WorldWideScience

Sample records for nuclear engineering education

  1. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  2. Reconstruction of nuclear engineering education in universities

    International Nuclear Information System (INIS)

    Kitamura, Masaharu; Tomota, Yo; Tanaka, Shunichi

    2005-01-01

    Nuclear engineering has become the area gradually loosing appeal to the young for these twenty years taking all the circumstances into consideration. However nuclear power is predicted to be primary energy of greatest importance even in the future and this needs highly motivated and excellent personnel in nuclear industry and society so as to develop and maintain nuclear power to a high degree. Under these circumstances discussions on how should be nuclear engineering research and education in the new era were presented from various viewpoints and they led to the direction of reconstruction of nuclear engineering education in universities and relevant organizations to train and ensure personnel. (T. Tanaka)

  3. US nuclear engineering education: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the aging of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and research funding, and the increasing ratio of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 12 figs., 20 tabs.

  4. US Nuclear Engineering Education: Status and prospects

    International Nuclear Information System (INIS)

    1990-01-01

    This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study, as described in this report resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the ageing of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and research funding, and the increasing ratio of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 24 figs., 49 tabs

  5. Thermal hydraulics in undergraduate nuclear engineering education

    International Nuclear Information System (INIS)

    Theofanous, T.G.

    1986-01-01

    The intense safety-related research efforts of the seventies in reactor thermal hydraulics have brought about the recognition of the subject as one of the cornerstones of nuclear engineering. Many nuclear engineering departments responded by building up research programs in this area, and mostly as a consequence, educational programs, too. Whether thermal hydraulics has fully permeated the conscience of nuclear engineering, however, remains yet to be seen. The lean years that lie immediately ahead will provide the test. The purpose of this presentation is to discuss the author's own educational activity in undergraduate nuclear engineering education over the past 10 yr or so. All this activity took place at Purdue's School of Nuclear Engineering. He was well satisfied with the results and expects to implement something similar at the University of California in Santa Barbara in the near future

  6. Academic nuclear engineering education - the Dutch way

    International Nuclear Information System (INIS)

    Wallerbos, E.J.M.; Geemert, R. van

    1997-01-01

    The academic nuclear engineering educational program in the Netherlands aims not only to give students a thorough knowledge of reactor physics but also to train them in practical skills and presentation techniques. These three aspects are important to become a successful nuclear engineer. (author)

  7. Education of nuclear engineering in Japan

    International Nuclear Information System (INIS)

    Ozawa, Yasutomo; Yamamuro, Nobuhiro

    1979-01-01

    The research Committee of Nuclear Engineering Education has two working groups. One group has carried out surveyes on the curriculums of nuclear engineering course of universities in Japan and the activities of graduates in the industrial worlds. The other group conducted an investigation on the present status of energy education in senior high schools. This is an interim report on the activity of the research committee. (author)

  8. Nuclear engineering education in the United States

    International Nuclear Information System (INIS)

    Williamson, T.G.

    1982-01-01

    In discussing nuclear engineering education in the United States it is shown that the most critical issue facing the nuclear engineering education community today is enrolment in a time of increasing demand for graduate engineers. Related to the issue of enrolment is support for graduate students, whether it be fellowships, traineeships, or research assistantships. Other issues are those of maintaining a vital faculty in the face of a competitive job market, of maintaining research facilities and developing new ones, and of determining the directions of educational efforts in the future. (U.K.)

  9. Education in nuclear engineering in Slovakia

    International Nuclear Information System (INIS)

    Slugen, V.

    2005-01-01

    Slovak University of Technology is the largest and also the oldest university of technology in Slovakia. Surely more than 50% of high-educated technicians who work nowadays in nuclear industry have graduated from this university. The Department of Nuclear Physics and Technology of the Faculty of Electrical Engineering and Information Technology as a one of seven faculties of this University feels responsibility for proper engineering education and training for Slovak NPP operating staff. The education process is realised via undergraduate (Bc.), graduate (MSc.) and postgraduate (PhD..) study as well as via specialised training courses in a frame of continuous education system. (author)

  10. Nuclear engineering education initiative at Ibaraki University

    International Nuclear Information System (INIS)

    Matsumura, Kunihito; Kanto, Yasuhiro; Tanaka, Nobuatsu; Saigusa, Mikio; Kurumada, Akira; Kikuchi, Kenji

    2015-01-01

    With the help of a grant from the Ministry of Education, Culture, Sports, Science and Technology, Ibaraki University has been engaging for six years in the development and preparation of educational environment on nuclear engineering for each of graduate and undergraduate. Core faculty conducts general services including the design and implementation of curriculum, operational improvement, and implementation of lectures. 'Beginner-friendly introduction for nuclear power education' is provided at the Faculty of Engineering, and 'nuclear engineering education program' at the Graduate School of Science and Engineering. All the students who have interest or concern in the accidents at nuclear power plants or the future of nuclear power engineering have opportunities to learn actively. This university participates in the alliance or association with other universities, builds industry - government - academia cooperation with neighboring institutions such as the Japan Atomic Energy Agency, and makes efforts to promote the learning and development of applied skills related to nuclear engineering through training and study tours at each facility. For example, it established the Frontier Applied Atomic Science Center to analyze the structure and function of materials using the strong neutron source of J-PARC. As the efforts after the earthquake accident, it carried out a radiation survey work in Fukushima Prefecture. In addition, it proposed and practiced the projects such as 'development of methods for the evaluation of transfer/fixation properties and decontamination of radioactive substances,' and 'structure analysis of radioactive substances remaining in soil, litter, and polluted water and its application to the decontamination.' (A.O.)

  11. Towards the European Nuclear Engineering Education Network

    International Nuclear Information System (INIS)

    Mavko, B.; Giot, M.; Sehgal, B.R.; Goethem, G. Van

    2003-01-01

    Current priorities of the scientific community regarding basic research lie elsewhere than in nuclear sciences. The situation today is significantly different than it was three to four decades ago when much of the present competence base in nuclear sciences was in fact generated. In addition, many of the highly competent engineers and scientists, who helped create the present nuclear industry, and its regulatory structure, are approaching retirement. To preserve nuclear knowledge and expertise through the higher nuclear engineering education in the 5 th framework program of the European Commission the project ENEN (European Nuclear Engineering Education Network) was launched, since the need to keep the university curricula in nuclear sciences and technology alive has been clearly recognized at European level. As the follow up of this project an international nuclear engineering education consortium of universities with partners from the nuclear sector is presently in process of being established This association called ENEN has as founding members: 14 universities and 8 research institutes from 17 European countries. (author)

  12. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  13. The changing face of nuclear engineering education

    International Nuclear Information System (INIS)

    Poston, J.W.

    1991-01-01

    Nuclear engineering education in the US is in a near-crisis situation. Most academic programs are small with limited enrollments and faculty. Some of these programs are being absorbed into larger academic units, while others are being terminated. The number of identifiable academic programs has dropped dramatically over the last several years, and there is genuine concern that this downward trend will continue. The recent report by the National Academy of Sciences highlights the problems, needs, and prospects for nuclear engineering education in this country. At the same time, some programs appear to be relatively healthy and somewhat secure. A closer look at these programs indicates that there has been an evolution in the approach taken by these survivors toward both their academic and research programs. This paper discusses the approaches taken at Texas A and M University over the last 8 to 10 years to strengthen the Department of Nuclear Engineering

  14. Educating nuclear engineers at German universities

    International Nuclear Information System (INIS)

    Knorr, J.

    1995-01-01

    Nuclear technology is a relatively young university discipline. Yet, as a consequence of the declining public acceptance of the peaceful use of nuclear power, its very existence is already being threatened at many universities. However, if Germany needs nuclear power, which undoubtedly is the case, highly qualified, committed experts are required above all. Nuclear technology develops internationally. Consequently, also university education must meet international standards. Generally, university education has been found to be the most effective way of increasing the number of scientific and engineering personnel. Nuclear techniques have meanwhile found acceptance in many other scientific disciplines, thus advancing those branches of science. Teaching needs research; like research in nucelar technology at the national research centers, also the universities are suffering massive financial disadvantages. Research is possible only if outside funds are solicited, which increase dependency and decreases basic research. (orig.) [de

  15. Nuclear engineering education in the United States

    International Nuclear Information System (INIS)

    Williamson, T.G.

    1982-01-01

    The critical issue facing the nuclear engineering education community today is first and foremost enrollment in a time of increasing demand for graduate engineers. Related to the issue of enrollment is support for graduate students, whether it be fellowships, traineeships, or research assistantships. Other issues are those of maintaining a vital faculty in the face of competitive job market, of maintaining research facilities and developing new ones, and last and certainly not least that of determining the directions of our educational efforts in the future. These issues are examined in the paper. (author)

  16. Nuclear engineering education in italian universities

    International Nuclear Information System (INIS)

    Dulla, S.; Panella, B.; Ravetto, P.

    2011-01-01

    The paper illustrates the evolution and the present situation of the university-level nuclear engineering education in Italy. The problems connected with the need of qualified faculty in view of a dramatic increase of students is pointed out. A short description of the programs at present available at Italian universities is also presented, together with some statistics referred to Politecnico di Torino. The mathematical and computation content of each programs is also analyzed. (author)

  17. Current challenges for education of nuclear engineers. Beyond nuclear basics

    International Nuclear Information System (INIS)

    Schoenfelder, Christian

    2014-01-01

    In past decades, curricula for the education of nuclear engineers (either as a major or minor subject) have been well established all over the world. However, from the point of view of a nuclear supplier, recent experiences in large and complex new build as well as modernization projects have shown that important competences required in these projects were not addressed during the education of young graduates. Consequently, in the past nuclear industry has been obliged to either accept long periods for job familiarization, or to develop and implement various dedicated internal training measures. Although the topics normally addressed in nuclear engineering education (like neutron and reactor physics, nuclear materials or thermohydraulics and the associated calculation methods) build up important competences, this paper shows that the current status of nuclear applications requires adaptations of educational curricula. As a conclusion, when academic nuclear engineering curricula start taking into account current competence needs in nuclear industry, it will be for the benefit of the current and future generation of nuclear engineers. They will be better prepared for their future job positions and career perspectives, especially on an international level. The recommendations presented should not only be of importance for the nuclear fission field, but also for the fusion community. Here, the Horizon 2020 Roadmap to Fusion as published in 2012 now is focusing on ITER and on a longer-term development of fusion technology for a future demonstration reactor DEMO. The very challenging work program is leading to a strong need for exactly those skills that are described in this article.

  18. Current challenges for education of nuclear engineers. Beyond nuclear basics

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, Christian [AREVA GmbH, Offenbach (Germany). Training Center

    2014-07-15

    In past decades, curricula for the education of nuclear engineers (either as a major or minor subject) have been well established all over the world. However, from the point of view of a nuclear supplier, recent experiences in large and complex new build as well as modernization projects have shown that important competences required in these projects were not addressed during the education of young graduates. Consequently, in the past nuclear industry has been obliged to either accept long periods for job familiarization, or to develop and implement various dedicated internal training measures. Although the topics normally addressed in nuclear engineering education (like neutron and reactor physics, nuclear materials or thermohydraulics and the associated calculation methods) build up important competences, this paper shows that the current status of nuclear applications requires adaptations of educational curricula. As a conclusion, when academic nuclear engineering curricula start taking into account current competence needs in nuclear industry, it will be for the benefit of the current and future generation of nuclear engineers. They will be better prepared for their future job positions and career perspectives, especially on an international level. The recommendations presented should not only be of importance for the nuclear fission field, but also for the fusion community. Here, the Horizon 2020 Roadmap to Fusion as published in 2012 now is focusing on ITER and on a longer-term development of fusion technology for a future demonstration reactor DEMO. The very challenging work program is leading to a strong need for exactly those skills that are described in this article.

  19. Infiltration of quality concepts in nuclear engineering education

    International Nuclear Information System (INIS)

    Woodall, D.M.

    1993-01-01

    The principles of total quality management (TQM) have been applied increasingly in the nuclear power industry over the last decade. The involvement of industrial professionals on the advisory boards of engineering colleges and departments has increasingly led in recent years to the recommendation that TQM be applied as appropriate to engineering education. This paper describes the concepts of TQM in their application to engineering education, specifically in the nuclear engineering area. A summary of the concerns expressed by nuclear engineering academics, as well as the record of successful implementation of TQM in the nuclear engineering education environment is provided in this paper

  20. Targeted initiatives. Support for nuclear engineering education in the USA

    International Nuclear Information System (INIS)

    Gutteridge, John

    2001-01-01

    Recruitment and education of a new generation of nuclear engineers stands to benefit in the USA from a range of programmes involving governmental bodies, universities, and industry groups. They are part of efforts to attract more students to consider and prepare for careers in the nuclear industry, and to provide financial support for nuclear research and education. Career prospects in the nuclear field are brightening. The demand for nuclear engineers and nuclear trained personnel is on the rise as the new century opens. During the past year several studies were completed in an attempt to ascertain the problems in nuclear engineering education and define initiatives to address these problems

  1. Current status of nuclear engineering education

    International Nuclear Information System (INIS)

    Palladino, N.J.

    1975-01-01

    The 65 colleges and universities offering undergraduate degrees in nuclear engineering and the 15 schools offering strong nuclear engineering options are, in general, doing a good job to meet the current spectrum of job opportunities. But, nuclear engineering programs are not producing enough graduates to meet growing demands. They currently receive little aid and support from their customers --industry and government--in the form of scholarships, grants, faculty research support, student thesis and project support, or student summer jobs. There is not enough interaction between industry and universities. Most nuclear engineering programs are geared too closely to the technology of the present family of reactors and too little to the future breeder reactors and controlled thermonuclear reactors. In addition, nuclear engineering programs attract too few women and members of minority ethnic groups. Further study of the reasons for this fact is needed so that effective corrective action can be taken. Faculty in nuclear engineering programs should assume greater initiative to provide attractive and objective nuclear energy electives for technical and nontechnical students in other disciplines to improve their technical understanding of the safety and environmental issues involved. More aggressive and persistent efforts must be made by nuclear engineering schools to obtain industry support and involvement in their programs

  2. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1993-01-01

    The role of an on-site irradiation facility in nuclear science and engineering education is examined. Using the example of a university research reactor, the use of such devices in laboratory instruction, public outreach programs, special instructional programs, research, etc. is discussed. Examples from the Oregon State University curriculum in nuclear chemistry, nuclear engineering and radiation health are given. (author) 1 tab

  3. Nuclear engineering education in the United States: a status report

    International Nuclear Information System (INIS)

    Miller, D.W.; Spinrad, B.I.

    1986-01-01

    The executive summary of the White Paper entitled The Revitalization of Nuclear Energy Education in the United States is the major component of this paper. The White Paper was completed under the auspices of the Nuclear Engineering Department Heads Organization (NEDHO). The presentation highlights events and program changes that have occurred in 1985-1986 following publication of the NEDHO White Paper. Many of these events provide optimism for the revitalization of nuclear engineering education

  4. Do nuclear engineering educators have a special responsibility

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1977-01-01

    Each 1000 MW(e) reactor in equilibrium contains 15 x 10 9 Ci of radioactivity. To handle this material safety requires an extremely high level of expertise and commitment - in many respects, an expertise that goes beyond what is demanded of any other technology. If one grants that nuclear engineering is more demanding than other engineering because the price of failure is greater, one must ask how can we inculcate into the coming generations of nuclear engineers a full sense of the responsibility they bear in practising their profession. Clearly a first requirement is that all elements of the nuclear community -utility executives, equipment engineers, operating engineers, nuclear engineers, administrators - must recognize and accept the idea that nuclear energy is something special, and that therefore its practitioners must be special. This sense must be instilled into young nuclear engineers during their education. A special responsibility therefore devolves upon nuclear engineering educators: first, to recognize the special character of their profession, and second, to convey this sense to their students. The possibility of institutionalizing this sense of responsibility by establishing a nuclear Hippocratic Oath or special canon of ethics for nuclear engineers ought to be discussed within the nuclear community. (author)

  5. Current situation of nuclear engineering education

    International Nuclear Information System (INIS)

    Queral, C.; Minguez, E.

    2001-01-01

    The last few years have seen a growing concern with the decreasing number of suitably qualified engineers and university graduates in the field of Nuclear Technology. The gap between supply and demand is now a fact in several countries, and for the reason the international community has prepared several reports on the issue that are summarized here. (Author) 4 refs

  6. A comprehensive program of nuclear engineering and science education

    International Nuclear Information System (INIS)

    Bereznai, G.; Lewis, B.

    2014-01-01

    The University of Ontario Institute of Technology offers undergraduate degrees in nuclear engineering, nuclear power, health physics and radiation science, graduate degrees (masters as well as doctorate) in nuclear engineering, and graduate diplomas that encompass a wide range of nuclear engineering and technology topics. Professional development programs tailored to specific utility needs are also offered, and the sharing of course material between the professional development and university education courses has strengthened both approaches to ensuring the high qualification levels required of professionals in the nuclear industry. (author)

  7. Undergraduate education in nuclear engineering in the USA

    International Nuclear Information System (INIS)

    Martin, W.R.

    1993-01-01

    The discipline of nuclear engineering is described, giving some historical background to explain the structure of the curricula commonly found in nuclear engineering programs in the U.S. Typical curricula are described, along with a specific example given by the University of Michigan undergraduate program in nuclear engineering. The National Academy of Sciences report on U.S. nuclear engineering education is summarized, and the major findings are presented, including data on the number of programs, number of degrees, and enrollment trends. Some discussion is made of manpower trends and the degree to which nuclear programs can supply nuclear engineers to meet the anticipated demands of the current decade and into the next century. (author) 12 refs.; 2 figs.; 4 tabs

  8. Nuclear engineering education: A competence based approach to curricula development

    International Nuclear Information System (INIS)

    2014-01-01

    Maintaining nuclear competencies in the nuclear industry is a one of the most critical challenges in the near future. With the development of a number of nuclear engineering educational programmes in several States, this publication provides guidance to decision makers in Member States on a competence based approach to curricula development, presenting the established practices and associated requirements for educational programmes in this field. It is a consolidation of best practices that will ensure sustainable, effective nuclear engineering programmes, contributing to the safe, efficient and economic operation of nuclear power plants. The information presented is drawn from a variety of recognized nuclear engineering programmes around the world and contributes to the main areas that are needed to ensure a viable and robust nuclear industry

  9. Educational experiments of radiochemistry in the nuclear engineering school

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1995-06-01

    Educational experiments of radiochemistry are described. They were an improvement of educational experiment of burn-up measurement as well as experiments on a solvent extraction, a cation exchange behavior of 60 Co, liquid scintillation spectrometry and half-life determination of 87 Rb, and determination of 137 Cs in sea water. Two or one of the experiments were ordinarily studied, depending the occasional situations, by the students of the general course or of the nuclear engineering course in the Nuclear Engineering School, Nuclear Education Center, JAERI from 1976 to 1994. (author)

  10. Education and training in nuclear science/engineering in Taiwan

    International Nuclear Information System (INIS)

    Chung, C.

    1994-01-01

    The present status of nuclear education and training in Taiwan is reviewed. The nuclear science/engineering program has been established in Taiwan under the College of Nuclear Science at the National Tsing Hua University since 1956; it remains the only program among 123 universities and colleges in Taiwan where education and training in nuclear fields are offered. The program, with 52 faculty members, offers advanced studies leading to BSc, MSc, and PhD degrees. Lectures and lab classes are given to 600 students currently registered in the program. Career placement program geared for the 200 graduate and 400 undergraduate students is to orientate them into the local nuclear power utilities as well as agricultural, medical, industrial, academic and governmental sectors where nuclear scientists and engineers at all levels are needed. 8 refs., 1 fig

  11. Matching grant program for university nuclear engineering education

    International Nuclear Information System (INIS)

    Bajorek, Stephen M.

    2002-01-01

    The grant augmented funds from Westinghouse Electric Co. to enhance the Nuclear Engineering program at KSU. The program was designed to provide educational opportunities and to train engineers for careers in the nuclear industry. It provided funding and access to Westinghouse proprietary design codes for graduate and undergraduate studies on topics of current industrial importance. Students had the opportunity to use some of the most advanced nuclear design tools in the industry and to work on actual design problems. The WCOBRA/TRAC code was used to simulate loss of coolant accidents (LOCAs)

  12. Status of nuclear engineering education in the United States

    International Nuclear Information System (INIS)

    Brown, G.J.

    2000-01-01

    Nuclear engineering education in the United States is reflective of the perceived health of the nuclear electric power industry within the country. Just as new commercial reactor orders have vanished and some power plants have shut down, so too have university enrollments shrunk and research reactors closed. This decline in nuclear trained specialists and the disappearance of the nuclear infrastructure is a trend that must be arrested and reversed if the United States is to have a workforce capable of caring for a nuclear power industry to not only meet future electric demand but to ensure that the over 100 existing plants, their supporting facilities and their legacy in the form of high level waste and facility clean-up are addressed. Additionally, the United States has an obligation to support and maintain its nuclear navy and other defence needs. And, lastly, if the United States is to have a meaningful role in the international use of nuclear power with regard to safety, non-proliferation and the environment, then it is imperative that the country continues to produce world-class nuclear engineers and scientists by supporting nuclear engineering education at its universities. The continued support of the federal government. and industry for university nuclear engineering and nuclear energy research and development is essential to sustain the nuclear infrastructure in the United States. Even with this support, and the continued excellent operation of the existing fleet of nuclear electric power plants, it is conceivable that nuclear engineering as an academic discipline may fall victim to poor communications and a tarnished public image. What is needed is a combination of federal and industrial support along with the creativity of the universities to expand their offerings to include more than power production. The objective is a positive message on careers in nuclear related fields, and recognition of the important role of nuclear energy in meeting the country

  13. Engineering opportunities in nuclear engineering

    International Nuclear Information System (INIS)

    Walton, D.G.

    1980-01-01

    The pattern of education and training of Nuclear Engineers in the UK is outlined under the headings; degree courses for professional engineers, postgraduate courses, education of technician engineers. Universities which offer specific courses are stated and useful addresses listed. (UK)

  14. Graduate nuclear engineering programmes motivate educational and research activities

    International Nuclear Information System (INIS)

    Mavko, B.

    2000-01-01

    Some fifteen years ago the University of Ljubljana, Faculty for Mathematics and Physics together with the national research organisation the J. Stefan jointly established a Graduate programme of Nuclear Engineering. From the onset, the programme focused on nuclear technology, nuclear safety, and reactor physics and environment protection. Over the years this graduate programme has became the focal point of nuclear related, research and educational activities in Slovenia. It has grown into a meeting ground for recognised national and distinguished foreign educators and experienced professionals from the industry. In conjunction with an important national project, supported by the Slovenian government, entitled 'Jung Researcher' it also enhances the knowledge transfer to the next generation. Since the programme was introduced, the interest for this programme has been steadily growing. Accordingly, a number of PhD and MS degrees in NE have been awarded. The graduates of this programme have encountered very good job opportunities in nuclear as well as in non-nuclear sector. (author)

  15. Establishing Requirements for Nuclear Engineering Educational Programs

    International Nuclear Information System (INIS)

    Geraskin, N.I.; Kosilov, A.N.; Sbaffoni, M.M.

    2014-01-01

    Conclusions: » There is no single approach in curricula development. » New programmes must fit into national requirements. » Because of the strong international interdependency of all nations using nuclear energy, it is critically important that a competent staff is engaged at all nuclear power plants in every country. » International approach for benchmarking university programs is to be in place with a direct benefit to the countries with new nuclear power projects

  16. Russian center of nuclear science and education is the way of nuclear engineering skilled personnel training

    International Nuclear Information System (INIS)

    Murogov, V.M.; Sal'nikov, N.L.

    2006-01-01

    Nuclear power engineering as the key of nuclear technologies is not only the element of the power market but also the basis of the country's social-economic progress. Obninsk as the first science town in Russia is the ideal place for the creation of integrated Science-Research Center of Nuclear Science and Technologies - The Russian Center of Nuclear Science and Education (Center for conservation and development of nuclear knowledge) [ru

  17. The Belgian Nuclear Higher Education Network: Your way to the European Master in Nuclear Engineering

    International Nuclear Information System (INIS)

    Moons, F.; D'haeseleer, W.; Giot, M.

    2004-01-01

    BNEN, the Belgian Nuclear Higher Education Network has been created in 2001 by five Belgian universities and the Belgian Nuclear Research Centre (SCK CEN) as a joint effort to maintain and further develop a high quality programme in nuclear engineering in Belgium. More information: http://www.sckcen.be/BNEN. (author)

  18. Education and training in nuclear engineering and safety

    International Nuclear Information System (INIS)

    Moons, F.; Safieh, J.; Giot, M.; Mavko, B.; Sehgal, Raj B.; Schaefer, A.; Van Goethem, G.; D'haeseleer, W.

    2007-01-01

    The need to preserve, enhance or strengthen nuclear knowledge is worldwide recognized since a couple of years. Within the 5th framework program the European Commission supports the European nuclear higher education network. The ENEN contract started on Jan 1, 2002 and lasts for 24 months. The Commission support for this 'accompanying measure' amounts to EUR 197 716. Based upon a year-long extensive exchange of views between the partners of ENEN, consisting of a representative cross section of nuclear academic institutions and research laboratories of the EU-25, a coherent and practicable concept for a European Master of Science in Nuclear Engineering has emerged. The concept is compatible with the Bologna philosophy of higher education for academic education in Europe. Pursuing the sustainability of the concept, the ENEN partners organized themselves in a non-profit-making association. Within the 6th framework program, the Commission services favourably evaluated the proposal: 'Nuclear European Platform of Training and University Organisations'. The objectives of the NEPTUNO co-ordination action are to establish a fair dialogue and a strong interaction between the academic and the industrial world and to bring all nuclear education and training activities under a common strategy of the ENEN type. The present proposal schedules for 18 months and the Commission earmarked a financial contribution of EUR 830 619. (author)

  19. Nuclear Engineering Education in Support of Thailand’s Nuclear Power Programme

    International Nuclear Information System (INIS)

    Chanyotha, S.; Pengvanich, P.; Nilsuwankosit, S.

    2015-01-01

    This paper aims to introduce the nuclear engineering education at the Department of Nuclear Engineering, Chulalongkon University, Bangkok Thailand. The department has been offering curriculum in nuclear engineering to support the national nuclear power programme since 1970s. It is the oldest established nuclear engineering educational programme in the South East Asia region. Nevertheless, since the nuclear power programme has been postponed several times due to various reasons, the educational programme at the department has been continuously adapted to meet the nation’s needs. Several areas of study have been introduced, including nuclear power engineering, industrial applications of radioisotope, nuclear instrumentation, radioisotope production, radiation processing, environment and safety, nuclear materials, as well as the newly created nuclear security and non-proliferation. With the renewed interest in using nuclear power in Thailand in 2007, the department has been actively assisting both the government and the electric utility in preparing human resources to support the nuclear power programme through various educational and training modules. Realizing the importance of establishing and balancing all 3 aspects of the nuclear 3S (safety, security and safeguard) in Thailand and in the Southeast Asian region. The new curriculum of nuclear security and safeguard programme has been offered since 2013. Since the establishment, the department has produced hundreds of graduates (Diploma, Master’s, and Ph.D. levels) to feed the continuously expanding Thai nuclear industry. The full paper will provide detailed information of the curriculum, the challenges and obstacles that the department has encountered, as well as the national and international linkages which have been established over the years. (author)

  20. Nuclear Power Engineering Education Program, University of Illinois

    International Nuclear Information System (INIS)

    Jones, B.G.

    1993-01-01

    The DOE/CECo Nuclear Power Engineering Education Program at the University of Illinois in its first year has significantly impacted the quality of the power education which our students receive. It has contributed to: the recently completed upgrade of the console of our Advanced TRIGA reactor which increases the reactor's utility for training, the procurement of new equipment to upgrade and refurbish several of the undergraduate laboratory set-ups, and the procurement of computational workstations in support of the instructional computing laboratory. In addition, smaller amounts of funds were used for the recruitment and retention of top quality graduate students, the support of faculty to visit other institutions to attract top students into the discipline, and to provide funds for faculty to participate in short courses to improve their skills and background in the power area. These items and activities have helped elevate in the student's perspective the role of nuclear power in the discipline. We feel this is having a favorable impact on student career selection and on ensuring the continued supply of well educated nuclear engineering graduates

  1. Principles of education and training of plant engineers for nuclear power stations

    International Nuclear Information System (INIS)

    Ackermann, G.; Meyer, K.; Brune, W.

    1978-01-01

    Experience in education and advanced training of nuclear engineers in the GDR is reviewed. The basic education of engineers is carried out at universities and colleges. Graduate engineers who have been working in non-nuclear industries for a longer time receive their basic education in nuclear engineering through postgraduate studies. Graduate engineers with a basic knowledge of nuclear engineering are trained at the Nuclear Power Plant School of the Rheinsberg nuclear power plant and at the nuclear power plants of the GDR under operational conditions relating to their future job. In addition to basic theoretical knowledge, training at a nuclear power plant simulator plays an important role. This permits training of the staff under normal operating conditions including transient processes and under unusual conditions. Further particular modes of advanced professional training such as courses in radiation protection and further postgraduate studies are described. This system of education has proved successful. It will be developed further to meet the growing demands. (author)

  2. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1990-01-01

    The research and teaching operations of the Nuclear Chemistry Division of the Dept. of Chemistry and the Dept. of Nuclear Engineering are housed at the Oregon State University Radiation Center. This facility which includes a 1.1 MW TRIGA reactor was used for 53 classes from a number of different academic departments last year. About one-half of these classes used the reactor and ∼25% of the reactor's 45 hour week was devoted to teaching. Descriptions will be given of reactor-oriented instructional programs in nuclear engineering, radiation health and nuclear chemistry. In nuclear chemistry, classes in (a) nuclear chemistry for nuclear engineers, (b) radiotracer methods, (c) elementary and advanced activation analysis, and (d) advanced nuclear instrumentation will be described in detail. The use of the facility to promote general nuclear literacy among college students, high school and grade school students and the general population will also be covered

  3. A brief history of graduate distance education in nuclear engineering at Penn State Univ

    International Nuclear Information System (INIS)

    Hochreiter, L. E.; Zimmerman, D. L.; Brenizer Jr, J. S.; Stark, M. A.

    2006-01-01

    The Pennsylvania State University Nuclear Engineering Distance Education Program has a twenty year history of providing graduate level distance education in Nuclear Engineering. The Distance Education Program was initiated as a specific program which was developed for the Westinghouse Energy Systems Divisions in Pittsburgh. In 1983, Carnegie-Mellon University (CMU) decided to terminate its small Nuclear Engineering Program. Up until that time, Westinghouse employees could enroll at CMU for graduate classes in Nuclear Engineering as well as other engineering disciplines and could obtain a masters degree or if desired, could continue for a Ph.D. degree. (authors)

  4. Educational laboratory experiments on chemistry in a nuclear engineering school

    International Nuclear Information System (INIS)

    Akatsu, E.

    1982-01-01

    An educational laboratory experiment on radiochemistry was investigated by students in the general course of the Nuclear Engineering School of Japan Atomic Energy Research Institute. Most of them are not chemical engineers, but electrical and mechanical engineers. Therefore, the educational experiment was designed for them by introducing a ''word experiment'' in the initial stage and by reducing the chemical procedure as far as possible. It began with calculations on a simple solvent extraction process-the ''word experiment''--followed by the chemical separation of 144 Pr from 144 Ce with tri-n-butyl phosphate in a nitric acid system and then measurement of the radioactive decay and growth of the separated 144 Pr and 144 Ce, respectively. The chemical procedure was explained by the phenomenon but not by the mechanism of chelation. Most students thought the experiment was an exercise in solvent extraction or radiochemical separation rather than a radioactive equilibrium experiment. However, a pure chemist considered it as a sort of physical experiment, where the chemical procedure was used only for preparation of measuring samples. Another experiment, where 137 Cs was measured after isolation with ammonium phosphomolybdate, was also investigated. The experiment eliminated the need for students who were not chemists to know how to use radioactive tracers. These students appreciated the realization that they could understand the radioactivity in the environmental samples in a chemical frame of reference even though they were not chemists

  5. The Romanian educational system in nuclear engineering field - experience and new approaches

    International Nuclear Information System (INIS)

    Dragusin, O.; Burghelea, A.

    2001-01-01

    In this paper we would like to present the actual status of the education in the nuclear engineering field at 'Pantholic' University Bucharest, Romania, Power Engineering Faculty, Nuclear Power Plant Department, and also the efforts of integration of the educational system of Romania into the international system and the development of new concepts concerning the education of the new specialists generation. (authors)

  6. Digital Innovation and Nuclear Engineering Education in UNED: Challenges, Trends and Opportunities

    International Nuclear Information System (INIS)

    Alonso-Ramos, M.; Sánchez-Elvira Paniagua, Á.; Martín, S.; Castro Gil, M.; Sanz Gozalo, J.

    2016-01-01

    Full text: Innovation in nuclear engineering education should reflect the current challenges, trends and opportunities that digital technologies are promoting in the whole educational field. The European Commission has recently stressed that technology and open educational resources represent clear opportunities to reshape EU education, contributing to the necessary modernization of higher education in order to give response to XXI century challenges. In this paper, the innovations that the Spanish National Distance Education University (UNED) are making in the digital education domain, including open educational resources (OER) and massive open online courses (MOOCs) developments applied to science, technology, engineering and mathematics (STEM) and the nuclear engineering field, are presented. (author

  7. Current Status and Issues of Nuclear Engineering Research and Educational Facilities in Universities

    International Nuclear Information System (INIS)

    2004-01-01

    It is important to discuss about nuclear engineering research and educational facilities in universities after new educational foundation. 12 universities investigated issues and a countermeasure of them. The results of a questionnaire survey, issues and countermeasure are shown in this paper. The questionnaire on the future nuclear researches, development of education, project, maintenance of nuclear and radioactive facilities and accelerator, control of uranium in subcritical test facilities, use of new corporation facilities, the fixed number of student, number of graduate, student experiments, themes of experiments and researches, the state of educational facilities are carried out. The results of questionnaire were summarized as followings: the fixed number of student (B/M/D) on nuclear engineering, exercise of reactor, education, themes, educational and research facilities, significance of nuclear engineering education in university and proposal. (S.Y.)

  8. Development of Nuclear Engineering Educational Program at Ibaraki University with Regional Collaboration

    Science.gov (United States)

    Matsumura, Kunihito; Kaminaga, Fumito; Kanto, Yasuhiro; Tanaka, Nobuatsu; Saigusa, Mikio; Kikuchi, Kenji; Kurumada, Akira

    The College of Engineering, Ibaraki University is located at the Hitachi city, in the north part of Ibaraki prefecture. Hitachi and Tokai areas are well known as concentration of advanced technology center of nuclear power research organizations. By considering these regional advantages, we developed a new nuclear engineering educational program for students in the Collage of Engineering and The Graduate School of Science and Engineering of Ibaraki University. The program is consisted of the fundamental lectures of nuclear engineering and nuclear engineering experiments. In addition, several observation learning programs by visiting cooperative organizations are also included in the curriculum. In this paper, we report about the progress of the new educational program for nuclear engineering in Ibaraki University.

  9. Lessons Learned on University Education Programs of Chemical Engineering Principles for Nuclear Plant Operations - 13588

    International Nuclear Information System (INIS)

    Ryu, Jun-hyung

    2013-01-01

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a huge opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)

  10. Educating nuclear engineers by nuclear science and technology master at UPM

    Energy Technology Data Exchange (ETDEWEB)

    Ahnert, C.; Minguez, E.; Perlado, M. [Universidad Politecnica de Madrid (Spain). Dept. de Ingenieria Nuclear; and others

    2014-05-15

    One of the main objectives of the Master on Nuclear Science and Technology implemented in the Universidad Politecnica de Madrid, is the training for the development of methodologies of simulation and advanced analysis necessary in research and in professional work in the nuclear field, for Fission Reactors and Nuclear Fusion, including fuel cycle and safety aspects. The students are able to use the current computational methodologies/codes for nuclear engineering that covers a difficult gap between nuclear reactor theory and simulations. Also they are able to use some facilities, as the Interactive Graphical Simulator of PWR power plant that is an optimal tool to transfer the knowledge of the physical phenomena that are involved in the nuclear power plants, from the nuclear reactor to the whole set of systems and equipment on a nuclear power plant. The new Internet reactor laboratory to be implemented will help to understand the Reactor Physics concepts. The experimental set-ups for neutron research and for coating fabrication offer new opportunities for training and research activities. All of them are relevant tools for motivation of the students, and to complete the theoretical lessons. They also follow the tendency recommended for the European Space for higher Education (Bologna) adapted studies. (orig.)

  11. Educating nuclear engineers by nuclear science and technology master at UPM

    International Nuclear Information System (INIS)

    Ahnert, C.; Minguez, E.; Perlado, M.

    2014-01-01

    One of the main objectives of the Master on Nuclear Science and Technology implemented in the Universidad Politecnica de Madrid, is the training for the development of methodologies of simulation and advanced analysis necessary in research and in professional work in the nuclear field, for Fission Reactors and Nuclear Fusion, including fuel cycle and safety aspects. The students are able to use the current computational methodologies/codes for nuclear engineering that covers a difficult gap between nuclear reactor theory and simulations. Also they are able to use some facilities, as the Interactive Graphical Simulator of PWR power plant that is an optimal tool to transfer the knowledge of the physical phenomena that are involved in the nuclear power plants, from the nuclear reactor to the whole set of systems and equipment on a nuclear power plant. The new Internet reactor laboratory to be implemented will help to understand the Reactor Physics concepts. The experimental set-ups for neutron research and for coating fabrication offer new opportunities for training and research activities. All of them are relevant tools for motivation of the students, and to complete the theoretical lessons. They also follow the tendency recommended for the European Space for higher Education (Bologna) adapted studies. (orig.)

  12. Overview of codes and tools for nuclear engineering education

    Science.gov (United States)

    Yakovlev, D.; Pryakhin, A.; Medvedeva, L.

    2017-01-01

    The recent world trends in nuclear education have been developed in the direction of social education, networking, virtual tools and codes. MEPhI as a global leader on the world education market implements new advanced technologies for the distance and online learning and for student research work. MEPhI produced special codes, tools and web resources based on the internet platform to support education in the field of nuclear technology. At the same time, MEPhI actively uses codes and tools from the third parties. Several types of the tools are considered: calculation codes, nuclear data visualization tools, virtual labs, PC-based educational simulators for nuclear power plants (NPP), CLP4NET, education web-platforms, distance courses (MOOCs and controlled and managed content systems). The university pays special attention to integrated products such as CLP4NET, which is not a learning course, but serves to automate the process of learning through distance technologies. CLP4NET organizes all tools in the same information space. Up to now, MEPhI has achieved significant results in the field of distance education and online system implementation.

  13. Fifty years experiences in nuclear engineering education at Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Fujii, Yasuhiko; Saito, Masaki; Aritomi, Masanori

    2008-01-01

    Nuclear engineering education has been initiated in 1957 at the graduate school of Tokyo Institute of Technology. Educational activities have been conducted for fifty years under the support of the Research Laboratory for Nuclear Reactors. In the past fifty years, about 1000 Master students and 200 Doctoral students and 200 Doctoral students graduated from our Nuclear Engineering Department at Tokyo Institute of Technology. Many of them found their jobs in nuclear industries and institutes. International course of nuclear engineering was initiated in 1994, and so far about 90 students from 15 overseas countries have graduated from our Master and Doctoral Programs. In 2003, our proposal of 'Innovative Nuclear Energy System for the Sustainable World' was adopted as the Center of Excellent Program sponsored by Ministry of Education, Science and Technology. Recently a collaborative education network has been developed among Kanazawa University, Fukui University, Ibaraki University, Okayama University, Tokyo Institute of Technology and Japan Atomic Energy Agency. (author)

  14. Education and training for nuclear scientists and engineers at NuTEC/JAEA

    International Nuclear Information System (INIS)

    Kushita, Kouhei; Sugimoto, Jun; Sakamoto, Ryuichi; Arai, Nobuyoshi; Hattori, Takamitsu; Matsuda, Kenji; Ikuta, Yuko; Sato, K.

    2009-01-01

    Because of the increasing demand of nuclear engineers in recent years, which is sometimes called as the age of nuclear Renaissance, while nuclear engineers have been decreasing and technical knowledge and expertise have not necessarily been transferred to the younger generations, human resources development (HRD) has been regarded as one of the most important issues in the nuclear field in Japan as well as in the world. Nuclear Technology and Education Center (NuTEC) at Japan Atomic Energy Agency (JAEA) have conducted comprehensive nuclear education and training activities in the past half century, which cover; 1) education and training for domestic nuclear engineers, 2) cooperation with universities, and 3) international cooperation. The main feature of NuTEC's training programs is that emphasis is placed on the laboratory exercise with well-equipped training facilities and expertise of lecturers mostly from JAEA. The wide spectrum of cooperative activities have been pursued with universities, which includes newly developed remote-education system, and also with international organizations, such as with FNCA countries and IAEA. For the nuclear education and trainings, utilization of nuclear reactors is of special importance. Examples of training programs using nuclear reactors are reported. Future plan to use nuclear reactors such as JMTR for the nuclear educations is also introduced. (author)

  15. KINGS Model: Achieving Sustainable Change in Nuclear Engineering Education for the Post-COP21 Era

    International Nuclear Information System (INIS)

    Oh, S.-K.

