South Africa (since 1988 the Council for Nuclear Safety (CNS)), established in 1973 nuclear safety criteria against which to assess the level of safety of any facility using radioactive material. It is a regulatory requirement in South Africa to develop and maintain a living PRA for each facility and thereby to provide the necessary information to demonstrate compliance against these criteria. All safety submissions to the CNS must include at least a risk statement based on an accepted PRA study. The function of the CNS is to regulate all activities in South Africa involving the use of radioactive material and posing a significant risk to the public or plant personnel. This includes most aspects of the nuclear fuel cycle and the Koeberg NPS (two 2775 MW(th) PWRs). A PRA study including source terms for the two Koeberg units was presented by the contractor in 1979. This included the risk due to power and shutdown states and non reactor related accidents involving spent fuel storage, fuel handling and waste treatment related activities. At least 20 PRA studies have been performed for other nuclear facilities in the country. The CNS maintains an in-house PRA capability to perform independent assessments of licensee submission, to participate in developments of PRA methodology in the regulatory field, to perform pro-active safety work and to assist in regulatory decision making. Present ongoing work includes the development of a risk monitor, a risk management system, improvement in PRA codes, models, data collection and analysis, off-site risk assessment methodology and associated regulatory policy. (author). 1 fig

  20. Summary of experimental studies on biological effects of radionuclides in Chinese Nuclear Industry

    International Nuclear Information System (INIS)

    Chen Rusong

    1994-11-01

    The experimental studies on the biological effects with internal contamination of radionuclides (Such as Uranium, Plutonium, Tritium, Iodine, Radon and its products, etc.) in the Chinese nuclear industry were summarized systematically. In these studies some institutes in the nuclear industry system and other relevant units in China were involved. The review was carried out in both stochastic and deterministic effects, and focused on the dose-effect relationship. The research work showed that great progress for the experimental studies on biological effects with internal irradiation has been made in China. There is a definite characteristic in a certain extent. It makes contribution to develop the production of nuclear industry and the construction of national economy. Several constructive suggestions of prospects for the work in future were proposed and it will make an attention in the field of radiation protection at home and abroad

  1. Antiferromagnetic Spin Wave Field-Effect Transistor

    Science.gov (United States)

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di

    2016-01-01

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale. PMID:27048928

  2. Nanowire field effect transistors principles and applications

    CERN Document Server

    Jeong, Yoon-Ha

    2014-01-01

    “Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.

  3. Hydrogeologic effects of natural disruptive events on nuclear waste repositories

    International Nuclear Information System (INIS)

    Davis, S.N.

    1980-06-01

    Some possible hydrogeologic effects of disruptive events that may affect repositories for nuclear waste are described. A very large number of combinations of natural events can be imagined, but only those events which are judged to be most probable are covered. Waste-induced effects are not considered. The disruptive events discussed above are placed into four geologic settings. Although the geology is not specific to given repository sites that have been considered by other agencies, the geology has been generalized from actual field data and is, therefore, considered to be physically reasonable. The geologic settings considered are: (1) interior salt domes of the Gulf Coast, (2) bedded salt of southeastern New Mexico, (3) argillaceous rocks of southern Nevanda, and (4) granitic stocks of the Basin and Range Province. Log-normal distributions of permeabilities of rock units are given for each region. Chapters are devoted to: poresity and permeability of natural materials, regional flow patterns, disruptive events (faulting, dissolution of rock forming minerals, fracturing from various causes, rapid changes of hydraulic regimen); possible hydrologic effects of disruptive events; and hydraulic fracturing

  4. The Brazilian nuclear industries - INB - in the field of the rare earth

    International Nuclear Information System (INIS)

    Blatt, Victoria

    1996-01-01

    The Brazilian Nuclear Industries - INB is responsible for the execution of part of the cycle of uranium as nuclear reactor fuel for alternative energy generation. Soon INB shall increase the participation in this cycle, through the implantation of the line of powder and pastille. INB is also the successor of the monazite processing industries. The last one was NUCLEMON that was incorporated by INB. The connection of INB with this area is due to the presence of the strategic elements uranium and thorium in the monazite. The know-how was and continues to be developed by a chemical team of the National Commission of Nuclear Energy (CNEN) with the collaboration of the technical team of INB. The ever wider applications of the individual Rare Earth in the most different fields of the electrical, electronics, communication, optical, metallurgical, catalysis and other industries, as well as INB incessant inquire for the economical workability, brought INB to appraise the position regarding to the industrial production of the Rare Earth. The choice is bringing to the separation and commercialization of the individual elements and/or in groups containing a reduced number of Rare Earth, instead of the production and commercialization of the mixture of monazitic Rare Earth. This paper illustrates through quantitative information some aspects regarding to reserves, mining and physical separations of the monazite, as well as projections about INB resuming its industrial activities with insertion of technical improvements in both, the chemical treatment of the monazite and the Rare Earth separation. In this field, there will be presented in this paper the qualitative and quantitative results recently reached in a large dimension pilot plant. These results add to the technical conquest reached in the late years by the foregoers of INB, and that will be also presented. The paper contains also some appreciations regarding to the perspectives of INB's ingression in the field of

  5. Evaluation of near-field earthquake effects

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, H.P.

    1994-11-01

    Structures and equipment, which are qualified for the design basis earthquake (DBE) and have anchorage designed for the DBE loading, do not require an evaluation of the near-field earthquake (NFE) effects. However, safety class 1 acceleration sensitive equipment such as electrical relays must be evaluated for both NFE and DBE since they are known to malfunction when excited by high frequency seismic motions.

  6. The influence nuclear power has on corporate image and the effect of offering merit information of nuclear power

    International Nuclear Information System (INIS)

    Oiso, Shinichi

    2006-01-01

    Many electric power companies in Japan, irrespective of their nuclear power generation ratio's difference, have nuclear power plants. These days, corporate brand image is becoming more and more important. Therefore, a survey was carried out to study the effect that nuclear power (including comparison with the other type of industry besides electric power) has on the corporate image of an electric power company. Further more, the survey includes a research about the effect on people's attitude change towards nuclear power before and after discovering the merits or benefits of nuclear power. The possibility of enhancing the corporate brand image of electric power companies by providing merit information of nuclear power was studied. (author)

  7. Effective nuclear and radiation emergency planning

    International Nuclear Information System (INIS)

    Grlicarev, I.

    2000-01-01

    The paper describes how to develop a balanced emergency plan, which realistically reflect the interfaces with various emergency organizations. The use of resources should be optimized with focusing on the most likely accidents. The pitfalls of writing an emergency plan without ''big picture'' in mind should be avoided. It is absolutely essential to have a clear definition of responsibilities and to have proper understanding of the tasks in between all counterparts in the emergency preparedness. Special attention should be paid to off-site part of the nuclear emergency preparedness, because the people involved in it usually receive less training than the on-site personnel and they are not specialized for nuclear emergencies but deal with all sorts of emergencies. (author)

  8. Pressure Sensitive Insulated Gate Field Effect Transistor

    Science.gov (United States)

    Suminto, James Tjan-Meng

    A pressure sensitive insulated gate field effect transistor has been developed. The device is an elevated gate field-effect-transistor. It consists of a p-type silicon substrate in which two n^+ region, the source and drain, are formed. The gate electrode is a metal film sandwiched in an insulated micro-diaphragm resembling a pill-box which covers the gate oxide, drain, and source. The space between the gate electrode and the oxide is vacuum or an air-gap. When pressure is applied on the diaphragm it deflects and causes a change in the gate capacitance, and thus modulates the conductance of the channel between source and drain. A general theory dealing with the characteristic of this pressure sensitive insulated gate field effect transistor has been derived, and the device fabricated. The fabrication process utilizes the standard integrated circuit fabrication method. It features a batch fabrication of field effect devices followed by the batch fabrication of the deposited diaphragm on top of each field effect device. The keys steps of the diaphragm fabrication are the formation of spacer layer, formation of the diaphragm layer, and the subsequent removal of the spacer layer. The chip size of the device is 600 μm x 1050 mum. The diaphragm size is 200 μm x 200 mum. Characterization of the device has been performed. The current-voltage characteristics with pressure as parameters have been demonstrated and the current-pressure transfer curves obtained. They show non-linear characteristics as those of conventional capacitive pressure sensors. The linearity of threshold voltage versus pressure transfer curves has been demonstrated. The temperature effect on the device performances has been tested. The temperature coefficient of threshold voltage, rather than the electron mobility, has dominated the temperature coefficient of the device. Two temperature compensation schemes have been tested: one method is by connecting two identical PSIGFET in a differential amplifier

  9. Neutron field characterization at the independent spent fuel storage installation of the Trillo nuclear power plant.

    Science.gov (United States)

    Campo, Xandra; Méndez, Roberto; Embid, Miguel; Ortego, Alberto; Novo, Manuel; Sanz, Javier

    2018-05-01

    Neutron fields inside and outside the independent spent fuel storage installation of Trillo Nuclear Power Plant are characterized exhaustively in terms of neutron spectra and ambient dose equivalent, measured by Bonner sphere system and LB6411 monitor. Measurements are consistent with storage casks and building shield characteristics, and also with casks distribution inside the building. Outer values at least five times lower than dose limit for free access area are found. Measurements with LB6411 and spectrometer are consistent with each other. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The dynamics of the nuclear disassembly in a field-theoretical model at finite entropies

    International Nuclear Information System (INIS)

    Knoll, J.; Strack, B.

    1984-10-01

    The expansion phase of a hot nuclear system as created in an energetic heavy-ion collision is calculated and discussed by a selfconsistent field-theoretical model. Dynamical instabilities arising during the expansion from strong fluctuations of the one-body density are included explicitely. First multiplicity distributions and mass spectra resulting from a series of numerical runs in a 2+1 dimensional model world are presented. The dependence of break-up dynamics both on the properties of the binding force and possible correlations in the initially compressed hot state are discussed. (orig.)

  11. Digital image processing in the nuclear field with ImaWin 5.0

    International Nuclear Information System (INIS)

    Marajofsky, A.; Trafelati, A.A.; Lavagnino, C.E.

    2000-01-01

    ImaWin is a software project designed to cover a broad set of applications of Digital Image Processing in the Nuclear Field. Since 1994 the system has evolved in a complete tool that helped to face problems like densitometry calculus, quality control in pellets, deposit administration and surveillance. Neural network kernel and ImaScript scripting language are included within the package. The open and incremental development of ImaWin software has been allowing easy expansion upon a common re-engineering framework. (author)

  12. Sustainable Transformation & Effective Competency Management Practices in Nuclear Organizations

    International Nuclear Information System (INIS)

    Gardelliano, S.

    2016-01-01

    Full text: Managing essential knowledge as a strategic organizational asset is a factor of upmost relevance in today’s nuclear organizations. The author considers evident that competencies are critical carriers of knowledge. As such the use of an appropriate competency model could be the most effective way to capture the present reservoir of explicit and tacit Knowledge of specific functions or organizational areas. Besides, we could use them for new or other redesigned functions or determine the needs of specific competencies for future positions. Therefore, appropriate competency models or systems have to be developed or updated in each nuclear organization since these are fundamental for managing more effectively and efficiently the present nuclear human capital and to forecast the evolving competence required in management, technical, scientific and safety areas to continuously ensure a highly competent nuclear workforce. On the other hand, competency based management models or systems would not achieve the expected results if they are not fully designed and integrated within the strategic organizational infrastructure of the related nuclear organization. This paper is expected to provide a wider view and practical reflections on organizational transformation issues and the benefits of using an integrative competency model in the nuclear industry. Particularly, the paper give an insight of an empiric model for strategic organizational transformation processes and integrative management practices, and on how to realign strategic issues with top management processes and build organizational capacity through effective competency based management for the sustainable transformation of nuclear organizations. (author

  13. Effective economics of nuclear fuel power complex

    International Nuclear Information System (INIS)

    Shevelev, Ya.V.; Klimenko, A.V.

    1996-01-01

    Problems of the economic theory and practice of functioning the nuclear fuel power complex (NFPC) are considered. Using the principle of market equilibrium for optimization of the NFPC hierarchical system is analyzed. The main attention is paid to determining the prices of production and consumption of the NFPC enterprises. Economic approaches on the optimal calculations are described. The ecological safety of NPP and NFPC enterprises is analyzed. A conception of the market socialism is presented

  14. Historical sketches of Sandia National Laboratories nuclear field testing. Volume 1: Full discussion except for sensitive references

    International Nuclear Information System (INIS)

    Banister, J.R.

    1994-10-01

    This report contains historical sketches that cover the major activities of Sandia nuclear field testing, from early atmospheric shots until 1990. It includes a chronological overview followed by more complete discussions of atmospheric, high-altitude, underwater, cratering, and underground nuclear testing. Other activities related to nuclear testing and high-explosive tests are also described. A large number of references are cited for readers who wish to learn more about technical details. Appendices, written by several authors, provide more insight for a variety of special aspects of nuclear testing and related work. Two versions of this history were published: volume 1 has an unlimited distribution, and volume 2 has a limited distribution

  15. Understanding local residents of Korea using nuclear effective safety

    International Nuclear Information System (INIS)

    Chung, Yun Hyung; Lee, Gey Hwi; Hah, Yeonhee; Kim, Beom Jun

    2010-01-01

    The risk perception gap between experts and lay people is based on the use of different concept on risk. It is getting increasingly important for nuclear practitioners to understand the lay people's subjective perception on nuclear safety. We proposed the nuclear effective safety index (NESI) which is based on data of the public survey of local inhabitants. We extracted the four factors for effective safety indicators; communication, trust, plant emergency response capability, and personal emergency coping skills. The latest NESI was 41.54, which was increased from 38.22 but still low. The three-year data of NESI showed the differences between genders and between sites as well as trend. The survey of antecedents of effective safety showed some meaningful events and profound differences between plant employees and local inhabitants. The NESI can be utilized as useful communication tool between the local inhabitants and nuclear practitioners. (authors)

  16. 1987 Annual Conference on Nuclear and Space Radiation Effects, Snowmass Village, CO, July 28-31, 1987, Proceedings

    Science.gov (United States)

    1987-01-01

    Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, single-event phenomena, temperature and field effects, modeling and characterization of radiation effects, IC radiation effects and hardening, and EMP/SGEMP/IEMP phenomena. Also considered are: dosimetry/energy-dependent effects, sensors in and for radiation environments, spacecraft charging and space radiation effects, radiation effects and devices, radiation effects on isolation technologies, and hardness assurance and testing techniques.

