WorldWideScience

Sample records for nuclear exosome component

  1. Targeting the nuclear RNA exosome

    DEFF Research Database (Denmark)

    Meola, Nicola; Jensen, Torben Heick

    2017-01-01

    Centrally positioned in nuclear RNA metabolism, the exosome deals with virtually all transcript types. This 3'-5' exo- and endo-nucleolytic degradation machine is guided to its RNA targets by adaptor proteins that enable substrate recognition. Recently, the discovery of the 'Poly(A) tail exosome...

  2. Structure of the nuclear exosome component Rrp6p reveals an interplay between the active site and the HRDC domain

    DEFF Research Database (Denmark)

    Midtgaard, Søren Fuglsang; Assenholt, Jannie; Jonstrup, Anette Thyssen

    2006-01-01

    The multisubunit eukaryotic exosome is an essential RNA processing and degradation machine. In its nuclear form, the exosome associates with the auxiliary factor Rrp6p, which participates in both RNA processing and degradation reactions. The crystal structure of Saccharomyces cerevisiae Rrp6p...

  3. The nuclear exosome is active and important during budding yeast meiosis.

    Directory of Open Access Journals (Sweden)

    Stephen Frenk

    Full Text Available Nuclear RNA degradation pathways are highly conserved across eukaryotes and play important roles in RNA quality control. Key substrates for exosomal degradation include aberrant functional RNAs and cryptic unstable transcripts (CUTs. It has recently been reported that the nuclear exosome is inactivated during meiosis in budding yeast through degradation of the subunit Rrp6, leading to the stabilisation of a subset of meiotic unannotated transcripts (MUTs of unknown function. We have analysed the activity of the nuclear exosome during meiosis by deletion of TRF4, which encodes a key component of the exosome targeting complex TRAMP. We find that TRAMP mutants produce high levels of CUTs during meiosis that are undetectable in wild-type cells, showing that the nuclear exosome remains functional for CUT degradation, and we further report that the meiotic exosome complex contains Rrp6. Indeed Rrp6 over-expression is insufficient to suppress MUT transcripts, showing that the reduced amount of Rrp6 in meiotic cells does not directly cause MUT accumulation. Lack of TRAMP activity stabilises ∼ 1600 CUTs in meiotic cells, which occupy 40% of the binding capacity of the nuclear cap binding complex (CBC. CBC mutants display defects in the formation of meiotic double strand breaks (DSBs, and we see similar defects in TRAMP mutants, suggesting that a key function of the nuclear exosome is to prevent saturation of the CBC complex by CUTs. Together, our results show that the nuclear exosome remains active in meiosis and has an important role in facilitating meiotic recombination.

  4. The nuclear exosome is active and important during budding yeast meiosis.

    Science.gov (United States)

    Frenk, Stephen; Oxley, David; Houseley, Jonathan

    2014-01-01

    Nuclear RNA degradation pathways are highly conserved across eukaryotes and play important roles in RNA quality control. Key substrates for exosomal degradation include aberrant functional RNAs and cryptic unstable transcripts (CUTs). It has recently been reported that the nuclear exosome is inactivated during meiosis in budding yeast through degradation of the subunit Rrp6, leading to the stabilisation of a subset of meiotic unannotated transcripts (MUTs) of unknown function. We have analysed the activity of the nuclear exosome during meiosis by deletion of TRF4, which encodes a key component of the exosome targeting complex TRAMP. We find that TRAMP mutants produce high levels of CUTs during meiosis that are undetectable in wild-type cells, showing that the nuclear exosome remains functional for CUT degradation, and we further report that the meiotic exosome complex contains Rrp6. Indeed Rrp6 over-expression is insufficient to suppress MUT transcripts, showing that the reduced amount of Rrp6 in meiotic cells does not directly cause MUT accumulation. Lack of TRAMP activity stabilises ∼ 1600 CUTs in meiotic cells, which occupy 40% of the binding capacity of the nuclear cap binding complex (CBC). CBC mutants display defects in the formation of meiotic double strand breaks (DSBs), and we see similar defects in TRAMP mutants, suggesting that a key function of the nuclear exosome is to prevent saturation of the CBC complex by CUTs. Together, our results show that the nuclear exosome remains active in meiosis and has an important role in facilitating meiotic recombination.

  5. Interaction profiling identifies the human nuclear exosome targeting complex

    DEFF Research Database (Denmark)

    Lubas, Michal Szymon; Christensen, Marianne Spangsberg; Kristiansen, Maiken Søndergaard

    2011-01-01

    of a similar activator(s) in humans remains elusive. By establishing an interaction network of the human nuclear exosome, we identify the trimeric Nuclear Exosome Targeting (NEXT) complex, containing hMTR4, the Zn-knuckle protein ZCCHC8, and the putative RNA binding protein RBM7. ZCCHC8 and RBM7 are excluded...... to nucleoli. Our results suggest that human nuclear exosome degradation pathways comprise modules of spatially organized cofactors that diverge from the yeast model....

  6. Identification of a Nuclear Exosome Decay Pathway for Processed Transcripts

    DEFF Research Database (Denmark)

    Meola, Nicola; Domanski, Michal; Karadoulama, Evdoxia

    2016-01-01

    , the Zn-finger protein ZCCHC8, and the RNA-binding factor RBM7. NEXT primarily targets early and unprocessed transcripts, which demands a rationale for how the nuclear exosome recognizes processed RNAs. Here, we describe the poly(A) tail exosome targeting (PAXT) connection, which comprises the ZFC3H1 Zn...

  7. Differential Distribution of Exosome Subunits at the Nuclear Lamina and in Cytoplasmic FociD⃞V⃞

    OpenAIRE

    Amy C Graham; Kiss, Daniel L.; Andrulis, Erik D.

    2006-01-01

    The exosome complex plays important roles in RNA processing and turnover. Despite significant mechanistic insight into exosome function, we still lack a basic understanding of the subcellular locales where exosome complex biogenesis and function occurs. Here, we employ a panel of Drosophila S2 stable cell lines expressing epitope-tagged exosome subunits to examine the subcellular distribution of exosome complex components. We show that tagged Drosophila exosome subunits incorporate into compl...

  8. Nuclear RNA surveillance: role of TRAMP in controlling exosome specificity.

    Science.gov (United States)

    Schmidt, Karyn; Butler, J Scott

    2013-01-01

    The advent of high-throughput sequencing technologies has revealed that pervasive transcription generates RNAs from nearly all regions of eukaryotic genomes. Normally, these transcripts undergo rapid degradation by a nuclear RNA surveillance system primarily featuring the RNA exosome. This multimeric protein complex plays a critical role in the efficient turnover and processing of a vast array of RNAs in the nucleus. Despite its initial discovery over a decade ago, important questions remain concerning the mechanisms that recruit and activate the nuclear exosome. Specificity and modulation of exosome activity requires additional protein cofactors, including the conserved TRAMP polyadenylation complex. Recent studies suggest that helicase and RNA-binding subunits of TRAMP direct RNA substrates for polyadenylation, which enhances their degradation by Dis3/Rrp44 and Rrp6, the two exosome-associated ribonucleases. These findings indicate that the exosome and TRAMP have evolved highly flexible functions that allow recognition of a wide range of RNA substrates. This flexibility provides the nuclear RNA surveillance system with the ability to regulate the levels of a broad range of coding and noncoding RNAs, which results in profound effects on gene expression, cellular development, gene silencing, and heterochromatin formation. This review summarizes recent findings on the nuclear RNA surveillance complexes, and speculates upon possible mechanisms for TRAMP-mediated substrate recognition and exosome activation.

  9. Nuclear RNA Surveillance: Role of TRAMP in Controlling Exosome Specificity

    OpenAIRE

    Schmidt, Karyn; Butler, J. Scott

    2013-01-01

    The advent of high throughput sequencing technologies has revealed that pervasive transcription generates RNAs from nearly all regions of eukaryotic genomes. Normally these transcripts undergo rapid degradation by a nuclear RNA surveillance system primarily featuring the RNA exosome. This multimeric protein complex plays a critical role in the efficient turnover and processing of a vast array of RNAs in the nucleus. Despite its initial discovery over a decade ago, important questions remain c...

  10. Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling.

    Science.gov (United States)

    Anderson, Johnathon D; Johansson, Henrik J; Graham, Calvin S; Vesterlund, Mattias; Pham, Missy T; Bramlett, Charles S; Montgomery, Elizabeth N; Mellema, Matt S; Bardini, Renee L; Contreras, Zelenia; Hoon, Madeline; Bauer, Gerhard; Fink, Kyle D; Fury, Brian; Hendrix, Kyle J; Chedin, Frederic; El-Andaloussi, Samir; Hwang, Billie; Mulligan, Michael S; Lehtiö, Janne; Nolta, Jan A

    2016-03-01

    Mesenchymal stem cells (MSC) are known to facilitate healing of ischemic tissue related diseases through proangiogenic secretory proteins. Recent studies further show that MSC derived exosomes function as paracrine effectors of angiogenesis, however, the identity of which components of the exosome proteome responsible for this effect remains elusive. To address this we used high-resolution isoelectric focusing coupled liquid chromatography tandem mass spectrometry, an unbiased high throughput proteomics approach to comprehensively characterize the proteinaceous contents of MSCs and MSC derived exosomes. We probed the proteome of MSCs and MSC derived exosomes from cells cultured under expansion conditions and under ischemic tissue simulated conditions to elucidate key angiogenic paracrine effectors present and potentially differentially expressed in these conditions. In total, 6,342 proteins were identified in MSCs and 1,927 proteins in MSC derived exosomes, representing to our knowledge the first time these proteomes have been probed comprehensively. Multilayered analyses identified several putative paracrine effectors of angiogenesis present in MSC exosomes and increased in expression in MSCs exposed to ischemic tissue-simulated conditions; these include platelet derived growth factor, epidermal growth factor, fibroblast growth factor, and most notably nuclear factor-kappaB (NFkB) signaling pathway proteins. NFkB signaling was identified as a key mediator of MSC exosome induced angiogenesis in endothelial cells by functional in vitro validation using a specific inhibitor. Collectively, the results of our proteomic analysis show that MSC derived exosomes contain a robust profile of angiogenic paracrine effectors, which have potential for the treatment of ischemic tissue-related diseases.

  11. CD109 is a component of exosome secreted from cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakakura, Hiroki [Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya (Japan); Mii, Shinji [Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Hagiwara, Sumitaka [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya (Japan); Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya (Japan); Kato, Takuya [Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yamamoto, Noriyuki; Hibi, Hideharu [Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya (Japan); Takahashi, Masahide, E-mail: mtakaha@med.nagoya-u.ac.jp [Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Murakumo, Yoshiki, E-mail: murakumo@med.kitasato-u.ac.jp [Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa (Japan)

    2016-01-22

    Exosomes are 50–100-nm-diameter membrane vesicles released from various types of cells. Exosomes retain proteins, mRNAs and miRNAs, which can be transported to surrounding cells. CD109 is a glycosylphosphatidylinositol-anchored glycoprotein, and is released from the cell surface to the culture medium in vitro. Recently, it was reported that secreted CD109 from the cell surface downregulates transforming growth factor-β signaling in human keratinocytes. In this study, we revealed that CD109 is a component of the exosome in conditioned medium. FLAG-tagged human CD109 (FLAG-CD109) in conditioned medium secreted from HEK293 cells expressing FLAG-CD109 (293/FLAG-CD109) was immunoprecipitated with anti-FLAG affinity gel, and the co-precipitated proteins were analyzed by mass spectrometry and western blotting. Exosomal proteins were associated with CD109. We revealed the presence of CD109 in exosome fractions from conditioned medium of 293/FLAG-CD109. Moreover, the localization of CD109 in the exosome was demonstrated using immuno-electron microscopy. When we used HEK293 cells expressing FLAG-tagged truncated CD109, which does not contain the C-terminal region, the association of truncated CD109 with exosomes was not detected in conditioned medium. These findings indicate that CD109 is an exosomal protein and that the C-terminal region of CD109 is required for its presence in the exosome. - Highlights: • CD109 is an exosomal protein. • The C-terminal region of CD109 is required for its presence in the exosome. • Part of the secreted CD109 is present in the exosome-free fraction in the conditioned medium.

  12. CD109 is a component of exosome secreted from cultured cells.

    Science.gov (United States)

    Sakakura, Hiroki; Mii, Shinji; Hagiwara, Sumitaka; Kato, Takuya; Yamamoto, Noriyuki; Hibi, Hideharu; Takahashi, Masahide; Murakumo, Yoshiki

    2016-01-22

    Exosomes are 50-100-nm-diameter membrane vesicles released from various types of cells. Exosomes retain proteins, mRNAs and miRNAs, which can be transported to surrounding cells. CD109 is a glycosylphosphatidylinositol-anchored glycoprotein, and is released from the cell surface to the culture medium in vitro. Recently, it was reported that secreted CD109 from the cell surface downregulates transforming growth factor-β signaling in human keratinocytes. In this study, we revealed that CD109 is a component of the exosome in conditioned medium. FLAG-tagged human CD109 (FLAG-CD109) in conditioned medium secreted from HEK293 cells expressing FLAG-CD109 (293/FLAG-CD109) was immunoprecipitated with anti-FLAG affinity gel, and the co-precipitated proteins were analyzed by mass spectrometry and western blotting. Exosomal proteins were associated with CD109. We revealed the presence of CD109 in exosome fractions from conditioned medium of 293/FLAG-CD109. Moreover, the localization of CD109 in the exosome was demonstrated using immuno-electron microscopy. When we used HEK293 cells expressing FLAG-tagged truncated CD109, which does not contain the C-terminal region, the association of truncated CD109 with exosomes was not detected in conditioned medium. These findings indicate that CD109 is an exosomal protein and that the C-terminal region of CD109 is required for its presence in the exosome.

  13. The human cap-binding complex is functionally connected to the nuclear RNA exosome

    DEFF Research Database (Denmark)

    Andersen, Peter Refsing; Domanski, Michal; Kristiansen, Maiken S

    2013-01-01

    of combinatorial depletion of CBCN and exosome components underscore the functional relevance of CBC-exosome bridging at the level of target RNA. Specifically, CBCA suppresses read-through products of several RNA families by promoting their transcriptional termination. We suggest that the RNP 5' cap links...

  14. The CCR4-NOT complex physically and functionally interacts with TRAMP and the nuclear exosome.

    Directory of Open Access Journals (Sweden)

    Nowel Azzouz

    Full Text Available BACKGROUND: Ccr4-Not is a highly conserved multi-protein complex consisting in yeast of 9 subunits, including Not5 and the major yeast deadenylase Ccr4. It has been connected functionally in the nucleus to transcription by RNA polymerase II and in the cytoplasm to mRNA degradation. However, there has been no evidence so far that this complex is important for RNA degradation in the nucleus. METHODOLOGY/PRINCIPAL FINDINGS: In this work we point to a new role for the Ccr4-Not complex in nuclear RNA metabolism. We determine the importance of the Ccr4-Not complex for the levels of non-coding nuclear RNAs, such as mis-processed and polyadenylated snoRNAs, whose turnover depends upon the nuclear exosome and TRAMP. Consistently, mutation of both the Ccr4-Not complex and the nuclear exosome results in synthetic slow growth phenotypes. We demonstrate physical interactions between the Ccr4-Not complex and the exosome. First, Not5 co-purifies with the exosome. Second, several exosome subunits co-purify with the Ccr4-Not complex. Third, the Ccr4-Not complex is important for the integrity of large exosome-containing complexes. Finally, we reveal a connection between the Ccr4-Not complex and TRAMP through the association of the Mtr4 helicase with the Ccr4-Not complex and the importance of specific subunits of Ccr4-Not for the association of Mtr4 with the nuclear exosome subunit Rrp6. CONCLUSIONS/SIGNIFICANCE: We propose a model in which the Ccr4-Not complex may provide a platform contributing to dynamic interactions between the nuclear exosome and its co-factor TRAMP. Our findings connect for the first time the different players involved in nuclear and cytoplasmic RNA degradation.

  15. Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein.

    Science.gov (United States)

    Looze, Christopher; Yui, David; Leung, Lester; Ingham, Matthew; Kaler, Maryann; Yao, Xianglan; Wu, Wells W; Shen, Rong-Fong; Daniels, Mathew P; Levine, Stewart J

    2009-01-16

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-gamma (PPARgamma), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPARgamma as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  16. A quantitative 14-3-3 interaction screen connects the nuclear exosome targeting complex to the DNA damage response

    DEFF Research Database (Denmark)

    Blasius, Melanie; Wagner, Sebastian A; Choudhary, Chuna Ram

    2014-01-01

    RNA metabolism is altered following DNA damage, but the underlying mechanisms are not well understood. Through a 14-3-3 interaction screen for DNA damage-induced protein interactions in human cells, we identified protein complexes connected to RNA biology. These include the nuclear exosome...

  17. SUPERKILLER Complex Components Are Required for the RNA Exosome-Mediated Control of Cuticular Wax Biosynthesis in Arabidopsis Inflorescence Stems.

    Science.gov (United States)

    Zhao, Lifang; Kunst, Ljerka

    2016-06-01

    ECERIFERUM7 (CER7)/AtRRP45B core subunit of the exosome, the main cellular 3'-to-5' exoribonuclease, is a positive regulator of cuticular wax biosynthesis in Arabidopsis (Arabidopsis thaliana) inflorescence stems. CER7-dependent exosome activity determines stem wax load by controlling transcript levels of the wax-related gene CER3 Characterization of the second-site suppressors of the cer7 mutant revealed that small interfering RNAs (siRNAs) are direct effectors of CER3 expression. To explore the relationship between the exosome and posttranscriptional gene silencing (PTGS) in regulating CER3 transcript levels, we investigated two additional suppressor mutants, wax restorer1 (war1) and war7. We show that WAR1 and WAR7 encode Arabidopsis SUPERKILLER3 (AtSKI3) and AtSKI2, respectively, components of the SKI complex that associates with the exosome during cytoplasmic 3'-to-5' RNA degradation, and that CER7-dependent regulation of wax biosynthesis also requires participation of AtSKI8. Our study further reveals that it is the impairment of the exosome-mediated 3'-5' decay of CER3 transcript in the cer7 mutant that triggers extensive production of siRNAs and efficient PTGS of CER3. This identifies PTGS as a general mechanism for eliminating highly abundant endogenous transcripts that is activated when 3'-to-5' mRNA turnover by the exosome is disrupted. Diminished efficiency of PTGS in ski mutants compared with cer7, as evidenced by lower accumulation of CER3-related siRNAs, suggests that reduced amounts of CER3 transcript are available for siRNA synthesis, possibly because CER3 mRNA that does not interact with SKI is degraded by 5'-to-3' XRN4 exoribonuclease.

  18. Transcriptome analysis of exosome-compromised human cells using high-density tiling arrays

    DEFF Research Database (Denmark)

    Jensen, Torben Heick

    The extent of RNA degradation in the nucleus has traditionally been underestimated. However, all major RNA species are synthesized, processed and can be degraded in this compartment and consequently an enormous amount of nucleosides are turned over and recycled. The RNA exosome, a multisubunit...... complex of 3’-5’ exoribonucleases, is a key player in these processive/degradative pathways. The exosome is highly conserved between yeast and man, and exists in a cytoplasmic and a nuclear form; the 3’-5’ exoribonuclease Rrp6 (human homologue PM/Scl100) is a specific component of the nuclear exosome.......Studies in yeast using exosome-mutant strains has revealed specific functions of the nuclear exosome: (i) processing or degradation of small nuclear/nucleolar RNAs (snRNAs, snoRNAs), (ii) surveillance and degradation of malformed mRNAs and (iii) processing or degradation of ribosomal precursor RNA to mature r...

  19. NVL2, a nucleolar AAA-ATPase, is associated with the nuclear exosome and is involved in pre-rRNA processing

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikatsu, Yuki [Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, Tokushima 770-8506 (Japan); Ishida, Yo-ichi; Sudo, Haruka [Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 (Japan); Yuasa, Keizo; Tsuji, Akihiko [Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, Tokushima 770-8506 (Japan); Nagahama, Masami, E-mail: nagahama@my-pharm.ac.jp [Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 (Japan)

    2015-08-28

    Nuclear VCP-like 2 (NVL2) is a member of the chaperone-like AAA-ATPase family and is involved in the biosynthesis of 60S ribosomal subunits in mammalian cells. We previously showed the interaction of NVL2 with a DExD/H-box RNA helicase MTR4/DOB1, which is a known cofactor for an exoribonuclease complex, the exosome. This finding implicated NVL2 in RNA metabolic processes during ribosome biogenesis. In the present study, we found that a series of mutations within the ATPase domain of NVL2 causes a defect in pre-rRNA processing into mature 28S and 5.8S rRNAs. Co-immunoprecipitation analysis showed that NVL2 was associated with the nuclear exosome complex, which includes RRP6 as a nucleus-specific catalytic subunit. This interaction was prevented by depleting either MTR4 or RRP6, indicating their essential role in mediating this interaction with NVL2. Additionally, knockdown of MPP6, another cofactor for the nuclear exosome, also prevented the interaction by causing MTR4 to dissociate from the nuclear exosome. These results suggest that NVL2 is involved in pre-rRNA processing by associating with the nuclear exosome complex and that MPP6 is required for maintaining the integrity of this rRNA processing complex. - Highlights: • ATPase-deficient mutants of NVL2 have decreased pre-rRNA processing. • NVL2 associates with the nuclear exosome through interactions with MTR4 and RRP6. • MPP6 stabilizes MTR4-RRP6 interaction and allows NVL2 to interact with the complex.

  20. Exosomes as therapeutics: The implications of molecular composition and exosomal heterogeneity.

    Science.gov (United States)

    Ferguson, Scott W; Nguyen, Juliane

    2016-04-28

    Harnessing exosomes as therapeutic drug delivery vehicles requires a better understanding of exosomal composition and their mode of action. A full appreciation of all the exosomal components (proteins, lipids, and RNA content) will be important for the design of effective exosome-based or exosome-mimicking drug carriers. In this review we describe the presence of rarely studied, non-coding RNAs that exist in high numbers in exosomes. We discuss the implications of the molecular composition and heterogeneity of exosomes on their biological and therapeutic effects. Finally, we highlight outstanding questions with regard to RNA loading into exosomes, analytical methods to sort exosomes and their sub-populations, and the effects of exosomal proteins and lipids on recipient cells. Investigations into these facets of exosome biology will further advance the field, could lead to the clinical translation of exosome-based therapeutics, and aid in the reverse-engineering of synthetic exosomes. Although synthetic exosomes are still an underexplored area, they could offer researchers a way to manufacture exosomes with highly defined structure, composition, and function.

  1. [Proteomic analysis of urinary exosomes].

    Science.gov (United States)

    Nakayama, Aki

    2014-07-01

    Exosomes are 40-100-nm membrane vesicles secreted into the extracellular space by various types of cell in many biological fluids, including serum, saliva, breast milk, amniotic fluid, and urine. Exosomes, which contain several key proteins, lipids, mRNAs, and microRNAs, were considered as an alternative secretion pathway. In addition, recent findings suggest that the exosome itself is a functional biomolecule involved in intracellular communication; thus, its components can be transferred to recipient cells by fusion, changing the function of the target cell. Recently, urinary exosomes have attracted much attention because some of their proteins have been identified as biomarkers related to certain physiological events and disease-related metabolism of the kidney. This review provides an overview of urinary exosomes, including methods of isolation and associated problems, and focuses on urinary exosomes as protein biomarker sources involved in numerous physiological and pathophysiological processes.

  2. Nano-plasmonic exosome diagnostics.

    Science.gov (United States)

    Im, Hyungsoon; Shao, Huilin; Weissleder, Ralph; Castro, Cesar M; Lee, Hakho

    2015-06-01

    Exosomes have emerged as a promising biomarker. These vesicles abound in biofluids and harbor molecular constituents from their parent cells, thereby offering a minimally-invasive avenue for molecular analyses. Despite such clinical potential, routine exosomal analysis, particularly the protein assay, remains challenging, due to requirements for large sample volumes and extensive processing. We have been developing miniaturized systems to facilitate clinical exosome studies. These systems can be categorized into two components: microfluidics for sample preparation and analytical tools for protein analyses. In this report, we review a new assay platform, nano-plasmonic exosome, in which sensing is based on surface plasmon resonance to achieve label-free exosome detection. Looking forward, we also discuss some potential challenges and improvements in exosome studies.

  3. The exosome associates cotranscriptionally with the nascent pre-mRNP through interactions with heterogeneous nuclear ribonucleoproteins

    DEFF Research Database (Denmark)

    Hessle, Viktoria; Björk, Petra; Sokolowski, Marcus

    2009-01-01

    Eukaryotic cells have evolved quality control mechanisms to degrade aberrant mRNA molecules and prevent the synthesis of defective proteins that could be deleterious for the cell. The exosome, a protein complex with ribonuclease activity, is a key player in quality control. An early quality...... checkpoint takes place cotranscriptionally but little is known about the molecular mechanisms by which the exosome is recruited to the transcribed genes. Here we study the core exosome subunit Rrp4 in two insect model systems, Chironomus and Drosophila. We show that a significant fraction of Rrp4...... is associated with the nascent pre-mRNPs and that a specific mRNA-binding protein, Hrp59/hnRNP M, interacts in vivo with multiple exosome subunits. Depletion of Hrp59 by RNA interference reduces the levels of Rrp4 at transcription sites, which suggests that Hrp59 is needed for the exosome to stably interact...

  4. [Analysis and Control of in Vivo Kinetics of Exosomes for the Development of Exosome-based DDS].

    Science.gov (United States)

    Takahashi, Yuki; Nishikawa, Makiya; Takakura, Yoshinobu

    2016-01-01

      Exosomes are secretory membrane vesicles containing lipids, proteins, and nucleic acids. They act as intercellular transporters by delivering their components to exosome recipient cells. Based on their endogenous delivery system properties, exosomes are expected to become drug delivery systems (DDS) for various molecules such as nucleic acid-based drugs. Important factors such as drug loading to exosomes, production, and pharmacokinetics of exosomes need to be considered for the development of exosome-based DDS. Of these, the pharmacokinetics of exosomes have rarely been studied, probably because of the lack of quantitative evaluation methods of in vivo exosomal pharmacokinetics. We selected lactadherin as an exosome tropic protein and developed it as a fusion protein with Gaussia luciferase to label exosomes for in vivo imaging. In addition, a fusion protein of lactadherin and streptavidin was developed, and the tissue distribution of exosomes was quantitatively evaluated by radiolabeling the exosomes using (125)I-labeled biotin. Using labeled exosomes, we found that intravenously injected exosomes were rapidly cleared from the systemic circulation by macrophages. In addition, the exosomes were mainly distributed to the liver, lung, and spleen. We also examined the effect of exosome isolation methods on their physicochemical and pharmacokinetic properties. We found that exosomes collected by the ultracentrifugation-based density-gradient method were more dispersed than exosomes collected by other methods, including the ultracentrifugation-based pelleting method. The gradient method is more time-consuming than others; therefore the development of a more efficient method for exosome isolation will advance the development of exosome-based DDS.

  5. Intelligent Component Monitoring for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lefteri Tsoukalas

    2010-07-30

    Reliability and economy are two major concerns for a nuclear power generation system. Next generation nuclear power reactors are being developed to be more reliable and economic. An effective and efficient surveillance system can generously contribute toward this goal. Recent progress in computer systems and computational tools has made it necessary and possible to upgrade current surveillance/monitoring strategy for better performance. For example, intelligent computing techniques can be applied to develop algorithm that help people better understand the information collected from sensors and thus reduce human error to a new low level. Incidents incurred from human error in nuclear industry are not rare and have been proven costly. The goal of this project is to develop and test an intelligent prognostics methodology for predicting aging effects impacting long-term performance of nuclear components and systems. The approach is particularly suitable for predicting the performance of nuclear reactor systems which have low failure probabilities (e.g., less than 10-6 year-). Such components and systems are often perceived as peripheral to the reactor and are left somewhat unattended. That is, even when inspected, if they are not perceived to be causing some immediate problem, they may not be paid due attention. Attention to such systems normally involves long term monitoring and possibly reasoning with multiple features and evidence, requirements that are not best suited for humans.

  6. Identification and Characterization of 293T Cell-Derived Exosomes by Profiling the Protein, mRNA and MicroRNA Components

    Science.gov (United States)

    Li, Dameng; Wang, Jifeng; Hou, Dongxia; Jiang, Xiaohong; Zhang, Junfeng; Wang, Jin; Zen, Ke; Yang, Fuquan; Zhang, Chen-Yu

    2016-01-01

    Cell-derived exosomes are leading candidates for in vivo drug delivery carriers. In particular, exosomes derived from 293T cells are used most frequently, although exosome dosing has varied greatly among studies. Considering their biological origin, it is crucial to characterize the molecular composition of exosomes if large doses are to be administered in clinical settings. In this study, we present the first comprehensive analysis of the protein, messenger RNA and microRNA profiles of 293T cell-derived exosomes; then, we characterized these data using Gene Ontology annotation and Kyoto Encyclopedia for Genes and Genomes pathway analysis. Our study will provide the basis for the selection of 293T cell-derived exosome drug delivery systems. Profiling the exosomal signatures of 293T cells will lead to a better understanding of 293T exosome biology and will aid in the identification of any harmful factors in exosomes that could cause adverse clinical effects. PMID:27649079

  7. Urinary Exosomes

    Directory of Open Access Journals (Sweden)

    Irena Dimov

    2009-01-01

    Full Text Available Exosomes are nanovesicles of endocytic origin that are secreted into the extracellular space or body fluids when a multivesicular body (MVB fuses with the cell membrane. Interest in exosomes intensified after their description in antigen-presenting cells and the observation that they can significantly moderate immune responses in vivo. In the past few years, several groups have reported on the secretion of exosomes by almost all cell types in an organism. In addition to a common set of membrane and cytosolic molecules, exosomes harbor unique subsets of proteins, reflecting their cellular source. Major research efforts were put into their surprisingly various biological functions and in translating knowledge into clinical practice. Urine provides an exciting noninvasive alternative to blood or tissue samples as a potential source of disease biomarkers. Urinary exosomes (UE became the subject of serious studies just a few years ago. A recent large-scale proteomics-based study of normal UE revealed a myriad of proteins, including disease-related gene products. Thus, UE have valuable potential as a source of biomarkers for early detection of various types of diseases, monitoring the disease evolution and/or response to therapy. As a relatively new field of research, it still faces many challenges, but UE have already shown some straightforward potential.

  8. 3D plasmonic nanobowl platform for the study of exosomes in solution

    Science.gov (United States)

    Lee, Changwon; Carney, Randy P.; Hazari, Sidhartha; Smith, Zachary J.; Knudson, Alisha; Robertson, Christopher S.; Lam, Kit S.; Wachsmann-Hogiu, Sebastian

    2015-05-01

    Thin silver film coated nanobowl Surface Enhanced Raman Spectroscopy (SERS) substrates are used to capture exosomes in solution for SERS measurements that can provide biochemical analysis of intact and ruptured exosomes. Exosomes derived via Total Exosome Isolation Reagent (TEIR) as well as ultracentrifugation (UC) from the SKOV3 cell line were analyzed. Spectra of exosomes derived via TEIR are dominated by a signal characteristic for the TEIR kit that needs to be subtracted for all measurements. Differences in SERS spectra recorded at different times during the drying of the exosome solution are statistically analyzed with Principal Component Analysis (PCA). At the beginning of the drying process, SERS spectra of exosomes exhibit peaks characteristic for both lipids and proteins. Later on during the drying process, new SERS peaks develop, suggesting that the initially intact exosome ruptures over time. This time-dependent evolution of SERS peaks enables analysis of exosomal membrane contents and the contents inside the exosomes.

  9. Designed porosity materials in nuclear reactor components

    Science.gov (United States)

    Yacout, A. M.; Pellin, Michael J.; Stan, Marius

    2016-09-06

    A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.

  10. Designed porosity materials in nuclear reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Yacout, A. M.; Pellin, Michael J.; Stan, Marius

    2016-09-06

    A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.

  11. Exosomes: Mechanisms of Uptake

    Directory of Open Access Journals (Sweden)

    Kelly J. McKelvey

    2015-07-01

    Full Text Available Exosomes are 30–100 nm microvesicles which contain complex cellular signals of RNA, protein and lipids. Because of this, exosomes are implicated as having limitless therapeutic potential for the treatment of cancer, pregnancy complications, infections, and autoimmune diseases. To date we know a considerable amount about exosome biogenesis and secretion, but there is a paucity of data regarding the uptake of exosomes by immune and non- immune cell types (e.g., cancer cells and the internal signalling pathways by which these exosomes elicit a cellular response. Answering these questions is of para‐ mount importance.

  12. Exosomes: Mechanisms of Uptake

    Directory of Open Access Journals (Sweden)

    Kelly J. McKelvey

    2015-07-01

    Full Text Available Exosomes are 30–100 nm microvesicles which contain complex cellular signals of RNA, protein and lipids. Because of this, exosomes are implicated as having limitless therapeutic potential for the treatment of cancer, pregnancy complications, infections, and autoimmune diseases. To date we know a considerable amount about exosome biogenesis and secretion, but there is a paucity of data regarding the uptake of exosomes by immune and non-immune cell types (e.g., cancer cells and the internal signalling pathways by which these exosomes elicit a cellular response. Answering these questions is of paramount importance.

  13. Exosomes in Cancer Diagnostics

    Directory of Open Access Journals (Sweden)

    Young Hwa Soung

    2017-01-01

    Full Text Available Exosomes are endosome derived extracellular vesicles of 30–120 nm size ranges. Exosomes have been identified as mediators of cell-to-cell communication by transferring bioactive molecules such as nucleic acids, proteins and lipids into recipient cells. While exosomes are secreted by multiple cell types, cancer derived exosomes not only influence the invasive potentials of proximally located cells, but also affect distantly located tissues. Based on their ability to alter tumor microenvironment by regulating immunity, angiogenesis and metastasis, there has been growing interest in defining the clinical relevance of exosomes in cancers. In particular, exosomes are valuable sources for biomarkers due to selective cargo loading and resemblance to their parental cells. In this review, we summarize the recent findings to utilize exosomes as cancer biomarkers for early detection, diagnosis and therapy selection.

  14. Isolation of biologically-active exosomes from human plasma.

    Science.gov (United States)

    Muller, Laurent; Hong, Chang-Sook; Stolz, Donna B; Watkins, Simon C; Whiteside, Theresa L

    2014-09-01

    Effects of exosomes present in human plasma on immune cells have not been examined in detail. Immunological studies with plasma-derived exosomes require their isolation by procedures involving ultracentrifugation. These procedures were largely developed using supernatants of cultured cells. To test biologic activities of plasma-derived exosomes, methods are necessary that ensure adequate recovery of exosome fractions free of contaminating larger vesicles, cell fragments and protein/nucleic acid aggregates. Here, an optimized method for exosome isolation from human plasma/serum specimens of normal controls (NC) or cancer patients and its advantages and pitfalls are described. To remove undesirable plasma-contaminating components, ultrafiltration of differentially-centrifuged plasma/serum followed by size-exclusion chromatography prior to ultracentrifugation facilitated the removal of contaminants. Plasma or serum was equally acceptable as a source of exosomes based on the recovered protein levels (in μg protein/mL plasma) and TEM image quality. Centrifugation on sucrose density gradients led to large exosome losses. Fresh plasma was the best source of morphologically-intact exosomes, while the use of frozen/thawed plasma decreased exosome purity but not their biologic activity. Treatments of frozen plasma with DNAse, RNAse or hyaluronidase did not improve exosome purity and are not recommended. Cancer patients' plasma consistently yielded more isolated exosomes than did NCs' plasma. Cancer patients' exosomes also mediated higher immune suppression as evidenced by decreased CD69 expression on responder CD4+ T effector cells. Thus, the described procedure yields biologically-active, morphologically-intact exosomes that have reasonably good purity without large protein losses and can be used for immunological, biomarker and other studies.

  15. Connective tissue growth factor (CCN2) and microRNA-21 are components of a positive feedback loop in pancreatic stellate cells (PSC) during chronic pancreatitis and are exported in PSC-derived exosomes.

    Science.gov (United States)

    Charrier, Alyssa; Chen, Ruju; Chen, Li; Kemper, Sherri; Hattori, Takako; Takigawa, Masaharu; Brigstock, David R

    2014-06-01

    Pancreatitis is an inflammatory condition of the pancreas which, in its chronic form, involves tissue destruction, exocrine and endocrine insufficiency, increased risk of pancreatic cancer, and an extensive fibrotic pathology which is due to unrelenting collagen deposition by pancreatic stellate cells (PSC). In response to noxious agents such as alcohol-excessive consumption of which is a major cause of pancreatitis in the West-normally quiescent PSC undergo a phenotypic and functional transition to activated myofibroblasts which produce and deposit collagen at high levels. This process is regulated by connective tissue growth factor (CCN2), expression of which is highly up-regulated in activated PSC. We show that CCN2 production by activated PSC is associated with enhanced expression of microRNA-21 (miR-21) which was detected at high levels in activated PSC in a murine model of alcoholic chronic pancreatitis. A positive feedback loop between CCN2 and miR-21 was identified that resulted in enhancement of their respective expression as well as that of collagen α1(I). Both miR-21 and CCN2 mRNA were present in PSC-derived exosomes, which were characterized as 50-150 nm CD9-positive nano-vesicles. Exosomes from CCN2-GFP- or miR-21-GFP-transfected PSC were taken up by other PSC cultures, as shown by direct fluorescence or qRT-PCR for GFP. Collectively these studies establish miR-21 and CCN2 as participants in a positive feedback loop during PSC activation and as components of the molecular payload in PSC-derived exosomes that can be delivered to other PSC. Thus interactions between cellular or exosomal miR-21 and CCN2 represent novel aspects of fibrogenic regulation in PSC. Summary Chronic injury in the pancreas is associated with fibrotic pathology which is driven in large part by CCN2-dependent collagen production in pancreatic stellate cells. This study shows that CCN2 up-regulation in PSC is associated with increased expression of miR-21 which, in turn, is able to

  16. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases.

    Science.gov (United States)

    Tran, Thanh-Huyen; Mattheolabakis, George; Aldawsari, Hibah; Amiji, Mansoor

    2015-09-01

    Cell secreted exosomes (30-100nm vesicles) play a major role in intercellular communication due to their ability to transfer proteins and nucleic acids from one cell to another. Depending on the originating cell type and the cargo, exosomes can have immunosuppressive or immunostimulatory effects, which have potential application as immunotherapies for cancer and autoimmune diseases. Cellular components shed from tumor cells or antigen presenting cells (APCs), such as dendritic cells, macrophages and B cells, have been shown to be efficiently packaged in exosomes. In this review, we focus on the application of exosomes as nanocarriers and immunological agents for cancer and autoimmune immunotherapy. APC-derived exosomes demonstrate effective therapeutic efficacy for the treatment of cancer and experimental autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. In addition to their intrinsic immunomodulating activity, exosomes have many advantages over conventional nanocarriers for drug and gene delivery.

  17. Exosome mimetics: a novel class of drug delivery systems.

    Science.gov (United States)

    Kooijmans, Sander A A; Vader, Pieter; van Dommelen, Susan M; van Solinge, Wouter W; Schiffelers, Raymond M

    2012-01-01

    The identification of extracellular phospholipid vesicles as conveyors of cellular information has created excitement in the field of drug delivery. Biological therapeutics, including short interfering RNA and recombinant proteins, are prone to degradation, have limited ability to cross biological membranes, and may elicit immune responses. Therefore, delivery systems for such drugs are under intensive investigation. Exploiting extracellular vesicles as carriers for biological therapeutics is a promising strategy to overcome these issues and to achieve efficient delivery to the cytosol of target cells. Exosomes are a well studied class of extracellular vesicles known to carry proteins and nucleic acids, making them especially suitable for such strategies. However, the considerable complexity and the related high chance of off-target effects of these carriers are major barriers for translation to the clinic. Given that it is well possible that not all components of exosomes are required for their proper functioning, an alternative strategy would be to mimic these vesicles synthetically. By assembly of liposomes harboring only crucial components of natural exosomes, functional exosome mimetics may be created. The low complexity and use of well characterized components strongly increase the pharmaceutical acceptability of such systems. However, exosomal components that would be required for the assembly of functional exosome mimetics remain to be identified. This review provides insights into the composition and functional properties of exosomes, and focuses on components which could be used to enhance the drug delivery properties of exosome mimetics.

  18. Modeling fabrication of nuclear components: An integrative approach

    Energy Technology Data Exchange (ETDEWEB)

    Hench, K.W.

    1996-08-01

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components in an environment of intense regulation and shrinking budgets. This dissertation presents an integrative two-stage approach to modeling the casting operation for fabrication of nuclear weapon primary components. The first stage optimizes personnel radiation exposure for the casting operation layout by modeling the operation as a facility layout problem formulated as a quadratic assignment problem. The solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.

  19. Characteristics and Roles of Exosomes in Cardiovascular Disease.

    Science.gov (United States)

    Zhang, Yuan; Hu, Yan-Wei; Zheng, Lei; Wang, Qian

    2017-03-01

    Exosomes are nano-sized biological membrane-enclosed vesicles that contain a cell-specific cargo of proteins, lipids, and nucleic acids that are released and taken up by most cell types, thereby inducing expression and functional changes via horizontal transfer of cargos between cells. Thus, exosomes present a largely unknown "cell-to-cell" communication system, which is now increasingly being investigated for diagnostic and therapeutic use in cardiovascular disease (CVD). The purpose of this review is to summarize recent findings on the properties and roles of exosomes in a variety of physiological and pathological settings related to CVD. We focus on available information on exosome-mediated intercellular communication relevant to myocardial injury, repair, and regeneration. Finally, we address the promise of exosomes as valuable diagnostic and prognostic biomarkers, and their potential use as therapeutic tools in CVD. Exosomes remain largely unexplored for therapeutic use in the field of cardiovascular diagnosis and medicine. A more detailed characterization of cardiac exosomes shed by different components of the heart will be of fundamental importance to address specific changes in the profile of exosomal microRNAs and proteins, which will enable the clinical use of exosomes as minimally invasive diagnostic tools and vehicles for delivery of targeted therapies for CVD.

  20. Exosomes as mediators of intercellular communication: clinical implications.

    Science.gov (United States)

    Nazimek, Katarzyna; Bryniarski, Krzysztof; Santocki, Michał; Ptak, Włodzimierz

    2015-01-01

    Cells of multicellular organisms exchange informative signals by diverse mechanisms. Recent findings uncovered the special role of extracellular vesicles, especially exosomes, in intercellular communication. Exosomes, present in all tested human bodily fluids, carry various functional compounds including proteins, lipids, and diverse RNA molecules. The composition of exosome cargo in vivo is likely formed by a regulated selection of specific components and can express the current status of the exosome-secreting cell. Therefore, particular emphasis is now placed on the extremely high potential of exosomes as essentially noninvasive prognostic and diagnostic biomarkers, but also as therapeutic nanocarriers, especially after the discovery that their cargo as well as cell-targeting specificity could be shaped in vitro. In addition, targeting the exosomes mediating pathological intercellular communication may also express high therapeutic potential. Hence, numerous studies are conducted to explore the profile and function of exosomes and their cargo in health and disease and to shape their properties to facilitate their clinical application. The present review summarizes the current knowledge on the role of exosomes in different physiological and pathological mechanisms of intercellular communication with a particular focus on the use of exosomes in the diagnosis and treatment of various inflammatory, cardiovascular, metabolic, and neurodegenerative disorders as well as malignant neoplasms.

  1. Performance evaluation of fiber optic components in nuclear plant environments

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, M.C.; Miller, D.W. [Ohio State Univ., Columbus, OH (United States); James, R.W. [Electric Power Research Institute, Palo Alto, CA (United States)

    1996-03-01

    Over the past several years, the Electric Power Research Institute (EPRI) has funded several projects to evaluate the performance of commercially available fiber optic cables, connective devices, light sources, and light detectors under environmental conditions representative of normal and abnormal nuclear power plant operating conditions. Future projects are planned to evaluate commercially available fiber optic sensors and to install and evaluate performance of instrument loops comprised of fiber optic components in operating nuclear power plant applications. The objective of this research is to assess the viability of fiber optic components for replacement and upgrade of nuclear power plant instrument systems. Fiber optic instrument channels offer many potential advantages: commercial availability of parts and technical support, small physical size and weight, immunity to electromagnetic interference, relatively low power requirements, and high bandwidth capabilities. As existing nuclear power plants continue to replace and upgrade I&C systems, fiber optics will offer a low-cost alternative technology which also provides additional information processing capabilities. Results to date indicate that fiber optics are a viable technology for many nuclear applications, both inside and outside of containments. This work is funded and manage& under the Operations & Maintenance Cost Control research target of EPRI`s Nuclear Power Group. The work is being performed by faculty and students in the Mechanical and Nuclear Engineering Departments and the staff of the Nuclear Reactor Laboratory of the Ohio State University.

  2. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity.

    Science.gov (United States)

    Pefanis, Evangelos; Wang, Jiguang; Rothschild, Gerson; Lim, Junghyun; Kazadi, David; Sun, Jianbo; Federation, Alexander; Chao, Jaime; Elliott, Oliver; Liu, Zhi-Ping; Economides, Aris N; Bradner, James E; Rabadan, Raul; Basu, Uttiya

    2015-05-01

    We have ablated the cellular RNA degradation machinery in differentiated B cells and pluripotent embryonic stem cells (ESCs) by conditional mutagenesis of core (Exosc3) and nuclear RNase (Exosc10) components of RNA exosome and identified a vast number of long non-coding RNAs (lncRNAs) and enhancer RNAs (eRNAs) with emergent functionality. Unexpectedly, eRNA-expressing regions accumulate R-loop structures upon RNA exosome ablation, thus demonstrating the role of RNA exosome in resolving deleterious DNA/RNA hybrids arising from active enhancers. We have uncovered a distal divergent eRNA-expressing element (lncRNA-CSR) engaged in long-range DNA interactions and regulating IgH 3' regulatory region super-enhancer function. CRISPR-Cas9-mediated ablation of lncRNA-CSR transcription decreases its chromosomal looping-mediated association with the IgH 3' regulatory region super-enhancer and leads to decreased class switch recombination efficiency. We propose that the RNA exosome protects divergently transcribed lncRNA expressing enhancers by resolving deleterious transcription-coupled secondary DNA structures, while also regulating long-range super-enhancer chromosomal interactions important for cellular function.

  3. Nuclear analysis techniques as a component of thermoluminescence dating

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, J.R.; Hutton, J.T.; Habermehl, M.A. [Adelaide Univ., SA (Australia); Van Moort, J. [Tasmania Univ., Sandy Bay, TAS (Australia)

    1996-12-31

    In luminescence dating, an age is found by first measuring dose accumulated since the event being dated, then dividing by the annual dose rate. Analyses of minor and trace elements performed by nuclear techniques have long formed an essential component of dating. Results from some Australian sites are reported to illustrate the application of nuclear techniques of analysis in this context. In particular, a variety of methods for finding dose rates are compared, an example of a site where radioactive disequilibrium is significant and a brief summary is given of a problem which was not resolved by nuclear techniques. 5 refs., 2 tabs.

  4. The Multiple Roles of Exosomes in Metastasis.

    Science.gov (United States)

    Weidle, Ulrich H; Birzele, Fabian; Kollmorgen, Gwen; Rüger, Rüdiger

    2017-01-02

    Exosomes are important contributors to cell-cell communication and their role as diagnostic markers for cancer and the pathogenesis for cancer is under intensive investigation. Here, we focus on their role in metastasis-related processes. We discuss their impact regarding promotion of invasion and migration of tumor cells, conditioning of lymph nodes, generation of premetastatic niches and organotropism of metastasis. Furthermore, we highlight interactions of exosomes with bone marrow and stromal components such as fibroblasts, endothelial cells, myeloid- and other immune-related cells in the context of metastases. For all processes as described above, we outline molecular and cellular components for therapeutic intervention with metastatic processes.

  5. Finding the Exosome

    OpenAIRE

    Mitchell, Phil; Tollervey, David

    2010-01-01

    We describe the events surrounding the identification of the exosome complex and the subsequent early development of the field. Like many scientific discoveries, the initial identification and characterization of the exosome was a based on a combination of skill, good fortune - and the availability of cutting edge technology.

  6. Bovine milk exosome proteome

    Science.gov (United States)

    Exosomes are 40-100 nm membrane vesicles of endocytic origin and are found in blood, urine, amniotic fluid, bronchoalveolar lavage (BAL) fluid, as well as human and bovine milk. Exosomes are extracellular organelles important in intracellular communication/signaling, immune function, and biomarkers ...

  7. HTGR nuclear heat source component design and experience

    Energy Technology Data Exchange (ETDEWEB)

    Peinado, C.O.; Wunderlich, R.G.; Simon, W.A.

    1982-05-01

    The high-temperature gas-cooled reactor (HTGR) nuclear heat source components have been under design and development since the mid-1950's. Two power plants have been designed, constructed, and operated: the Peach Bottom Atomic Power Station and the Fort St. Vrain Nuclear Generating Station. Recently, development has focused on the primary system components for a 2240-MW(t) steam cycle HTGR capable of generating about 900 MW(e) electric power or alternately producing high-grade steam and cogenerating electric power. These components include the steam generators, core auxiliary heat exchangers, primary and auxiliary circulators, reactor internals, and thermal barrier system. A discussion of the design and operating experience of these components is included.

  8. Exosome mimetics: a novel class of drug delivery systems

    Directory of Open Access Journals (Sweden)

    Kooijmans SAA

    2012-03-01

    Full Text Available Sander AA Kooijmans, Pieter Vader, Susan M van Dommelen, Wouter W van Solinge, Raymond M SchiffelersDepartment of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The NetherlandsAbstract: The identification of extracellular phospholipid vesicles as conveyors of cellular information has created excitement in the field of drug delivery. Biological therapeutics, including short interfering RNA and recombinant proteins, are prone to degradation, have limited ability to cross biological membranes, and may elicit immune responses. Therefore, delivery systems for such drugs are under intensive investigation. Exploiting extracellular vesicles as carriers for biological therapeutics is a promising strategy to overcome these issues and to achieve efficient delivery to the cytosol of target cells. Exosomes are a well studied class of extracellular vesicles known to carry proteins and nucleic acids, making them especially suitable for such strategies. However, the considerable complexity and the related high chance of off-target effects of these carriers are major barriers for translation to the clinic. Given that it is well possible that not all components of exosomes are required for their proper functioning, an alternative strategy would be to mimic these vesicles synthetically. By assembly of liposomes harboring only crucial components of natural exosomes, functional exosome mimetics may be created. The low complexity and use of well characterized components strongly increase the pharmaceutical acceptability of such systems. However, exosomal components that would be required for the assembly of functional exosome mimetics remain to be identified. This review provides insights into the composition and functional properties of exosomes, and focuses on components which could be used to enhance the drug delivery properties of exosome mimetics.Keywords: exosomes, extracellular vesicles, liposomes, drug delivery systems

  9. Exosome release of ADAM15 and the functional implications of human macrophage-derived ADAM15 exosomes.

    Science.gov (United States)

    Lee, Hee Doo; Koo, Bon-Hun; Kim, Yeon Hyang; Jeon, Ok-Hee; Kim, Doo-Sik

    2012-07-01

    A disintegrin and metalloproteinase 15 (ADAM15), the only ADAM protein containing an Arg-Gly-Asp (RGD) motif in its disintegrin-like domain, is a widely expressed membrane protein that is involved in tumor progression and suppression. However, the underlying mechanism of ADAM15-mediated tumor suppression is not clearly understood. This study demonstrates that ADAM15 is released as an exosomal component, and ADAM15 exosomes exert tumor suppressive activities. We found that exosomal ADAM15 release is stimulated by phorbol 12-myristate 13-acetate, a typical protein kinase C activator, in various tumor cell types, and this results in a corresponding decrease in plasma membrane-associated ADAM15. Exosomes rich in ADAM15 display enhanced binding affinity for integrin αvβ3 in an RGD-dependent manner and suppress vitronectin- and fibronectin-induced cell adhesion, growth, and migration, as well as in vivo tumor growth. Exosomal ADAM15 is released from human macrophages, and macrophage-derived ADAM15 exosomes have tumor inhibitory effects. This work suggests a primary role of ADAM15 for exosome-mediated tumor suppression, as well as functional significance of exosomal ADAM protein in antitumor immunity.

  10. Exosomes in Cancer Disease.

    Science.gov (United States)

    Zöller, Margot

    2016-01-01

    Cancer diagnosis and therapy is steadily improving. Still, diagnosis is frequently late and diagnosis and follow-up procedures mostly are time-consuming and expensive. Searching for tumor-derived exosomes (TEX) in body fluids may provide an alternative, minimally invasive, yet highly reliable diagnostic tool. Beyond this, there is strong evidence that TEX could become a potent therapeutics. Exosomes, small vesicles delivered by many cells of the organism, are found in all body fluids. Exosomes are characterized by lipid composition, common and donor cell specific proteins, mRNA, small non-coding RNA including miRNA and DNA. Particularly the protein and miRNA markers received much attention as they may allow for highly specific diagnosis and can provide hints toward tumor aggressiveness and progression, where exosome-based diagnosis and follow-up is greatly facilitated by the recovery of exosomes in body fluids, particularly the peripheral blood. Beyond this, exosomes are the most important intercellular communicators that modulate, instruct, and reprogram their surrounding as well as distant organs. In concern about TEX this includes message transfer from tumor cells toward the tumor stroma, the premetastatic niche, the hematopoietic system and, last but not least, the instruction of non-cancer stem cells by cancer-initiating cells (CIC). Taking this into account, it becomes obvious that "tailored" exosomes offer themselves as potent therapeutic delivery system. In brief, during the last 4-5 years there is an ever-increasing, overwhelming interest in exosome research. This boom appears fully justified provided the content of the exosomes becomes most thoroughly analyzed and their mode of intercellular interaction can be unraveled in detail as this knowledge will open new doors toward cancer diagnosis and therapy including immunotherapy and CIC reprogramming.

  11. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin [Sungkyunkwan Univ., Seoul (Korea, Republic of); Kwon, J. D. [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kang, K. J. [Chonnam National Univ., Gwangju (Korea, Republic of)] (and others)

    2001-03-15

    This research focuses on development of reliable life evaluation technology for nuclear power plant (NPP) components, and is divided into two parts, development of life evaluation systems for pressurized components and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered: development of expert systems for integrity assessment of pressurized components, development of integrity evaluation systems of steam generator tubes, prediction of failure probability for NPP components based on probabilistic fracture mechanics, development of fatigue damage evaluation technique for plant life extension, domestic round robin analysis for pressurized thermal shock of reactor vessels, domestic round robin analysis of constructing P--T limit curves for reactor vessels, and development of data base for integrity assessment. For evaluation of applicability of emerging technology to operating plants, on the other hand, the following eight topics are covered: applicability of the Leak-Before-Break analysis to Cast S/S piping, collection of aged material tensile and toughness data for aged Cast S/S piping, finite element analyses for load carrying capacity of corroded pipes, development of Risk-based ISI methodology for nuclear piping, collection of toughness data for integrity assessment of bi-metallic joints, applicability of the Master curve concept to reactor vessel integrity assessment, measurement of dynamic fracture toughness, and provision of information related to regulation and plant life extension issues.

  12. Activities on component reliability under the OECD Nuclear Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.G.; Kaufer, B.; Carlsson, L. [OECD Nuclear Energy Agency, 92 - Issy-les-Moulineaux (France)

    2000-06-01

    The Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency has 27 Member countries. Under the auspices of the Nuclear Safety Division are two senior committees dealing with regulatory aspects (CNRA) and technological aspects (CSNI). Under these two committees activities relevant to component reliability are carried out under the three principal working groups (PWGs): PWG-1 on operating experience, PWG-3 on integrity of components and structures, and PWG-5 on risk assessment. Although the principal interest of these committees is safety, this inevitably includes component reliability issues. PWG1 is concerned with operating experience. It is concerned mainly with the analysis of safety significant incidents, but it undertakes special studies as well. In the area of reliability it has issued a report on the evidence of ageing effects on certain safety-related components. PWG3 has activities in fracture mechanics, non-destructive examination and material degradation, as being the three aspects of structural integrity for metal reactor components. It has recently widened its scope to include the ageing of concrete structures and the seismic behaviour of structures. In the area of component reliability, it has organised workshops on pipe leak and break probabilities, and on probabilistic structural integrity analysis. PWG5 considers risk assessment, and as part of this considers the collection of reliability data. It has organised a questionnaire and has held two workshops covering the issue of data collection. This paper provides background on the agency itself, while focusing on the component reliability activities within NEA carried out mainly through the Committee on the safety of nuclear installations and the groups of technical experts on operating experience, structural integrity, and risk assessment, principal working groups nos. 1, 3 and 5 (orig.)

  13. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim, Yun Jae; Choi, Jae Boong [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2002-03-15

    This project focuses on developing reliable life evaluation technology for nuclear power plant components, and is divided into two parts, development of a life evaluation system for nuclear pressure vessels and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered in this project: defect assessment method for steam generator tubes, development of fatigue monitoring system, assessment of corroded pipes, domestic round robin analysis for constructing P-T limit curve for RPV, development of probabilistic integrity assessment technique, effect of aging on strength of dissimilar welds, applicability of LBB to cast stainless steel, and development of probabilistic piping fracture mechanics.

  14. Nuclear Power Plant Mechanical Component Flooding Fragility Experiments Status

    Energy Technology Data Exchange (ETDEWEB)

    Pope, C. L. [Idaho State Univ., Pocatello, ID (United States); Savage, B. [Idaho State Univ., Pocatello, ID (United States); Johnson, B. [Idaho State Univ., Pocatello, ID (United States); Muchmore, C. [Idaho State Univ., Pocatello, ID (United States); Nichols, L. [Idaho State Univ., Pocatello, ID (United States); Roberts, G. [Idaho State Univ., Pocatello, ID (United States); Ryan, E. [Idaho State Univ., Pocatello, ID (United States); Suresh, S. [Idaho State Univ., Pocatello, ID (United States); Tahhan, A. [Idaho State Univ., Pocatello, ID (United States); Tuladhar, R. [Idaho State Univ., Pocatello, ID (United States); Wells, A. [Idaho State Univ., Pocatello, ID (United States); Smith, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-24

    This report describes progress on Nuclear Power Plant mechanical component flooding fragility experiments and supporting research. The progress includes execution of full scale fragility experiments using hollow-core doors, design of improvements to the Portal Evaluation Tank, equipment procurement and initial installation of PET improvements, designation of experiments exploiting the improved PET capabilities, fragility mathematical model development, Smoothed Particle Hydrodynamic simulations, wave impact simulation device research, and pipe rupture mechanics research.

  15. IR-360 nuclear power plant safety functions and component classification

    Energy Technology Data Exchange (ETDEWEB)

    Yousefpour, F., E-mail: fyousefpour@snira.co [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of); Shokri, F.; Soltani, H. [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of)

    2010-10-15

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  16. Study of wet blasting of components in nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Hall, J

    1999-12-01

    This report looks at the method of wet blasting radioactive components in nuclear power stations. The wet blaster uses pearl shaped glass beads with the dimensions of 150-250 {mu}m mixed with water as blasting media. The improved design, providing outer operator's positions with proper radiation protection and more efficient blasting equipment has resulted in a lesser dose taken by the operators. The main reason to decontaminate components in nuclear power plants is to enable service on these components. On components like valves, pump shafts, pipes etc. oxides form and bind radiation. These components are normally situated at some distance from the reactor core and will mainly suffer from radiation from so called activation products. When a component is to be decontaminated it can be decontaminated to a radioactive level where it will be declassified. This report has found levels ranging from 150-1000 Bq/kg allowing declassification of radioactive materials.This difference is found between different countries and different organisations. The report also looks at the levels of waste generated using wet blasting. This is done by tracking the contamination to determine where it collects. It is either collected in the water treatment plant or collected in the blasting media. At Barsebaeck the waste levels, from de-contaminating nearly 800 components in one year, results in a waste volume of about 0,250 m{sup 3}. This waste consists of low and medium level waste and will cost about 3 600 EURO to store. The conclusions of the report are that wet blasting is an indispensable way to treat contaminated components in modern nuclear power plants. The wet blasting equipment can be improved by using a robot enabling the operators to remotely treat components from the outer operator's positions. There they will benefit from better radiation protection thus further reduce their taken dose. The wet blasting equipment could also be used to better control the levels of

  17. Tumor-derived exosomes and their role in cancer progression

    Science.gov (United States)

    Whiteside, Theresa L

    2017-01-01

    Tumor cells actively produce, release and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon the contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as non-invasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation. PMID:27117662

  18. Tumor-Derived Exosomes and Their Role in Cancer Progression.

    Science.gov (United States)

    Whiteside, Theresa L

    2016-01-01

    Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation.

  19. Mesenchymal stem cell exosomes.

    Science.gov (United States)

    Lai, Ruenn Chai; Yeo, Ronne Wee Yeh; Lim, Sai Kiang

    2015-04-01

    MSCs are an extensively used cell type in clinical trials today. The initial rationale for their clinical testing was based on their differentiation potential. However, the lack of correlation between functional improvement and cell engraftment or differentiation at the site of injury has led to the proposal that MSCs exert their effects not through their differentiation potential but through their secreted product, more specifically, exosomes, a type of extracellular vesicle. We propose here that MSC exosomes function as an extension of MSC's biological role as tissue stromal support cells. Like their cell source, MSC exosomes help maintain tissue homeostasis for optimal tissue function. They target housekeeping biological processes that operate ubiquitously in all tissues and are critical in maintaining tissue homeostasis, enabling cells to recover critical cellular functions and begin repair and regeneration. This hypothesis provides a rationale for the therapeutic efficacy of MSCs and their secreted exosomes in a wide spectrum of diseases. Here, we give a brief introduction of the biogenesis of MSC exosomes, review their physiological functions and highlight some of their biochemical potential to illustrate how MSC exosomes could restore tissue homeostasis leading to tissue recovery and repair.

  20. Proteolytic factors in exosomes.

    Science.gov (United States)

    Shimoda, Masayuki; Khokha, Rama

    2013-05-01

    Exosomes are small microvesicles secreted from the late endosomal compartment of cells. Although an increasing body of evidence indicates that they play a pivotal role in cell-to-cell communication, the biological functions of exosomes are far from fully understood. Recent work has revealed detailed proteomic profiles of exosomes from cell lines and body fluids, which may provide clues to understanding their biological significance and general importance in human diseases. Metalloproteinases include the cell surface-anchored sheddases a disintegrin and metalloproteinases, as well as cell surface-bound and soluble matrix metalloproteinases and these extracellular proteases have been detected in exosomes by proteomic analyses. Exosomes play a key role in the transfer of proteins to other cells and metalloproteinases may provide a novel platform where ectodomain shedding by these membrane proteases alters the makeup of the recipient cell's surface. This review aims to address some of the facets of exosome biology with particular emphasis on the proteolytic factors and we discuss their potential involvement in human diseases, especially tumor biology.

  1. The transport of nuclear power plant components. [via airships

    Science.gov (United States)

    Keating, S. J., Jr.

    1975-01-01

    The problems of transporting nuclear power plant components to landlocked sites where the usual mode of transport by barge cannot be used are considered. Existing methods of ground-based overland transport are discussed and their costs presented. Components are described and traffic density projections made to the year 2000. Plots of units transported versus distance transported are provided for units booked in 1973 and booked and proposed in 1974. It is shown that, for these cases, overland transport requirements for the industry will be over 5,000,000 ton-miles/year while a projection based on increasing energy demands shows that this figure will increase significantly by the year 2000. The payload size, distances, and costs of existing overland modes are significant enough to consider development of a lighter than air (LTA) mode for transporting NSSS components.

  2. Template identification technology of nuclear warheads and components

    Institute of Scientific and Technical Information of China (English)

    Liu Su-Ping; Gong Jian; Hao Fan-Hua; Hu Guang-Chun

    2008-01-01

    Template identification technology (TIT) is designed for the scenarios where a batch of disarmed nuclear weapons or components would be dismantled to observe a nuclear disarmament treaty.The core function played by the TIT is to make a judgment on whether the verified item belongs to a certain kind of nuclear weapons or component (NW/NC) or to which kind the verified item belongs.This paper analyses the functions played by the TIT in the process of NW/NC dismantlement,and proposes that two phases would be followed when applying the TIT:firstly to establish NW/NC templates with a sample of size n drawn from a certain kind of disarmament NW;secondly to authenticate NW/NC by means of the TIT.This paper also expatiates some terms related to the concept of the TIT and investigates on the development status of NW/NC TIT based on radiation signatures.The study concludes that the design of template structure is crucial to the establishment of an effective TIT and that starting from different research angles and aiming at the same goal of classification different template structures and corresponding template identification methods can be built up to meet specific identification requirements.

  3. Proteomics Characterization of Exosome Cargo

    OpenAIRE

    Schey, Kevin L.; Luther, J. Matthew; Rose, Kristie L

    2015-01-01

    Characterization of exosomal cargo is of significant interest because this cargo can provide clues to exosome biogenesis, targeting, and cellular effects and may be a source of biomarkers for disease diagnosis, prognosis and response to treatment. With recent improvements in proteomics technologies, both qualitative and quantitative characterization of exosomal proteins is possible. Here we provide a brief review of exosome proteomics studies and provide detailed protocols for global qualitat...

  4. Functional significance of macrophage-derived exosomes in inflammation and pain.

    Science.gov (United States)

    McDonald, Marguerite K; Tian, Yuzhen; Qureshi, Rehman A; Gormley, Michael; Ertel, Adam; Gao, Ruby; Aradillas Lopez, Enrique; Alexander, Guillermo M; Sacan, Ahmet; Fortina, Paolo; Ajit, Seena K

    2014-08-01

    Exosomes, secreted microvesicles transporting microRNAs (miRNAs), mRNAs, and proteins through bodily fluids, facilitate intercellular communication and elicit immune responses. Exosomal contents vary, depending on the source and the physiological conditions of cells, and can provide insights into how cells and systems cope with physiological perturbations. Previous analysis of circulating miRNAs in patients with complex regional pain syndrome (CRPS), a debilitating chronic pain disorder, revealed a subset of miRNAs in whole blood that are altered in the disease. To determine functional consequences of alterations in exosomal biomolecules in inflammation and pain, we investigated exosome-mediated information transfer in vitro, in a rodent model of inflammatory pain, and in exosomes from patients with CRPS. Mouse macrophage cells stimulated with lipopolysaccharides secrete exosomes containing elevated levels of cytokines and miRNAs that mediate inflammation. Transcriptome sequencing of exosomal RNA revealed global alterations in both innate and adaptive immune pathways. Exosomes from lipopolysaccharide-stimulated cells were sufficient to cause nuclear factor-κB activation in naive cells, indicating functionality in recipient cells. A single injection of exosomes attenuated thermal hyperalgesia in a murine model of inflammatory pain, suggesting an immunoprotective role for macrophage-derived exosomes. Macrophage-derived exosomes carry a protective signature that is altered when secreting cells are exposed to an inflammatory stimulus. We also show that circulating miRNAs altered in patients with complex regional pain syndrome are trafficked by exosomes. With their systemic signaling capabilities, exosomes can induce pleiotropic effects potentially mediating the multifactorial pathology underlying chronic pain, and should be explored for their therapeutic utility.