    2016-01-01

    Full text: In spite of the world nuclear community’s systematic and multilateral efforts during the COP21, most of the conference participants were reluctant to acknowledge the value of nuclear as a low-carbon energy source. In fact, the on-going aftermath of the Fukushima nuclear disaster has been overwhelming despite the evidence that there was neither any critical technical flaw nor fatal radiation casualties. This shows that advanced nuclear knowledge failed to resonate with public perception on nuclear energy. In this respect, it is now time to focus on achieving sustainable change in nuclear engineering education for the future. The KEPCO International Nuclear Graduate School (KINGS) was established to nurture leadership-level nuclear power professionals in the global standard. It affiliates with Korean nuclear industry to achieve three major goals that are also a universal prerequisite for higher education of engineering in the 21st century as follows: “a balance between education and training,” “harmony between engineering and managerial skills,” and “the application of systems engineering to nuclear power projects.” KINGS curriculum requires transdisciplinary coordination among engineering disciplines, engineering specialties, and socioeconomic methods. (author

  16. Postgraduate education in nuclear engineering: towards an european degree

    International Nuclear Information System (INIS)

    Giot, M.

    2000-01-01

    This paper presents the postgraduate degree in nuclear engineering jointly organised by four universities of the French Community of Belgium, and its possible evolution towards an European degree. The project includes the location of the programme outside the partner universities at the premises of the SCK.CEN, a modular structure of the curriculum, and an increased co-operation of the teaching staff within small groups of experts including academics, researchers and practitioners from the nuclear industry. This programme would favour the exchange of students and professors through a network of top quality European institutions pursuing the same teaching objectives. (author)

  17. The Nuclear Department, Royal Naval School of Marine Engineering - Provision of nuclear education and training to the naval nuclear propulsion programme and beyond

    International Nuclear Information System (INIS)

    Trethewey, K.R.; Beeley, P.A.; Lockwood, R.S.; Harrop, I.

    2004-01-01

    The Nuclear Department at HMS SULTAN provides education, training and research support to the Royal Navy Nuclear Propulsion Programme, as well as a growing number of civilian programmes within the wider British nuclear industry. As an aspiring centre of excellence in nuclear engineering, the Department will play an important role as a repository of nuclear knowledge for the foreseeable future. (author)

  18. Principles of education and training of industrial engineers for nuclear power plants

    International Nuclear Information System (INIS)

    Ackermann, G.; Meyer, K.; Brune, W.

    1977-01-01

    The report gives a short account of the development and experience of the education and advanced professional training system for engineers for the nuclear power stations of the GDR. The basic education for engineers is carried out at universities and colleges. Graduate engineers who have been working in industrial establishments outside nuclear power stations for a longer time get their basic education in nuclear engineering through postgraduate studies. Graduate engineers with a basic knowledge of nuclear engineering are trained at the Nuclear Power Plant School of the nuclear power station Rheinsberg and at the nuclear power stations of the GDR under practical conditions relating to their future job. In addition to basic theoretical knowledge, training at a nuclear power plant simulator plays an important role. This permits the training of the staff under regular operating conditions including transient processes and under unusual conditions. Further particular modes of advanced professional training such as courses in radiation protection and further postgraduate studies are described. This system of education has proved successful. It will be developed further to meet the growing demands. (author)

  19. The Belgian nuclear higher education network: the evolution of an academic programme in nuclear engineering

    International Nuclear Information System (INIS)

    Berkvens, T.; Coeck, M.

    2014-01-01

    The master-after-master in nuclear engineering provided by the Belgian Nuclear higher Education Network (BNEN) is a one-year, 60 ECTS programme which combines the expertise of six Belgian universities and SCK.CEN, the Belgian Nuclear Research Centre, which participates through its Academy for Nuclear Science and Technology. It was created in close collaboration with representatives of academia, research centres, industry and other nuclear stakeholders. The BNEN consortium Due to its modular programme, BNEN is accessible for both full-time students (mainly young engineering graduates) as well as young professionals already employed in the nuclear industry. The programme is offered in English to facilitate the participation of international students. One of the important aspects of the BNEN programme is the fact that exercises and hands-on sessions in the specialised laboratories of SCK.CEN complement the theoretical classes to bring the students into contact with all facets of nuclear energy. Several of SCK.CEN's researchers provide valuable contributions to the programme through seminars and practical exercises. From their daily practices and responsibilities they give an expert view on the subjects that are being taught. In 2012, in the framework of an official accreditation process all aspects of the BNEN programme were audited by an international visitation panel. The most important outcome of this process is the current reform of the academic programme, which will be implemented in the academic year 2014-2015, taking into account the recommendations by the visitation panel. In this paper, the history of the BNEN programme will be discussed, the new BNEN programme will be presented as well as the process that has led to its implementation. (authors)

  20. Approaches to nontraditional delivery of nuclear engineering education

    International Nuclear Information System (INIS)

    Malaviya, B.K.

    1991-01-01

    At Rensselaer Polytechnic Institute, the faculty of the nuclear engineering and engineering physics department have, over the years, been involved in a variety of such approaches in response to the changing needs of nuclear industry personnel. A number of different types of short course and workshop programs have been developed and implemented both on and off campus in such areas as basic nuclear technology, reactor design computer codes and applications, nuclear power plant design and maintenance, reactor operations, health physics, modern developments in boiling heat transfer and two-phase flow, and probabilistic risk assessment. Customized coursed tailored to meet the particular needs of personnel in specialized areas can also be offered on specific industrial site locations, generally resulting in substantial savings of time as well as costs associated with tuition, travel, lodging. The Rensselaer Satellite Video Program (RSVP) brings the latest technological aids to the nontraditional delivery of courses and provides the facilities and opportunities for off-campus students and professional personnel to participate in regular academic programs and courses without leaving their industrial sites

  1. A Program for Cultivating Nuclear Talent at Engineering Educational Institute in a Remote Area from Nuclear Power Plants

    Science.gov (United States)

    Takahashi, Tsuyoshi

    Recently, in Japan, the number of students who hope for finding employment at the nuclear power company has decreased as students‧ concern for the nuclear power industry decreases. To improve the situation, Ministry of Education, Culture, Sports, Science and Technology launched the program of cultivating talent for nuclear power which supports research and education of nuclear power in the academic year of 2007. Supported by the program, Kushiro College of Technology conducted several activities concerning nuclear power for about a year. The students came to be interested in nuclear engineering through these activities and its results.

  2. Nuclear Science and Engineering education at the Delft University of Technology

    International Nuclear Information System (INIS)

    Bode, P.

    2009-01-01

    There is a national awareness in the Netherlands for strengthening education in the nuclear sciences, because of the ageing workforce, and to ensure competence as acceptability increases of nuclear power as an option for diversification of the energy supply. This may be reflected by the rapidly increasing number of students at the Delft University of Technology with interest in nuclear science oriented courses, and related bachelor and MSc graduation projects. These considerations formed the basis of the Nuclear Science and Engineering concentration, effectively starting in 2009. The programme can be taken as focus of the Research and Development Specialisation within the Master Programme in Applied Physics or as a Specialisation within the Master's Programme in Chemical Engineering. Both programmes require successful completion of a total of 120 ECTS study points, consisting of two academic years of 60 ECTS (1680 hours of study). Of that total, 100 ECTS are in the field of Nuclear Science and Engineering, depending on students choices within the programme, including a (industrial) internship, to be taken in companies all over the world. In Chemical Engineering, there is a compulsory design project during which a product or process should be developed. Both programmes also require a final graduation project. In both curricula, Nuclear Science and Engineering comprises compulsory and elective courses, which allow students to focus on either health or energy. Examples of courses include Nuclear Science, Nuclear Chemistry, Nuclear Engineering, Reactor Physics, Chemistry of the Nuclear Fuel Cycle, Medical Physics and Radiation Technology and Radiological Health Physics. (Author)

  3. Program plan for US Department of Energy support for nuclear engineering education

    International Nuclear Information System (INIS)

    Perkins, L.

    1992-01-01

    This document describes the plan developed to address the growing concern for the continued deterioration of nuclear engineering education in the United States and its ability to meet the manpower demands for this Nation's work force requiring nuclear related talent in the foreseeable future

  4. Experience with a top-down versus bottom-up nuclear engineering educational paradigm

    International Nuclear Information System (INIS)

    Harms, A.A.

    1991-01-01

    Nuclear engineering courses are generally taught from a top-down pedagogical perspective; i.e., one begins with a body of knowledge drawn from advanced nuclear science, engineering, and experience and from this distills a selected part to match the intellectual capacity of the class. This pedagogical approach has evidently been most effect at the graduate level of instruction as evidenced by the ready entry of masters and doctoral students into the professions. A schematic depiction of this approach is suggested and is extended to the undergraduate level of nuclear engineering education

  5. Post TMI-2 view on the responsibilities of nuclear engineering educators

    International Nuclear Information System (INIS)

    Long, R.L.

    1980-01-01

    The Three Mile Island (TMI) accident of March 28, 1979 was the result of a complex set of interactions involving design deficiencies, equipment failure and human error. Nuclear engineering educators may need to accept responsibility for some of the underlying, industry-wide causes leading to the event. The many detailed investigations and recommendations following the accident are certain to have a significant impact on nuclear engineering education. Areas of impact include changes in curricula, increased demand for graduates, heavier involvement in utility staff training and education, and new approaches to university, industry, and societal interactions

  6. Interactive virtual laboratory for distance education in nuclear engineering

    International Nuclear Information System (INIS)

    Jain, P.; Stubbins, J.; Uddin, R.

    2006-01-01

    A real time, distance lab module is being developed and implemented in the Dept. of Nuclear, Plasma and Radiological Engineering at the Univ. of Illinois at Urbana-Champaign. This internet based system allows remote personnel to watch the experiments, acquire data, and interact with on-site personnel. The e-lab broadcasts not only the live scenes of laboratory and experiments, but also the real time data and plots being measured and displayed in graphical and other formats. Moreover, use of LabVIEW's remote front panel feature allows communications between the local lab and remote client so that, if permitted, remote client can control part or all of the experiment in real-time. (authors)

  7. Experience in nuclear engineering distance education at the University of Tennessee

    International Nuclear Information System (INIS)

    Dodds, H.L.

    2011-01-01

    This paper describes the distance education programs in nuclear engineering at The University of Tennessee (UT), which includes several courses that are of interest to the mathematics and computation community such as reactor theory and design, shielding, statistics, health physics, and criticality safety. All of the courses needed for the MS degree in nuclear engineering and several of the courses needed for the PhD degree in nuclear engineering are delivered synchronously (i.e., interactive in real time) via the Internet to students located anywhere by instructors located anywhere. The paper will also describe the historical development of distance education programs at UT as well as the benefits of the programs to students and to the university. The oral presentation associated with this paper will include a short movie that demonstrates the technology used for distance delivery. (author)

  8. Education of 'nuclear' students (BSc and MSc curricula) at the Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague

    International Nuclear Information System (INIS)

    Matejka, K.; Zeman, J.

    2003-01-01

    The Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague has been educating nuclear power engineering experts for nearly half a century. The article describes the current status and prospects of education of new specialists at the faculty for all nuclear power-related areas within the MSc and BSc level curricula. The current transition to 'European type' structured education, enabling students who have graduated from the BSc programme to continue smoothly their MSc programme, is outlined. The major courses of the 'Nuclear Engineering' educational specialisation, focused on nuclear power, environment, and dosimetry, are highlighted, including the number of lessons taught in each study year. (author)

  9. OPPA Project: Modernization of practical education of CTU FNSPE Nuclear Engineering students - two selected exercises

    International Nuclear Information System (INIS)

    Prusa, P.; Musilek, L.

    2014-01-01

    The project under the title OPPA CZ.2.17/3.1.00/36038 'Modernization of Practical Education of CTU FNSPE Nuclear Engineering students' provides an opportunity to innovate existing exercises and set up new experimental exercises. The Department of Dosimetry and Application of Ionising Radiation has prepared or innovated the exercises which are described. (authors)

  10. Round table discussion 'nuclear engineering education viewed from the industry stand point'

    International Nuclear Information System (INIS)

    1980-01-01

    With a short introduction of the present status of recruitment, on the job training programs for graduates from university are presented by several utilities and engineering constructors of nuclear power plant. Their opinions are given on the educational requirements which are considered most beneficial to the successful conduct of practical work. Comments are made by university professors and research scientists. (author)

  11. Personal view of educating two-phase flow and human resource development as a nuclear engineer

    International Nuclear Information System (INIS)

    Hotta, Akitoshi

    2010-01-01

    As an engineer who has devoted himself in the nuclear industry for almost three decades, the author gave a personal view on educating two-phase flow and developing human resources. An expected role of universities in on-going discussions of collaboration among industry-government-academia is introduced. Reformation of two-phase flow education is discussed from two extreme viewpoints, the basic structure of physics and the practical system analysis. (author)

  12. Program for educating nuclear engineers in Japan. Partnership with industry, government and academe begins

    International Nuclear Information System (INIS)

    Meshii, Toshiyuki

    2007-01-01

    Since the beginning of the 21st century, educating the next generation of nuclear engineers has been of interest to groups who are concerned with the recent decline in the number of nuclear engineers in universities and industries. Discussions and proposals have been summarized in independent reports by industry (JAIF; Japan Atomic Industrial Forum), government (Science Council of Japan) and the academe (AESJ; Atomic Energy Society of Japan). In June 2005 a Committee on Education (CE) was established within AESJ with the intention of coordinating the groups interested in nuclear education in Japan. The birth of CE was timely, because the importance of nuclear education was emphasized in 'Framework for Nuclear Energy Policy (Oct., 2005)' which was adopted by the Atomic Energy Commission. The Nuclear Energy Subcommittee of the METI (Ministry of Economy, Trade and Industry) Advisory Committee deliberated concrete actions for achieving the basic goals of the Framework for Nuclear Energy Policy and their recommendations were drawn up as a 'Nuclear Energy National Plan'. This was the MEXT (Ministry of Education, Culture, Sports, Science and Technology) and METI action plan to create nuclear energy training programs for universities, etc. A task group, consisting of members from industry, government and academe was organized within JAIF to give advice to these training programs. The author of this paper (and chairman of CE) participated in and made proposals to the task group as a representative of the academe. In this paper, the proposal made by CE and the outline of the final program will be reported. Furthermore, the importance of the partnership between industry, government and academe will be emphasized. (author)

  13. Disciplinary analysis of nuclear engineering education for 21st century style science and technology

    International Nuclear Information System (INIS)

    Woo, Taeho

    2012-01-01

    The nuclear engineering education (NEE) is analyzed by the aspect of the advanced science and technology which is characterized by interdisciplinary R and D. The creative innovation is a goal of the education. This work is performed by the conceptual analysis and numerical analysis. Creativity and its innovation are represented as a critical role in the science and technology. So, the education should follow the characteristics of the creativity and its innovation philosophy. Using system dynamics (SD) method, the quantification of the education effect is performed. In addition, the dynamical simulation shows the expected situations of the education usefulness. The final result shows the highest value is 19.11 of Nuclear Industry Innovation. The value increases gradually. So, the education is well developed, as time goes on in this study. In this paper, the education of the nuclear science and technology is modelled for the interdisciplinary promotions in the nuclear industry. The conventional technology has focused on the unit subject and its related technologies. By the way, creativity and its innovation are shown as a critical role in the science and technology. Hence, the education should follow the characteristics of the creativity and its innovation philosophy. Following the characteristics of the 21 st style science and technology, it is necessary to construct the education program of the information technology (IT), nanotechnology (NT), and biotechnology (BT). (orig.)

  14. Disciplinary analysis of nuclear engineering education for 21{sup st} century style science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Taeho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering; Yoon, Jaehwan [2G-PEM Engineers, Inc., Seoul (Korea, Republic of)

    2012-03-15

    The nuclear engineering education (NEE) is analyzed by the aspect of the advanced science and technology which is characterized by interdisciplinary R and D. The creative innovation is a goal of the education. This work is performed by the conceptual analysis and numerical analysis. Creativity and its innovation are represented as a critical role in the science and technology. So, the education should follow the characteristics of the creativity and its innovation philosophy. Using system dynamics (SD) method, the quantification of the education effect is performed. In addition, the dynamical simulation shows the expected situations of the education usefulness. The final result shows the highest value is 19.11 of Nuclear Industry Innovation. The value increases gradually. So, the education is well developed, as time goes on in this study. In this paper, the education of the nuclear science and technology is modelled for the interdisciplinary promotions in the nuclear industry. The conventional technology has focused on the unit subject and its related technologies. By the way, creativity and its innovation are shown as a critical role in the science and technology. Hence, the education should follow the characteristics of the creativity and its innovation philosophy. Following the characteristics of the 21{sup st} style science and technology, it is necessary to construct the education program of the information technology (IT), nanotechnology (NT), and biotechnology (BT). (orig.)

  15. Introduction to nuclear engineering

    International Nuclear Information System (INIS)

    Gylys, J.

    1997-01-01

    The textbook, which is the first book in Lithuanian on this subject generalises information on key aspects of nuclear engineering. Specialists in nuclear power for Ignalina NPP and for the infrastructure of nuclear energy sector of Lithuania are prepared at Kaunas University of Technology. The textbooks the students and lecturers have been using to-date were mostly in other languages than Lithuanian and they have not been adapted for teaching in Lithuania's higher educational establishments. This textbook is useful also to anyone who is interested in the issues and future prospects of nuclear power. It contains the chapters on nuclear reactions, theory of nuclear reactors, nuclear reactors kinetics, neutronic analysis, thermalhydraulic calculations of nuclear reactors operation and description of the construction of Ignalina NPP. (author)

  16. Nuclear industry will be short of engineers

    International Nuclear Information System (INIS)

    Yates, M.

    1990-01-01

    This article discusses the potential shortage of nuclear engineers due to reduction of educational and training facilities and difficulty in attracting minorities into nuclear engineering. The article reports on recommendations from the National Research Council Nuclear Education Study Committee on attracting minorities to nuclear engineering, increasing DOE fellowships, funding for research and development, involvement of utilities and vendors, and support of the American Nuclear Society's advocacy of nuclear engineering education

  17. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Bess, J.D.; Briggs, J.B.; Garcia, A.S.

    2011-01-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  18. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  19. History of nuclear engineering curricula

    International Nuclear Information System (INIS)

    Murphy, G.

    1975-01-01

    With the realization that nuclear energy had a vast potential for peacetime development, universities throughout the country began to develop courses in nuclear energy. A pioneering educational effort was necessary because there was an inadequate number of trained faculty, no established curricula, no textbooks, and very little suitable equipment. Nevertheless, by the early 1950's, several programs in nuclear science and engineering were beginning to provide instruction to potential nuclear engineers. At that time, the American Society for Engineering Education (ASEE) established a nuclear committee to cooperate with the U. S. Atomic Energy Commission (AEC) in nuclear education matters. With the financial support of the AEC, textbook material was developed, faculty training programs were instituted, and funds were made available for equipment. Because of the large interest shown in the field, many colleges and universities began to develop nuclear engineering curricula. After a few years, the need arose for general guidelines in curricular development. This led to the development of a Committee on Objective Criteria in Nuclear Engineering Education in which ASEE and the American Nuclear Society cooperated with the support of AEC. The committee report emphasized basic science, nuclear energy concepts, and nuclear technology, which have continued to be the significant components of a nuclear engineering curriculum. The last ten years have brought increased emphasis on BS programs, the introduction of extensive computer-based instruction, and an increasing emphasis on the engineering aspects of nuclear reactor power systems

  20. UMCP-BG and E collaboration in nuclear power engineering in the framework of DOE-Utility Nuclear Power Engineering Education Matching Grant Program

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Lothar PhD

    2000-03-01

    The DOE-Utility Nuclear Power Engineering Education Matching Grant Program has been established to support the education of students in Nuclear Engineering Programs to maintain a knowledgeable workforce in the United States in order to keep nuclear power as a viable component in a mix of energy sources for the country. The involvement of the utility industry ensures that this grant program satisfies the needs and requirements of local nuclear energy producers and at the same time establishes a strong linkage between education and day-to-day nuclear power generation. As of 1997, seventeen pairs of university-utility partners existed. UMCP was never a member of that group of universities, but applied for the first time with a proposal to Baltimore Gas and Electric Company in January 1999 [1]. This proposal was generously granted by BG&E [2,3] in the form of a gift in the amount of $25,000 from BG&E's Corporate Contribution Program. Upon the arrival of a newly appointed Director of Administration in the Department of Materials and Nuclear Engineering, the BG&E check was deposited into the University's Maryland Foundation Fund. The receipt of the letter and the check enabled UMCP to apply for DOE's matching funds in the same amount by a proposal.

  1. Education and training of future nuclear engineers through the use of an interactive plant simulator

    International Nuclear Information System (INIS)

    Ahnert, C.; Cuervo, D.; Garcia-Herranz, N.; Aragones, J.M.; Cabellos, O.; Gallego, E.; Minguez, E.; Lorente, A.; Piedra, D.; Rebollo, L.; Blanco, J.

    2010-01-01

    The International Atomic Energy Agency (IAEA) sponsors the development of nuclear reactor simulators for education, or arranges the supply of such simulation programs. Aware of this, the Department of Nuclear Engineering of the Universidad Politecnica de Madrid was provided in 2008 with the Interactive Graphical Simulator of the Spanish nuclear power plant Jose Cabrera, whose operation ceased definitively in 2006. According with the IAEA-TECDOC- 1411, the simulator is a Graphical Simulator, used for training of main control room personnel, technical support engineers, and operations management. This paper presents all the work performed at the Department to turn the simulator into a teaching/learning tool, to be use in the nuclear engineering studies following guidance found in: Shtub, A. Parush, T.T. Hewett 'The use of simulation in learning and teaching' (Int. J. Eng. Educ., 25(2), 2009, pp. 206-208). The experience obtained so far with the use of the simulator has been very successful. The graduate students involved in the development of the projects, practices and documents related with the simulator show a great interest for the work that they are doing making that the laboratory where the simulator is installed to be busy place. Regarding the undergraduate students, the practices in the simulator encourage them to follow the Nuclear Energy studies in the Engineering Schools, what is very rewarding for the Department professors. The simulator has proved to be an optimal tool to transfer the knowledge of the physical phenomena that are involved in the nuclear power plants, from the nuclear reactor to the whole set of systems and equipments on a nuclear power plant. It is also a relevant tool for motivation of the students, and to complete the theoretical lessons. This use of the simulator in the learning-teaching process meats also the criteria recommended for the Bologna adapted studies, as it helps to increase the private hands-on work of the student, and

  2. Role of the Vinca Institute in nuclear engineering and radiation protection education

    International Nuclear Information System (INIS)

    Pesic, M.

    2002-01-01

    Education programmes in nuclear engineering and radiation protection in former Yugoslavia have been supported by comprehensive research and development and pertinent training of experts and students in the Vinca (former B oris Kidric ) Institute of nuclear sciences and abroad. Two research reactors were constructed and operated in the Vinca Institute since 1958. Adopted law on ban for NPP construction, isolation of the country due to the UN sanctions and weak economical situation deteriorated considerably the nuclear expertise in Serbia after 1989. Nuclear courses at the University were revoked, major research programmes were cancelled, RA research reactor in the Vinca Institute was shut down and many experts left the country. A novel nuclear programme related to remedial of nuclear and radiation safety in the Vinca Institute has been launched in 2003. This paper emphasizes the need for nuclear expertise, the lack of nuclear professionals to carry out the new programme, the experience gained so far and point out a possible future creative role of the Vinca Institute in education of new experts in the country and abroad. (author)

  3. Nuclear engineering education in the United States: The first 50 years

    International Nuclear Information System (INIS)

    Brown, G.

    2004-01-01

    Full text: This paper will discuss recent trends in the nuclear engineering education infrastructure in the United States. In the last several years political, economic and technical issues have been addressed and nuclear technology appears poised to resume growing again. It is in this new environment that there has been a confluence of industry, government and academic interests to see that nuclear engineering education retains its vitality and ability to provide technological leadership and a well-educated workforce. In order to understand the current situation it is important to give a brief historical perspective covering the six decades since the inception of 'Atoms for Peace' in 1953. The passage of the Atomic Energy Act of 1954 established the Atomic Energy Commission and the declassification of much nuclear technology and scientific material. There was an understandable optimistic outlook as to the potential for nuclear technology in the areas of power, medicine and other industrial and scientific applications. There were commercial concepts for using nuclear energy to power ships, planes, rockets, and cars. But the must successful application, by far was in the area of electric power production. In only a few years demonstration nuclear power plants were built and the infamous quote - 'two cheap to meter' was reported. In the following decade much progress was made and commercial plant orders increased substantially in number and in size. There were going to light water reactors, gas cooled reactors, liquid metal fast reactors, reprocessing, waste buried in salt mines. There was going to be 'a 1000 reactors in the year 2000'. This was the picture in the United States in the 50's and 60's. And it was in this environment that nuclear engineering education was birthed and grew. The first nuclear engineering academic programs and university research reactors were established in the 1950's at such places as North Carolina State, MIT, Penn State and others

  4. Experience and co-operation in the development of nuclear engineering education

    International Nuclear Information System (INIS)

    Brochard, D.; Gladieux, A.

    1998-01-01

    This paper presents various aspects of the international co-operation set up at the Institut National des Sciences et Techniques Nucleaires (INSTN) for developing the nuclear engineering education in a European framework, with the Tempus programmes, or worldwide, through the IAEA technical co-operation programme. As such co-operation mainly relies on the courses established in the INSTN for national purposes, a short presentation of them is made first. (author)

  5. Research-based learning for nuclear engineering education in Gadjah Mada University

    International Nuclear Information System (INIS)

    Putero, Susetyo Hario; Kusnanto; Harto, Andang Widi

    2011-01-01

    Nuclear engineering education in Gadjah Mada University has been operated since 1977 in order to prepare Indonesian people facing up nuclear era in Indonesia. Until 1995, most of the alumni work in National Nuclear Energy Board, but recently many of them have been taking advanced study abroad. To improve our quality of education, since the last 3 years Gadjah Mada University has implemented Research-Based Learning (RBL). RBL for nuclear engineering student is conducted by providing challenges to the student related to the critical issues in public acceptance of nuclear power plant (NPP) in Indonesia that is waste management. Students should join in a group to complete the assignment. Within the group, they discuss and produce new idea in order to manage radioactive waste of new generation NPP. So, they are stimulated to think the future based on the state of the art of waste technology. This method could increase student's knowledge and soft skills, simultaneously. Some students also continue to explore and to refine the task as their thesis topic. Therefore, implementation of RBL also succeeds in increasing student's efficiency study. (author)

  6. Development of new Micro-Physics Nuclear Reactor Simulator™ and its possibility for introductory education of nuclear engineering

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Tsujita, Kosuke; Tamari, Yohei

    2015-01-01

    This paper describes recent activity on development of the Micro-Physics Nuclear Reactor Simulator™ and its application to introductory educations of nuclear engineering at high schools and university. The simulator has been continuously improved with active feedbacks from existing and potential users through its applications to exercises in classes/seminars. A newly developed reactor core transient analysis code, RAMBO-T has been adopted in the simulator along with SIMULATE-3K by Studsvik Scandpower Inc. (Borkowski, 1994) The internal data structure has been revised so that any combinations of the target reactor type, the core transient analysis code and the display language can be established. A new graphical user interface was implemented to realize the intuitive and easy-to-understand operations by novice users. The improved version of the Micro-Physics Nuclear Reactor Simulator has been practically used at educational institutions. In order to contribute to the activities on human resource development in the field of nuclear engineering, it is planned to donate the Micro-Physics Simulator™ Lite, a variation of the simulator that supports the only transient core analysis with RAMBO-T, to IAEA, the International Atomic Energy Agency. It will be included into the “NPP Simulators suite for Education” where complimentary copies are distributed to the member states countries. (author)

  7. Innovations in nuclear engineering distance education at the University of Tennessee

    International Nuclear Information System (INIS)

    Miller, L.; Pevey, R.; Hines, W.; Townsend, L.; Upadhyaya, B.; Groer, P.; Grossbeck, M.; Dodds, H.

    2006-01-01

    The Univ. of Tennessee Dept. of Nuclear Engineering (UTNE) offers both graduate and undergraduate internet-based courses that support a Master of Science (MS) degree and several certificate programs. In particular a MS degree can be conveniently obtained through distance classes. In addition certificates in Nuclear Criticality Safety and in Maintenance and Reliability can be obtained by completing a subset of courses offered for the MS degree. Students enrolled in these courses are predominately located in East Tennessee, but many live throughout the United States and in several foreign countries. An innovation of significant benefit to the UTNE undergraduate program is the implementation of reactor and laboratory experiments that are conducted over the Internet on the PULSTAR reactor at North Carolina State Univ. (NCSU). These experiments are conducted live with video, audio, and data transmission, and to date experiments involving approach to critical, rod calibration using incremental and inverse kinetics methods, thermal calibration of neutron detectors, and reactivity coefficients have been conducted. Neutron scattering experiments are planned for remote control by students. The use of internet-based education has enhanced the undergraduate program at the UTNE, and it has created opportunities for students with Internet access to obtain a quality education in Nuclear Engineering. (authors)

  8. Nuclear Education in France

    International Nuclear Information System (INIS)

    Guet, C.

    2013-01-01

    This series of slides draws a picture of nuclear engineering training in France. The nuclear sector is very active and developed in France and covers all the aspects of the fuel cycle which implies a strong demand for highly skilled and trained staff. There are both an active involvement of industry in the education process through the design of adequate curricula and a strong support of the State. There are 5 masters dedicated to Science Nuclear Energy (Paris), Nuclear Waste Management (Nantes), Separation Chemistry (Montpellier), Materials for Nuclear Engineering (Grenoble), and 1 engineer degree in nuclear engineering (Saclay). In 2010-2011 there were about 1000 students completing a nuclear energy curriculum (nuclear engineering or specialized nuclear domains) at the master-engineer level throughout France. The detailed curriculum of the Master of Science Nuclear Energy is given. The National Institute of Nuclear Sciences and Techniques (INSTN) plays an important role, it has trained a large fraction of the French leading nuclear practitioners through its 50 years old 'Genie Atomique' curriculum. INSTN proposes also high level courses in nuclear disciplines including training of nuclear physicians, radio-pharmacists and medical physicists and is a major player for continuing education in nuclear sciences. (A.C.)

  9. Nuclear chemical engineering

    International Nuclear Information System (INIS)

    Lee, Geon Jae; Shin, Young Jun

    1989-08-01

    The contents of this book are introduction of chemical engineering and related chemistry on an atomic reactor, foundation of the chemistry nuclear chemical engineering, theory on nuclear engineering, the cycle of uranium and nuclear fuel, a product of nuclear division, nuclear reprocessing, management of spent fuel separation of radioisotope, materials of an atomic reactor, technology and chemistry related water in atomic reactors and utilization of radioisotope and radiation. This book has the exercises and reference books for the each chapter.

  10. A network to enhance cooperation for research and higher education on radiation protection and nuclear engineering

    International Nuclear Information System (INIS)

    Rodenas, J.; Gallardo, Sergio . E mail: sergalbe@iqn.upv.es

    2008-01-01

    The educational capacity of many Institutions of Higher Education in Nuclear Engineering decreased under the combined effect of a declining interest among students as well as from academic and political authorities. An increasing cooperation at the international level on educational efforts is necessary. The CHERNE network is an initiative mainly focussed on teaching and learning activities to develop a wide-scope open academic network to enhance cooperation, competence and equipment sharing between its partners. Typical activities organized within the network include workshops, intensive courses, seminars and conferences. The CHERNE network and its main objectives as well as the activities developed since its foundation are presented. Special attention is given to international intensive courses (SPERANSA, JUNCSS, ICARO, etc.) organized for students of the member institutions. The common feature of these courses is a strong practical part in specialized facilities, including in some cases access to large equipment like research reactors and accelerators. (author)

  11. Blended-mode pedagogical model fosters nuclear engineering education in Southern Africa

    International Nuclear Information System (INIS)

    Kruger, J.H.; Fick, J.I.J.

    2010-01-01

    Social upliftment requires access to energy. Especially in the Southern Africa region, affordable energy gives communities access to improved living conditions, potable water and life-changing educational opportunities. Distributed nuclear power generation can make a significant difference in a continent where communities are geographically widely dispersed and where technology centres are few and far between. Unfortunately, for a country to obtain a nuclear capability and be part of the renaissance, it needs a skilled and educated workforce - a workforce that must be trained through an educational system facing the same challenges of dispersed human resources and lack of infrastructure as the community it serves. The blended-mode pedagogical model developed by the Postgraduate School for Nuclear Science and Engineering at the North-West University (NWU) in South Africa represents one manner in which the problem of dispersed resources can be addressed. As a matter of national policy, South Africa has embarked on a drive to not only innovate in terms of reactor technology, but to also develop and sustain a skilled workforce in the nuclear engineering field. Due to a severe shortage of personnel in the local nuclear community, the NWU devised a blended-mode teaching system to link overseas lecturers with local students to expand the local workforce through training and human capital development. The blended-mode delivery takes place through the online Sakai system that uses powerful learning management tools to achieve the learning outcomes. Students are guided in distance self-study for the larger part of the course and a contact session is then used to contextualize and integrate the knowledge. In this manner, a virtual collaborative environment between geographically dispersed faculty members and students is created which provides essential flexibility in terms of time and human resource management. The blended-mode teaching model has already achieved great

  12. Neutrons and Nuclear Engineering

    International Nuclear Information System (INIS)

    Ekkebus, Allen E.

    2007-01-01

    Oak Ridge National Laboratory hosted two workshops in April 2007 relevant to nuclear engineering education. In the Neutron Stress, Texture, and Phase Transformation for Industry workshop (http://neutrons.ornl.gov/workshops/nst2/), several invited speakers gave examples of neutron stress mapping for nuclear engineering applications. These included John Root of National Research Council of Canada, Mike Fitzpatrick of the UK's Open University, and Yan Gao of GE Global Research on their experiences with industrial and academic uses of neutron diffraction. Xun-Li Wang and Camden Hubbard described the new instruments at ORNL that can be used for such studies. This was preceded by the Neutrons for Materials Science and Engineering educational symposium (http://neutrons.ornl.gov/workshops/edsym2007). It was directed to the broad materials science and engineering community based in universities, industry and laboratories who wish to learn what the neutron sources in the US can provide for enhancing the understanding of materials behavior, processing and joining. Of particular interest was the presentation of Donald Brown of Los Alamos about using 'Neutron diffraction measurements of strain and texture to study mechanical behavior of structural materials.' At both workshops, the ORNL neutron scattering instruments relevant to nuclear engineering studies were described. The Neutron Residual Stress Mapping Facility (NRSF2) is currently in operation at the High Flux Isotope Reactor; the VULCAN Engineering Materials Diffractometer will begin commissioning in 2008 at the Spallation Neutron Source. For characteristics of these instruments, as well as details of other workshops, meetings, capabilities, and research proposal submissions, please visit http://neutrons.ornl.gov. To submit user proposals for time on NRSF2 contact Hubbard at hubbardcratornl.gov

  13. Establishment of nuclear knowledge-information base; development of courseware on introductory nuclear engineering and establishment of digital education platform

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jong Soon; Na, Mang Yun; Lee, Goung Jin; Yang, Won Sik [Chosun University, Gwangju (Korea)

    2002-01-01

    In this research, there are two major tasks. The first one is a development of digital course-ware program for introductory nuclear engineering. For this task, a development of lecture note is followed by lecture Slide files in html file format, which is based on web. For this purpose, following activities were performed; collection of related materials. planning of overall courseware, writing of lecture note and exercise plan, and securing the computer programs and codes needed. The second task of this research is to plan and install several hardwares in a multimedia class room as a digital education platform. The platform includes smart board with touch screen functionality, network server and personal computers. The digital education platform was established as a multimedia class room in the 2nd College of Engineering building, room 16210 by using the Server-Client environment and smart board, personal computer, and internet was connected by a TCP/IP way. For the courseware, hypertext was supported to be web-based, and photo, picture, data and related web links including text were developed in a close relation, it is possible for students to study big amounts of information in a systemized way and to maximize the learning efficiency. The whole range of introductory nuclear engineering course was divided into nuclear fuel cycle, reactor theory, heat transport, and reactor control, and digital contents were developed by each experts, but the final format of the courseware was maintained consistently for easy understanding . Also, the reactor experiment courseware developed by Kyunghee University can be utilized on this platform. 5 refs., 36 figs., 4 tabs. (Author)

  14. Educating nuclear engineers of the 21st century. Introduction of the recent activities by the Atomic Energy Society of Japan

    International Nuclear Information System (INIS)

    Meshii, Toshiyuki

    2008-01-01

    Since the beginning of the 21st century, educating the next generation nuclear engineers have been an interest to groups, who were concerned of the recent decline in nuclear population in universities and industries. In June 2005, committee on education (CE) was established in AESJ (Atomic Energy Society of Japan), hoping to coordinate the groups related to nuclear education in Japan. The birth of CE was timely; because the importance of nuclear education was emphasized in 'Framework for Nuclear Energy Policy (Oct., 2005)' decided by the Atomic Energy Commission. In this paper, recent activities of CE, especially the proposals CE made related Framework for Nuclear Energy Policy, will be reported. The importance of the partnership with industries, government and academe will be emphasized. (author)

  15. European nuclear education network

    International Nuclear Information System (INIS)

    Blomgren, J.; Moons, F.; Safieh, J.

    2005-01-01

    In most countries within the European Union that rely to a significant extent on nuclear power, neither undergraduate nor PhD education is producing a sufficient number of engineers and doctors to fill the needs of the industry. As a result of an EU-supported project, a new education organisation, European Nuclear Education Network (ENEN), has recently been established, with the aim to establish a European master's degree of nuclear engineering. Recently, a new EU project, Nuclear European Platform of Training and University Organisations (NEPTUNO), has been launched, aiming at the practical implementation of ENEN and harmonisation of training activities. (author)

  16. Networking of institutions in India to promote research and education in nuclear science and engineering

    International Nuclear Information System (INIS)

    Puri, R.R.

    2007-01-01

    Full text: The Programme of Nuclear Energy and its Applications (NEA) is knowledge intensive requiring engineers and scientists having special education and training for its implementation. The paucity of manpower in managing this programme is partly due to limitations of the university system in catering to the needs of the nuclear industry. Those limitations arise due to several reasons, like, regulatory requirements which make it difficult to set up nuclear facilities in university environment, capital intensive nature of nuclear set-ups, paucity of teaching staff having hands-on experience and limited employment opportunities making nuclear option unattractive for talented youngsters. The Department of Atomic Energy of India (DAE) established in 1954 for shaping and managing the Indian NEA programme realized those limitations and opted for an in-house education and training programme leading to assured employment for young Engineering Graduates and Science Post Graduates. Called the Bhabha Atomic Research Centre (BARC) Training School Programme, it is in place since 1957. The Indian NEA programme is thus fortunate to be supported by a visionary human resource development (HRD) programme in nuclear science and technology practically right since its inception. The success of HRD programme of DAE lies in its broader outlook based on the premise that technology development and basic research go hand-in-hand. This outlook is reflected also in the way DAE has been managing the implementation of its programme in that on one hand it has set up centres for technological Research and Development and, on the other, it is providing Grant-in-Aid to several Institutes for carrying basic research. Moreover, DAE has not lost sight of the fact that success of its initiatives lies as much in the vibrant university system as in its own training and educational efforts. It has, therefore, created avenues for extra-mural funding for supporting research activities in universities in

  17. Dictionary of nuclear engineering

    International Nuclear Information System (INIS)

    Sube, R.

    1985-01-01

    This dictionary covers nuclear engineering defined in its general sense as applied nuclear physics: industrial and other applications of nuclear power, isotopes and ionizing radiation, nuclear materials, nuclear facilities and nuclear weapons together with their scientific and technological fundamentals. During the compilation of terms, great attention was only given to generally valid basic expressions and to special terms where these occurred in all four languages. A great number of textbooks and monographs, as well as specialist journals covering many years, have been evaluated. Detailed attention has been paid to standards. Of importance in nuclear engineering are the international standards of the International Atomic Energy Organization (including the terminology employed by the International Nuclear Information System INIS), the International Organization of Standardization, the Council for Mutual Economic Assistance, the World Energy Conference, the International Electrical Engineering Commission, and also a great many national standards which, unfortunately, frequently deviate from one another as regards definition and, in particular, designation. (orig.)

  18. ENEN - European nuclear engineering network

    International Nuclear Information System (INIS)

    Comsa, Olivia; Paraschiva, M.V.; Banutoiu, Maria

    2002-01-01

    The paper presents the main objectives and expected results of European Project FP5 - ENEN - 'European Nuclear Engineering Network'. The underlying objective of the work is safeguarding the nuclear knowledge and expertise through the preservation of higher nuclear engineering education. Co-operation between universities and universities and research centres, will entail a better use of dwindling teaching capacity, scientific equipment and research infrastructure. 'Today, the priorities of the scientific community regarding basic research lie elsewhere than in nuclear sciences. Taken together, these circumstances create a significantly different situation from three to four decades ago when much of the present competence base was in fact generated. In addition, many of the highly competent engineers and scientists, who helped create the present nuclear industry, and its regulatory structure, are approaching retirement age. These competence issues need to be addressed at Community level and a well designed Community research and training programme should play a role that is more important than ever before. This is an area where the concept of an European research area should be further explored'. The outcome from this project should be a clear road map for the way ahead in nuclear engineering education in Europe. The underlying objective of the concerted action is the preservation of nuclear knowledge and expertise through the preservation of higher nuclear engineering education. 'Many diverse technologies, currently serving nations world-wide, would be affected by an inadequate number of future nuclear scientists and engineers. Nuclear technology is widespread and multidisciplinary: nuclear and reactor physics, thermal hydraulics and mechanics, material science, chemistry, health science, information technology and a variety of other areas. Yet the advancement of this technology, with all its associated benefits, will be threatened if not curtailed unless the

  19. Final Technical Report; NUCLEAR ENGINEERING RECRUITMENT EFFORT

    Energy Technology Data Exchange (ETDEWEB)

    Kerrick, Sharon S.; Vincent, Charles D.