  17. New Methodology For Use in Rotating Field Nuclear MagneticResonance

    Energy Technology Data Exchange (ETDEWEB)

    Jachmann, Rebecca C. [Univ. of California, Berkeley, CA (United States)

    2007-05-18

    High-resolution NMR spectra of samples with anisotropicbroadening are simplified to their isotropic spectra by fast rotation ofthe sample at the magic angle 54.7 circ. This dissertation concerns thedevelopment of novel Nuclear Magnetic Resonance (NMR) methodologies basedwhich would rotate the magnetic field instead of the sample, rotatingfield NMR. It provides an over of the NMR concepts, procedures, andexperiments needed to understand the methodologies that will be used forrotating field NMR. A simple two-dimensional shimming method based onharmonic corrector rings which can provide arbitrary multiple ordershimming corrections were developed for rotating field systems, but couldbe used in shimming other systems as well. Those results demonstrate, forexample, that quadrupolar order shimming improves the linewidth by up toan order of magnitude. An additional order of magnitude reduction is inprinciple achievable by utilizing this shimming method for z-gradientcorrection and higher order xy gradients. A specialized pulse sequencefor the rotating field NMR experiment is under development. The pulsesequence allows for spinning away from the magic angle and spinningslower than the anisotropic broadening. This pulse sequence is acombination of the projected magic angle spinning (p-MAS) and magic angleturning (MAT) pulse sequences. This will be useful to rotating field NMRbecause there are limits on how fast a field can be spun and spin at themagic angle is difficult. One of the goals of this project is forrotating field NMR to be used on biological systems. The p-MAS pulsesequence was successfully tested on bovine tissue samples which suggeststhat it will be a viable methodology to use in a rotating field set up. Aside experiment on steering magnetic particle by MRI gradients was alsocarried out. Some movement was seen in these experiment, but for totalcontrol over steering further experiments would need to bedone.

  18. New Methodology For Use in Rotating Field Nuclear MagneticResonance

    Energy Technology Data Exchange (ETDEWEB)

    Jachmann, Rebecca C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    High-resolution NMR spectra of samples with anisotropicbroadening are simplified to their isotropic spectra by fast rotation ofthe sample at the magic angle 54.7 circ. This dissertation concerns thedevelopment of novel Nuclear Magnetic Resonance (NMR) methodologies basedwhich would rotate the magnetic field instead of the sample, rotatingfield NMR. It provides an over of the NMR concepts, procedures, andexperiments needed to understand the methodologies that will be used forrotating field NMR. A simple two-dimensional shimming method based onharmonic corrector rings which can provide arbitrary multiple ordershimming corrections were developed for rotating field systems, but couldbe used in shimming other systems as well. Those results demonstrate, forexample, that quadrupolar order shimming improves the linewidth by up toan order of magnitude. An additional order of magnitude reduction is inprinciple achievable by utilizing this shimming method for z-gradientcorrection and higher order xy gradients. A specialized pulse sequencefor the rotating field NMR experiment is under development. The pulsesequence allows for spinning away from the magic angle and spinningslower than the anisotropic broadening. This pulse sequence is acombination of the projected magic angle spinning (p-MAS) and magic angleturning (MAT) pulse sequences. This will be useful to rotating field NMRbecause there are limits on how fast a field can be spun and spin at themagic angle is difficult. One of the goals of this project is forrotating field NMR to be used on biological systems. The p-MAS pulsesequence was successfully tested on bovine tissue samples which suggeststhat it will be a viable methodology to use in a rotating field set up. Aside experiment on steering magnetic particle by MRI gradients was alsocarried out. Some movement was seen in these experiment, but for totalcontrol over steering further experiments would need to bedone.

  19. Study on information dissemination for effective nuclear risk communication

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of this study are to develop an information system and guideline for nuclear risk communication between expert and citizens as well as between both experts in terms of lessons learned from serious disaster such as Fukushima Dai-ich NPP accident. Technical standards for disseminating a result and process of seismic/tsunami PRA (Probabilistic Risk Assessment) of nuclear facility as well as nuclear risk information in an emergency, and risk communication in normal times are needed. Tins study examines the framework, contents, and technical basis for developing an information system for nuclear risk communication. In addition, this study identifies the communication issues of nuclear risk communication concerning the seismic/tsunami PRA through the testing information systems in areas around nuclear facilities and by providing effective implementation guidelines. JNES has developed the information system specified as Protection of Nuclear Power Plants against Tsunamis and Post Earthquake considerations in the External Zone (TiPEEZ) as part of IAEA International Seismic Safety Centre (ISSC) Extra Budgetary Programme (EBP). The EBP is currently preparing technical documents (TECDOC) regarding the implementation of the TiPEEZ. After the Fukushima accident, there has been increasing demand for disaster mitigation systems to share risk information between nuclear organizations and local municipalities. JNES and Niigata Institute of Technology conduct implementation of TiPEEZ for the practical use based on the corroborative works with Kashiwazaki city and citizens. (author)

  20. A new application of the phase-field method for understanding the mechanisms of nuclear architecture reorganization.

    Science.gov (United States)

    Lee, S Seirin; Tashiro, S; Awazu, A; Kobayashi, R

    2017-01-01

    Specific features of nuclear architecture are important for the functional organization of the nucleus, and chromatin consists of two forms, heterochromatin and euchromatin. Conventional nuclear architecture is observed when heterochromatin is enriched at nuclear periphery, and it represents the primary structure in the majority of eukaryotic cells, including the rod cells of diurnal mammals. In contrast to this, inverted nuclear architecture is observed when the heterochromatin is distributed at the center of the nucleus, which occurs in the rod cells of nocturnal mammals. The inverted architecture found in the rod cells of the adult mouse is formed through the reorganization of conventional architecture during terminal differentiation. Although a previous experimental approach has demonstrated the relationship between these two nuclear architecture types at the molecular level, the mechanisms underlying long-range reorganization processes remain unknown. The details of nuclear structures and their spatial and temporal dynamics remain to be elucidated. Therefore, a comprehensive approach, using mathematical modeling, is required, in order to address these questions. Here, we propose a new mathematical approach to the understanding of nuclear architecture dynamics using the phase-field method. We successfully recreated the process of nuclear architecture reorganization, and showed that it is robustly induced by physical features, independent of a specific genotype. Our study demonstrates the potential of phase-field method application in the life science fields.

  1. Genotoxic Effects of Tobacco on Buccal Epithelium: Cell Nuclear Anomalies as Biomarker

    Directory of Open Access Journals (Sweden)

    Sohini Das Biswas

    2014-12-01

    Full Text Available Background: Tobacco use has toxic effects on different organs. This study was carried out to assess the effect of indigenous tobacco both in smoking (bidi and smokeless (gutkha, zarda and khaini forms on buccal cells at chromosomal level, through assessment of different nuclear anomalies as biomarker. Methods:This study was done on people living in Durgapur and its adjacent areas, West Bengal, India during January to July 2011. The samples were collected from 50 smokers (case group, 50 smokeless tobacco consumers or chewers (case group and 50 non-tobacco consumers (control group. Micronucleus assay was used to assess buccal cell nuclear changes. Buccal smears collected from study subjects were prepared on a grease free slide. Prepared slides were observed under light microscope and 2 to 5 fields were observed randomly for counting the different anomalies. In each field, the frequency of each anomaly was assessed in 100 cells and reported with percentage. Results:Chewers had significantly the highest frequency of all nuclear anomalies compared to smokers and healthy controls (HCs. Smokers also had significantly more anomalies compared to HCs. Condensed chromatin (CC, karyolysis (KL and bi-nucleation (BN in chewers and CC, pyknosis and BN in smokers were the most frequent anomalies. KL was significantly more frequent in chewers compared to smokers (59.8 ± 6.4 vs. 24.2 ± 12.4%, P < 0.001, however, the frequency of other nuclear anomalies were not significantly different in these two study groups. Presence of each nuclear anomaly was significantly greater in older ages in all study groups. Conclusion:Tobacco can cause and increase the rate of nuclear anomalies in both smoking and smokeless forms compared to HCs. The genotoxic effects of tobacco on buccal cells are partly age-related. Cell nuclear anomalies in buccal tissue can be used as biomarker indicating the detrimental effects of tobacco.

  2. French research in the field of nuclear agronomy; Les recherches francaises en agronomie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Guerin De Montgareuil, P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    This report presents a survey of the most important work in the field of nuclear agronomy carried out in France since the second international conference, ranging from pure research to the most direct application. As the programmes develop, so to an ever decreasing degree does this differentiation cover the distinction made in the report between the biological radiations effects and the other uses of nuclear techniques. Thus research on agricultural radio-genetics is carried on in two directions: from the theoretical and methodological angle, with comparative studies of the action of various types of radiation, the influence of dose rate and temperature, the action of chemical mutation agents, the production of chimera by gamma irradiation; and on the practical side, leading to the creation of new, hardier or earlier varieties (rice, millet, ground-nuts). Problems of pest destruction (eradication) and the preservation of foodstuffs by irradiation are also tackled by widely varied means and for totally different purposes. One operation consisting of a simple irradiation (moist seeds, potatoes...) will sometimes be associated with original studies of a biochemical or microbiological nature (for example: decomposition of starch, glucide metabolism of irradiated tubers, radiation resistance of yeasts). The nuclear technique side is represented mainly by radioisotopes (carbon 14, phosphorus 32, sulphur 35, calcium 45, potassium 42, copper 64, gold 198) and stable isotopes analysed by mass spectrometer (nitrogen 15, oxygen 18) or by neutron activation (boron 10). The studies mentioned refer to problems on different levels concerning plant physiology, agrology, agricultural entomology and zootechny. Results obtained from measurements of the humidity (neutron thermalization) and density (gamma diffusion) of a soil are also given. Numerous organisations take part in these various research programmes, each according to its speciality: cooperative private enterprise

  3. A summary of the 2nd workshop on Human Resources Development (HRD) in the nuclear field in Asia. FY2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    The Human Resources Development (HRD) Project was added in 1999 as a Cooperation Activity of 'the Forum for Nuclear Cooperation in Asia (FNCA)' which is organized by Nuclear Committee. The HRD Project supports to solidify the foundation of nuclear development utilization in Asia by promoting human resources development in Asian countries. The principal activity of the HRD Project is to hold the Workshop on Human Resources Development in the Nuclear Field in Asia once a year. The objective of the Workshop is to clarify problems and needs of the human resources development of each country and to support it mutually by exchanging information etc. The report consists of a summary of the 2nd Workshop on Human Resources Development in the Nuclear Field in Asia held on November 27 and 28, 2000 at Tokai Research Establishment of JAERI. (author)

  4. Analysis and synthesis of nuclear medical letters in the field of nephrological diseases

    International Nuclear Information System (INIS)

    Kley, K.H.

    1979-01-01

    The task of this study consisted in providing the conditions for the automized issue of nuclear nephrological medical letters based on the nuclear medical polyclinic Marburg Selex system working for 8 years now. Part of the task was to develop the structure and coding of the medical letter content appropriately for EDP documentation, as in the Selex system all data for medical letter acquisition are simultaneously acquired on a data carrier for EDP documentation. The analysis of commonly provided medical letters also exhibited in this field the known weaknesses: especially insufficient systematics and the all-over information of interfering redundances. The work describes in detail how the required thesaurus has been worked out and structured into obligatory and optional rough and detailed components. A general form was developed for the findings of paired organs and the special form for nuclear nephrological medical letters was adapted to it. Of the auxiliaries worked out for the doctor in setting up the working instructions to operate the Selex system, scriptate leaflet, short vocabulary album; the two former are presented fully and the latter with typical examples. The result of this work can basically also be applied to other hardware. (orig.) [de

  5. Fringing field effects in negative capacitance field-effect transistors with a ferroelectric gate insulator

    Science.gov (United States)

    Hattori, Junichi; Fukuda, Koichi; Ikegami, Tsutomu; Ota, Hiroyuki; Migita, Shinji; Asai, Hidehiro; Toriumi, Akira

    2018-04-01

    We study the effects of fringing electric fields on the behavior of negative-capacitance (NC) field-effect transistors (FETs) with a silicon-on-insulator body and a gate stack consisting of an oxide film, an internal metal film, a ferroelectric film, and a gate electrode using our own device simulator that can properly handle the complicated relationship between the polarization and the electric field in ferroelectric materials. The behaviors of such NC FETs and the corresponding metal-oxide-semiconductor (MOS) FETs are simulated and compared with each other to evaluate the effects of the NC of the ferroelectric film. Then, the fringing field effects are evaluated by comparing the NC effects in NC FETs with and without gate spacers. The fringing field between the gate stack, especially the internal metal film, and the source/drain region induces more charges at the interface of the film with the ferroelectric film. Accordingly, the function of the NC to modulate the gate voltage and the resulting function to improve the subthreshold swing are enhanced. We also investigate the relationships of these fringing field effects to the drain voltage and four design parameters of NC FETs, i.e., gate length, gate spacer permittivity, internal metal film thickness, and oxide film thickness.

  6. Case Study for Effectiveness Analysis on Nuclear Regulatory Infrastructure Support for Emerging Nuclear Energy Countries

    International Nuclear Information System (INIS)

    Lee, Y. E.; Byeon, M. J.; Yoo, J. W.; Lee, J. M.; Lim, J. H.

    2016-01-01

    The donor countries need to make decisions on various steps such as whether to fully accept newcomers’ requests, the depth of support, and how the supportive action will be carried out. Such is not an easy task due to limited time, resources, manpower, etc. Thus, creating an infrastructure to support emerging nuclear energy countries is needed. This paper suggests the resource portfolio concept used in business management and aims to analyze the validity of supporting the new entrants’ development of regulatory infrastructure as a case study. This study tries to develop a very simple Excel-based tool for assessing the supporting strategy quantitatively and screening the activities that is projected to be less effective and attractive. There are many countries, so called newcomers, which have expressed interests in developing their own nuclear power program. It has been recognized by the international community that every country considering embarking upon their own nuclear power program should establish their nuclear safety infrastructure to sustain a high level of nuclear safety. The newcomers have requested for considerable assistance from the IAEA and they already have bilateral cooperation programs with the advanced countries with matured nuclear regulatory programs. Currently, the regulatory bodies that provide support are confronted with two responsibilities as follows; the primary objective of the regulatory bodies is to ensure that the operator fulfills the responsibility to protect human health

  7. Regional long-term co-operation in the field of nuclear and radiation emergency preparedness

    International Nuclear Information System (INIS)

    Sladek, V.; Metke, E.; Janko, K.; Hohenberg, J. K.; Hofer, P.