  5. Influence of maternal BMI on the exosomal profile during gestation and their role on maternal systemic inflammation.

    Science.gov (United States)

    Elfeky, Omar; Longo, Sherri; Lai, Andrew; Rice, Gregory E; Salomon, Carlos

    2017-02-01

    Recent studies report that 35% of women are either overweight or obese at reproductive age. The placenta continuously releases exosomes across gestation and their concentration is higher in pregnancy complications. While there is considerable interest in elucidating the role of exosomes during gestation, important questions remain to be answered: i) Does maternal BMI affect the exosomal profile across gestation? and ii) What is the contribution of placenta-derived exosomes to the total number of exosomes present in maternal plasma across gestation? Plasma samples were classified according to the maternal BMI into three groups (n = 15 per group): Lean, overweight, and obese. Total exosomes and specific placenta-derived exosomes were determined by Nanoparticle Tracking Analysis (NanoSight™) using quantum dots coupled with CD63 or PLAP antibodies. The effect of exosomes on cytokine (IL-6, IL-8, IL-10 and TNF-α) release from endothelial cells was established by cytokine array analysis (Bioplex-200). The total number of exosomes present in maternal circulation was strongly correlated with maternal BMI. Between ∼12% and ∼25% of circulating exosomes in maternal blood are of placental origin during gestation, and the contribution of placental exosomes to the total exosomal population decreases with higher maternal BMI across gestation. Exosomes increase IL-6, IL-8 and TNF-α release from endothelial cells, an effect even higher when exosomes were isolated from obese women compared to lean and overweight. This study established that maternal BMI is a factor that explains a significant component of the variation in the exosomes data. Exosomes may contribute to the maternal systemic inflammation during pregnancy.

  6. Stochastic modeling of deterioration in nuclear power plant components

    Science.gov (United States)

    Yuan, Xianxun

    2007-12-01

    The risk-based life-cycle management of engineering systems in a nuclear power plant is intended to ensure safe and economically efficient operation of energy generation infrastructure over its entire service life. An important element of life-cycle management is to understand, model and forecast the effect of various degradation mechanisms affecting the performance of engineering systems, structures and components. The modeling of degradation in nuclear plant components is confounded by large sampling and temporal uncertainties. The reason is that nuclear systems are not readily accessible for inspections due to high level of radiation and large costs associated with remote data collection methods. The models of degradation used by industry are largely derived from ordinary linear regression methods. The main objective of this thesis is to develop more advanced techniques based on stochastic process theory to model deterioration in engineering components with the purpose of providing more scientific basis to life-cycle management of aging nuclear power plants. This thesis proposes a stochastic gamma process (GP) model for deterioration and develops a suite of statistical techniques for calibrating the model parameters. The gamma process is a versatile and mathematically tractable stochastic model for a wide variety of degradation phenomena, and another desirable property is its nonnegative, monotonically increasing sample paths. In the thesis, the GP model is extended by including additional covariates and also modeling for random effects. The optimization of age-based replacement and condition-based maintenance strategies is also presented. The thesis also investigates improved regression techniques for modeling deterioration. A linear mixed-effects (LME) regression model is presented to resolve an inconsistency of the traditional regression models. The proposed LME model assumes that the randomness in deterioration is decomposed into two parts: the unobserved

  7. Current perspectives on the role of TRAMP in nuclear RNA surveillance and quality control

    Directory of Open Access Journals (Sweden)

    Pan K

    2015-04-01

    Full Text Available Kewu Pan, Zhe Huang, Jimmy Tsz Hang Lee, Chi-Ming Wong State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, Shenzhen Institute of Research and Innovation, the University of Hong Kong, Pokfulam, Hong Kong Abstract: The TRAMP complex assists the nuclear exosome to degrade a broad range of ribonucleic acid (RNA substrates by increasing both exoribonucleolytic activity and substrate specificity. However, how the interactions between the TRAMP subunits and the components of the nuclear exosome regulate their functions in RNA degradation and substrate specificity remain unclear. This review aims to provide a summary of the recent findings on the role of the TRAMP complex in nuclear RNA degradation. The new insights from recent structural biological studies are discussed. Keywords: TRAMP, nuclear exosome, NEXT, RNA surveillance

  8. Five-Axis Ultrasonic Additive Manufacturing for Nuclear Component Manufacture

    Science.gov (United States)

    Hehr, Adam; Wenning, Justin; Terrani, Kurt; Babu, Sudarsanam Suresh; Norfolk, Mark

    2016-12-01

    Ultrasonic additive manufacturing (UAM) is a three-dimensional metal printing technology which uses high-frequency vibrations to scrub and weld together both similar and dissimilar metal foils. There is no melting in the process and no special atmosphere requirements are needed. Consequently, dissimilar metals can be joined with little to no intermetallic compound formation, and large components can be manufactured. These attributes have the potential to transform manufacturing of nuclear reactor core components such as control elements for the High Flux Isotope Reactor at Oak Ridge National Laboratory. These components are hybrid structures consisting of an outer cladding layer in contact with the coolant with neutron-absorbing materials inside, such as neutron poisons for reactor control purposes. UAM systems are built into a computer numerical control (CNC) framework to utilize intermittent subtractive processes. These subtractive processes are used to introduce internal features as the component is being built and for net shaping. The CNC framework is also used for controlling the motion of the welding operation. It is demonstrated here that curved components with embedded features can be produced using a five-axis code for the welder for the first time.

  9. Five-Axis Ultrasonic Additive Manufacturing for Nuclear Component Manufacture

    Science.gov (United States)

    Hehr, Adam; Wenning, Justin; Terrani, Kurt; Babu, Sudarsanam Suresh; Norfolk, Mark

    2017-03-01

    Ultrasonic additive manufacturing (UAM) is a three-dimensional metal printing technology which uses high-frequency vibrations to scrub and weld together both similar and dissimilar metal foils. There is no melting in the process and no special atmosphere requirements are needed. Consequently, dissimilar metals can be joined with little to no intermetallic compound formation, and large components can be manufactured. These attributes have the potential to transform manufacturing of nuclear reactor core components such as control elements for the High Flux Isotope Reactor at Oak Ridge National Laboratory. These components are hybrid structures consisting of an outer cladding layer in contact with the coolant with neutron-absorbing materials inside, such as neutron poisons for reactor control purposes. UAM systems are built into a computer numerical control (CNC) framework to utilize intermittent subtractive processes. These subtractive processes are used to introduce internal features as the component is being built and for net shaping. The CNC framework is also used for controlling the motion of the welding operation. It is demonstrated here that curved components with embedded features can be produced using a five-axis code for the welder for the first time.

  10. The human core exosome interacts with differentially localized processive RNases

    DEFF Research Database (Denmark)

    Tomecki, Rafal; Kristiansen, Maiken Søndergaard; Lykke-Andersen, Søren

    2010-01-01

    from the associated subunits Dis3p (Rrp44p) and Rrp6p. The former is a nuclear and cytoplasmic RNase II/R-like enzyme, which possesses both processive exo- and endonuclease activities, whereas the latter is a distributive RNase D-like nuclear exonuclease. Although the exosome core is highly conserved...

  11. Proteomics characterization of exosome cargo.

    Science.gov (United States)

    Schey, Kevin L; Luther, J Matthew; Rose, Kristie L

    2015-10-01

    Characterization of exosomal cargo is of significant interest because this cargo can provide clues to exosome biogenesis, targeting, and cellular effects and may be a source of biomarkers for disease diagnosis, prognosis and response to treatment. With recent improvements in proteomics technologies, both qualitative and quantitative characterization of exosomal proteins is possible. Here we provide a brief review of exosome proteomics studies and provide detailed protocols for global qualitative, global quantitative, and targeted quantitative analysis of exosomal proteins. In addition, we provide an example application of a standard global quantitative analysis followed by validation via a targeted quantitative analysis of urine exosome samples from human patients. Advantages and limitations of each method are discussed as well as future directions for exosome proteomics analysis.

  12. Exosomes Derived from Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2014-03-01

    Full Text Available The functional mechanisms of mesenchymal stem cells (MSCs have become a research focus in recent years. Accumulating evidence supports the notion that MSCs act in a paracrine manner. Therefore, the biological factors in conditioned medium, including exosomes and soluble factors, derived from MSC cultures are being explored extensively. The results from most investigations show that MSC-conditioned medium or its components mediate some biological functions of MSCs. Several studies have reported that MSC-derived exosomes have functions similar to those of MSCs, such as repairing tissue damage, suppressing inflammatory responses, and modulating the immune system. However, the mechanisms are still not fully understood and the results remain controversial. Compared with cells, exosomes are more stable and reservable, have no risk of aneuploidy, a lower possibility of immune rejection following in vivo allogeneic administration, and may provide an alternative therapy for various diseases. In this review, we summarize the properties and biological functions of MSC-derived exosomes and discuss the related mechanisms.

  13. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration.

    Science.gov (United States)

    Luga, Valbona; Zhang, Liang; Viloria-Petit, Alicia M; Ogunjimi, Abiodun A; Inanlou, Mohammad R; Chiu, Elaine; Buchanan, Marguerite; Hosein, Abdel Nasser; Basik, Mark; Wrana, Jeffrey L

    2012-12-21

    Stroma in the tumor microenvironment plays a critical role in cancer progression, but how it promotes metastasis is poorly understood. Exosomes are small vesicles secreted by many cell types and enable a potent mode of intercellular communication. Here, we report that fibroblast-secreted exosomes promote breast cancer cell (BCC) protrusive activity and motility via Wnt-planar cell polarity (PCP) signaling. We show that exosome-stimulated BCC protrusions display mutually exclusive localization of the core PCP complexes, Fzd-Dvl and Vangl-Pk. In orthotopic mouse models of breast cancer, coinjection of BCCs with fibroblasts dramatically enhances metastasis that is dependent on PCP signaling in BCCs and the exosome component, Cd81 in fibroblasts. Moreover, we demonstrate that trafficking in BCCs promotes tethering of autocrine Wnt11 to fibroblast-derived exosomes. This work reveals an intercellular communication pathway whereby fibroblast exosomes mobilize autocrine Wnt-PCP signaling to drive BCC invasive behavior.

  14. Dynamics of exosome internalization and trafficking.

    Science.gov (United States)

    Tian, Tian; Zhu, Yan-Liang; Hu, Fei-Hu; Wang, Yuan-Yuan; Huang, Ning-Ping; Xiao, Zhong-Dang

    2013-07-01

    Cells release exosomes into extracellular medium. Although the important roles of exosomes in many physiological and pathological processes are being revealed, the mechanism of exosome-cell interaction remains unclear. In this article, employing real-time fluorescence microscopy, the motion of exosomes on the plasma membrane or in the cytoplasm of recipient PC12 cells was observed directly. In addition, several motion modes of exosomes were revealed by single particle tracking (SPT). The changes between motion modes were also detected, presenting the dynamic courses of exosome attachment onto plasma membrane and exosome uptake. Octadecyl rhodamine B chloride (R18) was found to be useful to distinguish endocytosis from fusion during exosome uptake. Colocalization with organelle markers showed exosomes were sorted to acidic vesicles after internalization. The results provide new sight into the exosome-cell interaction mode and the intercellular trafficking of exosomes. This study will help to understand the roles of exosomes at cell level.

  15. Proof of fatigue strength of ferritic and austenitic nuclear components

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Herter, K.H.; Schuler, X.; Weissenberg, T. [Materialpruefungsanstalt, Univ. Stuttgart (Germany)

    2009-07-01

    For the construction, design and operation of nuclear components and systems the appropriate technical codes and standards provide material data, detailed stress analysis procedures and a design philosophy which guarantees a reliable behaviour of the structural components throughout the specified lifetime. Especially for cyclic stress evaluation the different codes and standards provide different fatigue analyses procedures to be performed considering the various mechanical and thermal loading histories and geometric complexities of the components. For the fatigue design curves used as limiting criteria the influence of different factors like e.g., environment, surface finish and temperature must be taken into consideration in an appropriate way. Fatigue tests were performed with low alloy steels as well as with Nb- and Ti-stabilized German austenitic stainless steels in air and simulated high temperature boiling water reactor environment. The experimental results are compared and valuated with the mean data curves in air as well as with mean data curves under high temperature water environment published in the international literature. (orig.)

  16. SIMODIS - a software package for simulating nuclear reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine; Borges, Eduardo M. [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados. E-mail: guimarae@ieav.cta.br; Oliveira Junior, Nilton S.; Santos, Glauco S.; Bueno, Mariana F. [Universidade Bras Cubas, Mogi das Cruzes, SP (Brazil)

    2000-07-01

    In this paper it is presented the initial development effort in building a nuclear reactor component simulation package. This package was developed to be used in the MATLAB simulation environment. It uses the graphical capabilities from MATLAB and the advantages of compiled languages, as for instance FORTRAN and C{sup ++}. From the MATLAB it takes the facilities for better displaying the calculated results. From the compiled languages it takes processing speed. So far models from reactor core, UTSG and OTSG have been developed. Also, a series a user-friendly graphical interfaces have been developed for the above models. As a by product a set of water and sodium thermal and physical properties have been developed and may be used directly as a function from MATLAB, or by being called from a model, as part of its calculation process. The whole set was named SIMODIS, which stands for SIstema MODular Integrado de Simulacao. (author)

  17. Preloading of bolted connections in nuclear reactor component supports

    Energy Technology Data Exchange (ETDEWEB)

    Yahr, G T

    1984-10-01

    A number of failures of threaded fasteners in nuclear reactor component supports have been reported. Many of those failures were attributed to stress corrosion cracking. This report discusses how stress corrosion cracking can be avoided in bolting by controlling the maximum bolt preloads so that the sustained stresses in the bolts are below the level required to cause stress corrosion cracking. This is a basic departure from ordinary bolted joint design where the only limits on preload are on the minimum preload. Emphasis is placed on the importance of detailed analysis to determine the acceptable range of preload and the selection of a method for measuring the preload that is sufficiently accurate to ensure that the preload is actually within the acceptable range. Procedures for determining acceptable preload range are given, and the accuracy of various methods of measuring preload is discussed.

  18. Testing of Liquid Metal Components for Nuclear Surface Power Systems

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Godfroy, T. J.; Schoenfeld, M.; Webster, K.; Briggs, M. H.; Geng, S. M.; Adkins, H. E.; Werner, J. E.

    2010-01-01

    The capability to perform testing at both the module/component level and in near prototypic reactor configurations using a non-nuclear test methodology allowed for evaluation of two components critical to the development of a potential nuclear fission power system for the lunar surface. A pair of 1 kW Stirling power convertors, similar to the type that would be used in a reactor system to convert heat to electricity, were integrated into a reactor simulator system to determine their performance using pumped NaK as the hot side working fluid. The performance in the pumped-NaK system met or exceed the baseline performance measurements where the converters were electrically heated. At the maximum hot-side temperature of 550 C the maximum output power was 2375 watts. A specially-designed test apparatus was fabricated and used to quantify the performance of an annular linear induction pump that is similar to the type that could be used to circulate liquid metal through the core of a space reactor system. The errors on the measurements were generally much smaller than the magnitude of the measurements, permitting accurate performance evaluation over a wide range of operating conditions. The pump produced flow rates spanning roughly 0.16 to 5.7 l/s (2.5 to 90 GPM), and delta p levels from less than 1 kPa to 90 kPa (greater than 0.145 psi to roughly 13 psi). At the nominal FSP system operating temperature of 525 C the maximum efficiency was just over 4%.

  19. [The Functional Role of Exosomes in Cancer Biology and Their Potential as Biomarkers and Therapeutic Targets of Cancer].

    Science.gov (United States)

    Naito, Yutaka; Yoshioka, Yusuke; Ochiya, Takahiro

    2015-06-01

    Intercellular communication plays an important role in the regulation of various cellular events. In particular, cancer cells and the surrounding cells communicate with each other, and this intercellular communication triggers cancer initiation and progression through the secretion of molecules, including growth factors and cytokines. Recent advances in cancer biology have indicated that small membrane vesicles, termed exosomes, also serve as regulatory agents in intercellular communications. Exosomes contain functional cellular components, including proteins and microRNAs (miRNAs), and they transfer these components to recipient cells. This exosome-mediated intercellular communication leads to increased growth, invasion, and metastasis of cancer. Thus, researchers regard exosomes as important cues to understanding the molecular mechanisms of cancer biology. Indeed, several lines of evidence have demonstrated that exosomes can explain multiple aspects of cancer biology. In addition, increasing evidence suggests that exosomes and their specific molecules are also attractive for use as biomarkers and therapeutic targets in cancer. Recent reports showed the efficacy of a novel diagnosis by detecting component molecules of cancer-derived exosomes, including miRNAs and membrane proteins. Furthermore, clinical trials that test the application of exosomes for cancer therapy have already been reported. From these points of view, we will summarize experimental data that support the role of exosomes in cancer progression and the potential of exosomes for use in novel diagnostic and therapeutic approaches for cancer.

  20. 77 FR 39521 - Application for a License To Export Nuclear Reactor Major Components and Equipment

    Science.gov (United States)

    2012-07-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Application for a License To Export Nuclear Reactor Major Components and Equipment Pursuant to 10... Reactor internals, Components and For use in Braka nuclear power Company LLC reactor coolant equipment...

  1. 10 CFR 110.26 - General license for the export of nuclear reactor components.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license for the export of nuclear reactor components. 110.26 Section 110.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.26 General license for the export of nuclear...

  2. The exosome complex establishes a barricade to erythroid maturation

    Science.gov (United States)

    McIver, Skye C.; Kang, Yoon-A; DeVilbiss, Andrew W.; O’Driscoll, Chelsea A.; Ouellette, Jonathan N.; Pope, Nathaniel J.; Camprecios, Genis; Chang, Chan-Jung; Yang, David; Bouhassira, Eric E.; Ghaffari, Saghi

    2014-01-01

    Complex genetic networks control hematopoietic stem cell differentiation into progenitors that give rise to billions of erythrocytes daily. Previously, we described a role for the master regulator of erythropoiesis, GATA-1, in inducing genes encoding components of the autophagy machinery. In this context, the Forkhead transcription factor, Foxo3, amplified GATA-1–mediated transcriptional activation. To determine the scope of the GATA-1/Foxo3 cooperativity, and to develop functional insights, we analyzed the GATA-1/Foxo3-dependent transcriptome in erythroid cells. GATA-1/Foxo3 repressed expression of Exosc8, a pivotal component of the exosome complex, which mediates RNA surveillance and epigenetic regulation. Strikingly, downregulating Exosc8, or additional exosome complex components, in primary erythroid precursor cells induced erythroid cell maturation. Our results demonstrate a new mode of controlling erythropoiesis in which multiple components of the exosome complex are endogenous suppressors of the erythroid developmental program. PMID:25115889

  3. The characterization of exosome from blood plasma of patients with colorectal cancer

    Science.gov (United States)

    Yunusova, N. V.; Tamkovich, S. N.; Stakheeva, M. N.; Afanas'ev, S. G.; Frolova, A. Y.; Kondakova, I. V.

    2016-08-01

    Exosomes are extracellular membrane structures involved in many physiological and pathological processes including cancerogenesis and metastasis. The clarification of the criteria for exosome isolating and identifying is the purpose of this study. Exosome samples from the plasma of patients with colorectal cancer and healthy donors were examined using transmission electron microscopy and flow cytometry in accordance with the minimum requirements of "International Society for Extracellular Vesicles". The choice of the method for isolation of exosomes from the blood plasma by ultrafiltration and ultracentrifugation allowed obtaining highly purified samples of exosomes, in which all the structural components were clearly seen. The results obtained with flow cytometry suggest that exosomes of blood plasma from patients with colorectal cancer can be produced by epithelial cells. Moreover, cells produce different types of exosomes, which correspond to different mechanisms in sorting macromolecules in the membrane of multivesicular bodies. Determination of significant differences in the expression of specific exosomal proteins from colorectal cancer patients compared to healthy donors suggests a high diagnostic potential significance of circulating exosomes.

  4. The characterization of exosome from blood plasma of patients with colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yunusova, N. V., E-mail: Bochkarevanv@oncology.tomsk.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634009 (Russian Federation); Siberian State Medical University, Moskovsky Trakt 2, Tomsk, 634050 (Russian Federation); Tamkovich, S. N., E-mail: s.tamk@niboch.nsc.ru [Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue 8, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Pirogov Street 2, Novosibirsk, 630090 (Russian Federation); Stakheeva, M. N., E-mail: StakheyevaM@oncology.tomsk.ru; Afanas’ev, S. G., E-mail: Afanasievsg@oncology.tomsk.ru; Kondakova, I. V., E-mail: Kondakova@oncology.tomsk.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634009 (Russian Federation); Frolova, A. Y., E-mail: Frolovalenya@mail.ru [Siberian State Medical University, Moskovsky Trakt 2, Tomsk, 634050 (Russian Federation)

    2016-08-02

    Exosomes are extracellular membrane structures involved in many physiological and pathological processes including cancerogenesis and metastasis. The clarification of the criteria for exosome isolating and identifying is the purpose of this study. Exosome samples from the plasma of patients with colorectal cancer and healthy donors were examined using transmission electron microscopy and flow cytometry in accordance with the minimum requirements of “International Society for Extracellular Vesicles”. The choice of the method for isolation of exosomes from the blood plasma by ultrafiltration and ultracentrifugation allowed obtaining highly purified samples of exosomes, in which all the structural components were clearly seen. The results obtained with flow cytometry suggest that exosomes of blood plasma from patients with colorectal cancer can be produced by epithelial cells. Moreover, cells produce different types of exosomes, which correspond to different mechanisms in sorting macromolecules in the membrane of multivesicular bodies. Determination of significant differences in the expression of specific exosomal proteins from colorectal cancer patients compared to healthy donors suggests a high diagnostic potential significance of circulating exosomes.

  5. Nano-plasmonic exosome diagnostics

    OpenAIRE

    Im, Hyungsoon; Shao, Huilin; Weissleder, Ralph; Castro, Cesar M.; Lee, Hakho

    2015-01-01

    Exosomes have emerged as a promising biomarker. These vesicles abound in biofluids and harbor molecular constituents from their parent cells, thereby offering a minimally-invasive avenue for molecular analyses. Despite such clinical potential, routine exosomal analysis, particularly the protein assay, remains challenging, due to requirements for large sample volumes and extensive processing. We have been developing miniaturized systems to facilitate clinical exosome studies. These systems can...

  6. Maximizing exosome colloidal stability following electroporation.

    Science.gov (United States)

    Hood, Joshua L; Scott, Michael J; Wickline, Samuel A

    2014-03-01

    Development of exosome-based semisynthetic nanovesicles for diagnostic and therapeutic purposes requires novel approaches to load exosomes with cargo. Electroporation has previously been used to load exosomes with RNA. However, investigations into exosome colloidal stability following electroporation have not been considered. Herein, we report the development of a unique trehalose pulse media (TPM) that minimizes exosome aggregation following electroporation. Dynamic light scattering (DLS) and RNA absorbance were employed to determine the extent of exosome aggregation and electroextraction post electroporation in TPM compared to common PBS pulse media or sucrose pulse media (SPM). Use of TPM to disaggregate melanoma exosomes post electroporation was dependent on both exosome concentration and electric field strength. TPM maximized exosome dispersal post electroporation for both homogenous B16 melanoma and heterogeneous human serum-derived populations of exosomes. Moreover, TPM enabled heavy cargo loading of melanoma exosomes with 5nm superparamagnetic iron oxide nanoparticles (SPION5) while maintaining original exosome size and minimizing exosome aggregation as evidenced by transmission electron microscopy. Loading exosomes with SPION5 increased exosome density on sucrose gradients. This provides a simple, label-free means of enriching exogenously modified exosomes and introduces the potential for MRI-driven theranostic exosome investigations in vivo.

  7. Characterization of a "TRAMP-like" co-factor of the human RNA exosome

    DEFF Research Database (Denmark)

    Christensen, Marianne Skovgaard; Kristiansen, Maiken Søndergaard; Lubas, Michal Szymon

    exosome, the major 3’-5’ exonuclease complex in human cells. PROMPTs have a lot in common with the yeast Cryptic Unstable Transcripts (CUTs), which are degraded by the concerted effort of the exosome, and its co-factor complex TRAMP (Trf4p/Air1p/Mtr4p). We have identified human proteins with functional...... similarities to components of the yeast TRAMP complex, and show that these are involved in the degradation of PROMPTs. While, these proteins form transient complexes with the exosome, our preliminary results also indicate that complex formation can occur directly with catalytic components of the exosome......, serving to degrade PROMPTs in a core exosome independent manner....

  8. Seismic fragility of nuclear power plant components (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, K.K.; Hofmayer, C.H.; Kassir, M.K.; Pepper, S.E. (Brookhaven National Lab., Upton, NY (USA))

    1990-02-01

    As part of the Component Fragility Program which was initiated in FY 1985, three additional equipment classes have been evaluated. This report contains the fragility results and discussions on these equipment classes which are switchgear, I and C panels and relays. Both low and medium voltage switchgear assemblies have been considered and a separate fragility estimate for each type is provided. Test data on cabinets from the nuclear instrumentation/neutron monitoring system, plant/process protection system, solid state protective system and engineered safeguards test system comprise the BNL data base for I and C panels (NSSS). Fragility levels have been determined for various failure modes of switchgear and I C panels, and the deterministic results are presented in terms of test response spectra. In addition, the test data have been evaluated for estimating the respective probabilistic fragility levels which are expressed in terms of a median value, an uncertainty coefficient, a randomness coefficient and an HCLPF value. Due to a wide variation of relay design and the fragility level, a generic fragility level cannot be established for relays. 7 refs., 13 figs., 12 tabs.

  9. Exosome and Exosomal MicroRNA:Trafficking, Sorting, and Function

    Institute of Scientific and Technical Information of China (English)

    Jian Zhang; Sha Li; Lu Li; Meng Li; Chongye Guo; Jun Yao; Shuangli Mi

    2015-01-01

    Exosomes are 40–100 nm nano-sized vesicles that are released from many cell types into the extracellular space. Such vesicles are widely distributed in various body fluids. Recently, mRNAs and microRNAs (miRNAs) have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells. This suggests an active sort-ing mechanism of exosomal miRNAs, since the miRNA profiles of exosomes may differ from those of the parent cells. Exosomal miRNAs play an important role in disease progression, and can stimu-late angiogenesis and facilitate metastasis in cancers. In this review, we will introduce the origin and the trafficking of exosomes between cells, display current research on the sorting mechanism of exo-somal miRNAs, and briefly describe how exosomes and their miRNAs function in recipient cells. Finally, we will discuss the potential applications of these miRNA-containing vesicles in clinical settings.

  10. Exosome and exosomal microRNA: trafficking, sorting, and function.

    Science.gov (United States)

    Zhang, Jian; Li, Sha; Li, Lu; Li, Meng; Guo, Chongye; Yao, Jun; Mi, Shuangli

    2015-02-01

    Exosomes are 40-100 nm nano-sized vesicles that are released from many cell types into the extracellular space. Such vesicles are widely distributed in various body fluids. Recently, mRNAs and microRNAs (miRNAs) have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells. This suggests an active sorting mechanism of exosomal miRNAs, since the miRNA profiles of exosomes may differ from those of the parent cells. Exosomal miRNAs play an important role in disease progression, and can stimulate angiogenesis and facilitate metastasis in cancers. In this review, we will introduce the origin and the trafficking of exosomes between cells, display current research on the sorting mechanism of exosomal miRNAs, and briefly describe how exosomes and their miRNAs function in recipient cells. Finally, we will discuss the potential applications of these miRNA-containing vesicles in clinical settings.

  11. Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2015-02-01

    Full Text Available Exosomes are 40–100 nm nano-sized vesicles that are released from many cell types into the extracellular space. Such vesicles are widely distributed in various body fluids. Recently, mRNAs and microRNAs (miRNAs have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells. This suggests an active sorting mechanism of exosomal miRNAs, since the miRNA profiles of exosomes may differ from those of the parent cells. Exosomal miRNAs play an important role in disease progression, and can stimulate angiogenesis and facilitate metastasis in cancers. In this review, we will introduce the origin and the trafficking of exosomes between cells, display current research on the sorting mechanism of exosomal miRNAs, and briefly describe how exosomes and their miRNAs function in recipient cells. Finally, we will discuss the potential applications of these miRNA-containing vesicles in clinical settings.

  12. Cladding Effects on Structural Integrity of Nuclear Components

    Energy Technology Data Exchange (ETDEWEB)

    Sattari-Far, Iradi; Andersson, Magnus [lnspecta Technology AB, Stockholm (Sweden)

    2006-06-15

    measurement of different clad components. Measurement of cladding residual stresses in a decommissioned reactor pressure vessel head, which was exposed to service conditions (pressure test, temperature, neutron irradiation, etc.), and the results from the cladding in a cut-out-piece, which did not experience any service or test pressure, basically showed similar profiles. Considering the low scatter and the reproducible data, the hole-drilling technique is recommended in measurement of the peak of the cladding residual stresses. The profile and magnitude of the cladding residual stresses depend mainly upon cladding composition, cladding thickness, clad component geometry and clad component temperature. The peak of the cladding residual stresses is actually about 2-3 mm under the surface of the clad layer, and values in the range of 150 and 500 MPa are reported. Fracture assessments on different clad components at different loading conditions reveal that fracture assessments based on LEFM and ASME Kk curve lead to unrealistic conservative results, and the cladding residual stresses are of importance for surface crack behaviour, especially under cold loads. The NESC projects have shown that the Master Curve methodology can give good predictions of the conducted experiments. It is reasonable to assume a peak value of cladding residual stresses in the whole clad layer to be equal to the yield strength of the cladding material (around 300 MPa) at room temperature. Providing that the clad component has received PWHT, it can be assumed no residual stresses in the underlying base material. For the nuclear pressure vessel, it is also reasonable to assume that the cladding stress free temperature is at the operation temperature of the vessel (around 300 deg C). It has been shown that the cladding residual stresses have negligible influence on subclad crack behaviour in clad components (receiving PWHT). It has also been shown that the crack growth for subclad cracks would be towards the

  13. Application of a Persistent Heparin Treatment Inhibits the Malignant Potential of Oral Squamous Carcinoma Cells Induced by Tumor Cell-Derived Exosomes.

    Science.gov (United States)

    Sento, Shinya; Sasabe, Eri; Yamamoto, Tetsuya

    2016-01-01

    Exosomes are 30-100 nm-sized membranous vesicles, secreted from a variety of cell types into their surrounding extracellular space. Various exosome components including lipids, proteins, and nucleic acids are transferred to recipient cells and affect their function and activity. Numerous studies have showed that tumor cell-derived exosomes play important roles in tumor growth and progression. However, the effect of exosomes released from oral squamous cell carcinoma (OSCC) into the tumor microenvironment remains unclear. In the present study, we isolated exosomes from OSCC cells and investigated the influence of OSCC cell-derived exosomes on the tumor cell behavior associated with tumor development. We demonstrated that OSCC cell-derived exosomes were taken up by OSCC cells themselves and significantly promoted proliferation, migration, and invasion through the activation of the PI3K/Akt, MAPK/ERK, and JNK-1/2 pathways in vitro. These effects of OSCC cell-derived exosomes were obviously attenuated by treatment with PI3K, ERK-1/2, and JNK-1/2 pharmacological inhibitors. Furthermore, the growth rate of tumor xenografts implanted into nude mice was promoted by treatment with OSCC cell-derived exosomes. The uptake of exosomes by OSCC cells and subsequent tumor progression was abrogated in the presence of heparin. Taken together, these data suggest that OSCC cell-derived exosomes might be a novel therapeutic target and the use of heparin to inhibit the uptake of OSCC-derived exosomes by OSCC cells may be useful for treatment.

  14. Resolving sorting mechanisms into exosomes

    NARCIS (Netherlands)

    Stoorvogel, Willem

    2015-01-01

    The complexity of mechanisms driving protein sorting into exosomes is only beginning to emerge. In a paper recently published in Cell Research, Roucourt et al. report that trimming of heparan sulfate side chains of syndecans by endosomal heparanase facilitates sorting into exosomes by the formation

  15. Progress in Exosome Isolation Techniques

    Science.gov (United States)

    Li, Pin; Kaslan, Melisa; Lee, Sze Han; Yao, Justin; Gao, Zhiqiang

    2017-01-01

    Exosomes are one type of membrane vesicles secreted into extracellular space by most types of cells. In addition to performing many biological functions particularly in cell-cell communication, cumulative evidence has suggested that several biological entities in exosomes like proteins and microRNAs are closely associated with the pathogenesis of most human malignancies and they may serve as invaluable biomarkers for disease diagnosis, prognosis, and therapy. This provides a commanding impetus and growing demands for simple, efficient, and affordable techniques to isolate exosomes. Capitalizing on the physicochemical and biochemical properties of exosomes, a number of techniques have been developed for the isolation of exosomes. This article summarizes the advances in exosome isolation techniques with an emphasis on their isolation mechanism, performance, challenges, and prospects. We hope that this article will provide an overview of exosome isolation techniques, opening up new perspectives towards the development more innovative strategies and devices for more time saving, cost effective, and efficient isolations of exosomes from a wide range of biological matrices. PMID:28255367

  16. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2.

    Science.gov (United States)

    de Jong, Olivier G; van Balkom, Bas W M; Gremmels, Hendrik; Verhaar, Marianne C

    2016-02-01

    Exosomes are important mediators of intercellular communication. Additionally, they contain a variety of components capable of interacting with the extracellular matrix (ECM), including integrins, matrix metalloproteinases and members of the immunoglobin superfamily. Despite these observations, research on exosome-ECM interactions is limited. Here, we investigate whether the exosome-associated lysyl oxidase family member lysyl oxidase-like 2 (LOXL2) is involved in ECM remodelling. We found that LOXL2 is present on the exterior of endothelial cell (EC)-derived exosomes, placing it in direct vicinity of the ECM. It is up-regulated twofold in EC-derived exosomes cultured under hypoxic conditions. Intact exosomes from hypoxic EC and LOXL2 overexpressing EC show increased activity in a fluorometric lysyl oxidase enzymatic activity assay as well as in a collagen gel contraction assay. Concordantly, knockdown of LOXL2 in exosome-producing EC in both normal and hypoxic conditions reduces activity of exosomes in both assays. Our findings show for the first time that ECM crosslinking by EC-derived exosomes is mediated by LOXL2 under the regulation of hypoxia, and implicate a role for exosomes in hypoxia-regulated focal ECM remodelling, a key process in both fibrosis and wound healing.

  17. Can urinary exosomes act as treatment response markers in prostate cancer?

    Directory of Open Access Journals (Sweden)

    Tabi Zsuzsanna

    2009-01-01

    Full Text Available Abstract Background Recently, nanometer sized vesicles (termed exosomes have been described as a component of urine. Such vesicles may be a useful non-invasive source of markers in renal disease. Their utility as a source of markers in urological cancer remains unstudied. Our aim in this study was to investigate the feasibility and value of analysing urinary exosomes in prostate cancer patients undergoing standard therapy. Methods Ten patients (with locally advanced PCa provided spot urine specimens at three time points during standard therapy. Patients received 3–6 months neoadjuvant androgen deprivation therapy prior to radical radiotherapy, comprising a single phase delivering 55 Gy in 20 fractions to the prostate and 44 Gy in 20 fractions to the pelvic nodes. Patients were continued on adjuvant ADT according to clinical need. Exosomes were purified, and the phenotype compared to exosomes isolated from the prostate cancer cell line LNcaP. A control group of 10 healthy donors was included. Serum PSA was used as a surrogate treatment response marker. Exosomes present in urine were quantified, and expression of prostate markers (PSA and PSMA and tumour-associated marker 5T4 was examined. Results The quantity and quality of exosomes present in urine was highly variable, even though we handled all materials freshly and used methods optimized for obtaining highly pure exosomes. There was approx 2-fold decrease in urinary exosome content following 12 weeks ADT, but this was not sustained during radiotherapy. Nevertheless, PSA and PSMA were present in 20 of 24 PCa specimens, and not detected in healthy donor specimens. There was a clear treatment-related decrease in exosomal prostate markers in 1 (of 8 patient. Conclusion Evaluating urinary-exosomes remains difficult, given the variability of exosomes in urine specimens. Nevertheless, this approach holds promise as a non-invasive source of multiple markers of malignancy that could provide

  18. Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, T.J.; Long, K.S.; Sayre, J.A. [Sandia National Labs., Albuquerque, NM (United States); Hull, A.L. [Sandia National Labs., Livermore, CA (United States); Carey, D.A.; Sim, J.R.; Smith, M.G. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.

    1994-08-01

    The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

  19. Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, T.J.; Long, K.S.; Sayre, J.A. [Sandia National Labs., Albuquerque, NM (United States); Hull, A.L. [Sandia National Labs., Livermore, CA (United States); Carey, D.A.; Sim, J.R.; Smith, M.G. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.

    1994-08-01

    The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

  20. Innovations in the supply chain and construction engineering of nuclear-based heat transfer components

    Energy Technology Data Exchange (ETDEWEB)

    Perales, A. [Equipos Nucleares, S.A. - Ensa, Jose Ortega y Gasset, 28006 Madrid (Spain); Woolf, G. [Tecnicas Reunidas - TR, Arapiles, 28014 Madrid (Spain)

    2010-07-01

    Equipos Nucleares S.A. (Ensa) and Tecnicas Reunidas S.A. (TR), both long-established Spanish companies, have brought together innovative approaches for the supply of heat transfer solution packages by combining their respective experiences in heat exchanger design (TR), manufacturing (Ensa), and nuclear materials procurement (Ensa and TR), thereby founding a new potent European component supplier for nuclear power plants with over 50 years of experience in the global nuclear market. The combined strategy of the Ensa-TR association which addresses the problems currently faced by nuclear component suppliers is described herein. (authors)

  1. Coordinate regulation of residual bone marrow function by paracrine trafficking of AML exosomes.

    Science.gov (United States)

    Huan, J; Hornick, N I; Goloviznina, N A; Kamimae-Lanning, A N; David, L L; Wilmarth, P A; Mori, T; Chevillet, J R; Narla, A; Roberts, C T; Loriaux, M M; Chang, B H; Kurre, P

    2015-12-01

    We recently demonstrated that acute myeloid leukemia (AML) cell lines and patient-derived blasts release exosomes that carry RNA and protein; following an in vitro transfer, AML exosomes produce proangiogenic changes in bystander cells. We reasoned that paracrine exosome trafficking may have a broader role in shaping the leukemic niche. In a series of in vitro studies and murine xenografts, we demonstrate that AML exosomes downregulate critical retention factors (Scf, Cxcl12) in stromal cells, leading to hematopoietic stem and progenitor cell (HSPC) mobilization from the bone marrow. Exosome trafficking also regulates HSPC directly, and we demonstrate declining clonogenicity, loss of CXCR4 and c-Kit expression, and the consistent repression of several hematopoietic transcription factors, including c-Myb, Cebp-β and Hoxa-9. Additional experiments using a model of extramedullary AML or direct intrafemoral injection of purified exosomes reveal that the erosion of HSPC function can occur independent of direct cell-cell contact with leukemia cells. Finally, using a novel multiplex proteomics technique, we identified candidate pathways involved in the direct exosome-mediated modulation of HSPC function. In aggregate, this work suggests that AML exosomes participate in the suppression of residual hematopoietic function that precedes widespread leukemic invasion of the bone marrow directly and indirectly via stromal components.

  2. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation.

    Science.gov (United States)

    Yamashita, Takuma; Takahashi, Yuki; Nishikawa, Makiya; Takakura, Yoshinobu

    2016-01-01

    Exosomes, which are expected to be delivery systems for biomolecules such as nucleic acids, are collected by several methods. However, the effect of exosome isolation methods on the characteristics of exosomes as drug carriers, such as recovery efficiency after sterile filtration and pharmacokinetics, has not been investigated despite the importance of these characteristics for the development of exosome-based delivery systems. In the present study, exosomes collected from murine melanoma B16-BL6 cells by several methods were compared with respect to dispersibility, recovery rate after filtering, and clearance from the blood circulation in mice. The exosomes were collected by three ultracentrifugation-based methods: simple ultracentrifugation/pelleting (pelleting method), ultracentrifugation with an iodixanol cushion (cushion method), and ultracentrifugation on an iodixanol density gradient (gradient method). The isolation methods had little effect on the particle number of exosomes. In contrast, transmission electron microscopy observation and size distribution measurement using tunable resistive pulse sensing indicated that the exosomes of the gradient method were more dispersed than the others. The exosomes were labeled with Gaussia luciferase and intravenously injected into mice. Clearance of injected exosomes from the blood circulation did not significantly change with isolation methods. When the exosomes were filtered using a 0.2-μm filter, the recovery rate was 82% for the exosomes of the gradient method, whereas it was less than 50% for the others. These results indicate that the exosome isolation method markedly affects the dispersibility and filtration efficiency of the exosomes.

  3. Hydrogen Wave Heater for Nuclear Thermal Propulsion Component Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified Nuclear Thermal Propulsion (NTP) as a propulsion concept which could provide the fastest trip times to Mars and as the preferred concept for...

  4. Tetherin is an exosomal tether

    Science.gov (United States)

    Edgar, James R; Manna, Paul T; Nishimura, Shinichi; Banting, George; Robinson, Margaret S

    2016-01-01

    Exosomes are extracellular vesicles that are released when endosomes fuse with the plasma membrane. They have been implicated in various functions in both health and disease, including intercellular communication, antigen presentation, prion transmission, and tumour cell metastasis. Here we show that inactivating the vacuolar ATPase in HeLa cells causes a dramatic increase in the production of exosomes, which display endocytosed tracers, cholesterol, and CD63. The exosomes remain clustered on the cell surface, similar to retroviruses, which are attached to the plasma membrane by tetherin. To determine whether tetherin also attaches exosomes, we knocked it out and found a 4-fold reduction in plasma membrane-associated exosomes, with a concomitant increase in exosomes discharged into the medium. This phenotype could be rescued by wild-type tetherin but not tetherin lacking its GPI anchor. We propose that tetherin may play a key role in exosome fate, determining whether they participate in long-range or short-range interactions. DOI: http://dx.doi.org/10.7554/eLife.17180.001 PMID:27657169

  5. Exosome platform for diagnosis and monitoring of traumatic brain injury.

    Science.gov (United States)

    Taylor, Douglas D; Gercel-Taylor, Cicek

    2014-09-26

    We have previously demonstrated the release of membranous structures by cells into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. With activation, injury, stress, transformation or infection, cells express proteins and RNAs associated with the cellular responses to these events. The exosomes released by these cells can exhibit an array of proteins, lipids and nucleic acids linked to these physiologic events. This review focuses on exosomes associated with traumatic brain injury, which may be both diagnostic and a causative factor in the progression of the injury. Based on current data, exosomes play essential roles as conveyers of intercellular communication and mediators of many of the pathological conditions associated with development, progression and therapeutic failures and cellular stress in a variety of pathologic conditions. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodelling, signal pathway activation through growth factor/receptor transfer, chemoresistance, immunologic activation and genetic exchange. These circulating exosomes not only represent a central mediator of the pro-inflammatory microenvironment linked with secondary brain injury, but their presence in the peripheral circulation may serve as a surrogate for biopsies, enabling real-time diagnosis and monitoring of neurodegenerative progression.

  6. Medulloblastoma exosome proteomics yield functional roles for extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Laura M Epple

    Full Text Available Medulloblastomas are the most prevalent malignant pediatric brain tumors. Survival for these patients has remained largely the same for approximately 20 years, and our therapies for these cancers cause significant health, cognitive, behavioral and developmental sequelae for those who survive the tumor and their treatments. We obviously need a better understanding of the biology of these tumors, particularly with regard to their migratory/invasive behaviors, their proliferative propensity, and their abilities to deflect immune responses. Exosomes, virus-sized membrane vesicles released extracellularly from cells after formation in, and transit thru, the endosomal pathway, may play roles in medulloblastoma pathogenesis but are as yet unstudied in this disease. Here we characterized exosomes from a medulloblastoma cell line with biochemical and proteomic analyses, and included characterization of patient serum exosomes. Further scrutiny of the proteomic data suggested functional properties of the exosomes that are relevant to medulloblastoma tumor biology, including their roles as proliferation stimulants, their activities as attractants for tumor cell migration, and their immune modulatory impacts on lymphocytes. Aspects of this held true for exosomes from other medulloblastoma cell lines as well. Additionally, pathway analyses suggested a possible role for the transcription factor hepatocyte nuclear factor 4 alpha (HNF4A; however, inhibition of the protein's activity actually increased D283MED cell proliferation/clonogenecity, suggesting that HNF4A may act as a tumor suppressor in this cell line. Our work demonstrates that relevant functional properties of exosomes may be derived from appropriate proteomic analyses, which translate into mechanisms of tumor pathophysiology harbored in these extracellular vesicles.

  7. Free Extracellular miRNA Functionally Targets Cells by Transfecting Exosomes from Their Companion Cells.

    Directory of Open Access Journals (Sweden)

    Krzysztof Bryniarski

    Full Text Available Lymph node and spleen cells of mice doubly immunized by epicutaneous and intravenous hapten application produce a suppressive component that inhibits the action of the effector T cells that mediate contact sensitivity reactions. We recently re-investigated this phenomenon in an immunological system. CD8+ T lymphocyte-derived exosomes transferred suppressive miR-150 to the effector T cells antigen-specifically due to exosome surface coat of antibody light chains made by B1a lymphocytes. Extracellular RNA (exRNA is protected from plasma RNases by carriage in exosomes or by chaperones. Exosome transfer of functional RNA to target cells is well described, whereas the mechanism of transfer of exRNA free of exosomes remains unclear. In the current study we describe extracellular miR-150, extracted from exosomes, yet still able to mediate antigen-specific suppression. We have determined that this was due to miR-150 association with antibody-coated exosomes produced by B1a cell companions of the effector T cells, which resulted in antigen-specific suppression of their function. Thus functional cell targeting by free exRNA can proceed by transfecting companion cell exosomes that then transfer RNA cargo to the acceptor cells. This contrasts with the classical view on release of RNA-containing exosomes from the multivesicular bodies for subsequent intercellular targeting. This new alternate pathway for transfer of exRNA between cells has distinct biological and immunological significance, and since most human blood exRNA is not in exosomes may be relevant to evaluation and treatment of diseases.

  8. Pharmacokinetics of Exosomes-an Important Factor for Elucidating the Biological Roles of Exosomes and for the Development of Exosome-Based Therapeutics.

    Science.gov (United States)

    Morishita, Masaki; Takahashi, Yuki; Nishikawa, Makiya; Takakura, Yoshinobu

    2017-03-07

    Exosomes are small membrane vesicles containing lipids, proteins, and nucleic acids. Recently, researchers have uncovered that exosomes are involved in various biological events, such as tumor growth, metastasis, and the immune response, by delivering their cargos to exosome-receiving cells. Moreover, exosomes are expected to be employed in therapeutic treatments, such as tissue regeneration therapy and antitumor immunotherapy, since exosomes are effective delivery vehicles for proteins, nucleic acids, and other bioactive compounds. To elucidate the biological functions of exosomes, and for the development of exosome-based therapeutics, the pharmacokinetics of exosomes is important. In this review, we aim to summarize current knowledge about the pharmacokinetics and biodistribution of exosomes. The pharmacokinetics of exogenously administered exosomes is discussed based on the tissue distribution, types of cells taking up exosomes, and key molecules in the pharmacokinetics of exosomes. In addition, recent progress in the methods to control the pharmacokinetics of exosomes is reviewed.

  9. Exosomes in cancer: small particle, big player.

    Science.gov (United States)

    Zhang, Xu; Yuan, Xiao; Shi, Hui; Wu, Lijun; Qian, Hui; Xu, Wenrong

    2015-07-10

    Exosomes have emerged as a novel mode of intercellular communication. Exosomes can shuttle bioactive molecules including proteins, DNA, mRNA, as well as non-coding RNAs from one cell to another, leading to the exchange of genetic information and reprogramming of the recipient cells. Increasing evidence suggests that tumor cells release excessive amount of exosomes, which may influence tumor initiation, growth, progression, metastasis, and drug resistance. In addition, exosomes transfer message from tumor cells to immune cells and stromal cells, contributing to the escape from immune surveillance and the formation of tumor niche. In this review, we highlight the recent advances in the biology of exosomes as cancer communicasomes. We review the multifaceted roles of exosomes, the small secreted particles, in communicating with other cells within tumor microenvironment. Given that exosomes are cell type specific, stable, and accessible from body fluids, exosomes may provide promising biomarkers for cancer diagnosis and represent new targets for cancer therapy.

  10. Exosomes in cancer: small particle, big player

    OpenAIRE

    2015-01-01

    Exosomes have emerged as a novel mode of intercellular communication. Exosomes can shuttle bioactive molecules including proteins, DNA, mRNA, as well as non-coding RNAs from one cell to another, leading to the exchange of genetic information and reprogramming of the recipient cells. Increasing evidence suggests that tumor cells release excessive amount of exosomes, which may influence tumor initiation, growth, progression, metastasis, and drug resistance. In addition, exosomes transfer messag...

  11. Paracrine Induction of Endothelium by Tumor Exosomes

    OpenAIRE

    2009-01-01

    Cancers utilize a nanoscale messenger system known as exosomes to communicate with surrounding tissues and immune cells. However, the functional relationship between tumor exosomes, endothelial signaling, angiogenesis, and metastasis is poorly understood. Herein, we describe a standardized approach for defining the angiogenic potential of isolated exosomes. We created a powerful technique to rapidly and efficiently isolate and track exosomes for study using dynamic light scattering in conjunc...

  12. The potential of exosomes in diagnosis and treatment of inborn errors of metabolism.

    Science.gov (United States)

    van Balkom, Bas W M; van Doorn, Jaap; Verhoeven-Duif, Nanda M; Verhaar, Marianne C

    2014-07-01

    Extracellular vesicles, in particular exosomes, have gained much attention as potent mediators of intercellular signaling. Exosomes are 50-130 nm intraluminal vesicles of multivesicular bodies (MVB) that are secreted into the extracellular environment upon fusion of MVB with the plasma membrane. Current research on exosomes focuses on their biogenesis, including specific sorting mechanisms, their potential to transfer proteins and RNA from their cells of origin to target cells, specific methods of vesicle isolation, and their possible application as diagnostic and therapeutic devices. Exosomes are vesicles of endocytic origin that contain a portion of the cytoplasm. Their molecular components represent the composition and thereby the physiological state of the cells from which they originate. In this review, we recapitulate the discovery of exosomes and the subsequent expansion of exosome research into a variety of different areas of interest, with a specific focus on how exosomes could prove to be invaluable for both diagnostic and therapeutic applications within the research field of inborn errors of metabolism.

  13. AAGAG repeat RNA is an essential component of nuclear matrix in Drosophila.

    Science.gov (United States)

    Pathak, Rashmi U; Mamillapalli, Anitha; Rangaraj, Nandini; Kumar, Ram P; Vasanthi, Dasari; Mishra, Krishnaveni; Mishra, Rakesh K

    2013-04-01

    Eukaryotic nucleus is functionally as well as spatially compartmentalized and maintains dynamic organization of sub-nuclear bodies. This organization is supported by a non-chromatin nuclear structure called the nuclear matrix. Although the precise molecular composition and ultra-structure of the nuclear matrix is not known, proteins and RNA molecules are its major components and several nuclear matrix proteins have been identified. However, the nature of its RNA component is unknown. Here we show that in Drosophila melanogaster, transcripts from AAGAG repeats of several hundred nucleotide in length are critical constituents of the nuclear matrix. While both the strands of this repeat are transcribed and are nuclear matrix associated, the polypurine strand is predominantly detected in situ. We also show that AAGAG RNA is essential for viability. Our results reveal the molecular identity of a critical RNA component of the nuclear architecture and point to one of the utilities of the repetitive part of the genome that has accumulated in higher eukaryotes.

  14. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Kim, Young Hwan; Shin, Hyun Jae [Sungkwunkwan Univ., Seoul (Korea, Republic of); Lee, Hyang Beom [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan National Univ., Gunsan (Korea, Republic of); Chung, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of); Park, Ik Keun; Park, Eun Soo [Seoul National University of Technology, Seoul (Korea, Republic of)

    2001-03-15

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of nuclear power plant. In order to Improve reliabilities of ultrasonic testing and eddy current testing, the following five subjects were carried out in this study: development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field and evaluation of statistical reliability of PD-RR test of ultrasonic testing. As results, BEM analysis of eddy current signal, intelligent analysis of eddy current signal using neural network, and FEM analysis of remote field eddy current testing have been developed for the inspection of SG tubes. FEM analysis of ultrasonic waves in 2-dimensional media and evaluation of statistical reliability of ultrasonic testing with PD-RR test also have been carried out for the inspection of weldments. Those results can be used to Improve reliability of nondestructive testing.

  15. Dissecting mechanisms of nuclear mRNA surveillance in THO/sub2 complex mutants

    DEFF Research Database (Denmark)

    Rougemaille, Mathieu; Gudipati, Rajani Kanth; Olesen, Jens Raabjerg

    2007-01-01

    The nuclear exosome is involved in numerous RNA metabolic processes. Exosome degradation of rRNA, snoRNA, snRNA and tRNA in Saccharomyces cerevisiae is activated by TRAMP complexes, containing either the Trf4p or Trf5p poly(A) polymerase. These enzymes are presumed to facilitate exosome access...... by appending oligo(A)-tails onto structured substrates. Another role of the nuclear exosome is that of mRNA surveillance. In strains harboring a mutated THO/Sub2p system, involved in messenger ribonucleoprotein particle biogenesis and nuclear export, the exosome-associated 3' 5' exonuclease Rrp6p is required...

  16. Exosomes and Exosomal miRNA in Respiratory Diseases

    Science.gov (United States)

    Alipoor, Shamila D.; Garssen, Johan; Movassaghi, Masoud

    2016-01-01

    Exosomes are nanosized vesicles released from every cell in the body including those in the respiratory tract and lungs. They are found in most body fluids and contain a number of different biomolecules including proteins, lipids, and both mRNA and noncoding RNAs. Since they can release their contents, particularly miRNAs, to both neighboring and distal cells, they are considered important in cell-cell communication. Recent evidence has shown their possible importance in the pathogenesis of several pulmonary diseases. The differential expression of exosomes and of exosomal miRNAs in disease has driven their promise as biomarkers of disease enabling noninvasive clinical diagnosis in addition to their use as therapeutic tools. In this review, we summarize recent advances in this area as applicable to pulmonary diseases.

  17. Exosomes and Exosomal miRNA in Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Shamila D. Alipoor

    2016-01-01

    Full Text Available Exosomes are nanosized vesicles released from every cell in the body including those in the respiratory tract and lungs. They are found in most body fluids and contain a number of different biomolecules including proteins, lipids, and both mRNA and noncoding RNAs. Since they can release their contents, particularly miRNAs, to both neighboring and distal cells, they are considered important in cell-cell communication. Recent evidence has shown their possible importance in the pathogenesis of several pulmonary diseases. The differential expression of exosomes and of exosomal miRNAs in disease has driven their promise as biomarkers of disease enabling noninvasive clinical diagnosis in addition to their use as therapeutic tools. In this review, we summarize recent advances in this area as applicable to pulmonary diseases.

  18. Exosomes in the Immune Response and Tolerance

    Institute of Scientific and Technical Information of China (English)

    修方明; 曹雪涛

    2004-01-01

    Exosomes, secreted by many live cells, are small non-cell vesicles with nanoparticle-grade size. In addition to the original function of discarding the uselessful membrane molecules, exosomes are involved in a range of immunoregulatory functions. Dendritic cell-derived exosomes and tumor-derived exosomes are the best characterized vesicles with potent antitumor effect by efficienfly inducing immune response. Down-regtdation of immune response or induction of immune tolerance is another interesting function of exosomes, Further functional studies of the exosomes will shed light on the application of exosomes。

  19. Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions.

    Science.gov (United States)

    Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A; Brown, Elizabeth E; Sanderson, Ralph D

    2016-01-22

    Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.

  20. Study on the dynamic response analysis for evaluating the effectiveness of base isolation for nuclear components

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kazunari; Tsutsumi, Hideaki; Yamada, Hiroyuki; Ebisawa, Katsumi; Shibata, Katsuyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-07-01

    Introduction of the base isolation technique into the seismic design of nuclear power plant components as well as buildings has been expected as one of the effective countermeasure to reduce the seismic force applied to components. A research program on the base isolation of nuclear components has been carried out at the Japan Atomic Energy Research Institute (JAERI) since 1991. A methodology and a computer code (EBISA: Equipment Base Insolation System Analysis) for evaluating the failure frequency of the nuclear component with the base isolation were developed. In addition, a test program, which is concerned with the above development, aiming at improvement of failure frequency analysis models in the code has been conducted since 1996 to investigate the dynamic behavior and to verify the effectiveness of component base isolation systems. In the failure frequency analysis, methodology for evaluating the actual dynamic responses of the nuclear components with the base isolation in detail has been examined. In the methodology, the actual responses are computed by considering the scatter in mechanical properties of rock masses, reactor building and components under many earthquake motions with various frequency characteristics. The failure frequency of component is computed as the conditional probability where the actual response exceeds the capacity of components. It is a very important in the above methodology to investigates the dynamic response analysis method for the ground, reactor building and nuclear components as well as the scattering factors in the dynamic analysis. This report describes the accuracy of the dynamic response analysis method and analysis models, and the influence of scatters in properties of rock masses and reactor building on the dynamic response. (author)

  1. Transcriptome-wide analysis of alternative routes for RNA substrates into the exosome complex.

    Directory of Open Access Journals (Sweden)

    Clémentine Delan-Forino

    2017-03-01

    Full Text Available The RNA exosome complex functions in both the accurate processing and rapid degradation of many classes of RNA. Functional and structural analyses indicate that RNA can either be threaded through the central channel of the exosome or more directly access the active sites of the ribonucleases Rrp44 and Rrp6, but it was unclear how many substrates follow each pathway in vivo. We used CRAC (UV crosslinking and analysis of cDNA in growing cells to identify transcriptome-wide interactions of RNAs with the major nuclear exosome-cofactor Mtr4 and with individual exosome subunits (Rrp6, Csl4, Rrp41 and Rrp44 along the threaded RNA path. We compared exosome complexes lacking Rrp44 exonuclease activity, carrying a mutation in the Rrp44 S1 RNA-binding domain predicted to disfavor direct access, or with multiple mutations in Rrp41 reported to impede RNA access to the central channel in vitro. Preferential use of channel-threading was seen for mRNAs, 5S rRNA, scR1 (SRP and aborted tRNAs transcripts. Conversely, pre-tRNAs preferentially accessed Rrp44 directly. Both routes participated in degradation and maturation of RNAPI transcripts, with hand-over during processing. Rrp41 mutations blocked substrate passage through the channel to Rrp44 only for cytoplasmic mRNAs, supporting the predicted widening of the lumen in the Rrp6-associated, nuclear complex. Many exosome substrates exhibited clear preferences for a specific path to Rrp44. Other targets showed redundancy, possibly allowing the efficient handling of highly diverse RNA-protein complexes and RNA structures. Both threading and direct access routes involve the RNA helicase Mtr4. mRNAs that are predominately nuclear or cytoplasmic exosome substrates can be distinguished in vivo.

  2. Dissecting mechanisms of nuclear mRNA surveillance in THO/sub2 complex mutants

    DEFF Research Database (Denmark)

    Rougemaille, Mathieu; Gudipati, Rajani K; Olesen, Jens Raabjerg

    2007-01-01

    The nuclear exosome is involved in numerous RNA metabolic processes. Exosome degradation of rRNA, snoRNA, snRNA and tRNA in Saccharomyces cerevisiae is activated by TRAMP complexes, containing either the Trf4p or Trf5p poly(A) polymerase. These enzymes are presumed to facilitate exosome access...

  3. The RNA Exosome Channeling and Direct Access Conformations Have Distinct In Vivo Functions

    Directory of Open Access Journals (Sweden)

    Jaeil Han

    2016-09-01

    Full Text Available The RNA exosome is a 3′–5′ ribonuclease complex that is composed of nine core subunits and an essential catalytic subunit, Rrp44. Two distinct conformations of Rrp44 were revealed in previous structural studies, suggesting that Rrp44 may change its conformation to exert its function. In the channeling conformation, (Rrp44ch, RNA accesses the active site after traversing the central channel of the RNA exosome, whereas in the other conformation, (Rrp44da, RNA gains direct access to the active site. Here, we show that the Rrp44da exosome is important for nuclear function of the RNA exosome. Defects caused by disrupting the direct access conformation are distinct from those caused by channel-occluding mutations, indicating specific functions for each conformation. Our genetic analyses provide in vivo evidence that the RNA exosome employs a direct-access route to recruit specific substrates, indicating that the RNA exosome uses alternative conformations to act on different RNA substrates.

  4. Polycistronic trypanosome mRNAs are a target for the exosome

    Science.gov (United States)

    Kramer, Susanne; Piper, Sophie; Estevez, Antonio; Carrington, Mark

    2016-01-01

    Eukaryotic cells have several mRNA quality control checkpoints to avoid the production of aberrant proteins. Intron-containing mRNAs are actively degraded by the nuclear exosome, prevented from nuclear exit and, if these systems fail, degraded by the cytoplasmic NMD machinery. Trypanosomes have only two introns. However, they process mRNAs from long polycistronic precursors by trans-splicing and polycistronic mRNA molecules frequently arise from any missed splice site. Here, we show that RNAi depletion of the trypanosome exosome, but not of the cytoplasmic 5′-3′ exoribonuclease XRNA or the NMD helicase UPF1, causes accumulation of oligocistronic mRNAs. We have also revisited the localization of the trypanosome exosome by expressing eYFP-fusion proteins of the exosome subunits RRP44 and RRP6. Both proteins are significantly enriched in the nucleus. Together with published data, our data suggest a major nuclear function of the trypanosome exosome in rRNA, snoRNA and mRNA quality control. PMID:26946399

  5. Effects of embryo-derived exosomes on the development of bovine cloned embryos

    Science.gov (United States)

    Qu, Pengxiang; Qing, Suzhu; Liu, Ruiqi; Qin, Hongyu; Wang, Weiwei; Qiao, Fang; Ge, Hui; Liu, Jun; Zhang, Yong; Wang, Yongsheng

    2017-01-01

    The developmental competence of in vitro cultured (IVC) embryos is markedly lower than that of their in vivo counterparts, suggesting the need for optimization of IVC protocols. Embryo culture medium is routinely replaced three days after initial culture in bovine, however, whether this protocol is superior to continuous nonrenewal culture method under current conditions remains unclear. Using bovine somatic cell nuclear transfer (SCNT) embryos as the model, our results showed that compared with routine renewal treatment, nonrenewal culture system significantly improved blastocyst formation, blastocyst quality (increased total cell number, decreased stress and apoptosis, enhanced Oct-4 expression and ratio of ICM/TE), as well as following development to term. Existence and function of SCNT embryo-derived exosomes were then investigated to reveal the cause of impaired development induced by culture medium replacement. Exosomes were successfully isolated through differential centrifugation and identified by both electron microscopy and immunostaining against exosomal membrane marker CD9. Supplementation of extracted exosomes into freshly renewed medium significantly rescued not only blastocyst formation and quality (in vitro development), but also following growth to term (in vivo development). Notably, ratio of ICM/TE and calving rate were enhanced to a similar level as that in nonrenewal group. In conclusion, our results for the first time indicate that 1: bovine SCNT embryos can secrete exosomes into chemically defined culture medium during IVC; 2: secreted exosomes are essential for SCNT blastocyst formation, blastocyst quality, and following development to term; 3: removal of exosomes induced by culture medium replacement impairs SCNT embryo development, which can be avoided by nonrenewal culture procedure or markedly recovered by exosome supplementation. PMID:28350875

  6. Structural components of the nuclear body in nuclei of Allium cepa cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nuclear bodies have long been noted in interphase nuclei of plant cells,but their structural component,origin and function are still unclear by now.The present work showed in onion cells the nuclear bodies appeared as a spherical structure about 0.3 to 0.8 μm in diameter.They possibly were formed in nucleolus and subsequently released,and entered into nucleoplasm.Observation through cytochemical staining method at the ultrastructural level confirmed that nuclear bodies consisted of ribonucleoproteins (RNPs) and silver-stainable proteins.Immunocytochemical results revealed that nuclear bodies contained no DNA and ribosomal gene transcription factor (UBF).Based on these data,we suggested that nuclear bodies are not related to the ribosome or other gene transcription activities,instead they may act as subnuclear structures for RNPs transport from nucleolus to cytoplasm,and may also be involved in splicing of pre-mRNAs.

  7. Exosomes and Exosomal miRNA in Respiratory Diseases

    NARCIS (Netherlands)

    Alipoor, Shamila D.; Mortaz, Esmaeil; Garssen, Johan; Movassaghi, Masoud; Mirsaeidi, Mehdi; Adcock, Ian M.

    Exosomes are nanosized vesicles released from every cell in the body including those in the respiratory tract and lungs. They are found in most body fluids and contain a number of different biomolecules including proteins, lipids, and both mRNA and noncoding RNAs. Since they can release their

  8. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2

    NARCIS (Netherlands)

    de Jong, Olivier G.; van Balkom, Bas W M; Gremmels, Hendrik; Verhaar, Marianne C.

    2016-01-01

    Exosomes are important mediators of intercellular communication. Additionally, they contain a variety of components capable of interacting with the extracellular matrix (ECM), including integrins, matrix metalloproteinases and members of the immunoglobin superfamily. Despite these observations, rese

  9. A unique mechanism of nuclear division in Giardia lamblia involves components of the ventral disk and the nuclear envelope.