    2007-07-02

    This report provides the summary of a project whose purpose was to support the costs of developing a nuclear engineering awareness program, an instruction program for teachers to integrate lessons on nuclear science and technology into their existing curricula, and web sites for the exchange of nuclear engineering career information and classroom materials. The specific objectives of the program were as follows: OBJECTIVE 1: INCREASE AWARENESS AND INTEREST OF NUCLEAR ENGINEERING; OBJECTIVE 2: INSTRUCT TEACHERS ON NUCLEAR TOPICS; OBJECTIVE 3: NUCLEAR EDUCATION PROGRAMS WEB-SITE; OBJECTIVE 4: SUPPORT TO UNIVERSITY/INDUSTRY MATCHING GRANTS AND REACTOR SHARING; OBJECTIVE 5: PILOT PROJECT; OBJECTIVE 6: NUCLEAR ENGINEERING ENROLLMENT SURVEY AT UNIVERSITIES

  20. Nuclear ship engineering simulator

    International Nuclear Information System (INIS)

    Itoh, Yasuyoshi; Kusunoki, Tsuyoshi; Hashidate, Koji

    1991-01-01

    The nuclear ship engineering simulator, which analyzes overall system response of nuclear ship numerically, is now being developed by JAERI as an advanced design tool with the latest computer technology in software and hardware. The development of the nuclear ship engineering simulator aims at grasping characteristics of a reactor plant under the situation generated by the combination of ocean, a ship hull and a reactor. The data from various tests with the nuclear ship 'MUTSU' will be used for this simulator to modulate and verify its functions of reproducing realistic response of nuclear ship, and then the simulator will be utilized for the research and development of advanced marine reactors. (author)

  1. Facts in nuclear engineering

    International Nuclear Information System (INIS)

    Buenemann, D.

    1979-07-01

    This compilation of facts has been published on behalf of Kerntechnische Gesellschaft (Society for Nuclear Engineering), as a basis for the discussion between promoters and opponents of nuclear power. It intends to make the nuclear discussion less emotional by providing relevant data material. (orig./HP) [de

  2. Research and education on innovative nuclear engineering in 21. century COE program in Japan (COE-INES)

    International Nuclear Information System (INIS)

    Hiroshi Sekimoto

    2004-01-01

    -In the year 2002 and 2003 the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) started the 'Priority Assistance for the Formation of Worldwide Renowned Centers of Research - The 21. Century Center of Excellence (COE) Program'. A program proposed by Tokyo Institute of Technology (TITech) 'Innovative Nuclear Energy Systems for Sustainable Development of the World (COE-INES)' was selected as the only one program in nuclear engineering. Here the innovative nuclear energy systems include innovative nuclear reactors and innovative separation and transmutation technologies. This program is planned to continue for 5 years, and the monetary support for the first year (2003-4) is already fixed to be 196 M yens. International collaboration will be promoted for research and education on innovative nuclear energy systems. Several international meetings and intensive personnel exchanges will be performed. (author)

  3. BS degree in nuclear engineering or a nuclear option

    International Nuclear Information System (INIS)

    Williams on, T.G.

    1988-01-01

    Many nuclear engineering educators are concerned about the health of nuclear engineering academic departments. As part of a review of the BS nuclear engineering degree program at the University of Virginia, the authors surveyed several local utilities with operating nuclear plants about their needs for nuclear engineering graduates. The perception of many of the utility executives about a nuclear engineering degree and about a nuclear option in another engineering curriculum does not agree with the way the authors view these two degrees. The responses to two of the survey questions were of particular interest: (1) does your company have a preference between nuclear engineering graduates and graduates in other fields with a nuclear option? (2) what do you consider to be a minimum level of education in nuclear engineering for a nuclear option in mechanical engineering? All of the four utilities that were surveyed stated a preference for mechanical or electrical engineers with a nuclear option, although two indicated that there are certain jobs for which a nuclear engineering graduate is desired

  4. Study of advanced professional educational requirements relative to nuclear fuel cycle engineering in industry and government. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jur, T.A.; Huhns, M.N.; Keating, D.A.; Orloff, D.I.; Rhodes, C.A.; Stanford, T.G.; Stephens, L.M.; Tatterson, G.B.; Van Brunt, V.

    1978-12-01

    Under contract with the U.S. Department of Energy, the College of Engineering at the University of South Carolina has conducted an assessment of educational needs among engineers working in nuclear fuel cycle related areas. The study was initiated as a regional effort focusing on the concentration of nuclear industry in the Southeast. Educational needs addressed were those at the post-baccalaureate professional level. The project was envisioned as providing base line information for the eventual implementation of a program in line with the needs of the Southeast's nuclear community. Specific objectives were to establish the content of such a program and to determine those specialized features which would make the program most attractive and useful.

  5. Study of advanced professional educational requirements relative to nuclear fuel cycle engineering in industry and government. Final report

    International Nuclear Information System (INIS)

    Jur, T.A.; Huhns, M.N.; Keating, D.A.; Orloff, D.I.; Rhodes, C.A.; Stanford, T.G.; Stephens, L.M.; Tatterson, G.B.; Van Brunt, V.

    1978-12-01

    Under contract with the U.S. Department of Energy, the College of Engineering at the University of South Carolina has conducted an assessment of educational needs among engineers working in nuclear fuel cycle related areas. The study was initiated as a regional effort focusing on the concentration of nuclear industry in the Southeast. Educational needs addressed were those at the post-baccalaureate professional level. The project was envisioned as providing base line information for the eventual implementation of a program in line with the needs of the Southeast's nuclear community. Specific objectives were to establish the content of such a program and to determine those specialized features which would make the program most attractive and useful

  6. Nuclear engineering enrollments and degrees, 1994: Appendixes

    International Nuclear Information System (INIS)

    1995-05-01

    This survey is designed to include those programs sponsored by the Department of Energy. The survey is designed to include those programs offering a major in nuclear engineering or course work equivalent to a major in other engineering disciplines that prepare the graduates to perform as nuclear engineers. This survey provides data on nuclear engineering enrollments and degrees for use in labor market analyses, information on education programs for students, and information on new graduates to employers, government agencies, academia and professional societies

  7. Nuclear engineering vocabulary

    International Nuclear Information System (INIS)

    Dumont, X.; Andrieux, C.

    2001-01-01

    The members of the CSTNIN - the Special Commission for Nuclear Engineering Terminology and Neology - have just produced a Nuclear Engineering Vocabulary, published by SFEN. A 120-page document which, to date, includes 400 nuclear engineering terms or expressions. For each term or expression, this Glossary gives: the primary and secondary subject field in which it is applied, a possible abbreviation, its definition, a synonym if appropriate, any relevant comments, any associated word(s), the English equivalent, its status on the date of publication of the Glossary. (author)

  8. National research council report and its impact on nuclear engineering education at the University of Michigan

    International Nuclear Information System (INIS)

    Martin, W.R.

    1991-01-01

    A recent report by the National Research Council raised a number of important issues that will have an impact on nuclear engineering departments across the country. The report has been reviewed in the context of its relevance to the Department of Nuclear Engineering at the University of Michigan (UM), and some observations and conclusions have been drawn. This paper focuses on those portions of Ref. 1 concerning undergraduate and graduate curricula, research facilities and laboratories, faculty research interests, and funding for research and graduate student support because these topics have a direct impact on current and future directions for the department

  9. Nuclear education in Japanese universities

    International Nuclear Information System (INIS)

    Yamamuro, Nobuhiro

    1981-01-01

    In 1957, the graduate courses for nuclear engineering were established in Kyoto University, Osaka University and the Tokyo Institute of Technology. Since then, the expansion of nuclear education has kept pace with the growth of the nuclear industry in Japan. The nuclear education in universities in more than 20 years can be roughly divided into three periods. In the first period from 1955 to 1965, nuclear education began at undergraduate level, and the facilities required for the research and education were set up. The imported reactor began the commercial operation in 1966 for the first time, and during the period of high economic growth, the request by the nuclear industry was met by providing special studies in addition to the regular curriculum studies. The research committee on nuclear engineering education was formed, and in 1973, Japan-U.S. cooperative seminar on education program for nuclear engineering was held. The first ''oil crisis'' occurred in 1973, and the significance of nuclear power as an alternative to oil increased. But as nuclear power plants became bigger and increased, the safety and the effect on environment have been discussed. Also the research and development of nuclear fusion have been promoted. All these factors were reflected to the nuclear education in universities. The carricula in universities and the tasks and prospects in nuclear engineering education are described. (Kako, I.)

  10. Nuclear methods in constructing engineering - present state, tendencies, education and in-service training

    International Nuclear Information System (INIS)

    Baumbach, H.

    1988-01-01

    Evaluation and status of nuclear methods in the field of civil engineering are pointed out. Exemplary remarks are made out neutron small-angle scattering and on field gradient-impulse NMR method for studies of hydration of cement concrete. Moreover, the application of radioisotopes in gas concrete production, gamma radiography and gamma tomography are discussed in detail. (author)

  11. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  12. Education and training of experts for the nuclear power sector at the Faculty of Electrical Engineering and Information Technologies, Slovak University of Technology in Bratislava

    International Nuclear Information System (INIS)

    Lipka, J.; Slugen, V.; Miglierini, M.; Necas, V.; Hascik, J.; Pavlovic, M.

    2003-01-01

    The Faculty of Electrical Engineering and Information Technologies, Slovak University of Technology in Bratislava has been training experts for the nuclear sector for over 40 years now. Current status and trends in nuclear education within the faculty's educational system, encompassing BSc, MSc and PhD studies, are highlighted. Dedicated training courses in the safety aspects of operation of the nuclear power installations are also organized for NPP staff. Periodical training is also provided to supervising physicists at the Jaslovske Bohunice and Mochovce nuclear power plants. Major international projects aimed at nuclear knowledge management and preservation are highlighted and the ENEN - European Nuclear Education Network project is described. (P.A.)

  13. Introduction to nuclear engineering

    International Nuclear Information System (INIS)

    Bouchard, J.; Deffain, J.P.; Gouchet, A.

    2007-01-01

    This book is an introductory course to the technology of nuclear reactors, it is based on lectures given to students engaged in nuclear engineering curricula. A brief historical account of nuclear power is given in which Three Miles Island and Chernobyl accidents appear to be the main milestones because of their big impacts on the way to apprehend the safety in the design of a reactor for the first and on the public controversy of nuclear energy for the second. All the concepts and knowledge required to understand the design of a reactor and how it operates, are described: radioactivity, nuclear safety, irradiation effects on materials, uranium enrichment, reactor kinetics, fission products poisoning,... This book is made up of 4 parts: 1) nuclear power, 2) types of power nuclear reactors (PWR, BWR and fast reactors), 3) the fuel cycle, and 4) neutronics basics. (A.C.)

  14. Infrastructures Development Strategy in Energy Engineering Education and Research: a Bonus to Introduce a Safe and Secure Nuclear Power Program

    Energy Technology Data Exchange (ETDEWEB)

    Bouhelal, Oum Keltoum [National School of Mineral Industry, ENIM, BP 753, Agdal, 10000 Rabat (Morocco)

    2008-07-01

    In the area of Energy Engineering, high education programs including nuclear activities are currently running in collaboration with the employment sector to provide skills oriented profiles; the available packages are thus characterized by a limited size and a low impact in enhancing power technology teaching and industrial partnerships. However, ongoing nuclear applications activities are undertaken through strong legal and institutional infrastructures as Morocco has joined a large number of international conventions and agreements trusted by the IAEA. The introduction of nuclear power is subject to a close attention today to investigate if it is an alternative solution to meet the increasing energy needs. For a country not much industrialized and characterized by a medium electricity grid, the decision on the recourse to nuclear power needs to carry up early a training, R and D federative program on behalf of the engineering sector and the international cooperation. As the challenges associated to develop a successful nuclear power program requires an important effort directed toward increasing capacity, new education and training programs in the field of Energy Sciences and Engineering are presently targeted in several high education institutions prior to the goals of the education and research national reform. The preparation of a new master and engineer diploma at ENIM 'Power Systems Engineering and Management' is in process: the curricula introduces innovative concepts bringing together academic teachers, researchers and stakeholders to establish new discipline-based teaching and learning tools: what is mainly focused is to increase competency profile in consultation with the industry sector and to attract high quality students to ensure availability of human resources at the right time in the field of power technology utilization including nuclear power. A coordinated approach joining national and international partnership to implement oriented R

  15. Infrastructures Development Strategy in Energy Engineering Education and Research: a Bonus to Introduce a Safe and Secure Nuclear Power Program

    International Nuclear Information System (INIS)

    Bouhelal, Oum Keltoum

    2008-01-01

    In the area of Energy Engineering, high education programs including nuclear activities are currently running in collaboration with the employment sector to provide skills oriented profiles; the available packages are thus characterized by a limited size and a low impact in enhancing power technology teaching and industrial partnerships. However, ongoing nuclear applications activities are undertaken through strong legal and institutional infrastructures as Morocco has joined a large number of international conventions and agreements trusted by the IAEA. The introduction of nuclear power is subject to a close attention today to investigate if it is an alternative solution to meet the increasing energy needs. For a country not much industrialized and characterized by a medium electricity grid, the decision on the recourse to nuclear power needs to carry up early a training, R and D federative program on behalf of the engineering sector and the international cooperation. As the challenges associated to develop a successful nuclear power program requires an important effort directed toward increasing capacity, new education and training programs in the field of Energy Sciences and Engineering are presently targeted in several high education institutions prior to the goals of the education and research national reform. The preparation of a new master and engineer diploma at ENIM 'Power Systems Engineering and Management' is in process: the curricula introduces innovative concepts bringing together academic teachers, researchers and stakeholders to establish new discipline-based teaching and learning tools: what is mainly focused is to increase competency profile in consultation with the industry sector and to attract high quality students to ensure availability of human resources at the right time in the field of power technology utilization including nuclear power. A coordinated approach joining national and international partnership to implement oriented R and D

  16. Study of advanced professional educational requirements relative to nuclear fuel cycle engineering in industry and government. Final report

    International Nuclear Information System (INIS)

    Jur, T.A.; Huhns, M.N.; Keating, D.A.; Orloff, D.I.; Rhodes, C.A.; Stanford, T.G.; Stephens, L.M.; Tatterson, G.B.; Van Brunt, V.

    1978-12-01

    An assessment was conducted of educational needs among engineers working in nuclear fuel cycle-related areas, focusing on the nuclear industry in the Southeast. Educational needs addressed were those at the post-baccalaureate professional level. As a result of the study, a list of subject areas has been compiled as best representing the current content of an educational program. In addition to identifying subject areas, a set of course descriptions and reference materials has been developed around each subject. Each course description contains information regarding objectives, anticipated audience, and prerequisites and offers a suggested course outline. An initial modest program of implementation is recommended which would continue to concentrate on the Southeast as a target area

  17. Study of advanced professional educational requirements relative to nuclear fuel cycle engineering in industry and government. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jur, T.A.; Huhns, M.N.; Keating, D.A.; Orloff, D.I.; Rhodes, C.A.; Stanford, T.G.; Stephens, L.M.; Tatterson, G.B.; Van Brunt, V.

    1978-12-01

    An assessment was conducted of educational needs among engineers working in nuclear fuel cycle-related areas, focusing on the nuclear industry in the Southeast. Educational needs addressed were those at the post-baccalaureate professional level. As a result of the study, a list of subject areas has been compiled as best representing the current content of an educational program. In addition to identifying subject areas, a set of course descriptions and reference materials has been developed around each subject. Each course description contains information regarding objectives, anticipated audience, and prerequisites and offers a suggested course outline. An initial modest program of implementation is recommended which would continue to concentrate on the Southeast as a target area.

  18. Nuclear engineering vocabulary

    International Nuclear Information System (INIS)

    2006-01-01

    The terms, expressions and definitions presented in this booklet come from the works carried out by the French specialized commission of nuclear engineering terminology and neology. This selection of terms cannot be found, in general, in classical dictionaries, or can be found but with a different meaning than the one used in nuclear engineering. All terms and expressions contained in this booklet have been already published in different issues of the Official Journal of the French Republic. This publication makes their use mandatory in replacement of foreign language equivalents inside all government services and public buildings. (J.S.)

  19. European master degree in nuclear engineering

    International Nuclear Information System (INIS)

    Ghitescu, Petre; Prisecaru, Ilie

    2003-01-01

    In order to preserve and to improve the quality of nuclear engineering education and training in Europe, as well to ensure the safe and economic operation of nuclear power plants, the European Nuclear Engineering Network Program (ENEN) started in 2002. It is a program aiming to establish and maintain a set of criteria for specific curricula of nuclear engineering education, in particular, for an European Master Degree in Nuclear Engineering (EMNE). The ENEN program is financed by the FP5 and has the wide support of IAEA, OECD and EU Commission departments dealing with the nuclear engineering knowledge management. The promising results up to now determined the creation of the Asian Nuclear Engineering Network (ANEN) in July 2003 and of the World Nuclear University (WNU) starting in September 2003. The paper presents the future structure of EMNE which will allow the harmonization of the curricula of the universities of Europe until the Bologna Convention will be fully accepted and operational in all European countries. The ENEN program has taken into consideration the curricula of 22 universities and research centres from 15 different European countries and proposed a feasible scheme which allows the undergraduates with a weak to strong nuclear background to continue their graduate education in the nuclear engineering field towards EMNE. As one of the contractors of this program, University 'Politehnica' of Bucharest brings its contribution and actively takes part in all activities establishing the EMNE. (author)

  20. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  1. The University of Utah Nuclear Engineering Program

    International Nuclear Information System (INIS)

    Jevremovic, T.; McDonald, L. IV; Schow, R.

    2016-01-01

    As of 2014, the University of Utah Nuclear Engineering Program (UNEP) manages and maintains over 7,000 ft 2 (~650 m 2 ) nuclear engineering facilities that includes 100 kW TRIGA Mark I and numerous laboratories such as radiochemistry, microscopy, nuclear forensics, nuclear medicine, radiation detection and instrumentation laboratories. The UNEP offers prestigious educational and training programs in the field of faculty reserach: reactor physics, reactor design and operation, advanced numerical modeling and visualizations in radiation transport, radiochemistry, nuclear forensics, radiation detection and detector designs, signal processing, nuclear medicine, nuclear space and nuclear robotic’s engineering and radiological sciences. With the state-of-the-art nuclear instrumentation and state-of-the-art numerical modeling tools, reserach reactor and modernized educational and training programs, we positioned ourselves in the last five years as the fastest growing national nuclear engineering program attracting the students from many disciplines such as but not limited to: chemical engineering, civil engineering, environmental engineering, chemistry, physics, astronomy, medical sciences, and others. From 2012, we uniquely developed and implemented the nuclear power plants’ safety culture paradigm that we use for day-to-day operation, management and maintenance of our facilities, as well as train all our students at undergraduate and graduate levels of studies. We developed also a new distance-learning approaches in sharing knowledge about experiential learning based on no-cost internet-tools combined with the use of mobile technologies. (author)

  2. Welding in nuclear engineering

    International Nuclear Information System (INIS)

    1982-01-01

    The 3rd international conference 'Welding in nuclear engineering', organized in 1978 by the Deutscher Verband fuer Schweisstechnik e.V., was, like the two foregoing conferences in 1970 and 1974, an absolute success. The noteworthy echo to this meeting in the international technical world - the number of 650 participants from 26 countries is self-evidence - and this fact, was for the Deutscher Verband fuer Schweisstechnik e.V. occasion and at the same time an obligation now to follow in the same way, the meeting that was started 12 years ago, by organizing the international conference 'Welding in nuclear engineering'. The conference this year offers in addition to the two plenary session lectures, 34 short reports and a further 28 single contributions in the form of two poster-sessions. Unfortunately, it was again not possible to accept all the papers submitted because the conference was limited to 2 days only. Nevertheless, the papers will offer a representative cross-section through the total range of welding engineering. In particular, the poster session, which take place for the first time within the scope of a meeting organized by the Working Group 'Welding in Nuclear Engineering', should contribute to the aim that this time again the discussions will form the main point of the conference. (orig./RW) [de

  3. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  4. Nuclear Medicine Engineering

    International Nuclear Information System (INIS)

    Mateescu, Gheorghe; Craciunescu, Teddy

    2000-01-01

    'An image is more valuable than a thousand words' - this is the thought that underlies the authors' vision about the field of nuclear medicine. The monograph starts with a review of some theoretical and engineering notions that grounds the field of nuclear medicine: nuclear radiation, interaction of radiation with matter, radiation detection and measurement, numerical analysis. Products and methods needed for the implementation of diagnostic and research procedures in nuclear medicine are presented: radioisotopes and radiopharmaceuticals, equipment for in-vitro (radioimmunoassay, liquid scintillation counting) and in-vivo investigations (thyroid uptake, renography, dynamic studies, imaging). A special attention is focused on medical imaging theory and practice as a source of clinical information (morphological and functional). The large variety of parameters, components, biological structures and specific properties of live matter determines the practical use of three-dimensional tomographic techniques based on diverse physical principles: single-photon emission, positron emission, X-rays transmission, nuclear magnetic resonance, ultrasounds transmission and reflection, electrical impedance measurement. The fundamental reconstruction algorithms i.e., algorithms based on the projection theorem and Fourier filtering, algebraic reconstruction techniques and the algorithms based on statistical principles: maximum entropy, maximum likelihood, Monte Carlo algorithms, are depicted in details. A method based on the use of the measured point spread function is suggested. Some classical but often used techniques like linear scintigraphy and Anger gamma camera imaging are also presented together with some image enhancement techniques like Wiener filtering and blind deconvolution. The topic of the book is illustrated with some clinical samples obtained with nuclear medicine devices developed in the Nuclear Medicine Laboratory of the National Institute of Nuclear Physics and

  5. Education of nuclear energy specialists

    International Nuclear Information System (INIS)

    Paulikas, V.

    1999-01-01

    Preparation system of nuclear energy specialists in Lithuania is presented. Nuclear engineers are being prepared at Kaunas University of Technology. Post-graduates students usually continue studies at Obninsk Nuclear Energy Institute in Russia. Many western countries like Sweden, Finland and US is providing assistance in education of Lithuanian specialists. Many of them were trained in these countries

  6. Metallurgy for nuclear engineering

    International Nuclear Information System (INIS)

    Kozlov, A.F.

    1986-01-01

    Principal ways of development in metallurgy and metallurgical equipment on nuclear engineering plants are discussed. A great attention is paid to changing welded structures for casted and forged ones. These measures give the possibility to increase reliability of NPP components and decrease labour content. The following processing procedures have been introduced: vacuum carbon reduction providing small amount of nonmetallic inclusions in reactor vessel steel; manufacturing steel large-size castings (360 and 420 t) for WWER vessels; rolling at plate mill 5000 etc

  7. A case for the expansion of effort and the adoption of a modified approach in Australia to education and research on the engineering and technology of nuclear power

    International Nuclear Information System (INIS)

    Ford, G.W.K.

    1981-11-01

    A positive initiative needs to be taken to place more emphasis on undergraduate education in the field of nuclear engineering in Australia. Excellent facilities exist at the AAEC to aid tertiary institutions. Many excellent opportunities also exist for developing post-graduate research projects in nuclear technology

  8. Career Development in Nuclear Engineering

    International Nuclear Information System (INIS)

    Sibbens, G.

    2015-01-01

    In the eighties it was not common for girls to study engineering. But a few young girls have always been fascinated by science and technical applications and dared to go for a gender untypical education. What are these female engineers doing today? This paper describes the career development of a woman, who completed her Master of Science in Nuclear Engineering, found first a job in an international company as cooperator in the research group of radiation physics and later as head of technical support and quality assurance of medical systems and then succeeded in a competition to be recruited at the European Commission (EC). There she started as an assistant for the primary standardisation of radionuclides and high-resolution alpha-particle spectrometry including the preparation of radioactive sources in the radionuclide metrology sector at the Institute for Reference Materials and Measurements of the European Commission’s Joint Research Centre and consequently published her work in scientific journals. Today, 29 years later, I am the laboratory responsible for the preparation and characterisation of nuclear targets at EC-JRC-IRMM, leading a team that has unique know-how in the preparation of thin film deposits (called targets) tailor-made for nuclear physics measurements at the EC–JRC–IRMM and international accelerator sites. High quality measurements of nuclear data and materials are being asked for in the context of nuclear safety, minimisation of high level nuclear waste and safeguards and security. The different steps of my career development and the repeated process of managing learning, work, family and leisure are presented. The career path across different jobs and responsibilities and the career progress via a certification training programme are also explained to encourage the next generation of female professionals to continue playing a vital role in nuclear science and technology. (author)

  9. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  10. Industrial Education. "Small Engines".

    Science.gov (United States)

    Parma City School District, OH.

    Part of a series of curriculum guides dealing with industrial education in junior high schools, this guide provides the student with information and manipulative experiences on small gasoline engines. Included are sections on shop adjustment, safety, small engines, internal combustion, engine construction, four stroke engines, two stroke engines,…

  11. Nuclear industry prepares fore shortage of engineers

    International Nuclear Information System (INIS)

    Gauker, Lynn.

    1991-01-01

    It is predicted that the Canadian nuclear industry will experience a shortage of qualified personnel within the next five to ten years. The reasons for this prediction are as follows: enrollment in engineering courses, particularly five courses in nuclear engineering has been declining; immigration can no longer be expected to fill the gap; the workforce is aging. Solutions may include promotional campaigns, student employment programs, and educating workers to a professional level

  12. Culture in Engineering Education

    DEFF Research Database (Denmark)

    Hoffmann, Birgitte; Jørgensen, Ulrik; Christensen, Hans Peter

    2011-01-01

    As engineers today often work in intercultural projects and contexts, intercultural competences must be part of the learning objectives in engineering educations. Cultural aspects of engineering education should not just be treated as a question of appropriate communication and teaching: cultural...... aspects are basically part of engineering discipli¬nes, work challenges as well as the contextual elements in engineering curriculum [1,2]. This is reflected in the aims of the CDIO programme [3,4]; however, the programme, as well as the teaching practises, undoubtedly needs to further develop approaches...... to cultural aspects in engineering education. Hence the key-question of this paper is how CDIO support the development of intercultural competences in engineering education. The paper explores the implementation of CDIO in an intercultural arctic engineering programme in Greenland that since 2001 has been...

  13. Nuclear education

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1987-01-01

    All scientists and technologists are agreed that the coal based fuel cycle is somewhere between 50 to 300 times more dangerous than the uranium fuel cycle. Under these circumstances it is not difficult to show that on a more quantitative basis, the nuclear industry, in all countries, has an unblemished safety record when compared with other energy sources. Various hazards and benefits of nuclear power are analyzed in this paper comparing with other energy sources. (Liu)

  14. Nuclear engineering in the linelight

    International Nuclear Information System (INIS)

    Blumentritt, G.; Schwaar, L.

    1979-01-01

    An insight is given into the state of art of nuclear engineering considering only essential problems. The subject is covered under the following headings: (1) the way to nuclear fission, (2) detectors for nuclear radiation, (3) measuring systems for nuclear radiation, (4) radioisotopes in industry, (5) aids in medicine, (6) radiation absorption and its utilization, (7) use of radioisotopes in research, (8) the chain reaction in a nuclear reactor, (9) power from nuclear power plants, (10) pressurized water reactors (PWR), (11) high-temperature reactors (HTGR), (12) fast breeder reactors (FBR), (13) nuclear energetics - a new branch of industry, (14) nuclear explosions, (15) nuclear research at Rossendorf, and (16) the energy of the future. An appendix includes definitions of terms used in nuclear engineering. The book is written for a wide circle of readers who are interested in the peaceful uses of nuclear energy

  15. Choosing nuclear engineering: A survey of nuclear engineering undergraduates

    International Nuclear Information System (INIS)

    Shillenn, J.K.; Klevans, E.H.

    1988-01-01

    Maintaining a reliable pool of qualified nuclear engineering graduates depends on the ability of nuclear engineering undergraduate programs to recruit students. With the prospect of declining enrollments in nuclear engineering it is important for nuclear engineering programs to know what factors influence students to choose nuclear engineering as an undergraduate major and why they choose a particular undergraduate program. This type of information can be very important to nuclear engineering programs that develop recruiting strategies. To provide some insight into this area, a questionnaire was designed and given to undergraduate nuclear engineering students at Pennsylvania State University. The purpose of the survey was to provide information on the reasons that students picked nuclear engineering as a career and chose to attend Penn State. The questionnaire was given to 27 students in their junior year during the spring semester of 1987 and again to 35 junior students during the spring semester of 1988. There was little difference except as noted between the two groups on their responses to the questionnaire. A partial listing of the survey results is provided

  16. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  17. Risks in nuclear engineering

    International Nuclear Information System (INIS)

    Lindackers, K.H.

    1982-01-01

    The German nuclear power plant risk assessment study has not contributed to a higher degree of acceptance of light-water reactors among the general public. One reason is the fact that its predictions are much too inaccurate, and the consequences from severe accidents, regardless of their possibly extremely small likelihood, speak for themselves. The work still to be done in Phase B of the risk analysis will only be useful, if the safety factors in risk assessments can be drastically increased. The results of the risk analysis cannot be used in legislation or the administration of justice, because they are too incomplete and inaccurate. Scientific findings in risk analysis show that new designs and new components complicate objective judgement of changes in reactor safety engineering considerably. Every change in the required precautionary safety measures must be carefully considered, and if need be tested under the appropriate conditions. (orig./HSCH) [de

  18. Australia needs nuclear education

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1999-01-01

    A matter of increasing concern in Australian society is the absence of a Commonwealth Government policy on the peaceful use of nuclear energy. The lack of University level teaching facilities in nuclear energy engineering is also perceived to be an issue of national importance which must be addressed. More and more Australians deeply regret the lack of informed realism and scientific integrity which goes into endless debates on the technical, environmental and societal aspects of nuclear energy. Within the Australian community such important issues as uranium mining in Kakadu National Park, research reactor operation at Lucas Heights, the establishment of an international nuclear waste repository in Western Australia or the domestic use of nuclear electricity generation to minimise Australia's greenhouse emissions are still being debated at the intellectual level of radio talkback programs. Decision making in such areas deserves the disciplines of appropriate tertiary education. The Australian community has a right to know the relative risks and the environmental impacts of various fuel cycles as well as the technical limitations, true costs and energy audits of the 'alternative' energy technologies. Presently the Commonwealth of Australia is without a single School of Nuclear Engineering operating at a University level. Such a situation is believed to be unprecedented amongst the developed countries of the world. It is viewed with a measure of incredulity by the academic, diplomatic and political communities of the 'developing' countries of East Asia and the Pacific Basin. Many of these have a massive investment in the growth of peaceful nuclear energy and nuclear science and technology within their borders. Copyright (1999) Australian Institute of Energy News

  19. Final Technical Report and management: NUCLEAR ENGINEERING RECRUITMENT EFFORT

    International Nuclear Information System (INIS)

    Kerrick, Sharon S.; Vincent, Charles D.

    2007-01-01

    This report provides the summary of a project whose purpose was to support the costs of developing a nuclear engineering awareness program, an instruction program for teachers to integrate lessons on nuclear science and technology into their existing curricula, and web sites for the exchange of nuclear engineering career information and classroom materials. The specific objectives of the program were as follows: Objective 1--Increase awareness and interest of nuclear engineering; Objective 2--Instruct Teachers on nuclear topics; Objective 3--Nuclear education programs web-site; Objective 4--Support to university/industry matching grants and reactor sharing; Objective 5--Pilot project; and Objective 6--Nuclear engineering enrollment survey at universities

  20. Embedded engineering education

    CERN Document Server

    Kaštelan, Ivan; Temerinac, Miodrag; Barak, Moshe; Sruk, Vlado

    2016-01-01

    This book focuses on the outcome of the European research project “FP7-ICT-2011-8 / 317882: Embedded Engineering Learning Platform” E2LP. Additionally, some experiences and researches outside this project have been included. This book provides information about the achieved results of the E2LP project as well as some broader views about the embedded engineering education. It captures project results and applications, methodologies, and evaluations. It leads to the history of computer architectures, brings a touch of the future in education tools and provides a valuable resource for anyone interested in embedded engineering education concepts, experiences and material. The book contents 12 original contributions and will open a broader discussion about the necessary knowledge and appropriate learning methods for the new profile of embedded engineers. As a result, the proposed Embedded Computer Engineering Learning Platform will help to educate a sufficient number of future engineers in Europe, capable of d...

  1. High education and nuclear energy

    International Nuclear Information System (INIS)

    Ghitescu, Petre; Prisecaru, Ilie; Stefanescu, Petre

    1998-01-01

    The Faculty of Energy of the University 'Politecnica' in Bucharest is the only faculty in Romania in the field of nuclear energy education. With an experience of more than 29 years, the Faculty of Energy offers the major 'Nuclear Power Plants', which students graduate after a 5-year education as engineers in the Nuclear Power Plant major. Among the principal objectives of the development and reshape of the Romanian education system was mentioned the upgrading of organizational forms by introducing the transfer credit system, and starting in the fall '97 by accrediting Radioprotection and Nuclear Safety Master education. As a result of co-operation and assistance offered by TEMPUS-SENECA program, the new major is shaped and endowed with a modern curriculum harmonized with UE and IAEA requirements and a modern and performing laboratory. This way the Romanian higher education offers a fully correct and concordant structure with UE countries education. (authors)

  2. Mechanical engineering education

    CERN Document Server

    Davim, J Paulo

    2012-01-01

    Mechanical Engineering is defined nowadays as a discipline "which involves the application of principles of physics, design, manufacturing and maintenance of mechanical systems". Recently, mechanical engineering has also focused on some cutting-edge subjects such as nanomechanics and nanotechnology, mechatronics and robotics, computational mechanics, biomechanics, alternative energies, as well as aspects related to sustainable mechanical engineering.This book covers mechanical engineering higher education with a particular emphasis on quality assurance and the improvement of academic

  3. European Master of Science in Nuclear Engineering

    International Nuclear Information System (INIS)

    Moons, F.; Safieh, J.; Giot, M.; Mavko, B.; Sehgal, B.R.; Schaefer, A.; Goethem, G. van; D'haeseleer, W.

    2004-01-01

    The need to preserve, enhance or strengthen nuclear knowledge is worldwide recognised since a couple of years. It appears that within the European university education and training network, nuclear engineering is presently sufficiently covered, although somewhat fragmented. To take up the challenges of offering top quality, new, attractive and relevant curricula, higher education institutions should cooperate with industry, regulatory bodies and research centres, and more appropriate funding a.o. from public and private is to be re-established. More, European nuclear education and training should benefit from links with international organisations like IAEA, OECD-NEA and others, and should include world-wide cooperation with academic institutions and research centres. The European master in nuclear engineering guarantees a high quality nuclear education in Europe by means of stimulating student and instructor exchange, through mutual checks of the quality of the programmes offered, by close collaboration with renowned nuclear-research groups at universities and laboratories. The concept for a nuclear master programme consists of a solid basket of recommended basic nuclear science and engineering courses, but also contains advanced courses as well as practical training. Some of the advanced courses also serve as part of the curricula for doctoral programmes. A second important issue identified is Continued Professional Development. In order to achieve the objectives and practical goals described above, the ENEN association was formed. This international, non-profit association is be considered as a step towards a virtual European Nuclear University symbolising the active collaboration between various national institutions pursuing nuclear education. (author)

  4. Study on the evolution of nuclear engineering professions

    International Nuclear Information System (INIS)

    2008-01-01

    Based on interviews of experts belonging to different companies and institutions (EDF, AREVA, CEA, ASN, IRSN, INSTN), subcontractors, engineers and technicians of the nuclear sector, persons in charge of education, pupils and students, this study gives a synthetic vision of the general context of the needs for nuclear engineering professionals, at the world scale, in the French context, the perceived difficulties faced by this sector, the use of subcontracting, the recruitment needs, the educational profile of engineers and technicians, their revenues, their opinion about their work, the adequacy between education and employment in this sector. It gives estimated figures for engineer and technician recruitment needs for different abilities in the French nuclear engineering

  5. Educating the humanitarian engineer.

    Science.gov (United States)

    Passino, Kevin M

    2009-12-01

    The creation of new technologies that serve humanity holds the potential to help end global poverty. Unfortunately, relatively little is done in engineering education to support engineers' humanitarian efforts. Here, various strategies are introduced to augment the teaching of engineering ethics with the goal of encouraging engineers to serve as effective volunteers for community service. First, codes of ethics, moral frameworks, and comparative analysis of professional service standards lay the foundation for expectations for voluntary service in the engineering profession. Second, standard coverage of global issues in engineering ethics educates humanitarian engineers about aspects of the community that influence technical design constraints encountered in practice. Sample assignments on volunteerism are provided, including a prototypical design problem that integrates community constraints into a technical design problem in a novel way. Third, it is shown how extracurricular engineering organizations can provide a theory-practice approach to education in volunteerism. Sample completed projects are described for both undergraduates and graduate students. The student organization approach is contrasted with the service-learning approach. Finally, long-term goals for establishing better infrastructure are identified for educating the humanitarian engineer in the university, and supporting life-long activities of humanitarian engineers.

  6. Support of nuclear engineering education and research at the University of Michigan

    International Nuclear Information System (INIS)

    Martin, W.R.

    1993-03-01

    This report describes progress on four different projects in the fission reactor area that have been supported by the grant during the past year. These projects are: Accelerator transmutation of nuclear waste (Steve Pearson); neutronic analysis of the Ford Nuclear Reactor (Brent Renkema); developing Monte Carlo benchmarks for commercial LWR configurations (Jie Du); Monte Carlo depletion capability for massively parallel processors (Amit Majumdar); these tasks are briefly described and progress to date is presented

  7. ENEN - European Nuclear Educational Network Association

    International Nuclear Information System (INIS)

    De Regge, P.

    2006-01-01

    After the pioneering initiative of BNEN, the Belgian Nuclear higher Education Network, other countries, e.g. Italy, United Kingdom, Germany, Switzerland, etc., created their own pool of education. At the European level the ENEN Association (European Nuclear Education Network) is a sustainable product generated by an FP5 project. The main objective of the ENEN Association is the preservation and the further development of higher nuclear education and expertise. This objective is realized through the co-operation between European universities, involved in education and research in the nuclear engineering field, nuclear research centres and nuclear industry

  8. JAERI Nuclear Engineering School and technology transfer

    International Nuclear Information System (INIS)

    Nishimura, Kazuaki; Kawaguchi, Chiyoji

    1978-01-01

    A method is introduced to evaluate the degree of nuclear technology transfer; that is, the output powers of Japanese nuclear reactors constructed in these 20 years are chronologically plotted in a semi-log figure. All reactors plotted are classified into imported and domestic ones according to a value of domestication factor. A space between two historical trajectories of reactor construction may be interpreted as one of the measures indicating the degree of nuclear technology transfer. In connection with this method, historical change of educational and training courses in Nuclear Engineering School of Japan Atomic Energy Research Institute is reviewed in this report. (author)

  9. Nuclear education in Russia : Status, peculiarities, perspectives and international cooperation

    NARCIS (Netherlands)

    Kryuchkov, Eduard F.

    2008-01-01

    The paper is devoted to analysis of Russian nuclear education system: its current status, specific features, difficulties and prospects. Russian higher education system in nuclear engineering has been created simultaneously with development of nuclear industry, and the system completely satisfied

  10. Impact of quality concepts on nuclear engineering accreditation

    International Nuclear Information System (INIS)

    Woodall, D.M.

    1993-01-01

    This paper is an update of the accreditation process for nuclear engineering education at the undergraduate and graduate level in U.S. universities and colleges. The Engineering Accreditation Commission (EAC) of the Accreditation Board for Engineering and Technology (ABET) has made a number of major changes in the process for engineering accreditation in recent years. This paper identifies those changes that have taken place, discusses the rationale for those changes, and encourages U.S. universities with nuclear engineering programs to respond

  11. Fluidization in nuclear engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyamoorthy, D; Venugopalan, Ramani; Vijay, P L [Metallurgy Division, Bhabha Atomic Research Centre, Mumbai (India); Varadarajan, T G [Heavy Water Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Fluidization technique has not been fully exploited in nuclear industries mainly due to lack of open literature or unawareness of its applications. Hence in this paper a detailed range of applications of fluidization in uranium extraction, nuclear fuel material preparation, fuel reprocessing and waste disposal is highlighted. A fluidized bed nuclear reactor concept is also presented. The need of fluidization for process improvement and modernization in nuclear programmes is stressed. (author). 40 refs., 3 figs.

  12. Introduction to nuclear facilities engineering

    International Nuclear Information System (INIS)

    Sapy, Georges

    2012-06-01

    Engineering, or 'engineer's art', aims at transforming simple principle schemes into operational facilities often complex especially when they concern the nuclear industry. This transformation requires various knowledge and skills: in nuclear sciences and technologies (nuclear physics, neutronics, thermal-hydraulics, material properties, radiation protection..), as well as in non-nuclear sciences and technologies (civil engineering, mechanics, electricity, computer sciences, instrumentation and control..), and in the regulatory, legal, contractual and financial domains. This book explains how this huge body of knowledge and skills must be organized and coordinated to create a reliable, exploitable, available, profitable and long-lasting facility, together with respecting extremely high safety, quality, and environmental impact requirements. Each aspect of the problem is approached through the commented presentation of nuclear engineering macro-processes: legal procedures and administrative authorizations, nuclear safety/radiation protection/security approach, design and detailed studies, purchase of equipments, on-site construction, bringing into operation, financing, legal, contractual and logistic aspects, all under the global control of a project management. The 'hyper-complexness' of such an approach leads to hard points and unexpected events. The author identifies the most common ones and proposes some possible solutions to avoid, mitigate or deal with them. In a more general way, he proposes some thoughts about the performance factors of a nuclear engineering process

  13. The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project

    International Nuclear Information System (INIS)

    Hopper, Calvin Mitchell

    2011-01-01

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT and SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT and SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National

  14. Authority in Engineering Education

    Science.gov (United States)

    Stephan, Karl D.