    2004-01-01

    Emergency preparedness is generally covered by methodical and coordinative activities of the International Atomic Energy Agency (IAEA) in Member States of the IAEA and by the European Commission (EC) in EU Member and EU Accession Countries. However, the regional harmonisation of emergency arrangements is an important trend of emergency preparedness. The present paper gives a couple of illustrative examples for a regional co-operation in the field of emergency preparedness in Central Europe and an overview on international exercises in this region. The penultimate section contains an outlook on future activities regarding regional co-operation in Central Europe. The following topics have been suggested inter alia: the harmonisation of intervention criteria and countermeasures, co-ordination in the field of information of the public, comprehensive bi lateral and multilateral exercises, exchange of experts between the national nuclear emergency centres and inter-comparison calculations of the computer codes. (authors)

  8. The Supersymmetric Effective Field Theory of Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Delacrétaz, Luca V.; Gorbenko, Victor [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,Menlo Park, CA 94025 (United States)

    2017-03-10

    We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable Stückelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplifying the analysis in this regime. We study the phenomenology of this Lagrangian. The Goldstino can have a non-relativistic dispersion relation. Gravitino and Goldstino affect the primordial curvature perturbations at loop level. The UV modes running in the loops generate three-point functions which are degenerate with the ones coming from operators already present in the absence of supersymmetry. Their size is potentially as large as corresponding to f{sub NL}{sup equil.,orthog.}∼1 or, for particular operators, even ≫1. The non-degenerate contribution from modes of order H is estimated to be very small.

  9. Field-effect P-N junction

    Science.gov (United States)

    Regan, William; Zettl, Alexander

    2015-05-05

    This disclosure provides systems, methods, and apparatus related to field-effect p-n junctions. In one aspect, a device includes an ohmic contact, a semiconductor layer disposed on the ohmic contact, at least one rectifying contact disposed on the semiconductor layer, a gate including a layer disposed on the at least one rectifying contact and the semiconductor layer and a gate contact disposed on the layer. A lateral width of the rectifying contact is less than a semiconductor depletion width of the semiconductor layer. The gate contact is electrically connected to the ohmic contact to create a self-gating feedback loop that is configured to maintain a gate electric field of the gate.

  10. Results on safety research for five years (from fiscal year 1996 to 2000). A field of nuclear fuel cycle

    International Nuclear Information System (INIS)

    2001-10-01

    This safety research carried out by the Japan Nuclear Cycle Development Institute (JNC) for five years ranged from fiscal year 1996 to 2000, was performed according to the safety research basic plan (from fiscal year 1996 to 2000) established on March, 1996 (revised again on May, 2000). This report was arranged on a field on nuclear fuel cycle (all subjects on fields of nuclear fuel facility, environmental radioactivity and radioactive wastes and a subject on nuclear fuel cycle in a field of seismic resistant and probabilistic safety assessment) by combining its research results for five years ranged from 1996 to 2000 fiscal year with general outlines on the safety research basic plan. Here were shown outlines on the safety research basic plan, aims and subjects on safety research at a field of nuclear fuel cycle, a list of survey sheets on safety research result, and survey sheets on safety research results. The survey sheets containing research field, title, organization, researcher name, researching period, names of cooperative organization, using facilities, research outline, research results, established contents, application, and research trends, are ranged to 21 items on nuclear fuel facility, 1 item on seismic resistance, 2 items on probabilistic safety assessment, 8 items on environmental radioactivity, and 20 items on radioactive wastes. (G.K.)

  11. Underground nuclear explosion effects in granite rock fracturing

    International Nuclear Information System (INIS)

    Derlich, S.

    1970-01-01

    On the Saharan nuclear test site in Hoggar granite, mechanical properties of the altered zones were studied by in situ and laboratory measurements. In situ methods of study are drillings, television, geophysical and permeability measurements. Fracturing is one of the most important nuclear explosion effects. Several altered zones were identified. There are: crushed zone, fractured zone and stressed zone. Collapse of crushed and fractured zone formed the chimney. The extent of each zone can be expressed in terms of yield and of characteristic parameters. Such results are of main interest for industrial uses of underground nuclear explosives in hard rock. (author)

  12. SCOPE 28: Environmental consequences of nuclear war. Volume II. Ecological and agricultural effects

    International Nuclear Information System (INIS)

    Harwell, M.A.; Hutchinson, T.C.; Cropper, W.P. Jr.; Harwell, C.C.; Grover, H.D.

    1985-01-01

    This book presents papers on the environmental and biological impacts of nuclear weapons. Topics considered include ecological principles relevant to nuclear war, the vulnerability of ecological systems to the climatic effects of nuclear war, additional potential effects of nuclear war on ecological systems, the potential effects of nuclear war on agricultural productivity, food availability after nuclear war, experiences and extrapolations from Hiroshima and Nagasaki, and the integration of effects on human populations

  13. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation*

    Directory of Open Access Journals (Sweden)

    Remec Igor

    2016-01-01

    Full Text Available Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete, with a particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV in the concrete biological shields of the US pressurized water reactor fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to ensure reliable risk assessment for extended operation of nuclear power plants.

  14. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradationa

    Energy Technology Data Exchange (ETDEWEB)

    Remec, Igor [ORNL; Rosseel, Thomas M [ORNL; Field, Kevin G [ORNL; Le Pape, Yann [ORNL

    2016-01-01

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete, with a particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to ensure reliable risk assessment for extended operation of nuclear power plants.

  15. Nuclear effects in squark production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Espindola, Danusa B. [Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Mariotto, C. B. [Instituto de Matematica, Estatistica e Fisica (IMEF), Universidade Federal do Rio Grande (FURG), Rio Grande, RS (Brazil); Rodriguez, M. C. [IMEF-FURG, Rio Grande, RS (Brazil)

    2013-03-25

    In this contribution we study the production of squarks. If squarks are found in proton-proton (pp) collisions at the LHC, they might also be produced in collisions involving nuclei (pA and AA collisions). Here we investigate the influence of nuclear effects in the production of squarks in nuclear collisions at the LHC, and estimate the transverse momentum dependence of the nuclear ratios R{sub pA} = (d{sigma}(pA)/d{sub pT})/A(d{sigma}(pp)/d{sub pT}) and R{sub AA} = (d{sigma}(AA)/d{sub pT})/A{sup 2}(d{sigma}(pp)/d{sub pT}). We demonstrate that depending on the magnitude of the nuclear effects, the production of squarks could be enhanced or suppressed, compared to proton-proton collisions at same energies.

  16. Nuclear medicine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The area of nuclear medicine, the development of artificially produced radioactive isotopes for medical applications, is relatively recent. Among the subjects covered in a lengthy discussion are the following: history of development; impact of nuclear medicine; understanding the most effective use of radioisotopes; most significant uses of nuclear medicine radioimmunoassays; description of equipment designed for use in the field of nuclear medicine (counters, scanning system, display systems, gamma camera); description of radioisotopes used and their purposes; quality control. Numerous historical photographs are included. 52 refs

  17. New approaches of the potential field for QPSO algorithm applied to nuclear reactor reload problem

    International Nuclear Information System (INIS)

    Nicolau, Andressa dos Santos; Schirru, Roberto

    2015-01-01

    Recently quantum-inspired version of the Particle Swarm Optimization (PSO) algorithm, Quantum Particle Swarm Optimization (QPSO) was proposed. The QPSO algorithm permits all particles to have a quantum behavior, where some sort of 'quantum motion' is imposed in the search process. When the QPSO is tested against a set of benchmarking functions, it showed superior performances as compared to classical PSO. The QPSO outperforms the classical one most of the time in convergence speed and achieves better levels for the fitness functions. The great advantage of QPSO algorithm is that it uses only one parameter control. The critical step or QPSO algorithm is the choice of suitable attractive potential field that can guarantee bound states for the particles moving in the quantum environment. In this article, one version of QPSO algorithm was tested with two types of potential well: delta-potential well harmonic oscillator. The main goal of this study is to show with of the potential field is the most suitable for use in QPSO in a solution of the Nuclear Reactor Reload Optimization Problem, especially in the cycle 7 of a Brazilian Nuclear Power Plant. All result were compared with the performance of its classical counterpart of the literature and shows that QPSO algorithm are well situated among the best alternatives for dealing with hard optimization problems, such as NRROP. (author)

  18. Morphological changes of nuclear and chromatin architecture after microwave electromagnetic field exposure in 3T3 fibroblast cell cultures

    International Nuclear Information System (INIS)

    Mircea, D.; Chirila, Lavinia; Ciurea, A. V.; Helm, G.; Hankins, G.; Redrick, Jan; Gavrila, L.; Sheppard, B.; Bloodgoog, R.; Pallin, I.; Nitu, Rozalia; Rusu, I.

    2001-01-01

    It is already demonstrated in the literature that electromagnetic fields, particularly the microwave irradiation could be a powerful weapon against human tumors , but also against human body itself, depending on the wave parameters and irradiation time. The effects of microwave electromagnetic fields on living systems were studied in detail all over the world and, furthermore, the potential of intracellular damages by cytoskeleton, nuclear, chromatin and DNA alterations were carefully evaluated. In this study, the authors emphasize the morphological changes of nucleus and chromatin in fibroblast cell line 3T3 after microwave exposure with progressive increasing powers and times of irradiation. It was used a pulsed wave with 915 MHz frequency, with forward power ranging between 3 - 10 W, emitted by a helical microwave antenna placed into the cell culture medium, close to the cell monolayer. The authors tried to define certain severity stages of nuclear material alterations following different wave intensities and to compare these effects with other cytoplasmic organelle alterations. It was found that the nuclear material is the most sensitive intracellular structure in microwave electromagnetic field exposure. Also the authors tried to establish a well-defined protocol of irradiation with microwave electromagnetic fields in order to destroy the microtubule system of cytoskeleton in different types of cellular lines, in vitro. The cytoskeleton structure was evaluated by immunofluorescence methods. In non-muscle cells the cytoskeleton stability is achieved by interaction between microtubule system and actin filaments. Microtubule depolymerization by microwave exposure produces a secondary instability of cytoskeleton, the actin filaments coupling and cell contractility. The increasing of fibroblast contractility allows a more efficient treatment of the wounds with low spontaneous healing. Electromagnetic therapy could be an alternative therapy in plastic surgery

  19. Effective field theory analysis of Higgs naturalness

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Shalom, Shaouly [Technion-Israel Inst. of Tech., Haifa (Israel); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Wudka, Jose [Univ. of California, Riverside, CA (United States)

    2015-07-20

    Assuming the presence of physics beyond the Standard Model ( SM) with a characteristic scale M ~ O (10) TeV, we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the leading 1 -loop EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff, and determine t he constraints on the corresponding operator coefficients for these effects to alleviate the little hierarchy problem up to the scale of the effective action Λ < M , a condition we denote by “EFT-naturalness”. We also determine the types of physics that can lead to EFT-naturalness and show that these types of new physics are best probed in vector-boson and multiple-Higgs production. The current experimental constraints on these coefficients are also discussed.

  20. Additional potential effects of nuclear war on ecological systems

    International Nuclear Information System (INIS)

    Hutchinson, T.C.; Harwell, M.A.; Cropper, W.P. Jr.; Grover, H.D.

    1985-01-01

    The authors summarize biological and ecosystem responses to enhanced UV-B, air pollutants, radiation, and fire. The concentrations and biological responses associated with these perturbations are based on current experience and experimentation. Additional research is needed to quantify probable post-nuclear war exposures and potential responses. A summary is provided of all the potential effects of nuclear war on the variety of the Earth's ecosystems, including perturbations from climatic alterations, radiation, pollutants, and UV-B

  1. Contamination effects of nuclear weapon tests in the atmosphere

    International Nuclear Information System (INIS)

    Hertelendi, Ede; Csongor, Eva

    1984-01-01

    The atmospheric explosions for weapon testing are listed from 1945 to 1962: to the Nuclear Test Ban Treaty. The atmospheric contamination and fallout effects of these tests are discussed, including local, tropospheric and stratospheric components. The conclusions from the activity of precipitation and the radioisotopes resulting from neutron activation processes are described. Finally, the contamination resulting from a hypothetical nuclear war is estimated. (R.P.)

  2. Accidents, disasters and crisis: contribution of epidemiology in the nuclear field

    International Nuclear Information System (INIS)

    Verger, P.; Bard, D.; Hubert, P.

    1995-01-01

    The experience of the Chernobyl accident has shown the necessity of being prepared for epidemiological assessment of the health consequences of a nuclear or a radiological accident. We discuss the contribution of epidemiology in such situations, in addition to the existing tools designed to assess or manage radiological risks. From a decisional point of view, three issues are distinguished: the protection of the different population groups against ionizing radiations, the achievement of health care and the communication with the public and media. We discuss the input of epidemiological tools in both perspectives. Epidemiology may also contribute to the analysis of health events that may be observed after an accident, i.e. to assess whether these events are not statistical artifacts, whether they are an effect of the exposure to ionizing radiations or a non specific consequence of any accident. Finally, epidemiological studies should be carried out to improve our knowledge on ionizing radiations effects with a special consideration given to the dose-effect relationships. Examples of past nuclear accidents are used to discuss these issues. The last part of this paper is focused on different research issues that should be developed for preparing epidemiological plans for nuclear accidents. (Author). 48 refs., 1 fig., 3 tabs

  3. Health effects of the nuclear accident at Three Mile Island

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1980-05-01

    Between March 28 and April 15, 1979 the collective dose resulting from the radioactivity released to the population living within a 50-mile radius of the Three Mile Island nuclear plant was about 2000 person-rems, less than 1% of the annual natural background level. The average dose to a person living within 5 miles of the nuclear plant was less than 10% of annual background radiation. The maximum estimated radiation dose received by any one individual in the general population (excluding the nuclear plant workers) during the accident was 70 mrem. The doses received by the general population as a result of the accident were so small that there will be no detectable additional cases of cancer, developmental abnormalities, or genetic ill-health. Three Three Mile Island nuclear workers received radiation doses of about 3 to 4 rem, exceeding maximum permissible quarterly dose of 3 rem. The major health effect of the accident at Three Mile Island was that of a pronounced demoralizing effect on the general population in the Three Mile Island area, including teenagers and mothers of preschool children and the nuclear plant workers. However, this effect proved transient in all groups studied except the nuclear workers

  4. Asymptotic behaviour of the equilibrium nuclear separation for the H{sup +}{sub 2} molecule in a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Benguria, Rafael [Pontificia Universidad Catolica de Chile, Departamento de Fisica, Casilla 306, Santiago 22, Chile (Chile); Brummelhuis, Raymond [School of Economics, Mathematics and Statistics, 7-15 Gresse Street, University of London (United Kingdom); Duclos, Pierre [Centre de Physique Theorique UMR 6207-Unite Mixte de Recherche du CNRS et des Universites Aix-Marseille I, Aix-Marseille II et de l' Universite du Sud Toulon-Var-Laboratoire affilie a la FRUMAM, Luminy Case 907, F-13288 Marseille Cedex 9 (France); Perez-Oyarzun, Santiago [Instituto de Ciencias Basicas, Facultad de Ingenieria, Universidad Diego Portales, Av. Ejercito 441, Casilla 298-v, Santiago (Chile); Vytras, Petr [Katedra Matematiky, FJFI, CVUT, Trojanova 13, CZ-Prague 12000 (Czech Republic)

    2006-06-30

    We consider the hydrogen molecular ion H{sup +}{sub 2} in the fixed nuclear approximation, in the presence of a strong homogeneous magnetic field. We determine the leading asymptotic behaviour for the equilibrium distance between the nuclei of this molecule in the limit when the strength of the magnetic field goes to infinity.