    Science.gov (United States)

    Solari, Alberto J; Rahn, Monica I; Saura, Alicia; Lujan, Hugo D

    2003-12-01

    The fine structure of the binucleate, parasitic protist Giardia lamblia during interphase and divisional stages was studied by serial thin sectioning and three-dimensional reconstructions. The earlier sign of nuclear division is the development of a few peripheral areas of densely packed chromatin directly attached to the inner nuclear envelope. An intracytoplasmic sheet of ventral disk components grows from the cell periphery towards one of the nuclei, apparently constricting this nucleus, which becomes located at a ventral bulge. After the basal bodies become duplicated, a full nuclear division occurs in trophozoites, giving two pairs of parent-daughter nuclei. This full division occurs in a dorsal-ventral direction, with the resulting nuclear pairs located at the sides of the two sets of basal bodies. A new ventral disk is formed from the disk-derived sheets in the cell harboring the four nuclei. Cytokinesis is polymorphic, but at early stages is dorsal-to-dorsal. Encysting trophozoites show the development of Golgi cisternae stacks and dense, specific secretory granules. 3-D reconstructions show that cysts contain a single pair of incompletely strangled nuclei. The dividing Giardia lacks a typical, microtubular spindle either inside or outside the nuclei. The nuclear envelope seems to be the only structure involved in the final division of the parent-daughter nuclei.

  10. Exosomes: Implications in HIV-1 Pathogenesis.

    Science.gov (United States)

    Madison, Marisa N; Okeoma, Chioma M

    2015-07-20

    Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission.

  11. Exosomes: Implications in HIV-1 Pathogenesis

    Directory of Open Access Journals (Sweden)

    Marisa N. Madison

    2015-07-01

    Full Text Available Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission.

  12. Structure and function of the archaeal exosome.

    Science.gov (United States)

    Evguenieva-Hackenberg, Elena; Hou, Linlin; Glaeser, Stefanie; Klug, Gabriele

    2014-01-01

    The RNA-degrading exosome in archaea is structurally very similar to the nine-subunit core of the essential eukaryotic exosome and to bacterial polynucleotide phosphorylase (PNPase). In contrast to the eukaryotic exosome, PNPase and the archaeal exosome exhibit metal ion-dependent, phosphorolytic activities and synthesize heteropolymeric RNA tails in addition to the exoribonucleolytic RNA degradation in 3' → 5' direction. The archaeal nine-subunit exosome consists of four orthologs of eukaryotic exosomal subunits: the RNase PH-domain-containing subunits Rrp41 and Rrp42 form a hexameric ring with three active sites, whereas the S1-domain-containing subunits Rrp4 and Csl4 form an RNA-binding trimeric cap on the top of the ring. In vivo, this cap contains Rrp4 and Csl4 in variable amounts. Rrp4 confers poly(A) specificity to the exosome, whereas Csl4 is involved in the interaction with the archaea-specific subunit of the complex, the homolog of the bacterial primase DnaG. The archaeal DnaG is a highly conserved protein and its gene is present in all sequenced archaeal genomes, although the exosome was lost in halophilic archaea and some methanogens. In exosome-containing archaea, DnaG is tightly associated with the exosome. It functions as an additional RNA-binding subunit with poly(A) specificity in the reconstituted exosome of Sulfolobus solfataricus and enhances the degradation of adenine-rich transcripts in vitro. Not only the RNA-binding cap but also the hexameric Rrp41-Rrp42 ring alone shows substrate selectivity and prefers purines over pyrimidines. This implies a coevolution of the exosome and its RNA substrates resulting in 3'-ends with different affinities to the exosome.

  13. Proteomic identification of proteins in exosomes of patients with atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    JIANG Mei; QUAN Jing; ZHANG Heng; DING Qian-qian; XIANG Meng; MENG Dan; SUN Ning; CHEN Si-feng

    2016-01-01

    AIM:Atherosclerosis primarily involved systemic arteries .Luminal surface , a monolayer of endothelial cells , of artery directly exposes to blood and is susceptible to active substances in the blood .Exosomes contain significantly amount of proteins and RNAs .Ex-osomes can be good and bad for cells , depending on their component .Thus, exosomes may contribute to atherosclerosis by affecting endothelial cells .This study analyzed the relationship of exosome proteins and atherosclerosis .METHODS: Fifty-six patients and healthy subjects were recruited and divided into two comparisons:healthy subjects vs atherosclerosis ( HS vs AS) , and hypertension vs hypertension plus atherosclerosis ( HT vs HT+AS) .Serum exosomes were decoded by protein mass spectrometry .The protein profile and function were analyzed by gene ontology ( GO) .RESULTS:It was found that five child terms repeatedly appeared in “response to stimulus” and “immune system process” of BP of the two categories ( HS vs AS and AS vs HT+AS):“positive regulation of innate immune response”,“immune response-activating signal transduction”,”activation of innate immune response”,“innate immune re-sponse-activating signal transduction” and “innate immune response activating cell surface receptor signaling pathway ”.Two child terms repeatedly showed in “binding” of MF of the two categories:“antigen binding” and “enzyme binding”.Two proteins, PSMA6 and PSMA7, were repeatedly shown in the two categories .CONCLUSION:GO analysis was utilized for structure hierarchy “tree” to illustrate these proteins involved in various terms in BP , CC and MF.The PPI analysis supplied proteins which may play potentially im-portant roles in AS process .Innate immune system and blood coagulation pathway contribute to AS formation .The proteins, PSMA6, PSMA7 and Annexin A2, may can be the new target proteins for prevention and treatment of AS .

  14. Seismic fragility of nuclear power plant components (Phase 2): A fragility handbook on eighteen components

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, K.K.; Hofmayer, C.H.; Kassir, M.K.; Shteyngart, S. (Brookhaven National Lab., Upton, NY (United States))

    1991-06-01

    Fragility estimates of seven equipment classes were published in earlier reports. This report presents fragility analysis results from eleven additional equipment categories. The fragility levels are expressed in probabilistic terms. For users' convenience, this concluding report includes a summary of fragility results of all eighteen equipment classes. A set of conversion factors based on judgment is recommended for use of the information for early vintage equipment. The knowledge gained in conducting the Component Fragility Program and similar other programs is expected to provide a new direction for seismic verification and qualification of equipment. 15 refs., 12 tabs.

  15. Exosome mediated communication within the tumor microenvironment.

    Science.gov (United States)

    Milane, Lara; Singh, Amit; Mattheolabakis, George; Suresh, Megha; Amiji, Mansoor M

    2015-12-10

    It is clear that exosomes (endosome derived vesicles) serve important roles in cellular communication both locally and distally and that the exosomal process is abnormal in cancer. Cancer cells are not malicious cells; they are cells that represent 'survival of the fittest' at its finest. All of the mutations, abnormalities, and phenomenal adaptations to a hostile microenvironment, such as hypoxia and nutrient depletion, represent the astute ability of cancer cells to adapt to their environment and to intracellular changes to achieve a single goal - survival. The aberrant exosomal process in cancer represents yet another adaptation that promotes survival of cancer. Cancer cells can secrete more exosomes than healthy cells, but more importantly, the content of cancer cells is distinct. An illustrative distinction is that exosomes derived from cancer cells contain more microRNA than healthy cells and unlike exosomes released from healthy cells, this microRNA can be associated with the RNA-induced silencing complex (RISC) which is required for processing mature and biologically active microRNA. Cancer derived exosomes have the ability to transfer metastatic potential to a recipient cell and cancer exosomes function in the physical process of invasion. In this review we conceptualize the aberrant exosomal process (formation, content selection, loading, trafficking, and release) in cancer as being partially attributed to cancer specific differences in the endocytotic process of receptor recycling/degradation and plasma membrane remodeling and the function of the endosome as a signaling entity. We discuss this concept and, to advance comprehension of exosomal function in cancer as mediators of communication, we detail and discuss exosome biology, formation, and communication in health and cancer; exosomal content in cancer; exosomal biomarkers in cancer; exosome mediated communication in cancer metastasis, drug resistance, and interfacing with the immune system; and

  16. Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology.

    Science.gov (United States)

    Gray, Warren D; French, Kristin M; Ghosh-Choudhary, Shohini; Maxwell, Joshua T; Brown, Milton E; Platt, Manu O; Searles, Charles D; Davis, Michael E

    2015-01-16

    Myocardial infarction is a leading cause of death in developed nations, and there remains a need for cardiac therapeutic systems that mitigate tissue damage. Cardiac progenitor cells (CPCs) and other stem cell types are attractive candidates for treatment of myocardial infarction; however, the benefit of these cells may be as a result of paracrine effects. We tested the hypothesis that CPCs secrete proregenerative exosomes in response to hypoxic conditions. The angiogenic and antifibrotic potential of secreted exosomes on cardiac endothelial cells and cardiac fibroblasts were assessed. We found that CPC exosomes secreted in response to hypoxia enhanced tube formation of endothelial cells and decreased profibrotic gene expression in TGF-β-stimulated fibroblasts, indicating that these exosomes possess therapeutic potential. Microarray analysis of exosomes secreted by hypoxic CPCs identified 11 miRNAs that were upregulated compared with exosomes secreted by CPCs grown under normoxic conditions. Principle component analysis was performed to identify miRNAs that were coregulated in response to distinct exosome-generating conditions. To investigate the cue-signal-response relationships of these miRNA clusters with a physiological outcome of tube formation or fibrotic gene expression, partial least squares regression analysis was applied. The importance of each up- or downregulated miRNA on physiological outcomes was determined. Finally, to validate the model, we delivered exosomes after ischemia-reperfusion injury. Exosomes from hypoxic CPCs improved cardiac function and reduced fibrosis. These data provide a foundation for subsequent research of the use of exosomal miRNA and systems biology as therapeutic strategies for the damaged heart. © 2014 American Heart Association, Inc.

  17. Exosomes: mediators of communication in eukaryotes.

    Science.gov (United States)

    Lopez-Verrilli, María A; Court, Felipe A

    2013-01-01

    In addition to the established mechanisms of intercellular signaling, a new way of communication has gained much attention in the last decade: communication mediated by exosomes. Exosomes are nanovesicles (with a diameter of 40-120 nm) secreted into the extracellular space by the multivesicular endosome after its outer membrane fuses with the plasma membrane. Once released, exosomes modulate the response of the recipient cells that recognize them. This indicates that exosomes operate in a specific manner and participate in the regulation of the target cell. Remarkably, exosomes occur from unicellular organisms to mammals, suggesting an evolutionarily conserved mechanism of communication. In this review we describe the cascade of exosome formation, intracellular traffic, secretion, and internalization by recipient cells, and review their most relevant effects. We also highlight important steps that are still poorly understood.

  18. Sorting it out: regulation of exosome loading.

    Science.gov (United States)

    Villarroya-Beltri, Carolina; Baixauli, Francesc; Gutiérrez-Vázquez, Cristina; Sánchez-Madrid, Francisco; Mittelbrunn, María

    2014-10-01

    Extracellular vesicles (EVs), a term that includes both exosomes of endocytic origin and vesicles derived from plasma membranes, are continuously secreted by cells to the extracellular environment, and represent a novel vehicle for cell-cell communication. Exosomes contain specific repertoires of proteins and RNAs, indicating the existence of mechanisms that control the sorting of molecules into them. Although the molecular mechanisms that regulate the loading of proteins into exosomes have been studied for years, the sorting of RNA has been elusive until recently. Here we review the molecular mechanisms that control the sorting of molecules into exosomes, with special attention to the sorting of RNA. We also discuss how the cellular context affects the composition of exosomes, and thus the outcome of the communication between the exosome-producer and recipient cells, with particular focus on the communication between tumor cells and with cells of the tumor microenvironment.

  19. The cardiovascular exosome: current perspectives and potential.

    Science.gov (United States)

    Cosme, Jake; Liu, Peter P; Gramolini, Anthony O

    2013-05-01

    The exosome is a secreted microvesicle that has been shown to contain genetic material and proteins and is involved in multiple levels of cellular communication. The cardiovascular exosome proteome is a promising subproteome that warrants investigation since a detailed understanding of its role in the heart should improve our comprehension of intercellular communication in the heart, and may even assist in biomarker discovery. Indeed, uncovering the role of the exosome in cardiovascular physiology could be accomplished with the application of scientific approaches and insights gained from studies of exosomes in other fields, such as cancer biology and immunology, where much of the established knowledge of the exosome has been generated. In the present review, we discuss the relevant literature and examine areas of investigation that would bring the cardiovascular exosome to the forefront of intercellular communication in the heart.

  20. Human T-lymphotropic Virus Type 1-infected Cells Secrete Exosomes That Contain Tax Protein*

    Science.gov (United States)

    Jaworski, Elizabeth; Narayanan, Aarthi; Van Duyne, Rachel; Shabbeer-Meyering, Shabana; Iordanskiy, Sergey; Saifuddin, Mohammed; Das, Ravi; Afonso, Philippe V.; Sampey, Gavin C.; Chung, Myung; Popratiloff, Anastas; Shrestha, Bindesh; Sehgal, Mohit; Jain, Pooja; Vertes, Akos; Mahieux, Renaud; Kashanchi, Fatah

    2014-01-01

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells. PMID:24939845

  1. RNA substrate length as an indicator of exosome interactions in vivo [version 2; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Clémentine Delan-Forino

    2017-07-01

    Full Text Available Background: The exosome complex plays key roles in RNA processing and degradation in Eukaryotes and Archaea. Outstanding structural studies identified multiple pathways for RNA substrates into the exosome in vitro, but identifying the pathway followed by individual RNA species in vivo remains challenging. Methods: We attempted to address this question using RNase protection. In vivo RNA-protein crosslinking (CRAC was applied to the exosome component Rrp44/Dis3, which has both endonuclease and exonuclease activity. During CRAC, the exosome was purified under native conditions and subjected to RNase digestion, prior to protein denaturation and cDNA cloning. The resulting high-throughput sequence reads were stratified by length of the cDNA sequence. This should reflect RNA fragment lengths, and therefore the RNA region that was protected by exosome binding. We anticipated major read lengths of ~30nt and ~10nt, reflecting the “central channel” and “direct access” routes to the Rrp44 exonuclease active site observed in vitro. Results: Unexpectedly, no clear peak was observed at 30nt, whereas a broad peak was seen around 20nt. The expected ~10nt peak was seen, and showed strong elevation in strains lacking exonuclease activity. Unexpectedly, this peak was suppressed by point mutations in the Rrp44 endonuclease active site. This indicates that the short fragments are degraded by the exonuclease activity of Rrp44, but also suggests that at least some may be generated by endonuclease activity. Conclusions: The absence of 30nt protected fragments may reflect obligatory binding of cofactors at the entrance to the exosome central channel in vivo. The presence of ~20nt fragments apparently indicates an access route not yet reported from in vitro studies. Confident mapping of 10nt reads is challenging, but they are clearly derived from a subset of exosome targets. In particular, pre-rRNA species, which are major exosome targets, are strongly

  2. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein.

    Science.gov (United States)

    Jaworski, Elizabeth; Narayanan, Aarthi; Van Duyne, Rachel; Shabbeer-Meyering, Shabana; Iordanskiy, Sergey; Saifuddin, Mohammed; Das, Ravi; Afonso, Philippe V; Sampey, Gavin C; Chung, Myung; Popratiloff, Anastas; Shrestha, Bindesh; Sehgal, Mohit; Jain, Pooja; Vertes, Akos; Mahieux, Renaud; Kashanchi, Fatah

    2014-08-08

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells.

  3. Lactation-related microRNA expression profiles of porcine breast milk exosomes.

    Directory of Open Access Journals (Sweden)

    Yiren Gu

    Full Text Available Breast milk is the primary source of nutrition for newborns, and is rich in immunological components. MicroRNAs (miRNAs are present in various body fluids and are selectively packaged inside the exosomes, a type of membrane vesicles, secreted by most cell types. These exosomal miRNAs could be actively delivered into recipient cells, and could regulate target gene expression and recipient cell function. Here, we analyzed the lactation-related miRNA expression profiles in porcine milk exosomes across the entire lactation period (newborn to 28 days after birth by a deep sequencing. We found that immune-related miRNAs are present and enriched in breast milk exosomes (p<10(-16, χ(2 test and are generally resistant to relatively harsh conditions. Notably, these exosomal miRNAs are present in higher numbers in the colostrums than in mature milk. It was higher in the serum of colostrum-only fed piglets compared with the mature milk-only fed piglets. These immune-related miRNA-loaded exosomes in breast milk may be transferred into the infant body via the digestive tract. These observations are a prelude to in-depth investigations of the essential roles of breast milk in the development of the infant's immune system.

  4. A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy.

    Science.gov (United States)

    Johnsen, Kasper Bendix; Gudbergsson, Johann Mar; Skov, Martin Najbjerg; Pilgaard, Linda; Moos, Torben; Duroux, Meg

    2014-08-01

    Exosomes denote a class of secreted nanoparticles defined by size, surface protein and lipid composition, and the ability to carry RNA and proteins. They are important mediators of intercellular communication and regulators of the cellular niche, and their altered characteristics in many diseases, such as cancer, suggest them to be important both for diagnostic and therapeutic purposes, prompting the idea of using exosomes as drug delivery vehicles, especially for gene therapy. This review covers the current status of evidence presented in the field of exosome-based drug delivery systems. Components for successful exosome-based drug delivery, such as choice of donor cell, therapeutic cargo, use of targeting peptide, loading method and administration route are highlighted and discussed with a general focus pertaining to the results obtained in models of different cancer types. In addition, completed and on-going clinical trials are described, evaluating exosome-based therapies for the treatment of different cancer types. Due to their endogenous origin, exosome-based drug delivery systems may have advantages in the treatment of cancer, but their design needs further refinement to justify their usage on the clinical scale.

  5. Exosomes derived from M. Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Pramod K Giri

    Full Text Available Activation of both CD4(+ and CD8(+ T cells is required for an effective immune response to an M. tuberculosis infection. However, infected macrophages are poor antigen presenting cells and may be spatially separated from recruited T cells, thus limiting antigen presentation within a granuloma. Our previous studies showed that infected macrophages release from cells small membrane-bound vesicles called exosomes which contain mycobacterial lipid components and showed that these exosomes could stimulate a pro-inflammatory response in naïve macrophages. In the present study we demonstrate that exosomes stimulate both CD4(+ and CD8(+ splenic T cells isolated from mycobacteria-sensitized mice. Although the exosomes contain MHC I and II as well as costimulatory molecules, maximum stimulation of T cells required prior incubation of exosomes with antigen presenting cells. Exosomes isolated from M. bovis and M. tuberculosis infected macrophages also stimulated activation and maturation of mouse bone marrow-derived dendritic cells. Interestingly, intranasal administration of mice with exosomes isolated from M. bovis BCG infected macrophages induce the generation of memory CD4(+ and CD8(+ T cells. The isolated T cells also produced IFN-gamma upon restimulation with BCG antigens. The release of exosomes from infected macrophages may overcome some of the defects in antigen presentation associated with mycobacterial infections and we suggest that exosomes may be a promising M. tuberculosis vaccine candidate.

  6. Next Generation Nuclear Plant Structures, Systems, and Components Safety Classification White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Pete Jordan

    2010-09-01

    This white paper outlines the relevant regulatory policy and guidance for a risk-informed approach for establishing the safety classification of Structures, Systems, and Components (SSCs) for the Next Generation Nuclear Plant and sets forth certain facts for review and discussion in order facilitate an effective submittal leading to an NGNP Combined Operating License application under 10 CFR 52.

  7. CORROSION ISSUES ASSOCIATED WITH AUSTENITIC STAINLESS STEEL COMPONENTS USED IN NUCLEAR MATERIALS EXTRACTION AND SEPARATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Louthan, M.; Sindelar, R.

    2012-12-17

    This paper illustrated the magnitude of the systems, structures and components used at the Savannah River Site for nuclear materials extraction and separation processes. Corrosion issues, including stress corrosion cracking, pitting, crevice corrosion and other corrosion induced degradation processes are discussed and corrosion mitigation strategies such as a chloride exclusion program and corrosion release testing are also discussed.

  8. Tumour exosome integrins determine organotropic metastasis.

    Science.gov (United States)

    Hoshino, Ayuko; Costa-Silva, Bruno; Shen, Tang-Long; Rodrigues, Goncalo; Hashimoto, Ayako; Tesic Mark, Milica; Molina, Henrik; Kohsaka, Shinji; Di Giannatale, Angela; Ceder, Sophia; Singh, Swarnima; Williams, Caitlin; Soplop, Nadine; Uryu, Kunihiro; Pharmer, Lindsay; King, Tari; Bojmar, Linda; Davies, Alexander E; Ararso, Yonathan; Zhang, Tuo; Zhang, Haiying; Hernandez, Jonathan; Weiss, Joshua M; Dumont-Cole, Vanessa D; Kramer, Kimberly; Wexler, Leonard H; Narendran, Aru; Schwartz, Gary K; Healey, John H; Sandstrom, Per; Labori, Knut Jørgen; Kure, Elin H; Grandgenett, Paul M; Hollingsworth, Michael A; de Sousa, Maria; Kaur, Sukhwinder; Jain, Maneesh; Mallya, Kavita; Batra, Surinder K; Jarnagin, William R; Brady, Mary S; Fodstad, Oystein; Muller, Volkmar; Pantel, Klaus; Minn, Andy J; Bissell, Mina J; Garcia, Benjamin A; Kang, Yibin; Rajasekhar, Vinagolu K; Ghajar, Cyrus M; Matei, Irina; Peinado, Hector; Bromberg, Jacqueline; Lyden, David

    2015-11-19

    Ever since Stephen Paget's 1889 hypothesis, metastatic organotropism has remained one of cancer's greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.

  9. Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young

    2007-12-15

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor.

  10. Murine Leukemia Virus Uses TREX Components for Efficient Nuclear Export of Unspliced Viral Transcripts

    Directory of Open Access Journals (Sweden)

    Toshie Sakuma

    2014-03-01

    Full Text Available Previously we reported that nuclear export of both unspliced and spliced murine leukemia virus (MLV transcripts depends on the nuclear export factor (NXF1 pathway. Although the mRNA export complex TREX, which contains Aly/REF, UAP56, and the THO complex, is involved in the NXF1-mediated nuclear export of cellular mRNAs, its contribution to the export of MLV mRNA transcripts remains poorly understood. Here, we studied the involvement of TREX components in the export of MLV transcripts. Depletion of UAP56, but not Aly/REF, reduced the level of both unspliced and spliced viral transcripts in the cytoplasm. Interestingly, depletion of THO components, including THOC5 and THOC7, affected only unspliced viral transcripts in the cytoplasm. Moreover, the RNA immunoprecipitation assay showed that only the unspliced viral transcript interacted with THOC5. These results imply that MLV requires UAP56, THOC5 and THOC7, in addition to NXF1, for nuclear export of viral transcripts. Given that naturally intronless mRNAs, but not bulk mRNAs, require THOC5 for nuclear export, it is plausible that THOC5 plays a key role in the export of unspliced MLV transcripts.

  11. Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model

    DEFF Research Database (Denmark)

    Özen, C.; Zinner, Nikolaj Thomas

    2014-01-01

    of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two......-component atomic fermi gas in a tight external trap can be mapped to the nuclear shell model so that readily available many-body techniques in nuclear physics, such as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the study of these systems. We demonstrate an application of the SMMC method...

  12. Ultrastructural Evidence of Exosome Secretion by Progenitor Cells in Adult Mouse Myocardium and Adult Human Cardiospheres

    Directory of Open Access Journals (Sweden)

    Lucio Barile

    2012-01-01

    Full Text Available The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34+ stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an “off-the-shelf” product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.

  13. Low pH increases the yield of exosome isolation.

    Science.gov (United States)

    Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2015-05-22

    Exosomes are the extracellular vesicles secreted by various cells. Exosomes mediate intercellular communication by delivering a variety of molecules between cells. Cancer cell derived exosomes seem to be related with tumor progression and metastasis. Tumor microenvironment is thought to be acidic and this low pH controls exosome physiology, leading to tumor progression. Despite the importance of microenvironmental pH on exosome, most of exosome studies have been performed without regard to pH. Therefore, the difference of exosome stability and yield of isolation by different pH need to be studied. In this research, we investigated the yield of total exosomal protein and RNA after incubation in acidic, neutral and alkaline conditioned medium. Representative exosome markers were investigated by western blot after incubation of exosomes in different pH. As a result, the concentrations of exosomal protein and nucleic acid were significantly increased after incubation in the acidic medium compared with neutral medium. The higher levels of exosome markers including CD9, CD63 and HSP70 were observed after incubation in an acidic environment. On the other hand, no exosomal protein, exosomal RNA and exosome markers have been detected after incubation in an alkaline condition. In summary, our results indicate that the acidic condition is the favorable environment for existence and isolation of exosomes.

  14. Influence of nuclear radiation and laser beams on optical fibers and components

    Directory of Open Access Journals (Sweden)

    Pantelić Slađana N.

    2011-01-01

    Full Text Available The influence of nuclear radiation and particles has been the object of investigation for a long time. For new materials and systems the research should be continued. Human activities in various environments, including space, call for more detailed research. The role of fibers in contemporary communications, medicine, and industry increases. Fibers, their connections and fused optics components have one type of tasks - the transmission of information and power. The other type of tasks is reserved for fiber lasers: quantum generators and amplifiers. The third type of tasks is for fiber sensors, including high energy nuclear physics. In this paper we present some chosen topics in the mentioned areas as well as our experiments with nuclear radiation and laser beams to fiber and bulk materials of various nature (glass, polymer, metallic, etc..

  15. Proteomic profiling of exosomes: Current perspectives

    DEFF Research Database (Denmark)

    Simpson, Richard J; Jensen, Søren S; Lim, Justin W E

    2008-01-01

    Exosomes are 40-100 nm membrane vesicles of endocytic origin secreted by most cell types in vitro. Recent studies have shown that exosomes are also found in vivo in body fluids such as blood, urine, amniotic fluid, malignant ascites, bronchoalveolar lavage fluid, synovial fluid, and breast milk...

  16. Exosomes and the kidney: blaming the messenger.

    Science.gov (United States)

    Fang, Doreen Yp; King, Hamish W; Li, Jordan Yz; Gleadle, Jonathan M

    2013-01-01

    Exosomes are membrane-bound vesicles of endosomal origin, present in a wide range of biological fluids, including blood and urine. They range between 30 and 100 nm in diameter, and consist of a limiting lipid bilayer, transmembrane proteins and a hydrophilic core containing proteins, mRNAs and microRNAs (miRNA). Exosomes can act as extracellular vehicles by which cells communicate, through the delivery of their functional cargo to recipient cells, with many important biological, physiological and pathological implications. The exosome release pathway contributes towards protein secretion, antigen presentation, pathogen transfer and cancer progression. Exosomes and exosome-mediated signalling have been implicated in disease processes such as atherosclerosis, calcification and kidney diseases. Circulating levels of exosomes and extracellular vesicles can be influenced by the progression of renal disease. Advances in methods for purification and analysis of exosomes are leading to potential diagnostic and therapeutic avenues for kidney diseases. This review will focus on biophysical properties and biogenesis of exosomes, their pathophysiological roles and their potential as biomarkers and therapeutics in kidney diseases.

  17. Development of a Versatile Ultrasonic Internal Pipe/Vessel Component Monitor for In-Service Inspection of Nuclear Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Searfass, Clifford T. [Structural Integrity Associates, Inc., State College, PA (United States); Malinowski, Owen M. [Structural Integrity Associates, Inc., State College, PA (United States); Van Velsor, Jason K. [Structural Integrity Associates, Inc., State College, PA (United States)

    2015-03-22

    The stated goal of this work was to develop a versatile system which could accurately measure vessel and valve internal vibrations and cavitation formation under in-service conditions in nuclear power plants, ultrasonically. The developed technology will benefit the nuclear power generation industry by allowing plant operators to monitor valve and vessel internals during operation. This will help reduce planned outages and plant component failures. During the course of this work, Structural Integrity Associates, Inc. gathered information from industry experts that target vibration amplitudes to be detected should be in the range of 0.001-in to 0.005-in (0.025-mm to 0.127-mm) and target vibration frequency ranges which should be detected were found to be between 0-Hz and 300-Hz. During the performed work, an ultrasonic measuring system was developed which utilized ultrasonic pulse-echo time-of-flight measurements to measure vibration frequency and amplitude. The developed system has been shown to be able to measure vibration amplitudes as low as 0.0008-in (0.020-mm) with vibration frequencies in the range of 17-Hz to 1000-Hz. Therefore, the developed system was able to meet the industry needs for vibration measurement. The developed ultrasonic system was also to be able to measure cavitation formation by monitoring the received ultrasonic time- and frequency-domain signals. This work also demonstrated the survivability of commercially available probes at temperatures up to 300-F for several weeks.

  18. Exosome Function: From Tumor Immunology to Pathogen Biology

    OpenAIRE

    Schorey, Jeffrey S; Bhatnagar, Sanchita

    2008-01-01

    Exosomes are the newest family member of ‘bioactive vesicles’ that function to promote intercellular communication. Exosomes are derived from the fusion of multi-vesicular bodies with the plasma membrane and extracellular release of the intraluminal vesicles. Recent studies have focused on the biogenesis and composition of exosomes as well as regulation of exosome release. Exosomes have been shown to be released by cells of hematopoietic and non-hematopoietic origin, yet their function remain...

  19. Cardiac myocyte exosomes: stability, HSP60, and proteomics.

    Science.gov (United States)

    Malik, Z A; Kott, K S; Poe, A J; Kuo, T; Chen, L; Ferrara, K W; Knowlton, A A

    2013-04-01

    Exosomes, which are 50- to 100-nm-diameter lipid vesicles, have been implicated in intercellular communication, including transmitting malignancy, and as a way for viral particles to evade detection while spreading to new cells. Previously, we demonstrated that adult cardiac myocytes release heat shock protein (HSP)60 in exosomes. Extracellular HSP60, when not in exosomes, causes cardiac myocyte apoptosis via the activation of Toll-like receptor 4. Thus, release of HSP60 from exosomes would be damaging to the surrounding cardiac myocytes. We hypothesized that 1) pathological changes in the environment, such as fever, change in pH, or ethanol consumption, would increase exosome permeability; 2) different exosome inducers would result in different exosomal protein content; 3) ethanol at "physiological" concentrations would cause exosome release; and 4) ROS production is an underlying mechanism of increased exosome production. We found the following: first, exosomes retained their protein cargo under different physiological/pathological conditions, based on Western blot analyses. Second, mass spectrometry demonstrated that the protein content of cardiac exosomes differed significantly from other types of exosomes in the literature and contained cytosolic, sarcomeric, and mitochondrial proteins. Third, ethanol did not affect exosome stability but greatly increased the production of exosomes by cardiac myocytes. Fourth, ethanol- and hypoxia/reoxygenation-derived exosomes had different protein content. Finally, ROS inhibition reduced exosome production but did not completely inhibit it. In conclusion, exosomal protein content is influenced by the cell source and stimulus for exosome formation. ROS stimulate exosome production. The functions of exosomes remain to be fully elucidated.

  20. Exosomes in development, metastasis and drug resistance of breast cancer

    OpenAIRE

    2015-01-01

    Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attent...

  1. Thread Inspection Manipulator for Primary Loop Components of VVER 1000/1200 Nuclear Power Plants

    OpenAIRE

    Rušev, Marko

    2014-01-01

    HRID developed special manipulator for inspection of different size of threads (M36, M48, M52, M60, M64, M100) on nuclear power plant (VVER 1000/1200) components with eddy current and ultrasonic methods. Manipulator is extremely easy to use reducing personnel time in radiation zone significantly. 95% of all assembling and disassembling activities can be performed manually without use of any tool. It allows quick inspection of threads with both methods in fully automatic mode.

  2. Organizing polarized delivery of exosomes at synapses.

    Science.gov (United States)

    Mittelbrunn, Maria; Vicente-Manzanares, Miguel; Sánchez-Madrid, Francisco

    2015-04-01

    Exosomes are extracellular vesicles that transport different molecules between cells. They are formed and stored inside multivesicular bodies (MVB) until they are released to the extracellular environment. MVB fuse along the plasma membrane, driving non-polarized secretion of exosomes. However, polarized signaling potentially directs MVBs to a specific point in the plasma membrane to mediate a focal delivery of exosomes. MVB polarization occurs across a broad set of cellular situations, e.g. in immune and neuronal synapses, cell migration and in epithelial sheets. In this review, we summarize the current state of the art of polarized MVB docking and the specification of secretory sites at the plasma membrane. The current view is that MVB positioning and subsequent exosome delivery requires a polarizing, cytoskeletal dependent-trafficking mechanism. In this context, we propose scenarios in which biochemical and mechanical signals could drive the polarized delivery of exosomes in highly polarized cells, such as lymphocytes, neurons and epithelia.

  3. Placental exosomes in normal and complicated pregnancy.

    Science.gov (United States)

    Mitchell, Murray D; Peiris, Hassendrini N; Kobayashi, Miharu; Koh, Yong Q; Duncombe, Gregory; Illanes, Sebastian E; Rice, Gregory E; Salomon, Carlos

    2015-10-01

    While there is considerable contemporary interest in elucidating the role of placenta-derived extracellular vesicles in normal and complicated pregnancies and their utility as biomarkers and therapeutic interventions, progress in the field is hindered by a lack of standardized extracellular vesicle taxonomy and isolation protocols. The term "extracellular vesicle" is nonspecific and refers to all membrane-bound vesicles from nanometer to micrometer diameters and of different biogenic origins. To meaningfully ascribe biological function and/or diagnostic and therapeutic utility to extracellular vesicles, and in particular exosomes, greater specificity and vesicle characterization is required. The current literature relating to exosome biology must be interpreted in this context. Exosomes are a subtype of extracellular vesicle that are specifically defined by an endosomal biogenesis and particle size (40-120 nm) and density (1.13-1.19 g/mL(-1)). Exosomes are specifically package with signaling molecules (including protein, messenger RNA, microRNA, and noncoding RNA) and are released by exocytosis into biofluid compartments. Exosomes regulate the activity of both proximal and distal target cells, including translational activity, angiogenesis, proliferation, metabolism, and apoptosis. As such, exosomal signaling represents an integral pathway mediating intercellular communication. During pregnancy, the placenta releases exosomes into the maternal circulation from as early as 6 weeks of gestation. Release is regulated by factors that include both oxygen tension and glucose concentration and correlates with placental mass and perfusion. The concentration of placenta-derived exosomes in maternal plasma increases progressively during gestation. Exosomes isolated from maternal plasma are bioactive in vitro and are incorporated into target cells by endocytosis. While the functional significance of placental exosomes in pregnancy remains to be fully elucidated, available

  4. Structure, dynamics, evolution, and function of a major scaffold component in the nuclear pore complex.

    Science.gov (United States)

    Sampathkumar, Parthasarathy; Kim, Seung Joong; Upla, Paula; Rice, William J; Phillips, Jeremy; Timney, Benjamin L; Pieper, Ursula; Bonanno, Jeffrey B; Fernandez-Martinez, Javier; Hakhverdyan, Zhanna; Ketaren, Natalia E; Matsui, Tsutomu; Weiss, Thomas M; Stokes, David L; Sauder, J Michael; Burley, Stephen K; Sali, Andrej; Rout, Michael P; Almo, Steven C

    2013-04-02

    The nuclear pore complex, composed of proteins termed nucleoporins (Nups), is responsible for nucleocytoplasmic transport in eukaryotes. Nuclear pore complexes (NPCs) form an annular structure composed of the nuclear ring, cytoplasmic ring, a membrane ring, and two inner rings. Nup192 is a major component of the NPC's inner ring. We report the crystal structure of Saccharomyces cerevisiae Nup192 residues 2-960 [ScNup192(2-960)], which adopts an α-helical fold with three domains (i.e., D1, D2, and D3). Small angle X-ray scattering and electron microscopy (EM) studies reveal that ScNup192(2-960) could undergo long-range transition between "open" and "closed" conformations. We obtained a structural model of full-length ScNup192 based on EM, the structure of ScNup192(2-960), and homology modeling. Evolutionary analyses using the ScNup192(2-960) structure suggest that NPCs and vesicle-coating complexes are descended from a common membrane-coating ancestral complex. We show that suppression of Nup192 expression leads to compromised nuclear transport and hypothesize a role for Nup192 in modulating the permeability of the NPC central channel.

  5. Exosomal HIF1α supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes.

    Science.gov (United States)

    Aga, M; Bentz, G L; Raffa, S; Torrisi, M R; Kondo, S; Wakisaka, N; Yoshizaki, T; Pagano, J S; Shackelford, J

    2014-09-11

    It has emerged recently that exosomes are potential carriers of pro-tumorigenic factors that participate in oncogenesis. However, whether oncogenic transcription factors are transduced by exosomes is unknown. Hypoxia-inducible factor-1α (HIF1α) transcriptionally regulates numerous key aspects of tumor development and progression by promoting a more aggressive tumor phenotype, characterized by increased proliferation and invasiveness coupled with neoangiogenesis. It has been shown that the principal oncoprotein of Epstein-Barr virus (EBV), latent membrane protein 1 (LMP1), drives oncogenic processes and tumor progression of the highly invasive EBV malignancy, nasopharyngeal carcinoma (NPC). We now demonstrate that endogenous HIF1α is detectable in exosomes and that LMP1 significantly increases levels of HIF1α in exosomes. HIF1 recovered from exosomes retains DNA-binding activity and is transcriptionally active in recipient cells after exosome uptake. We also show that treatment of EBV-negative cells with LMP1-exosomes increases migration and invasiveness of NP cell lines in functional assays, which correlates with the phenotype associated with epithelial-mesenchymal transition (EMT). In addition, we provide evidence that HIF1α itself participates in exosome-mediated pro-metastatic effects in recipient cells, as exosome-mediated delivery of active and inactive forms of HIF1α results in reciprocal changes in the expression of E- and N-cadherins associated with EMT. Further, immunohistochemical analysis of NPC tumor tissues revealed direct correlation between protein levels of LMP1 and of the endosome/exosome marker tetraspanin, CD63, which suggests an increase in exosome formation in this EBV-positive malignancy. We hypothesize that exosome-mediated transfer of functional pro-metastatic factors by LMP1-positive NPC cells to surrounding tumor cells promotes cancer progression.

  6. Exosomes: the ideal nanovectors for biodelivery.

    Science.gov (United States)

    Fais, Stefano; Logozzi, Mariantonia; Lugini, Luana; Federici, Cristina; Azzarito, Tommaso; Zarovni, Natasa; Chiesi, Antonio

    2013-01-01

    Nanomedicine aims to exploit the improved and often novel physical, chemical, and biological properties of materials at the nanometric scale, possibly with the highest level of biomimetism, an approach that simulates what occurs in nature. Although extracellularly released vesicles include both microvesicles (MVs) and exosomes, only exosomes have the size that may be considered suitable for potential use in nanomedicine. In fact, recent reports have shown that exosomes are able to interact with target cells within an organ or at a distance using different mechanisms. Much is yet to be understood about exosomes, and currently, we are looking at the visible top of an iceberg, with most of what we have to understand on these nanovesicles still under the sea. In fact, we know that exosomes released by normal cells always trigger positive effects, whereas those released by cells in pathological condition, such as tumor or infected cells, may induce undesired, dangerous, and mostly unknown effects, but we cannot exclude the possibility that exosomes may also be detrimental for the body in normal conditions. However, whether we consider extracellular vesicles as a whole, thus including MVs, it appears that even in normal conditions, extracellular vesicles may lead to unwanted effects, depending on gender and age. This review aims to critically emphasize existing data in the literature that support the possible roles of exosomes in both diagnostic and therapeutic scopes.

  7. Predictive based monitoring of nuclear plant component degradation using support vector regression

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Human Factors, Controls, Statistics; Alamaniotis, Miltiadis [Purdue Univ., West Lafayette, IN (United States). School of Nuclear Engineering; Tsoukalas, Lefteri H. [Purdue Univ., West Lafayette, IN (United States). School of Nuclear Engineering

    2015-02-01

    Nuclear power plants (NPPs) are large installations comprised of many active and passive assets. Degradation monitoring of all these assets is expensive (labor cost) and highly demanding task. In this paper a framework based on Support Vector Regression (SVR) for online surveillance of critical parameter degradation of NPP components is proposed. In this case, on time replacement or maintenance of components will prevent potential plant malfunctions, and reduce the overall operational cost. In the current work, we apply SVR equipped with a Gaussian kernel function to monitor components. Monitoring includes the one-step-ahead prediction of the component’s respective operational quantity using the SVR model, while the SVR model is trained using a set of previous recorded degradation histories of similar components. Predictive capability of the model is evaluated upon arrival of a sensor measurement, which is compared to the component failure threshold. A maintenance decision is based on a fuzzy inference system that utilizes three parameters: (i) prediction evaluation in the previous steps, (ii) predicted value of the current step, (iii) and difference of current predicted value with components failure thresholds. The proposed framework will be tested on turbine blade degradation data.

  8. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice.

    Science.gov (United States)

    Geiger, Adolf; Walker, Audrey; Nissen, Erwin

    2015-11-13

    Diabetic ulcers represent a substantial societal and healthcare burden worldwide and scarcely respond to current treatment strategies. This study was addressed to evaluate the therapeutic potential of exosomes secreted by human circulating fibrocytes, a population of mesenchymal progenitors involved in normal wound healing via paracrine signaling. The exosomes released from cells sequentially stimulated with platelet-derived growth factor-BB and transforming growth factor-β1, in the presence of fibroblast growth factor 2, did not show potential immunogenicity. These exosomes exhibited in-vitro proangiogenic properties, activated diabetic dermal fibroblasts, induced the migration and proliferation of diabetic keratinocytes, and accelerated wound closure in diabetic mice in vivo. Important components of the exosomal cargo were heat shock protein-90α, total and activated signal transducer and activator of transcription 3, proangiogenic (miR-126, miR-130a, miR-132) and anti-inflammatory (miR124a, miR-125b) microRNAs, and a microRNA regulating collagen deposition (miR-21). This proof-of-concept study demonstrates the feasibility of the use of fibrocytes-derived exosomes for the treatment of diabetic ulcers.

  9. Exosomes function in antigen presentation during an in vivo Mycobacterium tuberculosis infection

    Science.gov (United States)

    Smith, Victoria L.; Cheng, Yong; Bryant, Barry R.; Schorey, Jeffrey S.

    2017-01-01

    Mycobacterium tuberculosis-infected macrophages and dendritic cells are limited in their ability to present antigen to CD4+ T cells suggesting that other mechanism of antigen presentation are driving the robust T cell response observed during an M. tuberculosis infection. These mechanisms could include antigens present in apoptotic bodies, necrotic debris, exosomes or even release of non-vesicular antigen from infected cells. However, there is limited data to support any of these mechanisms as important in driving T cell activation in vivo. In the present study we use Rab27a-deficient mice which show diminished trafficking of mycobacterial components to exosomes as well as M. tuberculosis strains that express recombinant proteins which traffic or fail to traffic to exosomes. We observed that exosomes released during a mouse M. tuberculosis infection contribute significantly to its T cell response. These finding imply that exosomes function to promote T cell immunity during a bacterial infection and are an important source of extracellular antigen. PMID:28262829

  10. Stabilization of exosome-targeting peptides via engineered glycosylation.

    Science.gov (United States)

    Hung, Michelle E; Leonard, Joshua N

    2015-03-27

    Exosomes are secreted extracellular vesicles that mediate intercellular transfer of cellular contents and are attractive vehicles for therapeutic delivery of bimolecular cargo such as nucleic acids, proteins, and even drugs. Efficient exosome-mediated delivery in vivo requires targeting vesicles for uptake by specific recipient cells. Although exosomes have been successfully targeted to several cellular receptors by displaying peptides on the surface of the exosomes, identifying effective exosome-targeting peptides for other receptors has proven challenging. Furthermore, the biophysical rules governing targeting peptide success remain poorly understood. To evaluate one factor potentially limiting exosome delivery, we investigated whether peptides displayed on the exosome surface are degraded during exosome biogenesis, for example by endosomal proteases. Indeed, peptides fused to the N terminus of exosome-associated transmembrane protein Lamp2b were cleaved in samples derived from both cells and exosomes. To suppress peptide loss, we engineered targeting peptide-Lamp2b fusion proteins to include a glycosylation motif at various positions. Introduction of this glycosylation motif both protected the peptide from degradation and led to an increase in overall Lamp2b fusion protein expression in both cells and exosomes. Moreover, glycosylation-stabilized peptides enhanced targeted delivery of exosomes to neuroblastoma cells, demonstrating that such glycosylation does not ablate peptide-target interactions. Thus, we have identified a strategy for achieving robust display of targeting peptides on the surface of exosomes, which should facilitate the evaluation and development of new exosome-based therapeutics.

  11. Security Hardened Cyber Components for Nuclear Power Plants: Phase I SBIR Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Franusich, Michael D. [SpiralGen, Inc., Pittsburgh, PA (United States)

    2016-03-18

    SpiralGen, Inc. built a proof-of-concept toolkit for enhancing the cyber security of nuclear power plants and other critical infrastructure with high-assurance instrumentation and control code. The toolkit is based on technology from the DARPA High-Assurance Cyber Military Systems (HACMS) program, which has focused on applying the science of formal methods to the formidable set of problems involved in securing cyber physical systems. The primary challenges beyond HACMS in developing this toolkit were to make the new technology usable by control system engineers and compatible with the regulatory and commercial constraints of the nuclear power industry. The toolkit, packaged as a Simulink add-on, allows a system designer to assemble a high-assurance component from formally specified and proven blocks and generate provably correct control and monitor code for that subsystem.

  12. User centered design of a digital procedure guidance component for nuclear power plant operation

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Paulo V.R. de; Santos, Isaac L. dos; Oliveira, Mauro V. de; Grecco, Claudio H.S.; Mol, Antonio C. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mails: paulov@ien.gov.br; luquetti@ien.gov.br; mvitor@ien.gov.br; grecco@ien.gov.br; mol@ien.gov.br

    2007-07-01

    The use of nuclear power plants to produce electric energy is a safety-critical process where ultimate operational decisions still relies with the control room operators. Thus it is important to provide the best possible decision support through effective supervisory control interfaces. A user centered design approach, based on cognitive task analysis methods, was used to observe the operators training on the nuclear power plant simulator of the Human System Interface Laboratory (LABIHS). We noted deficiencies in the integration between the computerized interfaces and the hardcopy (paper) procedures. An new prototype of digital procedures - the digital procedure component guidance (PCG) - was designed in PowerPoint as an alternative to the current hardcopy procedure manuals. The design improves upon the graphical layout of system information and provides better integration of procedures, automation, and alarm systems. The design was validated by expert opinion and a scenario-based comparison. Future implementation and testing of the redesign is suggested for further validation. (author)

  13. Progress of a research program on seismic base isolation of nuclear components

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, K.; Ando, K.; Shibata, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)

    2000-05-01

    Development of an evaluation code and related test program have been conducted to provide the technical base of the seismic base isolation of nuclear components. In the Phase I (FY1991-FY1995) of the research, a methodology and a computer code Ver.1 for evaluating the effect of seismic base isolation of nuclear components were developed. Case study was carried out on the effectiveness of base isolation of emergency transformer. Difference of input earthquake motion, type of isolation device and influence of the soil property were studied. Case study of a cost/benefit analysis in introducing the base isolation to emergency transformer was tried as an application of the computer code. As the Phase II (FY1996-FY2000), in order to obtain the test data of component base isolation systems, a verification test program, in which the test utilizing the real earthquake and the test by a shaking table are to be carried out, has been initiated since FY1996. In the tests, dynamic response and failure mode of base isolation systems will be examined. This paper overviews the progress of Phase I and II researches. (orig.)

  14. More Than Tiny Sacks: Stem Cell Exosomes as Cell-Free Modality for Cardiac Repair.

    Science.gov (United States)

    Kishore, Raj; Khan, Mohsin

    2016-01-22

    Stem cell therapy provides immense hope for regenerating the pathological heart, yet has been marred by issues surrounding the effectiveness, unclear mechanisms, and survival of the donated cell population in the ischemic myocardial milieu. Poor survival and engraftment coupled to inadequate cardiac commitment of the adoptively transferred stem cells compromises the improvement in cardiac function. Various alternative approaches to enhance the efficacy of stem cell therapies and to overcome issues with cell therapy have been used with varied success. Cell-free components, such as exosomes enriched in proteins, messenger RNAs, and miRs characteristic of parental stem cells, represent a potential approach for treating cardiovascular diseases. Recently, exosomes from different kinds of stem cells have been effectively used to promote cardiac function in the pathological heart. The aim of this review is to summarize current research efforts on stem cell exosomes, including their potential benefits and limitations to develop a potentially viable therapy for cardiovascular problems.

  15. FUSION NUCLEAR SCIENCE FACILITY (FNSF) BEFORE UPGRADE TO COMPONENT TEST FACILITY (CTF)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yueng Kay Martin [ORNL; Canik, John [ORNL; Diem, Stephanie J [ORNL; Milora, Stanley L [ORNL; Park, J. M. [Oak Ridge National Laboratory (ORNL); Sontag, Aaron C [ORNL; Fogarty, P. J. [Oak Ridge National Laboratory (ORNL); Lumsdaine, Arnold [ORNL; Murakami, Masanori [ORNL; Burgess, Thomas W [ORNL; Cole, Michael J [ORNL; Katoh, Yutai [ORNL; Korsah, Kofi [ORNL; Patton, Bradley D [ORNL; Wagner, John C [ORNL; Yoder, III, Graydon L [ORNL

    2011-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, and understand the complex challenges of fusion plasma material interactions, nuclear material interactions, tritium fuel management, and power extraction. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode, Q<1)), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of ~19 MW. If and when this research is successful, its performance can be extended to 1 MW/m2 and ~76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate-plasmas are used to minimize or eliminate plasma-induced disruptions, to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all internal components using remote handling (RH). This in turn requires modular designs for the internal components, including the single-turn toroidal field coil center-post. These device goals would further dictate placement of support structures and vacuum weld seals behind the internal and shielding components. If these goals could be achieved, the FNSF would further provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, for 6 MW-yr/m2 and 30% duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF would thereby complement the ITER Program, and support and help mitigate the risks of an aggressive world fusion DEMO R&D Program. The key physics and technology research needed in the next decade to manage the potential risks of this FNSF are identified.

  16. Bayesian Zero-Failure (BAZE) reliability demonstration testing procedure for components of nuclear reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Waller, R.A.

    1977-06-01

    A Bayesian-Zero-Failure (BAZE) reliability demonstration testing procedure is presented. The method is developed for an exponential failure-time model and a gamma prior distribution on the failure-rate. A simple graphical approach using percentiles is used to fit the prior distribution. The procedure is given in an easily applied step-by-step form which does not require the use of a computer for its implementation. The BAZE approach is used to obtain sample test plans for selected components of nuclear reactor safety systems.

  17. Functional Roles and Therapeutic Applications of Exosomes in Hepatocellular Carcinoma.

    Science.gov (United States)

    Santangelo, Laura; Battistelli, Cecilia; Montaldo, Claudia; Citarella, Franca; Strippoli, Raffaele; Cicchini, Carla

    2017-01-01

    Exosomes are important in intercellular communication. They assure the horizontal transfer of specific functional contents (i.e., proteins, lipids, RNA molecules, and circulating DNA) from donor to recipient cells. Notably, tumor-derived exosomes (TDEs) appear to be an important vehicle of specific signals in cancer, impacting on tumor growth and metastasis. Recent researches point to the characterization of exosomes in Hepatocellular Carcinoma (HCC), the major adult liver malignancy. In this review, we summarize current findings on HCC exosomes, focusing on the identification of noncoding RNAs as exosome-enriched functional regulators and new potential biomarkers. The great potential of exosomes in future HCC diagnostic and therapeutic approaches is underlined.

  18. Localization of nuclear retained mRNAs in Saccharomyces cerevisiae

    Science.gov (United States)

    THOMSEN, RUNE; LIBRI, DOMENICO; BOULAY, JOCELYNE; ROSBASH, MICHAEL; JENSEN, TORBEN HEICK

    2003-01-01

    In the yeast Saccharomyces cerevisiae, a common conditional phenotype associated with deletion or mutation of genes encoding mRNA export factors is the rapid accumulation of mRNAs in intranuclear foci, suggested to be near transcription sites. The nuclear RNA exosome has been implicated in retaining RNAs in these foci; on deletion of the exosome component Rrp6p, the RNA is released. To determine the exact nuclear location of retained as well as released mRNAs, we have used mRNA export mutant strains to analyze the spatial relationship between newly synthesized heat shock mRNA, the chromosomal site of transcription, and known S. cerevisiae nuclear structures such as the nucleolus and the nucleolar body. Our results show that retained SSA4 RNA localizes to an area in close proximity to the SSA4 locus. On deletion of Rrp6p and release from the genomic locus, heat shock mRNAs produced in the rat7–1 strain colocalize predominantly with nucleolar antigens. Bulk poly(A)+ RNA, on the other hand, is localized primarily to the nuclear rim. Interestingly, the RNA binding nucleocytoplasmic shuttle protein Npl3p shows strong colocalization with bulk poly(A)+ RNA, regardless of its nuclear location. Taken together, our data show that retention occurs close to the gene and indicate distinct nuclear fates of different mRNAs. PMID:12923254

  19. Welcoming Treat: Astrocyte-Derived Exosomes Induce PTEN Suppression to Foster Brain Metastasis.

    Science.gov (United States)

    Alečković, Maša; Kang, Yibin

    2015-11-09

    Metastasis to distant organs depends on pathological crosstalk between tumor cells and various tissue-specific stromal components. Zhang and colleagues recently demonstrated that astrocyte-derived exosomal miR-19a reversibly downregulated PTEN expression in cancer cells, thereby increasing their CCL2 secretion and recruitment of myeloid cell to promote brain metastasis.

  20. Exosomes carring gag/env of ALV-J possess negative effect on immunocytes.

    Science.gov (United States)

    Wang, Guihua; Wang, Zhenzhen; Zhuang, Pingping; Zhao, Xiaomin; Cheng, Ziqiang

    2017-09-12

    J subgroup avian leukosis virus (ALV-J) is an exogenous retrovirus of avian. A key feature of ALV-J infection is leading to severe immunosuppressive characteristic of diseases. Viral components of retrovirus were reported closely associated with immunosuppression, and several similarities between exosomes and retrovirus preparations have lead to the hypotheses of retrovirus hijacker exosomes pathway. In this study, we purified exosomes from DF-1 cells infected and uninfected by ALV-J. Electron microscopy and mass spectrometry (MS) analysis showed that ALV-J not only increased the production of exosomes from ALV-J infected DF-1 cells (Exo-J) but also stimulated some proteins expression, especially ALV-J components secreted in exosomes. Immunosuppressive domain peptide (ISD) of envelope subunit transmembrane (TM) and gag of ALV-J were secreted in Exo-J. It has been reported that HIV gag was budded from endosome-like domains of the T cell plasma membrane. But env protein was first detected in exosomes from retrovirus infected cells. We found that Exo-J caused negative effects on splenocytes in a dose-dependant manner by flow cytometric analysis. And low dose of Exo-J activated immune activity of splenocytes, while high dose possessed immunosuppressive properties. Interestingly, Exo-J has no significant effects on the immunosuppression induced by ALV-J, and the immunosuppressive effects induced by Exo-J lower than that by ALV-J. Taken together, our data indicated that Exo-J supplied a microenvironment for the replication and transformation of ALV-J. Copyright © 2017. Published by Elsevier Ltd.

  1. Study on radiation damage to high energy accelerator components by irradiation in a nuclear reactor

    CERN Document Server

    Schönbacher, Helmut; Casta, J; Van de Voorde, M H

    1975-01-01

    The structural and other components used in high energy accelerators are continuously exposed to a wide spectrum of high energy particles and electromagnetic radiation. The resulting radiation damage may severely influence the functional capability of accelerator facilities. In order to arrive at an estimate of the service life of various materials in the radiation field, simulating experiments have to be carried out in a nuclear reactor. A large number of organic and inorganic materials, electronic components, metals, etc., intended specifically for use in 400 GeV proton synchrotron of CERN near Geneva, were irradiated in the ASTRA reactor in Seibersdorf near Vienna. The paper reports on the irradiation facilities available in this reactor for this purpose, on the dosimetry methods used, on the most important materials irradiated and on the results obtained in these experiments. (14 refs).

  2. Exosome-transported microRNAs of helminth origin: new tools for allergic and autoimmune diseases therapy?

    Science.gov (United States)

    Siles-Lucas, M; Morchon, R; Simon, F; Manzano-Roman, R

    2015-04-01

    Chronic diseases associated with inflammation show fast annual increase in their incidence. This has been associated with excessive hygiene habits that limit contacts between the immune system and helminth parasites. Helminthic infections induce regulation and expansion of regulatory T cells (Treg) leading to atypical Th2 type immune responses, with downregulation of the inflammatory component usually associated with these type of responses. Many cells, including those of the immune system, produce extracellular vesicles called exosomes which mediate either immune stimulation (DCs) or immune modulation (T cells). The transfer of miRNAs contained in T-cell exosomes has been shown to contribute to downregulate the production of inflammatory mediators. It has been recently described the delivery to the host-parasite interface of exosomes containing miRNAs by helminths and its internalization by host cells. In this sense, helminth microRNAs transported in exosomes and internalized by immune host cells exert an important role in the expansion of Treg cells, resulting in the control of inflammation. We here provide relevant information obtained in the field of exosomes, cell-cell communication and miRNAs, showing the high potential of helminth miRNAs delivered in exosomes to host cells as new therapeutic tools against diseases associated with exacerbated inflammatory responses.

  3. TGF-β suppression of HBV RNA through AID-dependent recruitment of an RNA exosome complex.

    Directory of Open Access Journals (Sweden)

    Guoxin Liang

    2015-04-01

    Full Text Available Transforming growth factor (TGF-β inhibits hepatitis B virus (HBV replication although the intracellular effectors involved are not determined. Here, we report that reduction of HBV transcripts by TGF-β is dependent on AID expression, which significantly decreases both HBV transcripts and viral DNA, resulting in inhibition of viral replication. Immunoprecipitation reveals that AID physically associates with viral P protein that binds to specific virus RNA sequence called epsilon. AID also binds to an RNA degradation complex (RNA exosome proteins, indicating that AID, RNA exosome, and P protein form an RNP complex. Suppression of HBV transcripts by TGF-β was abrogated by depletion of either AID or RNA exosome components, suggesting that AID and the RNA exosome involve in TGF-β mediated suppression of HBV RNA. Moreover, AID-mediated HBV reduction does not occur when P protein is disrupted or when viral transcription is inhibited. These results suggest that induced expression of AID by TGF-β causes recruitment of the RNA exosome to viral RNP complex and the RNA exosome degrades HBV RNA in a transcription-coupled manner.

  4. Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer.

    Science.gov (United States)

    Gernapudi, Ramkishore; Yao, Yuan; Zhang, Yongshu; Wolfson, Benjamin; Roy, Sanchita; Duru, Nadire; Eades, Gabriel; Yang, Peixin; Zhou, Qun

    2015-04-01

    The tumor microenvironment plays a critical role in regulating breast tumor progression. Signaling between preadipocytes and breast cancer cells has been found to promote breast tumor formation and metastasis. Exosomes secreted from preadipocytes are important components of the cancer stem cell niche. Mouse preadipocytes (3T3L1) are treated with the natural antitumor compound shikonin (SK) and exosomes derived from mouse preadipocytes are co-cultured with MCF10DCIS cells. We examine how preadipocyte-derived exosomes can regulate early-stage breast cancer via regulating stem cell renewal, cell migration, and tumor formation. We identify a critical miR-140/SOX2/SOX9 axis that regulates differentiation, stemness, and migration in the tumor microenvironment. Next, we find that the natural antitumor compound SK can inhibit preadipocyte signaling inhibiting nearby ductal carcinoma in situ (DCIS) cells. Through co-culture experiments, we find that SK-treated preadipocytes secrete exosomes with high levels of miR-140, which can impact nearby DCIS cells through targeting SOX9 signaling. Finally, we find that preadipocyte-derived exosomes promote tumorigenesis in vivo, providing strong support for the importance of exosomal signaling in the tumor microenvironment. Our data also show that targeting the tumor microenvironment may assist in blocking tumor progression.

  5. Extracellular vesicles: Exosomes, microvesicles, and friends

    NARCIS (Netherlands)

    Raposo, G.; Stoorvogel, W.|info:eu-repo/dai/nl/074352385

    2013-01-01

    Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for

  6. Organotropic metastasis: role of tumor exosomes.

    Science.gov (United States)

    Liu, Yang; Cao, Xuetao

    2016-02-01

    A recent paper in Nature shows that tumor exosomes expressing unique integrins can determine organotropic metastasis by preparing pre-metastatic niche through their integrins-mediated fusion with and fertilization of organ-specific resident cells.

  7. Cancer Exosomes as Mediators of Drug Resistance.

    Science.gov (United States)

    André, Maria do Rosário; Pedro, Ana; Lyden, David

    2016-01-01

    In the last decades, several studies demonstrated that the tumor microenvironment is a critical determinant not only of tumor progression and metastasis, but also of resistance to therapy. Exosomes are small membrane vesicles of endocytic origin, which contain mRNAs, DNA fragments, and proteins, and are released by many different cell types, including cancer cells. Mounting evidence has shown that cancer-derived exosomes contribute to the recruitment and reprogramming of constituents associated with the tumor microenvironment. Understanding how exosomes and the tumor microenvironment impact drug resistance will allow novel and better strategies to overcome drug resistance and treat cancer. Here, we describe a technique for exosome purification from cell culture, and fresh and frozen plasma, and further analysis by electron microscopy, NanoSight microscope, and Western blot.

  8. Array UT and ECT Systems for Inspection of Nuclear Power Components

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chan Hee; Lee, Tae Hun; Yoo, Hyun Ju [Korea Hydro and Nuclear Power Co. Ltd. CRI, Daejeon (Korea, Republic of)

    2015-10-15

    The ultrasonic testing is mainly used for the inspection of welds in piping and nozzle for many components. The eddy current testing is widely used for the inspection of heat exchanger tubing like steam generator tubing. Technologies for these methods have been advanced for the reduction of inspection time and the increase of inspection reliability. Data cannot be stored during the inspection using a manual ultrasonic testing system. In steam generator tubing inspection, the rotating probe technology is regarded as the time-consuming method. Therefore, the array UT and ECT systems have been developed in order to overcome these barriers of conventional methods. The Korea Hydro and Nuclear Power Co., Ltd. (KHNP) is developing the phased array UT and multi-array ECT systems for the inspection of nuclear power components. Details of these systems are described in this paper. The phased array UT and the multi-array ECT systems are being developed. These systems produced good results from the calibration standards.

  9. Digital Detection of Exosomes by Interferometric Imaging

    OpenAIRE

    2016-01-01

    Exosomes, which are membranous nanovesicles, are actively released by cells and have been attributed to roles in cell-cell communication, cancer metastasis, and early disease diagnostics. The small size (30–100 nm) along with low refractive index contrast of exosomes makes direct characterization and phenotypical classification very difficult. In this work we present a method based on Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) that allows multiplexed phenotyping and ...

  10. Formation and role of exosomes in cancer.

    Science.gov (United States)

    Brinton, Lindsey T; Sloane, Hillary S; Kester, Mark; Kelly, Kimberly A

    2015-02-01

    Exosomes offer new insight into cancer biology with both diagnostic and therapeutic implications. Because of their cell-to-cell communication, exosomes influence tumor progression, metastasis, and therapeutic efficacy. They can be isolated from blood and other bodily fluids to reveal disease processes occurring within the body, including cancerous growth. In addition to being a reservoir of cancer biomarkers, they can be re-engineered to reinstate tumor immunity. Tumor exosomes interact with various cells of the microenvironment to confer tumor-advantageous changes that are responsible for stromal activation, induction of the angiogenic switch, increased vascular permeability, and immune escape. Exosomes also contribute to metastasis by aiding in the epithelial-to-mesenchymal transition and formation of the pre-metastatic niche. Furthermore, exosomes protect tumor cells from the cytotoxic effects of chemotherapy drugs and transfer chemoresistance properties to nearby cells. Thus, exosomes are essential to many lethal elements of cancer and it is important to understand their biogenesis and role in cancer.

  11. Digital Detection of Exosomes by Interferometric Imaging

    Science.gov (United States)

    Daaboul, George G.; Gagni, Paola; Benussi, Luisa; Bettotti, Paolo; Ciani, Miriam; Cretich, Marina; Freedman, David S.; Ghidoni, Roberta; Ozkumur, Ayca Yalcin; Piotto, Chiara; Prosperi, Davide; Santini, Benedetta; Ünlü, M. Selim; Chiari, Marcella

    2016-01-01

    Exosomes, which are membranous nanovesicles, are actively released by cells and have been attributed to roles in cell-cell communication, cancer metastasis, and early disease diagnostics. The small size (30–100 nm) along with low refractive index contrast of exosomes makes direct characterization and phenotypical classification very difficult. In this work we present a method based on Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) that allows multiplexed phenotyping and digital counting of various populations of individual exosomes (>50 nm) captured on a microarray-based solid phase chip. We demonstrate these characterization concepts using purified exosomes from a HEK 293 cell culture. As a demonstration of clinical utility, we characterize exosomes directly from human cerebrospinal fluid (hCSF). Our interferometric imaging method could capture, from a very small hCSF volume (20 uL), nanoparticles that have a size compatible with exosomes, using antibodies directed against tetraspanins. With this unprecedented capability, we foresee revolutionary implications in the clinical field with improvements in diagnosis and stratification of patients affected by different disorders. PMID:27853258

  12. Dis3- and exosome subunit-responsive 3 Prime mRNA instability elements

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Daniel L.; Hou, Dezhi [Case Western Reserve University School of Medicine, Department of Molecular Biology and Microbiology, Cleveland, OH 44106 (United States); Gross, Robert H. [Dartmouth College, Department of Biological Sciences, Life Sciences Center 343, Hanover, NH 03755 (United States); Andrulis, Erik D., E-mail: exa32@case.edu [Case Western Reserve University School of Medicine, Department of Molecular Biology and Microbiology, Cleveland, OH 44106 (United States)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Successful use of a novel RNA-specific bioinformatic tool, RNA SCOPE. Black-Right-Pointing-Pointer Identified novel 3 Prime UTR cis-acting element that destabilizes a reporter mRNA. Black-Right-Pointing-Pointer Show exosome subunits are required for cis-acting element-mediated mRNA instability. Black-Right-Pointing-Pointer Define precise sequence requirements of novel cis-acting element. Black-Right-Pointing-Pointer Show that microarray-defined exosome subunit-regulated mRNAs have novel element. -- Abstract: Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of ribonucleases (RNases) and RNA-binding proteins. The major RNase of the complex is thought to be Dis3, a multi-functional 3 Prime -5 Prime exoribonuclease and endoribonuclease. Although it is known that Dis3 and core exosome subunits are recruited to transcriptionally active genes and to messenger RNA (mRNA) substrates, this recruitment is thought to occur indirectly. We sought to discover cis-acting elements that recruit Dis3 or other exosome subunits. Using a bioinformatic tool called RNA SCOPE to screen the 3 Prime untranslated regions of up-regulated transcripts from our published Dis3 depletion-derived transcriptomic data set, we identified several motifs as candidate instability elements. Secondary screening using a luciferase reporter system revealed that one cassette-harboring four elements-destabilized the reporter transcript. RNAi-based depletion of Dis3, Rrp6, Rrp4, Rrp40, or Rrp46 diminished the efficacy of cassette-mediated destabilization. Truncation analysis of the cassette showed that two exosome subunit-sensitive elements (ESSEs) destabilized the reporter. Point-directed mutagenesis of ESSE abrogated the destabilization effect. An examination of the transcriptomic data from exosome subunit depletion-based microarrays revealed that mRNAs with ESSEs are found in every up-regulated mRNA data set but are

  13. Exosome secretion : The art of reutilizing nonrecycled proteins?

    NARCIS (Netherlands)

    de Gassart, A; Geminard, C; Hoekstra, D; Vidal, M

    2004-01-01

    Multivesicular bodies contain membrane vesicles which either undergo lysosomal digestion or are released in the extracellular environment as exosomes. Evidence is accumulating that supports a physiological role for exosomes in, for example, antigen presentation or removal of transferrin receptor dur

  14. Physiological and pathological impact of exosomes of adipose tissue.

    Science.gov (United States)

    Zhang, Yan; Yu, Mei; Tian, Weidong

    2016-02-01

    Exosomes are nanovesicles that have emerged as a new intercellular communication system for transporting proteins and RNAs; recent studies have shown that they play a role in many physiological and pathological processes such as immune regulation, cell differentiation, infection and cancer. By transferring proteins, mRNAs and microRNAs, exosomes act as information vehicles that alter the behavior of recipient cells. Compared to direct cell-cell contact or secreted factors, exosomes can affect recipient cells in more efficient ways. In whole adipose tissues, it has been shown that exosomes exist in supernatants of adipocytes and adipose stromal cells (ADSCs). Adipocyte exosomes are linked to lipid metabolism and obesity-related insulin resistance and exosomes secreted by ADSCs are involved in angiogenesis, immunomodulation and tumor development. This review introduces characteristics of exosomes in adipose tissue, summarizes their functions in different physiological and pathological processes and provides the further insight into potential application of exosomes to disease diagnosis and treatment.