    2012-01-01

    Authority as a philosophical concept is defined both in general and as it applies to engineering education. Authority is shown to be a good and necessary part of social structures, in contrast to some cultural trends that regard it as an unnecessary and outmoded evil. Technical, educational, and organizational authority in their normal functions…

  15. Environmental and waste disposal options in nuclear engineering curricula

    International Nuclear Information System (INIS)

    Elleman, T.S.; Gilligan, J.G.

    1991-01-01

    The strong national emphasis on waste and environmental issues has prompted increasing interest among nuclear engineering students in study options that will prepare them for careers in these areas. Student interest appears to focus principally on health physics, radioactive waste disposal, and environmental interactions with radionuclides. One motivation for this interest appears to be the growing national programs in environmental restoration and waste remediation that have produced fellowship support for nuclear engineering students as well as employment opportunities. Also, the recent National Academy of sciences study on nuclear engineering education specifically emphasized the importance of expanding nuclear engineering curricula and research programs to include a greater emphasis on radioactive waste and environmental issues. The North Carolina State University (NCSU) Department of Nuclear Engineering is attempting to respond to these needs through the development of course options that will allow students to acquire background in environmental subjects as a complement to the traditional nuclear engineering education

  16. The Role of Computer-Based Educational Laboratories in Nuclear Engineering University Programmes

    International Nuclear Information System (INIS)

    Korolev, S.A.; Kosilov, A.N.; Chernov, E.V.; Vygovskiy, S.B.

    2014-01-01

    The specialized Educational and research laboratory 'Reactor physics, control and safe operation of WWER type NPP’ is based on the computer simulator of WWER -1000 and offers the real-time monitoring of data available to the WWER -1000 NPP control room operators, and provides a possibility to investigate reactor behavior in normal and abnormal situations. The laboratory supports interactive technologies and team-based activities that enable students to build their knowledge through required gateway courses and explore problems relevant to real life situations

  17. Nuclear Reactor Engineering Analysis Laboratory

    International Nuclear Information System (INIS)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-01-01

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels

  18. Engineering justice transforming engineering education and practice

    CERN Document Server

    Leydens, Jon A

    2018-01-01

    Using social justice as a catalyst for curricular transformation, Engineering Justice presents an examination of how politics, culture, and other social issues are inherent in the practice of engineering. It aims to align engineering curricula with socially just outcomes, increase enrollment among underrepresented groups, and lessen lingering gender, class, and ethnicity gaps by showing how the power of engineering knowledge can be explicitly harnessed to serve the underserved and address social inequalities. This book is meant to transform the way educators think about engineering curricula through creating or transforming existing courses to attract, retain, and motivate engineering students to become professionals who enact engineering for social justice. Engineering Justice offers thought-provoking chapters on: why social justice is inherent yet often invisible in engineering education and practice; engineering design for social justice; social justice in the engineering sciences; social justice in human...

  19. Mechatronics Engineering Education

    OpenAIRE

    Grimheden, Martin

    2006-01-01

    Since its emergence in the late 1960s, mechatronics has become well-established as an academic subject, and is now researched and taught at a large number of universities worldwide. The most widely-used definition of the subject today is centered on the synergistic integration of mechanical engineering, electronics, and intelligent computer control. The aim of this thesis is to work between the disciplines of engineering education and mechatronics to address both the question of the identity ...

  20. PBL in Engineering Education

    DEFF Research Database (Denmark)

    PBL in Engineering Education: International Perspectives on Curriculum Change presents diverse views on the implementation of PBL from across the globe. The purpose is to exemplify curriculum changes in engineering education. Drivers for change, implementation descriptions, challenges and future...... perspectives are addressed. Cases of PBL models are presented from Singapore, Malaysia, Tunisia, Portugal, Spain and the USA. These cases are stories of thriving success that can be an inspiration for those who aim to implement PBL and change their engineering education practices. In the examples presented......, the change processes imply a transformation of vision and values of what learning should be, triggering a transition from traditional learning to PBL. In this sense, PBL is also a learning philosophy and different drivers, facing diverse challenges and involving different actors, trigger its implementation...

  1. Accreditation of nuclear engineering programs

    International Nuclear Information System (INIS)

    Williamson, T.G.

    1989-01-01

    The American Nuclear Society (ANS) Professional Development and Accreditation Committee (PDAC) has the responsibility for accreditation of engineering and technology programs for nuclear and similarly named programs. This committee provides society liaison with the Accreditation Board for Engineering and Technology (ABET), is responsible for the appointment and training of accreditation visitors, nomination of members for the ABET Board and Accreditation Commissions, and review of the criteria for accreditation of nuclear-related programs. The committee is composed of 21 members representing academia and industry. The ABET consists of 19 participating bodies, primarily professional societies, and 4 affiliate bodies. Representation on ABET is determined by the size of the professional society and the number of programs accredited. The ANS, as a participating body, has one member on the ABET board, two members on the Engineering Accreditation Commission, and one on the Technology Accreditation Commission. The ABET board sets ABET policy and the commissions are responsible for accreditation visits

  2. Re-engineering the nuclear medicine residency curriculum in the new era of PET imaging: Perspectives on PET education and training in the Philippine context

    International Nuclear Information System (INIS)

    Pascual, T.N.; Santiago, J.F.; Leus, M.

    2007-01-01

    Full text: There is rapid development in PET Imaging and Molecular Nuclear Medicine. In the context of a residency training program, there is a need to incorporate these technologies in the existing Nuclear Medicine Residency Training Curriculum. This will ensure that trainees are constantly updated with the latest innovations in Nuclear Medicine making them apply this progress in their future practice hence making them achieve the goals and objectives of the curriculum. In residency training programs wherein no PET facilities are existing, these may be remedied by re-engineering the curriculum to include mandatory /electives rotations to other hospitals where the facilities are available. In order to ensure the integrity of the training program in this process of development, a proper sequence of this re-engineering process adhering to educational principles is suggested. These steps reflect the adoption of innovations and developments in the field of Nuclear Medicine essential for nuclear medicine resident learning. Curriculum re-engineering is a scientific and logical method reflecting the processes of addressing changes in the curriculum in order to deliver the desired goals and objectives of the program as dictated by time and innovations. The essential steps in this curriculum re-engineering process, which in this case aim to incorporate and/or update PET Imaging and Molecular Nuclear Imaging education and training, include (1) Curriculum Conceptualization and Legitimatisation, (2) Curriculum Diagnosis, (3) Curriculum Engineering, Designing and Organization, (4) Curriculum Implementation, (5) Curriculum Evaluation, (6) Curriculum Maintenance and (7) Curriculum Re-engineering. All of these sequences consider the participation of the different stakeholders of the training program. They help develop the curriculum, which seeks to promote student learning according to the dictates of the goals and objectives of the program and technology development. Once the

  3. European Master of Science in Nuclear Engineering

    International Nuclear Information System (INIS)

    Moons, Frans; Safieh, Joseph; Giot, Michel; Mavko, Borut; Sehgal, Bal Raj; Schaefer, Anselm; Goethem, Georges van; D'Haeseleer, William

    2005-01-01

    The need to preserve, enhance or strengthen nuclear knowledge is worldwide recognised since a couple of years. Among others, 'networking to maintain nuclear competence through education and training', was recommended in 2001 by an expert panel to the European Commission [EUR, 19150 EN, Strategic issues related to a 6th Euratom Framework Programme (2002-2006). Scientific and Technical Committee Euratom, pp. 14]. It appears that within the European University education and training framework, nuclear engineering is presently still sufficiently covered, although somewhat fragmented. However, it has been observed that several areas are at risk in the very near future including safety relevant fields such as reactor physics and nuclear thermal-hydraulics. Furthermore, in some countries deficiencies have been identified in areas such as the back-end of the nuclear fuel cycle, waste management and decommissioning. To overcome these risks and deficiencies, it is of very high importance that European countries work more closely together. Harmonisation and improvement of the nuclear education and training have to take place at an international level in order to maintain the knowledge properly and to transfer it throughout Europe for the safe and economic design, operation and dismantling of present and future nuclear systems. To take up the challenges of offering top quality, new, attractive and relevant curricula, higher education institutions should cooperate with industry, regulatory bodies and research centres, and more appropriate funding from public and private sources. In addition, European nuclear education and training should benefit from links with international organisations like IAEA, OECD-NEA and others, and should include worldwide cooperation with academic institutions and research centres. The first and central issue is to establish a European Master of Science in Nuclear Engineering. The concept envisaged is compatible with the projected harmonised European

  4. Training in nuclear engineering companies

    International Nuclear Information System (INIS)

    Perezagua, R. L.

    2013-01-01

    The importance of training is growing in all business areas and fields and especially in hi-tech companies like engineering firms. Nuclear projects are highly multidisciplinary and, even in the initial awarding and pre-construction phases, need to be staffed with personnel that is well-prepared and highly-qualified in areas that, in most cases, are not covered by university studies. This article examines the variables that influence the design of specific training for nuclear projects in engineering firms, along with new training technologies (e-learning) and new regulatory aspects (IS-12). (Author)

  5. The future of nuclear engineering

    International Nuclear Information System (INIS)

    Beeden, Jeffrey

    2003-01-01

    Today, nuclear power refers to the splitting of large uranium atoms into smaller atoms with a net release of energy. Tomorrow, nuclear power will refer to the combining of hydrogen into larger atoms with a net release of energy. Nuclear power's future is fusion. The Mechanical Engineers of tomorrow will need to be familiar with the process of creating and harnessing the energy from a fusion reaction. During the oil shortage in the 1970's, America scrambled to initiate alternative methods of producing power. Nuclear fusion was one of them. As time passes, the solution to the world's energy crisis presses the countries of the world to find alternative forms of energy; nuclear fusion may contain the answer. In the near future, the field of fusion will open up and a new wave of engineers will flood into this field. Mechanical engineers will lead the way with advances in materials, computational fluid dynamics, finite element analysis for thermal and structural systems, and heat transfer designs to optimize nuclear fusion reactors and power plants. All this effort is in anticipation of creating a sustained fusion reaction that can generate enough heat to transfer to steam in order to generate electric power to sustain the fusion reaction and introduce power to the grid. (author)

  6. Trends in nuclear education

    International Nuclear Information System (INIS)

    Lartigue, J.; Martinez, T.

    2008-01-01

    Today's nuclear curricula have the purpose to fulfil labor requirements of the nuclear market, both power and applications, as well as keeping up the academic level required for research and development in nuclear sciences. This work analyses the power and applications markets and the situation of nuclear education in several countries, including Mexico, as well as collective efforts promoted by the International Atomic Energy Agency (IAEA) and other organizations. Conclusions are obtained about the status and trends in nuclear education, emphasizing the role of the academic and users sectors to fit the future demand and the availability of skilled personnel. (author)

  7. The mathematics of nuclear engineering

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1982-01-01

    The mathematics of nuclear engineering is considered with especial reference to the problems of; the representation of the transformation of matter at the nuclear level by radioactive decay and neutron transmutation, the problem of the distribution of neutrons and other particles as a transport theory problem including some of the approximation methods used in this problem, particularly diffusion theory with particular emphasis on steady-state problems, time-dependent reactor kinetic and control, and the longer term changes involved with the nuclear fuel cycle both within and without the reactor itself. (U.K.)

  8. Midwest Nuclear Science and Engineering Consortium

    International Nuclear Information System (INIS)

    Volkert, Wynn; Kumar, Arvind; Becker, Bryan; Schwinke, Victor; Gonzalez, Angel; McGregor, Douglas

    2010-01-01

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  9. Midwest Nuclear Science and Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  10. Introduction to nuclear test engineering

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Paquette, D.L.

    1982-01-01

    The basic information in this report is from a vu-graph presentation prepared to acquaint new or prospective employees with the Nuclear Test Engineering Division (NTED). Additional information has been added here to enhance a reader's understanding when reviewing the material after hearing the presentation, or in lieu of attending a presentation

  11. Nuclear engineering terms and definitions

    International Nuclear Information System (INIS)

    1981-01-01

    The most important nuclear engineering's terms and definitions are given in this standard. The definitions take into account the Austrian Regulations for Radiation Protection, for and pertinent ISO and DIN-Standards as also the OENORM A7006 and OENORM A6601. (M.T.)

  12. The Nuclear Engineering Doctorate and NTEC CPD and Masters programmes: education, training and research for the decommissioning skills-base - 16395

    International Nuclear Information System (INIS)

    Roberts, John W.

    2009-01-01

    Since its establishment in 2005 the Nuclear Decommissioning Authority (NDA) has a remit to maintain the skills-base for safe, secure and cost effective decommissioning of the existing UK civil nuclear power plants and associated facilities. With an aging workforce and a competitive tender process for each project a number of new companies are realising the potential of the UK decommissioning market. The Nuclear Engineering Doctorate and NTEC Masters Programmes have been designed to provide the nuclear workforce of the future. The doctorate is a partnership between industry, a university partner and the research engineer with the benefit to industry that the research engineer is based with the industrial partner. Technical and management modules are studied at the university whilst the research project is carried out in the industrial environment. The Masters programme draws on the expertise of 11 Higher Education Institutes and offers over 20 modules that are delivered in a short-fat format either as standalone CPD courses or, by taking further modules, a certificate, diploma or on completion of a research project an M.Sc. Modules are available that cover the technical aspects of decommissioning as well as management of the decommissioning process. The availability of modules in a Distance Learning format now enables students based around the world to benefit from this programme. This paper will describe the two programmes in detail and provide examples of current projects that are delivering the research and workforce required for a successful decommissioning programme. (author)

  13. Efforts by Atomic Energy Society of Japan to improve the public understanding on nuclear power. With an additional review on the present status of nuclear engineering education at universities

    International Nuclear Information System (INIS)

    Nishina, K.; Kudo, K.; Ishigure, K.; Miyazaki, K.; Kimura, I.; Madarame, H.

    1996-01-01

    On variety of recent public occasions crucial for the progress of Japanese nuclear fuel cycle, the public has expressed their incredulous and reserved attitudes toward further expansion of nuclear power utilization. The typical examples are (1) local town political votes with an issue to decide on the acceptance of a proposed nuclear power plant, ending up with a conclusion against the proposal, and (2) the local dissatisfaction expressed against a proposed, deep-underground research facility, which is intended to produce cold-simulation data on the behavior of high level waste nuclides. Realizing that the dissemination of systematic and correct informations is indispensable for gaining public understanding on the importance of energy resources and nuclear power, the Educational Committee, Atomic Energy Society of Japan (AESJ), has initiated various public relations activities since 1994. In the following we sketch such activities, namely: (1) Reviews conducted on high school textbooks. (2) A request submitted to the Government for revisions of high-school textbooks and governmental guidelines defining these textbooks. (3) Preparations of a source book on nuclear energy and radiations. In addition, (4) the review conducted on the present status of nuclear engineering education in universities over the country with and without nuclear engineering program will be given. (author)

  14. Waste management in the nuclear engineering curriculum

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1989-01-01

    One of the most significant challenges facing the nuclear industry is to successfully close the nuclear fuel cycle and effectively demonstrate to the public that nuclear wastes do not present a health risk. This issue is currently viewed by many as the most important issue affecting public acceptance of nuclear power, and it is imperative that nuclear engineers be able to effectively address the question of nuclear waste from both a generation and disposal standpoint. To address the issue, the area of nuclear waste management has been made one of the fields of specialized study in the Department of Nuclear Engineering Sciences at the University of Florida. The study of radioactive waste management at the University of Florida is designed both for background for the general nuclear engineering student and for those wishing to specialize in it as a multidiscipline study area involving the Departments of Nuclear Engineering Sciences, Environmental Sciences, Material Science and Engineering, Geology, Civil Engineering, and Industrial Engineering

  15. Congressional perspective on the prospects for tomorrow's nuclear engineers

    International Nuclear Information System (INIS)

    Lloyd, M.

    1986-01-01

    This paper reviews in some detail the nature of the directions in the federally supported nuclear energy research program and discusses the potential opportunities in nuclear engineering education to make contributions to the nation's nuclear power research efforts. The potential impacts of deficit reduction measures on the budgets for nuclear fission programs are also described and the subcommittee priorities for the DOE nuclear fission program within the budget framework are discussed

  16. Master on Nuclear Engineering and Applications (MINA): instrument of knowledge management in the nuclear sector

    International Nuclear Information System (INIS)

    Herranz, L. E.; Garcia Cuesta, J. C.; Falcon, S.; Casas, J. A.

    2013-01-01

    Knowledge Management in nuclear industry is indespensable to ensure excellence in performance and safety of nuclear installations. The Master on Nuclear Engineering and Applications (MINA) is a Spanish education venture which foundations and evolution have meant and adaptation to the European Education system and to the domestic and international changes occured in the nuclear environment. This paper summarizes the most relevant aspects of such transformation, its motivation and the final outcome. Finally, it discusses the potential benefit of a closer collaboration among the existing national education ventures in the frame of Nuclear Engineering. (Author)

  17. Management of nuclear knowledge and education

    International Nuclear Information System (INIS)

    Murogov, V.M.; Kosilov, A.N.; )

    2010-01-01

    The authors believe that preservation of critical knowledge for transferring to the next generation and formation of competencies that would meet the demands of modern nuclear technology must be the basis of nuclear education and training of professional staff for full-scale development of the nuclear industry. It is also necessary to formulate requirements to new competencies, which will help people that possess them address tasks of innovative development of nuclear technologies, and ensure that managers and engineers of all levels possess them. Cooperation (including international) will be vital between state authorities, industrial companies, science and research institutions and higher education to create favourable conditions for nuclear education and professional training [ru

  18. Educating personnel for nuclear technology in Czechoslovakia

    International Nuclear Information System (INIS)

    Otcenasek, P.

    1980-01-01

    The basic preconditions are discussed of educating personnel for nuclear power and nuclear technology in Czechoslovakia. In educating specialists, the high societal significance of nuclear power and the need to obtain qualified personnel for safeguarding safety and reliability of nuclear facilities operation should primarily be borne in mind. The system of training applies not only to operating and maintenance personnel of nuclear power plants but also to fuel and power generation, transport, engineering, building industry, health care, education and other personnel. (J.B.)

  19. Environmental engineering education enhancement

    Science.gov (United States)

    Caporali, E.

    2012-04-01

    Since higher education plays a central role in the development of both human beings and modern societies, enhancing social, cultural and economic development, active citizenship, ethical values and expertises for a sustainable growth, environment respectful, the European Commission promotes a wide range of programmes. Among the EC programmes, the TEMPUS - Trans European Mobility Programme for University Studies, with the support of the DG EAC of the European Commission, has contributed to many aspects of general interest for higher education. Curricula harmonization, LifeLong Learning Programme development, ICT use, quality assessment, accreditation, innovation learning methods, growth of networks of institutions trusting each other, are the focused aspects. Such a solid cooperation framework is surely among the main outcomes of the TEMPUS Projects leaded by the University of Firenze UNIFI (Italy), DEREC - Development of Environment and Resources Engineering Curriculum (2005-2008), and its spin-off DEREL - Development of Environment and Resources Engineering Learning (2010-2013), and VICES - Videoconferencing Educational Services (2009-2012). DEREC and DEREL TEMPUS projects, through the co-operation of Universities in Italy, Austria, Germany, Greece, Macedonia, Albania and Serbia, are aimed at the development of first and second level curricula in "Environment and Resources Engineering" at the Ss. Cyril and Methodius University - UKIM Skopje (MK). In the DEREC Project the conditions for offering a joint degree title in the field of Environmental Engineering between UNIFI and UKIM Skopje were fulfilled and a shared educational programme leading to the mutual recognition of degree titles was defined. The DEREL project, as logical continuation of DEREC, is aimed to introduce a new, up-to-date, postgraduate second level curriculum in Environment and Resources Engineering at UKIM Skopje, University of Novi Sad (RS) and Polytechnic University of Tirana (AL). following

  20. Nuclear Engineering Academic Programs Survey, 2004

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    2005-01-01

    This annual report details the number of nuclear engineering bachelor's, master's, and doctoral degrees awarded at a sampling of academic programs from 1998-2004. It also looks at nuclear engineering degrees by curriculum and the number of students enrolled in nuclear engineering degree programs at 31 U.S. universities in 2004

  1. The School for Nuclear Engineering is 25 years old: Where teachers go to school

    International Nuclear Information System (INIS)

    Knapp, W.

    1986-01-01

    For a quarter of a century the School for Nuclear Engineering at the Karlsruhe Nuclear Research Centre has provided further education in all areas of nuclear engineering. The courses are attended by all kinds of people: school teachers, shift managers in nuclear power stations and engineers from the Third World, for example. (orig.) [de

  2. Nuclear engineering dictionary. Woerterbuch Kerntechnik

    Energy Technology Data Exchange (ETDEWEB)

    Sube, R

    1985-01-01

    This dictionary treats the subject field of nuclear engineering as a field of applied nuclear physics: Industrial and other applications of nuclear energy, isotopes and ionizing radiation, and their, scientific-technical bases. Emphasis is placed on the terminology of the nuclear fuel cycle. Other applications of nuclear energy include military applications, nuclear fusion technology, and plasma physics, as well as methods and equipment of isotope and radiation technology, without the aspects of biological applications. High-energy physics is also excluded. The terminology presented primarily covers general and basic concepts, special terms have been included as far as available and ascertainable in all four languages. For selection of terms, numerous textbooks and monographies have been searched and compared, as well as various subject-related journals which have been regularly scanned for years. Standards have been a main source of information, as e.g. the international standards of the IAEA (including the INIS terminology), of the ISO, of the COMECON, and of the World Energy Conference and the IEC. Numerous national standards have been evaluated in search for definitions and designations. Users will appreciate the introduction of subject-field codes indicating the main field of usage of a term. Explanations and other hints are numerous and extensive in order to clearly define the terms chosen from other, similar terms, and in order to show homonyms.

  3. Computational intelligence in nuclear engineering

    International Nuclear Information System (INIS)

    Uhrig, Robert E.; Hines, J. Wesley

    2005-01-01

    Approaches to several recent issues in the operation of nuclear power plants using computational intelligence are discussed. These issues include 1) noise analysis techniques, 2) on-line monitoring and sensor validation, 3) regularization of ill-posed surveillance and diagnostic measurements, 4) transient identification, 5) artificial intelligence-based core monitoring and diagnostic system, 6) continuous efficiency improvement of nuclear power plants, and 7) autonomous anticipatory control and intelligent-agents. Several Changes to the focus of Computational Intelligence in Nuclear Engineering have occurred in the past few years. With earlier activities focusing on the development of condition monitoring and diagnostic techniques for current nuclear power plants, recent activities have focused on the implementation of those methods and the development of methods for next generation plants and space reactors. These advanced techniques are expected to become increasingly important as current generation nuclear power plants have their licenses extended to 60 years and next generation reactors are being designed to operate for extended fuel cycles (up to 25 years), with less operator oversight, and especially for nuclear plants operating in severe environments such as space or ice-bound locations

  4. Aerospace engineering educational program

    Science.gov (United States)

    Craft, William; Klett, David; Lai, Steven

    1992-01-01

    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.

  5. Project based learning for reactor engineering education

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Tsuji, Masashi; Shimazu, Yoichiro

    2009-01-01

    Trial in education of nuclear engineering in Hokkaido University has proved to be quite attractive for students. It is an education system called Project Based Learning (PBL), which is not based on education by lecture only but based mostly on practice of students in the classroom. The system was adopted four years ago. In the actual class, we separated the student into several groups of the size about 6 students. In the beginning of each class room time, a brief explanations of the related theory or technical bases. Then the students discuss in their own group how to precede their design calculations and do the required calculation and evaluation. The target reactor type of each group was selected by the group members for themselves at the beginning of the semester as the first step of the project. The reactor types range from a small in house type to that for a nuclear ship. At the end of the semester, each group presents the final design. The presentation experience gives students a kind of fresh sensation. Nowadays the evaluation results of the subject by the students rank in the highest in the faculty of engineering. Based on the considerations above, we designed the framework of our PBL for reactor engineering. In this paper, we will present some lessons learned in this PBL education system from the educational points of view. The PBL education program is supported by IAE/METI in Japan for Nuclear Engineering Education. (author)

  6. Refinement of nuclear safety education reinforcing technical succession

    International Nuclear Information System (INIS)

    Yokobori, Seiichi

    2008-01-01

    In April 2008, Musashi Institute of Technology established another faculty, the Faculty of Nuclear Safety Engineering, to educate students for nuclear engineering to meet the demands of personnel for nuclear business. At this new faculty, students mainly obtain professional knowledge and skills related to nuclear safety issues. This article described refinement of nuclear safety education by reinforcing technical succession topics, such as Rankine cycle, fission, two-phase flow, defense in depth in safety. LOCA/ECCS, seismic effects, reactor maintenance. (T. Tanaka)

  7. Educational systems - educational qualification of nuclear power plant personnel

    International Nuclear Information System (INIS)

    Boeger, H.

    1986-01-01

    In this lecture the following common features of education and training systems are described: - description of general school education, vocational training and engineering study programs, - allocation of categories of activities to normal school training backgrounds, - recommendations for educational and training programs required for various positions in nuclear power plants (formal and on-the-job training), - examinations and licences for the personnel at nuclear power plants. (orig./GL)

  8. Biomedical engineering education through global engineering teams.

    Science.gov (United States)

    Scheffer, C; Blanckenberg, M; Garth-Davis, B; Eisenberg, M

    2012-01-01

    Most industrial projects require a team of engineers from a variety of disciplines. The team members are often culturally diverse and geographically dispersed. Many students do not acquire sufficient skills from typical university courses to function efficiently in such an environment. The Global Engineering Teams (GET) programme was designed to prepare students such a scenario in industry. This paper discusses five biomedical engineering themed projects completed by GET students. The benefits and success of the programme in educating students in the field of biomedical engineering are discussed.

  9. Unique nuclear thermal rocket engine

    International Nuclear Information System (INIS)

    Culver, D.W.; Rochow, R.

    1993-06-01

    In January, 1992, a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars was introduced (Culver, 1992). This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1) the reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2) elimination need for a new, uncooled nozzle throat material suitable for long life application; (3) a practical provision for reactor power control; and (4) use of near-term, long-life turbopumps

  10. NKM Perspectives of Nuclear Education in Pakistan

    International Nuclear Information System (INIS)

    Khan, R.; Jaffar, G.; Haq, S. M. Z.; Khosa, S. U.

    2016-01-01

    Full text: Pakistan Institute of Engineering and Applied Sciences (PIEAS), Karachi Institute of Power Engineering (KINPOE) and CHASNUPP Centre for Nuclear Training (CHASCENT) are the main institutes providing for the nuclear skilled man power demands of the country’s nuclear technology program. The PIEAS is a public sector university and offers M.Sc. and Ph.D. programmes in nuclear science and technology. The CHASCENT is the training institute which focuses on the training programmes for nuclear power, while the KINPOE offers Master programme in nuclear power engineering, post graduate training programme (PGTP) and Post Diploma Training Program (PDTP) related to nuclear power engineering and technology. The nuclear education programmes and other relevant NKM activities at PIEAS, KINPOE and CHASCENT play a key role in the information management, human resource and competence management. This paper presents the NKM perspective of nuclear education in Pakistan, its continuation and enhancement for the expanding nuclear power programme to meet the country’s energy demands. (author

  11. 4+ Dimensional nuclear systems engineering

    International Nuclear Information System (INIS)

    Suh, Kune Y.

    2009-01-01

    Nuclear power plants (NPPs) require massive quantity of data during the design, construction, operation, maintenance and decommissioning stages because of their special features like size, cost, radioactivity, and so forth. The system engineering thus calls for a fully integrated way of managing the information flow spanning their life cycle. This paper proposes digital systems engineering anchored in three dimensional (3D) computer aided design (CAD) models. The signature in the proposal lies with the four plus dimensional (4 + D) Technology TM , a critical know how for digital management. ESSE (Engineering Super Simulation Emulation) features a 4 + D Technology TM for nuclear energy systems engineering. The technology proposed in the 3D space and time plus cost coordinates, i.e. 4 + D, is the backbone of digital engineering in the nuclear systems design and management. Dased on an integrated 3D configuration management system, ESSE consists of solutions JANUS (Junctional Analysis Neodynamic Unit SoftPower), EURUS (Engineering Utilities Research Unit SoftPower), NOTUS (Neosystemic Optimization Technical Unit SoftPower), VENUS (Virtual Engineering Neocybernetic Unit SoftPower) and INUUS (Informative Neographic Utilities Unit SoftPower). NOTUS contributes to reducing the construction cost of the NPPs by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3D visualization of construction processes and the resulting products intrinsically afford most of the advantages realized by incorporating a purely schedule level detail based the 4 + D system. Problems with equipment positioning and manpower congestion in certain areas can be visualized prior to the actual operation, thus preventing accidents and safety problems such as collision between two machines and losses in

  12. Computer graphics in engineering education

    CERN Document Server

    Rogers, David F

    2013-01-01

    Computer Graphics in Engineering Education discusses the use of Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) as an instructional material in engineering education. Each of the nine chapters of this book covers topics and cites examples that are relevant to the relationship of CAD-CAM with engineering education. The first chapter discusses the use of computer graphics in the U.S. Naval Academy, while Chapter 2 covers key issues in instructional computer graphics. This book then discusses low-cost computer graphics in engineering education. Chapter 4 discusses the uniform b

  13. Education of Sustainability Engineers

    Science.gov (United States)

    Oleschko, K.; Perrier, E.; Tarquis, A. M.

    2010-05-01

    It's not the same to educate the sustainable engineers as to prepare the engineers of Sustainability. In the latter case all existing methods of inventive creativity (Altshuller, 1988) should be introduced in the teaching and research processes in order to create a culture of innovation at a group. The Theory of Inventing Problem Solving (TRIZ) is based on the pioneer works of Genrich Altshuller (1988) and his associated. Altshuller reviewed over 2 million patents beginning in 1946 (Orlov, 2006) and developed the Laws of Evolution of Technological Systems; An Algorithm for Inventive Problem Solving (ARIZ); forty typical Techniques for Overcoming System Conflicts (TOSC); a system of 76 Standard Approaches to Inventive Problems (Standards) etc. (Fey and Rivin, 1997). Nowadays, "a theory and constructive instrument package for the controlled synthesis of ideas and the focused transformation of the object to be improved" (Orlov, 2006) are used with high efficacy as the teaching and thinking inventive problem-solving methods in some high schools (Barak and Mesika, 2006; Sokoi et al., 2008) as well as a framework for research (Moehrle, 2005) in construction industry (Zhang et al., 2009); chemical engineering (Cortes Robles et al., 2008) etc. In 2005 US Congress passed the innovation act with the intent of increasing research investment (Gupta, 2007), while China had included inventive principles of TRIZ in strategy and decision making structure design (Kai Yang, 2010). The integrating of TRIZ into eco-innovation diminishes the common conflicts between technology and environment (Chang and Chen, 2004). In our presentation we show discuss some examples of future patents elaborated by the master degree students of Queretaro University, Faculty of Engineering, Mexico using TRIZ methods. References 1. Altshuller, G., 1988. Creativity as an Exact Science. Gordon and Breach, New York. 2. Chang, Hsiang-Tang and Chen, Jahau Lewis, 2004. The conflict-problem-solving CAD software

  14. European nuclear education initiatives

    International Nuclear Information System (INIS)

    Glatz, Jean-Paul

    2011-01-01

    Whatever option regarding their future nuclear energy development is chosen by European Union Member States, the availability of a sufficient number of well trained and experienced staff is key for the responsible use of nuclear energy. This is true in all areas including design, construction, operation, decommissioning, fuel cycle and waste management as well as radiation protection. Given the high average age of existing experts leading to a significant retirement induce a real risk of the loss of nuclear competencies in the coming years. Therefore the demand of hiring skilled employees is rising. The challenge of ensuring a sufficient number of qualified staff in the nuclear sector has been acknowledged widely among the different stakeholders, in particular the nuclear industry, national regulatory authorities and Technical Support Organisations (TSOs). Already the EURATOM Treaty refers explicitly to the obligation for the Commission to carry out training actions. Recently initiatives have been launched at EU level to facilitate and strengthen the efforts of national stakeholders. The European Nuclear Education Network (ENEN) Association aims at preservation and further development of expertise in the nuclear field by higher education and training. The goal of the European Nuclear Energy Leadership Academy (ENELA) is to educate future leaders in the nuclear field to ensure the further development of sustainable European nuclear energy solutions The European Nuclear Energy Forum (ENEF) is a platform operated by the European Commission for a broad discussion on the opportunities and risks of nuclear energy. The nuclear programs under investigation in the Joint Research Center (JRC) are increasingly contributing to Education and Training (E and T) initiatives, promoting a better cooperation between key players and universities as well as operators and regulatory bodies in order to mutually optimise their training programmes. Another objective is to increase

  15. Finally, nuclear engineering textbooks with a Canadian flavour!

    International Nuclear Information System (INIS)

    Bonin, H.W.

    2002-01-01

    The need for nuclear engineering textbooks more appropriate to the Canadian nuclear industry context and the CANDU nuclear reactor program has long been felt not only among the universities offering nuclear engineering programs at the graduate level, but also within the Canadian nuclear industry itself. Coverage of the CANDU reactor system in the textbooks presently supporting teaching is limited to a brief description of the concept. Course instructors usually complement these textbooks with course notes written from their personal experience from past employment within the nuclear industry and from their research interests In the last ten years, the Canadian nuclear industry has been involved on an increasing basis with the issue of the technology transfer to foreign countries which have purchased CANDU reactors or have been in the process of purchasing one or several CANDUs. For some of these countries, the 'turn key' approach is required, in which the Canadian nuclear industry looks after everything up to the commissioning of the nuclear power plant, including the education and training of local nuclear engineers and plant personnel. Atomic Energy of Canada Limited (AECL) in particular has dispatched some personnel tasked to prepare and give short courses on some specific aspects of CANDU design and operation, but a lack of consistency was observed as different persons prepared and gave the courses rather independently. To address the many problems tied with nuclear engineering education, the CANTEACH program was set up involving major partners of the Canadian nuclear industry. Parts of the activities foreseen by CANTEACH consist in the writing of nuclear engineering textbooks and associated computer-based pedagogical material. The present paper discusses the main parts of two textbooks being produced, one in reactor physics at steady state and the other on nuclear fuel management. (author)

  16. A nuclear engineering curriculum for Asia-Pacific

    International Nuclear Information System (INIS)

    Bereznai, G.; Sumitra, T.; Chankow, N.; Chanyotha, S.

    1996-01-01

    This paper describes the nuclear engineering education and professional development curricula that are being developed at Chulalongkorn University in Bangkok, Thailand. The program was initiated in response to the Thai Government's policy to keep the option of nuclear electric generation available as the country responds to the rapid growth of industrialization and increased standard of living, and the accompanying increase in electricity consumption. The program has three main thrusts: university education, professional development, and public education. Although this paper concentrates on the university curriculum, it is shown how the university program is integrated with the development of industry professionals. The Nuclear Engineering Curricula being developed and implemented at Chulalongkorn University will offer programs at the Bachelor, Master and Doctorate levels. The curricula are designed to provide comprehensive education and training for engineers and scientists planning careers in the peaceful use of nuclear energy, with emphasis on the applications to industry and for nuclear electric generation. The Project of Human Resource Development in the Nuclear Engineering field is the result of a cooperative effort between agencies of the Thai and Canadian Governments, including the Electricity Generating Authority of Thailand, the Office of Atomic Energy for Peace, Chulalongkorn University and several other Thai Universities; Atomic Energy of Canada Limited, the Canadian International Development Agency, several Canadian Universities as well as members of the Canadian Nuclear Industry. (author)

  17. A nuclear power plant system engineering workstation

    International Nuclear Information System (INIS)

    Mason, J.H.; Crosby, J.W.

    1989-01-01

    System engineers offer an approach for effective technical support for operation and maintenance of nuclear power plants. System engineer groups are being set up by most utilities in the United States. Institute of Nuclear Power operations (INPO) and U.S. Nuclear Regulatory Commission (NRC) have endorsed the concept. The INPO Good Practice and a survey of system engineer programs in the southeastern United States provide descriptions of system engineering programs. The purpose of this paper is to describe a process for developing a design for a department-level information network of workstations for system engineering groups. The process includes the following: (1) application of a formal information engineering methodology, (2) analysis of system engineer functions and activities; (3) use of Electric Power Research Institute (EPRI) Plant Information Network (PIN) data; (4) application of the Information Engineering Workbench. The resulting design for this system engineer workstation can provide a reference for design of plant-specific systems

  18. Nuclear training and education

    International Nuclear Information System (INIS)

    Sandklef, S.

    2008-01-01

    There is a large need in this period of anticipated growth of the nuclear industry to keep and increase the level of competence beyond that provided by universities, technical institutes and on-the-job training. ANT International has developed several programs to assist the nuclear industry in meeting this need. The programs are based on utilizing the experience and skills of a network of experts who have a wide experience in the relevant technical areas of importance to nuclear power operations. Examples of these programs are given in this report together with an extensive list of ANT International reports in the field of nuclear fuel technology, water chemistry and reactor materials. These reports have been and are used for training and education in Europe, North America and Asia. (author)

  19. European Nuclear Education Network (ENEN) Association Initiative

    International Nuclear Information System (INIS)

    Comsa, Olivia; Meglea, Claudia; Banutoiu, Marina; Paraschiva, M. V.; Meglea, S.

    2003-01-01

    The main objective of the ENEN Association is the preservation and further development of a higher nuclear education and expertise. This objective should be achieved through the co-operation between European universities involved in education and research in the nuclear engineering field, research centers and the nuclear industry. To reach this objective, the ENEN Association has to: Promote and develop the collaboration in nuclear engineering education of engineers and researchers required by the nuclear industry and the regulatory bodies; Ensure the quality of nuclear academic engineering education and training; Increase the attractiveness for engagement in the nuclear field for students and young academics. The basic objectives of the ENEN Association shall be to: Deliver an European Master of Science Degree in Nuclear Engineering and promote PhD studies; Promote exchange of students and teachers participating in the frame of this network; Increase the number of students by providing incentives; Establish a framework for mutual recognition; Foster and strengthen the relationship with research laboratories and networks, industry and regulatory bodies, by involving them in (or association them with) nuclear academic education and by offering continuous training. The aims of the ENEN Association shall be achieved by: Discussion on educational objectives, methods and course contents among the members and with external partners, particularly national European industries; Organization of internal audits on the quality of nuclear engineering curricula; Awarding the label of 'European Master degree of Science in Nuclear Engineering' to the curricula satisfying the criteria set up by the ENEN Association; Cooperation between the members, and with the research centers and the nuclear industry for enhancement of mobility of teachers and students, organization of training and advanced courses, use of large research and teaching facilities or infrastructures; Cooperation

  20. Integrating Ethics into Engineering Education

    DEFF Research Database (Denmark)

    Zhou, Chunfang; Otrel-Cass, Kathrin; Børsen, Tom

    2015-01-01

    In this chapter, the authors aim to explore the necessity of teaching ethics as part of engineering education based on the gaps between learning “hard” knowledge and “soft” skills in the current educational system. They discuss why the nature of engineering practices makes it difficult to look...... products are not value neutral. With a focus on Problem-Based Learning (PBL), the authors examine why engineers need to incorporate ethical codes in their decision-making process and professional tasks. Finally, they discuss how to build creative learning environments that can support attaining...... the objectives of engineering education....

  1. Capacity Building for Engineering Education

    DEFF Research Database (Denmark)

    de Graaff, Erik; Deboer, Jennifer

    2015-01-01

    faculty leadership training workshops/courses/seminars, helping to broker the offering of these around the world. Since 2011 IIDEA has been offering diverse workshops facilitated by top engineering education leaders as stand alone or as pre- post conference activities. Engineering educators...

  2. Virtual Reality and Engineering Education.

    Science.gov (United States)

    Pantelidis, Veronica S.

    1997-01-01

    Virtual Reality (VR) offers benefits to engineering education. This article defines VR and describes types; outlines reasons for using VR in engineering education; provides guidelines for using VR; presents a model for determining when to use VR; discusses VR applications; and describes hardware and software needed for a low-budget VR and…

  3. Integrated engineering system for nuclear facilities building

    International Nuclear Information System (INIS)

    Tomura, H.; Miyamoto, A.; Futami, F.; Yasuda, S.; Ohtomo, T.

    1995-01-01

    In the construction of buildings for nuclear facilities in Japan, construction companies are generally in charge of the building engineering work, coordinating with plant engineering. An integrated system for buildings (PROMOTE: PROductive MOdeling system for Total nuclear Engineering) described here is a building engineering system including the entire life cycle of buildings for nuclear facilities. A Three-dimensional (3D) building model (PRO-model) is to be in the core of the system (PROMOTE). Data sharing in the PROMOTE is also done with plant engineering systems. By providing these basic technical foundations, PROMOTE is oriented toward offering rational, highquality engineering for the projects. The aim of the system is to provide a technical foundation in building engineering. This paper discusses the characteristics of buildings for nuclear facilities and the outline of the PROMOTE. (author)

  4. Engineering Education: Challenges for Innovation

    OpenAIRE

    Restivo, Teresa; Alves, Gustavo R.