  5. Biological effects of electrical and magnetic fields

    International Nuclear Information System (INIS)

    Thibault de Boesinghe, L. de

    1979-01-01

    A review is made by the author of the literature about the biological effects of electrical and magnetic fields. A distinction is made between the observations made on man and the experience on animals. The results do not allow to reach a uniform conclusion. The used methodology is furthermore often open for discussion. One fundamental question remains: is there or not a threshold value. The question may be asked if objective modifications would not better come out in the light of systematical programs studies. This review of the literature gives results which anyway justify a systematic study of this subject. (author)

  6. Oxidation and crystal field effects in uranium

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Booth, C. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuh, D. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); van der Laan, G. [Diamond Light Source, Didcot (United Kingdom); Sokaras, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Weng, T. -C. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Yu, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bagus, P. S. [Univ. of North Texas, Denton, TX (United States); Tyliszczak, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nordlund, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States)

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  7. The Effective Field Theory of nonsingular cosmology

    International Nuclear Information System (INIS)

    Cai, Yong; Wan, Youping; Li, Hai-Guang; Qiu, Taotao; Piao, Yun-Song

    2017-01-01

    In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory (EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.

  8. Combating the greenhouse effect: no role for nuclear power

    International Nuclear Information System (INIS)

    Leggett, J.K.; Kelly, P.M.

    1990-01-01

    Many governments, including the United Kingdom government, now recognise the need for an immediate policy response to the dangerous build up of carbon dioxide and other greenhouse gases in the atmosphere. One immediate goal must be to cut substantially the amount of energy we use. British Nuclear Fuels have recently begun an advertising campaign to promote the expansion of nuclear power as a solution to the greenhouse effect, and government ministers have also advanced this concept in recent statements. In this report we argue that governments must not seek to involve nuclear power in combating global warming for the following reasons: seeking to replace all (or a part) of coal-fired power output with nuclear addresses only 10% (or less) of the greenhouse problem, it is many times cheaper to save a unit of energy than to generate an additional unit, to throw funds at enlarging the nuclear programme at the expense of investment in energy efficiency measures would in fact be to add to the greenhouse threat, the scope for the introduction of energy efficiency is enormous, nuclear power is not a viable option for third World countries, energy-efficiency measures can be introduced far more quickly than can nuclear power stations and energy efficiency technology is proven technology. (author)

  9. Non-Abellian field dynamics in the early stage of ultrarelativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Rischke, D.H. [Brookhaven National Lab., Upton, NY (United States)

    1997-09-22

    It was argued that the gluon field of a large, ultrarelativistic nucleus can be considered as a classical field for small values of the longitudinal momentum fraction x and on transverse momentum scales {Lambda}{sup 2}{sub QCD} << k{sup 2}{perpendicular} << {mu}{sup 2}, where {mu}{sup 2} is the transverse area density of color charges. The authors estimated {mu} {approx} 0.4 GeV for collisions of Au-nuclei at RHIC energies. Based on this argument, the gluon field produced in a collision of two ultrarelativistic nuclei is computed perturbatively by solving the classical Yang-Mills equations order by order in the strong coupling constant g. It is shown that to first order in g, the spectrum of produced gluons is identical to that obtained in a perturbative quantum calculation of gluon Bremsstrahlung. It is also identical with that of a coherent quantum state generated by independent collisions between the (classical) color charges in the two nuclei. The perturbative solution is unstable under perturbations. The instabilities arise from the non-Abelian terms in the equations of motion for the gluon field, which enter only at higher order in the perturbative solution scheme. The decay rate of the perturbative solution is shown to be of order {mu}. Since the non-Abelian terms describe the self-interaction of the produced gluon field, and since such interactions lead to thermalization, the decay rate provides an estimate for the thermalization time scale of classical color fields in ultrarelativistic nuclear collisions. For Au-nuclei, this time scale is therefore of order 0.5 fm/c, in agreement with results for the kinetic thermalization time scale.

  10. Proposal for an IAEA - sponsored project of interregional co-operation for training of nuclear scientists in developing countries, using the expertise available in the nuclear data field

    International Nuclear Information System (INIS)

    Kocherov, N.; Schmidt, J.J.

    1980-07-01

    During the Winter College on Nuclear Physics and Reactors jointly organized by the IAEA and the International Centre for Theoretical Physics (ICTP) in January - March 1980 and held at the ICTP in Trieste, a Working Group was convened from participants in the Interregional Advanced Training Course on Applications of Nuclear Theory to Nuclear Data Calculations for Reactor Design. The Working Group examined the current fast neutron nuclear data requirements for nuclear technologies and discussed possible means to meet these requirements, with a major emphasis on the possible contributions by and benefit for the developing countries. The Working Group concluded that the organisation of an IAEA-sponsored Project of Interregional Co-operation for Training of Nuclear Scientists in Developing Countries, Using the Expertise Available in the Nuclear Data Field, would be the best solution to cope with the problems in question and drafted an outline of the technical programme and organization of such a project the revised version of which is presented in this report

  11. Phenomena in J-coupled nuclear magnetic resonance spectroscopy in low magnetic fields

    International Nuclear Information System (INIS)

    Appelt, Stephan; Haesing, F. Wolfgang; Kuehn, Holger; Bluemich, Bernhard

    2007-01-01

    We present the theory and experimental results of phenomena associated to J-coupled nuclear magnetic resonance (NMR) spectroscopy at low magnetic fields ( -4 T). So far it was believed that in low field the chemical shift and with it the homonuclear J-coupling information is lost. This contribution shows that the network of all homo- and heteronuclear J-coupling constants can be measured in low magnetic fields, thus revealing the whole molecular structure even in the absence of any chemical shift information. The chemical group of the form YX N (Y=rare spin 1/2, X=observed spin 1/2, N=number of spins X) can be identified by the number of lines in the heteronuclear coupled X spectrum if the strong J-coupling condition is valid. If two molecular groups, such as YX N and AX M-N (A=group without nuclear spin, M=total number of coupled spinsX), are bound together then all homo- and heteronuclear J-coupling constants appear in the X-NMR spectrum as pairs of multiplets. A vector model is presented which explains the relation between the molecular structure and the number of observed lines in a multiplet pair. The linewidths of the different NMR lines inside one multiplet are measured to be substantially different and depend on the total spin state of the molecule. If M is an odd number and M-1 spins X of the molecule are coupled into (M-1)/2 singlets, then intramolecular dipole-dipole relaxation as well as J-coupling mediated relaxation processes are suppressed and very narrow lines are observed

  12. Effective corrective actions to enhance operational safety of nuclear installations

    International Nuclear Information System (INIS)

    2005-07-01

    The safe operation of nuclear power plants around the world and the prevention of incidents in these installations remain key concerns for the nuclear community. In this connection the feedback of operating experience plays a major role: every nuclear plant operator needs to have a system in place to identify and feed back the lessons learned from operating experience and to implement effective corrective actions to prevent safety events from reoccurring. An effective operating experience programme also includes a proactive approach that is aimed at preventing the first-time occurrence of safety events. In April 2003, the IAEA issued the PROSPER guidelines for nuclear installations to strengthen and enhance their own operating experience process and for self-assessment on the effectiveness of the feedback process. Subsequently, in the course of the Operational Safety Review Teams missions conducted by the IAEA that focused on the operational safety practices of nuclear power plants, the IAEA enhanced the review of the operating experience in nuclear power plants by implementing a new module that is derived from these guidelines. In order to highlight the effective implementation of the operating experience programme and to provide practical assistance in this area, the IAEA organized workshops and conferences to discuss recent trends in operating experience. The IAEA also performed assistance and review missions at plants and corporate organizations. The IAEA is further developing advice and assistance on operating experience feedback programmes and is reporting on good practices. The present publication is the outcome of two years of coordinated effort involving the participation of experts of nuclear organizations in several Member States. It provides information and good practices for successfully establishing an effective corrective actions programme. This publication forms part of a series that develops the principles set forth in these guidelines

  13. Nucleon Polarisabilities and Effective Field Theories

    Science.gov (United States)

    Griesshammer, Harald W.

    2017-09-01

    Low-energy Compton scattering probes the nucleon's two-photon response to electric and magnetic fields at fixed photon frequency and multipolarity. It tests the symmetries and strengths of the interactions between constituents, and with photons. For convenience, this energy-dependent information is often compressed into the two scalar dipole polarisabilities αE 1 and βM 1 at zero photon energy. These are fundamental quantities, and important for the proton charge radius puzzle and the Lamb shift of muonic hydrogen. Combined with emerging lattice QCD computations, they provide stringent tests for our understanding of hadron structure. Extractions of the proton and neutron polarisabilities from all published elastic data below 300 MeV in Chiral Effective Field Theory with explicit Δ (1232) are now available. This talk emphasises χEFT as natural bridge between lattice QCD and ongoing or approved efforts at HI γS, MAMI and MAX-lab. Chiral lattice extrapolations from mπ > 200 MeV to the physical point compare well to lattice computations. Combining χEFT with high-intensity experiments with polarised targets and polarised beams will extract not only scalar polarisabilities, but in particular the four so-far poorly explored spin-polarisabilities. These parametrise the stiffness of the spin in external electro-magnetic fields (nucleonic bi-refringence/Faraday effect). New chiral predictions for proton, deuteron and 3He observables show intriguing sensitivities on spin and neutron polarisabilities. Data consistency and a model-independent quantification of residual theory uncertainties by Bayesian analysis are also discussed. Proton-neutron differences explore the interplay between chiral symmetry breaking and short-distance Physics. Finally, I address their impact on the neutron-proton mass difference, big-bang nucleosynthesis, and their relevance for anthropic arguments. Supported in part by DOE DE-SC0015393 and George Washington University.

  14. The evaluation of environmental effects of nuclear power plants

    International Nuclear Information System (INIS)

    Oezyurt, M.; Iyit, L.; Seyitogullari, S.

    2006-01-01

    Energy is today one of the most significant topics in the world. Humans are investigating alternative energy resources due to the fossil energy sources to be exhausted in future. As known, the life of energy resources such as coal and oil is limited. Natural gas will cover the need just for a limited period. On the other hand, developing population will increase the need of energy for the next generation. Therefore, alternative energy has gained much significance in recent years. Nuclear energy is the most criticized energy in public opinion. About 17 pct. of the electric need in the world is being covered by nuclear power plants . This ratio is over 30 pct. in European Union and over 78.2 pct. in France. The most significant risk as regard with environmental pollution is radioactive wastes for these plants. The opposite sides towards nuclear energy claim about the accidents of nuclear power plants and deaths in short and long terms. As long as the security rules are applied, nuclear power plants affect neither human nor environmental health in a detrimental way. The radiation emission scattered by nuclear power plants is very low. In this work, first of all nuclear energy was evaluated from a standpoint of environmental pollution and both positive and negative effects were investigated. As a result, the humanity will have to benefit from all the alternative energy resources , the nuclear energy as well, in order not to live in a dark world. Every technology has its own risks. It seems that if nuclear energy power plants are operated in high technology conditions it will be un given up for humanity

  15. Radiation Effects on Current Field Programmable Technologies

    Science.gov (United States)

    Katz, R.; LaBel, K.; Wang, J. J.; Cronquist, B.; Koga, R.; Penzin, S.; Swift, G.

    1997-01-01

    Manufacturers of field programmable gate arrays (FPGAS) take different technological and architectural approaches that directly affect radiation performance. Similar y technological and architectural features are used in related technologies such as programmable substrates and quick-turn application specific integrated circuits (ASICs). After analyzing current technologies and architectures and their radiation-effects implications, this paper includes extensive test data quantifying various devices total dose and single event susceptibilities, including performance degradation effects and temporary or permanent re-configuration faults. Test results will concentrate on recent technologies being used in space flight electronic systems and those being developed for use in the near term. This paper will provide the first extensive study of various configuration memories used in programmable devices. Radiation performance limits and their impacts will be discussed for each design. In addition, the interplay between device scaling, process, bias voltage, design, and architecture will be explored. Lastly, areas of ongoing research will be discussed.

  16. ALPs effective field theory and collider signatures

    Energy Technology Data Exchange (ETDEWEB)

    Brivio, I. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); University of Copenhagen, Niels Bohr International Academy, Copenhagen (Denmark); Gavela, M.B.; Merlo, L.; Rey, R. del [Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Mimasu, K. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Universite Catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); No, J.M. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); King' s College London, Department of Physics, London (United Kingdom); Sanz, V. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-08-15

    We study the leading effective interactions between the Standard Model fields and a generic singlet CP-odd (pseudo-) Goldstone boson. Two possible frameworks for electroweak symmetry breaking are considered: linear and non-linear. For the latter case, the basis of leading effective operators is determined and compared with that for the linear expansion. Associated phenomenological signals at colliders are explored for both scenarios, deriving new bounds and analyzing future prospects, including LHC and High Luminosity LHC sensitivities. Mono-Z, mono-W, W-photon plus missing energy and on-shell top final states are most promising signals expected in both frameworks. In addition, non-standard Higgs decays and mono-Higgs signatures are especially prominent and expected to be dominant in non-linear realisations. (orig.)