  15. Nuclear surveillance of mRNP formation

    DEFF Research Database (Denmark)

    Jensen, Torben Heick

    Proper formation of mRNP requires co-transcriptional loading of proteins onto nascent transcripts. Mutations in several genes involved in mRNA processing, mRNP assembly and nuclear export lead to production of aberrant mRNPs that are retained in transcription site-associated foci. Retention...... and degradation of transcripts depend on the nuclear exosome of 3’-5’ exonucleases.We have studied connections between mRNP assembly and quality control in the yeast S. cerevisiae using mutants of the THO complex. THO is implicated in co-transcriptional mRNP assembly, but its precise role is not known. Genetic...... and biochemical data now show that a defective THO complex negatively impacts mRNA 3’-end processing. We are currently trying to understand the relationship between this phenomenon and mRNP quality control. Retention of mRNP in THO mutants is dependent on the nuclear exosome component Rrp6p. Using the solved...

  16. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Adolf, E-mail: ageiger@dreirosen-pharma.com; Walker, Audrey, E-mail: awalker@dreirosen-pharma.com; Nissen, Erwin, E-mail: enissen@dreirosen-pharma.com

    2015-11-13

    Diabetic ulcers represent a substantial societal and healthcare burden worldwide and scarcely respond to current treatment strategies. This study was addressed to evaluate the therapeutic potential of exosomes secreted by human circulating fibrocytes, a population of mesenchymal progenitors involved in normal wound healing via paracrine signaling. The exosomes released from cells sequentially stimulated with platelet-derived growth factor-BB and transforming growth factor-β1, in the presence of fibroblast growth factor 2, did not show potential immunogenicity. These exosomes exhibited in-vitro proangiogenic properties, activated diabetic dermal fibroblasts, induced the migration and proliferation of diabetic keratinocytes, and accelerated wound closure in diabetic mice in vivo. Important components of the exosomal cargo were heat shock protein-90α, total and activated signal transducer and activator of transcription 3, proangiogenic (miR-126, miR-130a, miR-132) and anti-inflammatory (miR124a, miR-125b) microRNAs, and a microRNA regulating collagen deposition (miR-21). This proof-of-concept study demonstrates the feasibility of the use of fibrocytes-derived exosomes for the treatment of diabetic ulcers. - Highlights: • Fibrocytes have shown potent wound healing properties in vitro and in vivo. • Their clinical use is precluded by low numbers and antigen-presenting function. • We isolated exosomes with no immunogenicity potential from human fibrocytes. • Their cargo included microRNAs and proteins that are known healing promoters. • They accelerated wound closure in diabetic mice in a dose-dependent manner.

  17. Exosome removal as a therapeutic adjuvant in cancer

    OpenAIRE

    Marleau Annette M; Chen Chien-Shing; Joyce James A; Tullis Richard H

    2012-01-01

    Abstract Exosome secretion is a notable feature of malignancy owing to the roles of these nanoparticles in cancer growth, immune suppression, tumor angiogenesis and therapeutic resistance. Exosomes are 30–100 nm membrane vesicles released by many cells types during normal physiological processes. Tumors aberrantly secrete large quantities of exosomes that transport oncoproteins and immune suppressive molecules to support tumor growth and metastasis. The role of exosomes in intercellular signa...

  18. Organtropic Metastatic Secretomes and Exosomes in Breast Cancer

    Science.gov (United States)

    2014-10-01

    1. Analysis of exosome secretion in organ -tropic breast cancer models. The graph on the left represents exosome production per million BC cells...fluorescent dyes (i.e. CellVue). Figure 2. Breast cancer exosomes are efficiently uptaken by stromal cells. Pɘ.05 * Exosome production per...derived from parental MDA-MB-231 and organ -tropic variants, and that they can be efficiently labeled with fluorescent and near-infrared dyes . • We have

  19. Exosomes in Development and Therapy of Malignant Mesothelioma

    Science.gov (United States)

    2015-09-01

    1 AWARD NUMBER: W81XWH-14-1-0199 TITLE: Exosomes in Development and Therapy of Malignant Mesothelioma PRINCIPAL INVESTIGATOR: Arti Shukla...TO THE ABOVE ADDRESS. 1. REPORT DATE September 2015 2. REPORT TYPE Annual 3. DATES COVERED 1Sep2014 - 31Aug2015 4. TITLE AND SUBTITLE Exosomes in...SUPPLEMENTARY NOTES 14. ABSTRACT Exosomes are tiny vesicles that carry information from one body cell type to another. We proposed that exosomes

  20. Musing on the structural organization of the exosome complex

    OpenAIRE

    Mitchell, Philip; Tollervey, David

    2000-01-01

    The exosome complex of 3′→5′ exoribonucleases functions in both the precise processing of 3′ extended precursor molecules to mature stable RNAs and the complete degradation of other RNAs. Both processing and degradative activities of the exosome depend on additional cofactors, notably the putative RNA helicases Mtr4p and Ski2p. It is not known how these factors regulate exosome function or how the exosome distinguishes RNAs destined for processing events from substrates that are t...

  1. Micro RNA in Exosomes from HIV-Infected Macrophages.

    Science.gov (United States)

    Roth, William W; Huang, Ming Bo; Addae Konadu, Kateena; Powell, Michael D; Bond, Vincent C

    2015-12-22

    Exosomes are small membrane-bound vesicles secreted by cells that function to shuttle RNA and proteins between cells. To examine the role of exosomal micro RNA (miRNA) during the early stage of HIV-1 infection we characterized miRNA in exosomes from HIV-infected macrophages, compared with exosomes from non-infected macrophages. Primary human monocytes from uninfected donors were differentiated to macrophages (MDM) which were either mock-infected or infected with the macrophage-tropic HIV-1 BaL strain. Exosomes were recovered from culture media and separated from virus particles by centrifugation on iodixanol density gradients. The low molecular weight RNA fraction was prepared from purified exosomes. After pre-amplification, RNA was hybridized to microarrays containing probes for 1200 miRNA species of known and unknown function. We observed 48 miRNA species in both infected and uninfected MDM exosomes. Additionally, 38 miRNAs were present in infected-cell exosomes but not uninfected-cell exosomes. Of these, 13 miRNAs were upregulated in exosomes from HIV-infected cells, including 4 miRNA species that were increased by more than 10-fold. Though numerous miRNA species have been identified in HIV-infected cells, relatively little is known about miRNA content in exosomes from these cells. In the future, we plan to investigate whether the upregulated miRNA species we identified are increased in exosomes from HIV-1-positive patients.

  2. Micro RNA in Exosomes from HIV-Infected Macrophages

    Directory of Open Access Journals (Sweden)

    William W. Roth

    2015-12-01

    Full Text Available Exosomes are small membrane-bound vesicles secreted by cells that function to shuttle RNA and proteins between cells. To examine the role of exosomal micro RNA (miRNA during the early stage of HIV-1 infection we characterized miRNA in exosomes from HIV-infected macrophages, compared with exosomes from non-infected macrophages. Primary human monocytes from uninfected donors were differentiated to macrophages (MDM which were either mock-infected or infected with the macrophage-tropic HIV-1 BaL strain. Exosomes were recovered from culture media and separated from virus particles by centrifugation on iodixanol density gradients. The low molecular weight RNA fraction was prepared from purified exosomes. After pre-amplification, RNA was hybridized to microarrays containing probes for 1200 miRNA species of known and unknown function. We observed 48 miRNA species in both infected and uninfected MDM exosomes. Additionally, 38 miRNAs were present in infected-cell exosomes but not uninfected-cell exosomes. Of these, 13 miRNAs were upregulated in exosomes from HIV-infected cells, including 4 miRNA species that were increased by more than 10-fold. Though numerous miRNA species have been identified in HIV-infected cells, relatively little is known about miRNA content in exosomes from these cells. In the future, we plan to investigate whether the upregulated miRNA species we identified are increased in exosomes from HIV-1-positive patients.

  3. Adiponectin is partially associated with exosomes in mouse serum.

    Science.gov (United States)

    Phoonsawat, Worrawalan; Aoki-Yoshida, Ayako; Tsuruta, Takeshi; Sonoyama, Kei

    2014-06-06

    Exosomes are membrane vesicles 30-120 nm in diameter that are released by many cell types and carry a cargo of proteins, lipids, mRNA, and microRNA. Cultured adipocytes reportedly release exosomes that may play a role in cell-to-cell communication during the development of metabolic diseases. However, the characteristics and function of exosomes released from adipocytes in vivo remain to be elucidated. Clearly, adipocyte-derived exosomes could exist in the circulation and may be associated with adipocyte-specific proteins such as adipocytokines. We isolated exosomes from serum of mice by differential centrifugation and analyzed adiponectin, leptin, and resistin in the exosome fraction. Western blotting detected adiponectin but no leptin and only trace amounts of resistin in the exosome fraction. The adiponectin signal in the exosome fraction was decreased by proteinase K treatment and completely quenched by a combination of proteinase K and Triton X-100. Quantitative ELISA showed that the exosome fraction contains considerable amounts of adiponectin, but not leptin or resistin. The concentration of adiponectin in the serum and the ratio of adiponectin to total protein in the exosome fraction were lower in obese mice than in lean mice. These results suggest that a portion of adiponectin exists as a transmembrane protein in the exosomes in mouse serum. We propose adiponectin as a marker of exosomes released from adipocytes in vivo.

  4. Characterization and proteomic analysis of ovarian cancer-derived exosomes.

    Science.gov (United States)

    Liang, Bing; Peng, Peng; Chen, She; Li, Lin; Zhang, Meijun; Cao, Dongyan; Yang, Jiaxin; Li, Haixia; Gui, Ting; Li, Xialu; Shen, Keng

    2013-03-27

    Ovarian cancer is the most lethal type of cancer among all frequent gynecologic malignancies, because most patients present with advanced disease at diagnosis. Exosomes are important intercellular communication vehicles, released by various cell types. Here we presented firstly the protein profile of highly purified exosomes derived from two ovarian cancer cell lines, OVCAR-3 and IGROV1. The exosomes derived from ovarian cancer cell lines were round and mostly 30-100 nm in diameter when viewed under an electron microscope. The exosomal marker proteins TSG101 and Alix were detected in exosome preparations. The range of density was between 1.09 g/ml and 1.15 g/ml. A total of 2230 proteins were identified from two ovarian cell-derived exosomes. Among them, 1017 proteins were identified in both exosomes including all of the major exosomal protein markers. There were 380 proteins that are not reported in the ExoCarta database. In addition to common proteins from exosomes of various origins, our results showed that ovarian cancer-derived exosomes also carried tissue specific proteins associated with tumorigenesis and metastasis, especially in ovarian carcinoma. Based on the known roles of exosomes in cellular communication, these data indicate that exosomes released by ovarian cancer cells may play important roles in ovarian cancer progression and provide a potential source of blood-based protein biomarkers.

  5. Light ion components of the galactic cosmic rays: nuclear interactions and transport theory.

    Science.gov (United States)

    Cucinotta, F A; Townsend, L W; Wilson, J W; Shinn, J L; Badhwar, G D; Dubey, R R

    1996-01-01

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy ion induced reactions. In the primary GCR, 4He is the most abundant nucleus after 1H. However, there are also a substantial fluxes of 2H and 3He. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragmentation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  6. NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company; Baca, Georgina [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company; O' Connor, Michael [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company

    2015-12-31

    Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is on the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.

  7. Simulating the behaviour of zirconium-alloy components in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, C.E

    2001-12-01

    To prevent failure in nuclear components one needs to understand the interactions between adjacent materials and the changes in their physical properties during all phases of reactor operation. Three examples from CANDU reactors are described to illustrate the use of simulations that imitate complicated reactor situations. These are: swelling tests that led to a method for increasing the tolerance or Zircaloy fuel cladding to power ramps; observations of the behaviour of leaking cracks in Zr-2.5Nb pressure tubes that provide confidence in the use of leak-before-break as part of the defence against flaw development; and contact boiling tests on modifications to the surfaces of Zircaloy calandria tubes that enhance the ability of the heavy water moderator to act as a heat sink after a postulated loss-of-coolant accident. (author)

  8. Localization of interchromatin granule cluster and Cajal body components in oocyte nuclear bodies of the hemipterans.

    Science.gov (United States)

    Bogolyubov, D S; Batalova, F M; Ogorzałek, A

    2007-10-01

    An oocyte nucleus contains different extrachromosomal nuclear domains collectively called nuclear bodies (NBs). In the present work we revealed, using immunogold labeling electron microscopy, some marker components of interchromatin granule clusters (IGCs) and Cajal bodies (CBs) in morphologically heterogeneous oocyte NBs studied in three hemipteran species: Notostira elongata, Capsodes gothicus (Miridae) and Velia caprai (Veliidae). Both IGC and CB counterparts were revealed in oocyte nuclei of the studied species but morphological and biochemical criteria were found to be not sufficient to determine carefully the define type of oocyte NBs. We found that the molecular markers of the CBs (coilin and non-phosphorylated RNA polymerase II) and IGCs (SC35 protein) may be localized in the same NB. Anti-SC35 antibody may decorate not only a granular material representing "true" interchromatin granules but also masks some fibrillar parts of complex NBs. Our first observations on the hemipteran oocyte NBs confirm the high complexity and heterogeneity of insect oocyte IGCs and CBs in comparison with those in mammalian somatic cells and amphibian oocytes.

  9. Form and Function of Exosome-Associated Long Non-coding RNAs in Cancer.

    Science.gov (United States)

    Hewson, Chris; Morris, Kevin V

    2016-01-01

    The recent discovery that long non-coding RNAs (lncRNAs) are functional and are not merely "transcriptional noise" has spawned an entirely new arena of investigation. LncRNAs have been found to be functional in the regulation of a wide variety of genes, including those involved in cancer. Studies have identified that lncRNAs play a role in the development and regulation of cancer and can also act as prognostic markers. Meanwhile, exosomes , which are extracellular particles generated endogenously by cells, have been observed to act as transport vesicles for a variety of biological components, particularly proteins and RNAs. This transportation of biological components has been shown to impact a variety of biological processes including the development of cancer. Collectively, these observations, along with those of several recent studies, suggest that lncRNAs and exosomes may function together to disseminate cell signals that alter and/or control local cellular microenvironments. This review will identify the various roles that lncRNAs and exosomes play in cancer development, as well as the possibility that exosomes may transfer functional lncRNAs between cells as a means of cell-to-cell communication.

  10. Application of Master Curve Methodology for Structural Integrity Assessments of Nuclear Components

    Energy Technology Data Exchange (ETDEWEB)

    Sattari-Far, Iradj [Det Norske Veritas, Stockholm (Sweden); Wallin, Kim [VTT, Esbo (Finland)

    2005-10-15

    The objective was to perform an in-depth investigation of the Master Curve methodology and also based on this method develop a procedure for fracture assessments of nuclear components. The project has sufficiently illustrated the capabilities of the Master Curve methodology for fracture assessments of nuclear components. Within the scope of this work, the theoretical background of the methodology and its validation on small and large specimens has been studied and presented to a sufficiently large extent, as well as the correlations between the charpy-V data and the Master Curve T{sub 0} reference temperature in the evaluation of fracture toughness. The work gives a comprehensive report of the background theory and the different applications of the Master Curve methodology. The main results of the work have shown that the cleavage fracture toughness is characterized by a large amount of statistical scatter in the transition region, it is specimen size dependent and it should be treated statistically rather than deterministically. The Master Curve methodology is able to make use of statistical data in a consistent way. Furthermore, the Master Curve methodology provides a more precise prediction of the fracture toughness of embrittled materials in comparison with the ASME K{sub IC} reference curve, which often gives over-conservative results. The suggested procedure in this study, concerning the application of the Master Curve method in fracture assessments of ferritic steels in the transition region and the low shelf regions, is valid for the temperatures range T{sub 0}-50{<=}T{<=}T{sub 0}+50 deg C. If only approximate information is required, the Master Curve may well be extrapolated outside this temperature range. The suggested procedure has also been illustrated for some examples.

  11. Isolation of human serum exosome and the clinical value of exosomal miRNA detection%人血清 Exosome 的分离及其 miRNA 检测的临床价值

    Institute of Scientific and Technical Information of China (English)

    李卓; 康炜; 李蕊; 郝晓柯; 马越云

    2015-01-01

    Objective To isolate and identify exosomes from human serum , explore the feasibility of detecting exosomal miRNA in human serum.Methods Retrospective study.Serum samples from 10 healthy individuals in January 2013 were randomly selected.Besides, from January 2013 to December 2014, serum samples from prostate cancer(PCa) patients (n=20), benign prostatic hyperplasia(BPH) patients ( n=20 ) and healthy controls ( n=20 ) were selected.Exosomes were isolated from these serum samples using ExoQuick , and then identified by using transmission electron microscopy , NanoSight nano particle analyzer and Western Blot for morphology and molecular phenotype.The quality of exosomal RNA was analyzed using Agilent 2100 Bioanalyser.Then quantificational real-time polymerase chain reaction ( qRT-PCR) was carried out to detect miRNAs in different components of human serum ,and nonparametric tests were used for difference analysis.Results Exosomes isolated from human serum showed round or oval vesicles, mainly in diameter 40-100 nm, and with maximum peak distribution of 58 nm.Moreover, they expressed HSP70 and four transmembrane protein CD 63.Agilent 2100 Bioanalyzer results showed that the major RNA component of exosome was about 25nt small RNA.qRT-PCR confirmed that 4 normal miRNAs were expressed in human serum exosome , and the expression of miRNAs in exosome pellets were higher than the whole serum (miR-21, U =16,P =0.007 2; miR-16, U =3,P<0.000 1; miR-20a, U =2,P <0.000 1;let-7a, U=13,P=0.003 2) and exosome-depleted supernatant ( miR-21, U=15,P=0.006 5;miR-16, U=2,P<0.000 1;miR-20a, U=1,P<0.000 1;let-7a, U=10,P=0.002 8).miR-141, the molecular marker of prostate cancer ,were analyzed by qRT-PCR in whole serum samples and serum exosome pellets isolated from the same serum in a cohort of 20 PCa patients , 20 BPH patients and 20 healthy control people.The results showed that , in three groups , exosomal miR-141 expression were all significantly higher than serum circulating miR-141

  12. Exosome-associated hepatitis C virus in cell cultures and patient plasma

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ziqing [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Zhang, Xiugen [Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Yu, Qigui [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); He, Johnny J., E-mail: johnny.he@unthsc.edu [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2014-12-12

    Highlights: • HCV occurs in both exosome-free and exosome-associated forms. • Exosome-associated HCV is infectious and resistant to neutralizing antibodies. • More exosome-associated HCV than exosome-free HCV is present in patient plasma. - Abstract: Hepatitis C virus (HCV) infects its target cells in the form of cell-free viruses and through cell–cell contact. Here we report that HCV is associated with exosomes. Using highly purified exosomes and transmission electron microscopic imaging, we demonstrated that HCV occurred in both exosome-free and exosome-associated forms. Exosome-associated HCV was infectious and resistant to neutralization by an anti-HCV neutralizing antibody. There were more exosome-associated HCV than exosome-free HCV detected in the plasma of HCV-infected patients. These results suggest exosome-associated HCV as an alternative form for HCV infection and transmission.

  13. Exosomes and exosomal miRNAs in cardiovascular protection and repair.

    Science.gov (United States)

    Emanueli, Costanza; Shearn, Andrew I U; Angelini, Gianni D; Sahoo, Susmita

    2015-08-01

    Cell-cell communication between cardiac and vascular cells and from stem and progenitor cells to differentiated cardiovascular cells is both an important and complex process, achieved through a diversity of mechanisms that have an impact on cardiovascular biology, disease and therapeutics. In recent years, evidence has accumulated suggesting that extracellular vesicles (EVs) are a new system of intercellular communication. EVs of different sizes are produced via different biogenesis pathways and have been shown to be released and taken up by most of known cell types, including heart and vascular cells, and stem and progenitor cells. This review will focus on exosomes, the smallest EVs (up to 100nm in diameter) identified so far. Cells can package cargoes consisting of selective lipids, proteins and RNA in exosomes and such cargoes can be shipped to recipient cells, inducing expressional and functional changes. This review focuses on exosomes and microRNAs in the context of cardiovascular disease and repair. We will describe exosome biogenesis and cargo formation and discuss the available information on in vitro and in vivo exosomes-based cell-to-cell communication relevant to cardiovascular science. The methods used in exosome research will be also described. Finally, we will address the promise of exosomes as clinical biomarkers and their impact as a biomedical tool in stem cell-based cardiovascular therapeutics.

  14. Progress on Plant-Level Components for Nuclear Fuel Recycling: Commonality

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-08-15

    Progress made in developing a common mathematical modeling framework for plant-level components of a simulation toolkit for nuclear fuel recycling is summarized. This ongoing work is performed under the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program which has an element focusing on safeguards and separations (SafeSeps). One goal of this element is to develop a modeling and simulation toolkit for used nuclear fuel recycling. The primary function of the SafeSeps simulation toolkit is to enable the time-dependent coupling of separation modules and safeguards tools (either native or third-party supplied) that simulate and/or monitor the individual separation processes in a separations plant. The toolkit integration environment will offer an interface for the modules to register in the toolkit domain based on the commonality of diverse unit operations. This report discusses the source of this commonality from a combined mathematical modeling and software design perspectives, and it defines the initial basic concepts needed for development of application modules and their integrated form, that is, an application software. A unifying mathematical theory of chemical thermomechanical network transport for physicochemical systems is proposed and outlined as the basis for developing advanced modules. A program for developing this theory from the underlying first-principles continuum thermomechanics will be needed in future developments; accomplishment of this task will enable the development of a modern modeling approach for plant-level models. Rigorous, advanced modeling approaches at the plant-level can only proceed from the development of reduced (or low-order) models based on a solid continuum field theory foundation. Such development will pave the way for future programmatic activities on software verification, simulation validation, and model uncertainty quantification on a scientific basis; currently, no satisfactory foundation exists for

  15. Delivery of Small Interfering RNAs to Cells via Exosomes.

    Science.gov (United States)

    Wahlgren, Jessica; Statello, Luisa; Skogberg, Gabriel; Telemo, Esbjörn; Valadi, Hadi

    2016-01-01

    Exosomes are small membrane bound vesicles between 30 and 100 nm in diameter of endocytic origin that are secreted into the extracellular environment by many different cell types. Exosomes play a role in intercellular communication by transferring proteins, lipids, and RNAs to recipient cells.Exosomes from human cells could be used as vectors to provide cells with therapeutic RNAs. Here we describe how exogenous small interfering RNAs may successfully be introduced into various kinds of human exosomes using electroporation and subsequently delivered to recipient cells. Methods used to confirm the presence of siRNA inside exosomes and cells are presented, such as flow cytometry, confocal microscopy, and Northern blot.

  16. Developments of integrity evaluation technology for pressurized components in nuclear power plant and IT based integrity evaluation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Choi, Jae Boong; Shim, Do Jun [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2003-03-15

    The objective of this research is to develop an efficient evaluation technology and to investigate applicability of newly-developed technology, such as internet-based cyber platform, to operating power plants. Development of efficient evaluation systems for Nuclear Power Plant components, based on structural integrity assessment techniques, are increasingly demanded for safe operation with the increasing operating period of Nuclear Power Plants. The following five topics are covered in this project: development of assessment method for wall-thinned nuclear piping based on pipe test; development of structural integrity program for steam generator tubes with cracks of various shape; development of fatigue life evaluation system for mam components of NPP; development of internet-based cyber platform and integrity program for primary components of NPP; effect of aging on strength of dissimilar welds.

  17. Designer exosomes as next-generation cancer immunotherapy.

    Science.gov (United States)

    Bell, Brandon M; Kirk, Isabel D; Hiltbrunner, Stefanie; Gabrielsson, Susanne; Bultema, Jarred J

    2016-01-01

    Exosomes are small 40-120 nm vesicles secreted by nearly all cells and are an important form of intercellular communication. Exosomes are abundant, stable, and highly bioavailable to tissues in vivo. Increasingly, exosomes are being recognized as potential therapeutics as they have the ability to elicit potent cellular responses in vitro and in vivo. Patient-derived exosomes have been employed as a novel cancer immunotherapy in several clinical trials, but at this point lack sufficient efficacy. Still other researchers have focused on modifying the content and function of exosomes in various ways, toward the end-goal of specialized therapeutic exosomes. Here we highlight major advances in the use of exosomes for cancer immunotherapy and exosome bioengineering followed by a discussion of focus areas for future research to generate potent therapeutic exosomes. From the Clinical Editor: Exosomes are small vesicles used by cells for intercellular communication. In this short article, the authors described the current status and the potential use of exosomes in the clinical setting.

  18. Epidermal Growth Factor Receptor in Prostate Cancer Derived Exosomes.

    Directory of Open Access Journals (Sweden)

    Geetanjali Kharmate

    Full Text Available Exosomes proteins and microRNAs have gained much attention as diagnostic tools and biomarker potential in various malignancies including prostate cancer (PCa. However, the role of exosomes and membrane-associated receptors, particularly epidermal growth factor receptor (EGFR as mediators of cell proliferation and invasion in PCa progression remains unexplored. EGFR is frequently overexpressed and has been associated with aggressive forms of PCa. While PCa cells and tissues express EGFR, it is unknown whether exosomes derived from PCa cells or PCa patient serum contains EGFR. The aim of this study was to detect and characterize EGFR in exosomes derived from PCa cells, LNCaP xenograft and PCa patient serum. Exosomes were isolated from conditioned media of different PCa cell lines; LNCaP xenograft serum as well as patient plasma/serum by differential centrifugation and ultracentrifugation on a sucrose density gradient. Exosomes were confirmed by electron microscopy, expression of exosomal markers and NanoSight™ analysis. EGFR expression was determined by western blot analysis and ELISA. This study demonstrates that exosomes may easily be derived from PCa cell lines, serum obtained from PCa xenograft bearing mice and clinical samples derived from PCa patients. Presence of exosomal EGFR in PCa patient exosomes may present a novel approach for measuring of the disease state. Our work will allow to build on this finding for future understanding of PCa exosomes and their potential role in PCa progression and as minimal invasive biomarkers for PCa.

  19. Exosomes released from breast cancer carcinomas stimulate cell movement.

    Directory of Open Access Journals (Sweden)

    Dinari A Harris

    Full Text Available For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and exosome proteomic profiling on exosomes released from three breast cancer cell lines that model progressive stages of metastasis. Results from these experiments suggest: (1 exosomes promote cell migration and (2 the signal is stronger from exosomes isolated from cells with higher metastatic potentials; (3 exosomes are endocytosed at the same rate regardless of the cell type; (4 exosomes released from cells show differential enrichment of proteins with unique protein signatures of both identity and abundance. We conclude that breast cancer cells of increasing metastatic potential secrete exosomes with distinct protein signatures that proportionally increase cell movement and suggest that released exosomes could play an active role in metastasis.

  20. EXOSOMES AND TRANSFER OF (EPIGENETIC INFORMATION BY TUMOR CELLS

    Directory of Open Access Journals (Sweden)

    E. M. Tchevkina

    2015-01-01

    Full Text Available In this review, we will introduce the current knowledge about exosomes – vesicles that are generated in the cells and released into the extracellular space. Exosomes are forming in the cell plasma membrane and represent the spherical shapes restricted by their membrane and contained the various biomolecules including nucleic acids, proteins, lipids etc. The intent interest to exosomes is based on their ability to horizontal transfer between the cells, to permeate into vascular system reaching the different tissues and to incorporate into the recipient cells. It was shown that exosome incorporation into the cells lead to remarkable changes in the recipient cells both in genomic level (via the integration of exosomal DNA into the host DNA and in epigenomic level (via the modulation of the content and/or activity of the signaling proteins, microRNA etc.. Undoubtedly, one of the most interesting and perspective achievements in the exosome study is the demonstration of exosome ability to provide the horizontal transfer of the genetic information from cell to cell – the fact supported in the different studies with the various cell models. Here, we will discuss the recent data regarding the main characteristics and properties of exosomes, the role of exosomes in the tumorigenesis including neoplastic transformation, metastasis, multi-drug resistance. The final part of the review involves the most growing area in the exosome study – the possible usage of exosomes in the cancer treatment, in particular – as the specific drug delivery system.

  1. Exosomes released from breast cancer carcinomas stimulate cell movement.

    Science.gov (United States)

    Harris, Dinari A; Patel, Sajni H; Gucek, Marjan; Hendrix, An; Westbroek, Wendy; Taraska, Justin W

    2015-01-01

    For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and exosome proteomic profiling on exosomes released from three breast cancer cell lines that model progressive stages of metastasis. Results from these experiments suggest: (1) exosomes promote cell migration and (2) the signal is stronger from exosomes isolated from cells with higher metastatic potentials; (3) exosomes are endocytosed at the same rate regardless of the cell type; (4) exosomes released from cells show differential enrichment of proteins with unique protein signatures of both identity and abundance. We conclude that breast cancer cells of increasing metastatic potential secrete exosomes with distinct protein signatures that proportionally increase cell movement and suggest that released exosomes could play an active role in metastasis.

  2. Using exosomes, naturally-equipped nanocarriers, for drug delivery.

    Science.gov (United States)

    Batrakova, Elena V; Kim, Myung Soo

    2015-12-10

    Exosomes offer distinct advantages that uniquely position them as highly effective drug carriers. Comprised of cellular membranes with multiple adhesive proteins on their surface, exosomes are known to specialize in cell-cell communications and provide an exclusive approach for the delivery of various therapeutic agents to target cells. In addition, exosomes can be amended through their parental cells to express a targeting moiety on their surface, or supplemented with desired biological activity. Development and validation of exosome-based drug delivery systems are the focus of this review. Different techniques of exosome isolation, characterization, drug loading, and applications in experimental disease models and clinic are discussed. Exosome-based drug formulations may be applied to a wide variety of disorders such as cancer, various infectious, cardiovascular, and neurodegenerative disorders. Overall, exosomes combine benefits of both synthetic nanocarriers and cell-mediated drug delivery systems while avoiding their limitations.

  3. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases.

    Science.gov (United States)

    Masyuk, Anatoliy I; Masyuk, Tatyana V; Larusso, Nicholas F

    2013-09-01

    Exosomes are small (30-100 nm in diameter) extracellular membrane-enclosed vesicles released by different cell types into the extracellular space or into biological fluids by exocytosis as a result of fusion of intracellular multivesicular bodies with the plasma membrane. The primary function of exosomes is intercellular communication with both beneficial (physiological) and harmful (pathological) potential outcomes. Liver cells are exosome-releasing cells as well as targets for endogenous exosomes and exosomes derived from cells of other organs. Despite limited studies on liver exosomes, initial observations suggest that these vesicles are important in liver physiology and pathophysiology. In this review, we briefly summarize the recent findings on liver exosomes, their functions and significance for novel diagnostic and therapeutic approaches.

  4. Tumor exosomes: cellular postmen of cancer diagnosis and personalized therapy.

    Science.gov (United States)

    Sharma, Aman; Khatun, Zamila; Shiras, Anjali

    2016-02-01

    Nanosized (30-150 nm) extracellular vesicles 'exosomes' are secreted by cells for intercellular communication during normal and pathological conditions. Exosomes carry biomacromolecules from cell-of-origin and, therefore, represent molecular bioprint of the cell. Tumor-derived exosomes or TDEx modulate tumor microenvironment by transfer of macromolecules locally as well as at distant metastatic sites. Due to their biological stability, TDEx are rich source of biomarkers in cancer patients. TDEx focused cancer diagnosis allows liquid biopsy-based tumor typing and may facilitate therapy response monitoring by developing novel exosomes diagnostics. Therefore, efficient and specific capturing of exosomes for subsequent amplification of the biomessages; for example, DNA, RNA, miRNA can reinvent cancer diagnosis. Here, in this review, we discuss advancements in exosomes isolation strategies, presence of exosomes biomarkers and importance of TDEx in gauging tumor heterogeneity for their potential use in cancer diagnosis, therapy.

  5. Exosomes in tumor microenvironment influence cancer progression and metastasis.

    Science.gov (United States)

    Kahlert, Christoph; Kalluri, Raghu

    2013-04-01

    Exosomes are small membrane vesicles of endocytic origin with a size of 50-100 nm. They can contain microRNAs, mRNAs, DNA fragments, and proteins, which are shuttled from a donor cell to recipient cells. Many different cell types including immune cells, mesenchymal cells, and cancer cells release exosomes. There is emerging evidence that cancer-derived exosomes contribute to the recruitment and reprogramming of constituents associated with tumor environment. Here, we discuss different mechanisms associated with biogenesis, payload, and transport of exosomes. We highlight the functional relevance of exosomes in cancer, as related to tumor microenvironment, tumor immunology, angiogenesis, and metastasis. Exosomes may exert an immunosuppressive function as well as trigger an anti-tumor response by presenting tumor antigens to dendritic cells. Exosomes may serve as cancer biomarkers and aid in the treatment of cancer.

  6. The biology and function of exosomes in cancer.

    Science.gov (United States)

    Kalluri, Raghu

    2016-04-01

    Humans circulate quadrillions of exosomes at all times. Exosomes are a class of extracellular vesicles released by all cells, with a size range of 40-150 nm and a lipid bilayer membrane. Exosomes contain DNA, RNA, and proteins. Exosomes likely remove excess and/or unnecessary constituents from the cells, functioning like garbage bags, although their precise physiological role remains unknown. Additionally, exosomes may mediate specific cell-to-cell communication and activate signaling pathways in cells they fuse or interact with. Exosomes are detected in the tumor microenvironment, and emerging evidence suggests that they play a role in facilitating tumorigenesis by regulating angiogenesis, immunity, and metastasis. Circulating exosomes can be used as liquid biopsies and noninvasive biomarkers for early detection, diagnosis, and treatment of cancer patients.

  7. Exosome-related multi-pass transmembrane protein TSAP6 is a target of rhomboid protease RHBDD1-induced proteolysis.

    Directory of Open Access Journals (Sweden)

    Chunhua Wan

    Full Text Available We have previously reported that rhomboid domain containing 1 (RHBDD1, a mammalian rhomboid protease highly expressed in the testis, can cleave the Bcl-2 protein Bik. In this study, we identified a multi-pass transmembrane protein, tumor suppressor activated pathway-6 (TSAP6 as a potential substrate of RHBDD1. RHBDD1 was found to induce the proteolysis of TSAP6 in a dose- and activity-dependent manner. The cleavage of TSAP6 was not restricted to its glycosylated form and occurred in three different regions. In addition, mass spectrometry and mutagenesis analyses both indicated that the major cleavage site laid in the C-terminal of the third transmembrane domain of TSAP6. A somatic cell knock-in approach was used to genetically inactivate the endogenous RHBDD1 in HCT116 and RKO colon cancer cells. Exosome secretion was significantly elevated when RHBDD1 was inactivated in the two cells lines. The increased exosome secretion was verfied through the detection of certain exosomal components, including Tsg101, Tf-R, FasL and Trail. In addition, the elevation of exosome secretion by RHBDD1 inactivation was reduced when TSAP6 was knocked down, indicating that the role of RHBDD1 in regulating exosomal trafficking is very likely to be TSAP6-dependent. We found that the increase in FasL and Trail increased exosome-induced apoptosis in Jurkat cells. Taken together, our findings suggest that RHBDD1 is involved in the regulation of a nonclassical exosomal secretion pathway through the restriction of TSAP6.

  8. Structures of the autoproteolytic domain from the Saccharomyces cerevisiae nuclear pore complex component, Nup145

    Energy Technology Data Exchange (ETDEWEB)

    Sampathkumar, Parthasarathy; Ozyurt, Sinem A.; Do, Johnny; Bain, Kevin T.; Dickey, Mark; Rodgers, Logan A.; Gheyi, Tarun; Sali, Andrej; Kim, Seung Joong; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D.; Martel, Anne; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A.; Emtage, J. Spencer; Wasserman, Stephen R.; Rout, Michael P.; Sauder, J. Michael; Burley, Stephen K. (SLAC); (Rockefeller); (UCSF); (Lilly)

    2012-04-30

    Nuclear pore complexes (NPCs) are large, octagonally symmetric dynamic macromolecular assemblies responsible for exchange of proteins and RNAs between the nucleus and cytoplasm. NPCs are made up of at least 456 polypeptides from {approx}30 distinct nucleoporins. Several of these components, sharing similar structural motifs, form stable subcomplexes that form a coaxial structure containing two outer rings (the nuclear and cytoplasmic rings), two inner rings, and a membrane ring. The yeast (Saccharomyces cerevisiae) Nup145 and its human counterpart are unique among the nucleoporins, in that they undergo autoproteolysis to generate functionally distinct proteins. The human counterpart of Nup145 is expressed as two alternatively spliced mRNA transcripts. The larger 190 kDa precursor undergoes post-translational autoproteolysis at the Phe863-Ser864 peptide bond yielding the 92 kDa Nup98 and the 96 kDa Nup96. The smaller 98 kDa precursor is also autoproteolysed at an analogous site giving 92 kDa Nup98-N and a 6 kDa C-terminal fragment, which may form a noncovalent complex. The yeast Nup145 precursor [Fig. 1(A)] contains twelve repeats of a 'GLFG' peptide motif (FG repeats) at its N-terminus, an internal autoproteolytic domain (a region of high conservation with the homologous yeast nucleoporins Nup110 and Nup116, neither of which undergo autoproteolysis), followed by the C-terminal domain. Various forms of the FG repeats are present in nearly half of all nucleoporins; they form intrinsically disordered regions implicated in gating mechanisms that control passage of macromolecules through NPCs. Nup145 undergoes autoproteolysis at the Phe605-Ser606 peptide bond to generate two functionally distinct proteins, Nup145N and Nup145C. Subsequently, Nup145C associates with six other proteins to form the heptameric Y-complex, a component of the outer rings of the NPC. Nup145N, on the other hand, can shuttle between the NPC and the nuclear interior. It has been suggested

  9. Exosomes and cardiac repair after myocardial infarction.

    Science.gov (United States)

    Sahoo, Susmita; Losordo, Douglas W

    2014-01-17

    Myocardial infarction is a leading cause of death among all cardiovascular diseases. The analysis of molecular mechanisms by which the ischemic myocardium initiates repair and remodeling indicates that secreted soluble factors are key players in communication to local and distant tissues, such as bone marrow. Recently, actively secreted membrane vesicles, including exosomes, are being recognized as new candidates with important roles in intercellular and tissue-level communication. In this review, we critically examine the emerging role of exosomes in local and distant microcommunication mechanisms after myocardial infarction. A comprehensive understanding of the role of exosomes in cardiac repair after myocardial infarction could bridge a major gap in knowledge of the repair mechanism after myocardial injury.

  10. 外体和病毒感染%The Role of Exosomes in Viral Infection

    Institute of Scientific and Technical Information of China (English)

    张晓阳; 董春艳; 段铭

    2014-01-01

    外体(exosome)是源自细胞内体的小囊泡,可由多种哺乳动物细胞分泌释放,其组分包括蛋白质、脂质、mRNA和microRNA,是细胞间“通讯”交互的工具之一。我们以介绍外体的组成和生物发生为基础,综述了近年来其在病毒感染致病中的研究成果,以期为病毒感染致病机理的研究提供新的切入点。%The exosome, as a nano vesicle that buds from the endosomal compartment, is produced and re-leased by all kinds of mammalian cells. This vesicle contains a variety of proteins, lipids, mRNA and microRNA. These components are specific to the origin of the exosomes and contribute to cell-cell communications. Most of the exosomes involved in viral infection can either spread or limit an infection based on the type of virus and its target cells. In this review, we introduced the exosome, its origin and function, then we discussed its roles in vi-ral infection which is involved in the fate of the infection.

  11. Modeling putative therapeutic implications of exosome exchange between tumor and immune cells.

    Science.gov (United States)

    Lu, Mingyang; Huang, Bin; Hanash, Samir M; Onuchic, José N; Ben-Jacob, Eshel

    2014-10-07

    Development of effective strategies to mobilize the immune system as a therapeutic modality in cancer necessitates a better understanding of the contribution of the tumor microenvironment to the complex interplay between cancer cells and the immune response. Recently, effort has been directed at unraveling the functional role of exosomes and their cargo of messengers in this interplay. Exosomes are small vesicles (30-200 nm) that mediate local and long-range communication through the horizontal transfer of information, such as combinations of proteins, mRNAs and microRNAs. Here, we develop a tractable theoretical framework to study the putative role of exosome-mediated cell-cell communication in the cancer-immunity interplay. We reduce the complex interplay into a generic model whose three components are cancer cells, dendritic cells (consisting of precursor, immature, and mature types), and killer cells (consisting of cytotoxic T cells, helper T cells, effector B cells, and natural killer cells). The framework also incorporates the effects of exosome exchange on enhancement/reduction of cell maturation, proliferation, apoptosis, immune recognition, and activation/inhibition. We reveal tristability-possible existence of three cancer states: a low cancer load with intermediate immune level state, an intermediate cancer load with high immune level state, and a high cancer load with low immune-level state, and establish the corresponding effective landscape for the cancer-immunity network. We illustrate how the framework can contribute to the design and assessments of combination therapies.

  12. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma.

    Science.gov (United States)

    Kalra, Hina; Adda, Christopher G; Liem, Michael; Ang, Ching-Seng; Mechler, Adam; Simpson, Richard J; Hulett, Mark D; Mathivanan, Suresh

    2013-11-01

    Exosomes are nanovesicles released by a variety of cells and are detected in body fluids including blood. Recent studies have highlighted the critical application of exosomes as personalized targeted drug delivery vehicles and as reservoirs of disease biomarkers. While these research applications have created significant interest and can be translated into practice, the stability of exosomes needs to be assessed and exosome isolation protocols from blood plasma need to be optimized. To optimize methods to isolate exosomes from blood plasma, we performed a comparative evaluation of three exosome isolation techniques (differential centrifugation coupled with ultracentrifugation, epithelial cell adhesion molecule immunoaffinity pull-down, and OptiPrep(TM) density gradient separation) using normal human plasma. Based on MS, Western blotting and microscopy results, we found that the OptiPrep(TM) density gradient method was superior in isolating pure exosomal populations, devoid of highly abundant plasma proteins. In addition, we assessed the stability of exosomes in plasma over 90 days under various storage conditions. Western blotting analysis using the exosomal marker, TSG101, revealed that exosomes are stable for 90 days. Interestingly, in the context of cellular uptake, the isolated exosomes were able to fuse with target cells revealing that they were indeed biologically active.

  13. Exosomes released from M. tuberculosis infected cells can suppress IFN-γ mediated activation of naive macrophages.

    Directory of Open Access Journals (Sweden)

    Prachi P Singh

    Full Text Available BACKGROUND: Macrophages infected with Mycobacterium tuberculosis (M.tb are known to be refractory to IFN-γ stimulation. Previous studies have shown that M.tb express components such as the 19-kDa lipoprotein and peptidoglycan that can bind to macrophage receptors including the Toll-like receptor 2 resulting in the loss in IFN-γ responsiveness. However, it is unclear whether this effect is limited to infected macrophages. We have previously shown that M.tb-infected macrophages release exosomes which are 30-100 nm membrane bound vesicles of endosomal origin that function in intercellular communication. These exosomes contain mycobacterial components including the 19-kDa lipoprotein and therefore we hypothesized that macrophages exposed to exosomes may show limited response to IFN-γ stimulation. METHODOLOGY/PRINCIPAL FINDINGS: Exosomes were isolated from resting as well as M.tb-infected RAW264.7 macrophages. Mouse bone marrow-derived macrophages (BMMØ were treated with exosomes +/- IFN-γ. Cells were harvested and analyzed for suppression of IFN-γ responsive genes by flow cytometry and real time PCR. We found that exosomes derived from M.tb H37Rv-infected but not from uninfected macrophages inhibited IFN-γ induced MHC class II and CD64 expression on BMMØ. This inhibition was only partially dependent on the presence of lipoproteins but completely dependent on TLR2 and MyD88. The exosomes isolated from infected cells did not inhibit STAT1 Tyrosine phosphorylation but down-regulated IFN-γ induced expression of the class II major histocompatibility complex transactivator; a key regulator of class II MHC expression. Microarray studies showed that subsets of genes induced by IFN-γ were inhibited by exosomes from H37Rv-infected cells including genes involved in antigen presentation. Moreover, this set of genes partially overlapped with the IFN-γ-induced genes inhibited by H37Rv infection. CONCLUSIONS: Our study suggests that exosomes, as

  14. Development of integrity evaluation technology for pressurized components in nuclear power plant and IT based integrity evaluation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Choi, Jae Boong; Shim, Do Jun [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2004-02-15

    The objective of this research is to develop on efficient integrity evaluation technology and to investigate the applicability of the newly-developed technology such as internet-based cyber platform etc. to Nuclear Power Plant(NPP) components. The development of an efficient structural integrity evaluation system is necessary for safe operation of NPP as the increase of operating periods. Moreover, material test data as well as emerging structural integrity assessment technology are also needed for the evaluation of aged components. The following five topics are covered in this project: development of the wall-thinning evaluation program for nuclear piping; development of structural integrity evaluation criteria for steam generator tubes with cracks of various shape; development of fatigue life evaluation system for major components of NPP; ingegration of internet-based cyber platform and integrity evaluation program for primary components of NPP; effects of aging on strength of dissimilar welds.

  15. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket.

    Science.gov (United States)

    Krull, Sandra; Thyberg, Johan; Björkroth, Birgitta; Rackwitz, Hans-Richard; Cordes, Volker C

    2004-09-01

    The vertebrate nuclear pore complex (NPC) is a macromolecular assembly of protein subcomplexes forming a structure of eightfold radial symmetry. The NPC core consists of globular subunits sandwiched between two coaxial ring-like structures of which the ring facing the nuclear interior is capped by a fibrous structure called the nuclear basket. By postembedding immunoelectron microscopy, we have mapped the positions of several human NPC proteins relative to the NPC core and its associated basket, including Nup93, Nup96, Nup98, Nup107, Nup153, Nup205, and the coiled coil-dominated 267-kDa protein Tpr. To further assess their contributions to NPC and basket architecture, the genes encoding Nup93, Nup96, Nup107, and Nup205 were posttranscriptionally silenced by RNA interference (RNAi) in HeLa cells, complementing recent RNAi experiments on Nup153 and Tpr. We show that Nup96 and Nup107 are core elements of the NPC proper that are essential for NPC assembly and docking of Nup153 and Tpr to the NPC. Nup93 and Nup205 are other NPC core elements that are important for long-term maintenance of NPCs but initially dispensable for the anchoring of Nup153 and Tpr. Immunogold-labeling for Nup98 also results in preferential labeling of NPC core regions, whereas Nup153 is shown to bind via its amino-terminal domain to the nuclear coaxial ring linking the NPC core structures and Tpr. The position of Tpr in turn is shown to coincide with that of the nuclear basket, with different Tpr protein domains corresponding to distinct basket segments. We propose a model in which Tpr constitutes the central architectural element that forms the scaffold of the nuclear basket.

  16. Typical zirconium alloys microstructures in nuclear components; Typische Mikrostrukturen von Zirconiumlegierungen in Komponenten kerntechnischer Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Alejandra Viviana; Gomez, Adrian Guillermo; Juarez, Gabriel Alejandro [Dept. de Tecnologia de Aleaciones de Circonio, CAE, CNEA, Buenos Aires (Argentina); and others

    2014-10-01

    The different microstructures typically found in nuclear components made of zirconium alloys are discussed in this paper. These include material in a variety of thermo-mechanical conditions, e. g., cold rolled, stress relieved, recrystallized, welded, biphasic, together with minority second phases belonging to the original material or incorporated due to in-service conditions. The anisotropic crystalline structure of zirconium is exploited in microscopical observations by means of polarizer filters that enhance the contrast between different grains, and greatly aid the identification in most microstructures. Most microstructural variations across a wide range of length-scales, such as those produced by welding processes, can be effectively resolved by traditional optical microscopy (OM). However, some finer microstructures like those found in CANDU (CANada Deuterium Uranium) reactor pressure tube material, or some minority second phase particles like the Zr(Fe,Cr){sub 2} precipitates in Zircaloy-4 cannot be completely resolved by this technique. Thus, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) are required in such cases. For SEM observations we show the valuable issue of the scale in specific microstructural studies, which allows quantifying microstructural parameters using image analysis. For TEM observations, we have greatly benefited from the electron diffraction diagrams, which have allowed us to investigate the crystalline structure of irradiated second phase particles, which would remain unnoticed to both, OM or SEM observations.

  17. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ames, David E.,

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  18. Exosomes as drug delivery vehicles for Parkinson's disease therapy.

    Science.gov (United States)

    Haney, Matthew J; Klyachko, Natalia L; Zhao, Yuling; Gupta, Richa; Plotnikova, Evgeniya G; He, Zhijian; Patel, Tejash; Piroyan, Aleksandr; Sokolsky, Marina; Kabanov, Alexander V; Batrakova, Elena V

    2015-06-10

    Exosomes are naturally occurring nanosized vesicles that have attracted considerable attention as drug delivery vehicles in the past few years. Exosomes are comprised of natural lipid bilayers with the abundance of adhesive proteins that readily interact with cellular membranes. We posit that exosomes secreted by monocytes and macrophages can provide an unprecedented opportunity to avoid entrapment in mononuclear phagocytes (as a part of the host immune system), and at the same time enhance delivery of incorporated drugs to target cells ultimately increasing drug therapeutic efficacy. In light of this, we developed a new exosomal-based delivery system for a potent antioxidant, catalase, to treat Parkinson's disease (PD). Catalase was loaded into exosomes ex vivo using different methods: the incubation at room temperature, permeabilization with saponin, freeze-thaw cycles, sonication, or extrusion. The size of the obtained catalase-loaded exosomes (exoCAT) was in the range of 100-200nm. A reformation of exosomes upon sonication and extrusion, or permeabilization with saponin resulted in high loading efficiency, sustained release, and catalase preservation against proteases degradation. Exosomes were readily taken up by neuronal cells in vitro. A considerable amount of exosomes was detected in PD mouse brain following intranasal administration. ExoCAT provided significant neuroprotective effects in in vitro and in vivo models of PD. Overall, exosome-based catalase formulations have a potential to be a versatile strategy to treat inflammatory and neurodegenerative disorders.

  19. Biogenesis and function of T cell-derived exosomes

    Directory of Open Access Journals (Sweden)

    Miguel Angel Alonso

    2016-08-01

    Full Text Available Exosomes are a particular type of extracellular vesicle, characterized by their endosomal origin as intraluminal vesicles present in large endosomes with a multivesicular structure. After these endosomes fuse with the plasma membrane, exosomes are secreted into the extracellular space. The ability of exosomes to carry and selectively deliver bioactive molecules (e.g., lipids, proteins and nucleic acids confers on them the capacity to modulate the activity of receptor cells, even if these cells are located in distant tissues or organs. Since exosomal cargo depends on cell type, a detailed understanding of the mechanisms that regulate the biochemical composition of exosomes is fundamental to a comprehensive view of exosome function. Here, we review the latest advances concerning exosome function and biogenesis in T cells, with particular focus on the mechanism of protein sorting at multivesicular endosomes. Exosomes secreted by specific T-cell subsets can modulate the activity of immune cells, including other T-cell subsets. Ceramide, tetraspanins and MAL have been revealed to be important in exosome biogenesis by T cells. These molecules, therefore, constitute potential molecular targets for artificially modulating exosome production and, hence, the immune response for therapeutic purposes.

  20. Exosomes in development, metastasis and drug resistance of breast cancer.

    Science.gov (United States)

    Yu, Dan-dan; Wu, Ying; Shen, Hong-yu; Lv, Meng-meng; Chen, Wei-xian; Zhang, Xiao-hui; Zhong, Shan-liang; Tang, Jin-hai; Zhao, Jian-hua

    2015-08-01

    Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attention has been paid to the role of exosomes in the development of breast cancer, the most life-threatening cancer in women. Breast cancer could induce salivary glands to secret specific exosomes, which could be used as biomarkers in the diagnosis of early breast cancer. Exosome-delivered nucleic acid and proteins partly facilitate the tumorigenesis, metastasis and resistance of breast cancer. Exosomes could also transmit anti-cancer drugs outside breast cancer cells, therefore leading to drug resistance. However, exosomes are effective tools for transportation of anti-cancer drugs with lower immunogenicity and toxicity. This is a promising way to establish a drug delivery system.

  1. Hypoxic enhancement of exosome release by breast cancer cells

    Directory of Open Access Journals (Sweden)

    King Hamish W

    2012-09-01

    Full Text Available Abstract Background Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling. Methods Breast cancer cell lines were cultured under either moderate (1% O2 or severe (0.1% O2 hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of  Results Exposure of three different breast cancer cell lines to moderate (1% O2 and severe (0.1% O2 hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions. Conclusions These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic

  2. Exosome-associated hepatitis C virus in cell cultures and patient plasma.

    Science.gov (United States)

    Liu, Ziqing; Zhang, Xiugen; Yu, Qigui; He, Johnny J

    2014-12-12

    Hepatitis C virus (HCV) infects its target cells in the form of cell-free viruses and through cell-cell contact. Here we report that HCV is associated with exosomes. Using highly purified exosomes and transmission electron microscopic imaging, we demonstrated that HCV occurred in both exosome-free and exosome-associated forms. Exosome-associated HCV was infectious and resistant to neutralization by an anti-HCV neutralizing antibody. There were more exosome-associated HCV than exosome-free HCV detected in the plasma of HCV-infected patients. These results suggest exosome-associated HCV as an alternative form for HCV infection and transmission.

  3. Exosome analysis: a promising biomarker system with special attention to saliva.

    Science.gov (United States)

    Zheng, Xiaowen; Chen, Feng; Zhang, Jieni; Zhang, Qian; Lin, Jiuxiang

    2014-11-01

    Today, exosome-related studies have become a focus in science and technology. Recently, three scientists won the Nobel Prize for determining the mechanisms of exosomal transport, making exosomes a promising biomarker system for disease diagnosis and treatment. This review provides a general introduction of exosomes and explores the recent progress on the function, application, isolation, and identification of exosomes as biomarkers in blood and other body fluids, especially in saliva. Detailed information of exosomal proteins and RNAs is discussed in the paper because of their ability to determine the function of exosomes. Due to their noninvasive assessment for quick and convenient diagnosis of diseases, salivary exosomes may well be promising biomarkers.

  4. Nuclear Weapons: NNSA Needs to Establish a Cost and Schedule Baseline for Manufacturing a Critical Nuclear Weapon Component

    Science.gov (United States)

    2008-05-01

    MOX mixed-oxide NNSA National Nuclear Security Administration PF-4 Plutonium Facility-4 building RRW Reliable Replacement Warhead TA-50...disassembles legacy pits and removes and oxidizes the plutonium, which can be used as a feed metal for the mixed-oxide ( MOX ) fuel polishing activities...Facility at the Savannah River Site. MOX fuel polishing This program purifies plutonium from the ARIES project to specifications that would allow direct

  5. Biochemistry and Function of the RNA Exosomes

    DEFF Research Database (Denmark)

    Lubas, Michal Szymon; Chlebowski, Aleksander; Dziembowski, Andrzej

    2012-01-01

    . This multisubunit protein complex consists of a catalytically inert 9-subunit core endowed with associated ribonucleolytic activities and further assisted by compartment-specific cofactors required for its activation and substrate targeting. Although many features of exosome biology are known, fundamental aspects...

  6. Component

    Directory of Open Access Journals (Sweden)

    Tibor Tot

    2011-01-01

    Full Text Available A unique case of metaplastic breast carcinoma with an epithelial component showing tumoral necrosis and neuroectodermal stromal component is described. The tumor grew rapidly and measured 9 cm at the time of diagnosis. No lymph node metastases were present. The disease progressed rapidly and the patient died two years after the diagnosis from a hemorrhage caused by brain metastases. The morphology and phenotype of the tumor are described in detail and the differential diagnostic options are discussed.

  7. Emerging roles of exosomes in neuron-glia communication

    Directory of Open Access Journals (Sweden)

    Carsten eFrühbeis

    2012-04-01

    Full Text Available Brain function depends on coordinated interactions between neurons and glial cells. Recent evidence indicates that these cells release endosome-derived microvesicles termed exosomes, which are 50-100 nm in size and carry specific protein and RNA cargo. Exosomes can interact with neighboring cells raising the concept that exosomes may mediate signaling between brain cells and facilitate the delivery of bioactive molecules. Oligodendrocytes myelinate axons and furthermore maintain axonal integrity by an yet uncharacterized pathway of trophic support. Here, we highlight the role of exosomes in nervous system cell communication with particular focus on exosomes released by oligodendrocytes and their potential implications in axon-glia interaction and myelin disease, such as multiple sclerosis. These secreted vesicles may contribute to eliminate overproduced myelin membrane or to transfer antigens facilitating immune surveillance of the brain. Furthermore, there is emerging evidence that exosomes participate in axon-glia communication.

  8. Functional Roles and Therapeutic Applications of Exosomes in Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Laura Santangelo

    2017-01-01

    Full Text Available Exosomes are important in intercellular communication. They assure the horizontal transfer of specific functional contents (i.e., proteins, lipids, RNA molecules, and circulating DNA from donor to recipient cells. Notably, tumor-derived exosomes (TDEs appear to be an important vehicle of specific signals in cancer, impacting on tumor growth and metastasis. Recent researches point to the characterization of exosomes in Hepatocellular Carcinoma (HCC, the major adult liver malignancy. In this review, we summarize current findings on HCC exosomes, focusing on the identification of noncoding RNAs as exosome-enriched functional regulators and new potential biomarkers. The great potential of exosomes in future HCC diagnostic and therapeutic approaches is underlined.

  9. The human urinary exosome as a potential metabolic effector cargo.

    Science.gov (United States)

    Bruschi, Maurizio; Ravera, Silvia; Santucci, Laura; Candiano, Giovanni; Bartolucci, Martina; Calzia, Daniela; Lavarello, Chiara; Inglese, Elvira; Petretto, Andrea; Ghiggeri, Gianmarco; Panfoli, Isabella

    2015-08-01

    Exosomes are nanovesicles, derived from the endocytic pathway, released by most cell types and found in many body fluids, including urine. A variety of exosomal functions have been reported, including transfer of RNA, cell communication, control of apoptosis and protein lifespan. Exosomes from mesenchymal stem cells can rescue bioenergetics of injured cells. Here the urinary exosome proteome, non-urinary exosome proteome and urinome are compared. A consistent number of identified proteins cluster to metabolic functions. Cytoscape software analysis based on biological processes gene ontology database shows that metabolic pathways such as aerobic glycolysis and oxidative phosphorylation have a high probability (p ≤ 0.05) of being expressed and therefore functional. A metabolic function appears to be associated with human urinary exosomes, whose relevance experimental studies can assess.

  10. Information transfer by exosomes: A new frontier in hematologic malignancies.

    Science.gov (United States)

    Boyiadzis, Michael; Whiteside, Theresa L

    2015-09-01

    Exosomes are small (30-150 mm) vesicles secreted by all cell types and present in all body fluids. They are emerging as vehicles for delivery of membrane-tethered signaling molecules and membrane enclosed genes to target cells. Exosome-mediated information transfer allows for crosstalk of cells within the hematopoietic system and for interactions between hematopoietic cells and local or distant tissue cells. Exosomes carry physiological signals essential for health and participate in pathological processes, including malignant transformation. In hematologic malignancies, exosomes reprogram the bone marrow microenvironment, creating a niche for abnormal cells and favoring their expansion. The molecular and genetic mechanisms exosomes utilize to shuttle information between cells are currently being examined as are the potential roles exosomes play as biomarkers of disease or future therapeutic targets.

  11. The nuclear data, A key component for reactor studies, Overview of AREVA NP needs and applications

    Directory of Open Access Journals (Sweden)

    Ravaux Simon

    2016-01-01

    Full Text Available The quality of the nuclear data is essential for AREVA NP. Indeed, many AREVA NP activities such as reactor design, safety studies or reactor instrumentation use them as input data. So, the nuclear data can be considered as a key element for AREVA NP. REVA NP’s contribution in the improvement of the nuclear data consists in a joint effort with the CEA. It means a financing and a sharing of information which can give an orientation to the future research axis. The aim of this article is to present the industrial point of view from AREVA NP on the research on nuclear data. Several examples of collaborations with the CEA which have resulted in an improvement of the nuclear data are presented.

  12. Nuclear motility in glioma cells reveals a cell-line dependent role of various cytoskeletal components.

    Directory of Open Access Journals (Sweden)

    Alexa Kiss

    Full Text Available Nuclear migration is a general term for the movement of the nucleus towards a specific site in the cell. These movements are involved in a number of fundamental biological processes, such as fertilization, cell division, and embryonic development. Despite of its importance, the mechanism of nuclear migration is still poorly understood in mammalian cells. In order to shed light on the mechanical processes underlying nuclear movements, we adapted a micro-patterning based assay. C6 rat and U87 human glioma cells seeded on fibronectin patterns--thereby forced into a bipolar morphology--displayed oscillatory movements of the nucleus or the whole cell, respectively. We found that both the actomyosin system and microtubules are involved in the nuclear/cellular movements of both cell lines, but their contributions are cell-/migration-type specific. Dynein activity was necessary for nuclear migration of C6 cells but active myosin-II was dispensable. On the other hand, coupled nuclear and cellular movements of U87 cells were driven by actomyosin contraction. We explain these cell-line dependent effects by the intrinsic differences in the overall mechanical tension due to the various cytoskeletal elements inside the cell. Our observations showed that the movements of the nucleus and the centrosome are strongly correlated and display large variation, indicating a tight but flexible coupling between them. The data also indicate that the forces responsible for nuclear movements are not acting directly via the centrosome. Based on our observations, we propose a new model for nuclear oscillations in C6 cells in which dynein and microtubule dynamics are the main drivers of nuclear movements. This mechanism is similar to the meiotic nuclear oscillations of Schizosaccharomyces pombe and may be evolutionary conserved.

  13. Interrogating Circulating Microsomes and Exosomes Using Metal Nanoparticles.

    Science.gov (United States)

    Zhou, Yi-Ge; Mohamadi, Reza M; Poudineh, Mahla; Kermanshah, Leyla; Ahmed, Sharif; Safaei, Tina Saberi; Stojcic, Jessica; Nam, Robert K; Sargent, Edward H; Kelley, Shana O

    2016-02-10

    A chip-based approach for electrochemical characterization and detection of microsomes and exosomes based on direct electro-oxidation of metal nanoparticles (MNPs) that specifically recognize surface markers of these vesicles is reported. It is found that exosomes and microsomes derived from prostate cancer cells can be identified by their surface proteins EpCAM and PSMA, suggesting the potential of exosomes and microsomes for use as diagnostic biomarkers.

  14. Molecular Characterization of Dendritic Cell-Derived Exosomes

    OpenAIRE

    Théry, Clotilde; Regnault, Armelle; Garin, Jérôme; Wolfers, Joseph; Zitvogel, Laurence; Ricciardi-Castagnoli, Paola; Raposo, Graça; Amigorena, Sebastian

    1999-01-01

    Exosomes are membrane vesicles secreted by hematopoietic cells upon fusion of late multivesicular endosomes with the plasma membrane. Dendritic cell (DC)-derived exosomes induce potent antitumor immune responses in mice, resulting in the regression of established tumors (Zitvogel, L., A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. 1998. Nat. Med. 4:594–600). To unravel the molecular basis of exosome-induced immune stimulation, w...

  15. Biogenesis and function of T cell-derived exosomes

    OpenAIRE

    Miguel Angel Alonso; Leandro N. Ventimiglia

    2016-01-01

    Exosomes are a particular type of extracellular vesicle, characterized by their endosomal origin as intraluminal vesicles present in large endosomes with a multivesicular structure. After these endosomes fuse with the plasma membrane, exosomes are secreted into the extracellular space. The ability of exosomes to carry and selectively deliver bioactive molecules (e.g., lipids, proteins, and nucleic acids) confers on them the capacity to modulate the activity of receptor cells, even if these ce...

  16. ExoCarta as a resource for exosomal research

    OpenAIRE

    Simpson, Richard J; Kalra, Hina; Mathivanan, Suresh

    2012-01-01

    Exosomes are a class of extracellular vesicles that are secreted by various cell types. Unlike other extracellular vesicles (ectosomes and apoptotic blebs), exosomes are of endocytic origin. The roles of exosomes in vaccine/ drug delivery, intercellular communication and as a possible source of disease biomarkers have sparked immense interest in them, resulting in a plethora of studies. Whilst multidimensional datasets are continuously generated, it is difficult to harness the true potential ...