    2014-01-01

    Engineering Education: Challenges for Innovation” is the scope of the 1st International Conference of the Portuguese Society for Engineering Education (in Portuguese: Sociedade Portuguesa para a Educação em Engenharia, SPEE) [1]. SPEE is a young society now completing four years since its public presentation and launching by the Faculty of Engineering of University of Porto, in February 19, 2010. info:eu-repo/semantics/publishedVersion

  5. The midwest workshop on preparing nuclear engineering professionals

    International Nuclear Information System (INIS)

    Danofsky, R.A.; Rohach, A.F.; Spinrad, B.I.; Nodean, W.C.

    1988-01-01

    Personnel training and education are activities of major importance for nuclear utilities and represent fruitful areas for possible cooperation between utilities and educational institutions. Utility personnel have a need for continuing education through advanced and undergraduate degree programs and special courses. Nuclear engineering departments are in a position to meet at least some of these needs. The purpose of the workshop described in this paper was to explore ways to increase the dialogue between utilities and universities and to bring faculty and utility personnel together to discuss the educational needs of nuclear utilities. The workshop was held May 25-27, 1988, at Iowa State University. Planning for the workshop was coordinated by a steering committee with representation from the Department of Nuclear Engineering at Iowa State University, Iowa Electric Light and Power Company (IEL ampersand P), and Kirkwood Community College at Cedar Rapids, Iowa. Participants represented nuclear utilities, nuclear engineering departments, 2- and 4-yr colleges, a nuclear training organization, and the Institute of Nuclear Power Operations

  6. World's trends in nuclear education

    International Nuclear Information System (INIS)

    Lartigue, J.; Martinez, T.

    2005-01-01

    Since the exhort of the International Atomic Energy Agency, in 1955, to promote the pacific uses of nuclear energy, countries that had developed military nuclear programs extended their research and training programs to cover pacific uses. Consequently, many programs on Nuclear Engineering and Nuclear Chemistry were established in those countries as well as in many others interested exclusively in the civil applications. Obviously, the new graduated curricula had the purpose to fulfil the manpower requirements of the growing nuclear market, so much in the power as in the applications fields, always keeping the high academic level required by the research and development of this technology. The slowing down in the nuclear power demand, evident in the nineties, caused a diminution in the matriculation in Nuclear Engineering degrees while that in Nuclear and Radiochemistry remained almost constant. Anyway, countries with defined nucleo electric programs took the necessary steps calling, frequently, for foreign personnel. Besides the nuclear power stagnation, the global growing of environmental pollution compelled several countries to transform their old Nuclear Centers in new Centers for Energy and Environmental Research, with the purpose to promote the research and development of all types of primary energy; in general, these new centers maintain their support to Nuclear and Radiochemistry activities. An important characteristic of these organisations (discussed in this work) is the collaboration they offer to universities for thesis work and experimental courses in these increasingly related fields. In fact, before the immediate world's problems of greenhouse and water scarcity, as well as the future demand of electricity, nuclear power returns as the long term solution and a bridge toward the Hydrogen Economy; however, better reactor's designs are required to fulfil such objectives. By now, analytical nuclear methods have proved their usefulness for pollutants

  7. Reconstruction of nuclear science and engineering harmonized with human society

    International Nuclear Information System (INIS)

    2003-03-01

    At the beginning of the 21th century, the use of nuclear power has assumed very serious dimensions, because there are many problems not only safety technologies but also action of technical expert. The situation and problems of nuclear power are explained. It consists of six chapter as followings; introduction, history and R and D of nuclear power, paradigm change of nuclear science and engineering, energy science, investigation of micro world, how to research and development and education and training of special talent. The improvement plans and five proposals are stated as followings; 1) a scholar and engineer related to nuclear power have to understand ethics and build up closer connection with person in the various fields. 2) Nuclear power generation and nuclear fuel cycle are important in future, so that they have to be accepted by the society by means of opening to the public. Safety science, anti-pollution measurements, treatment and disposal of radioactive waste and development of new reactor and fusion reactor should be carried out. 3) It is necessary that the original researches of quantum beam and isotope have to step up. 4) The education of nuclear science and technology and upbringing special talent has to be reconstructed. New educational system such as 'nuclear engineering course crossing with many universities' is established. 5) Cooperation among industry, academic world and government. (S.Y.)

  8. Nuclear Waste Education Project

    International Nuclear Information System (INIS)

    1989-01-01

    In summary, both the Atlanta and Albuquerque pilot seminars achieved the Nuclear Waste Education Project's goal of informing citizens on both the substance and the process of nuclear waste policy so that they can better participate in future nuclear waste decisions. Nuclear waste issues are controversial, and the seminars exposed the nature of the controversy, and utilized the policy debates to create lively and provocative sessions. The format and content of any citizen education curriculum must be made to fit the particular goal that has been chosen. If the Department of Energy and the LWVEF decide to continue to foster an informed dialogue among presenters and participants, the principles of controversial issues education would serve this goal well. If, however, the Department of Energy and/or the LWVEF decide to go beyond imparting information and promoting a lively discussion of the issues, towards some kind of consensus-building process, it would be appropriate to integrate more interactive sessions into the format. As one evaluator wrote, ''In-depth participation in finding solutions or establishing policy -- small group discussion'' would have been preferable to the plenary sessions that mostly were in the form of lectures and expert panel discussion. The evaluator continued by saying, ''Since these [small group discussions] would require more time commitment, they might be part of follow-up workshops focused on particular topics.''

  9. Introducing Knowledge Management in Study Program of Nuclear Engineering

    International Nuclear Information System (INIS)

    Pleslic, S.

    2012-01-01

    Nuclear engineering is the branch of engineering concerning application of the fission as well as the fusion of atomic nuclei, and the application of other sub-atomic physics, based on the principles of nuclear physics. In the sub-field of nuclear fission there are many investigations of interactions and maintaining of systems and components like nuclear reactors and nuclear power plants. The field also includes the study of different applications of ionizing radiation (medicine, agriculture...), nuclear safety, the problems of thermodynamics transport, nuclear materials and nuclear fuels, and other related technologies like radioactive waste management. In the area of nuclear science and engineering a big amount of knowledge has been accumulated over the last decades. Different levels of nuclear knowledge were considered in different ways and they were taught to different parts of population as a general human culture and as a general scientific-technical-technological culture (high schools, nuclear information centres, training centres, universities...). An advanced level of nuclear knowledge has been accumulated by many experienced workers, specialists and experts in all nuclear and nuclear-related fields and applications. In the last 20 years knowledge management has established itself as a discipline of enabling individuals, teams and whole organizations to create, share and apply knowledge collectively and systematically, with goal to better achieve their objectives. Also, knowledge management became key strategic approach for management of intellectual assets and knowledge that can improve safety, efficiency and innovation, and lead to preserve and enhance current knowledge. Knowledge management could be applied in education, training, networking, human resource development and capacity building, sharing, pooling and transferring knowledge form centres of knowledge to centres of growth. Considering the critical importance of nuclear knowledge it is important

  10. Global trends in nuclear education at the tertiary level

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2001-01-01

    The public perception of nuclear science and engineering and the nuclear industry is today, primarily shaped by radical greens, nuclear-opponents, the media and socio-political opportunists. Only countries with a well diversified tertiary education system embracing all aspects of nuclear science and engineering can counter efficiently the pseudo-science and socio-political manipulation which has severely restricted nuclear energy development over the past three decades. National laboratories alone find this task extremely difficult, if not impossible

  11. Nuclear education in Russia: Status, peculiarities, problems and perspectives

    International Nuclear Information System (INIS)

    Onykiy, B.N.; Kryuchkov, E.F.

    2005-01-01

    The paper is devoted to analysis of Russian nuclear education system: its current status, specific features, difficulties and prospects. Russian higher education system in nuclear engineering has been created simultaneously with the development of nuclear industry, and the system completely satisfied all industrial demands for the specialists of different qualification levels. For the past several decades, nuclear education has lost its attractiveness to young people. The paper discusses the actions to be undertaken for reversing the situation. The paper underlines particularly the special role of international collaboration and all-European integration of nuclear educational programmes for further development of nuclear education all over the world. (author)

  12. Modern Engineering : Science and Education

    CERN Document Server

    2016-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2014 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  13. Lifecycle management for nuclear engineering project documents

    International Nuclear Information System (INIS)

    Zhang Li; Zhang Ming; Zhang Ling

    2010-01-01

    The nuclear engineering project documents with great quantity and various types of data, in which the relationships of each document are complex, the edition of document update frequently, are managed difficultly. While the safety of project even the nuclear safety is threatened seriously by the false documents and mistakes. In order to ensure the integrality, veracity and validity of project documents, the lifecycle theory of document is applied to build documents center, record center, structure and database of document lifecycle management system. And the lifecycle management is used to the documents of nuclear engineering projects from the production to pigeonhole, to satisfy the quality requirement of nuclear engineering projects. (authors)

  14. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    As chemical engineering processes and operations are closely involved in many areas of nuclear industry, the chemical engineer has a vital role to play in its growth and development. An account of the major achievements of the Indian chemical engineers in this field is given with view of impressing upon the faculty members of the Indian universities the need for taking appropriate steps to prepare chemical engineers suitable for nuclear industry. Some of the major achievements of the Indian chemical engineers in this field are : (1) separation of useful minerals from beach sand, (2) preparation of thorium nitrate of nuclear purity from monazite, (3) processing of zircon sand to obtain nuclear grade zirconium and its separation from hafnium to obtain zirconium metal sponge, (4) recovery of uranium from copper tailings, (5) economic recovery of nuclear grade uranium from low grade uranium ores found in India, (6) fuel reprocessing, (7) chemical processing of both low and high level radioactive wastes. (M.G.B.)

  15. Nuclear education in Russia. Status, peculiarities, perspectives and international cooperation

    International Nuclear Information System (INIS)

    Kryuchkov, Eduard F.

    2008-01-01

    The paper is devoted to analysis of Russian nuclear education system: its current status, specific features, difficulties and prospects. Russian higher education system in nuclear engineering has been created simultaneously with development of nuclear industry, and the system completely satisfied all industrial demands for the specialists of different qualification level. The specific features of PhD level (doctoral program) of education in Russia are discussed. The paper underlines particularly a special role of international collaboration in the field of nuclear education for further development of nuclear education all over the world. Some examples of international cooperation in the frames of new educational programs development are considered. (author)

  16. International Conference on Transformations in Engineering Education

    CERN Document Server

    2015-01-01

    This book comprises the proceedings of the International Conference on Transformations in Engineering Education conducted jointly by BVB College of Engineering & Technology, Hubli, India and Indo US Collaboration for Engineering Education (IUCEE). This event is done in collaboration with International Federation of Engineering Education Societies (IFEES), American Society for Engineering Education (ASEE) and Global Engineering Deans' Council (GEDC). The conference is about showcasing the transformational practices in Engineering Education space.

  17. Pedagogical Training and Research in Engineering Education

    Science.gov (United States)

    Wankat, Phillip C.

    2008-01-01

    Ferment in engineering has focused increased attention on undergraduate engineering education, and has clarified the need for rigorous research in engineering education. This need has spawned the new research field of Engineering Education and greatly increased interest in earning Ph.D. degrees based on rigorous engineering education research.…

  18. Training of engineers for Czechoslovak nuclear programme at Czech Technical University in Prague

    International Nuclear Information System (INIS)

    Klik, F.; Stoll, I.

    1983-01-01

    Between the year 1959 and the 1970's specialists for the Czechoslovak nuclear programme were only educated at the Faculty of Nuclar and Physics Engineering. In the early 1970's instruction and research related to nuclear power generation was introduced at the mechanical engineering and electrical engineering faculties. The specialization ''Nuclear power facilities'' was introduced within the study field ''Thermal and nuclear machines and equipment'' at the mechanical engineering faculty, and the electrical engineering faculty opened the study course ''Nuclear power plants'' in the study year 1975/1976. Most specialists for the nuclear programme are educated at the Faculty of Nuclear and Physics Engineering in the field ''Nuclear chemical engineering'' and in specializations ''Theory and technology of nuclear reactors'', ''Dosimetry and application of ionizing radiation'' in the study field ''Nuclear engineering''. The Faculty of Nuclear and Physics Engineering also trains specialists in the field ''Structure and materials properties'', the study courses ''Measuring technology'' and ''Control technology'' are run at the electrical engineering faculty and at the mechanical engineering faculty were introduced study courses of ''Applied mechanics'' and ''Mechanical engineering technology''. Graduates of all said study courses may be employed in the nuclear programme. (E.S.)

  19. Innovations in Nuclear Infrastructure and Education

    Energy Technology Data Exchange (ETDEWEB)

    John Bernard

    2010-12-13

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus and direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.

  20. Innovations in Nuclear Infrastructure and Education

    International Nuclear Information System (INIS)

    Bernard, John

    2010-01-01

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus and direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.

  1. Nuclear education, training and support

    International Nuclear Information System (INIS)

    Vityazev, Vsevolod; Ushakov Artem

    2016-01-01

    The structure and key elements of the ROSATOM education and training system are presented. Educational and training services and technical support are provided during the NPP lifetime, including nuclear Infrastructure, nuclear power plant personnel training, equipment and post-warranty spare parts, nuclear power plant operation support, maintenance and repair, modernization and lifetime extension

  2. Software Engineering Education Directory

    Science.gov (United States)

    1990-04-01

    and Engineering (CMSC 735) Codes: GPEV2 * Textiooks: IEEE Tutoria on Models and Metrics for Software Management and Engameeing by Basi, Victor R...Software Engineering (Comp 227) Codes: GPRY5 Textbooks: IEEE Tutoria on Software Design Techniques by Freeman, Peter and Wasserman, Anthony 1. Software

  3. Sustainable Development in Engineering Education

    Science.gov (United States)

    Taoussanidis, Nikolaos N.; Antoniadou, Myrofora A.

    2006-01-01

    The principles and practice of environmentally and socially sustainable engineering are in line with growing community expectations and the strengthening voice of civil society in engineering interventions. Pressures towards internationalization and globalization are reflected in new course accreditation criteria and higher education structures.…

  4. Biomedical Engineering Education in Perspective

    Science.gov (United States)

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  5. Importance of Engineering History Education

    Science.gov (United States)

    Arakawa, Fumio

    It is needless to cite the importance of education for succeed of engineering. IEEJ called for the establishment of ICEE in 1994, where the education is thought highly of, though its discussion has not been well working. Generally speaking, education has been one of the most important national strategies particularly at a time of its political and economical development. The science and technology education is, of course, not the exemption. But in these days around 2000 it seems that the public pays little attention on the science and technology, as they are quite day to day matters. As the results, for instance, such engineering as power systems and electric heavy machines are referred to as “endangered”. So fur, many engineers have tried not to be involved in social issues. But currently they can not help facing with risks of social issues like patent rights, troubles and accidents due to application of high technology, information security in the use of computers and engineering ethics. One of the most appropriate ways for the risk management is to learn lessons in the past, that is, history, so that the idea suggested in it could be made full use for the risk management. The author cited the global importance of education, particularly of engineering history education for engineering ethics, in the ICEE 2010 held in Bussan, Korea, as the 16th anniversary.

  6. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    International Nuclear Information System (INIS)

    1996-08-01

    This is an annual report prepared on research education action, operation state of research instruments and others in FY 1995 at Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The laboratory has four large instruments such as high speed neutron source reactor, 'Yayoi', electron linac, fundamentally experimental equipment for blanket design of nuclear fusion reactor, and heavy radiation research equipment (HIT), of which former two are used for cooperative research with universities in Japan, and the next blanket and the last HIT are also presented for cooperative researches in Faculty of Engineering and in University of Tokyo, respectively. FY 1995 was the beginning year of earnest discussion on future planning of this facility with concentrated effort. These four large research instruments are all in their active use. And, their further improvement is under preparation. In this report, the progress in FY 1995 on operation and management of the four large instruments are described at first, and on next, research actions, contents of theses for degree and graduation of students as well as research results of laboratory stuffs are summarized. These researches are constituted mainly using these large instruments in the facility, aiming at development of advanced and new field of atomic energy engineering and relates to nuclear reactor first wall engineering, nuclear reactor fuel cycle engineering, electromagnetic structure engineering, thermal-liquid engineering, mathematical information engineering, quantum beam engineering, new type reactor design and so on. (G.K.)

  7. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This is an annual report prepared on research education action, operation state of research instruments and others in FY 1995 at Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The laboratory has four large instruments such as high speed neutron source reactor, `Yayoi`, electron linac, fundamentally experimental equipment for blanket design of nuclear fusion reactor, and heavy radiation research equipment (HIT), of which former two are used for cooperative research with universities in Japan, and the next blanket and the last HIT are also presented for cooperative researches in Faculty of Engineering and in University of Tokyo, respectively. FY 1995 was the beginning year of earnest discussion on future planning of this facility with concentrated effort. These four large research instruments are all in their active use. And, their further improvement is under preparation. In this report, the progress in FY 1995 on operation and management of the four large instruments are described at first, and on next, research actions, contents of theses for degree and graduation of students as well as research results of laboratory stuffs are summarized. These researches are constituted mainly using these large instruments in the facility, aiming at development of advanced and new field of atomic energy engineering and relates to nuclear reactor first wall engineering, nuclear reactor fuel cycle engineering, electromagnetic structure engineering, thermal-liquid engineering, mathematical information engineering, quantum beam engineering, new type reactor design and so on. (G.K.)

  8. Software engineers and nuclear engineers: teaming up to do testing

    International Nuclear Information System (INIS)

    Kelly, D.; Cote, N.; Shepard, T.

    2007-01-01

    The software engineering community has traditionally paid little attention to the specific needs of engineers and scientists who develop their own software. Recently there has been increased recognition that specific software engineering techniques need to be found for this group of developers. In this case study, a software engineering group teamed with a nuclear engineering group to develop a software testing strategy. This work examines the types of testing that proved to be useful and examines what each discipline brings to the table to improve the quality of the software product. (author)

  9. Support of nuclear engineering education and research at the University of Michigan. Progress report, May 15, 1993--May 14, 1994

    International Nuclear Information System (INIS)

    Martin, W.R.

    1994-05-01

    This report describes progress on four different projects in the fission reactor area that have been supported by the grant during the past year. These projects are: Accelerator transmutation of nuclear waste (Steve Pearson); Neutronic analysis of the Ford Nuclear Reactor (Brent Renkema); and Monte Carlo depletion capability and new perturbation Monte Carlo algorithms, with utilization of massively parallel processors (Amit Majumdar). These tasks are briefly described and progress to date is presented

  10. Nuclear reactor engineering: Reactor systems engineering. Fourth edition, Volume Two

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in the design and operation of nuclear power plants. Extensively updated, the fourth edition includes new materials on reactor safety and risk analysis, regulation, fuel management, waste management and operational aspects of nuclear power. This volume contains the following: the systems concept, design decisions, and information tools; energy transport; reactor fuel management and energy cost considerations; environmental effects of nuclear power and waste management; nuclear reactor safety and regulation; power reactor systems; plant operations; and advanced plants and the future

  11. The Belgian Nuclear Higher Education Network

    International Nuclear Information System (INIS)

    Moons, F.; D'Haeseleer, W.; Giot, M.

    2004-01-01

    Full text: BNEN, the Belgian Nuclear Higher Education Network has been created in 2001 by five Belgian universities and the Belgian Nuclear Research Centre (SCK-CEN) as a joint effort to maintain and further develop a high quality programme in nuclear engineering in Belgium. In a country where a substantial part of electricity generation will remain of nuclear origin for a number of years, there is a need for well educated and well trained engineers in this area. Public authorities, regulators and industry brought their support to this initiative. In the framework of the new architecture of higher education in Europe, the English name for this 60 ECTS programme is 'Master of Science in Nuclear Engineering'. To be admitted to this programme, students must already hold a university degree in engineering or equivalent. Linked with university research, benefiting from the human resources and infrastructure of SCK-CEN, encouraged and supported by the partners of the nuclear sector, this programme should be offered not only to Belgian students, but also more widely throughout Europe and the world. The master programme is a demanding programme where students with different high level backgrounds in engineering have to go through highly theoretical subjects like neutron physics, fluid flow and heat transfer modelling, and apply them to reactor design, nuclear safety and plant operation and control. At a more interdisciplinary level, the programme includes some important chapters of material science, with a particular interest for the fuel cycle. Radiation protection belongs also to the backbone of the programme. All the subjects are taught by academics appointed by the partner universities, whereas the practical exercises and laboratory sessions are supervised by researchers of SCK-CEN. The final thesis offers an opportunity for internship in industry or in a research laboratory. More information: http://www.sckcen.be/BNEN. (author)

  12. Nuclear engineering in the National Polytechnic Institute

    International Nuclear Information System (INIS)

    Del Valle G, E.

    2008-12-01

    In the National Polytechnic Institute the bachelor degree in physics and mathematics, consists of 48 subjects in the common trunk. For the nuclear engineering option, from the fifth semester undergoing 9 specific areas within the Nuclear Engineering Department : introduction to nuclear engineering, power cycles thermodynamics, heat transfer, two courses of nuclear reactors theory, two of nuclear engineering, one course of laboratory and other of radiation protection. There is also a master in nuclear engineering aims train human resources in the area of power and research nuclear reactors to meet the needs of the nuclear industry in Mexico, as well as train highly qualified personnel in branches where are used equipment involving radiation and radioisotopes tale as Medicine, Agriculture and Industry. Among its compulsory subjects are: radiation interaction with the matter, measurements laboratory, reactor physics I and II, reactor engineering, reactor laboratory and thesis seminar. Optional, are: engineering of the radiation protection, computers in the nuclear engineering, nuclear systems dynamics, power plants safety, flow in two phases, reliability and risk analysis, nuclear power systems design, neutron transport theory. Many graduates of this degree have been and are involved in various phases of the nuclear project of Laguna Verde. The Nuclear Engineering Department has a subcritical nuclear reactor of light water and natural uranium and one isotopic source of Pu-Be neutrons of 5 Ci. It also has a multichannel analyzers, calibrated sources of alpha, beta and gamma radiation, a gamma spectrometer of high resolution and low background, a specialized library and one data processing center. In relation particularly to radiation protection, it is clear that there is a lack of specialists, as reflected in radiological control problems in areas such as medicine and industry. Given this situation, it is perceived to be required post-graduate studies at Master and Ph

  13. Industrial relations in engineering education

    DEFF Research Database (Denmark)

    Kjærsdam, Finn

    2005-01-01

    gained from Aalborg University, Aalborg, Denmark, shows the strength of this type of combination. It produces creative engineers who are prepared to tackle unknown problems of the future using theories from very different disciplines and has proven to be a very effective educational method. More students...... pass their education. in due time, while project work supports the social environment on campus....

  14. Notes on Advanced Engineering Education

    Science.gov (United States)

    Klimenko, A. Y.

    2017-01-01

    This article reviews history, analyses principles and presents a modern interpretation of advanced engineering education (AEE). AEE originated in France, was adapted in Germany and reached its zenith in the second half of the twentieth century as part of technological efforts induced by the space race. AEE is an enhanced form of education aimed at…

  15. Innovative Technology in Engineering Education.

    Science.gov (United States)

    Fishwick, Wilfred

    1991-01-01

    Discusses the impact that computer-assisted technologies, including applications to software, video recordings, and satellite broadcasts, have had upon the conventions and procedures within engineering education. Calls for the complete utilization of such devices through their appropriate integration into updated education activities effectively…

  16. The Maritime Engineering Education

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent; Nielsen, Ulrik Dam; Lützen, Marie

    2012-01-01

    This article describes the outcome of a survey initiated by the Danish Maritime Fund (DMF). The survey resulted in a report that describes the engineering competencies requested by the Danish maritime industry. This is of interest since the desired competencies have changed in the past one to two...... decades, where Denmark no longer has a considerable ship-building industry. Furthermore, the DMF initiated report concludes that the demand for maritime engineers in the industry is larger than the output. The report sets forth a series of recommendations to the industry as well as the universities...... to enable meeting the demand for maritime engineers in Denmark. The recommendations are outlined together with the work commenced at the Technical University of Denmark (DTU) and the University of Southern Denmark (SDU) to follow up on the recommendations in the report....

  17. The European Nuclear Education Network Association - ENEN

    International Nuclear Information System (INIS)

    De Regge, P.P.

    2005-01-01

    The temporary network, established through the European 5 th Framework Programme project ENEN, was given a more permanent character by the foundation of the European Nuclear Education Network Association, a non-profit-making association according to the French law of 1901, pursuing a pedagogic and scientific aim. Its main objective is the preservation and the further development of higher nuclear education and expertise. This objective is realized through the co-operation between the European universities, involved in education and research in the nuclear engineering field, the nuclear research centres and the nuclear industry. The membership of the ENEN Association now consists of 35 universities members and 6 research centres. The paper briefly describes the history and structure of the ENEN Association and elaborates on the objectives and activities of its five committees during its first two years of operation. Supported by the 5 th and 6 th Framework Programme of the European Community, the ENEN Association established the delivery of the European Master of Science in Nuclear Engineering certificate. In particular, education and training courses have been developed and offered to materialise the core curricula and optional fields of study in a European exchange structure. Pilot editions of those courses and try-outs of training programmes have been successfully organised with a satisfying interest, attendance and performance by the students and the support of nuclear industries and international organisations. The involvement of ENEN in the 6 th EC Framework project EUROTRANS will further enlarge its field of activities into a realm of nuclear disciplines. The ENEN Association further contributes to the management of nuclear knowledge within the European Union as well as on a world-wide level, through contacts with its sister Network ANENT in Asia, and by its participation to activities of the World Nuclear University. (author)

  18. The European Nuclear Education Network Association - ENEN

    International Nuclear Information System (INIS)

    Gentile, D.

    2006-01-01

    The temporary network, established through the European 5. Framework Programme project ENEN, was given a more permanent character by the foundation of the European Nuclear Education Network Association, a non-profit-making association according to the French law of 1901, pursuing a pedagogic and scientific aim. Its main objective is the preservation and the further development of higher nuclear education and expertise. This objective is realized through the co-operation between the European universities, involved in education and research in the nuclear engineering field, the nuclear research centres and the nuclear industry. The membership of the ENEN Association now consists of 35 universities members and 6 research centres. The paper briefly describes the history and structure of the ENEN Association and elaborates on the objectives and activities of its five committees during its first two years of operation. Supported by the 5. and 6. Framework Programme of the European Community, the ENEN Association established the delivery of the European Master of Science in Nuclear Engineering certificate. In particular, education and training courses have been developed and offered to materialize the core curricula and optional fields of study in a European exchange structure. Pilot editions of those courses and try-outs of training programmes have been successfully organised with a satisfying interest, attendance and performance by the students and the support of nuclear industries and international organisations. The involvement of ENEN in the 6. EC Framework project EUROTRANS will further enlarge its field of activities into a realm of nuclear disciplines. The ENEN Association further contributes to the management of nuclear knowledge within the European Union as well as on a world-wide level, through contacts with its sister Network ANENT in Asia, and by its participation to activities of the World Nuclear University. (author)

  19. The European Nuclear Education Network Association - ENEN

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, D. [Institut des Sciences et Techniques Nucleaires, CEA - Centre de Saclay, Bat. 395, F-91191 Gif-sur-Yvette (France)

    2006-07-01

    The temporary network, established through the European 5. Framework Programme project ENEN, was given a more permanent character by the foundation of the European Nuclear Education Network Association, a non-profit-making association according to the French law of 1901, pursuing a pedagogic and scientific aim. Its main objective is the preservation and the further development of higher nuclear education and expertise. This objective is realized through the co-operation between the European universities, involved in education and research in the nuclear engineering field, the nuclear research centres and the nuclear industry. The membership of the ENEN Association now consists of 35 universities members and 6 research centres. The paper briefly describes the history and structure of the ENEN Association and elaborates on the objectives and activities of its five committees during its first two years of operation. Supported by the 5. and 6. Framework Programme of the European Community, the ENEN Association established the delivery of the European Master of Science in Nuclear Engineering certificate. In particular, education and training courses have been developed and offered to materialize the core curricula and optional fields of study in a European exchange structure. Pilot editions of those courses and try-outs of training programmes have been successfully organised with a satisfying interest, attendance and performance by the students and the support of nuclear industries and international organisations. The involvement of ENEN in the 6. EC Framework project EUROTRANS will further enlarge its field of activities into a realm of nuclear disciplines. The ENEN Association further contributes to the management of nuclear knowledge within the European Union as well as on a world-wide level, through contacts with its sister Network ANENT in Asia, and by its participation to activities of the World Nuclear University. (author)

  20. Nuclear operations summary Engineering organization for Plowshare nuclear operations

    Energy Technology Data Exchange (ETDEWEB)

    Broadman, Gene A [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    The availability of nuclear explosives for peaceful projects has given the engineer a new dimension in his thinking. He can now seek methods of adapting Plowshare to a variety of industrial applications. The full potential of the Plowshare Program can only be attained when industry begins to use nuclear explosives on a regular basis, for economically sound projects. It is the purpose of this paper to help the engineer familiarize himself with Plowshare technology to hasten the day when 'Plowsharee goes commercial'. An engineering project utilizing nuclear exposives ordinarily involves three main phases: Phase I (a) The theoretical and empirical analysis of effects. (b) Projected economic and/or scientific evaluation. (c) A safety analysis. Phase II (a) Field construction. (b) Safe detonation of the nuclear explosive. (c) Data acquisition. Phase III The evaluation and/or exploitation of the results. This paper will be restricted to Phase II, referred to collectively as the 'nuclear operation'.

  1. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Narabayashi, Takashi; Shimazu, Youichiro

    2008-01-01

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  2. Support of nuclear engineering education and research at the University of Michigan. Final report, September, 1992 - August, 1995

    International Nuclear Information System (INIS)

    1997-09-01

    This report describes progress on six different projects in the fission reactor area that have been supported by the grant for its three year period. These projects are: (1) improved Monte Carlo methods and utilization on massively parallel processors; (2) development of a correlated sampling methodology for multiple reactor perturbations; (3) development of an efficient Monte Carlo response history method for electron transport; (4) developing Monte Carlo benchmarks for commercial LWR configurations; (5) accelerator transmutation of nuclear waste; and (6) neutronic analysis of the Ford Nuclear Reactor. This grant was instrumental in providing a means to support research of interest to utilities in the fission reactor area that would have otherwise been impossible to support because of the lack of alternative funding sources. As a result, most all of the funding in this program went to the support of graduate research in fission reactors

  3. Engineering development in nuclear power plant construction

    International Nuclear Information System (INIS)

    Guenther, P.

    1979-01-01

    Proceeding from the up-to-now experience in the erection of nuclear power stations, especially of the first and second unit of the Greifswald nuclear power plant, the following essential aspects of the development of constructional engineering are discussed: (1) constructional features and criteria, (2) organizational management, (3) current status and problems in prelimary operations, and (4) possibilities of further expenditure reductions in constructing nuclear power stations

  4. The engineering function in Scottish Nuclear

    International Nuclear Information System (INIS)

    Grant, J.

    1991-01-01

    The work of the Engineering and Development Division of Scottish Nuclear is described in this article. This company, formed since the privatization of electricity generation in the United Kingdom, owns and operates the two Hunterston Magnox reactors and the Torness Advanced Gass Cooled Reactors. Principle responsibilities such as maintaining safety standards, formulating policy for radioactive waste disposal and decommissioning and optimally controlling the nuclear generation cycle are outlined. Objectives for the next five years are identified and explained separately. The experience, knowledge and expertise of engineering staff is stressed as being of key importance to the future success of Scottish Nuclear. (UK)

  5. Mobile filters in nuclear engineering

    International Nuclear Information System (INIS)

    Meuter, R.

    1979-01-01

    The need for filters with high efficiencies which may be used at any place originated in nuclear power plants. Filters of this type, called Filtermobil, have been developed by Sulzer. They have been used successfully in nuclear plants for several years. (orig.) [de

  6. Nuclear engine system simulation (NESS) program update

    International Nuclear Information System (INIS)

    Scheil, C.M.; Pelaccio, D.G.; Petrosky, L.J.

    1993-01-01

    The second phase of development of a Nuclear Thermal Propulsion (NTP) engine system design analysis code has been completed. The standalone, versatile Nuclear Engine System Simulation (NESS) code provides an accurate, detailed assessment of engine system operating performance, weight, and sizes. The critical information is required to support ongoing and future engine system and stage design study efforts. This recent development effort included incorporation of an updated solid-core nuclear thermal reactor model that yields a reduced core weight and higher fuel power density when compared to a NERVA type reactor. NESS can now analyze expander, gas generator, and bleed cycles, along with multi-redundant propellant pump feed systems. Performance and weight of efficient multi-stage axial turbopump can now be determined, in addition to the traditional centrifugal pump

  7. Proceedings of the Scientific Meeting in Nuclear Instrumentation Engineering

    International Nuclear Information System (INIS)

    Achmad Suntoro; Rony Djokorayono; Ferry Sujatno; Utaja

    2010-11-01

    The Proceeding of the Scientific Meeting in Nuclear Instrumentation Engineering held on Nov, 30, 2010 by the Centre for Nuclear Instrumentation Engineering - National Nuclear Energy Agency. The Proceedings of the Scientific Contains 40 papers Consist of Nuclear Instrumentation Engineering for Industry, Environment, and Nuclear Facilities. (PPIKSN)

  8. Nuclear corrosion science and engineering

    CERN Document Server

    2012-01-01

    Understanding corrosion mechanisms, the systems and materials they affect, and the methods necessary for accurately measuring their incidence is of critical importance to the nuclear industry for the safe, economic and competitive running of its plants. This book reviews the fundamentals of nuclear corrosion. Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation. This book critically reviews the fundamental corrosion mechani...

  9. Nuclear pharmacy education: international harmonization

    International Nuclear Information System (INIS)

    Shaw, S.M.; Cox, P.H.

    1998-01-01

    Education of nuclear pharmacists exists in many countries around the world. The approach and level of education varies between countries depending upon the expectations of the nuclear pharmacist, the work site and the economic environment. In Australia, training is provided through distance learning. In Europe and Canada, nuclear pharmacists and radiochemists receive postgraduate education in order to engage in the small-scale preparation and quality control of radiopharmaceuticals as well as research and development. In the U.S.A., nuclear pharmacy practitioners obtain basic knowledge primarily through undergraduate programs taken when pursuit the first professional degree in pharmacy. Licensed practitioners in pharmacy enter the practice of nuclear pharmacy through distance learning programs or short courses. While different approaches to education exist, there is a basic core of knowledge and a level of competence required of all nuclear pharmacists and radiochemists providing radiopharmaceutical products and services. It was with this realization that efforts were initiated to develop harmonization concepts and documents pertaining to education in nuclear pharmacy. The benefits of international harmonization in nuclear pharmacy education are numerous. Assurance of the availability of quality professionals to provide optimal products and care to the patient is a principle benefit. Spanning national barriers through the demonstration of self governance and unification in education will enhance the goal of increased freedom of employment between countries. Harmonization endeavors will improve existing education programs through sharing of innovative concepts and knowledge between educators. Documents generated will benefit new educational programs especially in developing nations. A committee on harmonization in nuclear pharmacy education was formed consisting of educators and practitioners from the international community. A working document on education was

  10. Educating Engineers for Sustainable Development

    DEFF Research Database (Denmark)

    Myrdal, Christina Grann; Holgaard, Jette Egelund

    In this paper, we explore the potentials of designing engineering education activities for sustainability development based on how environmental concerns are integrated into product development processes in a company context. First we draw on a case study from the Danish company Grundfos Management...... A/S and based on their experience with product development practise and competence development of product developers, we propose a set of competences to be addressed in engineering education for sustainable development (EESD). Furthermore, we use the problem based learning philosophy as a base...

  11. International Nuclear Security Education Network (INSEN): Promoting nuclear security education

    International Nuclear Information System (INIS)

    Muhamad Samudi Yasir

    2013-01-01

    Full-text: The need for human resource development programmes in nuclear security was underlined at several International Atomic Energy Agency (IAEA) General Conferences and Board of Governors Meetings. Successive IAEA Nuclear Security Plans, the most recent of which was agreed by the Board of Governors in September 2009, give high priority to assisting States in establishing educational programmes in nuclear security in order to ensure the sustainability of nuclear security improvements. The current Nuclear Security Plan 1 covering 2010-2013 emphasizes on the importance of considering existing capacities at international, regional and national levels while designing nuclear security academic programmes. In the course of implementing the Plan, the IAEA developed a guide entitled Educational Programme in Nuclear Security (IAEA Nuclear Security Series No. 12) that consists of a model of a MAster of Science (M.Sc.) and a Certificate Programme in Nuclear Security. This guide was aims at assisting universities or other educational institutes to developed academic programmes in nuclear security. Independently, some universities already offered academic programmes covering some areas of nuclear security, while other universities have asked the IAEA to support the implementation of these programmes. In order to better address current and future request for assistance in this area, the IAEA establish a collaboration network-International Nuclear Security Education Network (INSEN), among universities who are providing nuclear security education or who are interested in starting an academic programme/ course(s) in nuclear security. Universiti Kebangsaan Malaysia (UKM) is a first local university became a member of INSEN since the beginning of the establishment. (author)

  12. Nuclear education and international nuclear university

    International Nuclear Information System (INIS)

    Kang, C.S.

    2000-01-01

    In this paper author deals with the concept of establishing the International Nuclear University (INU) would be one of the most viable options. The INU would provide young professionals with not only university-level education but also high-skill training in the fields of nuclear technology. The program will emphasize on global and multi- disciplinary perspectives, which should offer our young generation broader opportunities of advanced education and motivate professional staffs in the enhancement of their knowledge and skills. The 'World Council of Nuclear Education' could be formed to steer the INU for close international cooperation under the auspices of the IAEA. The INU would organize a world network of existing nuclear- related educational organizations and training centers which already exist in Member States. Existing facilities and can be utilized at maximum. Use of cyber-lecturing through Internet, cross-approval of credits among educational organizations in degree work, certification of credits by the authorized body like IAEA, human resources placement services, etc. are some of the activities that the INU could provide in addition to its professional training and higher education. (authors)

  13. Engineering Education for a New Era

    Science.gov (United States)

    Ohgaki, Shinichiro

    Engineering education is composed of five components, the idea what engineering education ought to be, the knowledge in engineering fields, those who learn engineering, those who teach engineering and the stakeholders in engineering issues. The characteristics of all these five components are changing with the times. When we consider the engineering education for the next era, we should analyze the changes of all five components. Especially the knowledge and tools in engineering fields has been expanding, and advanced science and technology is casting partly a dark shadow on the modern convenient life. Moral rules or ethics for developing new products and engineering systems are now regarded as most important in engineering fields. All those who take the responsibility for engineering education should understand the change of all components in engineering education and have a clear grasp of the essence of engineering for sustainable society.

  14. Radiation hazards of nuclear engineering

    International Nuclear Information System (INIS)

    Oster, H.

    1981-01-01

    The basic mechanisms and principles of nuclear power plants are discussed, since their knowledge is mandatory for the understanding of the true risk associated with nuclear technology. Differences between predictable and catastrophic accidents are compared, terms which have been frequently confused to the extent that the public has become unjustifiably and irresponsibly alarmed. A description of the jobs and their responsibilities is also given. Known accidents are reported and the role of the physician in the care of accidents and the scheduling of emergency situations is described. Finally, the usefullness, necessity and risk associated with nuclear power are discussed. (orig.) [de

  15. Computing in Hydraulic Engineering Education

    Science.gov (United States)

    Duan, J. G.

    2011-12-01

    Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.

  16. Internationalisation of Engineering Education

    DEFF Research Database (Denmark)

    Hussain Maken, Tanveer

    2013-01-01

    This paper discussed the influence of cultural differences on the learning experiences of students in intercultural group at Project Based Learning environment at Aalborg University. The data for this paper has been drawn from a PhD project which focuses on the learning experiences of students in...... in intercultural groups. The background of this project is the internationalization of higher education and the emergence of innovative teaching and learning methodologies which emphases student centered learning....

  17. A nuclear engineer's ethical responsibility to society

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1989-01-01

    Chernobyl notwithstanding, this paper seeks to illustrate why, on numerous fronts, nuclear technology provides the safest, cleanest and most effective method of base-load power generation. In particular it seeks to demonstrate that, despite the strident rhetoric and media exposure given to the anti-nuclear lobby, the technology is fundamental to the quality of life and the equitable sharing of energy by the year 2000. Therefore, the safety and technological superiority of the nuclear fuel cycle together with its high technology peripheral benefits both societal and fiscal are viewed as an ever increasing challenge and motivation which constitutes a major part of the nuclear engineer's ethical responsibility to society

  18. Civil engineering challenge with nuclear waste

    International Nuclear Information System (INIS)

    Day, D.

    1985-01-01

    The civil engineer can help to solve the problems in disposing of nuclear waste in a deep geologic formation. The site for a nuclear waste repository must be carefully selected so that the geology provides the natural barrier between the waste and the accessible environment specified by the NRC and the EPA. This engineer is familiar with the needed structure and conditions of the host and surrounding rocks, and also the hydraulic mechanisms for limiting the migration of water in the rocks. To dispose of the nuclear waste underground requires stable and long-lasting shafts and tunnels such as civil engineers have designed and constructed for many other uses. The planning, design and construction of the ground surface facilities for a nuclear waste repository involves civil engineering in many ways. The transporation of heavy, metal shielded casks requires special attention to the system of highways and railroads accessing the repository. Structures for handling the shipping casks and transferring the waste onsite and into the deep geologic formation need special considerations. The structures must provide the NRC required containment, including hot cells for remote handling. Therefore, structural design strives for buildings, ventilation structures, shaft headframes, etc., to be earthquake and tornado-proof. These important design bases and considerations for the civil engineer working on a nuclear waste repository are discussed in this paper

  19. Nuclear Security Education Program at the Pennsylvania State University

    Energy Technology Data Exchange (ETDEWEB)

    Uenlue, Kenan [The Pennsylvania State University, Radiation Science and Engineering Center, University Park, PA 16802-2304 (United States); The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304 (United States); Jovanovic, Igor [The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304 (United States)

    2015-07-01

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basis of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale

  20. Nuclear Security Education Program at the Pennsylvania State University

    International Nuclear Information System (INIS)

    Uenlue, Kenan; Jovanovic, Igor

    2015-01-01

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basis of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale

  1. Nuclear engineering career path - Past, present and future in Europe

    International Nuclear Information System (INIS)

    Dragusin, O.; Goicea, A.