  17. Consistency relations in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Munshi, Dipak; Regan, Donough, E-mail: D.Munshi@sussex.ac.uk, E-mail: D.Regan@sussex.ac.uk [Astronomy Centre, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2017-06-01

    The consistency relations in large scale structure relate the lower-order correlation functions with their higher-order counterparts. They are direct outcome of the underlying symmetries of a dynamical system and can be tested using data from future surveys such as Euclid. Using techniques from standard perturbation theory (SPT), previous studies of consistency relation have concentrated on continuity-momentum (Euler)-Poisson system of an ideal fluid. We investigate the consistency relations in effective field theory (EFT) which adjusts the SPT predictions to account for the departure from the ideal fluid description on small scales. We provide detailed results for the 3D density contrast δ as well as the scaled divergence of velocity θ-bar . Assuming a ΛCDM background cosmology, we find the correction to SPT results becomes important at k ∼> 0.05 h/Mpc and that the suppression from EFT to SPT results that scales as square of the wave number k , can reach 40% of the total at k ≈ 0.25 h/Mpc at z = 0. We have also investigated whether effective field theory corrections to models of primordial non-Gaussianity can alter the squeezed limit behaviour, finding the results to be rather insensitive to these counterterms. In addition, we present the EFT corrections to the squeezed limit of the bispectrum in redshift space which may be of interest for tests of theories of modified gravity.

  18. Prevent recurrence of nuclear disaster (4). Future tasks in the field of structure and components

    International Nuclear Information System (INIS)

    Okamoto, Koji; Takagi, Toshiyuki; Ueda, Susumu

    2012-01-01

    Structure and components subcommittee under the special committee of seismic safety of nuclear power stations of the Atomic Energy Society of Japan discussed future activities related with technical problems of seismic design of structures, components and piping system and evaluation of seismic effects in collaboration with the Japan Society of Mechanical Engineers. These problems were arranged by 'logic of seismic safety' and tabulated just enough, and then their roadmap was prepared. This article described selected relevant problems and discussed safety margins of seismic design and their related problems, referring to state of countermeasures and evaluated results of nuclear power stations after Great East Japan Earthquake occurred in March 11, 2011. Main problems were related with seismic safety margins of structure and components, consideration of ground motion index, rationalization and upgrade of seismic design, application of new technology, integrity evaluation of structure and components after or at earthquake, and upgrade of seismic probabilistic risk assessment methodology. (T. Tanaka)

  19. Aspects of public opinion research in risk perception studies covering the nuclear field

    International Nuclear Information System (INIS)

    Tanimoto, Katia Suemi; Hiromoto, Goro

    2011-01-01

    A project for site selection and construction of a national radioactive waste repository is underway at the Comissao Nacional de Energia Nuclear. Public acceptance is determinant to the deployment of an undertaking of this size. A major concern regarding the use of nuclear energy are the problems related to safe management of the radioactive waste. For effective communication between decision makers and the public, a mutual understanding of views, as well as attitudes towards risk, is needed. The use of opinions polls is necessary in order to achieve it. This work aims to point out the major aspects to be approached by an opinion poll for the study of risk perception on the candidate regions for repository construction. A risk perception research model is presented, to be applied to the case of radioactive waste disposal, along with theoretical support to the organization and implementation of its structure. (author)

  20. Aspects of public opinion research in risk perception studies covering the nuclear field

    Energy Technology Data Exchange (ETDEWEB)

    Tanimoto, Katia Suemi; Hiromoto, Goro, E-mail: ktanimoto@ipen.b, E-mail: hiromoto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A project for site selection and construction of a national radioactive waste repository is underway at the Comissao Nacional de Energia Nuclear. Public acceptance is determinant to the deployment of an undertaking of this size. A major concern regarding the use of nuclear energy are the problems related to safe management of the radioactive waste. For effective communication between decision makers and the public, a mutual understanding of views, as well as attitudes towards risk, is needed. The use of opinions polls is necessary in order to achieve it. This work aims to point out the major aspects to be approached by an opinion poll for the study of risk perception on the candidate regions for repository construction. A risk perception research model is presented, to be applied to the case of radioactive waste disposal, along with theoretical support to the organization and implementation of its structure. (author)

  1. Propranolol reverses open field effects on frustration.

    Science.gov (United States)

    Justel, Nadia; Psyrdellis, Mariana; Pautassi, Ricardo Marcos; Mustaca, Alba

    2014-12-01

    Reactivity to a reward is affected by prior experience with different reinforcer values of that reward, a phenomenon known as incentive relativity. Incentive relativity can be studied via the consummatory successive negative contrast (cSNC) paradigm, in which acceptance of 4% sucrose is assessed in animals that had been exposed to 32% sucrose. These downshifted animals usually exhibit significantly less sucrose acceptance than animals that always received the 4% sucrose solution. In previous work, we found that exploration of a novel open field (OF) before the first trial with the downshifted solution attenuated the contrast effect. The goal of the present experiments was to expand the knowledge on the effects of OF exposure on cSNC. We evaluated the effect OF exposure before the second downshift trial and assessed the mediational role of the adrenergic system in the effects of OF during the first and second trial of cSNC. The results indicate that OF applied before the first or second downshift trials exert opposite effects and that the adrenergic system is involved in the acquisition and consolidation of the OF information. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Nuclear knowledge management

    International Nuclear Information System (INIS)

    2007-01-01

    The management of nuclear knowledge has emerged as a growing challenge in recent years. The need to preserve and transfer nuclear knowledge is compounded by recent trends such as ageing of the nuclear workforce, declining student numbers in nuclear-related fields, and the threat of losing accumulated nuclear knowledge. Addressing these challenges, the IAEA promotes a 'knowledge management culture' through: - Providing guidance for policy formulation and implementation of nuclear knowledge management; - Strengthening the contribution of nuclear knowledge in solving development problems, based on needs and priorities of Member States; - Pooling, analysing and sharing nuclear information to facilitate knowledge creation and its utilization; - Implementing effective knowledge management systems; - Preserving and maintaining nuclear knowledge; - Securing sustainable human resources for the nuclear sector; and - Enhancing nuclear education and training

  3. The Inadvertent Effect of Assurance on Nuclear Proliferation

    Science.gov (United States)

    2013-02-14

    despite steady Gross Domestic Product ( GDP ) growth.13 Moreover, China’s space intercept of a defunct weather satellite, fielding of advanced BMD...ponder why the U.S. would want to swap Los Angeles for Taipei . In an uncertain and multi-polar world containing proliferating nuclear weapon states, the...RL33436 (Washington, DC: Congressional Research Service, 04 May 2012), 7. 13 China’s GDP and military budget over the decade between 1996 and 2006

  4. Electromagnetic field induced biological effects in humans.

    Science.gov (United States)

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  5. Proton decay in a nucleus: Nonrelativistic treatment of nuclear effects

    International Nuclear Information System (INIS)

    Fernandez, L.A.; Alvarez-Estrada, R.F.; Sanchez-Gomez, J.L.

    1983-01-01

    In this paper, proton decay in a large nucleus is studied in the framework of SU(5) grand unification theory (GUT). By using a method based upon the Green's-function technique of many-body physics, nuclear effects on spectator and pole terms are computed. The decay width in the nucleus is found to be practically the same as in free space. However, nuclear effects are of considerable importance concerning the positron spectrum. A density-correlation expansion is introduced which is useful for carrying out a systematic study of nuclear effects in proton decay in a large nucleus. The method presented here can be easily extended to other GUT's or supersymmetric GUT's

  6. Characterization of moisture in acetylated and propionylated radiata pine using low-field nuclear magnetic resonance (LFNMR) relaxometry

    DEFF Research Database (Denmark)

    Beck, Greeley; Thybring, Emil Engelund; Thygesen, Lisbeth Garbrecht

    2018-01-01

    Moisture in radiata pine (Pinus radiata D. Don) earlywood (EW), which was acetylated or propionylated to various degrees, was measured by low-field nuclear magnetic resonance (LFNMR) relaxometry. Spin-spin relaxation times (T2) were determined for fully saturated samples at 22 and -18°C. T2 values...... for EW lumen water increased with increasing acetylation weight percentage gain (WPG), perhaps caused by the less hydrophilic acetylated wood (AcW) surface. Cell wall water (WCW) and the water in pits and small voids also showed increasing T2 values as a function of WPG but with a weaker tendency....... A possible explanation is the counteracting effects of decreased hydrophilicity and reduced moisture content (MC) of these water populations at higher levels of acetylation. The evaluation of propionylation on WCW T2 data was complicated by peak splitting in the relaxation spectrum. Constant T2 values...

  7. Experimental observations to the electrical field for electrorefining of spent nuclear fuel in the Mark-IV electrorefiner

    International Nuclear Information System (INIS)

    Li, S. X.

    1998-01-01

    Experimental results from the pilot scale electrorefiner (Mark-IV ER) treating spent nuclear fuel are reported in this article. The electrorefining processes were carried out in a LiCl-KCl-UCl 3 electrolyte. It has been noted that spool of molten cadmium below the electrolyte plays an important role in the electrorefining operations. In addition, formations of electrical shorting path between anode baskets and the electrorefiner vessel were observed, which lessened the uranium dissolution process from anode baskets, however appeared to improve the morphology of cathode deposit. The FIDAP simulation code was used to calculate the electrical potential field distributions and the potential gradient near the cathode. The effect of the electrical shorting between anode baskets and electrorefiner vessel on the morphology of cathode products is discussed

  8. Characterisation of mixed neutron-photon workplace fields at nuclear facilities by spectrometry (energy and direction) within the EVIDOS project

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; Bartlett, D.; Bolognese-Milsztajn, T.; Boschung, M.; Coeck, M.; Curzio, G.; D'Errico, F.; Fiechtner, A.; Lacoste, V.; Lindborg, L.; Reginatto, M.; Schuhmacher, H.; Tanner, R.; Vanhavere, F.

    2007-01-01

    Within the EC project EVIDOS, 17 different mixed neutron-photon workplace fields at nuclear facilities (boiling water reactor, pressurised water reactor, research reactor, fuel processing, storage of spent fuel) were characterised using conventional Bonner sphere spectrometry and newly developed direction spectrometers. The results of the analysis, using Bayesian parameter estimation methods and different unfolding codes, some of them especially adapted to simultaneously unfold energy and direction distributions of the neutron fluence, showed that neutron spectra differed strongly at the different places, both in energy and direction distribution. The implication of the results for the determination of reference values for radiation protection quantities (ambient dose equivalent, personal dose equivalent and effective dose) and the related uncertainties are discussed. (authors)

  9. Seismic effects on nuclear power plants

    International Nuclear Information System (INIS)

    Borea, A.L.; Meek, J.L.

    1973-01-01

    This paper sets out to discuss the problems related to the design of the nuclear power plant structure for transient loads that may be experienced from ground motions. It recognizes that ground motion may be experienced from several sources such as nearby explosion, forced vibration, from machinery or from an earthquake. In the first instance of an explosion, there is a need to study the basic wave propagation problem and to obtain expressions for ground motion and acceleration at a distance from the disturbing force. In this the importance of foundation material is stressed. The natural phenomena of the earthquake is also considered. Features associated with attempts to define a suitable basic earthquake - its magnitude, its probability of occurrence, etc. are discussed. Speculation is made as to the probability of earthquake in Australia. The end product of all such investigation is the study of the power plant structures themselves, under the influence of the dynamic forces. This may be undertaken on the crude basis of spectral analysis or by more refined finite element models using a specified earthquake as input. Here emphasis is placed on necessity to include the interaction between foundation and structure as well as accurate modelling of the structure itself. (author)

  10. Health effects models for nuclear power plant accident consequence analysis

    International Nuclear Information System (INIS)

    Abrahamson, S.; Bender, M.A.; Boecker, B.B.; Scott, B.R.

    1993-05-01

    The Nuclear Regulatory Commission (NRC) has sponsored several studies to identify and quantify, through the use of models, the potential health effects of accidental releases of radionuclides from nuclear power plants. The Reactor Safety Study provided the basis for most of the earlier estimates related to these health effects. Subsequent efforts by NRC-supported groups resulted in improved health effects models that were published in the report entitled open-quotes Health Effects Models for Nuclear Power Plant Consequence Analysisclose quotes, NUREG/CR-4214, 1985 and revised further in the 1989 report NUREG/CR-4214, Rev. 1, Part 2. The health effects models presented in the 1989 NUREG/CR-4214 report were developed for exposure to low-linear energy transfer (LET) (beta and gamma) radiation based on the best scientific information available at that time. Since the 1989 report was published, two addenda to that report have been prepared to (1) incorporate other scientific information related to low-LET health effects models and (2) extend the models to consider the possible health consequences of the addition of alpha-emitting radionuclides to the exposure source term. The first addendum report, entitled open-quotes Health Effects Models for Nuclear Power Plant Accident Consequence Analysis, Modifications of Models Resulting from Recent Reports on Health Effects of Ionizing Radiation, Low LET Radiation, Part 2: Scientific Bases for Health Effects Models,close quotes was published in 1991 as NUREG/CR-4214, Rev. 1, Part 2, Addendum 1. This second addendum addresses the possibility that some fraction of the accident source term from an operating nuclear power plant comprises alpha-emitting radionuclides. Consideration of chronic high-LET exposure from alpha radiation as well as acute and chronic exposure to low-LET beta and gamma radiations is a reasonable extension of the health effects model

  11. Elucidation of complicated phenomena in nuclear power field by computation science techniques

    International Nuclear Information System (INIS)

    Takahashi, Ryoichi

    1996-01-01

    In this crossover research, the complicated phenomena treated in nuclear power field are elucidated, and for connecting them to engineering application research, the development of high speed computer utilization technology and the large scale numerical simulation utilizing it are carried out. As the scale of calculation, it is aimed at to realize the three-dimensional numerical simulation of the largest scale in the world of about 100 million mesh and to develop the results into engineering research. In the nuclear power plants of next generation, the further improvement of economical efficiency is demanded together with securing safety, and it is important that the design window is large. The work of confirming quantitatively the size of design window is not easy, and it is very difficult to separate observed phenomena into elementary events. As the method of forecasting and reproducing complicated phenomena and quantifying design window, large scale numerical simulation is promising. The roles of theory, experiment and computation science are discussed. The system of executing this crossover research is described. (K.I.)

  12. Science field trips to nuclear power plants - A low capital cost program

    International Nuclear Information System (INIS)

    Cramer, E.N.; Gabel, C.; Sayles, C.