  17. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes

    OpenAIRE

    Keerthikumar, Shivakumar; Gangoda, Lahiru; Liem, Michael; Fonseka, Pamali; Atukorala, Ishara; Ozcitti, Cemil; Mechler, Adam; Christopher G. Adda; Ang, Ching-Seng; Mathivanan, Suresh

    2015-01-01

    Extracellular vesicles (EVs) include the exosomes (30-100 nm) that are produced through the endocytic pathway via the multivesicular bodies and the ectosomes (100-1000 nm) that are released through the budding of the plasma membrane. Despite the differences in the mode of biogenesis and size, reliable markers that can distinguish between exosomes and ectosomes are non-existent. Moreover, the precise functional differences between exosomes and ectosomes remains poorly characterised. Here, usin...

  18. Exosomes as miRNA Carriers: Formation-Function-Future.

    Science.gov (United States)

    Yu, Xiaojie; Odenthal, Margarete; Fries, Jochen W U

    2016-12-02

    Exosomes, which are one of the smallest extracellular vesicles released from cells, have been shown to carry different nucleic acids, including microRNAs (miRNAs). miRNAs significantly regulate cell growth and metabolism by posttranscriptional inhibition of gene expression. The rapidly changing understanding of exosomes' formation and function in delivering miRNAs from cell to cell has prompted us to review current knowledge in exosomal miRNA secretion mechanisms as well as possible therapeutic applications for personalized medicine.

  19. A niche role for cancer exosomes in metastasis.

    Science.gov (United States)

    Zhang, Yun; Wang, Xiao-Fan

    2015-06-01

    Cancer cells are known to secrete exosomes with pro-metastatic effects. Pancreatic-cancer-derived exosomes are now shown to promote liver metastasis by eliciting pre-metastatic niche formation through a multi-step process. This involves uptake of exosome-derived factors by liver Kupffer cells and hepatic stellate cell activation to generate a fibrotic microenvironment with immune cell infiltrates that favours metastasis.

  20. Exosomes in Tumor Microenvironment Influence Cancer Progression and Metastasis

    OpenAIRE

    2013-01-01

    Exosomes are small membrane vesicles of endocytic origin with a size of 50 – 100 nm. They can contain microRNAs, mRNAs, DNA fragments and proteins, which are shuttled from a donar cell to recipient cells. Many different cell types including immune cells, mesenchymal cells and cancer cells release exosomes. There is emerging evidence that cancer-derived exosomes contribute to the recruitment and reprogramming of constituents associated with tumor environment. Here, we discuss different mechani...

  1. Itinerant exosomes: emerging roles in cell and tissue polarity

    OpenAIRE

    2008-01-01

    Cells use secreted signals (e.g. chemokines and growth factors) and sophisticated vehicles such as argosomes, cytonemes, tunneling nanotubes and exosomes to relay important information to other cells, often over large distances. Exosomes, 30–100-nm intraluminal vesicles of multivesicular bodies (MVB) released upon exocytic fusion of the MVB with the plasma membrane, are increasingly recognized as a novel mode of cell-independent communication. Exosomes have been shown to function in antigen p...

  2. Development of exosome surface display technology in living human cells

    Energy Technology Data Exchange (ETDEWEB)

    Stickney, Zachary, E-mail: zstickney@scu.edu; Losacco, Joseph, E-mail: jlosacco@scu.edu; McDevitt, Sophie, E-mail: smmcdevitt@scu.edu; Zhang, Zhiwen, E-mail: zzhang@scu.edu; Lu, Biao, E-mail: blu2@scu.edu

    2016-03-25

    Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell–cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated the successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.

  3. Emerging potential of exosomes for treatment of traumatic brain injury

    Science.gov (United States)

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2017-01-01

    Traumatic brain injury (TBI) is one of the major causes of death and disability worldwide. No effective treatment has been identified from clinical trials. Compelling evidence exists that treatment with mesenchymal stem cells (MSCs) exerts a substantial therapeutic effect after experimental brain injury. In addition to their soluble factors, therapeutic effects of MSCs may be attributed to their generation and release of exosomes. Exosomes are endosomal origin small-membrane nano-sized vesicles generated by almost all cell types. Exosomes play a pivotal role in intercellular communication. Intravenous delivery of MSC-derived exosomes improves functional recovery and promotes neuroplasticity in rats after TBI. Therapeutic effects of exosomes derive from the exosome content, especially microRNAs (miRNAs). miRNAs are small non-coding regulatory RNAs and play an important role in posttranscriptional regulation of genes. Compared with their parent cells, exosomes are more stable and can cross the blood-brain barrier. They have reduced the safety risks inherent in administering viable cells such as the risk of occlusion in microvasculature or unregulated growth of transplanted cells. Developing a cell-free exosome-based therapy may open up a novel approach to enhancing multifaceted aspects of neuroplasticity and to amplifying neurological recovery, potentially for a variety of neural injuries and neurodegenerative diseases. This review discusses the most recent knowledge of exosome therapies for TBI, their associated challenges and opportunities.

  4. Exosomes: From Garbage Bins to Promising Therapeutic Targets

    Science.gov (United States)

    H. Rashed, Mohammed; Bayraktar, Emine; K. Helal, Gouda; Abd-Ellah, Mohamed F.; Amero, Paola; Chavez-Reyes, Arturo; Rodriguez-Aguayo, Cristian

    2017-01-01

    Intercellular communication via cell-released vesicles is a very important process for both normal and tumor cells. Cell communication may involve exosomes, small vesicles of endocytic origin that are released by all types of cells and are found in abundance in body fluids, including blood, saliva, urine, and breast milk. Exosomes have been shown to carry lipids, proteins, mRNAs, non-coding RNAs, and even DNA out of cells. They are more than simply molecular garbage bins, however, in that the molecules they carry can be taken up by other cells. Thus, exosomes transfer biological information to neighboring cells and through this cell-to-cell communication are involved not only in physiological functions such as cell-to-cell communication, but also in the pathogenesis of some diseases, including tumors and neurodegenerative conditions. Our increasing understanding of why cells release exosomes and their role in intercellular communication has revealed the very complex and sophisticated contribution of exosomes to health and disease. The aim of this review is to reveal the emerging roles of exosomes in normal and pathological conditions and describe the controversial biological role of exosomes, as it is now understood, in carcinogenesis. We also summarize what is known about exosome biogenesis, composition, functions, and pathways and discuss the potential clinical applications of exosomes, especially as biomarkers and novel therapeutic agents. PMID:28257101

  5. Emerging potential of exosomes for treatment of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Ye Xiong

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is one of the major causes of death and disability worldwide. No effective treatment has been identified from clinical trials. Compelling evidence exists that treatment with mesenchymal stem cells (MSCs exerts a substantial therapeutic effect after experimental brain injury. In addition to their soluble factors, therapeutic effects of MSCs may be attributed to their generation and release of exosomes. Exosomes are endosomal origin small-membrane nano-sized vesicles generated by almost all cell types. Exosomes play a pivotal role in intercellular communication. Intravenous delivery of MSC-derived exosomes improves functional recovery and promotes neuroplasticity in rats after TBI. Therapeutic effects of exosomes derive from the exosome content, especially microRNAs (miRNAs. miRNAs are small non-coding regulatory RNAs and play an important role in posttranscriptional regulation of genes. Compared with their parent cells, exosomes are more stable and can cross the blood-brain barrier. They have reduced the safety risks inherent in administering viable cells such as the risk of occlusion in microvasculature or unregulated growth of transplanted cells. Developing a cell-free exosome-based therapy may open up a novel approach to enhancing multifaceted aspects of neuroplasticity and to amplifying neurological recovery, potentially for a variety of neural injuries and neurodegenerative diseases. This review discusses the most recent knowledge of exosome therapies for TBI, their associated challenges and opportunities.

  6. Exosomes: Fundamental Biology and Roles in Cardiovascular Physiology.

    Science.gov (United States)

    Ibrahim, Ahmed; Marbán, Eduardo

    2016-01-01

    Exosomes are nanosized membrane particles that are secreted by cells that transmit information from cell to cell. The information within exosomes prominently includes their protein and RNA payloads. Exosomal microRNAs in particular can potently and fundamentally alter the transcriptome of recipient cells. Here we summarize what is known about exosome biogenesis, content, and transmission, with a focus on cardiovascular physiology and pathophysiology. We also highlight some of the questions currently under active investigation regarding these extracellular membrane vesicles and their potential in diagnostic and therapeutic applications.

  7. Bovine milk-derived exosomes for drug delivery.

    Science.gov (United States)

    Munagala, Radha; Aqil, Farrukh; Jeyabalan, Jeyaprakash; Gupta, Ramesh C

    2016-02-01

    Exosomes are biological nanovesicles that are involved in cell-cell communication via the functionally-active cargo (such as miRNA, mRNA, DNA and proteins). Because of their nanosize, exosomes are explored as nanodevices for the development of new therapeutic applications. However, bulk, safe and cost-effective production of exosomes is not available. Here, we show that bovine milk can serve as a scalable source of exosomes that can act as a carrier for chemotherapeutic/chemopreventive agents. Drug-loaded exosomes showed significantly higher efficacy compared to free drug in cell culture studies and against lung tumor xenografts in vivo. Moreover, tumor targeting ligands such as folate increased cancer-cell targeting of the exosomes resulting in enhanced tumor reduction. Milk exosomes exhibited cross-species tolerance with no adverse immune and inflammatory response. Thus, we show the versatility of milk exosomes with respect to the cargo it can carry and ability to achieve tumor targetability. This is the first report to identify a biocompatible and cost-effective means of exosomes to enhance oral bioavailability, improve efficacy and safety of drugs.

  8. Exosomes: Origins and Therapeutic Potential for Neurodegenerative Disease

    Science.gov (United States)

    Sarko, Diana K.; McKinney, Cindy E.

    2017-01-01

    Exosomes, small lipid bilayer vesicles, are part of the transportable cell secretome that can be taken up by nearby recipient cells or can travel through the bloodstream to cells in distant organs. Selected cellular cytoplasm containing proteins, RNAs, and other macromolecules is packaged into secreted exosomes. This cargo has the potential to affect cellular function in either healthy or pathological ways. Exosomal content has been increasingly shown to assist in promoting pathways of neurodegeneration such as β-amyloid peptide (Aβ) accumulation forming amyloid plaques in the brains of patients with Alzheimer's disease, and pathological aggregates of proteins containing α-synuclein in Parkinson's disease transferred to the central nervous system via exosomes. In attempting to address such debilitating neuropathologies, one promising utility of exosomes lies in the development of methodology to use exosomes as natural delivery vehicles for therapeutics. Because exosomes are capable of penetrating the blood-brain barrier, they can be strategically engineered to carry drugs or other treatments, and possess a suitable half-life and stability for this purpose. Overall, analyses of the roles that exosomes play between diverse cellular sites will refine our understanding of how cells communicate. This mini-review introduces the origin and biogenesis of exosomes, their roles in neurodegenerative processes in the central nervous system, and their potential utility to deliver therapeutic drugs to cellular sites. PMID:28289371

  9. Development of exosome surface display technology in living human cells.

    Science.gov (United States)

    Stickney, Zachary; Losacco, Joseph; McDevitt, Sophie; Zhang, Zhiwen; Lu, Biao

    2016-03-25

    Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell-cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated the successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.

  10. Exosome secretion affects social motility in Trypanosoma brucei

    Science.gov (United States)

    Shaked, Hadassa; Arvatz, Gil; Tkacz, Itai Dov; Binder, Lior; Waldman Ben-Asher, Hiba; Okalang, Uthman; Chikne, Vaibhav; Cohen-Chalamish, Smadar; Michaeli, Shulamit

    2017-01-01

    Extracellular vesicles (EV) secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL) exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB) utilizing the endosomal sorting complexes required for transport (ESCRT), through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo). This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites. PMID:28257521

  11. Regulation of exosome release by glycosphingolipids and flotillins.

    Science.gov (United States)

    Phuyal, Santosh; Hessvik, Nina P; Skotland, Tore; Sandvig, Kirsten; Llorente, Alicia

    2014-05-01

    Exosomes are released by cells after fusion of multivesicular bodies with the plasma membrane. The molecular mechanism of this process is still unclear. We investigated the role of sphingolipids and flotillins, which constitute a raft-associated family of proteins, in the release of exosomes. Interestingly, our results show that dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthase, seemed to affect the composition of exosomes released from PC-3 cells. However, the inhibition of ceramide formation from the de novo pathway by fumonisin B1 did not affect exosome secretion. Moreover, in contrast to findings obtained with other cell lines published so far, inhibition of neutral sphingomyelinase 2, an enzyme that catalyzes the formation of ceramide from sphingomyelin, did not inhibit the secretion of exosomes in PC-3 cells. Finally, small interfering RNA-mediated downregulation of flotillin-1 and flotillin-2 did not significantly change the levels of released exosomes as such, but seemed to affect the composition of exosomes. In conclusion, our results reveal the involvement of glycosphingolipids and flotillins in the release of exosomes from PC-3 cells, and indicate that the role of ceramide in exosome formation may be cell-dependent.

  12. Exosomes: From Garbage Bins to Promising Therapeutic Targets.

    Science.gov (United States)

    H Rashed, Mohammed; Bayraktar, Emine; K Helal, Gouda; Abd-Ellah, Mohamed F; Amero, Paola; Chavez-Reyes, Arturo; Rodriguez-Aguayo, Cristian

    2017-03-02

    Intercellular communication via cell-released vesicles is a very important process for both normal and tumor cells. Cell communication may involve exosomes, small vesicles of endocytic origin that are released by all types of cells and are found in abundance in body fluids, including blood, saliva, urine, and breast milk. Exosomes have been shown to carry lipids, proteins, mRNAs, non-coding RNAs, and even DNA out of cells. They are more than simply molecular garbage bins, however, in that the molecules they carry can be taken up by other cells. Thus, exosomes transfer biological information to neighboring cells and through this cell-to-cell communication are involved not only in physiological functions such as cell-to-cell communication, but also in the pathogenesis of some diseases, including tumors and neurodegenerative conditions. Our increasing understanding of why cells release exosomes and their role in intercellular communication has revealed the very complex and sophisticated contribution of exosomes to health and disease. The aim of this review is to reveal the emerging roles of exosomes in normal and pathological conditions and describe the controversial biological role of exosomes, as it is now understood, in carcinogenesis. We also summarize what is known about exosome biogenesis, composition, functions, and pathways and discuss the potential clinical applications of exosomes, especially as biomarkers and novel therapeutic agents.

  13. Exosomes: From Garbage Bins to Promising Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Mohammed H. Rashed

    2017-03-01

    Full Text Available Intercellular communication via cell-released vesicles is a very important process for both normal and tumor cells. Cell communication may involve exosomes, small vesicles of endocytic origin that are released by all types of cells and are found in abundance in body fluids, including blood, saliva, urine, and breast milk. Exosomes have been shown to carry lipids, proteins, mRNAs, non-coding RNAs, and even DNA out of cells. They are more than simply molecular garbage bins, however, in that the molecules they carry can be taken up by other cells. Thus, exosomes transfer biological information to neighboring cells and through this cell-to-cell communication are involved not only in physiological functions such as cell-to-cell communication, but also in the pathogenesis of some diseases, including tumors and neurodegenerative conditions. Our increasing understanding of why cells release exosomes and their role in intercellular communication has revealed the very complex and sophisticated contribution of exosomes to health and disease. The aim of this review is to reveal the emerging roles of exosomes in normal and pathological conditions and describe the controversial biological role of exosomes, as it is now understood, in carcinogenesis. We also summarize what is known about exosome biogenesis, composition, functions, and pathways and discuss the potential clinical applications of exosomes, especially as biomarkers and novel therapeutic agents.

  14. Exosomes: A Promising Factor Involved in Cancer Hypoxic Microenvironments.

    Science.gov (United States)

    Yang, Y; Yang, X; Yang, Y; Zhu, H; Chen, X; Zhang, H; Wang, F; Qin, Q; Cheng, H; Sun, X

    2015-01-01

    As a significant tumor feature, hypoxia can trigger cancer adaptive processes, induce malignant phenotype development, and promote drug resistance. Previous studies demonstrated that exosomes are critical during these procedures. Exosomes are small vesicles formed in vesicular bodies in the endosomal network. These small vesicles are mainly involved in the transport of bioactive molecules between cells. Exosomes are also involved in the mediation of some cellular communications depending on derived donor cells; thus, recipient cells undergo phenotypic changes. Furthermore, hypoxia can remarkably stimulate exosomal secretion; for instance, nucleic acids and proteins as transmission signals in exosomes in a tumor microenvironment are involved in various functions, such as inducing intratumoral heterogeneity, altering immunological responses, producing cancer-associated fibroblasts, and promoting angiogenesis and metastasis. Moreover, exosome contents resemble those of a donor cell; this finding indicates that exosomes may also be regarded as suitable biomarkers of hypoxia status. Therefore, exosomes can be used to facilitate diagnosis and prognosis with minimal invasive procedures. Further studies on exosomes in cancer may provide new therapeutic strategies.

  15. Exosomes and the emerging field of exosome-based gene therapy.

    Science.gov (United States)

    O'Loughlin, Aisling J; Woffindale, Caroline A; Wood, Matthew J A

    2012-08-01

    Exosomes are a subtype of membrane vesicle released from the endocytic compartment of live cells. They play an important role in endogenous cell-to-cell communication. Previously shown to be capable of traversing biological barriers and to naturally transport functional nucleic acids between cells, they potentially represent a novel and exciting drug delivery vehicle for the field of gene therapy. Existing delivery vehicles are limited by concerns regarding their safety, toxicity and efficacy. In contrast, exosomes, as a natural cell-derived nanocarrier, are immunologically inert if purified from a compatible cell source and possess an intrinsic ability to cross biological barriers. Already utilised in a number of clinical trials, exosomes appear to be well-tolerated, even following repeat administration. Recent studies have shown that exosomes may be used to encapsulate and protect exogenous oligonucleotides for delivery to target cells. They therefore may be valuable for the delivery of RNA interference and microRNA regulatory molecules in addition to other single-stranded oligonucleotides. Prior to clinical translation, this nanotechnology requires further development by refinement of isolation, purification, loading, delivery and targeting protocols. Thus, exosome-mediated nanodelivery is highly promising and may fill the void left by current delivery methods for systemic gene therapy.

  16. Components of coated vesicles and nuclear pore complexes share a common molecular architecture.

    Directory of Open Access Journals (Sweden)

    Damien Devos

    2004-12-01

    Full Text Available Numerous features distinguish prokaryotes from eukaryotes, chief among which are the distinctive internal membrane systems of eukaryotic cells. These membrane systems form elaborate compartments and vesicular trafficking pathways, and sequester the chromatin within the nuclear envelope. The nuclear pore complex is the portal that specifically mediates macromolecular trafficking across the nuclear envelope. Although it is generally understood that these internal membrane systems evolved from specialized invaginations of the prokaryotic plasma membrane, it is not clear how the nuclear pore complex could have evolved from organisms with no analogous transport system. Here we use computational and biochemical methods to perform a structural analysis of the seven proteins comprising the yNup84/vNup107-160 subcomplex, a core building block of the nuclear pore complex. Our analysis indicates that all seven proteins contain either a beta-propeller fold, an alpha-solenoid fold, or a distinctive arrangement of both, revealing close similarities between the structures comprising the yNup84/vNup107-160 subcomplex and those comprising the major types of vesicle coating complexes that maintain vesicular trafficking pathways. These similarities suggest a common evolutionary origin for nuclear pore complexes and coated vesicles in an early membrane-curving module that led to the formation of the internal membrane systems in modern eukaryotes.

  17. Perturbations in the Urinary Exosome in Transplant Rejection

    Energy Technology Data Exchange (ETDEWEB)

    Sigdel, Tara K.; NG, Yolanda; Lee, Sangho; Nicora, Carrie D.; Qian, Weijun; Smith, Richard D.; Camp, David G.; Sarwal, Minnie M.

    2015-01-05

    Background: Urine exosomes, vesicles exocytosed into urine by all renal epithelial cell types, occur under normal physiologic and disease states. Exosome contents may mirror disease-specific proteome perturbations in kidney injury. Analysis methodologies for the exosomal fraction of the urinary proteome were developed and for comparing the urinary exosomal fraction versus unfractionated proteome for biomarker discovery. Methods: Urine exosomes were isolated by centrifugal filtration from mid-stream, second morning void, urine samples collected from kidney transplant recipients with and without biopsy matched acute rejection. The proteomes of unfractionated whole urine (Uw) and urine exosomes (Uexo) underwent mass spectrometry-based quantitative proteomics analysis. The proteome data were analyzed for significant differential protein abundances in acute rejection (AR). Results: Identifications of 1018 and 349 proteins, Uw and Uexo fractions, respectively, demonstrated a 279 protein overlap between the two urinary compartments with 25%(70) of overlapping proteins unique to Uexoand represented membrane bound proteins (p=9.31e-7). Of 349 urine exosomal proteins identified in transplant patients 220 were not previously identified in the normal urine exosomal fraction. Uexo proteins (11), functioning in the inflammatory / stress response, were more abundant in patients with biopsy-confirmed acute rejection, 3 of which were exclusive to Uexo. Uexo AR-specific biomarkers (8) were also detected in Uw, but since they were observed at significantly lower abundances in Uw, they were not significant for AR in Uw. Conclusions: A rapid urinary exosome isolation method and quantitative measurement of enriched Uexo proteins was applied. Urine proteins specific to the exosomal fraction were detected either in unfractionated urine (at low abundances) or by Uexo fraction analysis. Perturbed proteins in the exosomal compartment of urine collected from kidney transplant patients were

  18. Benchtop isolation and characterization of functional exosomes by sequential filtration.

    Science.gov (United States)

    Heinemann, Mitja L; Ilmer, Matthias; Silva, Leslie P; Hawke, David H; Recio, Alejandro; Vorontsova, Maria A; Alt, Eckhard; Vykoukal, Jody

    2014-12-05

    Early and minimally invasive detection of malignant events or other pathologies is of utmost importance in the pursuit of improved patient care and outcomes. Recent evidence indicates that exosomes and extracellular vesicles in serum and body fluids can contain nucleic acid, protein, and other biomarkers. Accordingly, there is great interest in applying these clinically as prognostic, predictive, pharmacodynamic, and early detection indicators. Nevertheless, existing exosome isolation methods can be time-consuming, require specialized equipment, and/or present other inefficiencies regarding purity, reproducibility and assay cost. We have developed a straightforward, three-step protocol for exosome isolation of cell culture supernatants or large volumes of biofluid based on sequential steps of dead-end pre-filtration, tangential flow filtration (TFF), and low-pressure track-etched membrane filtration that we introduce here. Our approach yields exosome preparations of high purity and defined size distribution and facilitates depletion of free protein and other low-molecular-weight species, extracellular vesicles larger than 100nm, and cell debris. Samples of exosomes prepared using the approach were verified morphologically by nanoparticle tracking analysis and electron microscopy, and mass spectrometry analyses confirmed the presence of previously reported exosome-associated proteins. In addition to being easy-to-implement, sequential filtration yields exosomes of high purity and, importantly, functional integrity as a result of the relatively low-magnitude manipulation forces employed during isolation. This answers an unmet need for preparation of minimally manipulated exosomes for investigations into exosome function and basic biology. Further, the strategy is amenable to translation for clinical exosome isolations because of its speed, automatability, scalability, and specificity for isolating exosomes from complex biological samples.

  19. Exosome Biogenesis, Regulation, and Function in Viral Infection.

    Science.gov (United States)

    Alenquer, Marta; Amorim, Maria João

    2015-09-17

    Exosomes are extracellular vesicles released upon fusion of multivesicular bodies(MVBs) with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs) during the process of MVB formation. Exosomes were shown to contain selectively sorted functional proteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in the physiology of the healthy and diseased organism. Challenges in the field include the identification of mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles and the understanding of the underlying processes directing MVBs for degradation or fusion with the plasma membrane. The investigation into the formation and roles of exosomes in viral infection is in its early years. Although still controversial, exosomes can, in principle, incorporate any functional factor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation.This review initially focuses on the composition and biogenesis of exosomes. It then explores the regulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system,which is tightly regulated and able to respond to several stimuli that lead to alterations in the composition of its sub-compartments. We discuss the current knowledge of how these changes affect exosomal release. We then summarize how different viruses exploit specific proteins of endocytic sub-compartments and speculate that it could interfere with exosome function, although no direct link between viral usage of the endocytic system and exosome release has yet been reported. Many recent reports have ascribed functions to exosomes released from cells infected with a variety of animal viruses, including viral spread, host immunity, and manipulation of the microenvironment, which are discussed. Given the ever-growing roles and importance of exosomes in viral infections, understanding what regulates their composition and levels, and

  20. Acute stressor exposure modifies plasma exosome-associated heat shock protein 72 (Hsp72 and microRNA (miR-142-5p and miR-203.

    Directory of Open Access Journals (Sweden)

    Lida A Beninson

    Full Text Available Exosomes, biologically active nanoparticles (40-100 nm released by hematopoietic and non-hematopoietic cells, contain a variety of proteins and small, non-coding RNA known as microRNA (miRNA. Exposure to various pathogens and disease states modifies the composition and function of exosomes, but there are no studies examining in vivo exosomal changes evoked by the acute stress response. The present study reveals that exposing male Fisher 344 rats to an acute stressor modulates the protein and miRNA profile of circulating plasma exosomes, specifically increasing surface heat shock protein 72 (Hsp72 and decreasing miR-142-5p and -203. The selected miRNAs and Hsp72 are associated with immunomodulatory functions and are likely a critical component of stress-evoked modulation of immunity. Further, we demonstrate that some of these stress-induced modifications in plasma exosomes are mediated by sympathetic nervous system (SNS activation of alpha-1 adrenergic receptors (ADRs, since drug-mediated blockade of the receptors significantly attenuates the stress-induced modifications of exosomal Hsp72 and miR-142-5p. Together, these findings demonstrate that activation of the acute stress response modifies the proteomic and miRNA profile of exosomes released into the circulation.

  1. Exosomes as novel regulators of adult neurogenic niches

    Directory of Open Access Journals (Sweden)

    Luis Federico Batiz

    2016-01-01

    neurogenic niches remain virtually unexplored. This review focuses on the current knowledge regarding the functional relationship between cellular and extracellular components of the adult SVZ and SGZ neurogenic niches, and the growing evidence that supports the potential role of exosomes in the physiology and pathology of adult neurogenesis.

  2. 外质体(Exosomes)与肾脏疾病%Exosomes and kidney diseases

    Institute of Scientific and Technical Information of China (English)

    柏云

    2012-01-01

    Exosomes are nanovesicles originating from multivesicular bodies ( MVBs) and secreted into the extracellular space or body fluids when a multivesicular body {endocytic origin) fuses with the plasma membrane. Exosomes contain multiple proteins, mRNAs, microRNAs, and signaling molecules that may reflect the physiological state of their cells of origin and consequently provide potential biomarkers. At present,the studies on exosomes are mostly focused on their roles in immunology and oncology and exosorne-based immunotherapy has become a new means in cancer treatment and immune tolerance. In recent years, urinary exosomes (UE) and their roles in kidney diseases have been receiving great attention. Exosomes are secreted to the urine from all types of renal epithelial cell, including glomerular podocytes, renal tubular cells, and the cells lining the urinary drainage system. Thus, urinary exosomes have potential as a source of valuable biomarkers for early detection of kidney diseases. The present review aims to summarize their biological characteristics,and their potential uses in the diagnosis and treatment of kidney disease.%外质体( Exosomes)足起源于多泡体的微小囊泡,由细胞内吞途径中的多泡体外膜和细胞膜融合后释放到胞外环境或体液中.Exosomes含有多种蛋白、mRNAs、microRNAs、信号分子等,能够反映来源细胞的生物学状态,因而可能成为潜在的生物学标志物.目前,exosomes的研究大多集中在免疫学和肿瘤学,并已经成为一种免疫治疗的新手段,应用于肿瘤治疗和免疫耐受等方面.近年人们才关注exosomes与肾脏疾病的关系,研究表明几乎所有肾脏上皮细胞包括肾小球足细胞、肾小管上皮细胞、尿道上皮细胞均可分泌exosomes,因此尿液来源的exosomes可能成为寻找肾脏疾病早期诊断的标志物.本文着重从exosomes的生物学特性及其在肾脏疾病诊断和治疗的研究进行综述.

  3. Feto-Maternal Trafficking of Exosomes in Murine Pregnancy Models.

    Science.gov (United States)

    Sheller-Miller, Samantha; Lei, Jun; Saade, George; Salomon, Carlos; Burd, Irina; Menon, Ramkumar

    2016-01-01

    Timing and initiation of labor are well-orchestrated by signals communicated between the fetal and maternal compartments; however, how these signals are communicated is not completely understood. Fetal exosomes, intercellular signaling vesicles, may play a key role in the process. The objective of this study was to evaluate exosome trafficking in vivo from fetal to maternal compartments. Pregnant CD-1 mice were intra-amniotically injected on gestational day 16 and 17 with exosomes isolated from primary human amnion epithelial cells fluorescently labeled with the lipophilic dye 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide (DiR). All our analyses were performed on samples collected on Day 18. After 24 h, mice were imaged using Bruker MS FX PRO In vivo Imager and tissues were collected. In vivo imaging of mouse showed fluorescence in the uterus, on the exosome-injected side whereas the uterine tissues from the uninjected side and saline and dye alone injected animals remained negative. Histological analysis of placenta showed exosome migration from the fetal to the maternal side of the placenta. Fluorescence released from exosomes was seen in maternal blood samples as well as in maternal uterus and kidneys. This study demonstrates that exosomal cargo can be carried through systemic route from the fetal to the maternal side of the uterine tissues during pregnancy, supporting the idea that fetal signals can be delivered via exosomes.

  4. Feto-maternal Trafficking of Exosomes in Murine Pregnancy Models

    Directory of Open Access Journals (Sweden)

    Samantha Sheller

    2016-11-01

    Full Text Available Timing and initiation of labor are well-orchestrated by signals communicated between the fetal and maternal compartments; however, how these signals are communicated is not completely understood. Fetal exosomes, intercellular signaling vesicles, may play a key role in the process. The objective of this study was to evaluate exosome trafficking in vivo from fetal to maternal compartments. Pregnant CD-1 mice were intra-amniotically injected on gestational day 16 and 17 with exosomes isolated from primary human amnion epithelial cells fluorescently labeled with the lipophilic dye 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide (DiR. All our analyses were performed on samples collected on Day 18. After 24 hours, mice were imaged using Bruker MS FX PRO In Vivo Imager and tissues were collected. In vivo imaging of mouse showed fluorescence in the uterus, on the exosome-injected side whereas the uterine tissues from the uninjected side and saline and dye alone injected animals remained negative. Histological analysis of placenta showed exosome migration from the fetal to the maternal side of the placenta. Fluorescence released from exosomes was seen in maternal blood samples as well as in maternal uterus and kidneys. This study demonstrates that exosomal cargo can be carried through systemic route from the fetal to the maternal side of the uterine tissues during pregnancy, supporting the idea that fetal signals can be delivered via exosomes.

  5. Exosome enrichment of human serum using multiple cycles of centrifugation.

    Science.gov (United States)

    Kim, Jeongkwon; Tan, Zhijing; Lubman, David M

    2015-09-01

    In this work, we compared the use of repeated cycles of centrifugation at conventional speeds for enrichment of exosomes from human serum compared to the use of ultracentrifugation (UC). After removal of cells and cell debris, a speed of 110 000 × g or 40 000 × g was used for the UC or centrifugation enrichment process, respectively. The enriched exosomes were analyzed using the bicinchoninic acid assay, 1D gel separation, transmission electron microscopy, Western blotting, and high-resolution LC-MS/MS analysis. It was found that a five-cycle repetition of UC or centrifugation is necessary for successful removal of nonexosomal proteins in the enrichment of exosomes from human serum. More significantly, 5× centrifugation enrichment was found to provide similar or better performance than 5× UC enrichment in terms of enriched exosome protein amount, Western blot band intensity for detection of CD-63, and numbers of identified exosome-related proteins and cluster of differentiation (CD) proteins. A total of 478 proteins were identified in the LC-MS/MS analyses of exosome proteins obtained from 5× UCs and 5× centrifugations including many important CD membrane proteins. The presence of previously reported exosome-related proteins including key exosome protein markers demonstrates the utility of this method for analysis of proteins in human serum.

  6. Exosomes and Their Signiifcance in Diagnosis and Treatment of Tumors

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; LI Chao; LI Wei

    2015-01-01

    In the research field of biological markers for tumor diagnosis, the appearance of exosomes has resolved the problem that RNA molecules can be easily degraded. Exosomes carry various RNAs and can protect them from being degraded. They are deifned as polymorphism vesicle-like corpuscles (diameter: 30-100 nm) derived from late endosome or multi-vesicular endosomes in cellular endocytosis system, which contain abundant biological information, including multiple lipids, proteins and nucleic acids, etc. Exosomes are extracellular nanoscale vesicae formed in a series of regulating process of cellular “endocytosis-fusion-excretion”, and they carry proteins and transport RNAs, thus playing an important role in the intercellular material and informational transduction. There are still large amount of mRNAs and miRNAs in exosomes. Exosomes can not only protect in-vitro RNA stability, but also transfer RNA to speciifc target cells as effective carriers so as to play their regulatory function. Exosomes realize their biological information exchanges and transition via endocrine, paracrine and autocrine, and regulate cellular biological activities through direct action on superficial signal molecules or extracellular release and membrane fusion of biological active ingredients. They can directly act on tumors to impact tumor progression, or improve tumor angiogenesis and metastasis by regulating immunological function. Additionally, they can also be used for tumor diagnosis. Therefore, this study mainly summarized the biological characteristics of exosomes and their application in the regulation, diagnosis and treatment of tumors, hoping to provide references for the application of exosomes in tumors.

  7. Development of an aptasensor for electrochemical detection of exosomes.

    Science.gov (United States)

    Zhou, Qing; Rahimian, Ali; Son, Kyungjin; Shin, Dong-Sik; Patel, Tushar; Revzin, Alexander

    2016-03-15

    Exosomes are small (50-100 nm in diameter) vesicles secreted from various mammalian cells. Exosomes have been correlated with tumor antigens and anti-tumor immune responses and may represent cancer biomarkers. Herein, we report on the development of an aptamer-based electrochemical biosensor for quantitative detection of exosomes. Aptamers specific to exosome transmembrane protein CD63 were immobilized onto gold electrode surfaces and incorporated into a microfluidic system. Probing strands pre-labeled with redox moieties were hybridized onto aptamer molecules anchored on the electrode surface. In the presence of exosomes these beacons released probing strands with redox reporters causing electrochemical signal to decrease. These biosensors could be used to detect as few as 1×10(6) particles/mL of exosomes, which represents 100-fold decrease in the limit of detection compared to commercial immunoassays relying on anti-CD63 antibodies. Given the importance of exosome-mediated signal transmission among cells, our study may represent an important step towards development of a simple biosensor that detects exosomes without washing or labeling steps in complex media.

  8. Exosome removal as a therapeutic adjuvant in cancer

    Directory of Open Access Journals (Sweden)

    Marleau Annette M

    2012-06-01

    Full Text Available Abstract Exosome secretion is a notable feature of malignancy owing to the roles of these nanoparticles in cancer growth, immune suppression, tumor angiogenesis and therapeutic resistance. Exosomes are 30–100 nm membrane vesicles released by many cells types during normal physiological processes. Tumors aberrantly secrete large quantities of exosomes that transport oncoproteins and immune suppressive molecules to support tumor growth and metastasis. The role of exosomes in intercellular signaling is exemplified by human epidermal growth factor receptor type 2 (HER2 over-expressing breast cancer, where exosomes with the HER2 oncoprotein stimulate tumor growth and interfere with the activity of the therapeutic antibody Herceptin®. Since numerous observations from experimental model systems point toward an important clinical impact of exosomes in cancer, several pharmacological strategies have been proposed for targeting their malignant activities. We also propose a novel device strategy involving extracorporeal hemofiltration of exosomes from the entire circulatory system using an affinity plasmapheresis platform known as the Aethlon ADAPT™ (adaptive dialysis-like affinity platform technology system, which would overcome the risks of toxicity and drug interactions posed by pharmacological approaches. This technology allows affinity agents, including exosome-binding lectins and antibodies, to be immobilized in the outer-capillary space of plasma filtration membranes that integrate into existing kidney dialysis systems. Device therapies that evolve from this platform allow rapid extracorporeal capture and selective retention of target particles 

  9. Exosomes and their roles in immune regulation and cancer.

    Science.gov (United States)

    Greening, David W; Gopal, Shashi K; Xu, Rong; Simpson, Richard J; Chen, Weisan

    2015-04-01

    Exosomes, a subset of extracellular vesicles (EVs), function as a mode of intercellular communication and molecular transfer. Exosomes facilitate the direct extracellular transfer of proteins, lipids, and miRNA/mRNA/DNAs between cells in vitro and in vivo. The immunological activities of exosomes affect immunoregulation mechanisms including modulating antigen presentation, immune activation, immune suppression, immune surveillance, and intercellular communication. Besides immune cells, cancer cells secrete immunologically active exosomes that influence both physiological and pathological processes. The observation that exosomes isolated from immune cells such as dendritic cells (DCs) modulate the immune response has enforced the way these membranous vesicles are being considered as potential immunotherapeutic reagents. Indeed, tumour- and immune cell-derived exosomes have been shown to carry tumour antigens and promote immunity, leading to eradication of established tumours by CD8(+) T cells and CD4(+) T cells, as well as directly suppressing tumour growth and resistance to malignant tumour development. Further understanding of these areas of exosome biology, and especially of molecular mechanisms involved in immune cell targeting, interaction and manipulation, is likely to provide significant insights into immunorecognition and therapeutic intervention. Here, we review the emerging roles of exosomes in immune regulation and the therapeutic potential in cancer.

  10. Nuclear mRNA quality control in yeast is mediated by Nrd1 co-transcriptional recruitment, as revealed by the targeting of Rho-induced aberrant transcripts

    Science.gov (United States)

    Honorine, Romy; Mosrin-Huaman, Christine; Hervouet-Coste, Nadège; Libri, Domenico; Rahmouni, A. Rachid

    2011-01-01

    The production of mature export-competent transcripts is under the surveillance of quality control steps where aberrant mRNP molecules resulting from inappropriate or inefficient processing and packaging reactions are subject to exosome-mediated degradation. Previously, we have shown that the heterologous expression of bacterial Rho factor in yeast interferes in normal mRNP biogenesis leading to the production of full-length yet aberrant transcripts that are degraded by the nuclear exosome with ensuing growth defect. Here, we took advantage of this new tool to investigate the molecular mechanisms by which an integrated system recognizes aberrancies at each step of mRNP biogenesis and targets the defective molecules for destruction. We show that the targeting and degradation of Rho-induced aberrant transcripts is associated with a large increase of Nrd1 recruitment to the transcription complex via its CID and RRM domains and a concomitant enrichment of exosome component Rrp6 association. The targeting and degradation of the aberrant transcripts is suppressed by the overproduction of Pcf11 or its isolated CID domain, through a competition with Nrd1 for recruitment by the transcription complex. Altogether, our results support a model in which a stimulation of Nrd1 co-transcriptional recruitment coordinates the recognition and removal of aberrant transcripts by promoting the attachment of the nuclear mRNA degradation machinery. PMID:21113025

  11. The exocyst and regulatory GTPases in urinary exosomes.

    Science.gov (United States)

    Chacon-Heszele, Maria F; Choi, Soo Young; Zuo, Xiaofeng; Baek, Jeong-In; Ward, Chris; Lipschutz, Joshua H

    2014-08-01

    Cilia, organelles that function as cellular antennae, are central to the pathogenesis of "ciliopathies", including various forms of polycystic kidney disease (PKD). To date, however, the molecular mechanisms controlling ciliogenesis and ciliary function remain incompletely understood. A recently proposed model of cell-cell communication, called "urocrine signaling", hypothesizes that a subset of membrane bound vesicles that are secreted into the urinary stream (termed exosome-like vesicles, or ELVs), carry cilia-specific proteins as cargo, interact with primary cilia, and affect downstream cellular functions. This study was undertaken to determine the role of the exocyst, a highly conserved eight-protein trafficking complex, in the secretion and/or retrieval of ELVs. We used Madin-Darby canine kidney (MDCK) cells expressing either Sec10-myc (a central component of the exocyst complex) or Smoothened-YFP (a ciliary protein found in ELVs) in experiments utilizing electron gold microscopy and live fluorescent microscopy, respectively. Additionally, human urinary exosomes were isolated via ultracentrifugation and subjected to mass-spectrometry-based proteomics analysis to determine the composition of ELVs. We found, as determined by EM, that the exocyst localizes to primary cilia, and is present in vesicles attached to the cilium. Furthermore, the entire exocyst complex, as well as most of its known regulatory GTPases, are present in human urinary ELVs. Finally, in living MDCK cells, ELVs appear to interact with primary cilia using spinning disc confocal microscopy. These data suggest that the exocyst complex, in addition to its role in ciliogenesis, is centrally involved in the secretion and/or retrieval of urinary ELVs.

  12. The roles and implications of exosomes in sarcoma.

    Science.gov (United States)

    Min, Li; Shen, Jacson; Tu, Chongqi; Hornicek, Francis; Duan, Zhenfeng

    2016-09-01

    Better diagnostic biomarkers and therapeutic options are still necessary for patients with sarcomas due to the current limitations of diagnosis and treatment. Exosomes are small extracellular membrane vesicles that are released by various cells and are found in most body fluids. Tumor-derived exosomes have been proven to mediate tumorigenesis, intercellular communication, microenvironment modulation, and metastasis in different cancers, including in sarcomas. Recently, exosomes have been considered as potential biomarkers for sarcoma diagnosis and prognosis, and as possible targets for sarcoma therapy. Moreover, due to their specific cell tropism and bioavailability, exosomes can also be engineered as vehicles for drug delivery. In this review, we discuss recent advances in the roles of tumor-derived exosomes in sarcoma and their potential clinical applications.

  13. The roles of tumor-derived exosomes in cancer pathogenesis.

    Science.gov (United States)

    Yang, Chenjie; Robbins, Paul D

    2011-01-01

    Exosomes are endosome-derived, 30-100 nm small membrane vesicles released by most cell types including tumor cells. They are enriched in a selective repertoire of proteins and nucleic acids from parental cells and are thought to be actively involved in conferring intercellular signals. Tumor-derived exosomes have been viewed as a source of tumor antigens that can be used to induce antitumor immune responses. However, tumor-derived exosomes also have been found to possess immunosuppressive properties and are able to facilitate tumor growth, metastasis, and the development of drug resistance. These different effects of tumor-derived exosomes contribute to the pathogenesis of cancer. This review will discuss the roles of tumor-derived exosomes in cancer pathogenesis, therapy, and diagnostics.

  14. The Roles of Tumor-Derived Exosomes in Cancer Pathogenesis

    Directory of Open Access Journals (Sweden)

    Chenjie Yang

    2011-01-01

    Full Text Available Exosomes are endosome-derived, 30–100 nm small membrane vesicles released by most cell types including tumor cells. They are enriched in a selective repertoire of proteins and nucleic acids from parental cells and are thought to be actively involved in conferring intercellular signals. Tumor-derived exosomes have been viewed as a source of tumor antigens that can be used to induce antitumor immune responses. However, tumor-derived exosomes also have been found to possess immunosuppressive properties and are able to facilitate tumor growth, metastasis, and the development of drug resistance. These different effects of tumor-derived exosomes contribute to the pathogenesis of cancer. This review will discuss the roles of tumor-derived exosomes in cancer pathogenesis, therapy, and diagnostics.

  15. Three-integral multi-component dynamical models and simulations of the nuclear star cluster in NGC 4244

    CERN Document Server

    De Lorenzi, F; Debattista, V P; Seth, A C; Gerhard, O

    2012-01-01

    Adaptive optics observations of the flattened nuclear star cluster in the nearby edge-on spiral galaxy NGC 4244 using the Gemini Near-Infrared Integral Field Spectrograph (NIFS) have revealed clear rotation. Using these kinematics plus 2MASS photometry we construct a series of axisymmetric two-component particle dynamical models with our improved version of NMAGIC, a flexible Chi^2-made-to-measure code. The models consist of a nuclear cluster disc embedded within a spheroidal particle population. We find a mass for the nuclear star cluster of M=1.6^+0.5_-0.2 x 10^7 M_sun within ~42.4 pc (2"). We also explore the presence of an intermediate mass black hole and show that models with a black hole as massive as M_bh = 5.0 x 10^5 M_sun are consistent with the available data. Regardless of whether a black hole is present or not, the nuclear cluster is vertically anisotropic (beta_z < 0), as was found with earlier two-integral models. We then use the models as initial conditions for N-body simulations. These simu...

  16. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis.

    NARCIS (Netherlands)

    Buschow, S.I.; Balkom, B.W.M. van; Aalberts, M.; Heck, A.J.R. van; Wauben, M.; Stoorvogel, W.

    2010-01-01

    Professional antigen-presenting cells secrete major histocompatibility complex class II (MHC II) carrying exosomes with unclear physiological function(s). Exosomes are first generated as the intraluminal vesicles (ILVs) of a specific type of multivesicular body, and are then secreted by fusion of th

  17. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis.

    Science.gov (United States)

    Buschow, Sonja I; van Balkom, Bas W M; Aalberts, Marian; Heck, Albert J R; Wauben, Marca; Stoorvogel, Willem

    2010-01-01

    Professional antigen-presenting cells secrete major histocompatibility complex class II (MHC II) carrying exosomes with unclear physiological function(s). Exosomes are first generated as the intraluminal vesicles (ILVs) of a specific type of multivesicular body, and are then secreted by fusion of this compartment with the plasma membrane. We have previously shown that in contrast to the sorting of MHC II at lysosomally targeted multivesicular bodies, sorting of MHC II into exosomes does not rely on MHC II ubiquitination. In search for proteins that drive the incorporation of MHC II into exosomes or functionally discriminate exosomal from plasma membrane MHC II, we first analyzed the total proteome of highly purified B cell-derived exosomes using sensitive and accurate mass spectrometry (MS), and identified 539 proteins, including known and not previously identified constituents. Using quantitative MS, we then identified a small subset of proteins that were specifically co-immunoprecipitated with MHC II from detergent-solubilized exosomes. These include HSC71, HSP90, 14-3-3ɛ, CD20 and pyruvate kinase type M2 (PKM2), and we speculate on the functionality of their interaction with exosomal MHC II.

  18. Identification and proteomic analysis of osteoblast-derived exosomes

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Min; Ke, Ronghu; Cai, Tianyi; Yang, Junyi; Mu, Xiongzheng, E-mail: cranio@vip.163.com

    2015-11-06

    Exosomes are nanometer-sized vesicles with the function of intercellular communication, and they are released by various cell types. To reveal the knowledge about the exosomes from osteoblast, and explore the potential functions of osteogenesis, we isolated microvesicles from supernatants of mouse Mc3t3 by ultracentrifugation, characterized exosomes by electron microscopy and immunoblotting and presented the protein profile by proteomic analysis. The result demonstrated that microvesicles were between 30 and 100 nm in diameter, round shape with cup-like concavity and expressed exosomal marker tumor susceptibility gene (TSG) 101 and flotillin (Flot) 1. We identified a total number of 1069 proteins among which 786 proteins overlap with ExoCarta database. Gene Oncology analysis indicated that exosomes mostly derived from plasma membrane and mainly involved in protein localization and intracellular signaling. The Ingenuity Pathway Analysis showed pathways are mostly involved in exosome biogenesis, formation, uptake and osteogenesis. Among the pathways, eukaryotic initiation factor 2 pathways played an important role in osteogenesis. Our study identified osteoblast-derived exosomes, unveiled the content of them, presented potential osteogenesis-related proteins and pathways and provided a rich proteomics data resource that will be valuable for further studies of the functions of individual proteins in bone diseases. - Highlights: • We for the first time identified exosomes from mouse osteoblast. • Osteoblasts-derived exosomes contain osteoblast peculiar proteins. • Proteins from osteoblasts-derived exosomes are intently involved in EIF2 pathway. • EIF2α from the EIF2 pathway plays an important role in osteogenesis.

  19. Controlled exosome release from the retinal pigment epithelium in situ.

    Science.gov (United States)

    Locke, Christina J; Congrove, Nicole R; Dismuke, W Michael; Bowen, Trent J; Stamer, W Daniel; McKay, Brian S

    2014-12-01

    Retinal Pigment Epithelial cells (RPE) express both GPR143 and myocilin, which interact in a signal transduction-dependent manner. In heterologous systems, activation of GPR143 with ligand causes transient recruitment of myocilin to internalized receptors, which appears to be the entry point of myocilin to the endocytic pathway. In some but not all cells, myocilin also traffics through the multivesicular body (MVB) and is released on the surface of exosomes in a signal transduction-dependent fashion. Little is known regarding the role of exosomes in RPE, but they likely serve as a mode of communication between the RPE and the outer retina. In this study, we used posterior poles with retina removed from fresh human donor eyes as a model to test the relationship between GPR143, myocilin, and exosomes in an endogenous system. We isolated exosomes released by RPE using differential centrifugation of media conditioned by the RPE for 25 min, and then characterized the exosomes using nanoparticle tracking to determine the number and size of the exosomes. Next, we tested whether ligand stimulation of GPR143 using l-DOPA altered RPE exosome release. Finally, we investigated whether myocilin was present on the exosomes released by RPE and whether l-DOPA stimulation of GPR143 caused recruitment of myocilin to the endocytic pathway, as we have previously observed using cultured cells. Activation of GPR143 halted RPE exosome release, while simultaneously recruiting myocilin to the endocytic compartment. Together, our results indicate that GPR143 and myocilin function in a signal transduction system that can control exosome release from RPE.

  20. Neural stem cell-derived exosomes mediate viral entry

    Directory of Open Access Journals (Sweden)

    Sims B

    2014-10-01

    Full Text Available Brian Sims,1,2,* Linlin Gu,3,* Alexandre Krendelchtchikov,3 Qiana L Matthews3,4 1Division of Neonatology, Department of Pediatrics, 2Department of Cell, Developmental, and Integrative Biology, 3Division of Infectious Diseases, Department of Medicine, 4Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA *These authors contributed equally to this work Background: Viruses enter host cells through interactions of viral ligands with cellular receptors. Viruses can also enter cells in a receptor-independent fashion. Mechanisms regarding the receptor-independent viral entry into cells have not been fully elucidated. Exosomal trafficking between cells may offer a mechanism by which viruses can enter cells.Methods: To investigate the role of exosomes on cellular viral entry, we employed neural stem cell-derived exosomes and adenovirus type 5 (Ad5 for the proof-of-principle study. Results: Exosomes significantly enhanced Ad5 entry in Coxsackie virus and adenovirus receptor (CAR-deficient cells, in which Ad5 only had very limited entry. The exosomes were shown to contain T-cell immunoglobulin mucin protein 4 (TIM-4, which binds phosphatidylserine. Treatment with anti-TIM-4 antibody significantly blocked the exosome-mediated Ad5 entry.Conclusion: Neural stem cell-derived exosomes mediated significant cellular entry of Ad5 in a receptor-independent fashion. This mediation may be hampered by an antibody specifically targeting TIM-4 on exosomes. This set of results will benefit further elucidation of virus/exosome pathways, which would contribute to reducing natural viral infection by developing therapeutic agents or vaccines. Keywords: neural stem cell-derived exosomes, adenovirus type 5, TIM-4, viral entry, phospholipids

  1. Exosome Biogenesis, Regulation, and Function in Viral Infection

    Directory of Open Access Journals (Sweden)

    Marta Alenquer

    2015-09-01

    Full Text Available Exosomes are extracellular vesicles released upon fusion of multivesicular bodies(MVBs with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs duringthe process of MVB formation. Exosomes were shown to contain selectively sorted functionalproteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in thephysiology of the healthy and diseased organism. Challenges in the field include the identificationof mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles andthe understanding of the underlying processes directing MVBs for degradation or fusion with theplasma membrane. The investigation into the formation and roles of exosomes in viral infection is inits early years. Although still controversial, exosomes can, in principle, incorporate any functionalfactor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation.This review initially focuses on the composition and biogenesis of exosomes. It then explores theregulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system,which is tightly regulated and able to respond to several stimuli that lead to alterations in thecomposition of its sub-compartments. We discuss the current knowledge of how these changesaffect exosomal release. We then summarize how different viruses exploit specific proteins ofendocytic sub-compartments and speculate that it could interfere with exosome function, althoughno direct link between viral usage of the endocytic system and exosome release has yet beenreported. Many recent reports have ascribed functions to exosomes released from cells infectedwith a variety of animal viruses, including viral spread, host immunity, and manipulation of themicroenvironment, which are discussed. Given the ever-growing roles and importance of exosomesin viral infections, understanding what regulates their composition and levels, and

  2. Exosome removal as a therapeutic adjuvant in cancer.

    Science.gov (United States)

    Marleau, Annette M; Chen, Chien-Shing; Joyce, James A; Tullis, Richard H

    2012-06-27

    Exosome secretion is a notable feature of malignancy owing to the roles of these nanoparticles in cancer growth, immune suppression, tumor angiogenesis and therapeutic resistance. Exosomes are 30-100 nm membrane vesicles released by many cells types during normal physiological processes. Tumors aberrantly secrete large quantities of exosomes that transport oncoproteins and immune suppressive molecules to support tumor growth and metastasis. The role of exosomes in intercellular signaling is exemplified by human epidermal growth factor receptor type 2 (HER2) over-expressing breast cancer, where exosomes with the HER2 oncoprotein stimulate tumor growth and interfere with the activity of the therapeutic antibody Herceptin®. Since numerous observations from experimental model systems point toward an important clinical impact of exosomes in cancer, several pharmacological strategies have been proposed for targeting their malignant activities. We also propose a novel device strategy involving extracorporeal hemofiltration of exosomes from the entire circulatory system using an affinity plasmapheresis platform known as the Aethlon ADAPT™ (adaptive dialysis-like affinity platform technology) system, which would overcome the risks of toxicity and drug interactions posed by pharmacological approaches. This technology allows affinity agents, including exosome-binding lectins and antibodies, to be immobilized in the outer-capillary space of plasma filtration membranes that integrate into existing kidney dialysis systems. Device therapies that evolve from this platform allow rapid extracorporeal capture and selective retention of target particles exosomes. This review discusses the possible therapeutic approaches for targeting immune suppressive exosomes in cancer patients, and the anticipated significance of these strategies for reversing immune dysfunction and improving responses to standard of care treatments.

  3. FedExosomes: Engineering Therapeutic Biological Nanoparticles that Truly Deliver

    Directory of Open Access Journals (Sweden)

    Michelle E. Marcus

    2013-04-01

    Full Text Available Many aspects of intercellular communication are mediated through “sending” and “receiving” packets of information via the secretion and subsequent receptor-mediated detection of biomolecular species including cytokines, chemokines, and even metabolites. Recent evidence has now established a new modality of intercellular communication through which biomolecular species are exchanged between cells via extracellular lipid vesicles. A particularly important class of extracellular vesicles is exosomes, which is a term generally applied to biological nanovesicles ~30–200 nm in diameter. Exosomes form through invagination of endosomes to encapsulate cytoplasmic contents, and upon fusion of these multivesicular endosomes to the cell surface, exosomes are released to the extracellular space and transport mRNA, microRNA (miRNA and proteins between cells. Importantly, exosome-mediated delivery of such cargo molecules results in functional modulation of the recipient cell, and such modulation is sufficiently potent to modulate disease processes in vivo. It is possible that such functional delivery of biomolecules indicates that exosomes utilize native mechanisms (e.g., for internalization and trafficking that may be harnessed by using exosomes to deliver exogenous RNA for therapeutic applications. A complementary perspective is that understanding the mechanisms of exosome-mediated transport may provide opportunities for “reverse engineering” such mechanisms to improve the performance of synthetic delivery vehicles. In this review, we summarize recent progress in harnessing exosomes for therapeutic RNA delivery, discuss the potential for engineering exosomes to overcome delivery challenges and establish robust technology platforms, and describe both potential challenges and advantages of utilizing exosomes as RNA delivery vehicles.

  4. Pathologic function and therapeutic potential of exosomes in cardiovascular disease.

    Science.gov (United States)

    Ailawadi, Shaina; Wang, Xiaohong; Gu, Haitao; Fan, Guo-Chang

    2015-01-01

    The heart is a very complex conglomeration of organized interactions between various different cell types that all aid in facilitating myocardial function through contractility, sufficient perfusion, and cell-to-cell reception. In order to make sure that all features of the heart work effectively, it is imperative to have a well-controlled communication system among the different types of cells. One of the most important ways that the heart regulates itself is by the use of extracellular vesicles, more specifically, exosomes. Exosomes are types of nano-vesicles, naturally released from living cells. They are believed to play a critical role in intercellular communication through the means of certain mechanisms including direct cell-to-cell contact, long-range signals as well as electrical and extracellular chemical molecules. Exosomes contain many unique features like surface proteins/receptors, lipids, mRNAs, microRNAs, transcription factors and other proteins. Recent studies indicate that the exosomal contents are highly regulated by various stress and disease conditions, in turn reflective of the parent cell status. At present, exosomes are well appreciated to be involved in the process of tumor and infection disease. However, the research on cardiac exosomes is just emerging. In this review, we summarize recent findings on the pathologic effects of exosomes on cardiac remodeling under stress and disease conditions, including cardiac hypertrophy, peripartum cardiomyopathy, diabetic cardiomyopathy and sepsis-induced cardiovascular dysfunction. In addition, the cardio-protective effects of stress-preconditioned exosomes and stem cell-derived exosomes are also summarized. Finally, we discuss how to epigenetically reprogram exosome contents in host cells which makes them beneficial for the heart.

  5. Ultrastructural Complexity of Nuclear Components During Early Apoptotic Phases in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Christian Castelli

    2001-01-01

    Full Text Available Fractal morphometry was used to investigate the ultrastructural features of the plasma membrane, perinuclear membrane and nuclear chromatin in SK‐BR‐3 human breast cancer cells undergoing apoptosis. Cells were incubated with 1 μM calcimycin (A23187 for 24 h. Cells in the early stage of apoptosis had fractal dimension (FD values indicating that their plasma membranes were less rough (lower FD than those of control cells, while their perinuclear membranes were unaffected. Changes of the chromatin texture within the entire nucleus and in selected nuclear domains were more pronounced in treated cells. This confirms that the morphological reorganization imputable to a loss of structural complexity (reduced FD occurs in the early stage of apoptosis, is accompanied by the inhibition of distinct enzymatic events and precedes the onset of conventional cellular markers, which can only be detected during the active phases of the apoptotic process.

  6. The Unauthorized Movement of Nuclear Weapons and Mistaken Shipment of Classified Missile Components: An Assessment

    Science.gov (United States)

    2012-01-01

    nonnuclear warhead cruise missiles in the storage structures even though visually recognizing the difference between nuclear and nonnuclear requires...ratification on that promise. Michelle Spencer, Aadina Ludin, and Heather Nelson 38 House? There is a response to that stimuli or lack of stimuli ...Encouraging teamwork  Responsibility. Former Chairman of the Joint Chiefs of Staff General Maxwell D. Taylor stated, ―One expects a military

  7. Exo-MFA - A 13C metabolic flux analysis framework to dissect tumor microenvironment-secreted exosome contributions towards cancer cell metabolism.

    Science.gov (United States)

    Achreja, Abhinav; Zhao, Hongyun; Yang, Lifeng; Yun, Tae Hyun; Marini, Juan; Nagrath, Deepak

    2017-09-01

    Dissecting the pleiotropic roles of tumor micro-environment (TME) on cancer progression has been brought to the foreground of research on cancer pathology. Extracellular vesicles such as exosomes, transport proteins, lipids, and nucleic acids, to mediate intercellular communication between TME components and have emerged as candidates for anti-cancer therapy. We previously reported that cancer-associated fibroblast (CAF) derived exosomes (CDEs) contain metabolites in their cargo that are utilized by cancer cells for central carbon metabolism and promote cancer growth. However, the metabolic fluxes involved in donor cells towards packaging of metabolites in extracellular vesicles and exosome-mediated metabolite flux upregulation in recipient cells are still not known. Here, we have developed a novel empirical and computational technique, exosome-mediated metabolic flux analysis (Exo-MFA) to quantify flow of cargo from source cells to recipient cells via vesicular transport. Our algorithm, which is based on (13)C metabolic flux analysis, successfully predicts packaging fluxes to metabolite cargo in CAFs, dynamic changes in rate of exosome internalization by cancer cells, and flux of cargo release over time. We find that cancer cells internalize exosomes rapidly leading to depletion of extracellular exosomes within 24h. However, metabolite cargo significantly alters intracellular metabolism over the course of 24h by regulating glycolysis pathway fluxes via lactate supply. Furthermore, it can supply up to 35% of the TCA cycle fluxes by providing TCA intermediates and glutamine. Our algorithm will help gain insight into (i) metabolic interactions in multicellular systems (ii) biogenesis of extracellular vesicles and their differential packaging of cargo under changing environments, and (iii) regulation of cancer cell metabolism by its microenvironment. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche

    Directory of Open Access Journals (Sweden)

    Alejandro Luarte

    2016-01-01

    Full Text Available Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer’s Disease, Parkinson’s Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have been explored. Stem cells, as well as most cells, release extracellular vesicles such as exosomes, which are nanovesicles able to target specific cell types and thus to modify their function by delivering proteins, lipids, and nucleic acids. Exosomes have recently been tested in vivo and in vitro as therapeutic conveyors for the treatment of diseases. As such, they could be engineered to target specific populations of cells within the CNS. Considering the fact that many degenerative brain diseases have an impact on adult neurogenesis, we discuss how the modulation of the adult neurogenic niches may be a therapeutic target of stem cell-derived exosomes. These novel approaches should be examined in cellular and animal models to provide better, more effective, and specific therapeutic tools in the future.

  9. Exosomes as Intercellular Signaling Organelles Involved in Health and Disease: Basic Science and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Francesco Ciccia

    2013-03-01

    Full Text Available Cell to cell communication is essential for the coordination and proper organization of different cell types in multicellular systems. Cells exchange information through a multitude of mechanisms such as secreted growth factors and chemokines, small molecules (peptides, ions, bioactive lipids and nucleotides, cell-cell contact and the secretion of extracellular matrix components. Over the last few years, however, a considerable amount of experimental evidence has demonstrated the occurrence of a sophisticated method of cell communication based on the release of specialized membranous nano-sized vesicles termed exosomes. Exosome biogenesis involves the endosomal compartment, the multivesicular bodies (MVB, which contain internal vesicles packed with an extraordinary set of molecules including enzymes, cytokines, nucleic acids and different bioactive compounds. In response to stimuli, MVB fuse with the plasma membrane and vesicles are released in the extracellular space where they can interact with neighboring cells and directly induce a signaling pathway or affect the cellular phenotype through the transfer of new receptors or even genetic material. This review will focus on exosomes as intercellular signaling organelles involved in a number of physiological as well as pathological processes and their potential use in clinical diagnostics and therapeutics.

  10. Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche

    Science.gov (United States)

    Luarte, Alejandro; Bátiz, Luis Federico; Wyneken, Ursula; Lafourcade, Carlos

    2016-01-01

    Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer's Disease, Parkinson's Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have been explored. Stem cells, as well as most cells, release extracellular vesicles such as exosomes, which are nanovesicles able to target specific cell types and thus to modify their function by delivering proteins, lipids, and nucleic acids. Exosomes have recently been tested in vivo and in vitro as therapeutic conveyors for the treatment of diseases. As such, they could be engineered to target specific populations of cells within the CNS. Considering the fact that many degenerative brain diseases have an impact on adult neurogenesis, we discuss how the modulation of the adult neurogenic niches may be a therapeutic target of stem cell-derived exosomes. These novel approaches should be examined in cellular and animal models to provide better, more effective, and specific therapeutic tools in the future. PMID:27195011

  11. Isolation and Identification of Exosomes in Human Urine%人尿液中exosomes的分离及鉴定

    Institute of Scientific and Technical Information of China (English)

    李艳艳; 张渊; 代义; 邱峰; 秦霞; 邱宗荫

    2011-01-01

    Objective To isolate exosomes from human urine and identify their ultrastructural morphology and immune characteristics.Methods Exosomes were isolated from the mixed urine of healthy volunteers by ultracentrifugation and identified by electron microscopy with negative staining and immunoelectron microscopy, from which protein component was separated by 1-D SDS-PAGE.Results The exosmoes with high purity was obtained by further centrifugation of the supematant of urine, collected after centrifugation at 4℃, 17 000 × g for 15 min, at 4℃, 200 000 × g for 1 h.Negative staining under electron microscope showed that the exosomes were flat or spherical corpuscula, in a diameter of about 60 nm.Colloidal gold particles were distributed evenly on the surface of exosomes, which were shown as clear black spots due to high electron density under immunoelectron microscope.1-D SDSPAGE showed a majority of exosome bands with high abundance were 90 000 ~ 110 000, several clear bands with relative molecular masses of 30 000 ~ 60 000, and few bands with relative molecular masses of less than 30 000.Conclusion A method for isolation of exosomes from human urine was developed, which laid a foundation of further study on potential biomarkers of diseases.%目的 分离人尿液中的exosomes,并对其超微形态学和免疫特性进行鉴定.方法 以超速离心法分离健康志愿者混合尿液中的exosomes,通过负染电镜和免疫电镜技术对exosomes进行鉴定,运用1-D SDS-PAGE对其蛋白质组分进行分离.结果 4℃,17000×g离心15min后的上清液于4℃,200000×g离心1h可得到纯度较高的exosomes.负染电镜可见exosome,为扁平或球形小体,直径主要在60nm左右;免疫电镜显示,黑色胶体金颗粒均匀分布在exosomes球形体表面,因其具有很高的电子密度而呈现为清晰可辨的黑点;1-D SDS-PAGE分析显示,exosomes高丰度条带主要分布于相对分子质量90000-110000)之间,且出现了数条清

  12. A numerical stress based approach for predicting failure in NBG-18 nuclear graphite components with verification problems

    Science.gov (United States)

    Hindley, Michael P.; Mitchell, Mark N.; Erasmus, Christiaan; McMurtry, Ross; Becker, Thorsten H.; Blaine, Deborah C.; Groenwold, Albert A.

    2013-05-01

    This paper presents a methodology that can be used for calculating the probability of failure of graphite core components in a nuclear core design, such as that of the Pebble Bed Modular Reactor. The proposed methodology is shown to calculate the failure of multiple geometries using the parameters obtained from tensile specimen test data. Experimental testing of various geometries is undertaken to verify the results. The analysis of the experimental results and a discussion on the accuracy of the failure prediction methodology are presented. The analysis is done at 50% probability of failure as well as lower probabilities of failure.

  13. In-plant reliability data base for nuclear plant components: a feasibility study on human error information

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, R.J.; Fragola, J.R.; Schurman, D.L.; Johnson, J.W.