    2005-01-01

    Full text: Today's nuclear workforce is growing older. The nuclear industry is at a turning point, mainly when we try to evaluate future needs. The paper tries to explore what is the present status of nuclear engineering career in Europe and which are the future trends. Today's students are either unaware of, or indifferent to, nuclear power. But it is not their fault - after all, an entire generation has grown to adulthood since the Three Miles Island and Chernobyl accidents. If their parents' views about nuclear power have been changed after these unhappy accidents, today's teens appear to be almost ambivalent toward it. What could be done to attract younger to the nuclear field in Europe? Probably the main key is in education and even more in a positive image-making of nuclear industry. Creation of more possibilities for gaining work experience and an improvement of economical situation and successful completion of reforms in the industry could attract young people. Political viewpoint is very important, if we consider that people in general thinks that nuclear will be phased out within a short future. A good advertising about job opportunities to come is another factor that plays a role in information of young generation. The paper provides information about university programmes in nuclear engineering in European countries. (authors)

  2. Model of influence of nuclear education on public relations to nuclear power

    International Nuclear Information System (INIS)

    Elagin, Yu.P.

    1996-01-01

    Method for evaluating the effect of the pupils nuclear education, as part of activities for improving the attitude of the population to nuclear power engineering is proposed. Results of calculations, made with constants values, obtained from Japan, are discussed. It is shown that the attitude to nuclear energy, formed at school, plays an essential role in formation of the future public opinion

  3. Engineering Technology Education: Bibliography, 1988.

    Science.gov (United States)

    Dyrud, Marilyn A.

    1989-01-01

    Lists articles and books related to engineering technology education published in 1988. Items are grouped administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, lasers, liberal studies, manufacturing, mechanical,…

  4. Mechatronics Engineering Education in India

    Science.gov (United States)

    Bajpai, Shrish; Khare, Sushant

    2015-01-01

    Present paper aims to give an insight in the field of Mechatronics, specifically its standard of education in India. We have investigated this field right from its origin. We have analyzed how it expanded as a proper discipline of engineering and in which direction the development in this field is going now and, at the same time, its status of…

  5. Nuclear education, training and knowledge management in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Beeley, Phil; Slugen, Vladimir; Kyrki-Rajamaeki, Rita [European Nuclear Society ENS, Brussels (Belgium). ENS High Scientific Council

    2010-04-15

    The situation in the nuclear education today is complex as it relates to nuclear technology for both peaceful and security applications. After more than 20 years period of depression in nuclear facility construction (significant mainly in Europe and USA), there is strong renewed interest in nuclear-generated electricity. Many factors have contributed to ''nuclear renaissance'' including concerns about possible climate changes due to carbon emissions. The Nuclear Energy Agency (OECD/NEA) study in 2000, ''Nuclear Education and Training. Cause for Concern'', highlighted the necessity for a renaissance in nuclear education and training with some recommendations. The European Nuclear Energy Forum (ENEF) identified the nuclear education as one of highest risks in nuclear industry. The nuclear renaissance depends on the increased number of engineers properly educated in wide spectrum of nuclear disciplines. The world has responded. Networks have been established to respond to the necessity to maintain and perpetuate nuclear knowledge in order to provide a suitably qualified workforce for the future operation of nuclear power plants. The quality in Education, Training and Knowledge Management (ETKM) is strongly influenced and supported by development of nuclear research, exploitation of experimental and training facilities, existence of proper education and training networks, software tools, distance and e-learning and a variety of knowledge management activities. The projected global annual requirements for new nuclear engineers over the next 10 years will challenge existing academic and training institutions with respect to capacity and load factors on classrooms, laboratories and other facilities such as basic principles simulators. Additionally, the nuclear academic workforce may need to increase to meet the demand for educating/training the new industrial workforce and this will take time. Within the European context many of the

  6. Nuclear education, training and knowledge management in Europe

    International Nuclear Information System (INIS)

    Beeley, Phil; Slugen, Vladimir; Kyrki-Rajamaeki, Rita

    2010-01-01

    The situation in the nuclear education today is complex as it relates to nuclear technology for both peaceful and security applications. After more than 20 years period of depression in nuclear facility construction (significant mainly in Europe and USA), there is strong renewed interest in nuclear-generated electricity. Many factors have contributed to ''nuclear renaissance'' including concerns about possible climate changes due to carbon emissions. The Nuclear Energy Agency (OECD/NEA) study in 2000, ''Nuclear Education and Training. Cause for Concern'', highlighted the necessity for a renaissance in nuclear education and training with some recommendations. The European Nuclear Energy Forum (ENEF) identified the nuclear education as one of highest risks in nuclear industry. The nuclear renaissance depends on the increased number of engineers properly educated in wide spectrum of nuclear disciplines. The world has responded. Networks have been established to respond to the necessity to maintain and perpetuate nuclear knowledge in order to provide a suitably qualified workforce for the future operation of nuclear power plants. The quality in Education, Training and Knowledge Management (ETKM) is strongly influenced and supported by development of nuclear research, exploitation of experimental and training facilities, existence of proper education and training networks, software tools, distance and e-learning and a variety of knowledge management activities. The projected global annual requirements for new nuclear engineers over the next 10 years will challenge existing academic and training institutions with respect to capacity and load factors on classrooms, laboratories and other facilities such as basic principles simulators. Additionally, the nuclear academic workforce may need to increase to meet the demand for educating/training the new industrial workforce and this will take time. Within the European context many of the programmes will continue through

  7. Engineering Education Research in "European Journal of Engineering Education" and "Journal of Engineering Education": Citation and Reference Discipline Analysis

    Science.gov (United States)

    Wankat, Phillip C.; Williams, Bill; Neto, Pedro

    2014-01-01

    The authors, citations and content of "European Journal of Engineering Education" ("EJEE") and "Journal of Engineering Education" ("JEE") in 1973 ("JEE," 1975 "EJEE"), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become…

  8. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    Full text: In 2002, the US Department of Energy (US DOE) transferred sponsorship of the INEEL and ANL-W to the DOE Office of Nuclear Energy, Science and Technology and designated the INEEL and ANL-W as the nation's lead laboratories for nuclear reactor and nuclear fuel cycle research and development. This transfer acknowledged the laboratories' history, infrastructure, expertise and commitment to collaborate broadly in order to fulfill its assigned role as the nation's center for nuclear energy research and development. Key to this role is the availability of well-educated and trained nuclear engineers, professionals from other disciplines of engineering, nuclear scientists, and others with advanced degrees in supporting disciplines such as physics, chemistry, and math. In 2005 the INEEL and ANL-W will be combined into the Idaho National Laboratory (INL). One of US DOE's objectives for the INL will be for it to take a strong role in the revitalization of nuclear engineering and nuclear science education in the US. Responding to this objective for the INL and the national need to rejuvenate nuclear engineering and nuclear science research and education, ISU, University of Idaho (UI), Boise State University, the INEEL, and ANL-W are all supporting a new Institute of Nuclear Science and Engineering (INSE), initially proposed by and to be administered by ISU. The Institute will rely on the resources of both universities and the INL to create a US center for reactor and fuel cycle research to development and attract outstanding faculty and students to Idaho and to the INL. The Institute and other university based education development efforts represent only one component of a viable Human Resources Pipeline from university to leading edge laboratory researcher. Another critical component is the successful integration of new graduates into the laboratory research environment, the transfer of knowledge from senior researchers, and the development of these individuals into

  9. Investigation on Current Status of World Nuclear Education and Training

    International Nuclear Information System (INIS)

    Shin, J. Y.; Min, M. J.; Noh, B. C.

    2010-04-01

    All over the world, the interest of nuclear energy is increasing and the expectations of it are getting more as one of the most practical alternative energy resources. However, since 1990s, as a lot of nuclear specialists are being retired, now the problem of manpower shortage is taken into consideration for all of us and will be continued until 2011. In this point of view, the good quality of the professional nuclear training and education systems and the nuclear education centers are requested in order to breed and supply the next generation nuclear scientists and engineers. Thus, the objective of this study is to explore the current status of world nuclear education for both of nuclear power countries and potential nuclear power utilization countries in the near future. This report introduces the importance of nuclear energy, the current status of world nuclear power plants operation and the contribution of nuclear energy. Besides, it also includes the nuclear energy development plan of potential nuclear developing countries in the near future. In addition, this study also explores the nuclear training and education systems of the nuclear development countries and the current status of nuclear education in various fields such as government, industries, nuclear power plants ect. Especially, as considering the status of nuclear education classified such as Asia, the Americas, East and West Europe, the Middle East and Africa, it shows the different characteristics of nuclear education systems in each regions aimed to identify the good practices on the nuclear education systems. Finally, through observation of international cooperation and networks of the various nuclear organizations, this will be contributed to the development of nuclear education for member states and be suggested the various of the direction of development for nuclear education in Korea. The report presents in the basis of the recent status data of the world nuclear education systems collected

  10. Nuclear Security Education in Morocco

    International Nuclear Information System (INIS)

    Hakam, O.K.

    2015-01-01

    Morocco has made significant progress in the field of nuclear security by supporting the efforts and activities of the International Atomic Energy Agency (IAEA), promoting nuclear security under international initiatives and continues to undertake actions aiming at strengthening capacity building in nuclear security. As well, Morocco has developed a new law on radiological and nuclear safety and security which was promulgated in 2014. Some Moroccan universities in cooperation with the IAEA-International Nuclear Security Education Network (INSEN) and the US-DoS Partnership for Nuclear Security (PNS) are working to develop their nuclear security educational programmes. In this regard, faculties who have been involved in INSEN Professional Development Courses (PDCs) have acquired a high-quality of knowledge and teaching tools in nuclear security topics that led them to be able to develop and teach their nuclear security curriculum as is the case at the University of Ibn Tofail. Furthermore, University of Ibn Tofail has developed in 2014 with collaboration with CRDFGlobal the first Institute of Nuclear Material Management (INMM) Student Chapter in Africa. This Chapter has organized many events to promote best practices among the young generation. Moreover, University of Ibn Tofail and Brandenburg University in Germany are working to develop a PDC on Nuclear IT/Cyber Security to be held in Kenitra, Morocco. This PDC aims at building capacity among the academic communities from Africa and MENA Region in order to further raise awareness, develop and disseminate best practices, increase professional standards and therefore enhance nuclear security culture. So, this paper will present some nuclear security education activities in Morocco and more specifically at the University of Ibn Tofail. These activities involve women as leaders but also contribute in education and training of young generation of women in nuclear field. (author)

  11. Engineering Encounters: Teaching Educators about Engineering

    Science.gov (United States)

    Tank, Kristina M.; Raman, D. Raj; Lamm, Monica H.; Sundararajan, Sriram; Estapa, Anne

    2017-01-01

    This column presents ideas and techniques to enhance science teaching. This month's issue describes preservice elementary teachers learning engineering principles from engineers. Few elementary teachers have experience with implementing engineering into the classroom. While engineering professional development opportunities for inservice teachers…

  12. Exporting nuclear engineering and the industry's viewpoint

    International Nuclear Information System (INIS)

    Barthelt, K.

    1986-01-01

    Nuclear energy offers all possibilities to reduce the energy problems in the world which arise with the world-wide increasing population and the energy demand connected with it. The Federal Republic of Germany lives on the exports of refined technical methods which also include nuclear engineering. The exports of nuclear engineering should lead to a technology transfer with guidance and training on an equal basis between the industrial and developing countries. The preconditions of exporting nuclear-technical systems are a well-functioning domestic market and a certain support by the government, especially with regard to giving guarantees for the special exports risks of these big projects. On the other hand, exports are also needed in order to be able to continue providing high-level technology for the domestic market. (UA) [de

  13. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1996

    International Nuclear Information System (INIS)

    1997-08-01

    This report summarizes research and educational activities, operation status of the research facilities of the Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo on fiscal year 1996. This facility has four major research facilities such as fast neutron source reactor 'Yayoi', electron Linac, fundamental experiment facility for nuclear fusion reactor blanket design and high fluence irradiation facility(HIT). Education and research activities are conducted in a wide fields of nuclear engineering using these facilities. The former two facilities are available for various studies by universities all over Japan, facility for nuclear fusion reactor blanket design is utilized for research within the Faculty of Engineering and HIT is used for the research within the University of Tokyo. The facility established a plan to reorganized into a nation wide research collaboration center in fiscal year 1995 and after further discussion of a future program it is decided to hold 'Nuclear energy symposium' periodically after fiscal year 1997 as a part of the activity for appealing the research results to the public. (G.K.)

  14. The world nuclear power engineering. 1998 year

    International Nuclear Information System (INIS)

    Preobrazhenskaya, L.B.

    2000-01-01

    The purpose of this article consists in the analysis of the state and prospects of the world nuclear power engineering development. The data on the ratio and value of electrical energy obtained at the NPPs in the world in 1998, the specific capital expenditures on the NPPs construction by 2005, the forecast for the capacity of all NPPs by 2020 are presented. The progress in developing nuclear power engineering conditioned by improvement of the NPPs operation, optimization of their life-cycle and developing of new NPPs projects is noted [ru

  15. Social engineering awareness in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman bin Aslan; Mohamad Safuan bin Sulaiman; Abdul Muin bin Abdul Rahman

    2010-01-01

    Social engineering is the best tools to infiltrate an organization weakness. It can go bypass the best fire wall or Intrusion Detection System (IDS) the organization ever had, effectively. Nuclear Malaysia staffs should aware of this technique as information protection it is not only depends on paper and computer. This paper consist a few test cases including e mail, dump ster diving, phishing, malicious web content, and impersonation to acknowledge all Nuclear Malaysia staffs about the method, effect and prevention of social engineering. (author)

  16. Nuclear engineering enrollments and degrees, 1981

    International Nuclear Information System (INIS)

    Little, J.R.; Shirley, D.L.

    1982-05-01

    This report presents data on the number of students enrolled and the degrees awarded in academic year 1980-81 from 73 US institutions offering degree programs in nuclear engineering or nuclear options within other engineering fields. Presented here are historical data for the last decade, which provide information such as trends by degree level, foreign national student participation, female and minority student participation, and placement of graduates. Also included is a listing of the universities by type of program and number of students

  17. Advanced Technology for Engineering Education

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  18. Interdisciplinary Approach in Engineering Education

    Directory of Open Access Journals (Sweden)

    Anda Zeidmane

    2011-04-01

    Full Text Available The analysis of the scientific literature available on the types of general competences and their classification caused the authors to conclude that it is necessary to implement interdisciplinary approach in engineering education to develop competences necessary for engineers to make them competitive in the labour market. The attention should be paid to a professional foreign language, computer literacy and educational psychology recommendations. To improve professional foreign language skills, CLIL (Content and Language Integrated Learning method should be integrated in the study process of engineering education. In order to develop information literacy competence, it is important to create a single e-study environment. The academic staff, developing study subjects for engineering programmes, should focus on the study content and study methods. As regards the content, the compromise should be sought between fundamental acquisition of the knowledge of the subject matter, the know-how of the application of this knowledge as well as the use of brand new software in the calculations. The paper presents the examples of the application of the interdisciplinary approach in the universities, where the authors of the paper are affiliated: the LUA (Latvia University of Agriculture and the RTU (Riga Technical University, respectively.

  19. Broadening of nuclear engineering programs: An engineering physics approach at Rensselaer

    International Nuclear Information System (INIS)

    Malaviya, B.K.

    1990-01-01

    With the maturing of nuclear engineering as an academic discipline and the uncertainty surrounding the nuclear industry, attention is being increasingly turned to ways in which the base of traditional nuclear engineering programs in universities can be broadened to make them more attractively useful to a wider class of potential students and employers while maintaining the strengths in mainstream areas of nuclear technology. An approach that seems to provide a natural evolution combining the existing programmatic strengths, infrastructure, and resources with the trending needs of a broad segment of diversified industries is the development and initiation of an engineering physics degree program as an adjunct to an established nuclear engineering curriculum. In line with these developments, a new comprehensive academic program offering baccalaureate, master's, and doctoral degrees in engineering physics has been developed and formally instituted at Rensselaer Polytechnic Institute (RPI). It provides a valuable opportunity for students to pursue education and research that cuts across traditional disciplinary lines, leading to a wide variety of career opportunities in industry, government, national research and defense laboratories, and academia

  20. European Nuclear Education Network Association - Support for nuclear education, training and knowledge management

    International Nuclear Information System (INIS)

    Ghitescu, Petre

    2009-01-01

    Developed in 2002-2003 the FP5 EURATOM project 'European Nuclear Engineering Network - ENEN' aimed to establish the basis for conserving nuclear knowledge and expertise, to create an European Higher Education Area for nuclear disciplines and to facilitate the implementation of the Bologna declaration in the nuclear disciplines. In order to ensure the continuity of the achievements and results of the ENEN project, on 22 September 2003, the European Nuclear Higher Education Area was formalized by creating the European Nuclear Education Network Association. ENEN Association goals are oriented towards universities by developing a more harmonized approach for education in the nuclear sciences and engineering in Europe, integrating European education and training in nuclear safety and radiation protection and achieving a better cooperation and sharing of resources and capabilities at the national and international level. At the same time it is oriented towards the end-users (industries, regulatory bodies, research centers, universities) by creating a secure basis of knowledge and skills of value to the EU. It maintains an adequate supply of qualified human resources for design, construction, operation and maintenance of nuclear infrastructures and plants. Also it maintains the necessary competence and expertise for the continued safe use of nuclear energy and applications of radiation in industry and medicine. In 2004-2005, 35 partners continued and expanded the started in FP 5 ENEN Association activities with the FP6 project 'NEPTUNO- Nuclear Education Platform for Training and Universities Organizations'. Thus ENEN established and implemented the European Master of Science in Nuclear Engineering, expanded its activities from education to training, organized and coordinated training sessions and pilot courses and included in its activities the Knowledge Management. At present, the ENEN Association gathers 45 universities, 7 research centers and one multinational company

  1. Chemical engineering side of nuclear fusion power

    International Nuclear Information System (INIS)

    Johnson, E.F.

    1976-10-01

    It is widely recognized that chemical engineering has important roles to play in the development of national and world wide energy resources through optimal utilization of fossil fuel reserves. It is much less appreciated that there are crucial chemical engineering problems in the development of energy production from other sources. In particular the successful development of nuclear fusion power generating systems will require the solution of many problems that are uniquely suited to chemical engineers. This article presents a brief overview of the fusion development program and an identification of the major technological problems remaining to be solved

  2. Nuclear thermal rocket engine operation and control

    International Nuclear Information System (INIS)

    Gunn, S.V.; Savoie, M.T.; Hundal, R.

    1993-06-01

    The operation of a typical Rover/Nerva-derived nuclear thermal rocket (NTR) engine is characterized and the control requirements of the NTR are defined. A rationale for the selection of a candidate diverse redundant NTR engine control system is presented and the projected component operating requirements are related to the state of the art of candidate components and subsystems. The projected operational capabilities of the candidate system are delineated for the startup, full-thrust, shutdown, and decay heat removal phases of the engine operation. 9 refs

  3. Feminist Methodologies and Engineering Education Research

    Science.gov (United States)

    Beddoes, Kacey

    2013-01-01

    This paper introduces feminist methodologies in the context of engineering education research. It builds upon other recent methodology articles in engineering education journals and presents feminist research methodologies as a concrete engineering education setting in which to explore the connections between epistemology, methodology and theory.…

  4. Romanian knowledge transfer network in nuclear physics and engineering - REFIN

    International Nuclear Information System (INIS)

    Ghitescu, Petre; Prisecaru, Ilie

    2007-01-01

    According to the requirements of the Romanian Nuclear Programme regarding the education and training of the skilled personnel for the nuclear facilities, a knowledge transfer network named REFIN (in Romanian: Retea Educationala in Fizica si Ingineria Nucleara) was developed since 2005. The knowledge target field is nuclear physics and engineering. The main objective of this network is to develop an effective, flexible and modern educational system in the nuclear physics and engineering area which could meet the requirements of all known types of nuclear facilities and therewith be redundant with the perspectives of the European Research Area (FP7, EURATOM). A global strategy was proposed in order to harmonize the curricula between the network facilities to implement pilot modern teaching programs (courses/modules), to introduce advanced learning methods (as Systematic Approach to Training, e-learning and distance-learning), to strengthen and better use the existing research infrastructures of the research institutes in network. The education and training strategy is divided into several topics: university engineering , master, post-graduate, Ph.D. degree, post-doctoral activity, training for industry, improvement. For the first time in our country, a modular scheme is used allowing staff with different technical background to participate at different levels. In this respect, the European system with transferable credits (ECTS) is used. Based on this strategy, courses in 'Radioactive Waste Management' and 'Numerical and Experimental Methods in Reactor Physics' for both MS students and for industry. This way the training activity which a student attends will allow him or her to be involved, depending on specific professional needs, into a flexible educational scheme. This scheme will ensure competence and enhancement and also the possibility of qualification development and a better mobility on labour market. This kind of activity is already in progress in the

  5. Paired peer learning through engineering education outreach

    Science.gov (United States)

    Fogg-Rogers, Laura; Lewis, Fay; Edmonds, Juliet

    2017-01-01

    Undergraduate education incorporating active learning and vicarious experience through education outreach presents a critical opportunity to influence future engineering teaching and practice capabilities. Engineering education outreach activities have been shown to have multiple benefits; increasing interest and engagement with science and engineering for school children, providing teachers with expert contributions to engineering subject knowledge, and developing professional generic skills for engineers such as communication and teamwork. This pilot intervention paired 10 pre-service teachers and 11 student engineers to enact engineering outreach in primary schools, reaching 269 children. A longitudinal mixed methods design was employed to measure change in attitudes and Education Outreach Self-Efficacy in student engineers; alongside attitudes, Teaching Engineering Self-Efficacy and Engineering Subject Knowledge Confidence in pre-service teachers. Highly significant improvements were noted in the pre-service teachers' confidence and self-efficacy, while both the teachers and engineers qualitatively described benefits arising from the paired peer mentor model.

  6. Exporting nuclear engineering and the government's viewpoint

    International Nuclear Information System (INIS)

    Schill, H.

    1986-01-01

    The reasons for the government's positive attitude to nuclear engineering exports are explained, especially with regard to them being a compensation of the decreasing domestic demand. The federal government considers such exports to be necessary and correct for economical and energy-political reasons. Their contribution reaches from accompanying measures to the provision of state guarantees of export financing activities. (UA) [de

  7. Abbreviations of nuclear power plant engineering

    International Nuclear Information System (INIS)

    Freyberger, G.H.

    1979-01-01

    The edition of this English and German list of abbreviations comprises about 5200 entries in English and about 1400 entries in German as well as the most important American, English, German and other foreign Utilities and component manufacturers frequently quoted in nuclear engineering literature and documentation. (orig./HP) [de

  8. Environmental Engineering in Mining Engineering Education

    Science.gov (United States)

    Mahamud-Lopez, Manuel Maria; Menendez-Aguado, Juan Maria

    2005-01-01

    In this paper, the current profile of the environmental engineer and the programming of the subject "Environmental Engineering and Technology" corresponding to the studies of Mining Engineering at the University of Oviedo in Spain, is discussed. Professional profile, student knowledge prior to and following instruction as well as…

  9. Collaboration in nuclear engineering education between France and the United States: Participation of French students at Texas A ampersand M University

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Durand, J.L.; Gousty, Y.; Jeneveau, A.; Erdman, C.A.

    1988-01-01

    Universities in the United States have had a long tradition of accepting students from other countries to pursue graduate degrees. This has particularly been the case in the fields of engineering and science. This trend has grown to the point that in several graduate engineering fields, the percentage of foreign nationals outnumbers US enrollees. Historically, most foreign students studying in the US universities have been from developing countries. Usually these students apply and are accepted on a case-by-case basis. For a number of reasons, less emphasis has been placed on programs with western Europe. In this paper, a program of collaboration is described in which the Department of Nuclear Engineering at Texas A ampersand M University has entered into memoranda of agreement with two institutions in France. The two universities are the Institut National Polytechnique de Grenoble (INPG) in Grenoble and the Ecole Polytechnique Feminine (EPF) in Sceaux. The purpose of the program is to enable students in nuclear engineering to simultaneously complete requirements for the diploma and the MS degree

  10. Development of undergraduate nuclear security curriculum at College of Engineering, Universiti Tenaga Nasional

    Science.gov (United States)

    Hamid, Nasri A.; Mujaini, Madihah; Mohamed, Abdul Aziz

    2017-01-01

    The Center for Nuclear Energy (CNE), College of Engineering, Universiti Tenaga Nasional (UNITEN) has a great responsibility to undertake educational activities that promote developing human capital in the area of nuclear engineering and technology. Developing human capital in nuclear through education programs is necessary to support the implementation of nuclear power projects in Malaysia in the near future. In addition, the educational program must also meet the nuclear power industry needs and requirements. In developing a certain curriculum, the contents must comply with the university's Outcomes Based Education (OBE) philosophy. One of the important courses in the nuclear curriculum is in the area of nuclear security. Basically the nuclear security course covers the current issues of law, politics, military strategy, and technology with regard to weapons of mass destruction and related topics in international security, and review legal regulations and political relationship that determine the state of nuclear security at the moment. In addition, the course looks into all aspects of the nuclear safeguards, builds basic knowledge and understanding of nuclear non-proliferation, nuclear forensics and nuclear safeguards in general. The course also discusses tools used to combat nuclear proliferation such as treaties, institutions, multilateral arrangements and technology controls. In this paper, we elaborate the development of undergraduate nuclear security course at the College of Engineering, Universiti Tenaga Nasional. Since the course is categorized as mechanical engineering subject, it must be developed in tandem with the program educational objectives (PEO) of the Bachelor of Mechanical Engineering program. The course outcomes (CO) and transferrable skills are also identified. Furthermore, in aligning the CO with program outcomes (PO), the PO elements need to be emphasized through the CO-PO mapping. As such, all assessments and distribution of Bloom Taxonomy

  11. Nuclear Targeting Terms for Engineers and Scientists

    Energy Technology Data Exchange (ETDEWEB)

    St Ledger, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-01

    The Department of Defense has a methodology for targeting nuclear weapons, and a jargon that is used to communicate between the analysts, planners, aircrews, and missile crews. The typical engineer or scientist in the Department of Energy may not have been exposed to the nuclear weapons targeting terms and methods. This report provides an introduction to the terms and methodologies used for nuclear targeting. Its purpose is to prepare engineers and scientists to participate in wargames, exercises, and discussions with the Department of Defense. Terms such as Circular Error Probable, probability of hit and damage, damage expectancy, and the physical vulnerability system are discussed. Methods for compounding damage from multiple weapons applied to one target are presented.

  12. Expanding Nuclear Power Programmes - Romanian experience: Master - Nuclear Materials and Technologies Educational Plan

    International Nuclear Information System (INIS)

    Valeca, S.; Valeca, M.

    2012-01-01

    The main objectives of the Master Nuclear Materials and Technologies Educational Plan are: 1. To deliver higher education and training in the following specific domains, such as: Powders Technology and Ceramic Materials, Techniques of Structural Analysis, Composite Materials, Semiconductor Materials and Components, Metals and Metallic Alloys, Optoelectronic Materials and Devices, Nuclear Materials, The Engineering of Special Nuclear Materials, 2. To train managers of the Nuclear Waste Products and Nuclear Safety, 3. To qualify in ICT Systems for Nuclear Process Guidance, 4. To qualify in Environmental Protection System at the Level of Nuclear Power Stations, 5. To train managers for Quality Assurance of Nuclear Energetic Processes, 6. To deliver higher education and training regarding the International Treatises, Conventions and Settlements in force in the field of nuclear related activities. (author)

  13. Nuclear engineering. Stable industry for bright minds

    International Nuclear Information System (INIS)

    Geisler, Maja

    2009-01-01

    The Deutsches Atomforum (DAtF) invited 35 students and graduate students for 'colloquies for professional orientation' to Luenen on March 8-11, 2009. Another 39 students were guests in Speyer between March 15 and 18 this year. Participants included graduates in physics, chemistry, radiation protection, and mechanical engineering as well as students of process engineering, electrical engineering and environmental technology. The colloquies for professional orientation are a service provided by the Informationskreis Kernenergie (IK) to member firms of DAtF. At the same time, the IK in this way fulfils its duty to promote young scientists and engineers within the framework of the DAtF's basic public relations activities. After all, nuclear technology in Germany is not about to end its life. Firms with international activities are in urgent need of highly qualified young staff members. Personnel is needed for a variety of activities ranging from nuclear power plant construction to fuel fabrication to waste management and the demolition and disposal of nuclear power plants. All these areas are in need of new qualified staff. Some 750 students so far have attended the DAtF colloquies for professional orientation since 2002. Many participants were hired by industries straight away or were given opportunities as trainees or students preparing their diploma theses in the nuclear industry. These contacts with the nuclear industry should not remain a one-off experience for the students. For this reason, the IK invites the participants in colloquies again this year to attend the Annual Meeting on Nuclear Technology in Dresden on May 12-14, 2009. (orig.)

  14. Human modeling in nuclear engineering

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Furuta, Kazuo.

    1994-01-01

    Review on progress of research and development on human modeling methods is made from the viewpoint of its importance on total man-machine system reliability surrounding nuclear power plant operation. Basic notions on three different approaches of human modeling (behavioristics, cognitives and sociologistics) are firstly introduced, followed by the explanation of fundamental scheme to understand human cognitives at man-machine interface and the mechanisms of human error and its classification. Then, general methodologies on human cognitive model by AI are explained with the brief summary of various R and D activities now prevailing in the human modeling communities around the world. A new method of dealing with group human reliability is also introduced which is based on sociologistic mathematical model. Lastly, problems on human model validation are discussed, followed by the introduction of new experimental method to estimate human cognitive state by psycho-physiological measurement, which is a new methodology plausible for human model validation. (author)

  15. Rethinking engineering education the CDIO approach

    CERN Document Server

    Crawley, Edward F; Östlund, Sören; Brodeur, Doris R; Edström, Kristina

    2014-01-01

    This book describes an approach to engineering education that integrates a comprehensive set of personal, interpersonal, and professional engineering skills with engineering disciplinary knowledge in order to prepare innovative and entrepreneurial engineers.  The education of engineers is set in the context of engineering practice, that is, Conceiving, Designing, Implementing, and Operating (CDIO) through the entire lifecycle of engineering processes, products, and systems. The book is both a description of the development and implementation of the CDIO model and a guide to engineering programs worldwide that seek to improve the education of young engineers.   Provides an overview of the CDIO approach, then chapters organized according to the CDIO Standards; Includes in each chapter objectives, discussion questions, case studies and clear diagrams to support key concepts and processes; Avoids the jargon of education specialists and clearly explains education terms in the context of their initial presentatio...

  16. Transforming Engineering Education - For Innovation and Development

    DEFF Research Database (Denmark)

    Marjoram, Tony

    2013-01-01

    Engineering and technology are of vital importance in innovation, social and economic development in higher and lower income countries. Development is driven by engineering applications and infrastructure, and most innovations derive from engineering. The last 50 years has seen significant change...... of young people in engineering, and the need to develop policy perspectives on the transformation of engineering education....... in knowledge production, dissemination and application, and associated needs for engineering, and yet engineering education has changed little over this period. This paper discusses the important role of problem-based learning and humanitarian engineering in promoting the interest, enrolment and retention...

  17. Reflections on the Fukushima Daiichi nuclear accident toward social-scientific literacy and engineering resilience

    CERN Document Server

    Carson, Cathryn; Jensen, Mikael; Juraku, Kohta; Nagasaki, Shinya; Tanaka, Satoru

    2015-01-01

    This book focuses on nuclear engineering education in the post-Fukushima era. It was edited by the organizers of the summer school held in August 2011 in University of California, Berkeley, as part of a collaborative program between the University of Tokyo and UC Berkeley. Motivated by the particular relevance and importance of social-scientific approaches to various crucial aspects of nuclear technology, special emphasis was placed on integrating nuclear science and engineering with social science. The book consists of the lectures given in 2011 summer school and additional chapters that cover developments in the past three years since the accident. It provides an arena for discussions to find and create a renewed platform for engineering practices, and thus nuclear engineering education, which are essential in the post-Fukushima era for nurturing nuclear engineers who need to be both technically competent and trusted in society.

  18. 2009 UK/US Nuclear Engineering Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Richard Rankin

    2009-04-01

    This report summarizes the 2009 UK/US Nuclear Engineering Workshop held April 20-21, 2010, in Washington, D.C. to discuss opportunities for nuclear engineering collaboration between researchers in the United States and the United Kingdom.

  19. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    Science.gov (United States)

    Hamid, Nasri A.; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-04-01

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO2 emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes

  20. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    International Nuclear Information System (INIS)

    Hamid, Nasri A.; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-01-01

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO 2 emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes

  1. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Nasri A., E-mail: Nasri@uniten.edu.my; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri [Nuclear Energy Center, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO{sub 2} emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper

  2. Nuclear engineering technology's role in providing a multitalented workforce

    International Nuclear Information System (INIS)

    Sherrard, J.R.; Pascal, D.D. Jr.

    1996-01-01

    In today's very competitive economic climate, all businesses are reassessing every aspect of their operations to remain economically viable. One of the most costly factors remaining is personnel costs. Substantial downsizing and restructuring have been a universal result. Nuclear utilities have had to undertake these same actions, primarily to remain competitive in the near term with inexpensive fossil-fuel-fired plants. In assessing personnel needs, nuclear utilities have determined that their nuclear operations employee of the future will be a multitalented individual with a diverse, quality education. Industry can no longer afford to have numerous specialists but instead needs fewer generalists. The success of a nuclear engineering associates degree program at Three Rivers Community College is discussed

  3. Quality assurance system in nuclear engineering

    International Nuclear Information System (INIS)

    Adams, H.W.; Hoensch, V.

    1985-01-01

    Due to the close connection between the German Atomic Energy Law and the nuclear control regulations, quality systems in nuclear engineering have taken on a special form. Quality assurance systems as a stipulated organisation of structure and procedure to assure quality have implications for the organisation of the electric supply company at the planning, erection and commissioning stage and for the organisation of the nuclear power station facility. To supervise the application and effectiveness of the stipulated organisation of structure and procedure internally and externally among contractors, special organisation units have been set up at the plant suppliers, manufactures, electric supply companies and nuclear power station facilities, which in the electric supply field go by the name of Quality Assurance Supervision. (orig.) [de

  4. NUKEM. Innovative solutions for nuclear engineering

    International Nuclear Information System (INIS)

    Scheffler, Beate

    2011-01-01

    Management of radioactive waste, handling spent fuel elements, decommissioning of nuclear facilities, and engineering and consulting activities are services associated with the name of NUKEM all over the world. The company's scientists and engineers develop solution concepts combining the latest technologies with proven techniques and many years of experience. The company;s history and the services offered to the nuclear industry began more than 5 decades ago. The predecessor, NUKEM Nuklear-Chemie-Metallurgie, was founded in 1960 as one of the earliest nuclear companies in Germany. Originally, the firm produced fuel elements for a variety of reactor lines. As early as in the 1970s, logical extensions of these business activities were nuclear engineering and plant construction. In the meantime, NUKEM Technologies GmbH has developed a worldwide reputation for its activities. Numerous reference projects bear witness to optimum project management and customer satisfaction. Since 2009, NUKEM Technologies has been a wholly owned subsidiary of the Russian Atomstroyexport. NUKEM Technologies operates sales and project offices outside Germany, e.g. in Russia, China, Lithuania, France, and Bulgaria. In this way, the company is present in its target markets of Russia, Western and Eastern Europe as well as Asia, offering customers and partners fast and direct contacts. (orig.)

  5. The Fourth Revolution: Educating Engineers for Leadership.

    Science.gov (United States)

    Mark, Hans; Carver, Larry

    1988-01-01

    Urges a change in engineering education for developing leaders. Describes three previous revolutions in American higher education which responded to the needs of the community. Suggests lifelong education as the fourth revolution. (YP)

  6. Nuclear energy education and training in France

    International Nuclear Information System (INIS)

    2010-01-01

    In its continuing use of nuclear power, France faces numerous challenges, including the operation and maintenance of its existing array of reactors, waste management, the decommissioning of obsolete reactors, and research and development for future nuclear systems. All of these efforts must recognize and conform to international requirements. These activities mean that all participants in the French nuclear industry must continually update their approaches and skills, with respect to both domestic and worldwide nuclear power development. This requirement calls for the hiring and training of thousands of scientists and engineers each year in France and its partner or customer countries. Over the next ten years, domestic and international nuclear power activities in France will call for the recruitment of about 13,000 engineers with Master of Science or Ph.D. degrees, and 10,000 science technicians and operators with Bachelor of Science degrees. The chief employers will be EDF, AREVA, GDF-Suez, national agencies such as the Agence nationale pour la gestion des dechets radioactifs (ANDRA), sub-contractors, and R and D agencies such as the Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), and the technical safety organization, Institut de Radioprotection et de Surete Nucleaire (IRSN). France has made a commitment to support countries that are ready to create the human, institutional, and technical conditions required to establish a civilian nuclear energy programme that meets all the requirements of safety, security, non-proliferation and environmental protection for present and future generations. These efforts are conducted through the France International Nuclear Agency (AFNI). In response to the need for competence-building in nuclear energy production, France now offers training opportunities in both French and English education programmes. Partnerships created by French nuclear energy participants and by AFNI can provide dedicated programmes

  7. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    Chemical engineering processes and operations are closely involved in every step of the nuclear fuel cycle. Starting from mining and milling of the ore through the production of fuel and other materials and their use in nuclear reactors, fuel reprocessing, fissile material recycle and treatment and disposal of fission product wastes, each step presents a challenge to the chemical engineer to evolve and innovate processes and techniques for more efficient utilization of the energy in the atom. The requirement of high recovery of the desired components at high purity levels is in itself a challenge. ''Nuclear Grade'' specifications for materials put a requirement which very few industries can satisfy. Recovery of uranium and thorium from low grade ores, of heavy water from raw water, etc. are examples. Economical and large scale separation of isotopes particularly those of heavy elements is a task for which processess are under various stages of development. Further design of chemical plants such as fuel reprocessing plants and high level waste treatment plants, which are to be operated and maintained remotely due to the high levels of radio-activity call for engineering skills which are being continually evolved. In the reactor, analysis of the fluid mechanics and optimum design of heat removal system are other examples where a chemical engineer can play a useful role. In addition to the above, the activities in the nuclear industry cover a very wide range of chemical engineering applications, such as desalination and other energy intensive processes, radioisotope and radiation applications in industry, medicine and agriculture. (auth.)

  8. U.S. Department Of Energy's nuclear engineering education research: highlights of recent and current research-II. 5. Automation of Nuclear Fuel Pellet Quality Control

    International Nuclear Information System (INIS)

    Keyvan, Shahla; Song, Xiaolong

    2001-01-01

    At the present time, nuclear fuel pellet inspection is performed by humans using the naked eye for judgment and decision making as to whether to accept or reject the pellet. Unnecessary re-fabrication of pellets will be costly, and having too many low-quality pellets in a fuel assembly is unacceptable. The current practice of pellet inspection by humans is tedious and subject to inconsistencies and error. In addition, manual inspection is cumbersome since the inspector must keep the pellet at arm's length and must wear glasses to protect the lenses of his or her eyes. The pellets are taken from a pellet sizing machine, dumped onto a rack, and shaken into rows; they are then viewed as a group. The entire group is rotated 90 deg four times to provide the inspector with a 360-deg view of each pellet. The pellets are examined for certain types of cracks, chips, and unusual markings, i.e., water stains and machine banding. These defects appear at any location on the pellet surface image with different intensity, size, shape, and background noise. Figure 1 shows typical defective fuel pellets with chip, banded, and end defects. The goal of this work is to automate the pellet inspection process. A prototype of such an inspection system is developed. The system examines photographic images of pellets using various artificial intelligence techniques for image analysis and defect classification. Figure 2 shows the user interface of this inspection system, which is built using Java programming language. A total of 252 pellets with various defects was available for this research. Each pellet was photographed four times at rotations of 90 deg. The resultant black-and-white negatives were scanned into the computer in 256 gray scale mode. The inspection of a fuel pellet by image analysis involves several steps, as described in Fig. 3 and as follows: Step 1-On-line image conversion: This process involves on-line digitization of the input image. Step 2-Reference model: The second

  9. Doctoral education in the nuclear sector

    International Nuclear Information System (INIS)

    Minguez, E.