    1991-01-01

    School science field trips to nuclear power plants can be quite rewarding to both students and teachers if the right material is used from a perspective different from the textbooks. One does not need a large, expensive facility to have a program useful to students that addresses adult issues understandably. San Onofre Nuclear Generating Station hosted ∼110 visits (simulator tours) averaging 2,700 visitors in each of calendar years 1989 and 1990 after averaging 75 visits in each of the five preceding years. Most audiences were from middle schools located within a 50-mile radius. The station does not have a separate visitor's center; a classroom is reserved at the station's training and education center. The advantage is using real working laboratories; the disadvantage is not having the more traditional displays and interactive models. Therefore, the instructor emphasizes showing the integrated engineering applications of chemistry, physics, and geology - rather than repeating material that is more easily taught in the school's classroom. Generic issues are emphasized rather than the design details of the plant systems

  13. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    Science.gov (United States)

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  14. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    Directory of Open Access Journals (Sweden)

    Michael W Vogel

    Full Text Available We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability.The finite element method (COMSOL® was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field.A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres.A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR and magnetic resonance imaging (MRI instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  15. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    Science.gov (United States)

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  16. Conceptual study of the application software manager using the Xlet model in the nuclear fields

    International Nuclear Information System (INIS)

    Lee, Joon Koo; Park, Heui Youn; Koo, In Soo; Park, Hee Seok; Kim, Jung Seon; Sohn, Chang Ho

    2003-01-01

    In order to reduce the cost of software maintenance including software modification, we suggest the object oriented program with checking the version of application program using the Java language and the technique of executing the downloaded application program via network using the application manager. In order to change the traditional scheduler to the application manager we have adopted the Xlet concept in the nuclear fields using the network. In usual Xlet means a Java application that runs on the digital television receiver. The Java TV Application Program Interface(API) defines an application model called the Xlet application lifecycle. Java applications that use this lifecycle model are called Xlets. The Xlet application lifecycle is compatible with the existing application environment and virtual machine technology. The Xlet application lifecycle model defines the dialog (protocol) between an Xlet and its environment

  17. Application of Field Programmable Gate Arrays in Instrumentation and Control Systems of Nuclear Power Plants

    International Nuclear Information System (INIS)

    2016-01-01

    Field programmable gate arrays (FPGAs) are gaining increased attention worldwide for application in nuclear power plant (NPP) instrumentation and control (I&C) systems, particularly for safety and safety related applications, but also for non-safety ones. NPP operators and equipment suppliers see potential advantages of FPGA based digital I&C systems as compared to microprocessor based applications. This is because FPGA based systems can be made simpler, more testable and less reliant on complex software (e.g. operating systems), and are easier to qualify for safety and safety related applications. This publication results from IAEA consultancy meetings covering the various aspects, including design, qualification, implementation, licensing, and operation, of FPGA based I&C systems in NPPs

  18. Investigation of parts and elements of technical reports in nuclear field in Japan

    International Nuclear Information System (INIS)

    Naramoto, Miyoko; Narui, Shigeko

    1985-01-01

    Presentation of parts and elements necessary for editing and publishing reports in accordance with SIST-09-1984 (Presentation of Scientific and Technical Reports) was investigated for 65 codes of technical reports in the nuclear field in Japan. English presentation of important elements was also investigated additionally. The investigation shows high presentation fractions (80 -- 100 %) for main bibliographic elements, and medium (66 %) and extremely low (3 %) for abntract and key word, respectively. (The bibliographic elements are described in various parts such as front cover, title page and front matter) and (the subject elements appear mainly in front matter). The title, author's name in Roman character, affiliation, publisher and abstract are described in English with fractions of 80 %, 66 %, 68 % and 62 %, respectively. It is hoped for more publishers and editors of technical reports to accept the standard SIST-09 for efficient processing of secondary information. (author)

  19. The Safety Culture of an Effective Nuclear Regulatory Body

    International Nuclear Information System (INIS)

    Carlsson, Lennart; Bernard, Benoit; Lojk, Robert; Koskinen, Kaisa; Rigail, Anne-Cecile; Stoppa, Gisela; Lorand, Ferenc; Aoki, Masahiro; Fujita, Kenichi; Takada, Hiroko; Kurasaki, Takaaki; Choi, Young Sung; Smit, Martin; Bogdanova, Tatiana; Sapozhnikov, Alexander; Smetnik, Alexander; Cid Campo, Rafael; Axelsson, Lars; Carlsson, Lennart; Edland, Anne; Ryser, Cornelia; Cohen, Miriam; Ficks, Ben; Valentin, Andrea; Nicic, Adriana; Lorin, Aurelie; Nezuka, Takayoshi; Creswell, Len

    2016-01-01

    The fundamental objective of all nuclear safety regulatory bodies is to ensure that activities related to the peaceful use of nuclear energy are carried out in a safe manner within their respective countries. In order to effectively achieve this objective, the nuclear regulatory body requires specific characteristics, one of which is a healthy safety culture. This regulatory guidance report describes five principles that support the safety culture of an effective nuclear regulatory body. These principles concern leadership for safety, individual responsibility and accountability, co-operation and open communication, a holistic approach, and continuous improvement, learning and self-assessment. The report also addresses some of the challenges to a regulatory body's safety culture that must be recognised, understood and overcome. It provides a unique resource to countries with existing, mature regulators and can be used for benchmarking as well as for training and developing staff. It will also be useful for new entrant countries in the process of developing and maintaining an effective nuclear safety regulator. (authors)

  20. Indonesia's present status and needs of human resource development in nuclear field

    International Nuclear Information System (INIS)

    Ruslan, Jeni; Sagala, F.P.

    2000-01-01

    BATAN, started out as a governmental committee established in 1954, has a new organizational structure, based on Presidential Decree of 1998. BATAN has developed its researches in almost practically all-nuclear fields. The situation in Indonesia has been much influenced by the economic crisis, which still being faced by Indonesia. BATAN's strategic planning is described in four areas, those are: 1. Basic human needs, 2. Energy, natural resources and environment, 3. Industry, 4. Socio-cultural and institution. Priority has been given to fulfill, as well as to promote agriculture, health and the industry related to people's welfare, which may develop and improve the immediate needs of the people. In the meantime, we have made considerable investments in manpower development in anticipation of the introduction of nuclear power. BATAN, as of September 1999, has 3889 employees, 26 % of them have bachelor degree, 6 % hold master degrees, and only 2% hold doctoral degree, a total of 34 % employees with university education. Others 11 % have either non-vocational or vocational education beyond High School. The rest of 55 % have high school education or lower, they are administrative clerks (25 %) or technicians (30 %). In the human resources development, BATAN's Education and Training Center, in collaboration with some universities and other national/international institutions, is managing education and training programs for employees. To date, there are 43 BATAN employees studying in various universities in Japan, while another 42 employees are studying in six different countries. Research and Development that have more direct impact to the community will become a priority in the coming years. Without undermining the importance of basic research in advanced fields, we will expect to have more research on application to optimize utilization of research reactors and related facilities for the benefit of both the energy and non-energy sectors. (Tanaka, Y.)

  1. Vertically Integrated Multiple Nanowire Field Effect Transistor.

    Science.gov (United States)

    Lee, Byung-Hyun; Kang, Min-Ho; Ahn, Dae-Chul; Park, Jun-Young; Bang, Tewook; Jeon, Seung-Bae; Hur, Jae; Lee, Dongil; Choi, Yang-Kyu

    2015-12-09

    A vertically integrated multiple channel-based field-effect transistor (FET) with the highest number of nanowires reported ever is demonstrated on a bulk silicon substrate without use of wet etching. The driving current is increased by 5-fold due to the inherent vertically stacked five-level nanowires, thus showing good feasibility of three-dimensional integration-based high performance transistor. The developed fabrication process, which is simple and reproducible, is used to create multiple stiction-free and uniformly sized nanowires with the aid of the one-route all-dry etching process (ORADEP). Furthermore, the proposed FET is revamped to create nonvolatile memory with the adoption of a charge trapping layer for enhanced practicality. Thus, this research suggests an ultimate design for the end-of-the-roadmap devices to overcome the limits of scaling.

  2. Effective field theory analysis of Higgs naturalness

    Science.gov (United States)

    Bar-Shalom, Shaouly; Soni, Amarjit; Wudka, Jose

    2015-07-01

    Assuming the presence of physics beyond the Standard Model (SM) with a characteristic scale M ˜O (10 ) TeV , we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the complete set of higher-dimensional effective operators (at any dimension n ≥5 ) that give the leading one-loop EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff and discuss the (fine-) tuning between these terms and the SM one-loop contribution, which is required in order to alleviate the little hierarchy problem. We then show that this tuning can be translated into a condition for naturalness in the underlying new physics, a condition we denote by "EFT naturalness" and which we express as constraints on the corresponding higher-dimensional operator coefficients up to the scale of the effective action Λ

  3. Collinear factorization violation and effective field theory

    Science.gov (United States)

    Schwartz, Matthew D.; Yan, Kai; Zhu, Hua Xing

    2017-09-01

    The factorization of amplitudes into hard, soft and collinear parts is known to be violated in situations where incoming particles are collinear to outgoing ones. This result was first derived by studying limits where noncollinear particles become collinear. We show that through an effective field theory framework with Glauber operators, these factorization-violating effects can be reproduced from an amplitude that is factorized before the splitting occurs. We confirm results at one loop, through single Glauber exchange, and at two loops, through double Glauber exchange. To approach the calculation, we begin by reviewing the importance of Glauber scaling for factorization. We show that for any situation where initial-state and final-state particles are not collinear, the Glauber contribution is entirely contained in the soft contribution. The contributions coming from Glauber operators are necessarily nonanalytic functions of external momentum, with the nonanalyticity arising from the rapidity regulator. The nonanalyticity is critical so that Glauber operators can both preserve factorization when it holds and produce factorization-violating effects when they are present.

  4. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  5. Effect of nuclear reaction rates on primordial abundances

    International Nuclear Information System (INIS)

    Mishra, Abhishek; Basu, D.N.

    2011-01-01

    The theoretical predictions of the primordial abundances of elements in the big-bang nucleosynthesis (BBN) are dominated by uncertainties in the input nuclear reaction rates. The effect of modifying these reaction rates on light element abundance yields in BBN by replacing the thirty-five reaction rates out of the existing eighty-eight has been investigated. Also the study have been taken of these yields as functions of evolution time or temperature. Here it has been found that using these new reaction rates results in only a little increase in helium mass fraction over that obtained previously in BBN calculations. This allows insights into the role of the nuclear reaction rates in the setting of the neutron-to-proton ratio during the BBN epoch. We observe that most of these nuclear reactions have minimal effect on the standard BBN abundance yields of 6 Li and 7 Li

  6. Field effect sensors for PCR applications

    Science.gov (United States)

    Taing, Meng-Houit; Sweatman, Denis R.

    2004-03-01

    The use of field effect sensors for biological and chemical sensing is widely employed due to its ability to make detections based on charge and surface potential. Because proteins and DNA almost always carry a charge [1], silicon can be used to micro fabricate such a sensor. The EIS structure (Electrolyte on Insulator on Silicon) provides a novel, label-free and simple to fabricate way to make a field effect DNA detection sensor. The sensor responds to fluctuating capacitance caused by a depletion layer thickness change at the surface of the silicon substrate through DNA adsorption onto the dielectric oxide/PLL (Poly-L-Lysine) surface. As DNA molecules diffuse to the sensor surface, they are bound to their complimentary capture probes deposited on the surface. The negative charge exhibited by the DNA forces negative charge carriers in the substrate to move away from the surface. This causes an n-type depletion layer substrate to thicken and a p-type to thin. The depletion layer thickness can be measured by its capacitance using an LCR meter. This experiment is conducted using the ConVolt (constant voltage) approach. Nucleic acids are amplified by an on chip PCR (Polymerase Chain Reaction) system and then fed into the sensor. The low ionic solution strength will ensure that counter-ions do not affect the sensor measurements. The sensor surface contains capture probes that bind to the pathogen. The types of pathogens we"ll be detecting include salmonella, campylobacter and E.Coli DNA. They are held onto the sensor surface by the positively charged Poly-L-Lysine layer. The electrolyte is biased through a pseudo-reference electrode. Pseudo reference electrodes are usually made from metals such as Platinum or Silver. The problem associated with "floating" biasing electrodes is they cannot provide stable biasing potentials [2]. They drift due to surface charging effects and trapped charges on the surface. To eliminate this, a differential system consisting of 2 sensors

  7. Field report-Iidate village and Minamisoma city in Fukushima prefecture and Onagawa Nuclear Power Plants of Tohoku Electric Power

    International Nuclear Information System (INIS)

    Nakamura, Etsuji

    2011-01-01

    Although the accident of Fukushima Daiichi Nuclear Power Plants of Tokyo Electric Power Co., Inc. was foreseen to be an end with bringing the reactor a stable cooling condition and mitigating the release of radioactive materials, there would be various uncertainties and risks. The public was turned to 'nuclear power phase-out ' or 'nuclear power reduced' and Fukushima prefecture launched a restoration vision not dependent on nuclear power. In July editors joined the visit on Iidate village and Minamisoma city in Fukushima prefecture and Onagawa Nuclear Power Plants of Tohoku Electric Power Co., Inc., which was organized by Energy and Environmental Email Forum. This feature consisted of six articles based on interviews with respective mayor and discussion meeting of participants. Nuclear world would be responsible for the cooperation and support of Fukushima moving toward restoration with the same stance. Development of renewable energy utilizing damaged fields might be promoted. Respective district was tried to restore based on the trademark of 'Iidate-village in the world' or introduction of central facilities of decommission technology or medical care against radiation hazards. Onagawa Nuclear Power Plants of Tohoku Electric Power Co., Inc., which was 14.8 m above sea level, was not damaged so much by the tsunami of 13 m high and after the disaster many residents in a neighboring area came to the nuclear power plant office for the refuge. (T. Tanaka)

  8. Type test of Class 1E electric cables, field splices, and connections for nuclear power generating stations - 1975

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard provides direction for establishing type tests which may be used in qualifying Class 1E electric cables, field splices, and other connections for service in nuclear power generating stations. General guidelines for qualifications are given in IEEE Std 323-1974, Standard for Qualifying Class 1E Electric Equipment for Nuclear Power Generating Stations. Categories of cables covered are those used for power control and instrumentation services. Though intended primarily to pertain to cable for field installation, this guide may also be used for the qualification of internal wiring of manufactured devices

  9. Characterisation of radiation field for irradiation of biological samples at nuclear reactor-comparison of twin detector and recombination methods.

    Science.gov (United States)

    Golnik, N; Gryziński, M A; Kowalska, M; Meronka, K; Tulik, P

    2014-10-01

    Central Laboratory for Radiological Protection is involved in achieving scientific project on biological dosimetry. The project includes irradiation of blood samples in radiation fields of nuclear reactor. A simple facility for irradiation of biological samples has been prepared at horizontal channel of the nuclear reactor MARIA in NCBJ in Poland. The radiation field, composed mainly of gamma radiation and thermal neutrons, has been characterised in terms of tissue kerma using twin-detector technique and recombination chambers. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. The importance of nuclear quantum effects in spectral line broadening of optical spectra and electrostatic properties in aromatic chromophores

    Science.gov (United States)

    Law, Y. K.; Hassanali, A. A.