    1984-03-01

    This report documents the procedure and final results of a feasibility study which examined the usefulness of nuclear plant maintenance work requests in the IPRDS as tools for understanding human error and its influence on component failure and repair. Developed in this study were (1) a set of criteria for judging the quality of a plant maintenance record set for studying human error; (2) a scheme for identifying human errors in the maintenance records; and (3) two taxonomies (engineering-based and psychology-based) for categorizing and coding human error-related events.

  14. Remote Handling and Plasma Conditions to Enable Fusion Nuclear Science R&D Using a US Component Testing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yueng Kay Martin [ORNL; Burgess, Thomas W [ORNL; Carroll, Adam J [ORNL; Neumeyer, C. L. [Princeton Plasma Physics Laboratory (PPPL); Canik, John [ORNL; Cole, Michael J [ORNL; Dorland, W. D. [University of Maryland; Fogarty, P. J. [Oak Ridge National Laboratory (ORNL); Grisham, L. [Princeton Plasma Physics Laboratory (PPPL); Hillis, Donald Lee [ORNL; Katoh, Yutai [ORNL; Korsah, Kofi [ORNL; Kotschenreuther, M. [University of Texas, Austin; LaHaye, R. [General Atomics, San Diego; Mahajan, S. [University of Texas, Austin; Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Nelson, Brad E [ORNL; Patton, Bradley D [ORNL; Rasmussen, David A [ORNL; Sabbagh, S. A. [Columbia University; Sontag, Aaron C [ORNL; Stoller, Roger E [ORNL; Tsai, C. C. [Oak Ridge National Laboratory (ORNL); Vanlanju, P. [University of Texas, Austin; Wagner, Jill C [ORNL; Yoder, III, Graydon L [ORNL

    2009-08-01

    The use of a fusion component testing facility to study and establish, during the ITER era, the remaining scientific and technical knowledge needed by fusion Demo is considered and described in this paper. This use aims to lest components in an integrated fusion nuclear environment, for the first time, to discover and understand the underpinning physical properties, and to develop improved components for further testing, in a time-efficient manner. It requires a design with extensive modularization and remote handling of activated components, and flexible hot-cell laboratories. It further requires reliable plasma conditions to avoid disruptions and minimize their impact, and designs to reduce the divertor heat flux to the level of ITER design. As the plasma duration is extended through the planned ITER level (similar to 10(3) s) and beyond, physical properties with increasing time constants, progressively for similar to 10(4) s, similar to 10(5) s, and similar to 10(6) s, would become accessible for testing and R&D. The longest time constants of these are likely to be of the order of a week ( 106 S). Progressive stages of research operation are envisioned in deuterium, deuterium-tritium for the ITER duration, and deuterium-tritium with increasingly longer plasma durations. The fusion neutron fluence and operational duty factor anticipated for this "scientific exploration" phase of a component test facility are estimated to be up to 1 MW-yr/m(2) and up to 10%, respectively.

  15. CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling.

    Science.gov (United States)

    Hurwitz, Stephanie N; Nkosi, Dingani; Conlon, Meghan M; York, Sara B; Liu, Xia; Tremblay, Deanna C; Meckes, David G

    2017-03-01

    , Burkitt's lymphoma, and Hodgkin's lymphoma. In the context of cancer, EBV hijacks the exosomal pathway to modulate cell-to-cell signaling by secreting viral components such as an oncoprotein, LMP1, into host cell membrane-bound EVs. Trafficking of LMP1 into exosomes is associated with increased oncogenicity of these secreted vesicles. However, we have only a limited understanding of the mechanisms surrounding exosomal cargo packaging, including viral proteins. Here, we describe a role of LMP1 in EV production that requires CD63 and provide an extensive demonstration of CD63-mediated exosomal LMP1 release that is distinct from lipid raft trafficking. Finally, we present further evidence of the role of CD63 in limiting LMP1-induced noncanonical NF-κB and ERK activation. Our findings have implications for future investigations of physiological and pathological mechanisms of exosome biogenesis, protein trafficking, and signal transduction, especially in viral-associated tumorigenesis. Copyright © 2017 American Society for Microbiology.

  16. Motion and Properties of Nuclear Radio Components in Seyfert Galaxies Seen with VLBI

    CERN Document Server

    Middelberg, E; Nagar, N M; Krichbaum, T P; Norris, R P; Wilson, A S; Falcke, H; Colbert, E J M; Witzel, A; Fricke, K J

    2004-01-01

    We report EVN, MERLIN and VLBA observations at 18 cm, 6 cm and 3.6 cm of the Seyfert galaxies NGC 7674, NGC 5506, NGC 2110 and Mrk 1210 to study their structure and proper motions on pc scales and to add some constraints on the many possible causes of the radio-quietness of Seyferts. The component configurations in NGC 7674 and NGC 2110 are simple, linear structures, whereas the configurations in NGC 5506 and Mrk 1210 have multiple components with no clear axis of symmetry. We suggest that NGC 7674 is a low-luminosity compact symmetric object. Comparing the images at different epochs, we find a proper motion in NGC 7674 of (0.92+-0.07) c between the two central components separated by 282 pc and, in NGC 5506, we find a 3 sigma upper limit of 0.50 c for the components separated by 3.8 pc. Our results confirm and extend earlier work showing that the outward motion of radio components in Seyfert galaxies is non-relativistic on pc scales. We briefly discuss whether this non-relativistic motion is intrinsic to the...

  17. A Procedure for Determination of Degradation Acceptance Criteria for Structures and Passive Components in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y-S.; Hahm, D.; Choi, I-K.

    2012-01-30

    The Korea Atomic Energy Research Institute (KAERI) has been collaborating with Brookhaven National Laboratory since 2007 to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). This collaboration program aims at providing technical support to a five-year KAERI research project, which includes three specific areas that are essential to seismic probabilistic risk assessment: (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. The understanding and assessment of age-related degradations of structures, systems, and components and their impact on plant safety is the major goal of this KAERI-BNL collaboration. Four annual reports have been published before this report as a result of the collaboration research.

  18. Pressure-dependent fragilities for piping components: Pilot study on Davis-Besse Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Wesley, D.A.; Nakaki, D.K.; Hadidi-Tamjed, H. (ABB Impell Corp., Mission Viejo, CA (USA)); Kipp, T.R. (EQE, Inc., Costa Mesa, CA (USA))

    1990-10-01

    The capacities of four, low-pressure fluid systems to withstand pressures and temperatures above the design levels were established for the Davis-Besse Nuclear Power Station. The results will be used in evaluating the probability of plant damage from Interfacing System Loss of Coolant Accidents (ISLOCA) as part of the probabilistic risk assessment of the Davis-Besse nuclear power station undertaken by EG G Idaho, Inc. Included in this evaluation are the tanks, heat exchangers, filters, pumps, valves, and flanged connections for each system. The probabilities of failure, as a function of internal pressure, are evaluated as well as the variabilities associated with them. Leak rates or leak areas are estimated for the controlling modes of failure. The pressure capacities for the pipes and vessels are evaluated using limit-state analyses for the various failure modes considered. The capacities are dependent on several factors, including the material properties, modeling assumptions, and the postulated failure criteria. The failure modes for gasketed-flange connections, valves, and pumps do not lend themselves to evaluation by conventional structural mechanics techniques and evaluation must rely primarily on the results from ongoing gasket research test programs and available vendor information and test data. 21 refs., 7 figs., 52 tabs.

  19. Overexpression of Ran GTPase Components Regulating Nuclear Export, but not Mitotic Spindle Assembly, Marks Chromosome Instability and Poor Prognosis in Breast Cancer.

    Science.gov (United States)

    Vaidyanathan, Srividya; Thangavelu, Pulari U; Duijf, Pascal H G

    2016-10-01

    Ran GTPase regulates nuclear import, nuclear export, and mitotic spindle assembly. The multifunctional involvement of seventeen Ran GTPase components in these processes has complicated research into how each contributes to cancer development. To assess whether individual and process-specific misexpression of Ran GTPase components contribute to chromosome instability (CIN) and worsen breast cancer patient prognosis. Using publicly available datasets, we studied the degree of misexpression of all Ran GTPase signaling components in breast cancer, assessed their involvement in CIN and used four clinical tests to evaluate whether their misregulation may constitute independent prognostic predictors. A significant majority of Ran GTPase signaling components is overexpressed in breast cancer. Strikingly, spindle assembly components are overexpressed and associated with CIN with only marginal significance and four independent tests indicate that this does not worsen patient outcome. Overexpression of nuclear import components is neither CIN-associated nor clinically significant. In sharp contrast, overexpression of nuclear export components constitutes a strong independent marker for both CIN and poor patient prognosis. We identify Exportin 2/CSE1L, Exportin 3/XPOT, Exportin 5/XPO5, and RANBP1 as novel potential targets. We find that overexpression of Ran GTPase components involved in nuclear export, but not nuclear import or mitotic spindle assembly, is a strong CIN-associated marker for poor breast cancer prognosis. This could mean that increased nuclear export (of, for instance, pRb, p53, p73, BRCA1, p21, p27, E2F4, IκB, survivin), rather than spindle defects, mainly drives CIN and tumorigenesis. Hence, selective inhibitors of nuclear export may be effective for treating the most aggressive and chromosomally unstable breast cancers.

  20. Quantification of human urinary exosomes by nanoparticle tracking analysis.

    Science.gov (United States)

    Oosthuyzen, Wilna; Sime, Nicole E L; Ivy, Jessica R; Turtle, Emma J; Street, Jonathan M; Pound, John; Bath, Louise E; Webb, David J; Gregory, Christopher D; Bailey, Matthew A; Dear, James W

    2013-12-01

    Exosomes are vesicles that are released from the kidney into urine. They contain protein and RNA from the glomerulus and all sections of the nephron and represent a reservoir for biomarker discovery. Current methods for the identification and quantification of urinary exosomes are time consuming and only semi-quantitative. Nanoparticle tracking analysis (NTA) counts and sizes particles by measuring their Brownian motion in solution. In this study, we applied NTA to human urine and identified particles with a range of sizes. Using antibodies against the exosomal proteins CD24 and aquaporin 2 (AQP2), conjugated to a fluorophore, we could identify a subpopulation of CD24- and AQP2-positive particles of characteristic exosomal size. Extensive pre-NTA processing of urine was not necessary. However, the intra-assay variability in the measurement of exosome concentration was significantly reduced when an ultracentrifugation step preceded NTA. Without any sample processing, NTA tracked exosomal AQP2 upregulation induced by desmopressin stimulation of kidney collecting duct cells. Nanoparticle tracking analysis was also able to track changes in exosomal AQP2 concentration that followed desmopressin treatment of mice and a patient with central diabetes insipidus. When urine was stored at room temperature, 4°C or frozen, nanoparticle concentration was reduced; freezing at -80°C with the addition of protease inhibitors produced the least reduction. In conclusion, with appropriate sample storage, NTA has potential as a tool for the characterization and quantification of extracellular vesicles in human urine.

  1. Exosome Proteome of U-87MG Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Sohyun Chun

    2016-12-01

    Full Text Available Exosomes are small membrane vesicles between 30 and 100 nm in diameter secreted by many cell types, and are associated with a wide range of physiological and/or pathological processes. Exosomes containing proteins, lipids, mRNA, and microRNA contribute to cell-to-cell communication and cell-to-environment regulation, however, their biological functions are not yet fully understood. In this report, exosomes in the glioblastoma cell line, U-87MG, were isolated and the proteome was investigated. In addition, exosome proteome changes in U-87MG cells exposed to a low temperature were investigated to elucidate whether the exosome proteome could respond to an external stimulus. Cell culture medium was collected, and exosomes were isolated by continuous centrifugation eliminating cell debris, nucleic acids, and other particles. The morphology of exosomes was observed by cryo-tunneling electron microscopy. According to 2-dimensional electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, certain proteins including collagen type VI alpha 1, putative RNA-binding protein 15B chain A, substrate induced remodeling of the active site regulates HTRA1, coatomer protein complex-subunit beta 2, myosin-heavy chain 1, and keratin-type I cytoskeletal 9 showed differences between the control proteome and the low temperature-exposed proteome.

  2. Identification and proteomic analysis of osteoblast-derived exosomes.

    Science.gov (United States)

    Ge, Min; Ke, Ronghu; Cai, Tianyi; Yang, Junyi; Mu, Xiongzheng

    2015-11-01

    Exosomes are nanometer-sized vesicles with the function of intercellular communication, and they are released by various cell types. To reveal the knowledge about the exosomes from osteoblast, and explore the potential functions of osteogenesis, we isolated microvesicles from supernatants of mouse Mc3t3 by ultracentrifugation, characterized exosomes by electron microscopy and immunoblotting and presented the protein profile by proteomic analysis. The result demonstrated that microvesicles were between 30 and 100 nm in diameter, round shape with cup-like concavity and expressed exosomal marker tumor susceptibility gene (TSG) 101 and flotillin (Flot) 1. We identified a total number of 1069 proteins among which 786 proteins overlap with ExoCarta database. Gene Oncology analysis indicated that exosomes mostly derived from plasma membrane and mainly involved in protein localization and intracellular signaling. The Ingenuity Pathway Analysis showed pathways are mostly involved in exosome biogenesis, formation, uptake and osteogenesis. Among the pathways, eukaryotic initiation factor 2 pathways played an important role in osteogenesis. Our study identified osteoblast-derived exosomes, unveiled the content of them, presented potential osteogenesis-related proteins and pathways and provided a rich proteomics data resource that will be valuable for further studies of the functions of individual proteins in bone diseases.

  3. Exosomes: novel effectors of human platelet lysate activity

    Directory of Open Access Journals (Sweden)

    E Torreggiani

    2014-09-01

    Full Text Available Despite the popularity of platelet-rich plasma (PRP and platelet lysate (PL in orthopaedic practice, the mechanism of action and the effectiveness of these therapeutic tools are still controversial. So far, the activity of PRP and PL has been associated with different growth factors (GF released during platelet degranulation. This study, for the first time, identifies exosomes, nanosized vesicles released in the extracellular compartment by a number of elements, including platelets, as one of the effectors of PL activity. Exosomes were isolated from human PL by differential ultracentrifugation, and analysed by electron microscopy and Western blotting. Bone marrow stromal cells (MSC treated with three different exosome concentrations (0.6 μg, 5 μg and 50 μg showed a significant, dose-dependent increase in cell proliferation and migration compared to the control. In addition, osteogenic differentiation assays demonstrated that exosome concentration differently affected the ability of MSC to deposit mineralised matrix. Finally, the analysis of exosome protein content revealed a higher amount of basic fibroblast growth factor (bFGF, vascular endothelial growth factor (VEGF, platelet-derived growth factor (PDGF-BB and transforming growth factor beta 1 (TGF-β1 as compared to PL. In regards to RNA content, an enrichment of small RNAs in exosomes as compared to donor platelets has been found. These results suggest that exosomes consistently contribute to PL activity and could represent an advantageous nanodelivery system for cell-free regeneration therapies.

  4. Tumour-derived exosomes: Tiny envelopes for big stories.

    Science.gov (United States)

    Miller, Isabella V; Grunewald, Thomas G P

    2015-09-01

    The discovery of exosomes, which are small, 30-100 nm sized extracellular vesicles that are released by virtual all cells, has initiated a rapidly expanding and vibrant research field. Current investigations are mainly directed toward the role of exosomes in intercellular communication and their potential value as biomarkers for a broad set of diseases. By horizontal transfer of molecular information such as micro RNAs, messenger RNAs or proteins, as well as by receptor-cell interactions, exosomes are capable to mediate the reprogramming of surrounding cells. Herein, we review how especially cancer cells take advantage of this mechanism to influence their microenvironment in favour of immune escape, therapy resistance, tumour growth and metastasis. Moreover, we provide a comprehensive microarray analysis (n > 1970) to study the expression patterns of genes known to be intimately involved in exosome biogenesis across 26 different cancer entities and a normal tissue atlas. Consistent with the elevated production of exosomes observed in cancer patient plasma, we found a significant overexpression especially of RAB27A, CHMP4C and SYTL4 in the corresponding cancer entities as compared to matched normal tissues. Finally, we discuss the immune-modulatory and anti-tumorigenic functions of exosomes as well as innovative approaches to specifically target the exosomal circuits in experimental cancer therapy.

  5. The role of exosomes in tumor progression and metastasis (Review).

    Science.gov (United States)

    Suchorska, Wiktoria M; Lach, Michal S

    2016-03-01

    Tumor cells have developed various mechanisms in defense against applied treatment, which prevent their total elimination from an organism. One of the underestimated mechanisms of defense is secretion of highly specialized double-membrane structures called exosomes. They play a crucial role in the control of the local microenvironment and intracellular communication. It has been shown that the exosomes can be carriers of various proteins, lipids, miRNAs and mRNAs. There are extensive data concerning the influence and participation by exosomes in metastasis and cancer progression. It has been demonstrated that exosomes are involved in multidrug resistance mechanisms, radiation-induced bystander effect and epithelial-mesenchymal transition. Furthermore, exosomes are able to form a premetastatic niche and enable the escape of cancer cells from recognition by host immune cells. Moreover, exosomes are responsible for the formation of vessels. This indicates the significance of secreted extracellular vesicles in the development and prognosis of cancer. The aim of the present review is to briefly describe the role of exosomes in tumor biology.

  6. Exosomal miRNAs as cancer biomarkers and therapeutic targets

    Directory of Open Access Journals (Sweden)

    Arron Thind

    2016-07-01

    Full Text Available Intercommunication between cancer cells and with their surrounding and distant environments is key to the survival, progression and metastasis of the tumour. Exosomes play a role in this communication process. MicroRNA (miRNA expression is frequently dysregulated in tumour cells and can be reflected by distinct exosomal miRNA (ex-miRNA profiles isolated from the bodily fluids of cancer patients. Here, the potential of ex-miRNA as a cancer biomarker and therapeutic target is critically analysed. Exosomes are a stable source of miRNA in bodily fluids but, despite a number of methods for exosome extraction and miRNA quantification, their suitability for diagnostics in a clinical setting is questionable. Furthermore, exosomally transferred miRNAs can alter the behaviour of recipient tumour and stromal cells to promote oncogenesis, highlighting a role in cell communication in cancer. However, our incomplete understanding of exosome biogenesis and miRNA loading mechanisms means that strategies to target exosomes or their transferred miRNAs are limited and not specific to tumour cells. Therefore, if ex-miRNA is to be employed in novel non-invasive diagnostic approaches and as a therapeutic target in cancer, two further advances are necessary: in methods to isolate and detect ex-miRNA, and a better understanding of their biogenesis and functions in tumour-cell communication.

  7. Motion and properties of nuclear radio components in Seyfert galaxies seen with VLBI

    NARCIS (Netherlands)

    Middelberg, E; Nagar, NM; Krichbaum, TP; Norris, RP; Wilson, AS; Falcke, H; Colbert, EJM; Witzel, A; Fricke, KJ

    2004-01-01

    We report EVN, MERLIN and VLBA observations at 18 cm, 6 cm and 3.6 cm of the Seyfert galaxies NGC 7674, NGC 5506, NGC 2110 and Mrk 1210 to study their structure and proper motions on pc scales and to add some constraints on the many possible causes of the radio-quietness of Seyferts. The component c

  8. Qualification of Electrical Components in Nuclear Power Plants. Management of Ageing

    Energy Technology Data Exchange (ETDEWEB)

    Spaang, Kjell [Ingemansson Technology AB, Goeteborg (Sweden); Staahl, Gunnar [Westinghouse Atom, Vaesteraas (Sweden)

    2002-05-01

    This report reviews R and D results and experiences forming the bases for the preparation of a report on management of ageing. It includes basic information and descriptions of value for persons who work with the questions and some data from investigations of the ageing characteristics of various materials: limit levels, dose-rate effects, activation energies, methods for condition monitoring, etc. This report is restricted to safety related components containing ageing sensitive parts, mainly organic materials (polymers). For components located in the containment, the possibilities of continuous supervision are limited. The accessibility for regular inspections is also limited in many cases. Therefore, the main part of this report deals with the qualification of such components. In addition, some material is given on qualification located outside containment with better possibilities for frequent inspection and supervision. A survey is made of activities, programs and tools for ageing qualification in connection with initial environmental qualification (type testing) as well as after installation (condition monitoring, extension of qualified life through on-going qualification). Tools are also given for supplementary ageing qualification of already installed components.

  9. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma.

    Science.gov (United States)

    Matsumoto, Yasunori; Kano, Masayuki; Akutsu, Yasunori; Hanari, Naoyuki; Hoshino, Isamu; Murakami, Kentaro; Usui, Akihiro; Suito, Hiroshi; Takahashi, Masahiko; Otsuka, Ryota; Xin, Hu; Komatsu, Aki; Iida, Keiko; Matsubara, Hisahiro

    2016-11-01

    Exosomes play important roles in cancer progression. Although its contents (e.g., proteins and microRNAs) have been focused on in cancer research, particularly as potential diagnostic markers, the exosome behavior and methods for exosome quantification remain unclear. In the present study, we analyzed the tumor-derived exosome behavior and assessed the quantification of exosomes in patient plasma as a biomarker for esophageal squamous cell carcinoma (ESCC). A CD63-GFP expressing human ESCC cell line (TE2-CD63-GFP) was made by transfection, and mouse subcutaneous tumor models were established. Fluorescence imaging was performed on tumors and plasma exosomes harvested from mice. GFP-positive small vesicles were confirmed in the plasma obtained from TE2-CD63-GFP tumor-bearing mice. Patient plasma was collected in Chiba University Hospital (n=86). Exosomes were extracted from 100 µl of the plasma and quantified by acetylcholinesterase (AChE) activity. The relationship between exosome quantification and the patient clinical characteristics was assessed. The quantification of exosomes isolated from the patient plasma revealed that esophageal cancer patients (n=66) expressed higher exosome levels than non-malignant patients (n=20) (P=0.0002). Although there was no correlation between the tumor progression and the exosome levels, exosome number was the independent prognostic marker and low levels of exosome predicted a poor prognosis (P=0.03). In conclusion, exosome levels may be useful as an independent prognostic factor for ESCC patients.

  10. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma

    Science.gov (United States)

    Matsumoto, Yasunori; Kano, Masayuki; Akutsu, Yasunori; Hanari, Naoyuki; Hoshino, Isamu; Murakami, Kentaro; Usui, Akihiro; Suito, Hiroshi; Takahashi, Masahiko; Otsuka, Ryota; Xin, Hu; Komatsu, Aki; Iida, Keiko; Matsubara, Hisahiro

    2016-01-01

    Exosomes play important roles in cancer progression. Although its contents (e.g., proteins and microRNAs) have been focused on in cancer research, particularly as potential diagnostic markers, the exosome behavior and methods for exosome quantification remain unclear. In the present study, we analyzed the tumor-derived exosome behavior and assessed the quantification of exosomes in patient plasma as a biomarker for esophageal squamous cell carcinoma (ESCC). A CD63-GFP expressing human ESCC cell line (TE2-CD63-GFP) was made by transfection, and mouse subcutaneous tumor models were established. Fluorescence imaging was performed on tumors and plasma exosomes harvested from mice. GFP-positive small vesicles were confirmed in the plasma obtained from TE2-CD63-GFP tumor-bearing mice. Patient plasma was collected in Chiba University Hospital (n=86). Exosomes were extracted from 100 µl of the plasma and quantified by acetylcholinesterase (AChE) activity. The relationship between exosome quantification and the patient clinical characteristics was assessed. The quantification of exosomes isolated from the patient plasma revealed that esophageal cancer patients (n=66) expressed higher exosome levels than non-malignant patients (n=20) (P=0.0002). Although there was no correlation between the tumor progression and the exosome levels, exosome number was the independent prognostic marker and low levels of exosome predicted a poor prognosis (P=0.03). In conclusion, exosome levels may be useful as an independent prognostic factor for ESCC patients. PMID:27599779

  11. Exosome Display technology: applications to the development of new diagnostics and therapeutics.

    Science.gov (United States)

    Delcayre, Alain; Estelles, Angeles; Sperinde, Jeffrey; Roulon, Thibaut; Paz, Pedro; Aguilar, Barbara; Villanueva, Janeth; Khine, SuSu; Le Pecq, Jean-Bernard

    2005-01-01

    Exosome Display is a novel methodology enabling the manipulation of exosome protein content. This technology stems from the identification of addressing domains that mediate the specific distribution of proteins on exosomes. More particularly, Lactadherin expressed in non-mammary gland tissue has been found to localize to exosomes via binding of its C1C2 domain to exosome lipids. Exosome Display of soluble antigens and extracellular domains of membrane proteins that are not naturally found on exosomes occurs upon fusion of proteins with the Lactadherin C1C2 domain. Exosome Display of native full-length membrane proteins can also be achieved by non-restricted expression or sampling of membrane proteins on exosomes. These novel findings enable us to manipulate exosome composition and tailor exosomes with new desirable properties. The Exosome Display technology is very versatile since soluble, membrane-bound, trans-membrane or multimeric antigens that are not naturally found on exosomes can now be efficiently expressed at their surface in a native conformation. The technology was applied to the generation of antibodies against tumor biomarkers such as HLA/peptide complex. This antibody method called ExoMAb can be used to generate antibodies against any drug target candidates, notably including G-protein coupled receptors. The potential of Exosome Display technology for developing a broad range of novel diagnostics and therapeutics is discussed.

  12. Perturbations in the Urinary Exosome in Transplant Rejection

    Directory of Open Access Journals (Sweden)

    Tara eSigdel

    2015-01-01

    Full Text Available Urine exosomes are small vesicles exocytosed into the urine by all renal epithelial cell types under normal physiologic and disease states. Urine exosomal proteins may mirror disease specific proteome perturbations in kidney injury. Analysis methodologies for the exosomal fraction of the urinary proteome were developed for comparing the urinary exosomal fraction versus unfractionated proteome for biomarker discovery. Urine exosomes were isolated by centrifugal filtration of urine samples collected from kidney transplant patients with and without acute rejection, which were biopsy matched. The proteomes of unfractionated whole urine (Uw and urine exosomes (Ue underwent mass spectroscopy-based quantitative proteonomics analysis. The proteome data were analyzed for significant differential protein abundances in acute rejection (AR. A total of 1018 proteins were identified in Uw and 349 proteins in Ue. 279 overlapped between the two urinary compartments and 70 proteins were unique to the Ue compartment. Of 349 exosomal proteins identified from transplant patients,220 had not been previously identified in the normal Ue fraction. 11 Ue proteins, functionally involved in an inflammatory and stress response, were more abundant in urine samples from patients with acute rejection, 3 of which are exclusive to the Ue fraction. Ue AR-specific biomarkers(8 were also detected in Uw, but since they were observed at significantly lower abundances in Uw, they were not significant for AR in Uw. A rapid urinary exosome isolation method and quantitative measurement of enriched Ue proteins was applied. Perturbed proteins in the exosomal compartment of urine collected from kidney transplant patients were specific to inflammatory responses, and were not observed in the Ue fraction from normal healthy subjects. Ue specific protein alterations in renal disease provide potential mechanistic insights and offer a unique panel of sensitive biomarkers for monitoring AR.

  13. Integral field unit spectroscopy of 10 early type galactic nuclei: I - Principal component analysis Tomography and nuclear activity

    CERN Document Server

    Ricci, T V; Menezes, R B

    2014-01-01

    Most massive galaxies show emission lines that can be characterized as LINERs. To what extent this emission is related to AGNs or to stellar processes is still an open question. In this paper, we analysed a sample of such galaxies to study the central region in terms of nuclear and circumnuclear emission lines, as well as the stellar component properties. For this reason, we selected 10 massive ($\\sigma$ > 200 km/s) nearby (d < 31 Mpc) galaxies and observed them with the IFU/GMOS (integral field unit/Gemini Multi-Object Spectrograph) spectrograph on the Gemini South Telescope. The data were analysed with principal component analysis (PCA) Tomography to assess the main properties of the objects. Two spectral regions were analysed: a yellow region (5100-5800 A), adequate to show the properties of the stellar component, and a red region (6250-6800 A), adequate to analyse the gaseous component. We found that all objects previously known to present emission lines have a central AGN-type emitting source. They al...

  14. Virtual ultrasound sources for inspecting nuclear components of coarse-grained structure

    Energy Technology Data Exchange (ETDEWEB)

    Brizuela, J. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires (Argentina); Katchadjian, P.; Desimone, C.; Garcia, A. [INEND-UAENDE, Comisión Nacional de Energía Atómica, Buenos Aires (Argentina)

    2014-02-18

    This work describes an ultrasonic inspection procedure designed for verifying coarse-grained structure materials, which are commonly used on nuclear reactors. In this case, conventional phased array techniques cannot be used due to attenuating characteristics and backscattered noise from microstructures inside the material. Thus, synthetic aperture ultrasonic imaging (SAFT) is used for this approach in contact conditions. In order to increase energy transferred to the medium, synthetic transmit aperture is formed by several elements which generate a diverging wavefront equivalent to a virtual ultrasound source behind the transducer. On the other hand, the phase coherence technique has been applied to reduce more structural noise and improve the image quality. The beamforming process has been implemented over a GPU platform to reduce computing time.

  15. Research Progress of Exosomes in Lung Cancer Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    Hongbo ZOU

    2016-11-01

    Full Text Available As the leading cause of morbidity and cancer related-death worldwide, lung cancer has a serious threat to human health. Exosomes are nanoscale lipid membrane vesicles derived from multivesicles, which containing active biomolecules including proteins, lipids, nucleic acids and etc. Exosomes play important roles in lung cancer initiation and progression by promoting the formation of tumor microenvironment, enhancing tumor invasive and metastasis capability, leading to immunosuppression and resistance to chemoradiotherapy, and also have the application value in early diagnosis and treatment. This review summarizes the research progress of exosomes in tumor initiation and progression, and its roles in diagnosis and treatment of lung cancer.

  16. Drosophila S2 cells secrete wingless on exosome-like vesicles but the wingless gradient forms independently of exosomes.

    Science.gov (United States)

    Beckett, Karen; Monier, Solange; Palmer, Lucy; Alexandre, Cyrille; Green, Hannah; Bonneil, Eric; Raposo, Graca; Thibault, Pierre; Le Borgne, Roland; Vincent, Jean-Paul

    2013-01-01

    Wingless acts as a morphogen in Drosophila wing discs, where it specifies cell fates and controls growth several cell diameters away from its site of expression. Thus, despite being acylated and membrane associated, Wingless spreads in the extracellular space. Recent studies have focussed on identifying the route that Wingless follows in the secretory pathway and determining how it is packaged for release. We have found that, in medium conditioned by Wingless-expressing Drosophila S2 cells, Wingless is present on exosome-like vesicles and that this fraction activates signal transduction. Proteomic analysis shows that Wingless-containing exosome-like structures contain many Drosophila proteins that are homologous to mammalian exosome proteins. In addition, Evi, a multipass transmembrane protein, is also present on exosome-like vesicles. Using these exosome markers and a cell-based RNAi assay, we found that the small GTPase Rab11 contributes significantly to exosome production. This finding allows us to conclude from in vivo Rab11 knockdown experiments, that exosomes are unlikely to contribute to Wingless secretion and gradient formation in wing discs. Consistent with this conclusion, extracellularly tagged Evi expressed from a Bacterial Artificial Chromosome is not released from imaginal disc Wingless-expressing cells.

  17. Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model

    DEFF Research Database (Denmark)

    Özen, C.; Zinner, Nikolaj Thomas

    2014-01-01

    The physics of a two-component cold fermi gas is now frequently addressed in laboratories. Usually this is done for large samples of tens to hundreds of thousands of particles. However, it is now possible to produce few-body systems (1-100 particles) in very tight traps where the shell structure...... of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two...

  18. Probabilistic safety evaluation: Development of procedures with applications on components used in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Dillstroem, P. [Det Norske Veritas AB, Stockholm (Sweden)

    2000-12-01

    A probabilistic procedure has been developed by SAQ Kontroll AB to calculate two different failure probabilities, P{sub F}: Probability of failure, defect size given by NDT/NDE. Probability of failure, defect not detected by NDT/NDE. Based on the procedure, SAQ Kontroll AB has developed a computer program PROPSE (PRObabilistic Program for Safety Evaluation). Within PROPSE, the following features are implemented: Two different algorithms to calculate the probability of failure are included: Simple Monte Carlo Simulation (MCS), with an error estimate on P{sub F}. First-Order Reliability Method (FORM), with sensitivity factors using the most probable point of failure in a standard normal space. Using these factors, it is possible to rank the parameters within an analysis. Estimation of partial safety factors, given an input target failure probability and characteristic values for fracture toughness, yield strength, tensile strength and defect depth. Extensive validation has been carried out, using the probabilistic computer program STAR6 from Nuclear Electric and the deterministic program SACC from SAQ Kontroll AB. The validation showed that the results from PROPSE were correct, and that the algorithms used in STAR6 were not intended to work for a general problem, when the standard deviation is either 'small' or 'large'. Distributions, to be used in a probabilistic analysis, are discussed. Examples on data to be used are also given.

  19. Proof of fatigue strength of nuclear components part II: Numerical fatigue analysis for transient stratification loading considering environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    Kraetschmer, D.; Roos, E.; Schuler, X. [Materialpruefungsanstalt (MPA) Universitaet Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart (Germany); Herter, K.-H., E-mail: herter@mpa.uni-stuttgart.de [Materialpruefungsanstalt (MPA) Universitaet Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart (Germany)

    2012-04-15

    For the construction, design and operation of nuclear components and systems the appropriate technical codes and standards provide detailed analysis procedures which guarantee a reliable behaviour of the structural components throughout the specified lifetime. Especially for cyclic stress evaluation the different codes and standards provide different fatigue analyses procedures to be performed considering the various mechanical and thermal loading histories and geometric complexities of the components. To consider effects of light water reactor coolant environments, new design curves included in report NUREG/CR-6909 for austenitic stainless steels and for low alloy steels have been presented. For the usage of these new design curves an environmental fatigue correction factor for incorporating environmental effects has to be calculated and used. The application of this environmental correction factor to a fatigue analysis of a nozzle with transient stratification loads, derived by in-service monitoring, has been performed. The results are used to compare with calculated usage factors, based on design curves without taking environmental effects particularly into account. - Highlights: Black-Right-Pointing-Pointer We model an nozzle for fatigue analysis und mechanical and thermal loading conditions. Black-Right-Pointing-Pointer A simplified as well as a general elastic-plastic fatigue analysis considering environmental effects is performed. Black-Right-Pointing-Pointer The influence of different factors calculating the environmental factor F{sub en} are shown. Black-Right-Pointing-Pointer The presented numerical evaluation methodology allows the consideration of all relevant parameters to assess lifetime.

  20. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    Science.gov (United States)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.

  1. Integrated Magneto-Electrochemical Sensor for Exosome Analysis.

    Science.gov (United States)

    Jeong, Sangmoo; Park, Jongmin; Pathania, Divya; Castro, Cesar M; Weissleder, Ralph; Lee, Hakho

    2016-02-23

    Extracellular vesicles, including exosomes, are nanoscale membrane particles that carry molecular information on parental cells. They are being pursued as biomarkers of cancers that are difficult to detect or serially follow. Here we present a compact sensor technology for rapid, on-site exosome screening. The sensor is based on an integrated magneto-electrochemical assay: exosomes are immunomagnetically captured from patient samples and profiled through electrochemical reaction. By combining magnetic enrichment and enzymatic amplification, the approach enables (i) highly sensitive, cell-specific exosome detection and (ii) sensor miniaturization and scale-up for high-throughput measurements. As a proof-of-concept, we implemented a portable, eight-channel device and applied it to screen extracellular vesicles in plasma samples from ovarian cancer patients. The sensor allowed for the simultaneous profiling of multiple protein markers within an hour, outperforming conventional methods in assay sensitivity and speed.

  2. Diagnostic technologies for circulating tumour cells and exosomes.

    Science.gov (United States)

    Shao, Huilin; Chung, Jaehoon; Issadore, David

    2015-11-24

    Circulating tumour cells (CTCs) and exosomes are promising circulating biomarkers. They exist in easily accessible blood and carry large diversity of molecular information. As such, they can be easily and repeatedly obtained for minimally invasive cancer diagnosis and monitoring. Because of their intrinsic differences in counts, size and molecular contents, CTCs and exosomes pose unique sets of technical challenges for clinical translation-CTCs are rare whereas exosomes are small. Novel technologies are underway to overcome these specific challenges to fully harness the clinical potential of these circulating biomarkers. Herein, we will overview the characteristics of CTCs and exosomes as valuable circulating biomarkers and their associated technical challenges for clinical adaptation. Specifically, we will describe emerging technologies that have been developed to address these technical obstacles and the unique clinical opportunities enabled by technological innovations.

  3. A Comprehensive Review on Exosomes and Microvesicles as Epigenetic Factors.

    Science.gov (United States)

    Bakhshandeh, Behnaz; Kamaleddin, Mohammad Amin; Aalishah, Khadijeh

    2017-01-01

    Exosomes and microvesicles, which are released by most of the cells, play important roles in intracellular correspondence by transferring DNA, messenger RNA, micro RNA, and other types of RNA and proteins. Exosomes and microvesicles may contribute to the distribution of cancers and diseases through delivering the pathogenic agents to the non-infected cells; in cancers, they can modify the cells in the tumor niche and lead them to transformation. In addition, these vesicles can affect stem cell activity and their physiological properties. On the other hand, exosomes and microvesicles can be applied in the therapeutic strategies as they are small, non-viral, flexible and able to cross biological barriers. In this review, we focused on some details about the exosomes and microvesicles both functionally and structurally.

  4. Comparative analysis of discrete exosome fractions obtained by differential centrifugation

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Hvam, Michael L; Primdahl-Bengtson, Bjarke

    2014-01-01

    BACKGROUND: Cells release a mixture of extracellular vesicles, amongst these exosomes, that differ in size, density and composition. The standard isolation method for exosomes is centrifugation of fluid samples, typically at 100,000×g or above. Knowledge of the effect of discrete...... ultracentrifugation speeds on the purification from different cell types, however, is limited. METHODS: We examined the effect of applying differential centrifugation g-forces ranging from 33,000×g to 200,000×g on exosome yield and purity, using 2 unrelated human cell lines, embryonic kidney HEK293 cells and bladder...... of phenol red and cleared by 200,000×g overnight centrifugation. The centrifugation tube fill level impacted the sedimentation efficacy. Comparative analysis by NTA, protein quantification, and detection of exosomal and contamination markers identified differences in vesicle size, concentration...

  5. Exosomes Mediate LTB4 Release during Neutrophil Chemotaxis.

    Directory of Open Access Journals (Sweden)

    Ritankar Majumdar

    2016-01-01

    Full Text Available Leukotriene B4 (LTB4 is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies that, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in a LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments.

  6. Role of Exosomal Noncoding RNAs in Lung Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Tao Sun

    2015-01-01

    Full Text Available Lung cancer is the major cause of cancer death worldwide. Novel, recently discovered classes of noncoding RNAs (ncRNAs have diverse functional and regulatory activities and increasing evidence suggests crucial roles for deregulated ncRNAs in the onset and progression of cancer, including lung cancer. Exosomes are small extracellular membrane vesicles of endocytic origin that are released by many cells and are found in most body fluids. Tumor-derived exosomes mediate tumorigenesis by facilitating tumor growth and metastasis. MicroRNAs (miRNAs are a subclass of ncRNAs that are present in exosomes. miRNAs are taken up by neighboring or distant cells and modulate various functions of recipient cells. Here, we review exosome-derived ncRNAs with a focus on miRNAs and their role in lung cancer biology.

  7. Tumor-derived exosomes in oncogenic reprogramming and cancer progression.

    Science.gov (United States)

    Saleem, Sarmad N; Abdel-Mageed, Asim B

    2015-01-01

    In multicellular organisms, effective communication between cells is a crucial part of cellular and tissue homeostasis. This communication mainly involves direct cell-cell contact as well as the secretion of molecules that bind to receptors at the recipient cells. However, a more recently characterized mode of intercellular communication-the release of membrane vesicles known as exosomes-has been the subject of increasing interest and intensive research over the past decade. Following the discovery of the exosome-mediated immune activation, the pathophysiological roles of exosomes have been recognized in different diseases, including cancer. In this review, we describe the biogenesis and main physical characteristics that define exosomes as a specific population of secreted vesicles, with a special focus on their role in oncogenic transformation and cancer progression.

  8. [The role of exosomes and microvesicles in carcinogenesis].

    Science.gov (United States)

    Nikitina, I G; Sabirova, E Iu; Karpov, V L; Lisitsyn, N A; Beresten', S F

    2013-01-01

    This review summarizes current knowledge on the role of tumor exosomes and microvesicles in progression, metastasis, and angiogenesis of tumors, as well as in suppression of adaptive and innate immunity.

  9. Exosomes as a Nanodelivery System: a Key to the Future of Neuromedicine?

    Science.gov (United States)

    Aryani, Arian; Denecke, Bernd

    2016-03-01

    Since the beginning of the last decade, exosomes have been of increased interest in the science community. Exosomes represent a new kind of long distance transfer of biological molecules among cells. This review provides a comprehensive overview about the construction of exosomes, their targeting and their fusion mechanisms to the recipient cells. Complementarily, the current state of research regarding the cargo of exosomes is discussed. A particular focus was placed on the role of exosomes in the central nervous system. An increasing number of physiological processes in the brain could be associated with exosomes. In this context, it is becoming more apparent that exosomes are involved in several neurological and specifically neurodegenerative diseases. The treatment of these kinds of diseases is often difficult not least because of the blood-brain barrier. Exosomes are very stable, can pass the blood-brain barrier and, therefore, reveal bright perspectives towards diagnosis and therapeutic treatments. A prerequisite for clinical applications is a standardised approach. Features necessary for a standardised diagnosis using exosomes are discussed. In therapeutic terms, exosomes represent a promising drug delivery system able to pass the blood-brain barrier. One option to overcome the disadvantages potentially associated with the use of endogenous exosomes is the design of artificial exosomes. The artificial exosomes with a clearly defined therapeutic active cargo and surface marker ensuring the specific targeting to the recipient cells is proposed as a promising approach.

  10. Reliability Data for Piping Components in Nordic Nuclear Power Plants 'R-Book'. Project Phase 1. Rev 1

    Energy Technology Data Exchange (ETDEWEB)

    Lydell, Bengt (Scandpower Risk Management Inc., Houston, TX (US)); Olsson, Anders (Relcon Scandpower AB, Stockholm (SE))

    2008-01-15

    This report constitutes a planning document for a new RandD project to develop a piping component reliability parameter handbook for use in probabilistic safety assessment (PSA) and related activities. The Swedish acronym for this handbook is 'R-Book.' The objective of the project is to utilize the OECD Nuclear Energy Agency 'OECD Pipe Failure Data Exchange Project' (OPDE) database to derive piping component failure rates and rupture probabilities for input to internal flooding probabilistic safety assessment, high-energy line break' (HELB) analysis, risk-informed in-service inspection (RI-ISI) program development, and other activities related to PSA. This new RandD project is funded by member organizations of the Nordic PSA Group (NPSAG) - Forsmark AB, OKG AB, Ringhals AB, and the Swedish Nuclear Power Inspectorate (SKI). The history behind the current effort to produce a handbook of piping reliability parameters goes back to 1994 when SKI funded a 5-year RandD project to explore the viability of establishing an international database on the service experience with piping system components in commercial nuclear power plants. An underlying objective behind this 5-year program was to investigate the different options and possibilities for deriving pipe failure rates and rupture probabilities directly from service experience data as an alternative to probabilistic fracture mechanics. The RandD project culminated in an international piping reliability seminar held in the fall of 1997 in Sigtuna (Sweden) and a pilot project to demonstrate an application of the pipe failure database to the estimation of loss-of-coolant-accident (LOCA) frequency (SKI Report 98:30). A particularly important outcome of the 5-year project was a decision by SKI to transfer the pipe failure database including the lessons learned to an international cooperative effort under the auspices of the OECD Nuclear Energy Agency. Following on information exchange and planning

  11. Exosome Biogenesis, Regulation, and Function in Viral Infection

    OpenAIRE

    Marta Alenquer; Maria João Amorim

    2015-01-01

    Exosomes are extracellular vesicles released upon fusion of multivesicular bodies(MVBs) with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs) duringthe process of MVB formation. Exosomes were shown to contain selectively sorted functionalproteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in thephysiology of the healthy and diseased organism. Challenges in the field include the identificationof mechanisms sustaining packaging ...

  12. Comparative analysis of discrete exosome fractions obtained by differential centrifugation

    Directory of Open Access Journals (Sweden)

    Dennis K. Jeppesen

    2014-11-01

    Full Text Available Background: Cells release a mixture of extracellular vesicles, amongst these exosomes, that differ in size, density and composition. The standard isolation method for exosomes is centrifugation of fluid samples, typically at 100,000×g or above. Knowledge of the effect of discrete ultracentrifugation speeds on the purification from different cell types, however, is limited. Methods: We examined the effect of applying differential centrifugation g-forces ranging from 33,000×g to 200,000×g on exosome yield and purity, using 2 unrelated human cell lines, embryonic kidney HEK293 cells and bladder carcinoma FL3 cells. The fractions were evaluated by nanoparticle tracking analysis (NTA, total protein quantification and immunoblotting for CD81, TSG101, syntenin, VDAC1 and calreticulin. Results: NTA revealed the lowest background particle count in Dulbecco's Modified Eagle's Medium media devoid of phenol red and cleared by 200,000×g overnight centrifugation. The centrifugation tube fill level impacted the sedimentation efficacy. Comparative analysis by NTA, protein quantification, and detection of exosomal and contamination markers identified differences in vesicle size, concentration and composition of the obtained fractions. In addition, HEK293 and FL3 vesicles displayed marked differences in sedimentation characteristics. Exosomes were pelleted already at 33,000×g, a g-force which also removed most contaminating microsomes. Optimal vesicle-to-protein yield was obtained at 67,000×g for HEK293 cells but 100,000×g for FL3 cells. Relative expression of exosomal markers (TSG101, CD81, syntenin suggested presence of exosome subpopulations with variable sedimentation characteristics. Conclusions: Specific g-force/k factor usage during differential centrifugation greatly influences the purity and yield of exosomes. The vesicle sedimentation profile differed between the 2 cell lines.

  13. Exosome-mediated quality control : substrate recruitment and molecular activity

    OpenAIRE

    Lebreton, Alice; Séraphin, Bertrand

    2008-01-01

    International audience; The eukaryotic exosome is a multisubunit complex that is mainly responsible for 3'-5' exonucleolytic degradation of RNAs, both in the nucleus and the cytoplasm. In this review we summarize the recent experiments that have provided information on the organisation, structure and activity of this large assembly. Interestingly, eukaryotic exosomes have been implicated in a large number of RNA degradation pathways including recently discovered RNA quality control mechanisms...

  14. Exosomes and Their Significance in Diagnosis and Treatment of Tumors

    Directory of Open Access Journals (Sweden)

    Jian WANG

    2015-12-01

    Full Text Available Abstract In the research field of biological markers for tumor diagnosis, the appearance of exosomes has resolved the problem that RNA molecules can be easily degraded. Exosomes carry various RNAs and can protect them from being degraded. They are defined as polymorphism vesicle-like corpuscles (diameter: 30-100 nm derived from late endosome or multi-vesicular endosomes in cellular endocytosis system, which contain abundant biological information, including multiple lipids, proteins and nucleic acids, etc. Exosomes are extracellular nanoscale vesicae formed in a series of regulating process of cellular “endocytosis-fusion-excretion”, and they carry proteins and transport RNAs, thus playing an important role in the intercellular material and informational transduction. There are still large amount of mRNAs and miRNAs in exosomes. Exosomes can not only protect in-vitro RNA stability, but also transfer RNA to specific target cells as effective carriers so as to play their regulatory function. Exosomes realize their biological information exchanges and transition via endocrine, paracrine and autocrine, and regulate cellular biological activities through direct action on superficial signal molecules or extracellular release and membrane fusion of biological active ingredients. They can directly act on tumors to impact tumor progression, or improve tumor angiogenesis and metastasis by regulating immunological function. Additionally, they can also be used for tumor diagnosis. Therefore, this study mainly summarized the biological characteristics of exosomes and their application in the regulation, diagnosis and treatment of tumors, hoping to provide references for the application of exosomes in tumors.

  15. Modernization of a programmable scanning device used to develop remote inspection procedures related to the nondestructive examination of nuclear components

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, Donizete A.; Silva Junior, Silverio F., E-mail: daa@cdtn.b, E-mail: silvasf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Viana, Sadraque S.; Alves, Michel R.C.; Horta, Thamyris C.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Eletronica

    2011-07-01

    At CDTN's nondestructive test laboratory there is an electromechanical probe scanning device. That equipment is an important tool used in the development of procedures to be applied in remote inspections of nuclear equipment and components. In order to adequate its functionality an update was planned and executed. Keeping its excellent existing mechanical parts and DC motors, the original electronic power supply and the control unit was replaced by a new one. Furthermore, trajectory control and data processing algorithms were implemented by means of National Instruments LabVIEW 8.6 programming tool. So, both trajectory control and data acquisition/plotting systems were integrated as PC executable software. This paper presents details of the whole process, including the updated hardware, some screen shots showing the trajectory control program and a typical data presentation window. (author)

  16. Review of Recent Aging-Related Degradation Occurrences of Structures and Passive Components in U.S. Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nie,J.; Braverman, J.; Hofmayer, C.; Choun, Y.-S.; Kim, M.K.; Choi, I.-K.

    2009-04-02

    The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory (BNL) are collaborating to develop seismic capability evaluation technology for degraded structures and passive components (SPCs) under a multi-year research agreement. To better understand the status and characteristics of degradation of SPCs in nuclear power plants (NPPs), the first step in this multi-year research effort was to identify and evaluate degradation occurrences of SPCs in U.S. NPPs. This was performed by reviewing recent publicly available information sources to identify and evaluate the characteristics of degradation occurrences and then comparing the information to the observations in the past. Ten categories of SPCs that are applicable to Korean NPPs were identified, comprising of anchorage, concrete, containment, exchanger, filter, piping system, reactor pressure vessel, structural steel, tank, and vessel. Software tools were developed to expedite the review process. Results from this review effort were compared to previous data in the literature to characterize the overall degradation trends.

  17. Urinary exosomal microRNAs in incipient diabetic nephropathy.

    Science.gov (United States)

    Barutta, Federica; Tricarico, Marinella; Corbelli, Alessandro; Annaratone, Laura; Pinach, Silvia; Grimaldi, Serena; Bruno, Graziella; Cimino, Daniela; Taverna, Daniela; Deregibus, Maria Chiara; Rastaldi, Maria Pia; Perin, Paolo Cavallo; Gruden, Gabriella

    2013-01-01

    MicroRNAs (miRNAs), a class of small non-protein-encoding RNAs, regulate gene expression via suppression of target mRNAs. MiRNAs are present in body fluids in a remarkable stable form as packaged in microvesicles of endocytic origin, named exosomes. In the present study, we have assessed miRNA expression in urinary exosomes from type 1 diabetic patients with and without incipient diabetic nephropathy. Results showed that miR-130a and miR-145 were enriched, while miR-155 and miR-424 reduced in urinary exosomes from patients with microalbuminuria. Similarly, in an animal model of early experimental diabetic nephropathy, urinary exosomal miR-145 levels were increased and this was paralleled by miR-145 overexpression within the glomeruli. Exposure of cultured mesangial cells to high glucose increased miR-145 content in both mesangial cells and mesangial cells-derived exosomes, providing a potential mechanism for diabetes-induced miR-145 overexpression. In conclusion, urinary exosomal miRNA content is altered in type 1 diabetic patients with incipient diabetic nephropathy and miR-145 may represent a novel candidate biomarker/player in the complication.

  18. Urinary exosomal microRNAs in incipient diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Federica Barutta

    Full Text Available MicroRNAs (miRNAs, a class of small non-protein-encoding RNAs, regulate gene expression via suppression of target mRNAs. MiRNAs are present in body fluids in a remarkable stable form as packaged in microvesicles of endocytic origin, named exosomes. In the present study, we have assessed miRNA expression in urinary exosomes from type 1 diabetic patients with and without incipient diabetic nephropathy. Results showed that miR-130a and miR-145 were enriched, while miR-155 and miR-424 reduced in urinary exosomes from patients with microalbuminuria. Similarly, in an animal model of early experimental diabetic nephropathy, urinary exosomal miR-145 levels were increased and this was paralleled by miR-145 overexpression within the glomeruli. Exposure of cultured mesangial cells to high glucose increased miR-145 content in both mesangial cells and mesangial cells-derived exosomes, providing a potential mechanism for diabetes-induced miR-145 overexpression. In conclusion, urinary exosomal miRNA content is altered in type 1 diabetic patients with incipient diabetic nephropathy and miR-145 may represent a novel candidate biomarker/player in the complication.

  19. Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis.

    Science.gov (United States)

    You, Yiwen; Shan, Ying; Chen, Jing; Yue, Huijun; You, Bo; Shi, Si; Li, Xingyu; Cao, Xiaolei

    2015-12-01

    Nasopharyngeal cancer (NPC) is an endemic type of head and neck cancer with a high rate of cervical lymph node metastasis. Metastasis is the major cause of death in NPC patients. Increasing evidence indicates that exosomes play a pivotal role in promoting cancer metastasis by enhancing angiogenesis and ECM degradation. Matrix metalloproteinase 13 is an important kind of matrix proteinase that is often overexpressed in various tumors and increases the risk of metastasis. However, little is known about the potential role of MMP13-containing exosomes in NPC. In this study, we found that MMP13 was overexpressed in NPC cells and exosomes purified from conditioned medium (CM) as well as NPC patients' plasma. Transwell analysis revealed that MMP13-containing exosomes facilitated the metastasis of NPC cells. Furthermore, siRNA inhibited the effect of MMP13-containing exosomes on tumor cells metastasis as well as angiogenesis. The current findings provided novel insight into the vital role of MMP13-containing exosomes in NPC progression which might offer unique insights for potential therapeutic strategies for NPC progressions.

  20. An innovative method for exosome quantification and size measurement.

    Science.gov (United States)

    Mehdiani, Arash; Maier, Anatol; Pinto, Antonio; Barth, Mareike; Akhyari, Payam; Lichtenberg, Artur

    2015-01-17

    Although the biological importance of exosomes has recently gained an increasing amount of scientific and clinical attention, much is still unknown about their complex pathways, their bioavailability and their diverse functions in health and disease. Current work focuses on the presence and the behavior of exosomes (in vitro as well as in vivo) in the context of different human disorders, especially in the fields of oncology, gynecology and cardiology. Unfortunately, neither a consensus regarding a gold standard for exosome isolation exists, nor is there an agreement on such a method for their quantitative analysis. As there are many methods for the purification of exosomes and also many possibilities for their quantitative and qualitative analysis, it is difficult to determine a combination of methods for the ideal approach. Here, we demonstrate nanoparticle tracking analysis (NTA), a semi-automated method for the characterization of exosomes after isolation from human plasma by ultracentrifugation. The presented results show that this approach for isolation, as well as the determination of the average number and size of exosomes, delivers reproducible and valid data, as confirmed by other methods, such as scanning electron microscopy (SEM).

  1. Smartphone-enabled optofluidic exosome diagnostic for concussion recovery

    Science.gov (United States)

    Ko, Jina; Hemphill, Matthew A.; Gabrieli, David; Wu, Leon; Yelleswarapu, Venkata; Lawrence, Gladys; Pennycooke, Wesley; Singh, Anup; Meaney, Dave F.; Issadore, David

    2016-08-01

    A major impediment to improving the treatment of concussion is our current inability to identify patients that will experience persistent problems after the injury. Recently, brain-derived exosomes, which cross the blood-brain barrier and circulate following injury, have shown great potential as a noninvasive biomarker of brain recovery. However, clinical use of exosomes has been constrained by their small size (30–100 nm) and the extensive sample preparation (>24 hr) needed for traditional exosome measurements. To address these challenges, we developed a smartphone-enabled optofluidic platform to measure brain-derived exosomes. Sample-to-answer on our chip is 1 hour, 10x faster than conventional techniques. The key innovation is an optofluidic device that can detect enzyme amplified exosome biomarkers, and is read out using a smartphone camera. Using this approach, we detected and profiled GluR2+ exosomes in the post-injury state using both in vitro and murine models of concussion.

  2. Tumor-derived exosomes in cancer progression and treatment failure.

    Science.gov (United States)

    Yu, Shaorong; Cao, Haixia; Shen, Bo; Feng, Jifeng

    2015-11-10

    Exosomes have diameter within the range of 30-100 nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materials are biochemically and functionally distinct and can be transferred to a recipient cell where they regulate protein expression and signaling pathways. Recently, exosomes are demonstrated to have a close relationship with tumor development and metastasis. Exosomes influence therapeutic effect in cancer patients. In this review, we describe the biogenesis, composition, and function of exosomes. The mechanism on how tumor-derived exosomes contribute to cancer progression and clinical treatment failure is also described, with special focus on their potential applications in cancer therapy.

  3. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals.

    Science.gov (United States)

    Cheng, Lan; Xiao, Yunlong; Liu, Wenjian

    2009-12-28

    It is recognized only recently that the incorporation of the magnetic balance condition is absolutely essential for four-component relativistic theories of magnetic properties. Another important issue to be handled is the so-called gauge problem in calculations of, e.g., molecular magnetic shielding tensors with finite bases. It is shown here that the magnetic balance can be adapted to distributed gauge origins, leading to, e.g., magnetically balanced gauge-including atomic orbitals (MB-GIAOs) in which each magnetically balanced atomic orbital has its own local gauge origin placed on its center. Such a MB-GIAO scheme can be combined with any level of theory for electron correlation. The first implementation is done here at the coupled-perturbed Dirac-Kohn-Sham level. The calculated molecular magnetic shielding tensors are not only independent of the choice of gauge origin but also converge rapidly to the basis set limit. Close inspections reveal that (zeroth order) negative energy states are only important for the expansion of first order electronic core orbitals. Their contributions to the paramagnetism are therefore transferable from atoms to molecule and are essentially canceled out for chemical shifts. This allows for simplifications of the coupled-perturbed equations.

  4. Minor component study for simulated high-level nuclear waste glasses (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Langowskim, M.H.; Hrma, P.R.; Schweiger, M.J.; Vienna, J.D.; Smith, D.E.

    1996-02-01

    Hanford Site single-shell tank (SSI) and double-shell tank (DSI) wastes are planned to be separated into low activity (or low-level waste, LLW) and high activity (or high-level waste, HLW) fractions, and to be vitrified for disposal. Formulation of HLW glass must comply with glass processibility and durability requirements, including constraints on melt viscosity, electrical conductivity, liquidus temperature, tendency for phase segregation on the molten glass surface, and chemical durability of the final waste form. A wide variety of HLW compositions are expected to be vitrified. In addition these wastes will likely vary in composition from current estimates. High concentrations of certain troublesome components, such as sulfate, phosphate, and chrome, raise concerns about their potential hinderance to the waste vitrification process. For example, phosphate segregation in the cold cap (the layer of feed on top of the glass melt) in a Joule-heated melter may inhibit the melting process (Bunnell, 1988). This has been reported during a pilot-scale ceramic melter run, PSCM-19, (Perez, 1985). Molten salt segregation of either sulfate or chromate is also hazardous to the waste vitrification process. Excessive (Cr, Fe, Mn, Ni) spinel crystal formation in molten glass can also be detrimental to melter operation.

  5. Modulation of Immune Responses by Exosomes Derived from Antigen-Presenting Cells

    Science.gov (United States)

    Shenoda, Botros B.; Ajit, Seena K.

    2016-01-01

    Exosome-mediated signaling is important in mediating the inflammatory response. To exert their biological or pathophysiological functions in the recipient cells, exosomes deliver a diverse array of biomacromolecules including long and short coding and non-coding RNAs, proteins, and lipids. Exosomes secreted by antigen-presenting cells can confer therapeutic benefits by attenuating or stimulating the immune response. Exosomes play a crucial role in carrying and presenting functional major histocompatibility peptide complexes to modulate antigen-specific T cell responses. Exosomes from Dendritic Cells (DCs) can activate T and B cells and have been explored for their immunostimulatory properties in cancer therapy. The immunosuppressive properties of exosomes derived from macrophages and DCs can reduce inflammation in animal models for several inflammatory disorders. This review focuses on the protective role of exosomes in attenuating inflammation or augmenting immune response, emphasizing studies on exosomes derived from DCs and macrophages. PMID:27660518

  6. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells

    DEFF Research Database (Denmark)

    Llorente, A.; Skotland, T.; Sylvanne, T.

    2013-01-01

    an extraordinary discrimination of lipids sorted into these microvesicles. In particular, exosomes are highly enriched in glycosphingolipids, sphingomyelin, cholesterol, and phosphatidylserine (mol% of total lipids). Furthermore, lipid species, even of classes not enriched in exosomes, were selectively included...

  7. An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway.

    Directory of Open Access Journals (Sweden)

    Mariana Serpeloni

    Full Text Available In eukaryotic cells, different RNA species are exported from the nucleus via specialized pathways. The mRNA export machinery is highly integrated with mRNA processing, and includes a different set of nuclear transport adaptors as well as other mRNA binding proteins, RNA helicases, and NPC-associated proteins. The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, a widespread and neglected human disease which is endemic to Latin America. Gene expression in Trypanosoma has unique characteristics, such as constitutive polycistronic transcription of protein-encoding genes and mRNA processing by trans-splicing. In general, post-transcriptional events are the major points for regulation of gene expression in these parasites. However, the export pathway of mRNA from the nucleus is poorly understood. The present study investigated the function of TcSub2, which is a highly conserved protein ortholog to Sub2/ UAP56, a component of the Transcription/Export (TREX multiprotein complex connecting transcription with mRNA export in yeast/human. Similar to its orthologs, TcSub2 is a nuclear protein, localized in dispersed foci all over the nuclei -except the fibrillar center of nucleolus- and at the interface between dense and non-dense chromatin areas, proposing the association of TcSub2 with transcription/processing sites. These findings were analyzed further by BrUTP incorporation assays and confirmed that TcSub2 is physically associated with active RNA polymerase II (RNA pol II, but not RNA polymerase I (RNA pol I or Spliced Leader (SL transcription, demonstrating participation particularly in nuclear mRNA metabolism in T. cruzi. The double knockout of the TcSub2 gene is lethal in T. cruzi, suggesting it has an essential function. Alternatively, RNA interference assays were performed in Trypanosoma brucei. It allowed demonstrating that besides being an essential protein, its knockdown causes mRNA accumulation in the nucleus and

  8. Detection of Exosomal Biomarker by Electric Field-induced Release and Measurement (EFIRM)

    Science.gov (United States)

    Tu, Michael; Wei, Fang; Yang, Jieping; Wong, David

    2015-01-01

    Exosomes are microvesicular structures that play a mediating role in intercellular communication. It is of interest to study the internal cargo of exosomes to determine if they carry disease discriminatory biomarkers. For performing exosomal analysis, it is necessary to develop a method for extracting and analyzing exosomes from target biofluids without damaging the internal content. Electric field-induced release and measurement (EFIRM) is a method for specifically extracting exosomes from biofluids, unloading their cargo, and testing their internal RNA/protein content. Using an anti-human CD63 specific antibody magnetic microparticle, exosomes are first precipitated from biofluids. Following extraction, low-voltage electric cyclic square waves (CSW) are applied to disrupt the vesicular membrane and cause cargo unloading. The content of the exosome is hybridized to DNA primers or antibodies immobilized on an electrode surface for quantification of molecular content. The EFIRM method is advantageous for extraction of exosomes and unloading cargo for analysis without lysis buffer. This method is capable of performing specific detection of both RNA and protein biomarker targets in the exosome. EFIRM extracts exosomes specifically based on their surface markers as opposed to size-based techniques. Transmission electron microscopy (TEM) and assay demonstrate the functionality of the method for exosome capture and analysis. The EFIRM method was applied to exosomal analysis of 9 mice injected with human lung cancer H640 cells (a cell line transfected to express the exosome marker human CD63-GFP) in order to test their exosome profile against 11 mice receiving saline controls. Elevated levels of exosomal biomarkers (reference gene GAPDH and protein surface marker human CD63-GFP) were found for the H640 injected mice in both serum and saliva samples. Furthermore, saliva and serum samples were demonstrated to have linearity (R = 0.79). These results are suggestive for the

  9. Exosomes from B cells and Dendritic cells: mechanisms of formation, secretion and targeting

    OpenAIRE

    Buschow, S.I.

    2006-01-01

    Many cell types, including dendritic cells (DC) and B cells, secrete small vesicles called exosomes. Exosomes from immune cells are thought to have immuno-regulatory functions but their precise role remains unresolved. The aim of the studies presented in this thesis was to get more insight into the factors that determine exosome formation, composition and secretion as well as to learn more about their physiological relevance. Exosomes are equivalent to Luminal Vesicles (LV) of Multi Vesicular...

  10. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation.

    Science.gov (United States)

    Mutschelknaus, Lisa; Peters, Carsten; Winkler, Klaudia; Yentrapalli, Ramesh; Heider, Theresa; Atkinson, Michael John; Moertl, Simone

    2016-01-01

    Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells) increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better understanding of tumor

  11. Identification and Reconstruction of Prostate Tumor-Suppressing Exosomes for Therapeutic Applications

    Science.gov (United States)

    2016-03-01

    Award Number: W81XWH-14-1-0019 TITLE: Identification and Reconstruction of Prostate Tumor-Suppressing Exosomes for Therapeutic Applications...COVERED (From - To) 2 Dec 2013 - 3 Dec 2015 4. TITLE AND SUBTILE Identification and Reconstruction of Prostate Tumor-Suppressing Exosomes for... exosomes serve as vehicles for long range intercellular communications, with the bioactive contents of exosomes as the messengers. It is hypothesized

  12. Exosomes function in cell-cell communication during brain circuit development

    OpenAIRE

    Sharma, Pranav; Schiapparelli, Lucio; Cline, Hollis T.

    2013-01-01

    Exosomes are small extracellular vesicles that mediate intercellular signaling in the brain without requiring direct contact between cells. Although exosomes have been shown to play a role in neurological diseases and in response to nerve trauma, a role for exosome-mediated signaling in brain development and function has not yet been demonstrated. Here we review data building a case for exosome function in the brain.