    2013-01-01

    Doctoral education is a major priority for European universities. In the context of the Bologna Process the importance of doctoral education as the third cycle of higher education and the first stage of a young researchers career, and thus in linking the European Higher Education and Research Areas, was first highlighted in the 2003 Berlin Report. The core component of doctoral training is the advancement of knowledge through original research. considering the need for structured doctoral programs and the need for transparent supervision and assessment, we note that the normal workload of the third cycle in most countries would correspond 3-4 years full time. This is spirit of the new Spanish Doctoral Law. Then, universities should ensure that their doctoral programmes promote interdisciplinary training and the development of transferable skills, thus meeting the needs of the wider employment market. We need to achieve and overall increase in the numbers of doctoral candidates taking up research careers as early stage researchers and also increase the employability as a normal way as it is the case of other advance countries. In Spain, universities with doctoral nuclear programmes and the CIEMAT, with the sponsorship of the nuclear sector, a doctoral school in nuclear science and engineering should be created to enhance the research careers of Young students for the future of nuclear activities in Spain. (Author)

  10. Application of nuclear photon engines for deep-space exploration

    International Nuclear Information System (INIS)

    Gulevich, Andrey V.; Ivanov, Eugeny A.; Kukharchuk, Oleg F.; Poupko, Victor Ya.; Zrodnikov, Anatoly V.

    2001-01-01

    Conception of using the nuclear photon rocket engines for deep space exploration is proposed. Some analytical estimations have been made to illustrate the possibility to travel to 100-10000 AU using a small thrust photon engine. Concepts of high temperature nuclear reactors for the nuclear photon engines are also discussed

  11. Nuclear Engineering Enrollments and Degrees Survey, 2005 Data

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education

    2006-01-01

    This annual report details the number of nuclear engineering bachelor's, master's, and doctoral degrees awarded at a sampling of academic programs from 1998-2005. it also looks at nuclear engineering degrees by curriculum and the number of students enrolled in nuclear engineering degree programs at 30 U.S. universities in 2005

  12. Civil engineering firms and the nuclear programme

    International Nuclear Information System (INIS)

    Giral, J.L.

    1988-01-01

    Pointing out that the realization of the electronuclear programme accounted for just under 5 % of the annual turnover of civil engineering firms from 1975 to 1987, the author lists the main types of work entrusted to these firms for the bulding of the power stations: electrical work, structural work (civil engineering, metal structures. He then describes the two main problems which the profession has to face in the nuclear field: the management of final contract stages and adaptation to the slowing down in the rate of commitment of power plants [fr

  13. Piping engineering for nuclear power plant

    International Nuclear Information System (INIS)

    Curto, N.; Schmidt, H.; Muller, R.

    1988-01-01

    In order to develop piping engineering, an adequate dimensioning and correct selection of materials must be secured. A correct selection of materials together with calculations and stress analysis must be carried out with a view to minimizing or avoiding possible failures or damages in piping assembling, which could be caused by internal pressure, weight, temperature, oscillation, etc. The piping project for a nuclear power plant is divided into the following three phases. Phase I: Basic piping design. Phase II: Final piping design. Phase III: Detail engineering. (Author)

  14. Quantity and quality in nuclear engineering professional skills needed by the nuclear power industry

    International Nuclear Information System (INIS)

    Slember, R.J.

    1990-01-01

    This paper examines the challenge of work force requirements in the context of the full range of issues facing the nuclear power industry. The supply of skilled managers and workers may be a more serious problem if nuclear power fades away than if it is reborn in a new generation. An even greater concern, however, is the quality of education that the industry needs in all its future professionals. Both government and industry should be helping universities adapt their curricula to the needs of the future. This means building a closer relationship with schools that educate nuclear professionals, that is, providing adequate scholarships and funding for research and development programs, offering in-kind services, and encouraging internships and other opportunities for hands-on experience. The goal should not be just state-of-the-art engineering practices, but the broad range of knowledge, issues, and skills that will be required of the nuclear leadership of the twenty-first century

  15. Knowledge Expansion in Engineering Education: Engineering Technology as an Alternative

    Directory of Open Access Journals (Sweden)

    Kamsiah Mohd Ismail

    2015-07-01

    Full Text Available Abstract. The current and rising challenges in engineering education demand graduate engineers who are well-prepared to provide innovative solutions as technical specialists, system integrators and change agents. Realizing the importance of producing a highly competent manpower, the Malaysian Government has put considerable pressure to the universities to produce engineers who are competitive in the global market. Hence, this assignment of developing a highly competence engineering technologist workforce in support of the government policy highlights issues pertaining to the development and offering of practical-oriented programs as a knowledge expansion in engineering education at universities as envisioned by the Malaysian Government.  This paper evaluates the current scenario and examines the application-oriented programs of engineering technology education as practice in local institutions in Malaysia in comparisons to some universities abroad. It also investigates the challenges faced by university management in dealing with issues concerning national quality assurance and accreditation pertaining to the engineering technology education programs. Specifically, it analyzes the faculty planning of pedagogies in term of hands-on skills in teaching and learning. A key conclusion of this research is that Malaysian universities need to evaluate its engineering technology education strategies if they aim for quality assurance and accreditation to be established and aspire for successful attempts towards the creation of the requisite knowledge workers that Malaysia needs.Keywords: application-oriented, engineering education, engineering technology, hands-on skills, knowledge expansion 

  16. Terminology standardisation in the nuclear engineering field

    International Nuclear Information System (INIS)

    Kraut, A.

    1987-01-01

    Terminological standardisation is made for the purpose of unambiguous understanding, at least among experts in a given field of knowledge. The author explains a number of criteria and aspects to be taken into account in the process of standardisation by referring to the work of the Terminology Committee on Nuclear Engineering. He discusses the word formation in a technical language and the features of standardised terminology. Accepted terminology is a main factor in all procedures concerning design, testing, and approval and licensing of nuclear facilities, and also is of importance in terms of economics. (HP) [de

  17. Reactor physics for non-nuclear engineers

    International Nuclear Information System (INIS)

    Lewis, E.E.

    2011-01-01

    A one-term undergraduate course in reactor physics is described. The instructional format is strongly influenced by its intended audience of non-nuclear engineering students. In contrast to legacy treatments of the subject, the course focuses on the physics of nuclear power reactors with no attempt to include instruction in numerical methods. The multi-physics of power reactors is emphasized highlighting the close interactions between neutronic and thermal phenomena in design and analysis. Consequently, the material's sequencing also differs from traditional treatments, for example treating kinetics before the neutron diffusion is introduced. (author)

  18. Some radiation chemical aspects of nuclear engineering

    International Nuclear Information System (INIS)

    Pikaev, A.K.; Kabakchi, S.A.; Egorov, G.F.

    1988-01-01

    Some radiation chemical aspects of nuclear engineering are discussed (predominantly on the base of the works performed in the Soviet Union). The data on the influence of temperature within the range of 0-300 0 C on the yields of water radiolysis products are considered. The results obtained from the study of reactivity of actinide ions towards inorganic free radicals in acid aqueous solutions are summarized. The information on composition and properties of the products of radiolytic transformations of different extragents and diluents and on their influence on the behaviour of extraction systems during processing of irradiated nuclear fuel is presented. (author)

  19. Current Status of Engineering Education in America

    Science.gov (United States)

    Barr, Ronald E.

    Many faculty believe that engineering education in America is at a crossroads and much change is needed. International competition in engineering and the global economy have major potential impact on the engineering workforce of the future. We must find ways to educate U.S. engineers to be competitive and creative contributors in the worldwide arena. Recent national reports are sounding the alarm that the U.S. is losing it leadership in technology and innovation, with consequences for economic prosperity and national security. The report Rising Above the Gathering Storm discusses this dilemma in detail and offers four recommendations to U.S. policymakers. The report Educating the Engineer of 2020 discusses new ways to prepare American engineers for the 21st Century. Furthermore, changes in ABET accreditation, along with new paradigms of teaching and new technology in the classroom, are changing the scholarship of engineering education. We must find ways to promote change in engineering faculty for this new opportunity in engineering educational scholarship. Future engineering students are now in K-12, which is becoming an increasingly diverse population that in the past has not been fully represented in engineering education. Current trends show disaffection for pursuing studies in science and engineering in the youth of our U.S. society. We must find new ways to portray engineering as an exciting and rewarding career, and certainly as an educational platform for professional careers beyond the baccalaureate degree.

  20. Educating Civil Engineers for Developing Countries

    Science.gov (United States)

    Stanley, D.

    1974-01-01

    Based on engineering teaching experience in Africa and Asia, ideas are presented on educating civil engineers for developing countries, especially those in Africa. Some of the problems facing educational planners, teachers, and students are addressed, including responsibilities of a newly graduated civil engineer, curriculum development, and…

  1. Engineering education research in European Journal of Engineering Education and Journal of Engineering Education: citation and reference discipline analysis

    Science.gov (United States)

    Wankat, Phillip C.; Williams, Bill; Neto, Pedro

    2014-01-01

    The authors, citations and content of European Journal of Engineering Education (EJEE) and Journal of Engineering Education (JEE) in 1973 (JEE, 1975 EJEE), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become engineering education research (EER) journals, although JEE transitioned first. In this process the number of citations rose, particularly of education and psychology sources; the percentage of research articles increased markedly as did the number of reference disciplines. The number of papers per issue, the number of single author papers, and the citations of science and engineering sources decreased. EJEE has a very broad geographic spread of authors while JEE authors are mainly US based. A 'silo' mentality where general engineering education researchers do not communicate with EER researchers in different engineering disciplines is evident. There is some danger that EER may develop into a silo that does not communicate with technically oriented engineering professors.

  2. Nuclear education and training: cause for concern?

    International Nuclear Information System (INIS)

    Yamagata, Hiroshi

    2000-01-01

    Nuclear power plants have played an important role in electricity generation in the OECD member countries, contributing an average 24% over the past few years. One major criterion for the success of this technology has always been the education and training of competent personnel in all sectors of nuclear development and application. The high level of competence and know-how reached must be maintained in the future. Qualified personnel is required for running existing plants, building new nuclear power plants - at present especially in Japan and Korea - and for all activities associated with supply and waste management, decommissioning, and for all applications of nuclear technology above and beyond energy generation. The number of university graduates in the OECD countries is decreasing alarmingly, among other reasons because of the diminished attractiveness of these courses as a consequence of the reduced number of nuclear engineering courses offered in curricula. A broad-based program of disseminating basic information in nuclear technology in university curricula is urgently required. In industry, internal advanced and in-career training measures and programs are offered to ensure broad-based qualification as well as specialization in nuclear subjects of the staff, as demands are rising and flexibility is required of all staff members. This development implies that governments in particular are called upon to ensure, by long-term planning, that nuclear competence is preserved in science and research, in industry and applications, as part of their areas of responsibility and competence. Note: The full text of the study on which this contribution is based has been published under the title of 'Nuclear Education and Training: Cause for Concern?' by OECD-NEA, Paris, 2000, 124 pages. (orig.) [de

  3. Master on Nuclear Engineering and Applications (MINA): instrument of knowledge management in the nuclear sector; Master en Ingenieria Nuclear y Aplicaciones (MINA): instrumento de gestion del conocimiento en el sector nuclear espanol

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Garcia Cuesta, J. C.; Falcon, S.; Casas, J. A.

    2013-03-01

    Knowledge Management in nuclear industry is indispensable to ensure excellence in performance and safety of nuclear installations. The Master on Nuclear Engineering and Applications (MINA) is a Spanish education venture which foundations and evolution have meant and adaptation to the European Education system and to the domestic and international changes occurred in the nuclear environment. This paper summarizes the most relevant aspects of such transformation, its motivation and the final outcome. Finally, it discusses the potential benefit of a closer collaboration among the existing national education ventures in the frame of Nuclear Engineering. (Author)

  4. The role of nuclear education and training in Korea

    International Nuclear Information System (INIS)

    Min, B.J.; Han, K.W.; Lee, E.J.

    2007-01-01

    Since the commercial operation of the first nuclear power plant in April 1978, Korea has achieved a rapid growth in nuclear power. In 2004, 19 nuclear power plants are currently in operation and 8 nuclear power plants are under construction. The installed nuclear capacity is 16,716MW. Also nuclear power generation reached 129,672GWh which are about 40% of the total electricity generation. Nuclear energy has been a backbone for Korea's economic growth over the past decades, and will continue to play role for the prosperity of next generation in this century. In this context, Korean Standard Nuclear Power Plant and Advanced Power Reactor-1400 have been developed, and System-Integrated Modular Advanced Reactor for desalination of seawater, Advanced Liquid Metal Reactor and Direct Use of Spent PWR Fuel in CANDU are being developed. In parallel, a Radiation Technology R and D Center and a High Power Proton Accelerator Center are being established. Along with the progress of the nuclear energy program, the nuclear education and training has been progressed stepwise, i.e. overseas training, basic training, domestic nuclear human resource development, IAEA regional training, and global nuclear human resource development. Nuclear engineering education program started at Universities from 1958. In order to provide training courses for nuclear personnel, the Nuclear Training Center was established at KAERI in 1967. During the construction of the first nuclear power plant, basic training courses were conducted at NTC/KAERI. And specific training courses were conducted by the reactor suppliers in Korea and the supplier's countries. During this period, reactor operation license laws and the national technical qualification system (engineer, technician, craftsman) with a linkage to the national education system were established in 1970, 1975, respectively. When the utility (now the Korea Hydro and Nuclear Company) started operation of the first nuclear power plant in 1978, the

  5. Development of nuclear rocket engine technology

    International Nuclear Information System (INIS)

    Gunn, S.V.

    1989-01-01

    Research sponsored by the Atomic Energy Commission, the USAF, and NASA (later on) in the area of nuclear rocket propulsion is discussed. It was found that a graphite reactor, loaded with highly concentrated Uranium 235, can be used to heat high pressure liquid hydrogen to temperatures of about 4500 R, and to expand the hydrogen through a high expansion ratio rocket nozzle assembly. The results of 20 reactor tests conducted at the Nevada Test Site between July 1959 and June 1969 are analyzed. On the basis of these results, the feasibility of solid graphite reactor/nuclear rocket engines is revealed. It is maintained that this technology will support future space propulsion requirements, using liquid hydrogen as the propellant, for thrust requirements ranging from 25,000 lbs to 250,000 lbs, with vacuum specific impulses of at least 850 sec and with full engine throttle capability. 12 refs

  6. Sloan foundation nuclear education program

    International Nuclear Information System (INIS)

    Kursunoglu, B.N.

    1992-01-01

    The Alfred P. Sloan Foundation realized the time had come for a real and significant contribution to the enlightenment of university students concerning nuclear matters. The Sloan Foundation chose to educate the youth of four-year colleges and universities with a curriculum established with the resource information sieved from three workshops for professors in these institutions. The three workshops were organized by groups at Harvard-MIT (two-week Summer Program on Nuclear Weapons and Arms Control), the University of California, San Diego (two-week Summer Seminar on Global Security and Arms Control), and the University of Miami (one-week Winter Workshop on Enlightenment: The Best Security in a Nuclear-Armed World). In this report the author focuses on a unified presentation of the basic facts, aims, and results of the Sloan Foundation Nuclear Education Program based on three workshops directed by Jack Ruina (MIT), Herbert York (USCD), and Behram Kursunoglu (UM) and offered from 1983-1990

  7. Nuclear Engineering Academic Programs Survey, 2003

    International Nuclear Information System (INIS)

    Science and Engineering Education, Oak Ridge Institute for Science and Education

    2004-01-01

    The survey includes degrees granted between September 1, 2002 and August 31, 2003. Thirty-three academic programs reported having nuclear engineering programs during the survey time period and all responded (100% response rate). Three of the programs included in last year's report were discontinued or out-of-scope in 2003. One new program has been added to the list. This year the survey data include U.S. citizenship, gender, and race/ethnicity by degree level

  8. Welding problems in nuclear power engineering

    International Nuclear Information System (INIS)

    Zubchenko, A.S.

    1986-01-01

    The problems of welding industry in nuclear power plant engineering, mainly related to the improvement of molten bath protection, are considered. Development of new materials for welding electrodes, for cladding and welding fluxes, is pointed out. Production of the following equipment is brought to a commercial level: welding heads and welding machines for branch pipe welding, anticorrosion cladding, zonal thermal treatment, electron beam welding facilities for the welding and maintenance of turbineblades, equipment for nondestructive testing of welded joints

  9. Epistemic Practices of Engineering for Education

    Science.gov (United States)

    Cunningham, Christine M.; Kelly, Gregory J.

    2017-01-01

    Engineering offers new educational opportunities for students, yet also poses challenges about how to conceptualize the disciplinary core ideas, crosscutting concepts, and science and engineering practices of the disciplinary fields of engineering. In this paper, we draw from empirical studies of engineering in professional and school settings to…

  10. New trends in nuclear power engineering development

    International Nuclear Information System (INIS)

    Krasin, A.K.

    1974-01-01

    The specific features are considered of three designs of nuclear power plants with fast reactors: three-circuit nuclear power plant with liquid sodium as primary and secondary coolant, in the third circuit water vapor being used as turbine working medium, dual cycle nuclear power plant with pressurized helium as primary coolant and water vapor as turbine working medium, direct cycle nuclear power plant with a dissociating gas (nitrogen tetroxide N 2 O 4 ) as reactor coolant and turbine working medium. The version of the direct cycle nuclear power plant with dissociating N 2 O 4 was proposed and being developed by the Institute of Nuclear Engineering of the Academy of Sciencies of the BSSR. The thermal and physical properties of the dissociating gas allow a high-power-density reactor core to be used with a hard neutron spectra resulting in a high breeding ratio and a short doubling time. The pressure range from 150 to 170 bar was proven for this coolant under laboratory conditions and structural materials were chosen that ensure all the components of the direct cycle nuclear power plant to be workable. At present it is difficult to say which of the three versions is the most advantageous. The further development of a full-scale prototypes of a commercial nuclear power plant with a fast reactor and investigation of their technical and economic parameters remain the problems of utmost importance. A possible use of nuclear reactors is shortly considered for process heat production, in ferrous metallurgy, for hydrogen and new isotope production, and for radiation chemistry as well

  11. Nuclear thermal propulsion engine cost trade studies

    International Nuclear Information System (INIS)

    Paschall, R.K.

    1993-01-01

    The NASA transportation strategy for the Mars Exploration architecture includes the use of nuclear thermal propulsion as the primary propulsion system for Mars transits. It is anticipated that the outgrowth of the NERVA/ROVER programs will be a nuclear thermal propulsion (NTP) system capable of providing the propulsion for missions to Mars. The specific impulse (Isp) for such a system is expected to be in the 870 s range. Trade studies were conducted to investigate whether or not it may be cost effective to invest in a higher performance (Isp>870 s) engine for nuclear thermal propulsion for missions to Mars. The basic cost trades revolved around the amount of mass that must be transported to low-earth orbit prior to each Mars flight and the cost to launch that mass. The mass required depended on the assumptions made for Mars missions scenarios including piloted/cargo flights, number of Mars missions, and transit time to Mars. Cost parameters included launch cost, program schedule for development and operations, and net discount rate. The results were very dependent on the assumptions that were made. Under some assumptions, higher performance engines showed cost savings in the billions of dollars; under other assumptions, the additional cost to develop higher performance engines was not justified

  12. Development of engineering drawing ability for emerging engineering education

    Science.gov (United States)

    Guo, Jian-Wen; Cao, Xiao-Chang; Xie, Li; Jin, Jian-Jun; Wang, Chu-Diao

    2017-09-01

    Students majoring in engineering is required by the emerging engineering education (3E) in the aspect of their ability of engineering drawing. This paper puts forward training mode of engineering drawing ability for 3E. This mode consists of three kinds of training including training in courses, training in competitions and training in actual demand. We also design the feasible implementation plan and supplies viable references to carry out the mode.

  13. New Initiatives for International Cooperation for Nuclear Education in Russia

    International Nuclear Information System (INIS)

    Strikhanov, M.

    2014-01-01

    Final remarks: Planned activities under the IAEA/MePhI cooperation - Assistance in implementing the IAEA initiative on Virtual Nuclear Management University; • Collecting and preserving information on peaceful use of nuclear science and technology through the Russian International Nuclear Information System (INIS) Center; • Assistance in implementing the educational laboratories of Virtual Nuclear laboratories for CLP4NET and T urbine-installation of NPP with VVER-1000 reactor“ simulator; • Develop and implement the selected courses using the CLP4NET or other suitable platform (3 Master’s degree programs on Nuclear Engineering, Nuclear Reactors and Nuclear Nonproliferation); • Assistance in implementing the IAEA/ICTP School of NKM, August 2014 ; • A set of regional workshops on “The role of computer-based educational laboratories in Nuclear Engineering University Programmes”. New possible activities under the IAEA umbrella - • Cooperation with regional networks; • Establish a new network for Nuclear Education (CIS, EvrAzES, …) and develop together with other countries curricula, training programs and training materials on nuclear power and non-power applications; • Build public awareness of the benefits of nuclear technology and its applications; Support the IAEA in implementation of the selected courses in Member States. • Cooperation with foreign nuclear universities and training organizations for development of master and bachelor programs and postgraduate training

  14. Paired Peer Learning through Engineering Education Outreach

    Science.gov (United States)

    Fogg-Rogers, Laura; Lewis, Fay; Edmonds, Juliet

    2017-01-01

    Undergraduate education incorporating active learning and vicarious experience through education outreach presents a critical opportunity to influence future engineering teaching and practice capabilities. Engineering education outreach activities have been shown to have multiple benefits; increasing interest and engagement with science and…

  15. teaching and learning methodologies in engineering education

    African Journals Online (AJOL)

    Global Journal

    and learning of engineering in Nigerian Universities and suggests ways of improving engineering education in ... and inadequate collaboration between industries and schools. .... can book at their convenient time without conflicting with their ...

  16. Romanian network of nuclear education RONEN

    Energy Technology Data Exchange (ETDEWEB)

    Ghitescu, P.; Prisecaru, I.; Dupleac, D. [Bucharest Univ. Politehnica (Romania)

    2007-07-01

    RONEN (Romanian Network of Nuclear Education) aims at developing an efficient, flexible and modern training system in the nuclear education area, which answers the requirements of nuclear industry (NPP, regulatory bodies, subcontractors, dismantling, radioprotection, waste management). The first step was the investigation of the actual stage of the training in nuclear field in Romania. The second step was the investigation of the actual stage of training in the field of nuclear physics and engineering in other European countries. The third step was to create the infrastructure for the implementation and development of modern/learning programs and technologies. RONEN developed a data base on the project web-site, and proposed a global strategy in order to harmonize the curricula (by guidelines and self-evaluation reports), to implement pilot modern teaching programs (by handbooks for courses/modules), to introduce advanced learning technologies (like recommendations for Systematic Approach to Training, e-learning and distance-learning platforms), to strengthen and better use the existing research infrastructure for research and development among the network partners.

  17. Romanian network of nuclear education RONEN

    International Nuclear Information System (INIS)

    Ghitescu, P.; Prisecaru, I.; Dupleac, D.

    2007-01-01

    RONEN (Romanian Network of Nuclear Education) aims at developing an efficient, flexible and modern training system in the nuclear education area, which answers the requirements of nuclear industry (NPP, regulatory bodies, subcontractors, dismantling, radioprotection, waste management). The first step was the investigation of the actual stage of the training in nuclear field in Romania. The second step was the investigation of the actual stage of training in the field of nuclear physics and engineering in other European countries. The third step was to create the infrastructure for the implementation and development of modern/learning programs and technologies. RONEN developed a data base on the project web-site, and proposed a global strategy in order to harmonize the curricula (by guidelines and self-evaluation reports), to implement pilot modern teaching programs (by handbooks for courses/modules), to introduce advanced learning technologies (like recommendations for Systematic Approach to Training, e-learning and distance-learning platforms), to strengthen and better use the existing research infrastructure for research and development among the network partners

  18. Nuclear education in Russia: Status, peculiarities, problems and perspectives

    International Nuclear Information System (INIS)

    Onykii, B.N.; Kryuchkov, E.F.

    2004-01-01

    Full text: For longer than 50-year period of nuclear industry development in the USSR, the specialists training system has been created to meet completely the industrial branch's demands for the specialists of all possible qualifications for research, engineering and production activities. This educational system does exist in Russia till now. In the presentation the following items will be addressed: Nuclear Engineering education in Russia: status and peculiarities; Demands of nuclear enterprises for the alumni. Role of the Universities in these problems solution; Nuclear engineering education problems in Russia; Master of science education in nuclear aria; Perspectives of nuclear education in Russia; Integration of nuclear education in Europe: perspectives and problems. The educational system in nuclear engineering, like an educational system in any other knowledge area in Russia, includes the training activities limited by Russian legislation only: academic training of the specialists with award of the State certificates (higher education, re-training, qualification upgrade); qualification upgrade of the specialists without award of the State certificates. The system of education represents a multi-level structure oriented at any possible needs of industrial branches. At present, more than 20 Russian higher education institutions train the specialists in nuclear engineering. The specialists training in nuclear engineering is being conducted in all these universities in full accordance with common educational curricula and standards which define some peculiarities of the specialists training in this area: 1) Combination of fundamental knowledge in physics and mathematics with profound engineering skills; 2) Large share of laboratory works; 3) Participation at the research work starting from the 4th year student; 4) Long education time (5-6 years) and period for thesis preparation (1/2 year - pre-diploma internship and 1/2 year of thesis preparation); 5) High

  19. Implementing Sustainable Engineering Education through POPBL

    International Nuclear Information System (INIS)

    Lioe, D X; Subhashini, G K

    2013-01-01

    This paper presents the implementation of sustainable engineering education to undergraduate student in Asia Pacific University of Technology and Innovation, Malaysia (APU) through Project-Oriented Problem Based Learning (POPBL). Sustainable engineering has already been the paramount term where it is no longer limited to environment, but also to the entire lifetime of the individual engineer. To inculcate every engineering individual with sustainability, education is the way to start off.

  20. Universities and national laboratory roles in nuclear engineering

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1991-01-01

    Nuclear Engineering Education is being significantly challenged in the United States. The decline in enrollment generally and the reduction of the number of nuclear engineering departments has been well documented. These declines parallel a lack of new construction for nuclear power plants and a decline in research and development to support new plant design. Precisely at a time when innovation is is needed to deal with many issues facing nuclear power, the number of qualified people to do so is being reduced. It is important that the University and National Laboratory Communities cooperate to address these issues. The Universities must increasingly identify challenges facing nuclear power that demand innovative solutions and pursue them. To be drawn into the technology the best students must see a future, a need and identify challenges that they can meet. The University community can provide that vision with help from the National Laboratories. It has been a major goal within the reactor development program at Argonne National Laboratory to establish the kind of program that can help accomplish this

  1. Will there be enough engineers and scientists to revive the nuclear industry?

    International Nuclear Information System (INIS)

    Cox, B.

    1991-01-01

    The author adduces statistics of university entry and graduation to predict a shortage of scientists and engineers available to enter the Canadian nuclear industry over the next ten years. Since the industry will need more than three times as many new engineers as new scientists, the shortage of engineers will be particularly acute. The cause of the trouble is partly the declining popularity of science and engineering, partly declining educational standards

  2. Challenges, opportunities and trends in engineering education

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2005-01-01

    Many challenges and opportunities face the engineering profession and engineering education. The engineering profession advances best if challenges are properly addressed, opportunities beneficially exploited and reasoned speculation made on future trends. In this article, the author presents his views on some of the challenges and opportunities facing the engineering education, and possible future trends, with the objective of fostering continued discussion of and action on these issues. This topic is of great importance because the development of engineering education is strongly influenced by the challenges and opportunities it faces and how it responds, and by anticipated future trends. (author)

  3. Situation of the education in the nuclear field: networks of training and paper of the universities

    International Nuclear Information System (INIS)

    Minguez, E.

    2008-01-01

    In this work the education networks in nuclear engineering around Europe American and Asia are presented, focusing in the main role of universities in collaboration with the nuclear industry. (Author) 5 refs

  4. Education in the nuclear sciences at Japanese universities

    International Nuclear Information System (INIS)

    Takashima, Y.

    1990-01-01

    Though there are 430 government and private universities in Japan, only a limited number of them have the department associated with nuclear science education. And the education is one-sided to government universities because mainly of financial problem. Nuclear engineering departments are installed at only 7 big universities. In addition, there are 3 institutes associated with a nuclear reactor. In these facilities, education on reactor physics, radiation measurement, electromagnetics and material sciences are conducted. For education on safety handling of radioactive materials, 10 radioisotope centers and 7 radiochemistry laboratories attached to big government universities act an important role. Almost all of the financial support for the above nuclear education come from the Ministry of Education, Science and Culture. However, some other funds are introduced by the private connection of professors

  5. Pursuit of nuclear science and technology education

    International Nuclear Information System (INIS)

    Rangacharyulu, C.

    2009-01-01

    While it is quite encouraging to note that there is a nuclear renaissance underway around the world, there is a growing concern that the knowledge-base of nuclear technologies will be lost. Several international organizations are making concerted efforts to avert this situation by establishing collaborative workshops etc. In Western Canada, our challenges and opportunities are many-fold. As a uranium mining region, we can engage our economy in the full life-cycle of the nuclear energy industry. It is also important that we maintain and augment nuclear technologies. We need to develop the infrastructure to jump-start the education and training of the youth. We are taking a multi-prong approach to this end. We are initiating specializations in undergraduate programs which emphasize nuclear radiation physics and technology. We are collaborating with Canadian organizations such as University Network of Excellence in Nuclear Engineering (UNENE) and University of Ontario Institute of Technology (UOIT). We are organizing collaborations with our colleagues at foreign institutions in Europe and Asia to provide an international component. We are also working with local industry and health organizations to provide a wide-range of learning opportunities to students by engaging them in research projects of immediate interest to professionals. My presentation will focus on these developments and we will also seek thoughts and suggestions for future collaborations.

  6. Reactor use in nuclear engineering programs

    International Nuclear Information System (INIS)

    Murray, R.L.

    1975-01-01

    Nuclear reactors for dual use in training and research were established at about 50 universities in the period since 1950, with assistance by the U. S. Atomic Energy Commission and the National Science Foundation. Most of the reactors are in active use for a variety of educational functions--laboratory teaching of undergraduates and graduate students, graduate research, orientation of visitors, and nuclear power plant reactor operator training, along with service to the technical community. As expected, the higher power reactors enjoy a larger average weekly use. Among special programs are reactor sharing and high-school teachers' workshops

  7. Educating journalists about nuclear

    International Nuclear Information System (INIS)

    Latek, Stanislaw

    2002-01-01

    Co-operating with the journalists for many years, I believe that I managed to win their trust and goodwill. This capital was not easy to acquire, but it is very easy to squander. Because one has to remember that the relations between the nuclear community and the media are very sensitive. Their fragile balance can be easily disturbed or even totally destroyed. Drawing on the last year experiences and lessons from my relations with the journalists in my role of a spokesman, I would like to present several messages, which I believe to be useful for the PIME audience. (author)

  8. Engineering Education and Management - vol.2

    CERN Document Server

    Zhang, Chunliang; International Conference on Engineering Education and Management (ICEEM2011)

    2012-01-01

    This is the proceedings of the selected papers presented at 2011 International Conference on Engineering Education and Management (ICEEM2011) held in Guangzhou, China, during November 18-20, 2011. ICEEM2011 is one of the most important conferences in the field of Engineering Education and Management and is co-organized by Guangzhou University, The University of New South Wales, Zhejiang University and Xi’an Jiaotong University. The conference aims to provide a high-level international forum for scientists, engineers, and students to present their new advances and research results in the field of Engineering Education and Management. This volume comprises 122 papers selected from over 400 papers originally submitted by universities and industrial concerns all over the world. The papers specifically cover the topics of Management Science and Engineering, Engineering Education and Training, Project/Engineering Management, and Other related topics. All of the papers were peer-reviewed by selected experts. The p...

  9. MATHEMATICS EDUCATION FOR LOGISTICS ENGINEERING

    OpenAIRE

    BÉLA ILLÉS; GABRIELLA BOGNÁR

    2012-01-01

    Mathematics is a crucial language in all engineering courses and researches where mathematical modeling, simulation and manipulation are commonly used. Engineering Mathematics courses are considered difficult courses in engineering curricula. This is reflected in engineering students’ performance at the end of each semester for these courses. Our goal is to overview a few questions on mathematics as a core subject of engineering.

  10. Progress in reforming chemical engineering education.

    Science.gov (United States)

    Wankat, Phillip C

    2013-01-01

    Three successful historical reforms of chemical engineering education were the triumph of chemical engineering over industrial chemistry, the engineering science revolution, and Engineering Criteria 2000. Current attempts to change teaching methods have relied heavily on dissemination of the results of engineering-education research that show superior student learning with active learning methods. Although slow dissemination of education research results is probably a contributing cause to the slowness of reform, two other causes are likely much more significant. First, teaching is the primary interest of only approximately one-half of engineering faculty. Second, the vast majority of engineering faculty have no training in teaching, but trained professors are on average better teachers. Significant progress in reform will occur if organizations with leverage-National Science Foundation, through CAREER grants, and the Engineering Accreditation Commission of ABET-use that leverage to require faculty to be trained in pedagogy.

  11. Summary of aerospace and nuclear engineering activities

    Science.gov (United States)

    1988-01-01

    The Texas A&M Nuclear and Aerospace engineering departments have worked on five different projects for the NASA/USRA Advanced Design Program during the 1987/88 year. The aerospace department worked on two types of lunar tunnelers that would create habitable space. The first design used a heated cone to melt the lunar regolith, and the second used a conventional drill to bore its way through the crust. Both used a dump truck to get rid of waste heat from the reactor as well as excess regolith from the tunneling operation. The nuclear engineering department worked on three separate projects. The NEPTUNE system is a manned, outer-planetary explorer designed with Jupiter exploration as the baseline mission. The lifetime requirement for both reactor and power-conversion systems was twenty years. The second project undertaken for the power supply was a Mars Sample Return Mission power supply. This was designed to produce 2 kW of electrical power for seven years. The design consisted of a General Purpose Heat Source (GPHS) utilizing a Stirling engine as the power conversion unit. A mass optimization was performed to aid in overall design. The last design was a reactor to provide power for propulsion to Mars and power on the surface. The requirements of 300 kW of electrical power output and a mass of less than 10,000 Rg were set. This allowed the reactor and power conversion unit to fit within the Space Shuttle cargo bay.

  12. Developing safety culture in nuclear power engineering

    International Nuclear Information System (INIS)

    Tevlin, S.A.

    2000-01-01

    The new issue (no. 11) of the IAEA publications series Safety Reports, devoted to the safety culture in nuclear engineering Safety culture development in the nuclear activities. Practical recommendations to achieve success, is analyzed. A number of recommendations of international experts is presented and basic general indicators of satisfactory and insufficient safety culture in the nuclear engineering are indicated. It is shown that the safety culture has two foundations: human behavior and high quality of the control system. The necessity of creating the confidence by the management at all levels of the enterprise, development of individual initiative and responsibility of the workers, which make it possible to realize the structural hierarchic system, including technical, human and organizational constituents, is noted. Three stages are traced in the process of introducing the safety culture. At the first stage the require,emts of scientific-technical documentation and provisions of the governmental, regional and control organs are fulfilled. At the second stage the management of the organization accepts the safety as an important direction in its activities. At the third stage the organization accomplishes its work, proceeding from the position of constant safety improvement. The general model of the safety culture development is considered [ru

  13. Thermal-hydraulics associated with nuclear education and research

    International Nuclear Information System (INIS)

    Yokobori, Seiichi

    2011-01-01

    This article was the rerecording of the author's lecture at the fourth 'Future Energy Forum' (aiming at improving nuclear safety and economics) held in December 2010. The lecture focused on (1) importance of thermal hydraulics associated with nuclear education and research (critical heat flux, two-phase flow and multiphase flow), (2) emerging trend of maintenance engineering (fluid induced vibration, flow accelerated corrosion and stress corrosion cracks), (3) fostering sensible nuclear engineer with common engineering sense, (4) balanced curriculum of basics and advanced research, (5) computerized simulation and fluid mechanics, (6) crucial point of thermo hydraulics education (viscosity, flux, steam and power generation), (7) safety education and human resources development (indispensable technologies such as defence in depth) and (8) topics of thermo hydraulics research (vortices of curbed pipes and visualization of two-phase flow). (T. Tanaka)

  14. Educational activity on nuclear energy in Aomori region

    International Nuclear Information System (INIS)

    Abe, Katsunori

    2008-01-01

    There are many nuclear industries and research facilities in Aomori Prefecture, Japan. Fuel cycle facilities and a LWR power station are now in operation. Another fuel cycle facilities and power stations will soon be under construction. Fusion research activity, ITER-BA, has started last year. We have launched nuclear-related education and research programs to teach nuclear engineering knowledge and skills to the local students. Hachinohe Institute of Technology is located on Pacific ocean side of Aomori Prefecture close to Rokkasho area, and has six undergraduate departments and three graduate courses. Hitherto, many alumni have engaged in nuclear-related companies in the area. In addition to previous subject on nuclear engineering, a new activity 'Challenge Nuclear-site Experience Program' started in 2007, as one of nuclear educational promotion programs in Japan. The students from various engineering departments learned the status and role of nuclear industries and researches. A curriculum course for nuclear engineering will be ready in 2009 for undergraduate students through various departments. In the summer of 2007, the introductory lesson on nuclear power generation and the technical tour to the power station were carried out for two days. In the autumn, the introductory lesson on nuclear fuel cycle and the tour to fuel cycle facilities were performed for three days, including one day tour to research facilities in the area. Its aim was to let the students recognize the role of regional nuclear activities and the attractiveness of nuclear-related industries. The program was supported by Ministry of Economy, Trade and Industry and was performed in cooperation with Tohoku Electric Power Company, Japan Nuclear Fuel Limited and Japan Atomic Energy Agency. (author)

  15. Modern mechanical engineering research, development and education

    CERN Document Server

    2014-01-01

    This book covers modern subjects of mechanical engineering such as nanomechanics and nanotechnology, mechatronics and robotics, computational mechanics, biomechanics, alternative energies, sustainability as well as all aspects related with mechanical engineering education. The chapters help enhance the understanding of both the fundamentals of mechanical engineering and its application to the solution of problems in modern industry. This book is suitable for students, both in final undergraduate mechanical engineering courses or at the graduate level. It also serves as a useful reference for academics, mechanical engineering researchers, mechanical, materials and manufacturing engineers, professionals in related with mechanical engineering.

  16. Proceedings of the Nuclear Engineering Science and Technology - NESTeT 2008 Transactions

    International Nuclear Information System (INIS)

    2008-01-01

    This important European Nuclear Society (ENS) conference is dedicated to networking in nuclear education and training across the fields of engineering, science and technology. An OECD study in 2000, 'Nuclear Education and Training: Cause for Concern?' recommended the following: -Governments have a strategic role to play in energy planning. Governments should contribute to, if not take responsibility for, integrated planning to ensure that necessary human resources are available. There should also be adequate resources for vibrant nuclear research and development programmes including modernisation of facilities; -The provision of basic and attractive educational programmes at university level is among the challenges of revitalising nuclear education; -Rigorous training programmes are needed to meet specific needs and exciting research projects should also be developed to attract quality students and employees to research institutes; -Industry, research institutes and universities need to work together to better co-ordinate efforts to encourage the younger generation and develop and promote a programme of collaboration in nuclear education and training. There should also be mechanisms for sharing best practices in promoting nuclear courses. The world is responding. From the Americas to Europe and Asia networks have been established to maintain nuclear knowledge and to ensure there is a suitably qualified nuclear workforce for the future. NESTet 2008 is designed to facilitate an exchange of information, collaboration and the sharing of best practices in nuclear education and training in engineering science and technology. (authors)

  17. Engineering thermal engine rocket adventurer for space nuclear application

    International Nuclear Information System (INIS)

    Nam, Seung H.; Suh, Kune Y.; Kang, Seong G.

    2008-01-01

    The conceptual design for the first-of-a-kind engineering of Thermal Engine Rocket Adventure (TERA) is described. TERA comprising the Battery Omnibus Reactor Integral System (BORIS) as the heat resource and the Space Propulsion Reactor Integral System (SPRIS) as the propulsion system, is one of the advanced Nuclear Thermal Rocket (NTR) engine utilizing hydrogen (H 2 ) propellant being developed at present time. BORIS in this application is an open cycle high temperature gas cooled reactor that has eighteen fuel elements for propulsion and one fuel element for electricity generation and propellant pumping. Each fuel element for propulsion has its own small nozzle. The nineteen fuel elements are arranged into hexagonal prism shape in the core and surrounded by outer Be reflector. The TERA maximum power is 1,000 MW th , specific impulse 1,000 s, thrust 250,000 N, and the total mass is 550 kg including the reactor, turbo pump and auxiliaries. Each fuel element comprises the fuel assembly, moderators, pressure tube and small nozzle. The TERA fuel assembly is fabricated of 93% enriched 1.5 mm (U, Zr, Nb)C wafers in 25.3% voided Square Lattice Honeycomb (SLHC). The H 2 propellant passes through these flow channels. This study is concerned with thermohydrodynamic analysis of the fuel element for propulsion with hypothetical axial power distribution because nuclear analysis of TERA has not been performed yet. As a result, when the power distribution of INSPI's M-SLHC is applied to the fuel assembly, the local heat concentration of fuel is more serious and the pressure of the initial inlet H 2 is higher than those of constant average power distribution applied. This means the fuel assembly geometry of 1.5 mm fuel wafers and 25.3% voided SLHC needs to be changed in order to reduce thermal and mechanical shocks. (author)

  18. Civil engineering in the nuclear industry

    International Nuclear Information System (INIS)

    Dexter-Smith, R.

    1991-01-01

    Civil Engineering has an important contribution to make at every stage of the nuclear fuel cycle, from the choice of site and conception of the design of a major power station or fuel plan, through modifications during modifications, during operation, to the final stages of designing and building waste management stores and repositories and the decommissioning of stations and plants. The conference papers published here -twenty four in total - cover many of these stages. All the papers are indexed separately. Two international papers are presented, one on French PWRs, the other on repository design. Four papers look at site investigations, four are concerned with earthquake engineering, four with structural analysis, three with quality assurance, three with design and four with in-service performance and decommissioning. (UK)

  19. Engineering design guidelines for nuclear criticality safety

    International Nuclear Information System (INIS)

    Waltz, W.R.