    2018-03-01

    In this work, we examine the importance of nuclear quantum effects on capturing the line broadening and vibronic structure of optical spectra. We determine the absorption spectra of three aromatic molecules indole, pyridine, and benzene using time dependent density functional theory with several molecular dynamics sampling protocols: force-field based empirical potentials, ab initio simulations, and finally path-integrals for the inclusion of nuclear quantum effects. We show that the absorption spectrum for all these chromophores are similarly broadened in the presence of nuclear quantum effects regardless of the presence of hydrogen bond donor or acceptor groups. We also show that simulations incorporating nuclear quantum effects are able to reproduce the heterogeneous broadening of the absorption spectra even with empirical force fields. The spectral broadening associated with nuclear quantum effects can be accounted for by the broadened distribution of chromophore size as revealed by a particle in the box model. We also highlight the role that nuclear quantum effects have on the underlying electronic structure of aromatic molecules as probed by various electrostatic properties.

  11. Basic radiation effects in nuclear power electronics technology

    International Nuclear Information System (INIS)

    Gover, J.E.; Srour, J.R.

    1985-05-01

    An overview is presented of the effects of radiation in microelectronics technology. The approach taken throughout these notes is to review microscopic phenomena associated with radiation effects and to show how these lead to macroscopic effects in semiconductor devices and integrated circuits. Bipolar integrated circuits technology is reviewed in Appendix A. Appendix B gives present and future applications of radiation-tolerant microelectronics in nuclear power applications as well as the radiation tolerance requirements of these applications

  12. Space charge field effect on light emitting from tetracene field-effect transistor under AC electric field

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Yuki; Kohn, Hideki; Manaka, Takaaki [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552 (Japan); Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.j [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552 (Japan)

    2009-11-30

    By applying square wave AC voltage to the Au source electrode of tetracene based field-effect transistor (FET), electroluminescence (EL) was obtained. The results suggest that electrons and holes were injected alternately from the source electrode and recombined each other, and lead to the EL. This type of EL was localized at the interface between the source electrode and tetracene, and enhanced periodically with two relaxation times in accordance with the applied AC voltage cycle. We modeled the carrier behavior in the FET and explained the decay of EL, taking into account the space charge field contribution. Finally, using an AC voltage superposed on DC bias voltage, it was shown that electron injection was prompted only by space charge field.

  13. A Simple Model of Fields Including the Strong or Nuclear Force and a Cosmological Speculation

    Directory of Open Access Journals (Sweden)

    David L. Spencer

    2016-10-01

    Full Text Available Reexamining the assumptions underlying the General Theory of Relativity and calling an object's gravitational field its inertia, and acceleration simply resistance to that inertia, yields a simple field model where the potential (kinetic energy of a particle at rest is its capacity to move itself when its inertial field becomes imbalanced. The model then attributes electromagnetic and strong forces to the effects of changes in basic particle shape. Following up on the model's assumption that the relative intensity of a particle's gravitational field is always inversely related to its perceived volume and assuming that all black holes spin, may create the possibility of a cosmic rebound where a final spinning black hole ends with a new Big Bang.

  14. Effect of the Fukushima nuclear accident on the risk perception of residents near a nuclear power plant in China.

    Science.gov (United States)

    Huang, Lei; Zhou, Ying; Han, Yuting; Hammitt, James K; Bi, Jun; Liu, Yang

    2013-12-03

    We assessed the influence of the Fukushima nuclear accident (FNA) on the Chinese public's attitude and acceptance of nuclear power plants in China. Two surveys (before and after the FNA) were administered to separate subsamples of residents near the Tianwan nuclear power plant in Lianyungang, China. A structural equation model was constructed to describe the public acceptance of nuclear power and four risk perception factors: knowledge, perceived risk, benefit, and trust. Regression analysis was conducted to estimate the relationship between acceptance of nuclear power and the risk perception factors while controlling for demographic variables. Meanwhile, we assessed the median public acceptable frequencies for three levels of nuclear events. The FNA had a significant impact on risk perception of the Chinese public, especially on the factor of perceived risk, which increased from limited risk to great risk. Public acceptance of nuclear power decreased significantly after the FNA. The most sensitive groups include females, those not in public service, those with lower income, and those living close to the Tianwan nuclear power plant. Fifty percent of the survey respondents considered it acceptable to have a nuclear anomaly no more than once in 50 y. For nuclear incidents and serious incidents, the frequencies are once in 100 y and 150 y, respectively. The change in risk perception and acceptance may be attributed to the FNA. Decreased acceptance of nuclear power after the FNA among the Chinese public creates additional obstacles to further development of nuclear power in China and require effective communication strategies.

  15. Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects

    Science.gov (United States)

    Niu, Z. M.; Liang, H. Z.

    2018-03-01

    Bayesian neural network (BNN) approach is employed to improve the nuclear mass predictions of various models. It is found that the noise error in the likelihood function plays an important role in the predictive performance of the BNN approach. By including a distribution for the noise error, an appropriate value can be found automatically in the sampling process, which optimizes the nuclear mass predictions. Furthermore, two quantities related to nuclear pairing and shell effects are added to the input layer in addition to the proton and mass numbers. As a result, the theoretical accuracies are significantly improved not only for nuclear masses but also for single-nucleon separation energies. Due to the inclusion of the shell effect, in the unknown region, the BNN approach predicts a similar shell-correction structure to that in the known region, e.g., the predictions of underestimation of nuclear mass around the magic numbers in the relativistic mean-field model. This manifests that better predictive performance can be achieved if more physical features are included in the BNN approach.

  16. Radiation effects in nuclear materials: Role of nuclear and electronic energy losses and their synergy

    Energy Technology Data Exchange (ETDEWEB)

    Thomé, Lionel [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, CNRS-IN2P3-Université Paris-Sud; Debelle, Aurelien [Universite Paris Sud, Orsay, France; Garrido, Frederico [Universite Paris Sud, Orsay, France; Mylonas, Stamatis [Universite Paris Sud, Orsay, France; Décamps, B. [Universite Paris Sud, Orsay, France; Bachelet, C. [Universite Paris Sud, Orsay, France; Sattonnay, G. [LEMHE/ICMMO, Université Paris-Sud, Bât. Orsay, France; Moll, Sandra [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Pellegrino, S. [French Atomic Energy Commission (CEA); Miro, S. [French Atomic Energy Commission (CEA); Trocellier, P. [French Atomic Energy Commission (CEA); Serruys, Y. [French Atomic Energy Commission (CEA); Velisa, G. [French Atomic Energy Commission (CEA); Grygiel, C. [CNRS, France; Monnet, I. [CIMAP, CEA-CNRS-Université de Caen, France; Toulemonde, Marcel [French Atomic Energy Commission (CEA), French National Centre for Scientific Research (CNRS)-ENSICAE; Simon, P. [CEMHTI, CNRS, France; Jagielski, Jacek [Institute for Electronic Materials Technology; Jozwik-Biala, Iwona [Institute for Electronic Materials Technology; Nowicki, Lech [Soltan Institute for Nuclear Studies, Swierk, Poland; Behar, M. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre,; Weber, William J [ORNL; Zhang, Yanwen [ORNL; Backman, Marie [University of Tennessee, Knoxville (UTK); Nordlund, Kai [University of Helsinki; Djurabekova, Flyura [University of Helsinki

    2013-01-01

    Ceramic oxides and carbides are promising matrices for the immobilization and/or transmutation of nuclear wastes, cladding materials for gas-cooled fission reactors and structural components for fusion reactors. For these applications there is a need of fundamental data concerning the behavior of nuclear ceramics upon irradiation. This article is focused on the presentation of a few remarkable examples regarding ion-beam modifications of nuclear ceramics with an emphasis on the mechanisms leading to damage creation and phase transformations. Results obtained by combining advanced techniques (Rutherford backscattering spectrometry and channeling, X-ray diffraction, transmission electron microscopy, Raman spectroscopy) concern irradiations in a broad energy range (from keV to GeV) with the aim of exploring both nuclear collision (Sn) and electronic excitation (Se) regimes. Finally, the daunting challenge of the demonstration of the existence of synergistic effects between Sn and Se is tackled by discussing the healing due to intense electronic energy deposition (SHIBIEC) and by reporting results recently obtained in dual-beam irradiation (DBI) experiments.

  17. The Hoyle state in nuclear lattice effective field theory

    Indian Academy of Sciences (India)

    2014-10-08

    Oct 8, 2014 ... We also analyse the extension of NLEFT to the regime of medium-mass nuclei, with emphasis on the determination of the ground-state energies of the nuclei 16O, 20Ne, 24Mg, and 28Si by Euclidean time projection. Finally, we discuss recent NLEFT results for the spectrum, electromagnetic properties, ...

  18. On the mixing model for calculating the temperature fields in nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Mikhin, V.I.; Zhukov, A.V.

    1985-01-01

    One of the alternatives of the mixing model applied for calculating temperature fields in nuclear reactor fuel assemblies,including the fuel assemblies with nonequilibrium energy-release in fuel element cross section, is consistently described. The equations for both constant and variable values of coolant density and heat capacity are obtained. The mixing model is based on a set of mass, heat and longitudinal momentum balance equations. This set is closed by the ratios connecting the unknown values for gaps between fuel elements with the averaged values for neighbouring channels. The ratios to close momentum and heat balance equations, explaining, in particular, the nonequivalent heat and mass, momentum and mass transfer coefficients, are suggested. The balance equations with variable coolant density and heat capacity are reduced to the form coinciding with those of the similar equations with constant values of these parameters. Application of one of the main ratios of the mixing model relating the coolant transverse overflow in the gaps between fuel elements to the averaged coolant rates (flow rates) in the neighbouring channels is mainly limited by the coolant stabilized flow in the fuel assemblies with regular symmetrical arrangement of elements. Mass transfer coefficients for these elements are experimentally determined. The ratio in the paper is also applicable for calculation of fuel assembly temperature fields with a small relative shift of elements

  19. SQUIDs vs. Faraday coils for ultlra-low field nuclear magnetic resonance: experimental and simulation comparison

    Energy Technology Data Exchange (ETDEWEB)

    Matlashov, Andrei N [Los Alamos National Laboratory; Espy, Michelle A [Los Alamos National Laboratory; Kraus, Robert H [Los Alamos National Laboratory; Sayukov, Igor M [Los Alamos National Laboratory; Schultz, Larry J [Los Alamos National Laboratory; Urbaitis, Algis V [Los Alamos National Laboratory; Volegov, Petr L [Los Alamos National Laboratory; Wurden, Caroline J [Los Alamos National Laboratory

    2010-01-01

    Nuclear magnetic resonance (NMR) methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. Recently it has become possible to perform NMR and MRI in ultra-low field (ULF) regime that requires measurement field strengths only of the order of 1 Gauss. These techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. Our group at LANL has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airports security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR/MRI technique. We describe an experimental and computer simulation comparison of the world's first multichannel SQUID based and Faraday coils based instruments that are capable of performing ULF MRI for liquids identification.

  20. Nuclear Dynamics of a Nearby Seyfert with NIRSpec Integral Field Spectroscopy

    Science.gov (United States)

    Bentz, Misty; Batiste, M.; Onken, C.; Roberts, C.; Valluri, M.; Vasiliev, E.

    2017-11-01

    Integral field spectroscopy has become an invaluable tool for investigating the physical conditions and dynamics deep inside galaxy nuclei. The integral field spectrograph on JWST provides some crucial advantages over those on AO- assisted ground-based telescopes like Gemini and VLT. In particular, JWST will provide a stable and diffraction limited point spread function (PSF) with no seeing halo, and the background will be significantly reduced resulting in shorter exposure times to achieve a benchmark signal-to-noise ratio, even for late-type galaxies that have shallower central cusps and fainter central surface brightnesses, and for which the exposure times required from the ground may be prohibitive. We are particularly interested in comparing black hole masses derived from the modeling of nuclear stellar dynamics to masses derived from reverberation mapping in the same galaxies. With this Early Release Science proposal, we request a small investment of time to clearly demonstrate JWST's capabilities in spatial and spectral resolution relative to the stringent technical requirements for direct black hole mass measurements. The technically demanding nature of the requisite measurements will allow us to explore the limits of what is possible to achieve with the NIRSpec IFU, thus providing technical guidance for a wide range of studies that seek to probe the physics of black hole feeding and feedback and their links to galaxy and black hole co-evolution.

  1. Comparative analysis of publications on nuclear field in the world, Ukraine and in the institute for nuclear research of the national academy of sciences of Ukraine

    CERN Document Server

    Trofimenko, A P; Lipska, A Y

    2003-01-01

    Comparative analysis of publications in the world, in Ukraine and in the Institute for Nuclear Research of NAS of Ukraine (INR) in nuclear physics and other directions of INR research was performed. Conclusions about the intensity of research, contribution of Ukraine in this research and the INR role in it are presented. It is shown that 30 % of Ukrainian publications in nuclear physics, and about 8 % of them in other fields belong to the INR. Part of Ukrainian authors who publish their works in Ukraine and abroad, as well as the part of foreign authors publishing in Ukraine is shown. Distribution of the INR publications among 16 countries is indicated. Ths mentioned information can be used for profound study of research in Ukraine and INR.

  2. Effective interaction: From nuclear reactions to neutron stars

    Indian Academy of Sciences (India)

    2014-04-30

    Apr 30, 2014 ... The high density behaviour of symmetric and asymmetric nuclear matter satisfies the constraints from the observed flow data of heavy-ion collisions. The neutron star properties studied using -equilibrated neutron star matter obtained from this effective interaction reconcile with the recent observations of ...

  3. Effective field theory approaches for tensor potentials

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Maximilian

    2016-11-14

    Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev

  4. The effect of inflation on nuclear energy

    International Nuclear Information System (INIS)

    Schofield, L.J.

    A sophisticated analysis is given of the effects of inflation on the respective economics of CANDU power plants versus fossil fuel (especially coal-fired) power plants in Canada. Coal price escalation of 8% per annum or greater significantly favors CANDU plants. At 5%, especially with double digit inflation of capital costs, the competitive advantage of CANDU becomes small. (E.C.B.)

  5. Small collision systems: Theory overview on cold nuclear matter effects

    Directory of Open Access Journals (Sweden)

    Armesto Néstor

    2018-01-01

    Full Text Available Many observables measured at the Relativistic Heavy Ion Collider and the Large Hadron Collider show a smooth transition between proton-proton and protonnucleus collisions (small systems, and nucleus-nucleus collisions (large systems, when represented versus some variable like the multiplicity in the event. In this contribution I review some of the physics mechanisms, named cold nuclear matter effects, that may lead to a collective-like behaviour in small systems beyond the macroscopic description provided by relativistic hydrodynamics. I focus on the nuclear modification of parton densities, single inclusive particle production and correlations.