  13. Structure of the C-terminal domain of Saccharomyces cerevisiae Nup133, a component of the nuclear pore complex

    Energy Technology Data Exchange (ETDEWEB)

    Sampathkumar, Parthasarathy; Gheyi, Tarun; Miller, Stacy A.; Bain, Kevin T.; Dickey, Mark; Bonanno, Jeffrey B.; Kim, Seung Joong; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D.; Martel, Anne; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A.; Emtage, J. Spencer; Wasserman, Stephen R.; Rout, Michael P.; Sali, Andrej; Sauder, J. Michael; Burley, Stephen K. (Einstein); (SLAC); (Rockefeller); (UCSF); (Lilly)

    2012-10-23

    Nuclear pore complexes (NPCs), responsible for the nucleo-cytoplasmic exchange of proteins and nucleic acids, are dynamic macromolecular assemblies forming an eight-fold symmetric co-axial ring structure. Yeast (Saccharomyces cerevisiae) NPCs are made up of at least 456 polypeptide chains of {approx}30 distinct sequences. Many of these components (nucleoporins, Nups) share similar structural motifs and form stable subcomplexes. We have determined a high-resolution crystal structure of the C-terminal domain of yeast Nup133 (ScNup133), a component of the heptameric Nup84 subcomplex. Expression tests yielded ScNup133(944-1157) that produced crystals diffracting to 1.9{angstrom} resolution. ScNup133(944-1157) adopts essentially an all {alpha}-helical fold, with a short two stranded {beta}-sheet at the C-terminus. The 11 {alpha}-helices of ScNup133(944-1157) form a compact fold. In contrast, the previously determined structure of human Nup133(934-1156) bound to a fragment of human Nup107 has its constituent {alpha}-helices are arranged in two globular blocks. These differences may reflect structural divergence among homologous nucleoporins.

  14. Ebola VP40 in exosomes can cause immune cell dysfunction

    Directory of Open Access Journals (Sweden)

    Michelle L Pleet

    2016-11-01

    Full Text Available Ebola virus (EBOV is an enveloped, ssRNA virus from the family Filoviridae capable of causing severe hemorrhagic fever with up to 80-90% mortality rates. The most recent outbreak of EBOV in West Africa starting in 2014 resulted in over 11,300 deaths; however, long-lasting persistence and recurrence in survivors has been documented, potentially leading to further transmission of the virus. We have previously shown that exosomes from cells infected with HIV-1, HTLV-1 and Rift Valley Fever virus are able to transfer viral proteins and non-coding RNAs to naïve recipient cells, resulting in an altered cellular activity. In the current manuscript, we examined the effect of Ebola structural proteins VP40, GP, NP and VLPs on recipient immune cells, as well as the effect of exosomes containing these proteins on naïve immune cells. We found that VP40-transfected cells packaged VP40 into exosomes, and that these exosomes were capable of inducing apoptosis in recipient immune cells. Additionally, we show that presence of VP40 within parental cells or in exosomes delivered to naïve cells could result in the regulation of RNAi machinery including Dicer, Drosha, and Ago 1, which may play a role in the induction of cell death in recipient immune cells. Exosome biogenesis was regulated by VP40 in transfected cells by increasing levels of ESCRT-II proteins EAP20 and EAP45, and exosomal marker proteins CD63 and Alix. VP40 was phosphorylated by Cdk2/Cyclin complexes at Serine 233 which could be reversed with r-Roscovitine treatment. The level of VP40-containing exosomes could also be regulated by treated cells with FDA-approved Oxytetracycline. Additionally, we utilized novel nanoparticles to safely capture VP40 and other viral proteins from Ebola VLPs spiked into human samples using SDS/reducing agents, thus minimizing the need for BSL-4 conditions for most downstream assays. Collectively, our data indicates that VP40 packaged into exosomes may be responsible

  15. Redefining the Breast Cancer Exosome Proteome by Tandem Mass Tag Quantitative Proteomics and Multivariate Cluster Analysis.

    Science.gov (United States)

    Clark, David J; Fondrie, William E; Liao, Zhongping; Hanson, Phyllis I; Fulton, Amy; Mao, Li; Yang, Austin J

    2015-10-20

    Exosomes are microvesicles of endocytic origin constitutively released by multiple cell types into the extracellular environment. With evidence that exosomes can be detected in the blood of patients with various malignancies, the development of a platform that uses exosomes as a diagnostic tool has been proposed. However, it has been difficult to truly define the exosome proteome due to the challenge of discerning contaminant proteins that may be identified via mass spectrometry using various exosome enrichment strategies. To better define the exosome proteome in breast cancer, we incorporated a combination of Tandem-Mass-Tag (TMT) quantitative proteomics approach and Support Vector Machine (SVM) cluster analysis of three conditioned media derived fractions corresponding to a 10 000g cellular debris pellet, a 100 000g crude exosome pellet, and an Optiprep enriched exosome pellet. The quantitative analysis identified 2 179 proteins in all three fractions, with known exosomal cargo proteins displaying at least a 2-fold enrichment in the exosome fraction based on the TMT protein ratios. Employing SVM cluster analysis allowed for the classification 251 proteins as "true" exosomal cargo proteins. This study provides a robust and vigorous framework for the future development of using exosomes as a potential multiprotein marker phenotyping tool that could be useful in breast cancer diagnosis and monitoring disease progression.

  16. Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes.

    Science.gov (United States)

    Thompson, Camilla A; Purushothaman, Anurag; Ramani, Vishnu C; Vlodavsky, Israel; Sanderson, Ralph D

    2013-04-05

    Emerging evidence indicates that exosomes play a key role in tumor-host cross-talk and that exosome secretion, composition, and functional capacity are altered as tumors progress to an aggressive phenotype. However, little is known regarding the mechanisms that regulate these changes. Heparanase is an enzyme whose expression is up-regulated as tumors become more aggressive and is associated with enhanced tumor growth, angiogenesis, and metastasis. We have discovered that in human cancer cells (myeloma, lymphoblastoid, and breast cancer), when expression of heparanase is enhanced or when tumor cells are exposed to exogenous heparanase, exosome secretion is dramatically increased. Heparanase enzyme activity is required for robust enhancement of exosome secretion because enzymatically inactive forms of heparanase, even when present in high amounts, do not dramatically increase exosome secretion. Heparanase also impacts exosome protein cargo as reflected by higher levels of syndecan-1, VEGF, and hepatocyte growth factor in exosomes secreted by heparanase-high expressing cells as compared with heparanase-low expressing cells. In functional assays, exosomes from heparanase-high cells stimulated spreading of tumor cells on fibronectin and invasion of endothelial cells through extracellular matrix better than did exosomes secreted by heparanase-low cells. These studies reveal that heparanase helps drive exosome secretion, alters exosome composition, and facilitates production of exosomes that impact both tumor and host cell behavior, thereby promoting tumor progression.

  17. Immature dendritic cell-derived exosomes: a promise subcellular vaccine for autoimmunity.

    Science.gov (United States)

    Yin, Weifan; Ouyang, Song; Li, Yi; Xiao, Bo; Yang, Huan

    2013-02-01

    Exosomes, 60-90-nm-sized vesicles, are produced by a large number of cell types, including tumor cells, neurons, astrocytes, hemocytes, intestinal epithelial cells, and so on. Dendritic cell (DC), the most potent professional antigen-presenting cell in the immune system, produces exosomes in the course of maturation. Mature DCs produce exosomes with the ability to elicit potent immunoactivation, resulting in tumor eradication and bacterial or virus elimination. Given the notion that exosomes are stable and easy to be modified artificially, autologous mature DC-derived exosomes have been vaccinated into patients with malignant diseases. In clinical trials utilizing exosomes as therapeutic approaches, researchers observed considerable curative effect with little side effect. However, immature or suppressive DC-derived exosomes harbor anti-inflammatory properties distinct from mature DC-derived exosomes. In murine models of autoimmune disease and transplantation, immature DC-derived exosomes reduced T cell-dependent immunoactivation, relieved clinical manifestation of autoimmune disease, and prolonged survival time of transplantation. Although the exact mechanism of how immature DC-derived exosomes function in vivo is still unclear, and there are no clinical trials regarding application of exosome vaccine into patients with autoimmune disease, we will analyze the promise of immature DC-derived exosomes as a subcellular vaccine in autoimmunity in this review.

  18. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies.

    Science.gov (United States)

    Record, Michel; Carayon, Kevin; Poirot, Marc; Silvente-Poirot, Sandrine

    2014-01-01

    Exosomes are nanovesicles that have emerged as a new intercellular communication system between an intracellular compartment of a donor cell towards the periphery or an internal compartment of a recipient cell. The bioactivity of exosomes resides not only in their protein and RNA contents but also in their lipidic molecules. Exosomes display original lipids organized in a bilayer membrane and along with the lipid carriers such as fatty acid binding proteins that they contain, exosomes transport bioactive lipids. Exosomes can vectorize lipids such as eicosanoids, fatty acids, and cholesterol, and their lipid composition can be modified by in-vitro manipulation. They also contain lipid related enzymes so that they can constitute an autonomous unit of production of various bioactive lipids. Exosomes can circulate between proximal or distal cells and their fate can be regulated in part by lipidic molecules. Compared to their parental cells, exosomes are enriched in cholesterol and sphingomyelin and their accumulation in cells might modulate recipient cell homeostasis. Exosome release from cells appears to be a general biological process. They have been reported in all biological fluids from which they can be recovered and can be monitors of specific pathophysiological situations. Thus, the lipid content of circulating exosomes could be useful biomarkers of lipid related diseases. Since the first lipid analysis of exosomes ten years ago detailed knowledge of exosomal lipids has accumulated. The role of lipids in exosome fate and bioactivity and how they constitute an additional lipid transport system are considered in this review.

  19. Theoretical Study of H/D Isotope Effects on Nuclear Magnetic Shieldings Using an ab initio Multi-Component Molecular Orbital Method

    Directory of Open Access Journals (Sweden)

    Masanori Tachikawa

    2013-05-01

    Full Text Available We have theoretically analyzed the nuclear quantum effect on the nuclear magnetic shieldings for the intramolecular hydrogen-bonded systems of σ-hydroxy acyl aromatic species using the gauge-including atomic orbital technique combined with our multi-component density functional theory. The effect of H/D quantum nature for geometry and nuclear magnetic shielding changes are analyzed. Our study clearly demonstrated that the geometrical changes of hydrogen-bonds induced by H/D isotope effect (called geometrical isotope effect: GIE is the dominant factor of deuterium isotope effect on 13C chemical shift.

  20. Exosome-bound WD repeat protein Monad inhibits breast cancer cell invasion by degrading amphiregulin mRNA.

    Directory of Open Access Journals (Sweden)

    Makio Saeki

    Full Text Available Increased stabilization of mRNA coding for key cancer genes can contribute to invasiveness. This is achieved by down-regulation of exosome cofactors, which bind to 3'-UTR in cancer-related genes. Here, we identified amphiregulin, an EGFR ligand, as a target of WD repeat protein Monad, a component of R2TP/prefoldin-like complex, in MDA-MB-231 breast cancer cells. Monad specifically interacted with both the 3'-UTR of amphiregulin mRNA and the RNA degrading exosome, and enhanced decay of amphiregulin transcripts. Knockdown of Monad increased invasion and this effect was abolished with anti-amphiregulin neutralizing antibody. These results suggest that Monad could prevent amphiregulin-mediated invasion by degrading amphiregulin mRNA.

  1. Identification and Assessment of Material Models for Age-Related Degradation of Structures and Passive Components in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nie,J.; Braverman, J.; Hofmayer, C.; Kim, M. K.; Choi, I-K.

    2009-04-27

    When performing seismic safety assessments of nuclear power plants (NPPs), the potential effects of age-related degradation on structures, systems, and components (SSCs) should be considered. To address the issue of aging degradation, the Korea Atomic Energy Research Institute (KAERI) has embarked on a five-year research project to develop a realistic seismic risk evaluation system which will include the consideration of aging of structures and components in NPPs. Three specific areas that are included in the KAERI research project, related to seismic probabilistic risk assessment (PRA), are probabilistic seismic hazard analysis, seismic fragility analysis including the effects of aging, and a plant seismic risk analysis. To support the development of seismic capability evaluation technology for degraded structures and components, KAERI entered into a collaboration agreement with Brookhaven National Laboratory (BNL) in 2007. The collaborative research effort is intended to continue over a five year period with the goal of developing seismic fragility analysis methods that consider the potential effects of age-related degradation of SSCs, and using these results as input to seismic PRAs. In the Year 1 scope of work BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations that will be performed in the subsequent evaluations in the years that follow. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. This report

  2. [Characteristics of exosomes andmicroparticles discovered in human tears].

    Science.gov (United States)

    Grigor'eva, A E; Tamkovich, S N; Eremina, A V; Tupikin, A E; Kabilov, M R; Chernykh, V V; Vlassov, V V; Laktionov, P P; Ryabchikova, E I

    2016-01-01

    Exosomes represent a sort of extracellular vesicles, which transfer molecular signals in organism and possess markers of producing cells. Our study was aimed at search of exosomes in the tears of healthy humans, confirmation of their nature and examination of exosome morphological and molecular-biological characteristics. The tears (110-340 ml) were collected from 24 healthy donors (aged 46-60 years); individual probes were centrifuged at 20000 g for 15 min to pellet cell debris. The supernatants were examined in electron microscope using negative staining; and they were also used for isolation and purification of the exosomes by filtration (100 nm pore-size) and double ultracentrifugation (90 min at 100000 g, 4°C). The "pellets" were subjected to electron microscopy, immunolabeling. The RNA and DNA were isolated from the samples, and their sizes were evaluated by capillary electrophoresis, the concentration and localization of nucleic acids were determined. Sequencing of DNA was performed using MiSeq ("Illumina", USA), data were analyzed using CLC GW 7.5 ("Qiagen", USA). Sequences were mapped on human genome (hg19). Electron microscopy revealed in supernatants of the tears cell debris, spherical microparticles (20-40 nm), membrane vesicles and macromolecular aggregates. The "pellets" obtained after ultracentrifugation, contained microparticles (17%), spherical and cup-shaped EVs (40-100 nm, 83%), which were positive for CD63, CD9 and CD24 receptors (specific markers of exosomes). Our study showed presence of high amount of exosomes in human tears, and relation of the exosomes with RNA (size less than 200 nt) and DNA (size was 3-9 kb). Sequencing of the DNA showed that about 92% of the reads mapped to human genome.

  3. Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients

    Directory of Open Access Journals (Sweden)

    Irene V. Bijnsdorp

    2013-10-01

    Full Text Available Background: Cancer cells are able to change the protein expression and behavior of non-cancerous surrounding cells. Exosomes, secreted by prostate cancer (PCa cells, may have a functional role in cancer metastasis and present a promising source for protein biomarkers. The aim of the present study was to identify which proteins in exosomes can influence non-cancerous cells, and to determine whether we can use urine exosomal proteins to identify high-risk PCa patients. Method: Exosomes were isolated by ultracentrifugation. Migration and invasion were studied by the transwell (invasion assay. Proteomics was performed by LC-MS/MS and identified proteins were validated by Western blotting. Cellular uptake of fluorescent labeled PKH67-exosomes was measured by FACS. Results: Based on comparative protein profiling by mass spectrometry-based proteomics of LNCaP- and PC3-exosomes, we selected ITGA3 and ITGB1, involved in migration/invasion, for further analyses. Inhibition of exosomal ITGA3 reduced the migration and invasion of non-cancerous prostate epithelial cells (prEC almost completely. Cellular uptake of exosomes by prEC was higher with PC3-exosomes compared to LNCaP exosomes. Finally, ITGA3 and ITGB1 were more abundant in urine exosomes of metastatic patients (p<0.05, compared to benign prostate hyperplasia or PCa. Conclusion: These data indicate exosomal ITGA3 and ITGB1 may play a role in manipulating non-cancerous surrounding cells and that measurement of ITGA3 and ITGB1 in urine exosomes has the potential to identify patients with metastatic PCa in a non-invasive manner.

  4. Isolation and immunologic characteristics of exosomes derived from colon carcinoma cells%结肠癌源性exosomes的分离及其相关免疫学性质

    Institute of Scientific and Technical Information of China (English)

    冯业童; 刘朋飞; 吴昊昱; 刘迪; 董超; 吴璇; 周余来; 孙波

    2012-01-01

    目的 分离结肠癌细胞株的exosomes,并分析其在致敏抗原呈递细胞及激活相关效应细胞过程中的作用.方法 差速离心法分离体外培养的正常exosomes和经热休克处理的sw1116细胞(Heat shocked sw1116,HS-sw1116)分泌的exosomes (Heat shocked exosomes,HS-Exo),并在电子显微镜下观察exosomes和HS-Exo的形态结构;SDS-PAGE初步分析exosomes和HS-Exo的蛋白组分,CCK-8法检测其促外周血单个核细胞(Peripheral blood monouclear cells,PBMCs)增殖的能力.结果 电子显微镜观察,exosomes和HS-Exo的形态学结构无明显差异,其平均直径约为150 nm;exosomes和HS-Exo的蛋白条带分布情况基本相同,在高相对分子质量区域蛋白分布较多;exosomes比sw1116细胞更易引起PBMCs的增殖反应,HS-sw1116细胞和HS-Exo促PBMCs增殖的作用比sw1116细胞和exosomes更明显(P<0.05).结论 结肠癌sw1116细胞株可分泌exosomes,其比肿瘤细胞更易引起PBMCs的增殖,热休克处理可进一步增强细胞和exosomes的促PBMCs增殖的能力,exosomes在结肠癌免疫治疗方面具有重要的应用价值.%Objective To isolate exosomes from colon carcinoma cell strain and analyze its role in sensitization of antigen-presenting cells (APCs) and activation of effecter cells. Methods Normal exosomes cultured in vitro and heat shocked exosomes (HS-Exo) were isolated by differential centrifugation and observed for morphology by electron microscopy. The protein components of exosomes and HS-Exo were preliminarily analyzed by SDS-PAGE, and their abilities in promoting the proliferation of peripheral blood monouclear cells(PBMCs) by CCK-8 method. Results Normal exosomes and HS-Exo showed no significant difference in morphology under electron microscope, of which the mean diameter was about 150 nm. The distributions of protein bands of exosomes and HS-Exo were similar, which were mainly in the zones with high relative molecular masses. Compared with sw1116 cells, exosomes

  5. Chromatin Dynamics and the RNA Exosome Function in Concert to Regulate Transcriptional Homeostasis

    Directory of Open Access Journals (Sweden)

    Mayuri Rege

    2015-11-01

    Full Text Available The histone variant H2A.Z is a hallmark of nucleosomes flanking promoters of protein-coding genes and is often found in nucleosomes that carry lysine 56-acetylated histone H3 (H3-K56Ac, a mark that promotes replication-independent nucleosome turnover. Here, we find that H3-K56Ac promotes RNA polymerase II occupancy at many protein-coding and noncoding loci, yet neither H3-K56Ac nor H2A.Z has a significant impact on steady-state mRNA levels in yeast. Instead, broad effects of H3-K56Ac or H2A.Z on RNA levels are revealed only in the absence of the nuclear RNA exosome. H2A.Z is also necessary for the expression of divergent, promoter-proximal noncoding RNAs (ncRNAs in mouse embryonic stem cells. Finally, we show that H2A.Z functions with H3-K56Ac to facilitate formation of chromosome interaction domains (CIDs. Our study suggests that H2A.Z and H3-K56Ac work in concert with the RNA exosome to control mRNA and ncRNA expression, perhaps in part by regulating higher-order chromatin structures.

  6. Isolation and Characterization of CD34+ Blast-Derived Exosomes in Acute Myeloid Leukemia

    Science.gov (United States)

    Hong, Chang Sook; Muller, Laurent; Boyiadzis, Michael; Whiteside, Theresa L.

    2014-01-01

    Exosomes are membrane-bound vesicles found in all biological fluids. AML patients' plasma collected at diagnosis contains elevated exosome levels relative to normal donor (ND) plasma. The molecular profile of AML exosomes changes in the course of therapy and may serve as a measure of disease progression or response to therapy. However, plasma contains a mix of exosomes derived from various cell types. To be able to utilize blast-derived exosomes as biomarkers for AML, we have developed an immunoaffinity-based capture method utilizing magnetic microbeads coated with anti-CD34 antibody (Ab). This Ab is specific for CD34, a unique marker of AML blasts. The capture procedure was developed using CD34+ exosomes derived from Kasumi-1 AML cell culture supernatants. The capture capacity of CD34microbeads was shown to linearly correlate with the input exosomes. A 10 uL aliquot of CD34 microbeads was able to capture all of CD34+ exosomes present in 100–1,000 uL of AML plasma. The levels of immunocaptured CD34+ exosomes correlated with the percentages of CD34+ blasts in the AML patients' peripheral blood. The immunocaptured exosomes had a typical cup-shaped morphology by transmission electron microscopy, and their molecular cargo was similar to that of parental blasts. These exosomes were biologically-active. Upon co-incubation with natural killer (NK) cells, captured blast-derived exosomes down-regulated surface NKG2D expression, while non-captured exosomes reduced expression levels of NKp46. Our data provide a proof-of-principle that blast-derived exosomes can be quantitatively recovered from AML patients' plasma, their molecular profile recapitulates that of autologous blasts and they retain the ability to mediate immune suppression. These data suggest that immunocaptured blast-derived exosomes might be useful in diagnosis and/or prognosis of AML in the future. PMID:25093329

  7. Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Chang Sook Hong

    Full Text Available Exosomes are membrane-bound vesicles found in all biological fluids. AML patients' plasma collected at diagnosis contains elevated exosome levels relative to normal donor (ND plasma. The molecular profile of AML exosomes changes in the course of therapy and may serve as a measure of disease progression or response to therapy. However, plasma contains a mix of exosomes derived from various cell types. To be able to utilize blast-derived exosomes as biomarkers for AML, we have developed an immunoaffinity-based capture method utilizing magnetic microbeads coated with anti-CD34 antibody (Ab. This Ab is specific for CD34, a unique marker of AML blasts. The capture procedure was developed using CD34+ exosomes derived from Kasumi-1 AML cell culture supernatants. The capture capacity of CD34microbeads was shown to linearly correlate with the input exosomes. A 10 uL aliquot of CD34 microbeads was able to capture all of CD34+ exosomes present in 100-1,000 uL of AML plasma. The levels of immunocaptured CD34+ exosomes correlated with the percentages of CD34+ blasts in the AML patients' peripheral blood. The immunocaptured exosomes had a typical cup-shaped morphology by transmission electron microscopy, and their molecular cargo was similar to that of parental blasts. These exosomes were biologically-active. Upon co-incubation with natural killer (NK cells, captured blast-derived exosomes down-regulated surface NKG2D expression, while non-captured exosomes reduced expression levels of NKp46. Our data provide a proof-of-principle that blast-derived exosomes can be quantitatively recovered from AML patients' plasma, their molecular profile recapitulates that of autologous blasts and they retain the ability to mediate immune suppression. These data suggest that immunocaptured blast-derived exosomes might be useful in diagnosis and/or prognosis of AML in the future.

  8. The non-targeted effects of radiation are perpetuated by exosomes.

    Science.gov (United States)

    Al-Mayah, Ammar; Bright, Scott; Chapman, Kim; Irons, Sarah; Luo, Ping; Carter, David; Goodwin, Edwin; Kadhim, Munira

    2015-02-01

    Exosomes contain cargo material from endosomes, cytosol, plasma membrane and microRNA molecules, they are released by a number of non-cancer and cancer cells into both the extracellular microenvironment and body fluids such as blood plasma. Recently we demonstrated radiation-induced non-targeted effects [NTE: genomic instability (GI) and bystander effects (BE)] are partially mediated by exosomes, particularly the RNA content. However the mechanistic role of exosomes in NTE is yet to be fully understood. The present study used MCF7 cells to characterise the longevity of exosome-induced activity in the progeny of irradiated and unirradiated bystander cells. Exosomes extracted from conditioned media of irradiated and bystander progeny were added to unirradiated cells. Analysis was carried out at 1 and 20/24 population doublings following medium/exosome transfer for DNA/chromosomal damage. Results confirmed exosomes play a significant role in mediating NTE of ionising radiation (IR). This effect was remarkably persistent, observed >20 doublings post-irradiation in the progeny of bystander cells. Additionally, cell progeny undergoing a BE were themselves capable of inducing BE in other cells via exosomes they released. Furthermore we investigated the role of exosome cargo. Culture media from cells exposed to 2 Gy X-rays was subjected to ultracentrifugation and four inoculants prepared, (a) supernatants with exosomes removed, and pellets with (b) exosome proteins denatured, (c) RNA degraded, and (d) a combination of protein-RNA inactivation. These were added to separate populations of unirradiated cells. The BE was partially inhibited when either exosome protein or exosome RNA were inactivated separately, whilst combined RNA-protein inhibition significantly reduced or eliminated the BE. These results demonstrate that exosomes are associated with long-lived signalling of the NTE of IR. Both RNA and protein molecules of exosomes work in a synergistic manner to initiate NTE

  9. Quantitative and stoichiometric analysis of the microRNA content of exosomes.

    Science.gov (United States)

    Chevillet, John R; Kang, Qing; Ruf, Ingrid K; Briggs, Hilary A; Vojtech, Lucia N; Hughes, Sean M; Cheng, Heather H; Arroyo, Jason D; Meredith, Emily K; Gallichotte, Emily N; Pogosova-Agadjanyan, Era L; Morrissey, Colm; Stirewalt, Derek L; Hladik, Florian; Yu, Evan Y; Higano, Celestia S; Tewari, Muneesh

    2014-10-14

    Exosomes have been proposed as vehicles for microRNA (miRNA) -based intercellular communication and a source of miRNA biomarkers in bodily fluids. Although exosome preparations contain miRNAs, a quantitative analysis of their abundance and stoichiometry is lacking. In the course of studying cancer-associated extracellular miRNAs in patient blood samples, we found that exosome fractions contained a small minority of the miRNA content of plasma. This low yield prompted us to perform a more quantitative assessment of the relationship between miRNAs and exosomes using a stoichiometric approach. We quantified both the number of exosomes and the number of miRNA molecules in replicate samples that were isolated from five diverse sources (i.e., plasma, seminal fluid, dendritic cells, mast cells, and ovarian cancer cells). Regardless of the source, on average, there was far less than one molecule of a given miRNA per exosome, even for the most abundant miRNAs in exosome preparations (mean ± SD across six exosome sources: 0.00825 ± 0.02 miRNA molecules/exosome). Thus, if miRNAs were distributed homogenously across the exosome population, on average, over 100 exosomes would need to be examined to observe one copy of a given abundant miRNA. This stoichiometry of miRNAs and exosomes suggests that most individual exosomes in standard preparations do not carry biologically significant numbers of miRNAs and are, therefore, individually unlikely to be functional as vehicles for miRNA-based communication. We propose revised models to reconcile the exosome-mediated, miRNA-based intercellular communication hypothesis with the observed stoichiometry of miRNAs associated with exosomes.

  10. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis.

    Science.gov (United States)

    Hood, Joshua L; San, Roman Susana; Wickline, Samuel A

    2011-06-01

    Exosomes are naturally occurring biological nanovesicles utilized by tumors to communicate signals to local and remote cells and tissues. Melanoma exosomes can incite a proangiogenic signaling program capable of remodeling tissue matrices. In this study, we show exosome-mediated conditioning of lymph nodes and define microanatomic responses that license metastasis of melanoma cells. Homing of melanoma exosomes to sentinel lymph nodes imposes synchronized molecular signals that effect melanoma cell recruitment, extracellular matrix deposition, and vascular proliferation in the lymph nodes. Our findings highlight the pathophysiologic role and mechanisms of an exosome-mediated process of microanatomic niche preparation that facilitates lymphatic metastasis by cancer cells.

  11. Circulating exosomes as new biomarkers for brain disease and injury

    Science.gov (United States)

    Graner, Michael W.; Epple, Laura M.; Dusto, Nathaniel L.; Lencioni, Alex M.; Nega, Meheret; Herring, Matthew; Winston, Ben; Madsen, Helen; Bemis, Lynne T.; Anchordoquy, Thomas J.

    2013-05-01

    Brain diseases such as cancers, neurodegenerative disorders, or trauma are frequently diagnosed with imaging modalities and sometimes with intracranial biopsies. Treatment response is similarly monitored, along with clinical indications. While these technologies provide important windows into the disease state, they fail to provide us a detailed molecular portrait of the disease and of the changes taking place during therapy. Exosomes are virus-sized nanovesicles derived from the endosomal system and are released extracellularly from essentially all cell types. Exosomes contain intracellular entities (proteins, nucleic acids, metabolites), membrane proteins and lipids, and even extracellular proteins bound to them. Exosomes may be considered as mini-surrogates of their cells of origin, with some content common to all cells/exosomes, but some of the content would be cell-specific. These vesicles are found in all biofluids in humans, and are thus accessible to "liquid biopsy" with harvest of vesicles from such fluids. Current challenges are to identify disease-related markers or panels of markers to distinguish the disease state. Here we will show examples of brain tumor markers found in/on exosomes from cell culture and patient sera, and we will suggest that aspects of the biology of disease may have a relevant place in the search for biomarkers.

  12. Loss of exosomes in progranulin-associated frontotemporal dementia.

    Science.gov (United States)

    Benussi, Luisa; Ciani, Miriam; Tonoli, Elisa; Morbin, Michela; Palamara, Luisa; Albani, Diego; Fusco, Federica; Forloni, Gianluigi; Glionna, Michela; Baco, Monika; Paterlini, Anna; Fostinelli, Silvia; Santini, Benedetta; Galbiati, Elisabetta; Gagni, Paola; Cretich, Marina; Binetti, Giuliano; Tagliavini, Fabrizio; Prosperi, Davide; Chiari, Marcella; Ghidoni, Roberta

    2016-04-01

    Many cells of the nervous system have been shown to release exosomes, a subclass of secreted vesicles of endosomal origin capable of transferring biomolecules among cells: this transfer modality represents a novel physiological form of intercellular communication between neural cells. Herein, we demonstrated that progranulin (PGRN), a protein targeted to the classical secretory pathway, is also secreted in association with exosomes by human primary fibroblasts. Moreover, we demonstrated that null mutations in the progranulin gene (GRN), a major cause of frontotemporal dementia, strongly reduce the number of released exosomes and alter their composition. In vitro GRN silencing in SHSY-5Y cells confirmed a role of PGRN in the control of exosome release. It is believed that depletion of PGRN in the brain might cause neurodegeneration in GRN-associated frontotemporal dementia. We demonstrated that, along with shortage of the circulating PGRN, GRN null mutations alter intercellular communication. Thus, a better understanding of the role played by exosomes in GRN-associated neurodegeneration is crucial for the development of novel therapies for these diseases.

  13. Signaling Pathways in Exosomes Biogenesis, Secretion and Fate

    Directory of Open Access Journals (Sweden)

    Carla Emiliani

    2013-03-01

    Full Text Available Exosomes are small extracellular vesicles (30–100 nm derived from the endosomal system, which have raised considerable interest in the last decade. Several studies have shown that they mediate cell-to-cell communication in a variety of biological processes. Thus, in addition to cell-to-cell direct interaction or secretion of active molecules, they are now considered another class of signal mediators. Exosomes can be secreted by several cell types and retrieved in many body fluids, such as blood, urine, saliva and cerebrospinal fluid. In addition to proteins and lipids, they also contain nucleic acids, namely mRNA and miRNA. These features have prompted extensive research to exploit them as a source of biomarkers for several pathologies, such as cancer and neurodegenerative disorders. In this context, exosomes also appear attractive as gene delivery vehicles. Furthermore, exosome immunomodulatory and regenerative properties are also encouraging their application for further therapeutic purposes. Nevertheless, several issues remain to be addressed: exosome biogenesis and secretion mechanisms have not been clearly understood, and physiological functions, as well as pathological roles, are far from being satisfactorily elucidated.

  14. Exosomes as a tumor immune escape mechanism: possible therapeutic implications

    Directory of Open Access Journals (Sweden)

    Hanley Harold H

    2008-07-01

    Full Text Available Abstract Advances in cancer therapy have been substantial in terms of molecular understanding of disease mechanisms, however these advances have not translated into increased survival in the majority of cancer types. One unsolved problem in current cancer therapeutics is the substantial immune suppression seen in patients. Conventionally, investigations in this area have focused on antigen-nonspecific immune suppressive molecules such as cytokines and T cell apoptosis inducing molecules such as Fas ligand. More recently, studies have demonstrated nanovesicle particles termed exosomes are involved not only in stimulation but also inhibition of immunity in physiological conditions. Interestingly, exosomes secreted by cancer cells have been demonstrated to express tumor antigens, as well as immune suppressive molecules such as PD-1L and FasL. Concentrations of exosomes from plasma of cancer patients have been associated with spontaneous T cell apoptosis, which is associated in some situations with shortened survival. In this paper we place the "exosome-immune suppression" concept in perspective of other tumor immune evasion mechanisms. We conclude by discussing a novel therapeutic approach to cancer immune suppression by extracorporeal removal of exosomes using hollow fiber filtration technology

  15. Exosomes and nanotubes: Control of immune cell communication.

    Science.gov (United States)

    McCoy-Simandle, Kessler; Hanna, Samer J; Cox, Dianne

    2016-02-01

    Cell-cell communication is critical to coordinate the activity and behavior of a multicellular organism. The cells of the immune system not only must communicate with similar cells, but also with many other cell types in the body. Therefore, the cells of the immune system have evolved multiple ways to communicate. Exosomes and tunneling nanotubes (TNTs) are two means of communication used by immune cells that contribute to immune functions. Exosomes are small membrane vesicles secreted by most cell types that can mediate intercellular communication and in the immune system they are proposed to play a role in antigen presentation and modulation of gene expression. TNTs are membranous structures that mediate direct cell-cell contact over several cell diameters in length (and possibly longer) and facilitate the interaction and/or the transfer of signals, material and other cellular organelles between connected cells. Recent studies have revealed additional, but sometimes conflicting, structural and functional features of both exosomes and TNTs. Despite the new and exciting information in exosome and TNT composition, origin and in vitro function, biologically significant functions are still being investigated and determined. In this review, we discuss the current field regarding exosomes and TNTs in immune cells providing evaluation and perspectives of the current literature.

  16. Determination of an Test Condition for IR Thermography to Inspect a Wall-Thinning Defect in Nuclear Piping Components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Weon; Yun, Won Kyung; Jung, Hyun Chul; Kim, Kyeong Suk [Chosun University, Gwnagju (Korea, Republic of)

    2012-02-15

    This study conducted infrared (IR) thermography tests using pipe and plate specimens with artificial wall-thinning defects to find an optimal condition for IR thermography test on the wall-thinned nuclear piping components. In the experiment halogen lamp was used to heat the specimens. The distance between the specimen and the lamp and the intensity of halogen lamp were regarded as experimental parameter. When the distance was set to 1{approx}2 m and the lamp intensity was above 60 % of full power, a single scanning of IR thermography detected all artificial wall-thinning defects, whose minimum dimension was 2{theta} = 90 .deg., d/t=0.5, and L/D{sub o}, within the pipe of 500 mm in length. Regardless of the distance between the specimen and the lamp, the image of wall-thinning defect in IR thermography became distinctive as the intensity of halogen lamp increased. The detectability of IR thermography was similar for both plate and pipe specimens, but the optimal test condition for IR thermography depended on the type of specimen.

  17. Strain-based plastic instability acceptance criteria for ferritic steel safety class 1 nuclear components under level D service loads

    Directory of Open Access Journals (Sweden)

    Ji-Su Kim

    2015-04-01

    Full Text Available This paper proposes strain-based acceptance criteria for assessing plastic instability of the safety class 1 nuclear components made of ferritic steel during level D service loads. The strain-based criteria were proposed with two approaches: (1 a section average approach and (2 a critical location approach. Both approaches were based on the damage initiation point corresponding to the maximum load-carrying capability point instead of the fracture point via tensile tests and finite element analysis (FEA for the notched specimen under uni-axial tensile loading. The two proposed criteria were reviewed from the viewpoint of design practice and philosophy to select a more appropriate criterion. As a result of the review, it was found that the section average approach is more appropriate than the critical location approach from the viewpoint of design practice and philosophy. Finally, the criterion based on the section average approach was applied to a simplified reactor pressure vessel (RPV outlet nozzle subject to SSE loads. The application shows that the strain-based acceptance criteria can consider cumulative damages caused by the sequential loads unlike the stress-based acceptance criteria and can reduce the overconservatism of the stress-based acceptance criteria, which often occurs for level D service loads.

  18. Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases.

    Science.gov (United States)

    Xitong, Dang; Xiaorong, Zeng

    2016-01-10

    Exosomes are 30-120 nm membrane bound vesicles secreted naturally by almost all cells and exist in all body fluids. Accumulating evidence has shown that exosomes contain proteins, lipids, DNA, mRNA, miRNA, and lncRNA that can be transferred from producer cells to recipient cells, facilitating cell-cell communication. As the natural carrier of these signal molecules, exosomes possess many other properties such as stability, biocompatibility, biological barrier permeability, low toxicity, and low immunogenicity, which make them an attractive vehicle for therapeutic delivery. How exosomes target recipient cells in vivo remains largely unknown, however, exosomes are selectively enriched in some transmembrane proteins that can be genetically engineered to display ligands/homing peptides on their surface, which confers exosome targeting capability to cells bearing cognate receptors. With the discovery of many peptides homing to diseased tissues or organs through phage display and in vivo biopanning technologies, there is ample opportunity to explore the potential use of exosome for targeted gene therapy. Here, we briefly review exosome biogenesis, mechanisms of exosome-mediated cell–cell communication, and exosome isolation and purification methods, and specifically focus on the emerging exosome targeting technologies.

  19. Identification of candidates for interacting partners of the tail domain of DcNMCP1, a major component of the Daucus carota nuclear lamina-like structure.

    Science.gov (United States)

    Mochizuki, Ryota; Tsugama, Daisuke; Yamazaki, Michihiro; Fujino, Kaien; Masuda, Kiyoshi

    2017-02-01

    NMCP/CRWN (NUCLEAR MATRIX CONSTITUENT PROTEIN/CROWDED NUCLEI) is a major component of a protein fibrous meshwork (lamina-like structure) on the plant inner nuclear membrane. NMCP/CRWN contributes to regulating nuclear shape and nuclear functions. An NMCP/CRWN protein in Daucus carota (DcNMCP1) is localized to the nuclear periphery in interphase cells, and surrounds chromosomes in cells in metaphase and anaphase. The N-terminal region and the C-terminal region of DcNMCP1 are both necessary for localizing DcNMCP1 to the nuclear periphery. Here candidate interacting partners of the amino acid position 975-1053 of DcNMCP1 (T975-1053), which is present in the C-terminal region and contains a conserved sequence that plays a role in localizing DcNMCP1 to the nuclear periphery, are screened for. Arabidopsis thaliana nuclear proteins were subjected to far-Western blotting with GST-fused T975-1053 as a probe, and signals were detected at the positions corresponding to ∼70, ∼40, and ∼18 kDa. These ∼70, ∼40, and ∼18 kDa nuclear proteins were identified by mass spectrometry, and subjected to a yeast 2-hybrid (Y2H) analysis with T975-1053 as bait. In this analysis, the ∼40 kDa protein ARP7, which is a nuclear actin-related protein possibly involved in regulating chromatin structures, was confirmed to interact with T975-1053. Independently of the far-Western blotting, a Y2H screen was performed using T975-1053 as bait. Targeted Y2H assays confirmed that 3 proteins identified in the screen, MYB3, SINAT1, and BIM1, interact with T975-1053. These proteins might have roles in NMCP/CRWN protein-mediated biologic processes.

  20. Blood Exosomes Endowed with Magnetic and Targeting Properties for Cancer Therapy.

    Science.gov (United States)

    Qi, Hongzhao; Liu, Chaoyong; Long, Lixia; Ren, Yu; Zhang, Shanshan; Chang, Xiaodan; Qian, Xiaomin; Jia, Huanhuan; Zhao, Jin; Sun, Jinjin; Hou, Xin; Yuan, Xubo; Kang, Chunsheng

    2016-03-22

    Exosomes are a class of naturally occurring nanoparticles that are secreted endogenously by mammalian cells. Clinical applications for exosomes remain a challenge because of their unsuitable donors, low scalability, and insufficient targeting ability. In this study, we developed a dual-functional exosome-based superparamagnetic nanoparticle cluster as a targeted drug delivery vehicle for cancer therapy. The resulting exosome-based drug delivery vehicle exhibits superparamagnetic behavior at room temperature, with a stronger response to an external magnetic field than individual superparamagnetic nanoparticles. These properties enable exosomes to be separated from the blood and to target diseased cells. In vivo studies using murine hepatoma 22 subcutaneous cancer cells showed that drug-loaded exosome-based vehicle delivery enhanced cancer targeting under an external magnetic field and suppressed tumor growth. Our developments overcome major barriers to the utility of exosomes for cancer application.

  1. A potential function for neuronal exosomes: sequestering intracerebral amyloid-β peptide.

    Science.gov (United States)

    Yuyama, Kohei; Sun, Hui; Usuki, Seigo; Sakai, Shota; Hanamatsu, Hisatoshi; Mioka, Tetsuo; Kimura, Nobuyuki; Okada, Megumi; Tahara, Hidetoshi; Furukawa, Jun-ichi; Fujitani, Naoki; Shinohara, Yasuro; Igarashi, Yasuyuki

    2015-01-02

    Elevated amyloid-β peptide (Aβ) in brain contributes to Alzheimer's disease (AD) pathogenesis. We demonstrated the presence of exosome-associated Aβ in the cerebrospinal fluid (CSF) of cynomolgus monkeys and APP transgenic mice. The levels of exosome-associated Aβ notably decreased in the CSF of aging animals. We also determined that neuronal exosomes, but not glial exosomes, had abundant glycosphingolipids and could capture Aβ. Infusion of neuronal exosomes into brains of APP transgenic mice decreased Aβ and amyloid depositions, similarly to what reported previously on neuroblastoma-derived exosomes. These findings highlight the role of neuronal exosomes in Aβ clearance, and suggest that their downregulation might relate to Aβ accumulation and, ultimately, the development of AD pathology.

  2. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases.

    Science.gov (United States)

    Janas, Anna M; Sapoń, Karolina; Janas, Teresa; Stowell, Michael H B; Janas, Tadeusz

    2016-06-01

    The function of human nervous system is critically dependent on proper interneuronal communication. Exosomes and other extracellular vesicles are emerging as a novel form of information exchange within the nervous system. Intraluminal vesicles within multivesicular bodies (MVBs) can be transported in neural cells anterogradely or retrogradely in order to be released into the extracellular space as exosomes. RNA loading into exosomes can be either via an interaction between RNA and the raft-like region of the MVB limiting membrane, or via an interaction between an RNA-binding protein-RNA complex with this raft-like region. Outflow of exosomes from neural cells and inflow of exosomes into neural cells presumably take place on a continuous basis. Exosomes can play both neuro-protective and neuro-toxic roles. In this review, we characterize the role of exosomes and microvesicles in normal nervous system function, and summarize evidence for defective signaling of these vesicles in disease pathogenesis of some neurodegenerative diseases.

  3. Exploitation of Exosomes as Nanocarriers for Gene-, Chemo-, and Immune-Therapy of Cancer.

    Science.gov (United States)

    Srivastava, Akhil; Babu, Anish; Filant, Justyna; Moxley, Katherine M; Ruskin, Rachel; Dhanasekaran, Danny; Sood, Anil K; McMeekin, Scott; Ramesh, Rajagopal

    2016-06-01

    The bottleneck in current vector-based cancer therapy is the targeted and controlled release of therapeutics in tumors. Exosomes are submicron-sized vesicles that are secreted by all cell types and are involved in communication and transportation of materials between cells. Analogous in size and function to synthetic nanoparticles, exosomes offer many advantages, rendering them the most promising candidates for targeted drug or gene delivery vehicles. Patient-specific customized therapeutic strategies can be engineered using exosomes derived from the patient's own healthy cells. Therefore, exosome-based cancer therapy has the potential to become an important part of personalized medicine. Interest in exosomes as carrier organelles is relatively recent. Knowledge about exosomal biology and its applications remains limited. The present review is an attempt to describe the current status of the application of exosomes to cancer therapy and the potential challenges associated with their use.

  4. Exosomes mediated pentose phosphate pathway in ovarian cancer metastasis: a proteomics analysis.

    Science.gov (United States)

    Yi, Huan; Zheng, Xiangqin; Song, Jianrong; Shen, Rongkai; Su, Yanzhao; Lin, Danmei

    2015-01-01

    Epithelial ovarian cancer is the most lethal gynecological malignancies for readily metastasis. Exosomes have played an influential role in carcinogenicity and cancer progression. Our aim is to discover exosome-related mechanisms in ovarian cancer progress and explore potential diagnostic biomarkers and therapeutic targets of ovarian cancer. We initially presented the proteomic profiles of exosomes derived from two late-stage ovarian cell lines, OVCA429 and HO8910PM. A total of 2940 exosomal proteins were recorded by MS. FunRich appropriately processed these exosomal proteins, manifesting some superiority in contrast to Blast2go. Moreover, we demonstrated the pentose phosphate pathway was a dominant mechanism in exosome mediated intracellular communication. Glucose-6-phosphate dehydrogenase, transketolase and transaldolase 1, three key enzymes regulated pentose phosphate pathway, were all marked in the same exosomal parts of proteins between two ovarian cell lines. Moreover, these key proteins might become diagnostic, prognostic biomarkers and therapeutic targets of ovarian cancer.

  5. A strategy of antigen incorporation into exosomes: comparing cross-presentation levels of antigens delivered by engineered exosomes and by lentiviral virus-like particles.

    Science.gov (United States)

    Lattanzi, Laura; Federico, Maurizio

    2012-11-26

    Among strategies aimed at developing new nanoparticle-based vaccines, exosomes hold much promise. They are nanovesicles released by basically all eukaryotic cell types originating from intraluminal vesicles which accumulate in multivesicular bodies. Exosomes have immunogenic properties whose strength correlates with the amounts of associated antigens. Engineering antigens to target them in exosomes represents the last frontier in terms of nanoparticle-based vaccines. Here we report a new method to incorporate protein antigens in exosomes relying on the unique properties of a mutant of the HIV-1 Nef protein, Nef(mut). This is a biologically inactive mutant we found incorporating into exosomes at high levels also when fused at its C-terminus with foreign proteins. We compared both biochemical and antigenic properties of Nef(mut) exosomes with those of previously characterized Nef(mut) -based lentiviral virus-like particles (VLPs). We found that exosomes incorporate Nef(mut) and fusion protein derivatives with similar efficiency of VLPs. When an envelope fusion protein was associated with both exosomes and VLPs to favor cross-presentation of associated antigens, Nef(mut) and its derivatives incorporated in exosomes were cross-presented at levels at least similar to what observed when the antigens were delivered by engineered VLPs. This occurred despite exosomes entered target cells with an apparent lower efficiency than VLPs. The unique properties of HIV-1 Nef(mut) in terms of exosome incorporation efficiency, carrier of foreign antigens, and lack of anti-cellular effects open the way toward the development of a flexible, safe, cost-effective exosome-based CD8(+) T cell vaccine platform.

  6. Breast Cancer Exosome-like Microvesicles and Salivary Gland Cells Interplay Alters Salivary Gland Cell-Derived Exosome-like Microvesicles In Vitro

    OpenAIRE

    Lau, Chang S.; Wong, David T.W.

    2012-01-01

    Saliva is a useful biofluid for the early detection of disease, but how distal tumors communicate with the oral cavity and create disease-specific salivary biomarkers remains unclear. Using an in vitro breast cancer model, we demonstrated that breast cancer-derived exosome-like microvesicles are capable of interacting with salivary gland cells, altering the composition of their secreted exosome-like microvesicles. We found that the salivary gland cells secreted exosome-like microvesicles enca...

  7. Breast Cancer Exosome-like Microvesicles and Salivary Gland Cells Interplay Alters Salivary Gland Cell-Derived Exosome-like Microvesicles In Vitro

    OpenAIRE

    Lau, Chang S.; Wong, David T. W.

    2012-01-01

    Saliva is a useful biofluid for the early detection of disease, but how distal tumors communicate with the oral cavity and create disease-specific salivary biomarkers remains unclear. Using an in vitro breast cancer model, we demonstrated that breast cancer-derived exosome-like microvesicles are capable of interacting with salivary gland cells, altering the composition of their secreted exosome-like microvesicles. We found that the salivary gland cells secreted exosome-like microvesicles enca...

  8. Exosomes: messengers and mediators of tumor–stromal interactions

    Directory of Open Access Journals (Sweden)

    Shkarina K. A.

    2014-11-01

    Full Text Available Intercellular communication is one of the most important factors involved in the maintenance of tissue homeostasis. The alteration of intercellular interaction correlates with a lot of human diseases including cancerogenesis. There are several types of such interconnection. First of all, it is a direct cell-cell contact, as it takes place in epithelium. The disturbance of this communication is expressed as a loss of cell-cell, cell-matrix contacts, disturbances of cell polarity etc. Another way of intercellular interaction involves mutual influence via paracrine factors produced by corresponding cells. However, there is another kind of information exchange between the cells, namely microvesicular transportation. It was revealed that the exosomes take part in intercellular communication in normal tissues as well as in malignant neoplasia. The present review provides the recent information on the formation of exosomes, their composition and especially the exosome participation in tumor-stromal interactions.

  9. Exosomes: Emerging biomarkers and targets for ovarian cancer.

    Science.gov (United States)

    Tang, Maggie K S; Wong, Alice S T

    2015-10-10

    The limitations of current chemotherapies have motivated research in developing new treatments. Growing evidence shows that interaction between tumors and their microenvironment, but not tumor cells per se, is the key factor in tumor progression and therefore of obvious scientific interest and therapeutic value. Exosomes are small (30-100 nm) extracellular vesicles which have emerged as key mediators of intercellular communication between tumor cells and major cell types in the tumor microenvironment such as fibroblasts, endothelial cells, and immune cells as well as noncellular extracellular matrices through paracrine mechanisms. This review is to highlight the emerging role of exosomes in particular types of cancer, such as ovarian cancer, owing to its unique route of metastasis, which is capable of rapidly translating exosome research for clinical applications in diagnosis, prognosis, and potential treatment.

  10. The Role of Exosomal VP40 in Ebola Virus Disease.

    Science.gov (United States)

    Pleet, Michelle L; DeMarino, Catherine; Lepene, Benjamin; Aman, M Javad; Kashanchi, Fatah

    2017-04-01

    Ebola virus (EBOV) can cause a devastating hemorrhagic disease, leading to death in a short period of time. After infection, the resulting EBOV disease results in high levels of circulating cytokines, endothelial dysfunction, coagulopathy, and bystander lymphocyte apoptosis in humans and nonhuman primates. The VP40 matrix protein of EBOV is essential for viral assembly and budding from the host cell. Recent data have shown that VP40 exists in the extracellular environment, including in exosomes, and exosomal VP40 can impact the viability of recipient immune cells, including myeloid and T cells, through the regulation of the RNAi and endosomal sorting complexes required for transport pathways. In this study, we discuss the latest findings of the impact of exosomal VP40 on immune cells in vitro and its potential implications for pathogenesis in vivo.

  11. Emerging roles of exosomes in cancer invasion and metastasis.

    Science.gov (United States)

    Soung, Young Hwa; Nguyen, Thalia; Cao, Hans; Lee, Janet; Chung, Jun

    2016-01-01

    Recent evidence has indicated that nano-sized vesicles called "exosomes" mediate the interaction between cancer cells and their microenvironment and play a critical role in the development of cancers. Exosomes contain cargo consisting of proteins, lipids, mRNAs, and microRNAs that can be delivered to different types of cells in nascent as well as distant locations. Cancer cell-derived exosomes (CCEs) have been identified in body fluids such as urine, plasma, and saliva from patients with cancer. Although their content depends on tumor type and stage, CCEs merit consideration as prognostic and diagnostic markers, as vehicles for drug delivery, and as potential therapeutic targets because they could transport various oncogenic elements. In this review, we summarize recent advances regarding the role of CCEs in cancer invasion and metastasis, as well as its potential clinical applications.

  12. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources

    Directory of Open Access Journals (Sweden)

    Reka A. Haraszti

    2016-11-01

    Full Text Available Extracellular vesicles (EVs, including exosomes and microvesicles (MVs, are explored for use in diagnostics, therapeutics and drug delivery. However, little is known about the relationship of protein and lipid composition of EVs and their source cells. Here, we report high-resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow-derived mesenchymal stem cells (MSCs. We identified 3,532 proteins and 1,961 lipid species in the screen. Exosomes differed from MVs in several different areas: (a The protein patterns of exosomes were more likely different from their cells of origin than were the protein patterns of MVs; (b The proteomes of U87 and Huh7 exosomes were similar to each other but different from the proteomes of MSC exosomes, whereas the lipidomes of Huh7 and MSC exosomes were similar to each other but different from the lipidomes of U87 exosomes; (c exosomes exhibited proteins of extracellular matrix, heparin-binding, receptors, immune response and cell adhesion functions, whereas MVs were enriched in endoplasmic reticulum, proteasome and mitochondrial proteins. Exosomes and MVs also differed in their types of lipid contents. Enrichment in glycolipids and free fatty acids characterized exosomes, whereas enrichment in ceramides and sphingomyelins characterized MVs. Furthermore, Huh7 and MSC exosomes were specifically enriched in cardiolipins; U87 exosomes were enriched in sphingomyelins. This study comprehensively analyses the protein and lipid composition of exosomes, MVs and source cells in 3 different cell types.

  13. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources

    Science.gov (United States)

    Haraszti, Reka A.; Didiot, Marie-Cecile; Sapp, Ellen; Leszyk, John; Shaffer, Scott A.; Rockwell, Hannah E.; Gao, Fei; Narain, Niven R.; DiFiglia, Marian; Kiebish, Michael A.; Aronin, Neil; Khvorova, Anastasia

    2016-01-01

    Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), are explored for use in diagnostics, therapeutics and drug delivery. However, little is known about the relationship of protein and lipid composition of EVs and their source cells. Here, we report high-resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow-derived mesenchymal stem cells (MSCs). We identified 3,532 proteins and 1,961 lipid species in the screen. Exosomes differed from MVs in several different areas: (a) The protein patterns of exosomes were more likely different from their cells of origin than were the protein patterns of MVs; (b) The proteomes of U87 and Huh7 exosomes were similar to each other but different from the proteomes of MSC exosomes, whereas the lipidomes of Huh7 and MSC exosomes were similar to each other but different from the lipidomes of U87 exosomes; (c) exosomes exhibited proteins of extracellular matrix, heparin-binding, receptors, immune response and cell adhesion functions, whereas MVs were enriched in endoplasmic reticulum, proteasome and mitochondrial proteins. Exosomes and MVs also differed in their types of lipid contents. Enrichment in glycolipids and free fatty acids characterized exosomes, whereas enrichment in ceramides and sphingomyelins characterized MVs. Furthermore, Huh7 and MSC exosomes were specifically enriched in cardiolipins; U87 exosomes were enriched in sphingomyelins. This study comprehensively analyses the protein and lipid composition of exosomes, MVs and source cells in 3 different cell types. PMID:27863537

  14. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai; Obara, Chizuka; Yasuda, Takeshi; Gotoh, Takaya; Tanaka, Izumi; Yakumaru, Haruko; Ishihara, Hiroshi; Tajima, Katsushi, E-mail: tajima@nirs.go.jp

    2014-04-18

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.

  15. Identification of prostate cancer biomarkers in urinary exosomes.

    Science.gov (United States)

    Øverbye, Anders; Skotland, Tore; Koehler, Christian J; Thiede, Bernd; Seierstad, Therese; Berge, Viktor; Sandvig, Kirsten; Llorente, Alicia

    2015-10-01

    Exosomes have recently appeared as a novel source of non-invasive cancer biomarkers since tumour-specific molecules can be found in exosomes isolated from biological fluids. We have here investigated the proteome of urinary exosomes by using mass spectrometry to identify proteins differentially expressed in prostate cancer patients compared to healthy male controls. In total, 15 control and 16 prostate cancer samples of urinary exosomes were analyzed. Importantly, 246 proteins were differentially expressed in the two groups. The majority of these proteins (221) were up-regulated in exosomes from prostate cancer patients. These proteins were analyzed according to specific criteria to create a focus list that contained 37 proteins. At 100% specificity, 17 of these proteins displayed individual sensitivities above 60%. Even though several of these proteins showed high sensitivity and specificity for prostate cancer as individual biomarkers, combining them in a multi-panel test has the potential for full differentiation of prostate cancer from non-disease controls. The highest sensitivity, 94%, was observed for transmembrane protein 256 (TM256; chromosome 17 open reading frame 61). LAMTOR proteins were also distinctly enriched with very high specificity for patient samples. TM256 and LAMTOR1 could be used to augment the sensitivity to 100%. Other prominent proteins were V-type proton ATPase 16 kDa proteolipid subunit (VATL), adipogenesis regulatory factor (ADIRF), and several Rab-class members and proteasomal proteins. In conclusion, this study clearly shows the potential of using urinary exosomes in the diagnosis and clinical management of prostate cancer.

  16. Tumor-derived exosomes in cancer progression and treatment failure

    OpenAIRE

    Yu, Shaorong; Cao, Haixia; Shen,Bo; Feng, Jifeng

    2015-01-01

    Exosomes have diameter within the range of 30-100nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materi...

  17. Exosomes as miRNA Carriers: Formation–Function–Future

    Directory of Open Access Journals (Sweden)

    Xiaojie Yu

    2016-12-01

    Full Text Available Exosomes, which are one of the smallest extracellular vesicles released from cells, have been shown to carry different nucleic acids, including microRNAs (miRNAs. miRNAs significantly regulate cell growth and metabolism by posttranscriptional inhibition of gene expression. The rapidly changing understanding of exosomes’ formation and function in delivering miRNAs from cell to cell has prompted us to review current knowledge in exosomal miRNA secretion mechanisms as well as possible therapeutic applications for personalized medicine.

  18. Heterogeneous nuclear ribonucleoprotein K upregulates the kinetochore complex component NUF2 and promotes the tumorigenicity of colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sugimasa, Hironobu; Taniue, Kenzui [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan); Kurimoto, Akiko [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan); Oncology Research Laboratories, Daiichi Sankyo Co., Ltd, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710 (Japan); Takeda, Yasuko; Kawasaki, Yoshihiro [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan); Akiyama, Tetsu, E-mail: akiyama@iam.u-tokyo.ac.jp [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan)

    2015-03-27

    Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multi-functional protein involved in transcription, mRNA splicing, mRNA stabilization and translation. Although hnRNP K has been suggested to play a role in the development of many cancers, its molecular function in colorectal cancer has remained elusive. Here we show that hnRNP K plays an important role in the mitotic process in HCT116 colon cancer cells. Furthermore, we demonstrate that hnRNP K directly transactivates the NUF2 gene, the product of which is a component of the NDC80 kinetochore complex and which is known to be critical for a stable spindle microtubule-kinetochore attachment. In addition, knockdown of both hnRNP K and NUF2 caused failure in metaphase chromosome alignment and drastic decrease in the growth of colon cancer cells. These results suggest that the hnRNP K-NUF2 axis is important for the mitotic process and proliferation of colon cancer cells and that this axis could be a target for the therapy of colon cancer. - Highlights: • hnRNP K is required for the tumorigenicity of colon cancer cells. • hnRNP K binds to the promoter region of NUF2 and activates its transcription. • NUF2 expression is correlated with hnRNP K expression in colorectal cancer tissue. • hnRNP K and NUF2 are required for metaphase chromosome alignment. • The hnRNP K-NUF2 axis is important for the proliferation of colon cancer cells.

  19. Physical characterization and profiling of airway epithelial derived exosomes using light scattering.

    Science.gov (United States)

    Kesimer, Mehmet; Gupta, Richa

    2015-10-01

    Exosomes and other extracellular vesicles have been gaining interest during the last decade due to their emerging role in biology and, disease pathogenesis and their biomarker potential. Almost all published research related to exosomes and other extracellular vesicles include some form of physical characterization. Therefore, these vesicles should be precisely profiled and characterized physically before studying their biological role as intercellular messengers, biomarkers or therapeutic tools. Using a combination of light scattering techniques, including dynamic light scattering (DLS) and multi-angle laser light scattering combined with size exclusion separation (SEC-MALLS), we physically characterized and compared distinct extracellular vesicles derived from the apical secretions of two different cultured airway epithelial cells. The results indicated that epithelial cells release vesicles with distinct physical properties and sizes. Human primary tracheobronchial cell culture (HTBE) derived vesicles have a hydrodynamic radius (Rh) of approximately 340 nm while their radius of gyration (Rg) is approximately 200 nm. Electron microscopy analysis, however, revealed that their spherical component is 40-100 nm in size, and they carry filamentous, entangled membrane mucins on their surface that increases their overall radius. The mucin decoration on the surface defines their size and charge as measured using light scattering techniques. Their surface properties mirror the properties of the cells from which they are derived. This may provide a unique tool for researchers to elucidate the unanswered questions in normal airway biology and innate and adaptive defense, including the remodeling of airways during inflammation, tumorigenesis and metastasis.

  20. Imaging and Intracellular Tracking of Cancer-Derived Exosomes Using Single-Molecule Localization-Based Super-Resolution Microscope.

    Science.gov (United States)

    Chen, Chen; Zong, Shenfei; Wang, Zhuyuan; Lu, Ju; Zhu, Dan; Zhang, Yizhi; Cui, Yiping

    2016-10-05

    Exosomes are small membrane vesicles secreted by cells and enriched with plenty of proteins. Considering their significant roles in different physical activities and potential value for diagnostic drug delivery, researchers have put great efforts in in vitro tracking and content analysis of exosomes. Recently, the emergence of different kinds of super-resolution microscopy provides powerful tools for exosome study. Here, we demonstrate the application of single-molecule localization based super-resolution imaging technique in the imaging and tracking of cancer-derived exosomes. In the experiment, first, cancer-derived exosomes are extracted from the culture media of tumor cells. Then the exosome membrane receptors are labeled with photoswitchable probes, which allow super-resolution imaging of these membrane receptors via photoactivated localization microscopy (PALM) or stochastic optical reconstruction microscopy (STORM). By using human breast cancer cell-derived exosomes, we demonstrated simultaneous dual-color PALM/STORM imaging of two kinds of membrane receptors on the exosome membrane. Moreover, the successful labeling and imaging of exosomes make it possible to observe the interaction between cancer-derived exosomes and normal cells. Meanwhile, we realized the colocalization of cancer-derived exosomes and lysosomes in recipient cells with PALM/STORM imaging. Since exosomes play a vital role in intercellular communications, we anticipate that the presented PALM/STORM-based imaging and tracking of exosomes holds a great potential in the investigation of the mechanism of exosome-mediated cancer metastasis.

  1. AAA-ATPase NVL2 acts on MTR4-exosome complex to dissociate the nucleolar protein WDR74

    Energy Technology Data Exchange (ETDEWEB)

    Hiraishi, Nobuhiro; Ishida, Yo-ichi; Nagahama, Masami, E-mail: nagahama@my-pharm.ac.jp

    2015-11-20

    Nuclear VCP-like 2 (NVL2) is a chaperone-like nucleolar ATPase of the AAA (ATPase associated with diverse cellular activities) family, which exhibits a high level of amino acid sequence similarity with the cytosolic AAA-ATPase VCP/p97. These proteins generally act on macromolecular complexes to stimulate energy-dependent release of their constituents. We previously showed that NVL2 interacts with RNA processing/degradation machinery containing an RNA helicase MTR4/DOB1 and an exonuclease complex, nuclear exosome, and involved in the biogenesis of 60S ribosomal subunits. These observations implicate NVL2 as a remodeling factor for the MTR4-exosome complex during the maturation of pre-ribosomal particles. Here, we used a proteomic screen and identified a WD repeat-containing protein 74 (WDR74) as a factor that specifically dissociates from this complex depending on the ATPase activity of NVL2. WDR74 shows weak amino acid sequence similarity with the yeast ribosome biogenesis protein Nsa1 and is co-localized with NVL2 in the nucleolus. Knockdown of WDR74 decreases 60S ribosome levels. Taken together, our results suggest that WDR74 is a novel regulatory protein of the MTR4-exsosome complex whose interaction is regulated by NVL2 and is involved in ribosome biogenesis. - Highlights: • WDR74 accumulates in MTR4-exosome complex upon expression of dominant-negative NVL2. • WDR74 is co-localized with NVL2 in the nucleolus. • WDR74, along with NVL2, is involved in the synthesis of 60S ribosomal subunits.

  2. Exosomal and Non-Exosomal Transport of Extra-Cellular microRNAs in Follicular Fluid: Implications for Bovine Oocyte Developmental Competence.

    Directory of Open Access Journals (Sweden)

    Md Mahmodul Hasan Sohel

    Full Text Available Cell-cell communication within the follicle involves many signaling molecules, and this process may be mediated by secretion and uptake of exosomes that contain several bioactive molecules including extra-cellular miRNAs. Follicular fluid and cells from individual follicles of cattle were grouped based on Brilliant Cresyl Blue (BCB staining of the corresponding oocytes. Both Exoquick precipitation and differential ultracentrifugation were used to separate the exosome and non-exosomal fraction of follicular fluid. Following miRNA isolation from both fractions, the human miRCURY LNA™ Universal RT miRNA PCR array system was used to profile miRNA expression. This analysis found that miRNAs were present in both exosomal and non-exosomal fraction of bovine follicular fluid. We found 25 miRNAs differentially expressed (16 up and 9 down in exosomes and 30 miRNAs differentially expressed (21 up and 9 down in non-exosomal fraction of follicular fluid in comparison of BCB- versus BCB+ oocyte groups. Expression of selected miRNAs was detected in theca, granulosa and cumulus oocyte complex. To further explore the potential roles of these follicular fluid derived extra-cellular miRNAs, the potential target genes were predicted, and functional annotation and pathway analysis revealed most of these pathways are known regulators of follicular development and oocyte growth. In order to validate exosome mediated cell-cell communication within follicular microenvironment, we demonstrated uptake of exosomes and resulting increase of endogenous miRNA level and subsequent alteration of mRNA levels in follicular cells in vitro. This study demonstrates for the first time, the presence of exosome or non-exosome mediated transfer of miRNA in the bovine follicular fluid, and oocyte growth dependent variation in extra-cellular miRNA signatures in the follicular environment.

  3. Exosomal and Non-Exosomal Transport of Extra-Cellular microRNAs in Follicular Fluid: Implications for Bovine Oocyte Developmental Competence.

    Science.gov (United States)

    Sohel, Md Mahmodul Hasan; Hoelker, Michael; Noferesti, Sina Seifi; Salilew-Wondim, Dessie; Tholen, Ernst; Looft, Christian; Rings, Franca; Uddin, Muhammad Jasim; Spencer, Thomas E; Schellander, Karl; Tesfaye, Dawit

    2013-01-01

    Cell-cell communication within the follicle involves many signaling molecules, and this process may be mediated by secretion and uptake of exosomes that contain several bioactive molecules including extra-cellular miRNAs. Follicular fluid and cells from individual follicles of cattle were grouped based on Brilliant Cresyl Blue (BCB) staining of the corresponding oocytes. Both Exoquick precipitation and differential ultracentrifugation were used to separate the exosome and non-exosomal fraction of follicular fluid. Following miRNA isolation from both fractions, the human miRCURY LNA™ Universal RT miRNA PCR array system was used to profile miRNA expression. This analysis found that miRNAs were present in both exosomal and non-exosomal fraction of bovine follicular fluid. We found 25 miRNAs differentially expressed (16 up and 9 down) in exosomes and 30 miRNAs differentially expressed (21 up and 9 down) in non-exosomal fraction of follicular fluid in comparison of BCB- versus BCB+ oocyte groups. Expression of selected miRNAs was detected in theca, granulosa and cumulus oocyte complex. To further explore the potential roles of these follicular fluid derived extra-cellular miRNAs, the potential target genes were predicted, and functional annotation and pathway analysis revealed most of these pathways are known regulators of follicular development and oocyte growth. In order to validate exosome mediated cell-cell communication within follicular microenvironment, we demonstrated uptake of exosomes and resulting increase of endogenous miRNA level and subsequent alteration of mRNA levels in follicular cells in vitro. This study demonstrates for the first time, the presence of exosome or non-exosome mediated transfer of miRNA in the bovine follicular fluid, and oocyte growth dependent variation in extra-cellular miRNA signatures in the follicular environment.

  4. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhao

    2015-01-01

    Full Text Available This study is aimed at investigating whether human umbilical cord mesenchymal stem cell- (hucMSC- derived exosomes (hucMSC-exosomes have a protective effect on acute myocardial infarction (AMI. Exosomes were characterized under transmission electron microscopy and the particles of exosomes were further examined through nanoparticle tracking analysis. Exosomes (400 μg protein were intravenously administrated immediately following ligation of the left anterior descending (LAD coronary artery in rats. Cardiac function was evaluated by echocardiography and apoptotic cells were counted using TUNEL staining. The cardiac fibrosis was assessed using Masson’s trichrome staining. The Ki67 positive cells in ischemic myocardium were determined using immunohistochemistry. The effect of hucMSC-exosomes on blood vessel formation was evaluated through tube formation and migration of human umbilical vein endothelial cells (EA.hy926 cells. The results indicated that ligation of the LAD coronary artery reduced cardiac function and induced cardiomyocyte apoptosis. Administration of hucMSC-exosomes significantly improved cardiac systolic function and reduced cardiac fibrosis. Moreover, hucMSC-exosomes protected myocardial cells from apoptosis and promoted the tube formation and migration of EA.hy926 cells. It is concluded that hucMSC-exosomes improved cardiac systolic function by protecting myocardial cells from apoptosis and promoting angiogenesis. These effects of hucMSC-exosomes might be associated with regulating the expression of Bcl-2 family.

  5. Exosomes from Osteosarcoma and normal osteoblast differ in proteomic cargo and immunomodulatory effects on T cells.

    Science.gov (United States)

    Troyer, Ryan M; Ruby, Carl E; Goodall, Cheri P; Yang, Liping; Maier, Claudia S; Albarqi, Hassan A; Brady, Jacqueline V; Bathke, Kallan; Taratula, Oleh; Mourich, Dan; Bracha, Shay

    2017-09-15

    Canine osteosarcoma (OSA) is the most common cancer of the appendicular skeleton and is associated with high metastatic rate to the lungs and poor prognosis. Recent studies have shown the impact of malignant-derived exosomes on immune cells and the facilitation of immune evasion. In the current study, we have characterized the proteomic profile of exosomes derived from healthy osteoblasts and osteosarcoma cell lines. We investigated the direct impact of these exosomes on healthy T cells. Proteomic cargo of the malignant exosomes was markedly different from osteoblastic exosomes and contained immunosuppressive proteins including TGF-β, α fetoprotein and heat shock proteins. OSA exosomes directly attenuated the rate of T cell proliferation, increased a regulatory (FoxP3+) CD4+ phenotype and diminished the expression of the activation marker CD25+ on CD8+ cells. Exosomes of osteoblasts also demonstrated a direct impact on T cells, but to a lesser degree. Osteosarcoma-derived exosomes compared to normal osteoblasts contain an immunomodulatory cargo, which reduced the rate of T cell proliferation and promoted T regulatory phenotype. Osteoblast-derived exosomes can also reduce T cell activity, but to lesser degree compared to OSA exosomes and without promoting a T regulatory phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer.

    Science.gov (United States)

    Ji, Runbi; Zhang, Bin; Zhang, Xu; Xue, Jianguo; Yuan, Xiao; Yan, Yongmin; Wang, Mei; Zhu, Wei; Qian, Hui; Xu, Wenrong

    2015-08-01

    Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer.

  7. Identification of archaeal proteins that affect the exosome function in vitro

    Directory of Open Access Journals (Sweden)

    Palhano Fernando L

    2010-05-01

    Full Text Available Abstract Background The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory factors. Results Here, we show that the proteins PaSBDS and PaNip7, which bind preferentially to poly-A and AU-rich RNAs, respectively, affect the Pyrococcus abyssi exosome activity in vitro. PaSBDS inhibits slightly degradation of a poly-rA substrate, while PaNip7 strongly inhibits the degradation of poly-A and poly-AU by the exosome. The exosome inhibition by PaNip7 appears to depend at least partially on its interaction with RNA, since mutants of PaNip7 that no longer bind RNA, inhibit the exosome less strongly. We also show that FITC-labeled PaNip7 associates with the exosome in the absence of substrate RNA. Conclusions Given the high structural homology between the archaeal and eukaryotic proteins, the effect of archaeal Nip7 and SBDS on the exosome provides a model for an evolutionarily conserved exosome control mechanism.

  8. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis

    Directory of Open Access Journals (Sweden)

    Taixue An

    2015-06-01

    Full Text Available Exosomes, membrane vesicles of 40–100 nm in diameter, are derived from endosomes in various cells. The bioactive molecules specifically packed into exosomes can be horizontally transferred into recipient cells changing their biological properties, by which tumour cells continuously modify their surrounding microenvironment and distant target cells favouring cancer metastasis. It has been suspected for a long time that exosomes participate in the whole process of tumour metastasis. Although there is much unknown and many controversies in the role of cancer exosome, the major contribution of tumour-associated exosomes to different steps of cancer metastasis are demonstrated in this review. Mainly because these exosomes are easily accessible and capable of representing their parental cells, exosomes draw much attention as a promising biomarker for tumour screening, diagnosis and prognosis. Currently, researchers have found numerous biomarkers in exosomes with great potential to be utilized in personalized medicine. In this article, we summarize the roles of biomarkers, which are validated by clinical samples. Even though many conundrums remain, such as exosome extraction, large multicentre validation of biomarkers and data interpretation, exosomes are certain to be used in clinical practice in the near future as the field rapidly expands.

  9. Neutrophil-Derived Exosomes: A New Mechanism Contributing to Airway Smooth Muscle Remodeling.

    Science.gov (United States)

    Vargas, Amandine; Roux-Dalvai, Florence; Droit, Arnaud; Lavoie, Jean-Pierre

    2016-09-01

    Neutrophils infiltrate the airways of patients with asthma of all severities, yet their role in the pathogenesis of asthma and their contribution to airway remodeling is largely unknown. We hypothesized that neutrophils modulate airway smooth muscle (ASM) proliferation in asthma by releasing bioactive exosomes. These newly discovered nano-sized vesicles have the capacity to modulate immune responses, cell migration, cell differentiation, and other aspects of cell-to-cell communication. The aim of the study is to determine whether bioactive exosomes are released by neutrophils, and, if so, characterize their proteomic profile and evaluate their capacity to modulate ASM cell proliferation. Exosomes were isolated from equine neutrophil supernatants by differential centrifugation and filtration methods, followed by size-exclusion chromatography. Nanovesicles were characterized using electron microscopy, particle size determination, and proteomic analyses. Exosomes were cocultured with ASM cells and analyzed for exosome internalization by confocal microscopy. ASM proliferation was measured using an impedance-based system. Neutrophils release exosomes that have characteristic size, morphology, and exosomal markers. We identified 271 proteins in exosomes from both LPS and unstimulated neutrophils, and 16 proteins that were differentially expressed, which carried proteins associated with immune response and positive regulation of cell communication. Furthermore, neutrophil-derived exosomes were rapidly internalized by ASM cells and altered their proliferative properties. Upon stimulation of LPS, neutrophil-derived exosomes can enhance the proliferation of ASM cells and could therefore play an important role in the progression of asthma and promoting airway remodeling in severe and corticosteroid-insensitive patients with asthma.

  10. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis.

    Science.gov (United States)

    An, Taixue; Qin, Sihua; Xu, Yong; Tang, Yueting; Huang, Yiyao; Situ, Bo; Inal, Jameel M; Zheng, Lei

    2015-01-01

    Exosomes, membrane vesicles of 40-100 nm in diameter, are derived from endosomes in various cells. The bioactive molecules specifically packed into exosomes can be horizontally transferred into recipient cells changing their biological properties, by which tumour cells continuously modify their surrounding microenvironment and distant target cells favouring cancer metastasis. It has been suspected for a long time that exosomes participate in the whole process of tumour metastasis. Although there is much unknown and many controversies in the role of cancer exosome, the major contribution of tumour-associated exosomes to different steps of cancer metastasis are demonstrated in this review. Mainly because these exosomes are easily accessible and capable of representing their parental cells, exosomes draw much attention as a promising biomarker for tumour screening, diagnosis and prognosis. Currently, researchers have found numerous biomarkers in exosomes with great potential to be utilized in personalized medicine. In this article, we summarize the roles of biomarkers, which are validated by clinical samples. Even though many conundrums remain, such as exosome extraction, large multicentre validation of biomarkers and data interpretation, exosomes are certain to be used in clinical practice in the near future as the field rapidly expands.

  11. Antibody-coupled monolithic silica microtips for highthroughput molecular profiling of circulating exosomes.

    Science.gov (United States)

    Ueda, Koji; Ishikawa, Nobuhisa; Tatsuguchi, Ayako; Saichi, Naomi; Fujii, Risa; Nakagawa, Hidewaki

    2014-08-29

    Exosome-mediated signal transportation plays a variety of critical roles in cancer progression and metastasis. From the aspect of cancer diagnosis, circulating exosomes are ideal resources of biomarkers because molecular features of tumor cells are transcribed on them. However, isolating pure exosomes from body fluids is time-consuming and still major challenge to be addressed for comprehensive profiling of exosomal proteins and miRNAs. Here we constructed anti-CD9 antibody-coupled highly porous monolithic silica microtips which allowed automated rapid and reproducible exosome extraction from multiple clinical samples. We applied these tips to explore lung cancer biomarker proteins on exosomes by analyzing 46 serum samples. The mass spectrometric quantification of 1,369 exosomal proteins identified CD91 as a lung adenocarcinoma specific antigen on exosomes, which was further validated with CD9-CD91 exosome sandwich ELISA measuring 212 samples. Our simple device can promote not only biomarker discovery studies but also wide range of omics researches about exosomes.

  12. Localization of nuclear retained mRNAs in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Thomsen, Rune; Libri, Domenico; Boulay, Jocelyne

    2003-01-01

    in the rat7–1 strain colocalize predominantly with nucleolar antigens. Bulk poly(A)+ RNA, on the other hand, is localized primarily to the nuclear rim. Interestingly, the RNA binding nucleocytoplasmic shuttle protein Npl3p shows strong colocalization with bulk poly(A)+ RNA, regardless of its nuclear location...... in retaining RNAs in these foci; on deletion of the exosome component Rrp6p, the RNA is released. To determine the exact nuclear location of retained as well as released mRNAs, we have used mRNA export mutant strains to analyze the spatial relationship between newly synthesized heat shock mRNA, the chromosomal...... site of transcription, and known S. cerevisiae nuclear structures such as the nucleolus and the nucleolar body. Our results show that retained SSA4 RNA localizes to an area in close proximity to the SSA4 locus. On deletion of Rrp6p and release from the genomic locus, heat shock mRNAs produced...

  13. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lijuan [Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009 (China); Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Wang, Yingjie [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Internal Medicine of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Pan, Yaohua; Zhang, Lan [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Shen, Chengxing [Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai (China); Qin, Gangjian [Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 (United States); Ashraf, Muhammad [Pathology and Lab Med, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Weintraub, Neal [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Ma, Genshan, E-mail: magenshan@hotmail.com [Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009 (China); Tang, Yaoliang, E-mail: tangyg@ucmail.uc.edu [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States)

    2013-02-15

    Highlights: ► Cardiac progenitor-derived (CPC) Exosomes protect H9C2 from apoptosis in vitro. ► CPC-exosomes protect cardiomyoyctes from MI/R induced apoptosis in vivo. ► CPC-exosomes were taken up by H9C2 with high efficiency using PKH26 labeling. ► miR-451, one of GATA4-responsive miRNA cluster, is enriched in CPC-exosomes. -- Abstract: Background: Cardiac progenitors (CPC) mediate cardioprotection via paracrine effects. To date, most of studies focused on secreted paracrine proteins. Here we investigated the CPC-derived-exosomes on protecting myocardium from acute ischemia/reperfusion (MI/R) injury. Methods and results: CPC were isolated from mouse heart using two-step protocol. Exosomes were purified from conditional medium, and confirmed by electron micrograph and Western blot using CD63 as a marker. qRT-PCR shows that CPC-exosomes have high level expression of GATA4-responsive-miR-451. Exosomes were ex vivo labeled with PKH26, We observed exosomes can be uptaken by H9C2 cardiomyoblasts with high efficiency after 12 h incubation. CPC-exosomes protect H9C2 from oxidative stress by inhibiting caspase 3/7 activation invitro. In vivo delivery of CPC-exosomes in an acute mouse myocardial ischemia/reperfusion model inhibited cardiomyocyte apoptosis by about 53% in comparison with PBS control (p < 0.05). Conclusion: Our results suggest, for the first time, the CPC-exosomes can be used as a therapeutic vehicle for cardioprotection, and highlights a new perspective for using non-cell exosomes for cardiac disease.

  14. Isolation of Exosomes from the Plasma of HIV-1 Positive Individuals.

    Science.gov (United States)

    Konadu, Kateena Addae; Huang, Ming Bo; Roth, William; Armstrong, Wendy; Powell, Michael; Villinger, Francois; Bond, Vincent

    2016-01-05

    Exosomes are small vesicles ranging in size from 30 nm to 100 nm that are released both constitutively and upon stimulation from a variety of cell types. They are found in a number of biological fluids and are known to carry a variety of proteins, lipids, and nucleic acid molecules. Originally thought to be little more than reservoirs for cellular debris, the roles of exosomes regulating biological processes and in diseases are increasingly appreciated. Several methods have been described for isolating exosomes from cellular culture media and biological fluids. Due to their small size and low density, differential ultracentrifugation and/or ultrafiltration are the most commonly used techniques for exosome isolation. However, plasma of HIV-1 infected individuals contains both exosomes and HIV viral particles, which are similar in size and density. Thus, efficient separation of exosomes from HIV viral particles in human plasma has been a challenge. To address this limitation, we developed a procedure modified from Cantin et. al., 2008 for purification of exosomes from HIV particles in human plasma. Iodixanol velocity gradients were used to separate exosomes from HIV-1 particles in the plasma of HIV-1 positive individuals. Virus particles were identified by p24 ELISA. Exosomes were identified on the basis of exosome markers acetylcholinesterase (AChE), and the CD9, CD63, and CD45 antigens. Our gradient procedure yielded exosome preparations free of virus particles. The efficient purification of exosomes from human plasma enabled us to examine the content of plasma-derived exosomes and to investigate their immune modulatory potential and other biological functions.

  15. Exosome Adherence and Internalization by Hepatic Stellate Cells Triggers Sphingosine 1-Phosphate-dependent Migration.

    Science.gov (United States)

    Wang, Ruisi; Ding, Qian; Yaqoob, Usman; de Assuncao, Thiago M; Verma, Vikas K; Hirsova, Petra; Cao, Sheng; Mukhopadhyay, Debabrata; Huebert, Robert C; Shah, Vijay H

    2015-12-25

    Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals.

  16. Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers.

    Science.gov (United States)

    Wu, Yueting; Deng, Wentao; Klinke, David J

    2015-10-07

    As a type of secreted membrane vesicle, exosomes are an emerging mode of cell-to-cell communication. Yet as exosome samples are commonly contaminated with other extracellular vesicles, the biological roles of exosomes in regulating immunity and promoting oncogenesis remain controversial. Wondering whether existing methods could distort our view of exosome biology, we compared two direct methods for imaging extracellular vesicles and quantified the impact of different production and storage conditions on the quality of exosome samples. Scanning electron microscopy (SEM) was compared to transmission electron microscopy (TEM) as alternatives to examine the morphology of exosomes. Using SEM, we were able to distinguish exosomes from other contaminating extracellular vesicles based on the size distribution. More importantly, freezing of samples prior to SEM imaging made it more difficult to distinguish exosomes from extracellular vesicles secreted during cell death. In addition to morphology, the quality of RNA contained within the exosomes was characterized under different storage conditions, where freezing of samples also degraded RNA. Finally, we developed a new flow cytometry approach to assay transmembrane proteins on exosomes. While high-copy-number proteins could be readily detected, detecting low-copy-number proteins was improved using a lipophilic tracer that clustered exosomes. To illustrate this, we observed that exosomes derived from SKBR3 cells, a cell model for human HER2+ breast cancer, contained both HER1 and HER2 but at different levels of abundance. Collectively, these new methods will help to ensure a consistent framework to identify specific roles that exosomes play in regulating cell-to-cell communication.

  17. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration.

    Directory of Open Access Journals (Sweden)

    Carlos Salomon

    Full Text Available Studies completed to date provide persuasive evidence that placental cell-derived exosomes play a significant role in intercellular communication pathways that potentially contribute to placentation and development of materno-fetal vascular circulation. The aim of this study was to establish the gestational-age release profile and bioactivity of placental cell-derived exosome in maternal plasma. Plasma samples (n = 20 per pregnant group were obtained from non-pregnant and pregnant women in the first (FT, 6-12 weeks, second (ST, 22-24 weeks and third (TT, 32-38 weeks trimester. The number of exosomes and placental exosome contribution were determined by quantifying immunoreactive exosomal CD63 and placenta-specific marker (PLAP, respectively. The effect of exosomes isolated from FT, ST and TT on endothelial cell migration were established using a real-time, live-cell imaging system (Incucyte. Exosome plasma concentration was more than 50-fold greater in pregnant women than in non-pregnant women (p<0.001. During normal healthy pregnancy, the number of exosomes present in maternal plasma increased significantly with gestational age by more that two-fold (p<0.001. Exosomes isolated from FT, ST and TT increased endothelial cell migration by 1.9±0.1, 1.6±0.2 and 1.3±0.1-fold, respectively compared to the control. Pregnancy is associated with a dramatic increase in the number of exosomes present in plasma and maternal plasma exosomes are bioactive. While the role of placental cell-derived exosome in regulating maternal and/or fetal vascular responses remains to be elucidated, changes in exosome profile may be of clinical utility in the diagnosis of placental dysfunction.

  18. Fragility Analysis Methodology for Degraded Structures and Passive Components in Nuclear Power Plants - Illustrated using a Condensate Storage Tank

    Energy Technology Data Exchange (ETDEWEB)

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y.; Kim, M.; Choi, I.

    2010-06-30

    The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structures and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. In the Year 1 scope of work, BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. In the Year 2 scope of work, BNL carried out a research effort to identify and assess degradation models for the long-term behavior of dominant materials that are

  19. Probabilistic safety assessment for optimum nuclear power plant life management (PLiM) theory and application of reliability analysis methods for major power plant components

    CERN Document Server

    Arkadov, G V; Rodionov, A N

    2012-01-01

    Probabilistic safety assessment methods are used to calculate nuclear power plant durability and resource lifetime. Directing preventative maintenance, this title provides a comprehensive review of the theory and application of these methods.$bProbabilistic safety assessment methods are used to calculate nuclear power plant durability and resource lifetime. Successful calculation of the reliability and ageing of components is critical for forecasting safety and directing preventative maintenance, and Probabilistic safety assessment for optimum nuclear power plant life management provides a comprehensive review of the theory and application of these methods. Part one reviews probabilistic methods for predicting the reliability of equipment. Following an introduction to key terminology, concepts and definitions, formal-statistical and various physico-statistical approaches are discussed. Approaches based on the use of defect-free models are considered, along with those using binomial distribution and models bas...

  20. Exosomes-associated neurodegeneration and progression of Parkinson's disease.

    Science.gov (United States)

    Russo, Isabella; Bubacco, Luigi; Greggio, Elisa

    2012-01-01

    Growing evidence indicates the role of exosomes in a variety of physiological pathways as conveyors of biological materials from cell-to-cell. However the molecular mechanism(s) of secretion and their interaction with receiving cells are yet unclear. Recently, it is emerging that exosomes are involved in pathological processes as potential carriers in the progression of neurodegenerative pathologies associated with misfolded proteins. In the current review we will discuss some recent findings on the key role of exosomes in the spreading of the aggregated products of α-synuclein from neuron-to-neuron and of inflammatory response propagation from immune cell-to-cell; we will highlight the implication of exosomes in the neurodegeneration and progression of the disease and the their potential interplay with genes related to Parkinson's disease. Increasing our knowledge on the cell-to-cell transmissions might provide new insights into mechanism of disease onset and progression and identify novel strategies for diagnosis and therapeutic intervention in Parkinson and other neurodegenerative diseases.

  1. Microfiltration isolation of human urinary exosomes for characterization by MS.

    NARCIS (Netherlands)

    Merchant, M.L.; Powell, D.W.; Wilkey, D.W.; Cummins, T.D.; Deegens, J.K.J.; Rood, I.M.; McAfee, K.J.; Fleischer, C.; Klein, E.; Klein, J.B.

    2010-01-01

    PURPOSE: The purpose of this study was to address the hypothesis that small vesicular urinary particles known as exosomes could be selectively microfiltered using low protein-binding size exclusion filters, thereby simplifying their use in clinical biomarker discovery studies. EXPERIMENTAL DESIGN: W

  2. Exosomal Proteins as a Diagnostic Biomarkers in Lung Cancer

    DEFF Research Database (Denmark)

    Sandfeld-Paulsen, B; Jakobsen, K R; Bæk, R

    2016-01-01

    -conjugated CD9, CD81, and CD63 antibodies was used to detect and visualize captured exosomes. Multimarker models were made by combining two or more markers. The optimal multimarker model was evaluated by area under the curve (AUC) and random forests analysis. RESULTS: The markers CD151, CD171, and tetraspanin 8...

  3. Dark side of the exosome: the role of the exosome in cancer metastasis and targeting the exosome as a strategy for cancer therapy.

    Science.gov (United States)

    Kosaka, Nobuyoshi; Yoshioka, Yusuke; Tominaga, Naoomi; Hagiwara, Keitaro; Katsuda, Takeshi; Ochiya, Takahiro

    2014-03-01

    Cell-cell communication is essential for the regulation of various biological phenomena in multicellular organisms, including development and homeostasis. Deregulation of these interactions leads to inappropriate cell-cell communication, resulting in disease development. Cancer cells communicate closely with the cells in their microenvironment, and this communication promotes malignancy via abnormal growth, invasion, drug resistance and metastasis. Understanding cell-cell interactions in cancer is essential for the development of novel anticancer agents. As a result, discovering the communication tools used by cancer cells is important to understanding these interactions. In this review, we summarize the recent findings regarding exosome-mediated cancer development. In addition, we propose that targeting the exosome represents a novel strategy for cancer therapy.

  4. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection.

    NARCIS (Netherlands)

    Chaput, N.; Schartz, N.E.; Andre, F.; Taieb, J.; Novault, S.; Bonnaventure, P.; Aubert, N.; Bernard, J.; Lemonnier, F.; Merad, M.; Adema, G.J.; Adams, M.; Ferrantini, M.; Carpentier, A.F.; Escudier, B.; Tursz, T.; Angevin, E.; Zitvogel, L.

    2004-01-01

    Ideal vaccines should be stable, safe, molecularly defined, and out-of-shelf reagents efficient at triggering effector and memory Ag-specific T cell-based immune responses. Dendritic cell-derived exosomes could be considered as novel peptide-based vaccines because exosomes harbor a discrete set of p

  5. A review of exosome separation techniques and characterization of B16-F10 mouse melanoma exosomes with AF4-UV-MALS-DLS-TEM.

    Science.gov (United States)

    Petersen, Kevin E; Manangon, Eliana; Hood, Joshua L; Wickline, Samuel A; Fernandez, Diego P; Johnson, William P; Gale, Bruce K

    2014-12-01

    Exosomes participate in cancer metastasis, but studying them presents unique challenges as a result of their small size and purification difficulties. Asymmetrical field flow fractionation with in-line ultraviolet absorbance, dynamic light scattering, and multi-angle light scattering was applied to the size separation and characterization of non-labeled B16-F10 exosomes from an aggressive mouse melanoma cell culture line. Fractions were collected and further analyzed using batch mode dynamic light scattering, transmission electron microscopy and compared with known size standards. Fractogram peak positions and computed radii show good agreement between samples and across fractions. Ultraviolet absorbance fractograms in combination with transmission electron micrographs were able to resolve subtle heterogeneity of vesicle retention times between separate batches of B16-F10 exosomes collected several weeks apart. Further, asymmetrical field flow fractionation also effectively separated B16-F10 exosomes into vesicle subpopulations by size. Overall, the flow field flow fractionation instrument combined with multiple detectors was able to rapidly characterize and separate exosomes to a degree not previously demonstrated. These approaches have the potential to facilitate a greater understanding of exosome function by subtype, as well as ultimately allow for "label-free" isolation of large scale clinical exosomes for the purpose of developing future exosome-based diagnostics and therapeutics.

  6. Circulating exosomal microRNAs as biomarkers of colon cancer.

    Directory of Open Access Journals (Sweden)

    Hiroko Ogata-Kawata

    Full Text Available PURPOSE: Exosomal microRNAs (miRNAs have been attracting major interest as potential diagnostic biomarkers of cancer. The aim of this study was to characterize the miRNA profiles of serum exosomes and to identify those that are altered in colorectal cancer (CRC. To evaluate their use as diagnostic biomarkers, the relationship between specific exosomal miRNA levels and pathological changes of patients, including disease stage and tumor resection, was examined. EXPERIMENTAL DESIGN: Microarray analyses of miRNAs in exosome-enriched fractions of serum samples from 88 primary CRC patients and 11 healthy controls were performed. The expression levels of miRNAs in the culture medium of five colon cancer cell lines were also compared with those in the culture medium of a normal colon-derived cell line. The expression profiles of miRNAs that were differentially expressed between CRC and control sample sets were verified using 29 paired samples from post-tumor resection patients. The sensitivities of selected miRNAs as biomarkers of CRC were evaluated and compared with those of known tumor markers (CA19-9 and CEA using a receiver operating characteristic analysis. The expression levels of selected miRNAs were also validated by quantitative real-time RT-PCR analyses of an independent set of 13 CRC patients. RESULTS: The serum exosomal levels of seven miRNAs (let-7a, miR-1229, miR-1246, miR-150, miR-21, miR-223, and miR-23a were significantly higher in primary CRC patients, even those with early stage disease, than in healthy controls, and were significantly down-regulated after surgical resection of tumors. These miRNAs were also secreted at significantly higher levels by colon cancer cell lines than by a normal colon-derived cell line. The high sensitivities of the seven selected exosomal miRNAs were confirmed by a receiver operating characteristic analysis. CONCLUSION: Exosomal miRNA signatures appear to mirror pathological changes of CRC patients and

  7. The non-targeted effects of radiation are perpetuated by exosomes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mayah, Ammar; Bright, Scott; Chapman, Kim [Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP (United Kingdom); Irons, Sarah [Insect Virus Research Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP (United Kingdom); Luo, Ping [Izon Science Ltd., The Oxford Science Park, Magdalen Centre, Robert Robinson Avenue, Oxford OX4 4GA (United Kingdom); Carter, David [Chromatin and non-coding RNA, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP (United Kingdom); Goodwin, Edwin [The New Mexico Consortium, Los Alamos, NM 87544 (United States); Kadhim, Munira, E-mail: mkadhim@brookes.ac.uk [Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP (United Kingdom)

    2015-02-15

    Highlights: • Radiation induces a DNA damaging process in bystander cells through cell–cell signalling. • Exosome RNA and protein molecules play crucial roles in bystander effects. • Cell progeny inherit the ability to secret bystander effect-inducing exosomes. • This mechanism is most likely accountable for the propagation of GI. - Abstract: Exosomes contain cargo material from endosomes, cytosol, plasma membrane and microRNA molecules, they are released by a number of non-cancer and cancer cells into both the extracellular microenvironment and body fluids such as blood plasma. Recently we demonstrated radiation-induced non-targeted effects [NTE: genomic instability (GI) and bystander effects (BE)] are partially mediated by exosomes, particularly the RNA content. However the mechanistic role of exosomes in NTE is yet to be fully understood. The present study used MCF7 cells to characterise the longevity of exosome-induced activity in the progeny of irradiated and unirradiated bystander cells. Exosomes extracted from conditioned media of irradiated and bystander progeny were added to unirradiated cells. Analysis was carried out at 1 and 20/24 population doublings following medium/exosome transfer for DNA/chromosomal damage. Results confirmed exosomes play a significant role in mediating NTE of ionising radiation (IR). This effect was remarkably persistent, observed >20 doublings post-irradiation in the progeny of bystander cells. Additionally, cell progeny undergoing a BE were themselves capable of inducing BE in other cells via exosomes they released. Furthermore we investigated the role of exosome cargo. Culture media from cells exposed to 2 Gy X-rays was subjected to ultracentrifugation and four inoculants prepared, (a) supernatants with exosomes removed, and pellets with (b) exosome proteins denatured, (c) RNA degraded, and (d) a combination of protein–RNA inactivation. These were added to separate populations of unirradiated cells. The BE was

  8. Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection

    Science.gov (United States)

    Wassmer, Sarah J.; Carvalho, Livia S.; György, Bence; Vandenberghe, Luk H.; Maguire, Casey A.

    2017-01-01

    Widespread gene transfer to the retina is challenging as it requires vector systems to overcome physical and biochemical barriers to enter and diffuse throughout retinal tissue. We investigated whether exosome-associated adeno-associated virus, (exo-AAV) enabled broad retinal targeting following intravitreal (IVT) injection, as exosomes have been shown to traverse biological barriers and mediate widespread distribution upon systemic injection. We packaged an AAV genome encoding green fluorescent protein (GFP) into conventional AAV2 and exo-AAV2 vectors. Vectors were IVT injected into the eyes of adult mice. GFP expression was noninvasively monitored by fundus imaging and retinal expression was analyzed 4 weeks post-injection by qRT-PCR and histology. Exo-AAV2 outperformed conventional AAV2 in GFP expression based on fundus image analysis and qRT-PCR. Exo-AAV2 demonstrated deeper penetration in the retina, efficiently reaching the inner nuclear and outer plexiform, and to a lesser extent the outer nuclear layer. Cell targets were ganglion cells, bipolar cells, Müller cells, and photoreceptors. Exo-AAV2 serves as a robust gene delivery tool for murine retina, and the simplicity of production and isolation should make it widely applicable to basic research of the eye. PMID:28361998

  9. Breast cancer exosome-like microvesicles and salivary gland cells interplay alters salivary gland cell-derived exosome-like microvesicles in vitro.

    Science.gov (United States)

    Lau, Chang S; Wong, David T W

    2012-01-01

    Saliva is a useful biofluid for the early detection of disease, but how distal tumors communicate with the oral cavity and create disease-specific salivary biomarkers remains unclear. Using an in vitro breast cancer model, we demonstrated that breast cancer-derived exosome-like microvesicles are capable of interacting with salivary gland cells, altering the composition of their secreted exosome-like microvesicles. We found that the salivary gland cells secreted exosome-like microvesicles encapsulating both protein and mRNA. We also showed that the interaction with breast cancer-derived exosome-like microvesicles communicated and activated the transcriptional machinery of the salivary gland cells. Thus, the interaction altered the composition of the salivary gland cell-derived exosome-like microvesicles on both the transcriptomically and proteomically.

  10. Tacit Knowledge Involvement in the Production of Nuclear Weapons: A Critical Component of a Credible US Nuclear Deterrent in the 21st Century

    Science.gov (United States)

    2013-02-14

    form of the National Ignition Facility ( NIF ) at LLNL, the Dual-Axis Hydrodynamic Radiographic Test (DAHRT) Facility at LANL and the Z Machine at...not work, this knowledge adds little to sustaining capacity to design or build a nuclear weapon. Interestingly while the NIF and ASCI have...the novelty of the NIF wears off that the SSMP will not be stimulating. Further, it is hard to entice young scientists to remain at the laboratory

  11. Efficient inhibition of infectious prions multiplication and release by targeting the exosomal pathway.

    Science.gov (United States)

    Vilette, Didier; Laulagnier, Karine; Huor, Alvina; Alais, Sandrine; Simoes, Sabrina; Maryse, Romao; Provansal, Monique; Lehmann, Sylvain; Andreoletti, Olivier; Schaeffer, Laurent; Raposo, Graça; Leblanc, Pascal

    2015-11-01

    Exosomes are secreted membrane vesicles of endosomal origin present in biological fluids. Exosomes may serve as shuttles for amyloidogenic proteins, notably infectious prions, and may participate in their spreading in vivo. To explore the significance of the exosome pathway on prion infectivity and release, we investigated the role of the endosomal sorting complex required for transport (ESCRT) machinery and the need for ceramide, both involved in exosome biogenesis. Silencing of HRS-ESCRT-0 subunit drastically impairs the formation of cellular infectious prion due to an altered trafficking of cholesterol. Depletion of Tsg101-ESCRT-I subunit or impairment of the production of ceramide significantly strongly decreases infectious prion release. Together, our data reveal that ESCRT-dependent and -independent pathways can concomitantly regulate the exosomal secretion of infectious prion, showing that both pathways operate for the exosomal trafficking of a particular cargo. These data open up a new avenue to regulate prion release and propagation.

  12. Stromal-cell and cancer-cell exosomes leading the metastatic exodus for the promised niche.

    Science.gov (United States)

    Hoffman, Robert M

    2013-06-18

    Exosomes are thought to play an important role in metastasis. Luga and colleagues have described the production of exosomes by stromal cells such as cancer-associated fibroblasts that are taken up by breast cancer cells and are then loaded with Wnt 11, which is associated with stimulation of the invasiveness and metastasis of the breast cancer cells. Previous studies have shown that exosomes produced by breast cancer cells are taken up by stromal fibroblasts and other stromal cells, suggesting that exosomes are agents of cross-talk between cancer and stromal cells to stimulate metastasis. Imaging of exosomes by labeling with fluorescent proteins will enlighten the process by which exosomes enhance metastasis, including premetastatic niche formation.

  13. The limited capacity of malignant glioma-derived exosomes to suppress peripheral immune effectors.

    Science.gov (United States)

    Iorgulescu, J Bryan; Ivan, Michael E; Safaee, Michael; Parsa, Andrew T

    2016-01-15

    Tumor-derived microvesicular exosomes permit intercellular communication both locally and systemically by delivering a snapshot of the tumor cell's constituents. We thus investigated whether exosomes mediate malignant glioma's facility for inducing peripheral immunosuppression. In Western blot and RT-PCR analyses, glioma-derived exosomes displayed exosome-specific markers, but failed to recapitulate the antigen-presentation machinery, surface co-modulatory signals, or immunosuppressive mediator status of their parent tumor cells. Treatment with glioma-derived exosomes promoted immunosuppressive HLA-DR(low) monocytic phenotypes, but failed to induce monocytic PD-L1 expression or alter the activation of cytotoxic T-cells from patients' peripheral blood by FACS and RT-PCR analyses. Our results suggest that malignant glioma-derived exosomes are restricted in their capacity to directly prime peripheral immunosuppression.

  14. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges.

    Science.gov (United States)

    Ha, Dinh; Yang, Ningning; Nadithe, Venkatareddy

    2016-07-01

    Exosomes are small intracellular membrane-based vesicles with different compositions that are involved in several biological and pathological processes. The exploitation of exosomes as drug delivery vehicles offers important advantages compared to other nanoparticulate drug delivery systems such as liposomes and polymeric nanoparticles; exosomes are non-immunogenic in nature due to similar composition as body׳s own cells. In this article, the origin and structure of exosomes as well as their biological functions are outlined. We will then focus on specific applications of exosomes as drug delivery systems in pharmaceutical drug development. An overview of the advantages and challenges faced when using exosomes as a pharmaceutical drug delivery vehicles will also be discussed.

  15. From structures to functions: insights into exosomes as promising drug delivery vehicles.

    Science.gov (United States)

    Ren, Jinghua; He, Wenshan; Zheng, Lifen; Duan, Hongwei

    2016-05-24

    Exosomes are small membrane vesicles secreted by most cell types, and appear ubiquitously in cell culture supernatants and body fluids. Increasing evidence supports that exosomes play important roles in intercellular communication, both locally and systemically, by transporting their contents such as proteins, lipids and RNAs between cells. Of particular interest for controlled drug delivery is that cell-derived exosomes offer the possibilities of overcoming biological barriers, thereby allowing the incorporated gene and drug to reach targeted tissue, which have been considerable challenges for synthetic carriers. Great research efforts have been dedicated to developing exosome-based drug delivery systems for the treatment of inflammatory diseases, degenerative disorders and cancer. In this review, we will describe the structural and functional properties of exosomes and emphasize current advances in the therapeutic applications of exosomes as drug delivery vehicles, followed by a discussion on current challenges and future perspectives.

  16. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model

    Science.gov (United States)

    Hamaya, S.; Maeda, H.; Funaki, M.; Fukui, H.

    2008-12-01

    The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Δσ =σ∥-σ⊥, for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator σ⃗ṡπ⃗U/2c, in which π⃗=p⃗+A⃗, U is a nonunitary transformation operator, and c ≅137.036 a.u. is the velocity of light. The operator U depends on the vector potential A⃗ (i.e., the magnetic perturbations in the system) with the leading order c-2 and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c-4. It is shown that the small Δσ for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.

  17. Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus.

    Science.gov (United States)

    Stenqvist, Ann-Christin; Nagaeva, Olga; Baranov, Vladimir; Mincheva-Nilsson, Lucia

    2013-12-01

    Apoptosis is crucially important in mediating immune privilege of the fetus during pregnancy. We investigated the expression and in vitro apoptotic activity of two physiologically relevant death messengers, the TNF family members Fas ligand (FasL) and TRAIL in human early and term placentas. Both molecules were intracellularly expressed, confined to the late endosomal compartment of the syncytiotrophoblast, and tightly associated to the generation and secretion of placental exosomes. Using immunoelectron microscopy, we show that FasL and TRAIL are expressed on the limiting membrane of multivesicular bodies where, by membrane invagination, intraluminal microvesicles carrying membranal bioactive FasL and TRAIL are formed and released in the extracellular space as exosomes. Analyzing exosomes secreted from placental explant cultures, to our knowledge, we demonstrate for the first time that FasL and TRAIL are clustered on the exosomal membrane as oligomerized aggregates ready to form death-inducing signaling complex. Consistently, placental FasL- and TRAIL-carrying exosomes triggered apoptosis in Jurkat T cells and activated PBMC in a dose-dependent manner. Limiting the expression of functional FasL and TRAIL to exosomes comprise a dual benefit: 1) storage of exosomal FasL and TRAIL in multivesicular bodies is protected from proteolytic cleavage and 2) upon secretion, delivery of preformed membranal death molecules by exosomes rapidly triggers apoptosis. Our results suggest that bioactive FasL- and TRAIL-carrying exosomes, able to convey apoptosis, are secreted by the placenta and tie up the immunomodulatory and protective role of human placenta to its exosome-secreting ability.

  18. Body fluid derived exosomes as a novel template for clinical diagnostics

    Directory of Open Access Journals (Sweden)

    Janssen Johannes WG

    2011-06-01

    Full Text Available Abstract Background Exosomes are small membrane vesicles with a size of 40-100 nm that are released by different cell types from a late endosomal cellular compartment. They can be found in various body fluids including plasma, malignant ascites, urine, amniotic fluid and saliva. Exosomes contain proteins, miRNAs and mRNAs (exosome shuttle RNA, esRNA that could serve as novel platform for diagnosis. Method We isolated exosomes from amniotic fluid, saliva and urine by differential centrifugation on sucrose gradients. Marker proteins were identified by Western blot and FACS analysis after adsorption of exosomes to latex beads. We extracted esRNA from exosomes, carried out RT-PCR, and analyzed amplified products by restriction length polymorphism. Results Exosomes were positive for the marker proteins CD24, CD9, Annexin-1 and Hsp70 and displayed the correct buoyant density and orientation of antigens. In sucrose gradients the exosomal fractions contained esRNA that could be isolated with sufficient quantity for further analysis. EsRNAs were protected in exosomes from enzymatic degradation. Amniotic fluid esRNA served as template for the typing of the CD24 single nucleotide polymorphism (rs52812045. It also allowed sex determination of the fetus based on the detection of the male specific ZFY gene product. Conclusions Our data demonstrate that exosomes from body fluids carry esRNAs which can be analyzed and offers access to the transcriptome of the host organism. The exosomal lipid bilayer protects the genetic information from degradation. As the isolation of exosomes is a minimally invasive procedure, this technique opens new possibilities for diagnostics.

  19. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration.

    Science.gov (United States)

    Salomon, Carlos; Torres, Maria Jose; Kobayashi, Miharu; Scholz-Romero, Katherin; Sobrevia, Luis; Dobierzewska, Aneta; Illanes, Sebastian E; Mitchell, Murray D; Rice, Gregory E

    2014-01-01

    Studies completed to date provide persuasive evidence that placental cell-derived exosomes play a significant role in intercellular communication pathways that potentially contribute to placentation and development of materno-fetal vascular circulation. The aim of this study was to establish the gestational-age release profile and bioactivity of placental cell-derived exosome in maternal plasma. Plasma samples (n = 20 per pregnant group) were obtained from non-pregnant and pregnant women in the first (FT, 6-12 weeks), second (ST, 22-24 weeks) and third (TT, 32-38 weeks) trimester. The number of exosomes and placental exosome contribution were determined by quantifying immunoreactive exosomal CD63 and placenta-specific marker (PLAP), respectively. The effect of exosomes isolated from FT, ST and TT on endothelial cell migration were established using a real-time, live-cell imaging system (Incucyte). Exosome plasma concentration was more than 50-fold greater in pregnant women than in non-pregnant women (pexosomes present in maternal plasma increased significantly with gestational age by more that two-fold (pExosomes isolated from FT, ST and TT increased endothelial cell migration by 1.9±0.1, 1.6±0.2 and 1.3±0.1-fold, respectively compared to the control. Pregnancy is associated with a dramatic increase in the number of exosomes present in plasma and maternal plasma exosomes are bioactive. While the role of placental cell-derived exosome in regulating maternal and/or fetal vascular responses remains to be elucidated, changes in exosome profile may be of clinical utility in the diagnosis of placental dysfunction.

  20. Exosomes are fingerprints of originating cells: potential biomarkers for ovarian cancer

    Directory of Open Access Journals (Sweden)

    Kobayashi M

    2015-03-01

    Full Text Available Miharu Kobayashi, Gregory E Rice, Jorge Tapia, Murray D Mitchell, Carlos Salomon Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia. Abstract: The past decade has seen an extraordinary explosion of research in the field of extracellular vesicles, especially in a specific type of extracellular vesicles originating from endosomal compartments, called exosomes. Exosomes are a specific subtype of secreted vesicles that are defined as small (~30–120 nm but very stable membrane vesicles that are released from a wide range of cells, including normal and cancer cells. As the content of exosomes is cell type specific, it is believed that they are a "fingerprint" of the releasing cell and its metabolic status. We hypothesized that the exosomes and their specific exosomal content (eg, microribonucleic acid represent a precious biomedical tool and may be used as biomarkers for the diagnosis and prognosis of malignant tumors. In addition, exosomes may modify the phenotype of the parent and/or target cell by transferring pro-oncogenic molecules to induce cancerous phenotype of recipient cells and contribute to the formation of the premetastatic niche. The mechanism involved in these phenomena remains unclear; however, inclusion of signaling mediators into exosomes or exosome release may reduce their intracellular bioavailability in the parent cell, thereby altering cell phenotype and their metastatic potential. The aim of this review therefore is to analyze the biogenesis and role of exosomes from tumor cells, focusing primarily on ovarian cancer. Ovarian cancer is the most lethal gynecologic cancer, and an effective early diagnosis has the potential to improve patient survival. Ovarian cancer currently lacks a reliable method for early detection, however, exosomes have received great attention as potential biomarkers and mediators

  1. Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer.

    Directory of Open Access Journals (Sweden)

    Salma Khan

    Full Text Available BACKGROUND: Survivin is expressed in prostate cancer (PCa, and its downregulation sensitizes PCa cells to chemotherapeutic agents in vitro and in vivo. Small membrane-bound vesicles called exosomes, secreted from the endosomal membrane compartment, contain RNA and protein that they readily transport via exosome internalization into recipient cells. Recent progress has shown that tumor-derived exosomes play multiple roles in tumor growth and metastasis and may produce these functions via immune escape, tumor invasion and angiogenesis. Furthermore, exosome analysis may provide novel biomarkers to diagnose or monitor PCa treatment. METHODS: Exosomes were purified from the plasma and serum from 39 PCa patients, 20 BPH patients, 8 prostate cancer recurrent and 16 healthy controls using ultracentrifugation and their quantities and qualities were quantified and visualized from both the plasma and the purified exosomes using ELISA and Western blotting, respectively. RESULTS: Survivin was significantly increased in the tumor-derived samples, compared to those from BPH and controls with virtually no difference in the quantity of Survivin detected in exosomes collected from newly diagnosed patients exhibiting low (six or high (nine Gleason scores. Exosome Survivin levels were also higher in patients that had relapsed on chemotherapy compared to controls. CONCLUSIONS: These studies demonstrate that Survivin exists in plasma exosomes from both normal, BPH and PCa subjects. The relative amounts of exosomal Survivin in PCa plasma was significantly higher than in those with pre-inflammatory BPH and control plasma. This differential expression of exosomal Survivin was seen with both newly diagnosed and advanced PCa subjects with high or low-grade cancers. Analysis of plasma exosomal Survivin levels may offer a convenient tool for diagnosing or monitoring PCa and may, as it is elevated in low as well as high Gleason scored samples, be used for early detection.

  2. Exosomes play an important role in the process of psoralen reverse multidrug resistance of breast cancer.

    Science.gov (United States)

    Wang, Xiaohong; Xu, Chengfeng; Hua, Yitong; Sun, Leitao; Cheng, Kai; Jia, Zhongming; Han, Yong; Dong, Jianli; Cui, Yuzhen; Yang, Zhenlin

    2016-12-01

    Release of exosomes have been shown to play critical roles in drug resistance by delivering cargo. Targeting the transfer of exosomes from resistant cells to sensitive cells may be an approach to overcome some cases of drug resistance. In this study, we investigated the potential role of exosomes in the process of psoralen reverse multidrug resistance of MCF-7/ADR cells. Exosomes were isolated by differential centrifugation of culture media from MCF-7/ADR cells (ADR/exo) and MCF-7 parental cells (S/exo). Exosomes were characterized by morphology, exosomal markers and size distribution. The ability of ADR/exo to transfer multidrug resistance was assessed by MTT and real-time quantitative PCR. The different formation and secretion of exosomes were detected by immunofluorescence and transmission electron microscopy. Then we performed comparative transcriptomic analysis using RNA-Seq technology and real-time quantitative PCR to better understand the gene expression regulation in exosmes formation and release after psoralen treatment. Our data showed that exosomes derived from MCF-7/ADR cells were able to promote active sequestration of drugs and could induce a drug resistance phenotype by transferring drug-resistance-related gene MDR-1 and P-glycoprotein protein. Psoralen could reduce the formation and secretion of exosomes to overcome drug resistance. There were 21 differentially expressed genes. Gene ontology (GO) pathway analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the most significantly expressed genes were linked to PPAR and P53 signaling pathways which were related to exosomes formation, secretion and cargo sorting. Psoralen can affect the exosomes and induce the reduction of resistance transmission via exosomes might through PPAR and P53 signaling pathways, which might provide a novel strategy for breast cancer resistance to chemotherapy in the future.

  3. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis

    OpenAIRE

    2015-01-01

    Exosomes, membrane vesicles of 40–100 nm in diameter, are derived from endosomes in various cells. The bioactive molecules specifically packed into exosomes can be horizontally transferred into recipient cells changing their biological properties, by which tumour cells continuously modify their surrounding microenvironment and distant target cells favouring cancer metastasis. It has been suspected for a long time that exosomes participate in the whole process of tumour metastasis. Although th...

  4. Stromal-cell and cancer-cell exosomes leading the metastatic exodus for the promised niche

    OpenAIRE

    2013-01-01

    Exosomes are thought to play an important role in metastasis. Luga and colleagues have described the production of exosomes by stromal cells such as cancer-associated fibroblasts that are taken up by breast cancer cells and are then loaded with Wnt 11, which is associated with stimulation of the invasiveness and metastasis of the breast cancer cells. Previous studies have shown that exosomes produced by breast cancer cells are taken up by stromal fibroblasts and other stromal cells, suggestin...

  5. Emp is a component of the nuclear matrix of mammalian cells and undergoes dynamic rearrangements during cell division.

    Science.gov (United States)

    Bala, Shashi; Kumar, Ajay; Soni, Shivani; Sinha, Sudha; Hanspal, Manjit

    2006-04-21

    Emp, originally detected in erythroblastic islands, is expressed in numerous cell types and tissues suggesting a functionality not limited to hematopoiesis. To study the function of Emp in non-hematopoietic cells, an epitope-tagged recombinant human Emp was expressed in HEK cells. Preliminary studies revealed that Emp partitioned into both the nuclear and Triton X-100-insoluble cytoskeletal fractions in approximately a 4:1 ratio. In this study, we report investigations of Emp in the nucleus. Sequential extractions of interphase nuclei showed that recombinant Emp was present predominantly in the nuclear matrix. Immunofluorescence microscopy showed that Emp was present in typical nuclear speckles enriched with the spliceosome assembly factor SC35 and partially co-localized with actin staining. Coimmunoprecipitation and GST-pull-down assays confirmed the apparent close association of Emp with nuclear actin. During mitosis, Emp was detected at the mitotic spindle/spindle poles, as well as in the contractile ring during cytokinesis. These results suggest that Emp undergoes dynamic rearrangements within the nuclear architecture that are correlated with cell division.

  6. In situ single step detection of exosome microRNA using molecular beacon.

    Science.gov (United States)

    Lee, Ji Hye; Kim, Jeong Ah; Kwon, Min Hee; Kang, Ji Yoon; Rhee, Won Jong

    2015-06-01

    In situ single step detection of microRNAs (miRNA) in a whole exosome has been developed as a novel diagnosis method that can be utilized for various diseases. Exosomes are small extracellular vesicles that contain biomarker miRNAs produced from their originating cells and are known to travel through the circulatory system. This makes exosomal miRNAs from the body fluids an attractive biomarker that can lead to a paradigm shift in the diagnosis of disease. However, current techniques, including real-time PCR analysis, are time-consuming and laborious, making them unsuitable for exosomal miRNA detection for diagnosis. Thus, the development of alternative methods is necessary. Herein, we have demonstrated that exosomal miRNAs can be detected directly using a nano-sized fluorescent oligonucleotide probe, molecular beacon. MiRNA-21 in exosomes from breast cancer cells were detected successfully by molecular beacons in a quantitative manner. Permeabilization by streptolysin O treatment further enhanced the delivery of molecular beacons into exosomes, giving significantly increased signals from target miRNAs. In addition, we selectively detected cancer cell-derived exosomal miRNA-21 among heterogeneous exosome mixtures and in human serum. The method developed in the article is simple, fast, and sensitive, so it will offer great opportunities for the high-throughput diagnosis and prognosis of diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Ubiquitination as a Mechanism To Transport Soluble Mycobacterial and Eukaryotic Proteins to Exosomes.

    Science.gov (United States)

    Smith, Victoria L; Jackson, Liam; Schorey, Jeffrey S

    2015-09-15

    Exosomes are extracellular vesicles of endocytic origin that function in intercellular communication. Our previous studies indicate that exosomes released from Mycobacterium tuberculosis-infected macrophages contain soluble mycobacterial proteins. However, it was unclear how these secreted proteins were targeted to exosomes. In this study, we determined that exosome production by the murine macrophage cell line RAW264.7 requires the endosomal sorting complexes required for transport and that trafficking of mycobacterial proteins from phagocytosed bacilli to exosomes was dependent on protein ubiquitination. Moreover, soluble mycobacterial proteins, when added exogenously to RAW264.7 or human HEK293 cells, were endocytosed, ubiquitinated, and released via exosomes. This suggested that endocytosed proteins could be recycled from cells through exosomes. This hypothesis was supported using the tumor-associated protein He4, which, when endocytosed by RAW264.7 or HEK293 cells, was transported to exosomes in a ubiquitin-dependent manner. Our data suggest that ubiquitination is a modification sufficient for trafficking soluble proteins within the phagocytic/endocytic network to exosomes.

  8. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host∶parasite interactions.

    Directory of Open Access Journals (Sweden)

    Olivia Twu

    Full Text Available Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogential tract where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Here, we use a combination of methodologies including cell fractionation, immunofluorescence and electron microscopy, RNA, proteomic and cytokine analyses and cell adherence assays to examine pathogenic properties of T. vaginalis. We have found that T.vaginalis produces and secretes microvesicles with physical and biochemical properties similar to mammalian exosomes. The parasite-derived exosomes are characterized by the presence of RNA and core, conserved exosomal proteins as well as parasite-specific proteins. We demonstrate that T. vaginalis exosomes fuse with and deliver their contents to host cells and modulate host cell immune responses. Moreover, exosomes from highly adherent parasite strains increase the adherence of poorly adherent parasites to vaginal and prostate epithelial cells. In contrast, exosomes from poorly adherent strains had no measurable effect on parasite adherence. Exosomes from parasite strains that preferentially bind prostate cells increased binding of parasites to these cells relative to vaginal cells. In addition to establishing that parasite exosomes act to modulate host∶parasite interactions, these studies are the first to reveal a potential role for exosomes in promoting parasite∶parasite communication and host cell colonization.

  9. Exosomes in Prostate Cancer: Putting Together the Pieces of a Puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Soekmadji, Carolina, E-mail: carolina.soekmadji@qut.edu.au; Russell, Pamela J.; Nelson, Colleen C. [Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Level 3 West, 37 Kent Street, Brisbane, Queensland 4102 (Australia)

    2013-11-11

    Exosomes have been shown to act as mediators for cell to cell communication and as a potential source of biomarkers for many diseases, including prostate cancer. Exosomes are nanosized vesicles secreted by cells and consist of proteins normally found in multivesicular bodies, RNA, DNA and lipids. As a potential source of biomarkers, exosomes have attracted considerable attention, as their protein content resembles that of their cells of origin, even though it is noted that the proteins, miRNAs and lipids found in the exosomes are not a reflective stoichiometric sampling of the contents from the parent cells. While the biogenesis of exosomes in dendritic cells and platelets has been extensively characterized, much less is known about the biogenesis of exosomes in cancer cells. An understanding of the processes involved in prostate cancer will help to further elucidate the role of exosomes and other extracellular vesicles in prostate cancer progression and metastasis. There are few methodologies available for general isolation of exosomes, however validation of those methodologies is necessary to study the role of exosomal-derived biomarkers in various diseases. In this review, we discuss “exosomes” as a member of the family of extracellular vesicles and their potential to provide candidate biomarkers for prostate cancer.

  10. Exosomes in Prostate Cancer: Putting Together the Pieces of a Puzzle

    Directory of Open Access Journals (Sweden)

    Colleen C. Nelson

    2013-11-01

    Full Text Available Exosomes have been shown to act as mediators for cell to cell communication and as a potential source of biomarkers for many diseases, including prostate cancer. Exosomes are nanosized vesicles secreted by cells and consist of proteins normally found in multivesicular bodies, RNA, DNA and lipids. As a potential source of biomarkers, exosomes have attracted considerable attention, as their protein content resembles that of their cells of origin, even though it is noted that the proteins, miRNAs and lipids found in the exosomes are not a reflective stoichiometric sampling of the contents from the parent cells. While the biogenesis of exosomes in dendritic cells and platelets has been extensively characterized, much less is known about the biogenesis of exosomes in cancer cells. An understanding of the processes involved in prostate cancer will help to further elucidate the role of exosomes and other extracellular vesicles in prostate cancer progression and metastasis. There are few methodologies available for general isolation of exosomes, however validation of those methodologies is necessary to study the role of exosomal-derived biomarkers in various diseases. In this review, we discuss “exosomes” as a member of the family of extracellular vesicles and their potential to provide candidate biomarkers for prostate cancer.

  11. Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages.

    Science.gov (United States)

    Momen-Heravi, Fatemeh; Bala, Shashi; Bukong, Terence; Szabo, Gyongyi

    2014-10-01

    Exosomes, membranous nanovesicles, naturally carry bio-macromolecules and play pivotal roles in both physiological intercellular crosstalk and disease pathogenesis. Here, we showed that B cell-derived exosomes can function as vehicles to deliver exogenous miRNA-155 mimic or inhibitor into hepatocytes or macrophages, respectively. Stimulation of B cells significantly increased exosome production. Unlike in parental cells, baseline level of miRNA-155 was very low in exosomes derived from stimulated B cells. Exosomes loaded with a miRNA-155 mimic significantly increased miRNA-155 levels in primary mouse hepatocytes and the liver of miRNA-155 knockout mice. Treatment of RAW macrophages with miRNA-155 inhibitor loaded exosomes resulted in statistically significant reduction in LPS-induced TNFα production and partially prevented LPS-induced decrease in SOCS1 mRNA levels. Furthermore, exosome-mediated miRNA-155 inhibitor delivery resulted in functionally more efficient inhibition and less cellular toxicity compared to conventional transfection methods. Similar approaches could be useful in modification of target biomolecules in vitro and in vivo. From the clinical editor: In this study, exosome-based delivery of miRNA-155 mimicker or inhibitor was found to have significant biological response in hepatocytes and macrophages. Exosome-based approaches may be useful in the modification of other target biomolecules.

  12. Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling.

    Directory of Open Access Journals (Sweden)

    Jessica Wahlgren

    Full Text Available It has previously been shown that nano-meter sized vesicles (30-100 nm, exosomes, secreted by antigen presenting cells can induce T cell responses thus showing the potential of exosomes to be used as immunological tools. Additionally, activated CD3⁺ T cells can secrete exosomes that have the ability to modulate different immunological responses. Here, we investigated what effects exosomes originating from activated CD3⁺ T cells have on resting CD3⁺ T cells by studying T cell proliferation, cytokine production and by performing T cell and exosome phenotype characterization. Human exosomes were generated in vitro following CD3⁺ T cell stimulation with anti-CD28, anti-CD3 and IL-2. Our results show that exosomes purified from stimulated CD3⁺ T cells together with IL-2 were able to generate proliferation in autologous resting CD3⁺ T cells. The CD3⁺ T cells stimulated with exosomes together with IL-2 had a higher proportion of CD8⁺ T cells and had a different cytokine profile compared to controls. These results indicate that activated CD3⁺ T cells communicate with resting autologous T cells via exosomes.

  13. The Complete Exosome Workflow Solution: From Isolation to Characterization of RNA Cargo

    Directory of Open Access Journals (Sweden)

    Jeoffrey Schageman

    2013-01-01

    Full Text Available Exosomes are small (30–150 nm vesicles containing unique RNA and protein cargo, secreted by all cell types in culture. They are also found in abundance in body fluids including blood, saliva, and urine. At the moment, the mechanism of exosome formation, the makeup of the cargo, biological pathways, and resulting functions are incompletely understood. One of their most intriguing roles is intercellular communication—exosomes function as the messengers, delivering various effector or signaling macromolecules between specific cells. There is an exponentially growing need to dissect structure and the function of exosomes and utilize them for development of minimally invasive diagnostics and therapeutics. Critical to further our understanding of exosomes is the development of reagents, tools, and protocols for their isolation, characterization, and analysis of their RNA and protein contents. Here we describe a complete exosome workflow solution, starting from fast and efficient extraction of exosomes from cell culture media and serum to isolation of RNA followed by characterization of exosomal RNA content using qRT-PCR and next-generation sequencing techniques. Effectiveness of this workflow is exemplified by analysis of the RNA content of exosomes derived from HeLa cell culture media and human serum, using Ion Torrent PGM as a sequencing platform.

  14. Melanoma cell-derived exosomes alter macrophage and dendritic cell functions in vitro.

    Science.gov (United States)

    Marton, Annamaria; Vizler, Csaba; Kusz, Erzsebet; Temesfoi, Viktoria; Szathmary, Zsuzsa; Nagy, Krisztina; Szegletes, Zsolt; Varo, Gyorgy; Siklos, Laszlo; Katona, Robert L; Tubak, Vilmos; Howard, O M Zack; Duda, Erno; Minarovits, Janos; Nagy, Katalin; Buzas, Krisztina

    2012-01-01

    To clarify controversies in the literature of the field, we have purified and characterized B16F1 melanoma cell derived exosomes (mcd-exosomes) then we attempted to dissect their immunological activities. We tested how mcd-exosomes influence CD4+ T cell proliferation induced by bone marrow derived dendritic cells; we quantified NF-κB activation in mature macrophages stimulated with mcd-exosomes, and we compared the cytokine profile of LPS-stimulated, IL-4 induced, and mcd-exosome treated macrophages. We observed that mcd-exosomes helped the maturation of dendritic cells, enhancing T cell proliferation induced by the treated dendritic cells. The exosomes also activated macrophages, as measured by NF-κB activation. The cytokine and chemokine profile of macrophages treated with tumor cell derived exosomes showed marked differences from those induced by either LPS or IL-4, and it suggested that exosomes may play a role in the tumor progression and metastasis formation through supporting tumor immune escape mechanisms.

  15. Correlation of horizontal and vertical components of strong ground motion for response-history analysis of safety-related nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yin-Nan, E-mail: ynhuang@ntu.edu.tw [Dept. of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Yen, Wen-Yi, E-mail: b01501059@ntu.edu.tw [Dept. of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Whittaker, Andrew S., E-mail: awhittak@buffalo.edu [Dept. of Civil, Structural and Environmental Engineering, MCEER, State University of New York at Buffalo, Buffalo, NY 14260 (United States)

    2016-12-15

    Highlights: • The correlation of components of ground motion is studied using 1689 sets of records. • The data support an upper bound of 0.3 on the correlation coefficient. • The data support the related requirement in the upcoming edition of ASCE Standard 4. - Abstract: Design standards for safety-related nuclear facilities such as ASCE Standard 4-98 and ASCE Standard 43-05 require the correlation coefficient for two orthogonal components of ground motions for response-history analysis to be less than 0.3. The technical basis of this requirement was developed by Hadjian three decades ago using 50 pairs of recorded ground motions that were available at that time. In this study, correlation coefficients for (1) two horizontal components, and (2) the vertical component and one horizontal component, of a set of ground motions are computed using records from a ground-motion database compiled recently for large-magnitude shallow crustal earthquakes. The impact of the orientation of the orthogonal horizontal components on the correlation coefficient of ground motions is discussed. The rules in the forthcoming edition of ASCE Standard 4 for the correlation of components in a set of ground motions are shown to be reasonable.

  16. Coronary Artery-Bypass-Graft Surgery Increases the Plasma Concentration of Exosomes Carrying a Cargo of Cardiac MicroRNAs: An Example of Exosome Trafficking Out of the Human Heart with Potential for Cardiac Biomarker Discovery.

    Directory of Open Access Journals (Sweden)

    Costanza Emanueli

    Full Text Available Exosome nanoparticles carry a composite cargo, including microRNAs (miRs. Cultured cardiovascular cells release miR-containing exosomes. The exosomal trafficking of miRNAs from the heart is largely unexplored. Working on clinical samples from coronary-artery by-pass graft (CABG surgery, we investigated if: 1 exosomes containing cardiac miRs and hence putatively released by cardiac cells increase in the circulation after surgery; 2 circulating exosomes and exosomal cardiac miRs correlate with cardiac troponin (cTn, the current "gold standard" surrogate biomarker of myocardial damage.The concentration of exosome-sized nanoparticles was determined in serial plasma samples. Cardiac-expressed (miR-1, miR-24, miR-133a/b, miR-208a/b, miR-210, non-cardiovascular (miR-122 and quality control miRs were measured in whole plasma and in plasma exosomes. Linear regression analyses were employed to establish the extent to which the circulating individual miRs, exosomes and exosomal cardiac miR correlated with cTn-I. Cardiac-expressed miRs and the nanoparticle number increased in the plasma on completion of surgery for up to 48 hours. The exosomal concentration of cardiac miRs also increased after CABG. Cardiac miRs in the whole plasma did not correlate significantly with cTn-I. By contrast cTn-I was positively correlated with the plasma exosome level and the exosomal cardiac miRs.The plasma concentrations of exosomes and their cargo of cardiac miRs increased in patients undergoing CABG and were positively correlated with hs-cTnI. These data provide evidence that CABG induces the trafficking of exosomes from the heart to the peripheral circulation. Future studies are necessary to investigate the potential of circulating exosomes as clinical biomarkers in cardiac patients.

  17. Electrokinetic Evaluation of Individual Exosomes by On-Chip Microcapillary Electrophoresis with Laser Dark-Field Microscopy

    Science.gov (United States)

    Kato, Kei; Kobayashi, Masashi; Hanamura, Nami; Akagi, Takanori; Kosaka, Nobuyoshi; Ochiya, Takahiro; Ichiki, Takanori

    2013-06-01

    Cell-secreted nanovesicles called exosomes are expected as a promising candidate biomarker of various diseases. Toward the future application of exosomes as a disease biomarker for low-invasive diagnostics, challenges remain in the development of sensitive and precise analysis methods for exosomes. In this study, we performed the electrokinetic evaluation of individual exosomes by the combined use of on-chip microcapillary electrophoresis and laser dark-field microscopy. We extracted exosomes from six types of human cell cultured in a serum-free medium by differential ultracentrifugation and their zeta potential (electrophoretic mobility) were evaluated. We demonstrated that the proposed electrophoresis apparatus is particularly suitable for the tracking analysis of the electrophoretic migration of individual exosomes and enables the accurate evaluation of the zeta potential distribution of exosomes, for the first time. From the experimental results, we found that there is a strong correlation between the average zeta potentials of exosomes and their cells of origin.

  18. Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models.

    Science.gov (United States)