  6. Small collision systems: Theory overview on cold nuclear matter effects

    Science.gov (United States)

    Armesto, Néstor

    2018-02-01

    Many observables measured at the Relativistic Heavy Ion Collider and the Large Hadron Collider show a smooth transition between proton-proton and protonnucleus collisions (small systems), and nucleus-nucleus collisions (large systems), when represented versus some variable like the multiplicity in the event. In this contribution I review some of the physics mechanisms, named cold nuclear matter effects, that may lead to a collective-like behaviour in small systems beyond the macroscopic description provided by relativistic hydrodynamics. I focus on the nuclear modification of parton densities, single inclusive particle production and correlations.

  7. Bis-gadolinium complexes for solid effect and cross effect dynamic nuclear polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Monu; Corzilius, Bjoern [Goethe-Universitaet Frankfurt am Main, Institut fuer Physikalische und Theoretische Chemie, Institut fuer Biophysikalische Chemie und Biomolekulares Magnetresonanzzentrum (BMRZ) (Germany); Qi, Mian; Godt, Adelheid [Fakultaet fuer Chemie und Centrum fuer Molekulare Materialien (CM2), Universitaet Bielefeld (Germany)

    2017-04-03

    High-spin complexes act as polarizing agents (PAs) for dynamic nuclear polarization (DNP) in solid-state NMR spectroscopy and feature promising aspects towards biomolecular DNP. We present a study on bis(Gd-chelate)s which enable cross effect (CE) DNP owing to spatial confinement of two dipolar-coupled electron spins. Their well-defined Gd..Gd distances in the range of 1.2-3.4 nm allowed us to elucidate the Gd..Gd distance dependence of the DNP mechanism and NMR signal enhancement. We found that Gd..Gd distances above 2.1 nm result in solid effect DNP while distances between 1.2 and 2.1 nm enable CE for {sup 1}H, {sup 13}C, and {sup 15}N nuclear spins. We compare 263 GHz electron paramagnetic resonance (EPR) spectra with the obtained DNP field profiles and discuss possible CE matching conditions within the high-spin system and the influence of dipolar broadening of the EPR signal. Our findings foster the understanding of the CE mechanism and the design of high-spin PAs for specific applications of DNP. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. 76 FR 65753 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

    Science.gov (United States)

    2011-10-24

    ... Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; extension of... the Effectiveness of Maintenance at Nuclear Power Plants,'' which provides methods that are acceptable... the Effectiveness of Maintenance at Nuclear Power Plants,'' of Title 10 of the Code of Federal...

  9. 77 FR 30030 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

    Science.gov (United States)

    2012-05-21

    ... Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance. SUMMARY... (RG) 1.160, ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants.'' This guide... Monitoring the Effectiveness of Maintenance at Nuclear Power Plants,'' which provides methods that are...

  10. Spectroradiometric inspection of nuclear pollution in the atmosphere based on photochemical effects

    Science.gov (United States)

    Chistyakova, Liliya K.; Kopytin, Yurii D.

    2005-07-01

    Results of theoretical and experimental investigations of remote monitoring methods based on secondary radioactivity effects including anomalous gaseous fields and their emissions in optical and microwave ranges are discussed. The feasibility of remote registration of secondary emission and absorption spectra from weakly ionized regions in the atmosphere above nuclear power engineering objects, dumps, and tailings dumps of nuclear wastes are examined. Based on the literature data on the excess concentrations of aerosol and gaseous components produced in radiation fields above their background levels, the diffusion parameters of radioactive emissions in the atmosphere are evaluated. The methods under consideration are shown to be promising for ecological monitoring of atmospheric radioactive pollution. High sensitivities of these methods enable pollutants to be detected at long distances. Simultaneous use of passive and active methods gives additional information on the parameters of radioactive pollution.

  11. Effective field theory for halo nuclei

    International Nuclear Information System (INIS)

    Hagen, Philipp Robert

    2014-01-01

    We investigate properties of two- and three-body halo systems using effective field theory. If the two-particle scattering length a in such a system is large compared to the typical range of the interaction R, low-energy observables in the strong and the electromagnetic sector can be calculated in halo EFT in a controlled expansion in R/ vertical stroke a vertical stroke. Here we focus on universal properties and stay at leading order in the expansion. Motivated by the existence of the P-wave halo nucleus 6 He, we first set up an EFT framework for a general three-body system with resonant two-particle P-wave interactions. Based on a Lagrangian description, we identify the area in the effective range parameter space where the two-particle sector of our model is renormalizable. However, we argue that for such parameters, there are two two-body bound states: a physical one and an additional deeper-bound and non-normalizable state that limits the range of applicability of our theory. With regard to the three-body sector, we then classify all angular-momentum and parity channels that display asymptotic discrete scale invariance and thus require renormalization via a cut-off dependent three-body force. In the unitary limit an Efimov effect occurs. However, this effect is purely mathematical, since, due to causality bounds, the unitary limit for P-wave interactions can not be realized in nature. Away from the unitary limit, the three-body binding energy spectrum displays an approximate Efimov effect but lies below the unphysical, deep two-body bound state and is thus unphysical. Finally, we discuss possible modifications in our halo EFT approach with P-wave interactions that might provide a suitable way to describe physical three-body bound states. We then set up a halo EFT formalism for two-neutron halo nuclei with resonant two-particle S-wave interactions. Introducing external currents via minimal coupling, we calculate observables and universal correlations for such

  12. Seven principle of highly effective Nuclear Energy Programs

    International Nuclear Information System (INIS)

    Ferguson, Ch.D.; Reed, Ph.D.

    2010-01-01

    This paper presents seven principles that demand consideration for any country using a nuclear power program or wanting to acquire such a program. These principles are assessing the overall energy system, determining effective use of financial resources for energy development, ensuring high safety standards, implementing best security practices, preventing the spread of nuclear weapons, managing radioactive waste in a safe and secure manner, and enacting a legal framework that encompasses the other principle areas. The paper applies management methods that underscore development of strong independent national capabilities integrated within an interdependent international system. The paper discusses the individual responsibilities of states in all seven principles and offers recommendations for how states can benefit from greater international cooperation in nuclear energy development

  13. The effective action approach applied to nuclear matter (1)

    International Nuclear Information System (INIS)

    Tran Huu Phat; Nguyen Tuan Anh.

    1996-11-01

    Within the framework of the Walecka model (QHD-I) the application of the Cornwall-Jackiw-Tomboulis (CJT) effective action to nuclear matter is presented. The main feature is the treating of the meson condensates for the system of finite nuclear density. The system of couple Schwinger-Dyson (SD) equations is derived. It is shown that SD equations for sigma-omega mixings are absent in this formalism. Instead, the energy density of the nuclear ground state does explicitly contain the contributions from the ring diagrams, amongst others. In the bare-vertex approximation, the expression for energy density is written down for numerical computation in the next paper. (author). 14 refs, 3 figs

  14. Effects of electronic and nuclear interactions in SiC

    Energy Technology Data Exchange (ETDEWEB)

    Audren, A. [CEA, DSM, IRAMIS, Service Photons Atomes et Molecules (SPAM), Laboratoire Francis Perrin, Bat. 522, P. 212B, CEA Saclay, 91191 Gif sur Yvette (France); Monnet, I. [Centre de Recherche sur les Materiaux, les Ions et la Photonique (CIMAP), CEA-CNRS-ENSICAEN, BP 5133, Bd Henri Becquerel, F-14070 Caen cedex 5 (France); Gosset, D. [CEA, DEN, DMN, SRMA, LA2M, 91191 Gif/Yvette cedex (France); Leconte, Y. [CEA, DSM, IRAMIS, Service Photons Atomes et Molecules (SPAM), Laboratoire Francis Perrin, Bat. 522, P. 212B, CEA Saclay, 91191 Gif sur Yvette (France)], E-mail: Yann.leconte@cea.fr; Portier, X. [Centre de Recherche sur les Materiaux, les Ions et la Photonique (CIMAP), CEA-CNRS-ENSICAEN, BP 5133, Bd Henri Becquerel, F-14070 Caen cedex 5 (France); Thome, L.; Garrido, F. [Centre de Spectroscopie Nucleaire et de Spectroscopie de Masse (CSNSM), CNRS-IN2P3-Universite-Paris-Sud, F-91405 Orsay-Campus (France); Benyagoub, A.; Levalois, M. [Centre de Recherche sur les Materiaux, les Ions et la Photonique (CIMAP), CEA-CNRS-ENSICAEN, BP 5133, Bd Henri Becquerel, F-14070 Caen cedex 5 (France); Herlin-Boime, N.; Reynaud, C. [CEA, DSM, IRAMIS, Service Photons Atomes et Molecules (SPAM), Laboratoire Francis Perrin, Bat. 522, P. 212B, CEA Saclay, 91191 Gif sur Yvette (France)

    2009-03-15

    In this study, we performed irradiation experiments on nanostructured 3C-SiC samples, with 95 MeV Xe ions at room temperature. This energy permits the observation of the combined electronic and nuclear interactions with matter. The grazing incidence X-ray diffraction results do not reveal a complete amorphization, despite value of displacement per atom overcoming the total amorphization threshold. This may be attributed to competing effects between nuclear and electronic energy loss in this material since a total amorphization induced by nuclear interactions was found after low energy ion irradiation (4 MeV Au). Moreover, electronic interactions created by high energy ion irradiations induce no disorder in single crystalline 6H-SiC. But in samples previously disordered by low energy ion implantation (700 keV I), the electronic interactions generate a strong defects recovery.

  15. Evaluation of poly(vinylpyrrolidone) and collagen by Low Field Nuclear Magnetic Resonance Spectroscopy; Avaliacao da polivinilpirrolidona e do colageno por ressonancia magnetica nuclear de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Paula de M.; Tavares, Maria I.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano]. E-mail: pmcosta@ima.ufrj.br

    2005-07-01

    Blends of natural and synthetic polymers represent a new class of materials with better mechanical properties and biocompatibility than those of the single components. Collagen and poly(vinylpyrrolidone) are well known for their important biological properties. The blending of collagen with poly(vinylpyrrolidone) makes it possible to obtain new materials in which strong interactions between the synthetic and biological components occur. Do to the excellent biocompatibility of these polymers, this blend has been much studied intending biomedical applications. And a one technique that can provide important information on molecular mobility, compatibility and even evaluate the interactions that can occur with these polymers is the Low Field Nuclear Magnetic Resonance Spectroscopy. Thus, the purpose of this work is to evaluate collagen and poly(vinylpyrrolidone) by Low Field Nuclear Magnetic Resonance Spectroscopy. From the values of relaxation times obtained, we can conclude that these materials have different interactions, and different mobility domains, confirming the heterogeneity and complexity of these materials. (author)

  16. The longest illness. Effects of nuclear war in children

    International Nuclear Information System (INIS)

    Kappy, M.S.

    1984-01-01

    The destruction of civilization that would follow a nuclear war would render any disaster ever recorded insignificant. Millions of people would perish during the first few hours, and many more would die in the months to come. Survival would exist only in the strictest sense of the word, since societal disorganization, famine, drought, darkness, and nuclear winter would envelope the earth. The comparative frailty of children and their dependence on adults would render them most susceptible to the acute effects of a nuclear holocaust. Furthermore, studies of the Hiroshima and Nagasaki, Japan bombings showed a disproportionate propensity for children to experience leukemias and other cancers years after the bombings. There were also great increases in perinatal deaths and cases of microcephaly and retardation in children exposed in utero to the bombs. In the event that there are future generations after a nuclear war, the issue of heritable genetic effects will become important. Suggestions of permanent genetic damage are emerging from the Hiroshima and Nagasaki studies. By comparison, the genetic effects of modern weaponry will be incalculable

  17. The longest illness. Effects of nuclear war in children

    Energy Technology Data Exchange (ETDEWEB)

    Kappy, M.S.

    1984-03-01

    The destruction of civilization that would follow a nuclear war would render any disaster ever recorded insignificant. Millions of people would perish during the first few hours, and many more would die in the months to come. Survival would exist only in the strictest sense of the word, since societal disorganization, famine, drought, darkness, and nuclear winter would envelope the earth. The comparative frailty of children and their dependence on adults would render them most susceptible to the acute effects of a nuclear holocaust. Furthermore, studies of the Hiroshima and Nagasaki, Japan bombings showed a disproportionate propensity for children to experience leukemias and other cancers years after the bombings. There were also great increases in perinatal deaths and cases of microcephaly and retardation in children exposed in utero to the bombs. In the event that there are future generations after a nuclear war, the issue of heritable genetic effects will become important. Suggestions of permanent genetic damage are emerging from the Hiroshima and Nagasaki studies. By comparison, the genetic effects of modern weaponry will be incalculable.

  18. Situation of the education in the nuclear field: networks of training and paper of the universities

    International Nuclear Information System (INIS)

    Minguez, E.

    2008-01-01

    In this work the education networks in nuclear engineering around Europe American and Asia are presented, focusing in the main role of universities in collaboration with the nuclear industry. (Author) 5 refs

  19. Nuclear Effects in Neutrino Interactions at Low Momentum Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Miltenberger, Ethan Ryan [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-05-01

    This is a study to identify predicted effects of the carbon nucleus environment on neutrino - nucleus interactions with low momentum transfer. A large sample of neutrino interaction data collected by the MINERvA experiment is analyzed to show the distribution of charged hadron energy in a region with low momentum transfer. These distributions reveal a major discrepancy between the data and a popular interaction model with only the simplest Fermi gas nuclear effects. Detailed analysis of systematic uncertainties due to energy scale and resolution can account for only a little of the discrepancy. Two additional nuclear model effects, a suppression/screening effect (RPA), and the addition of a meson exchange current process (MEC), are shown to improve the description of the data.

  20. Microstructural characterization of radiation effects in nuclear materials

    CERN Document Server

    2017-01-01

    Microstructural Characterization of Radiation Effects in Nuclear Materials provides an overview into experimental techniques that can be used to examine those effects (both neutron and charged particle) and can be used by researchers, technicians or students as a tool to introduce them to the various techniques. The need to examine the effect of radiation on materials is becoming increasingly important as nuclear energy is emerging as a growing source of renewable energy. The book opens with a discussion of why it is important to study the effects of radiation on materials and looks at current and future reactor designs and the various constraints faced by materials as a result of those designs. The book also includes an overview of the radiation damage mechanisms. The next section explores the various methods for characterizing damage including transmission electron microscopy, scanning transmission electron microscopy, analytical electron microscopy, electron backscatter diffraction, atom probe tomography,...