    1988-08-01

    This document provides general engineering design guidelines specific to nuclear criticality safety for a facility where the potential for a criticality accident exists. The guide is applicable to the design of new SRP/SRL facilities and to major modifications Of existing facilities. The document is intended an: A guide for persons actively engaged in the design process. A resource document for persons charged with design review for adequacy relative to criticality safety. A resource document for facility operating personnel. The guide defines six basic criticality safety design objectives and provides information to assist in accomplishing each objective. The guide in intended to supplement the design requirements relating to criticality safety contained in applicable Department of Energy (DOE) documents. The scope of the guide is limited to engineering design guidelines associated with criticality safety and does not include other areas of the design process, such as: criticality safety analytical methods and modeling, nor requirements for control of the design process

  20. Do we educate engineers that can engineer?

    DEFF Research Database (Denmark)

    Nyborg, Mads; Probst, Christian W.

    2017-01-01

    results, we decided to target students who have at least passed the first four terms, and companies that have hosted a significant number of students in the last 3 years in internships or for the final thesis. These companies interact with the students for almost one year at the end of their studies......, providing a good foundation for the company supervisors to answer questions about the students’ abilities as an engineer. In this paper, we discuss the design and result of the questionnaire, and the obtained results. As mentioned above, the survey will give us and the CDIO community detailed insights...

  1. Malignant pleural mesothelioma in a nuclear engineer

    International Nuclear Information System (INIS)

    Huncharek, M.

    1988-01-01

    Malignant pleural mesothelioma accounts for a large proportion of deaths among occupational cohorts exposed to asbestos. Of particular interest are recent reports of a high risk of mesothelioma among occupational groups previously thought to be at low risk for developing this neoplasm. In the present report we present a case of pleural mesothelioma associated with bystander exposure to asbestos in a nuclear engineer. To our knowledge, this is the first report of the disease occurring in a member of this occupational group after work related exposure to asbestos. (author)

  2. Nuclear reactor safety: physics and engineering aspects

    International Nuclear Information System (INIS)

    Kinchin, G.H.

    1982-01-01

    In order to carry out the sort of probabilistic analysis referred to by Farmer (Contemp. Phys.; 22:349(1981)), it is necessary to have a good understanding of the processes involved in both normal and accident conditions in a nuclear reactor. Some of these processes, for a variety of different reactor systems, are considered in sections dealing with the neutron chain reaction, the removal of heat from the reactor, material problems, reliability of protective systems and a number of specific topics of particular interest from the point of view of physics or engineering. (author)

  3. Harmonization of nuclear education and training in Europe

    International Nuclear Information System (INIS)

    Miglierin, M.

    2005-01-01

    Full text: At the Lisbon 2000 summit, a strategic goal was proposed for the European Union: to become the most competitive knowledge-based economy with more and better employment and social cohesion by 2010. In the particular case of nuclear fission technologies, this EC initiative was widely accepted by the stake holders concerned. In Europe, the main 'end users' of nuclear research or stake holders are actually: the research organisations (with mixed public / private funding), the manufacturing industry, the utilities and waste management organisations, the regulatory bodies (or technical safety organisations) and the academic (e.g. universities). With the aim to better integrate European education and training in nuclear engineering and safety in order to combat the decline in both student numbers and teaching establishments a FP6 EU project entitled NEPTUNO (Nuclear European Platform of Training and University Organizations) has started in 2004. In total 35 partner institutions from 17 countries have formed a network aimed in providing the necessary competence and expertise for the continued safe use of nuclear energy and other uses of radiation in industry and medicine. The project focuses on a harmonised approach for education and training in nuclear engineering in Europe and its implementation, including the better integration of national resources and capabilities. The expected result is an operational network for training and lifelong learning schemes as well as on academic education at the master, doctoral and post-doctoral level, underpinning: Substantiality of Europe's excellence in nuclear technology; Harmonised approaches to safety and best practices, both operational and regulatory, at European level in Member States and Accession Countries; Preservation of competence and expertise for the continued safe use of nuclear energy and other uses of radiation in industry and medicine; Harmonised approach for training and education in nuclear engineering

  4. Some developing concepts of engineering education

    Science.gov (United States)

    Perkins, C. D.

    1975-01-01

    An analysis of the circumstances which have created a shortage of aeronautical engineering undergraduate students in the universities is presented. Suggestions for motivating students to enter aeronautical engineering are examined. The support of the aeronautical industry for graduate education funding is recommended. Examples of actions taken by governmental agencies to promote increased interest in aeronautical engineering are included.

  5. Supply of science and engineering graduates for the United States nuclear industry

    International Nuclear Information System (INIS)

    Baker, J.G.; Blair, L.M.

    1993-01-01

    The concern in the USA about the adequacy of supply of new graduate scientists and engineers to meet technical employment needs, is particularly acute within the nuclear field because of declines in the number of education programs and number of students in nuclear engineering, health physics, and radiochemistry. The decline in the number of new graduates is assessed in comparison to current and projected future employment needs. Currently, supplies of new graduates are just meeting employment needs in nuclear engineering and are less than adequate in health physics and radiochemistry. If the number of graduates does not increase these inadequacies of supply are likely become more severe in the future. 5 figs

  6. Software Engineering Education: Some Important Dimensions

    Science.gov (United States)

    Mishra, Alok; Cagiltay, Nergiz Ercil; Kilic, Ozkan

    2007-01-01

    Software engineering education has been emerging as an independent and mature discipline. Accordingly, various studies are being done to provide guidelines for curriculum design. The main focus of these guidelines is around core and foundation courses. This paper summarizes the current problems of software engineering education programs. It also…

  7. Robert Henry Thurston: Professionalism and Engineering Education

    Science.gov (United States)

    Nienkamp, Paul

    2016-01-01

    Robert Henry Thurston is presented in this article. He provides one the most significant examples of professionalizing engineering through innovative education and promoting scientific education practices in the late nineteenth century. The son of a draftsmen and steam engine mechanic, Thurston spent his early years in Providence, Rhode Island.…

  8. Motivational Factors, Gender and Engineering Education

    Science.gov (United States)

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne; Holgaard, Jette Egelund

    2013-01-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students reasons for choosing a career in engineering. We find that women are significantly more influenced by…

  9. A new educational program on biomedical engineering

    NARCIS (Netherlands)

    van Alste, Jan A.

    2000-01-01

    At the University of Twente together with the Free University of Amsterdam a new educational program on Biomedical Engineering will be developed. The academic program with a five-year duration will start in September 2001. After a general, broad education in Biomedical Engineering in the first three

  10. Engineering Education in K-12 Schools

    Science.gov (United States)

    Spence, Anne

    2013-03-01

    Engineers rely on physicists as well as other scientists and mathematicians to explain the world in which we live. Engineers take this knowledge of the world and use it to create the world that never was. The teaching of physics and other sciences as well as mathematics is critical to maintaining our national workforce. Science and mathematics education are inherently different, however, from engineering education. Engineering educators seek to enable students to develop the habits of mind critical for innovation. Through understanding of the engineering design process and how it differs from the scientific method, students can apply problem and project based learning to solve the challenges facing society today. In this talk, I will discuss the elements critical to a solid K-12 engineering education that integrates science and mathematics to solve challenges throughout the world.

  11. Educating engineering designers for a multidisciplinary future

    DEFF Research Database (Denmark)

    engineering design education. Educating engineering designers today significantly differs from traditional engineering education (McAloone, et.al., 2007). However, a broader view of design activities gains little attention. The project course Product/Service-Systems, which is coupled to the lecture based...... course Product life and Environmental issues at the Technical University of Denmark (DTU) and the master programme Product Development Processes at the Luleå University of Technology (LTU), Sweden, are both curriculums with a broader view than traditional (mechanical) engineering design. Based...... on these two representatives of a Scandinavian approach, the purpose in this presentation is to describe two ways of educating engineering designers to enable them to develop these broader competencies of socio-technical aspects of engineering design. Product Development Processes at LTU A process, called...

  12. Education of indoor enviromental engineering technology

    Czech Academy of Sciences Publication Activity Database

    Kic, P.; Zajíček, Milan

    2011-01-01

    Roč. 9, Spec. 1 (2011), s. 83-90 ISSN 1406-894X. [Biosystems Engineering 2011. Tartu, 12.05.2011-13.05.2011] Institutional research plan: CEZ:AV0Z10750506 Keywords : Biosystems engineering * indoor environment * study * programs Subject RIV: AM - Education http://library.utia.cas.cz/separaty/2011/VS/zajicek-education of indoor enviromental engineering technology.pdf

  13. Contributions of university nuclear engineering departments to the national research agenda

    International Nuclear Information System (INIS)

    Peddicord, K.L.

    1991-01-01

    The history and character of university nuclear engineering departments have enabled them to play unique roles in higher education and to make valuable contributions in numerous important research fields. Nuclear engineering programs have several distinguishing and noteworthy characteristics. These characteristics include quality, diversity, and effectiveness. However, the continued viability of these programs is in question, and the importance of these programs may only be recognized after the capability has been lost. To recover this capability may well prove to be an impossibility

  14. Nuclear engineering questions: power, reprocessing, waste, decontamination, fusion

    International Nuclear Information System (INIS)

    Walton, R.D. Jr.

    1979-01-01

    This volume contains papers presented at the chemical engineering symposium on nuclear questions. Specific questions addressed by the speakers included: nuclear power - why and how; commercial reprocessing - permanent death or resurrection; long-term management of commercial high-level wastes; long-term management of defense high-level waste; decontamination and decommissioning of nuclear facilities, engineering aspects of laser fusion I; and engineering aspects of laser fusion II. Individual papers have been input to the Energy Data Base previously

  15. The Nuclear Review: the Institution of Nuclear Engineers' response to the Review of Nuclear Power

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The United Kingdom Government's Nuclear Review currently underway, addresses whether and in what form nuclear power should continue to be part of the country's power generation capability. This article sets out the response of the Institution of Nuclear Engineers to the Nuclear Review. This pro-nuclear group emphasises the benefits to be gained from diversity of generation in the energy supply industry. The environmentally benign nature of nuclear power is emphasised, in terms of gaseous emissions. The industry's excellent safety record also argues in favour of nuclear power. Finally, as power demand increases globally, a health U.K. nuclear industry could generate British wealth through power exports and via the construction industry. The Institution's view on radioactive waste management is also set out. (UK)

  16. Centre for nuclear engineering University of Toronto annual report 1984

    International Nuclear Information System (INIS)

    1984-12-01

    The annual report of the Centre for Nuclear Engineering, University of Toronto covers the following subjects: message from the Dean; Chairman's message; origins of the centre; formation of the centre; new nuclear appointments; and activities of the centre, 1984

  17. Nuclear science and technology in higher education in the Philippines

    International Nuclear Information System (INIS)

    Bernido, C.C.

    2007-01-01

    Education and training in nuclear science and technology in the Philippines are obtained from higher education institutions, and from courses offered by the Philippine Nuclear Research Institute. The Philippine Nuclear Research Institute (PNRI), an institute under the Department of Science and Technology (DOST), is the sole government agency in charge of matters pertaining to nuclear science and technology, and the regulation of nuclear energy. The PNRI was tasked with fast-tracking nuclear education and information, together with the Department of Education, Culture and Sports (DECS), the Commission on Higher Education (CHED), and some other government agencies which constituted the Subcommittee on Nuclear Power Public Education and Information, by virtue of Executive Order 243 enacted by then President Ramos on May 12, 1995. This Executive Order created the Nuclear Power Steering Committee; the Subcommittee on Nuclear Power Public Education and Information was one of the subcommittees under it. The Nuclear Power Steering Committee was created when the government was again considering the feasibility of the nuclear power option; this Committee had since become inactive because the government has not re-embarked on a nuclear power program. The Philippines had a nuclear power program in the 1970's. The first nuclear power plant was nearing completion when Chernobyl and Three Mile Island happened. Due to the change in political climate and strong anti-nuclear sentiment, the first nuclear power plant had been mothballed. However, there is a possibility for the introduction of nuclear power in the country's projected energy sources by the year 2025. The country has one research reactor, a 3 MW Triga reactor, but at the present time it is not operational and is under extended shutdown. In the event that the Philippines will again implement a nuclear power program, there will be a great need for M.S. and Ph.D. holders in nuclear engineering. There are less than five

  18. Status of nuclear technology education in Mongolia

    International Nuclear Information System (INIS)

    Davaa, S.; Khuukhenkhuu, G.

    2007-01-01

    The National University of Mongolia (NUM) is the country's oldest, the only comprehensive university, and a leading center of science, education and culture. The NUM has twelve schools and faculties in the capital city Ulaanbaatar and three branches in provinces. The University offers the widest range of undergraduate and graduate programs in natural and social sciences and humanities. After sixty years of dynamic growth, the University has become a place of sustained innovation, a blend of scholarship and practical realism. The last ten years have been a period of reforms in the structure, financing and governance of Mongolian educational institutions. The NUM has been continuously adjusting its operations and curriculum to deal with new economic conditions, changing labour market demands and altered social aspirations. Committed to human peace, development and welfare in the increasingly globalized world, the NUM promotes equal and mutually beneficial international cooperation. It is a member of the International Association of Universities (IAU), University Mobility in Asia and the Pacific (UMAP), and Euro-Asian University Network (EAUN) and has direct co-operation agreements with more than sixty international academic and research centers in Europe, the USA and the Asia-Pacific Rim. On the threshold of the 21st century, the NUM remains a major center for fundamental and applied research as well as a university that is distinguished by the quality of its teaching. Following its values and traditions, the University strives to be an innovative and dynamic learning community. Requirements for Program Majored in Nuclear Technology: Profession major purpose: The objective is to provide knowledge and skills to use nuclear physics' methodology and nuclear radiation for education, science, health protection, agriculture, geology, mining, nature protection, energy and etc industries. The graduates of this major will become engineer technology staff and researchers in

  19. Education in the nuclear sciences in Japanese universities

    International Nuclear Information System (INIS)

    Takashima, Y.

    1993-01-01

    Although there are 430 governmental and private universities in Japan, only a limited number of them have departments associated with nuclear science education. Moreover, mainly because of financial pressures, this association is often limited to government universities. Nuclear engineering departments are incorporated with only seven of larger universities, and there are three institutes with nuclear reactors. In these facilities, education in reactor physics, radiation measurements, electromagnetic and material sciences, are conducted. In terms of radiation safety and radiological health physics, ten radioisotope centers and seven radiochemistry laboratories in universities play an important role. (author) 8 figs.; 5 tabs

  20. Development of human factors engineering guide for nuclear power project

    International Nuclear Information System (INIS)

    Wu Dangshi; Sheng Jufang

    1997-01-01

    'THE PRACTICAL GUIDE FOR APPLICATION OF HUMAN FACTORS ENGINEERING TO NUCLEAR POWER PROJECT (First Draft, in Chinese)', which was developed under a research program sponsored by National Nuclear Safety Administration (NNSA) is described briefly. It is hoped that more conscious, more systematical and more comprehensive application of Human Factors Engineering to the nuclear power projects from the preliminary feasibility studies up to the commercial operation will benefit the safe, efficient and economical operations of nuclear power plants in China

  1. Open Access to the Belgian Nuclear higher Education Network

    International Nuclear Information System (INIS)

    Simons, S.

    2005-01-01

    Under the name of the Belgian Nuclear higher Education Network, five Belgian universities, Universite Catholique de Louvain, Universiteit Gent, Universite de Liege, Vrije Universiteit Brussel have established in 2002, in collaboration with the Belgian Nuclear Research Centre SCK-CEN, a common Belgian Interuniversity Programme of the third cycle leading to the academic degree of Master of Science in Nuclear Engineering. Under the lead of the SCK-CEN a project to use and share the acquired experience of the Consortium BNEN - in order to support the realization of a common European Education Programme in Nuclear Engineering - has been accepted by the European Commission for funding under the EU's Sixth Research Framework Programme.The project wants to contribute actively to the development of a more harmonised approach for education in nuclear sciences and engineering in Europe. It brings the European higher Education Area closer to realization and helps to safeguard the necessary competence and expertise for the continued safe use of nuclear energy and other uses of radiation in industry and medicine in Europe. The project foresees input and participation from stakeholders from different countries of the enlarged European Union (EU-25) and will therefore contribute to the integration of the new member states into the European Research Area and thus to the enlargement of Europe. The set-up of the project foresees an active role for female experts with the intention to reinforce the place and role of women in science

  2. Agricultural Engineering Education in Nigeria

    Science.gov (United States)

    Aboaba, F. O.

    1974-01-01

    Agricultural engineering, an important new branch of engineering in Nigeria, is discussed in relation to available training programs, diploma and certificate courses, and evaluation of training programs. (Author/PG)

  3. Finally, nuclear engineering textbooks with a Canadian flavour{exclamation_point}

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2002-07-01

    The need for nuclear engineering textbooks more appropriate to the Canadian nuclear industry context and the CANDU nuclear reactor program has long been felt not only among the universities offering nuclear engineering programs at the graduate level, but also within the Canadian nuclear industry itself. Coverage of the CANDU reactor system in the textbooks presently supporting teaching is limited to a brief description of the concept. Course instructors usually complement these textbooks with course notes written from their personal experience from past employment within the nuclear industry and from their research interests In the last ten years, the Canadian nuclear industry has been involved on an increasing basis with the issue of the technology transfer to foreign countries which have purchased CANDU reactors or have been in the process of purchasing one or several CANDUs. For some of these countries, the 'turn key' approach is required, in which the Canadian nuclear industry looks after everything up to the commissioning of the nuclear power plant, including the education and training of local nuclear engineers and plant personnel. Atomic Energy of Canada Limited (AECL) in particular has dispatched some personnel tasked to prepare and give short courses on some specific aspects of CANDU design and operation, but a lack of consistency was observed as different persons prepared and gave the courses rather independently. To address the many problems tied with nuclear engineering education, the CANTEACH program was set up involving major partners of the Canadian nuclear industry. Parts of the activities foreseen by CANTEACH consist in the writing of nuclear engineering textbooks and associated computer-based pedagogical material. The present paper discusses the main parts of two textbooks being produced, one in reactor physics at steady state and the other on nuclear fuel management. (author)

  4. Conference Modern Engineering : Science and Education

    CERN Document Server

    2017-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2016 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  5. Nuclear science education in Taiwan, 1956-1992

    International Nuclear Information System (INIS)

    Chung Chien

    1993-01-01

    The nuclear science education has been established in Taiwan at the College of Nuclear Science, National Tsing Hua University since 1956, the only one among 123 universities and colleges in Taiwan where nuclear-related education is offered. The Nuclear/Radiochemistry program, with nine faculty members, offers bachelor's, master's, and doctorate degrees in Nuclear Science. Lectures and lab classes of nuclear chemistry, radiochemistry, and allied branches in health physics, nuclear instruments, nuclear engineering, nuclear medicine, radiation biology, and environmental monitoring are given to the 17 undergraduate students and 33 postgraduate students currently registered. Support from the well-developed local nuclear power industry and government agencies is converged with rapid growth rate toward the Nuclear/Radiochemistry program; the 1992 annual research contracts for the program amounted over one million US dollars. Careerplacement program for graduates is developed to orientate them into the local nuclear power utilities as well as agricultural, medical, industrial, academic, and governmental sects where nuclear chemists and radiochemists at all levels are desperately needed. (author) 8 refs.; 3 figs.; 4 tabs

  6. Integrating sustainability in Engineering Education in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Valderrama Pineda, Andres Felipe; Remmen, Arne

    2013-01-01

    How to include sustainability in engineering education is currently the main concern among engineering educators. In one way or another, engineering educators are increasingly addressing sustainability issues in the courses they teach, the programs they design and run, the institutional activities...... to be a broader social concern to be taken across programs or eventually in specialised new professional endeavours? To further this discussion, in the second part of this paper we examine how environmental, energy and sustainability we will present some details of the design of the Master Engineering programs...... on Sustainable Cities and Sustainable Design at Aalborg University in Denmark. These programs claim to have developed effective strategies for educating robust engineers capable of dealing with the complexities of the needed calculations and the modelling of physical processes and at the same time able to cope...

  7. Motivational factors, gender and engineering education

    Science.gov (United States)

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne; Egelund Holgaard, Jette

    2013-06-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students1 reasons for choosing a career in engineering. We find that women are significantly more influenced by mentors than men, while men tend to be more motivated by intrinsic and financial factors, and by the social importance of the engineering profession. Parental influence is low across all programmes and by differentiating between specific clusters of engineering programmes, we further show that these overall gender differences are subtle and that motivational factors are unequally important across the different educational programmes. The findings from this study clearly indicate that intrinsic and social motivations are the most important motivational factors; however, gender and programme differentiation needs to be taken into account, and points towards diverse future strategies for attracting students to engineering education.

  8. Engineering education and a lifetime of learning

    Science.gov (United States)

    Eisley, J. (Editor)

    1974-01-01

    The result of an eleven-week study by the National Aeronautics and Space Administration (NASA) and the American Society of Engineering Education is presented. The study was the ninth of a series of programs. The purposes of the programs were: (1) to introduce engineering school faculty members to system design and to a particular approach to teaching system design, (2) to introduce engineering faculty to NASA and to a specific NASA center, and (3) to produce a study of use to NASA and to the participants. The story was concerned with engineering education in the U.S., and concentrated upon undergraduate education and teaching, although this bias was not meant to imply that research and graduate study are less important to engineering education.

  9. Reflections on Software Engineering Education

    NARCIS (Netherlands)

    van Vliet, H.

    2006-01-01

    In recent years, the software engineering community has focused on organizing its existing knowledge and finding opportunities to transform that knowledge into a university curriculum. SWEBOK (the Guide to the Software Engineering Body of Knowledge) and Software Engineering 2004 are two initiatives

  10. Romanian nuclear higher education towards a network of excellency

    International Nuclear Information System (INIS)

    Ghitescu, Petre

    2006-01-01

    RONEN - Romanian Nuclear Education Network - aims at becoming the future network of excellency for nuclear higher education in Romania. University Politehnica of Bucharest participated in ENEN and NEPTUNO FP-5 and FP-6 programs, being a founding member of ENEN Association. The experience gained by ENEN as well as the present European trends show that realization of associations and networks endow with more power the educational national capacities and makes easier the European cooperation. The objective of this project is to develop an efficient, flexible and modern system in the nuclear education field, able to comply with the requirements of final users (NPP operators, regulations organisms, subcontractors, decommissioning operators, radiation protection, personnel, radioactive waste disposal managers), complying at the same time with the common European perspectives of education and research (FP-6, FP-7, EUROATOM). This system is the proposed network of excellency, gathering all the Romanian institutions (universities, research-development centers, training centers, etc) implied in the nuclear education field and using the existent experience of BNEN (Belgian Network of Nuclear Education) and ENEN. The participants in RONEN are the Universities of Bucharest, Pitesti, Babes-Bolyai in Cluj-Napoca, the Vocational Training Center of National Institute for R and D in Physics and Nuclear Engineering Bucharest, the Training Center of Cernavoda NPP, and the Institute for Nuclear Research in Pitesti

  11. Tackling the nuclear manpower shortage: industry, educators must work together

    International Nuclear Information System (INIS)

    Witzig, W.

    1981-01-01

    A 50% decline in graduate enrollment and an increase to 50% of foreign nationals among the nuclear engineering students since 1973 at Pennsylvania State University is typical of national trends, which have led to the closing of 13 undergraduate programs across the country. Penn State's proximity to Three Mile Island had less effect than its interactions with high schools and utilities in keeping the nuclear program as strong as it is. Penn State operates three separate career programs to interest high school students in a nuclear career. Institute of Nuclear Power Operations (INPO) educational assistance reflects industry interest, but more scholarships are needed to broaden student awareness

  12. Nuclear utility education and training becoming too plant specific?

    International Nuclear Information System (INIS)

    Wicks, F.

    1986-01-01

    As the Supervisor of a university nuclear reactor and operations curriculum, the author has also been offering education and training programs for nuclear utility technical support and operations personnel. Similar results have been reported by other universities offering similar programs. These programs also provide very important benefits to university nuclear engineering departments in terms of much needed revenues during this time of declining student enrollment and also by the information flow from the nuclear utility participants to the university personnel, which can yield both improved courses and identify research opportunities. University programs serve an important complementary function to plant-specific programs and should be continued and supported

  13. ANENT reference curricula for Master Degree in Nuclear Engineering (Draft no. 1 = version 19 Feb 2006)

    International Nuclear Information System (INIS)

    Raghunathan, V.S.; Chung, B.J.; Duan, P.V.

    2007-01-01

    Subject contents in the following areas are presented in detail: Advanced Mathematics for Nuclear Engineering; Advanced Numerical Analysis; Advanced Computer Applications; Engineering Physics; Introduction to Nuclear Engineering (Core); Radiation Detection and Measurements (Core); Radiation Safety and Shielding; Power Plant Instrumentation; Nuclear Safety; Nuclear and Reactor Physics; Health Physics; Nuclear Heat Transfer; Nuclear Power Plants Engineering; Materials Science in Nuclear Engineering; Neutron Transport Theory; Reactor Kinetics; Advanced Nuclear Heat Transfer; Nuclear Reactor Numerical Analysis; Nuclear Fuel Cycle and Non-Proliferation; Power Reactor Design (System Engineering); Advanced Nuclear Safety; Probabilistic Safety Analysis; Strategy and Infrastructure for Nuclear Power; NPP Control and Instrumentation; Nuclear Regulation; Nuclear Material Engineering; Radiation Protection and Shielding; Application of Radioisotope and Radiation Sources; Non-Destructive Testing; Nuclear Imaging; Radioactive Waste Management; Advanced Health Physics; Applied Radiation Measurements; Advanced Laser Application Engineering; Advanced Quantum Engineering; Plasma Diagnostics; Plasma Processing Analysis; Advanced Plasma Engineering; Nuclear Spectroscopy; Thermonuclear Fusion Engineering

  14. The Utah Nuclear Engineering Program and DevonWay are Developing One and Unique Approach to PLiM for Securing the Nation's Nuclear Future

    International Nuclear Information System (INIS)

    Jevremovic, Tatjana; Choe, Dongok; Yang, Haori; White, Sally; Kelly, Mike

    2012-01-01

    The safety culture involving a comprehensive training of the employed engineers at the power plant facilities is neither a simple nor a straightforward task. With aging management and operators, impact of the Fukushima nuclear event, unforeseen and timely unpredictable effects of nuclear memories (Three Mile Island, Chernobyl, Second World War) as evoked every time we have worldwide challenges or discussions of where the nuclear technology will/would further develop, we face a fearful question - is our educational and training approach the right one; is it going to assure continuous and secured practices in providing safe operation of our nuclear power plants?... We at the University of Utah with our just recently revitalized Nuclear Engineering Program, find that the root of securing the safety culture and providing its sustainability in our existing and future nuclear power plants, lies in very early educational practices. We believe that every program in nuclear engineering education shall include training in nuclear safety. That training shall certainly include industrial based practices and involve experts from the companies that develop and contribute to nuclear power safety to add to class practices at the University teaching settings. Working with DevonWay, a leading company in developing software to improve the safety cultures at nuclear power plants in the country, we have implemented the 'Track and Trace' software into our nuclear engineering program, emphasizing high quality training of our undergraduate and graduate students, and promoting a higher level safety culture practices at our nuclear engineering facilities. (author)

  15. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    For non-reactor nuclear facilities, the U.S. Department of Energy (DOE) does not require that nuclear criticality safety engineers demonstrate qualification for their job. It is likely, however, that more formalism will be required in the future. Current DOE requirements for those positions which do have to demonstrate qualification indicate that qualification should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis is incompletely developed in some areas

  16. Establishment of the International Nuclear Education/Training and its Cooperation Framework for Nuclear Transparency

    International Nuclear Information System (INIS)

    Min, B. J.; Han, K. W.; Lee, E. J.

    2009-02-01

    This project covered development and implementation of international nuclear education/training programs, cooperation for nuclear human resource development and education/training. provision of MS and PhD courses for qualified students from developing countries, and strengthening of infrastructure for the nuclear education/training. The WNU one week summer course was held for domestic future generation in nuclear field. NTC operated the ANENT web portal and cyber platform, supported training on their use, and prepared a KAERI-IAEA Practical Arrangement for the promotion of web-base nuclear education/training. For FNCA, an analysis was conducted on the need of nuclear education/training in South East Asian countries. The bilateral cooperation included cooperation with Vietnam. provision of Korean experience for nuclear power personnel from Egypt, and commencing of cooperation with South Africa. Also, NTC participated in GENEP for sharing Korean experience in the nuclear human resource development project. KAERI-UST MA and PhD courses with 3 foreign students started in spring 2008 and implemented. The courses were advance nuclear reactor system engineering, accelerator and nano-beam engineering, and radiation measurement science. 13 international nuclear education/training courses (IAEA, KOICA, RCARO and bilateral) were implemented for 226 foreign trainees. A reference education/training program was developed, which consisted of 15 courses that can be customized to learner levels and project stages of countries in question (e.g. Middle East. Africa). A textbook entitled 'Research Reactor Design, Management and Utilization' was developed presenting Korean experience with research reactors

  17. Virginia power nuclear power station engineer training program

    International Nuclear Information System (INIS)

    Williams, T.M.; Haberstroh-Timpano, S.

    1987-01-01

    In response to the Institute of Nuclear Power Operations (INPO) accreditation requirements for technical staff and manager, Virginia Power developed the Nuclear Power Station Engineer Training Programs (NPSETP). The NPSETP is directed toward enhancing the specific knowledge and skills of company engineers, especially newly hired engineers. The specific goals of the program are to promote safe and reliable plant operation by providing engineers and appropriate engineering technicians with (1) station-specific basic skills; (2) station-specific specialized skills in the areas of surveillance and test, plant engineering, nuclear safety, and in-service inspection. The training is designed to develop, maintain, and document through demonstration the required knowledge and skills of the engineers in the identified groups at North Anna and Surry Power Stations. The program responds to American National Standards Institute, INPO, and US Nuclear Regulatory Commission standards

  18. HIGH SERVE '90 - nuclear engineering services

    International Nuclear Information System (INIS)

    Bauer, K.G.

    1991-01-01

    Nuclear engineering services do not start only with maintenance or repair, but already with the early detection of imminent problems long before they become problems. Services concerning the decommissioning of plants also belong to it. A selection of the extraordinary services rendered nowadays is presented in more than 20 papers in this booklet. These papers may roughly be divided into three groups of subjects: monitoring and operational management; maintenance, repair and improvements; radioactive waste treatment and management. The first group of subjects, in particular, covers papers dealing with early detection, monitoring and diagnosing systems, using highly advanced hard- and software technologies. Modernization of instrumentation and control systems and exchange of process computer systems is another task this service has to accomplish. Process computers of the past have developed into high performance process information systems. (orig./DG) [de

  19. A systematic approach to engineering ethics education.

    Science.gov (United States)

    Li, Jessica; Fu, Shengli

    2012-06-01

    Engineering ethics education is a complex field characterized by dynamic topics and diverse students, which results in significant challenges for engineering ethics educators. The purpose of this paper is to introduce a systematic approach to determine what to teach and how to teach in an ethics curriculum. This is a topic that has not been adequately addressed in the engineering ethics literature. This systematic approach provides a method to: (1) develop a context-specific engineering ethics curriculum using the Delphi technique, a process-driven research method; and (2) identify appropriate delivery strategies and instructional strategies using an instructional design model. This approach considers the context-specific needs of different engineering disciplines in ethics education and leverages the collaboration of engineering professors, practicing engineers, engineering graduate students, ethics scholars, and instructional design experts. The proposed approach is most suitable for a department, a discipline/field or a professional society. The approach helps to enhance learning outcomes and to facilitate ethics education curriculum development as part of the regular engineering curriculum.

  20. Holistic Education: The Social Reality of Engineering

    Directory of Open Access Journals (Sweden)

    HELENA TRBUŠIĆ

    2013-12-01

    Full Text Available Over the last few decades, scientists exploring the aspects of engineering education and investigating the strong connection between the engineering profession and society have argued for a more rounded, holistic approach to the engineering curriculum. In addition to fundamental technical subjects, they have proposed the inclusion of a broad range of social subjects in order to equip young engineers with social and communication skills relevant for teamwork, and to enhance their awareness about both the way social changes influence the implementation of certain engineering solutions and about the way developments in engineering have a considerable impact on society in general. This paper presents the results of a two-year qualitative study of the importance of social subjects within the engineering academic curriculum at the Faculty of Mechanical Engineering and Naval Architecture in Zagreb, Croatia.

  1. Status of University of Cincinnati reactor-site nuclear engineering graduate programs

    International Nuclear Information System (INIS)

    Anno, J.N.; Christenson, J.M.; Eckart, L.E.

    1993-01-01

    The University of Cincinnati (UC) nuclear engineering program faculty has now had 12 yr of experience in delivering reactor-site educational programs to nuclear power plant technical personnel. Currently, with the sponsorship of the Toledo-Edison Company (TED), we are conducting a multiyear on-site graduate program with more than 30 participants at the Davis-Besse nuclear power plant. The program enables TED employees with the proper academic background to earn a master of science (MS) degree in nuclear engineering (mechanical engineering option). This paper presents a brief history of tile evolution of UC reactor-site educational programs together with a description of the progress of the current program

  2. Reactor physics computations for nuclear engineering undergraduates

    International Nuclear Information System (INIS)

    Huria, H.C.

    1989-01-01

    The undergraduate program in nuclear engineering at the University of Cincinnati provides three-quarters of nuclear reactor theory that concentrate on physical principles, with calculations limited to those that can be conveniently completed on programmable calculators. An additional one-quarter course is designed to introduce the student to realistic core physics calculational methods, which necessarily requires a computer. Such calculations can be conveniently demonstrated and completed with the modern microcomputer. The one-quarter reactor computations course includes a one-group, one-dimensional diffusion code to introduce the concepts of inner and outer iterations, a cell spectrum code based on integral transport theory to generate cell-homogenized few-group cross sections, and a multigroup diffusion code to determine multiplication factors and power distributions in one-dimensional systems. Problem assignments include the determination of multiplication factors and flux distributions for typical pressurized water reactor (PWR) cores under various operating conditions, such as cold clean, hot clean, hot clean at full power, hot full power with xenon and samarium, and a boron concentration search. Moderator and Doppler coefficients can also be evaluated and examined

  3. Motivational factors, gender and engineering education

    DEFF Research Database (Denmark)

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne Schioldann

    2013-01-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students1 reasons for choosing a career in engineering. We find...... that women are significantly more influenced by mentors than men, while men tend to be more motivated by intrinsic and financial factors, and by the social importance of the engineering profession. Parental influence is low across all programmes and by differentiating between specific clusters of engineering......; however, gender and programme differentiation needs to be taken into account, and points towards diverse future strategies for attracting students to engineering education....

  4. A new undergraduate course: Problems in nuclear engineering

    International Nuclear Information System (INIS)

    Larsen, Edward W.

    2011-01-01

    During the past five years, a new third-year undergraduate nuclear engineering course has been developed and taught at the University of Michigan. The course was created to correct certain deficiencies in the undergraduate nuclear engineering curriculum. Here we discuss the origins of the new course and our experience with it. (author)

  5. Nuclear Safeguards and Security Education at Russian Universities

    International Nuclear Information System (INIS)

    Killinger, Mark H.; Goodey, Kent O.; Butler, Gilbert W.; Duncan, Cristen L.

    2008-01-01

    The U.S. Department of Energy is assisting key Russian universities in developing safeguards and security degree programs to prepare the next generation of specialists who will be responsible for protecting nuclear material from illicit use. These programs include course and laboratory work in nuclear material measurements, vulnerability analysis, exterior and interior sensors, and legal aspects of nuclear nonproliferation. Moscow Engineering Physics Institute (MEPhI) has graduated nine classes of masters students, most of who are working in government agencies, research organizations, or pursuing their PhD. With DOE support, MEPhI has also established a 5 1/2-year engineering degree program in safeguards and security. This is a hands-on degree that more closely meets the needs of nuclear facilities. The first class graduated in February 2007, marking a major milestone in Russian nonproliferation education. A second engineering degree program has been established at Tomsk Polytechnic University and is designed to reach those students east of the Ural Mountains, where many nuclear facilities are located. The first class will graduate in February 2009. This paper describes current development of these education programs, new initiatives, and sustainability efforts to ensure their continued viability after DOE support ends. The paper also describes general nonproliferation education activities supported by DOE that complement the more technical safeguards and security education programs.

  6. Study on the morals of nuclear power engineers

    International Nuclear Information System (INIS)

    Kosaka, Takashi; Kotani, Fumio; Morikawa, Shin'ichi; Hiramoto, Mitsuru; Koya, Masahiko

    2000-01-01

    Regarding the incident that occurred in October 1998 in which records of containers for transporting spent fuel were altered, the morals of engineers was pointed out as one reason for the problem. Since then, much effort has been exerted to prevent the re-occurrence of such an incident and to reform the corporate climate at electric power companies. From an objective point of view the Institute of Nuclear Safety Systems, inc., the Institute of Social Research conducted an analysis regarding of the conditions faced by that engineers are faced with and discussing how the engineers should deal with the issue of morals as professionals under such circumstances. In this research, teaching materials were compiled, such as a checklist and examples of case studies, to be used for morals education/training and others. This will be useful for engineers who are working for an organization and are in a number of complicated relationships, in dealing with a wide variety of moral issues in their day-to-day activities. (author)

  7. Rail Engineering and Education Symposium Materials.

    Science.gov (United States)

    2016-05-26

    The objective of this project is to develop curricular materials for the Rail Engineering and Education : Symposia held in the summers of 2012 and 2014. : Description of Activities : The main approach to accomplish the activity is to develop and deli...

  8. Integration of Sustainability in Engineering Education

    DEFF Research Database (Denmark)

    Guerra, Aida

    2017-01-01

    Purpose: Education for sustainable development (ESD) is one of the challenges engineering education currently faces. Engineering education needs to revise and change its curriculum to integrate ESD principles and knowledge. Problem based learning (PBL) has been one of the main learning pedagogies...... used to integrate sustainability in engineering education. However, there is a lack of understanding of the relation between ESD and PBL principles and the ways in which they can be integrated and practised in the engineering curricula. This paper aims to investigate the relation between PBL and ESD...... knowledge and the tacit presence of sustainability. Originality/value: The existence of a PBL curriculum at institutional level, such as at Aalborg University, enables investigation of how the PBL and ESD principles are practised, highlighting the limitations and potentials of integrating sustainability...

  9. Several aspects of the effect of nuclear power engineering and thermal power engineering on the environment

    Energy Technology Data Exchange (ETDEWEB)

    Malenchenko, A F

    1979-01-01

    A survey is made of the comparative effect of nuclear power engineering and thermal power engineering on environment and man. The most significant approaches to solution of radio-ecological problems of APS are found.

  10. SEI Software Engineering Education Directory.

    Science.gov (United States)

    1987-02-01

    Planning, and Control, Kotler , P. Marketing Decision Making, Concepts and Strategy, Cravens Managerial Fnance: Essentials, Kroncke, C., Nammers, E., and...Textbooks: Applying Software Engineering Principles , Maria Systems: Cyber Turbo Dos Variety of Micros Courses: Introduction to Software Engineering...Assistant Professor of Computer Systems (513) 255-6913 Courses: Software Engineeing Managemrent EENG543 G N R A Textbooks: Principles of Productive

  11. Inherently safe nuclear-driven internal combustion engines

    International Nuclear Information System (INIS)

    Alesso, P.; Chow, Tze-Show; Condit, R.; Heidrich, J.; Pettibone, J.; Streit, R.

    1991-01-01

    A family of nuclear driven engines is described in which nuclear energy released by fissioning of uranium or plutonium in a prompt critical assembly is used to heat a working gas. Engine performance is modeled using a code that calculates hydrodynamics, fission energy production, and neutron transport self-consistently. Results are given demonstrating a large negative temperature coefficient that produces self-shutoff of energy production. Reduced fission product inventory and the self-shutoff provide inherent nuclear safety. It is expected that nuclear engine reactor units could be scaled from 100 MW on up. 7 refs., 3 figs

  12. Establishment of professional nuclear power architectural engineering company

    International Nuclear Information System (INIS)

    Guo Dongli; Chen Hua

    2006-01-01

    The rapid development of nuclear power industry in China requires specialized management for the nuclear power engineering projects. It is necessary to establish the nuclear power architectural engineering company to meet the increasing market needs by providing the owner with specialized nuclear engineering project management and overall contracting services. It is imperative that the purpose of establishing the corporation and enterprise core competitiveness should be clearly identified when it is established. Its organizational structure should be geared to the enterprise operation management and development to facilitate the intensified project management and control, and improve its risk-proof ability. (authors)

  13. Good practices for educational software engineering projects

    NARCIS (Netherlands)

    van der Duim, Louwarnoud; Andersson, Jesper; Sinnema, Marco

    2007-01-01

    Recent publications indicate the importance of software engineering in the computer science curriculum. In this paper, we present the final part of software engineering education at University of Groningen in the Netherlands and Vaxjo University in Sweden, where student teams perform an industrial

  14. Obstacles to Gender Parity in Engineering Education

    Science.gov (United States)

    Rohatynskyj, Marta; Davidson, Valerie; Stiver, Warren; Hayward, Maren

    2008-01-01

    Low rates of women's enrolment in engineering programs has been identified as a global problem within the general concern to enable women to attain parity in education in all areas. A Western women in engineering meta-narrative is identified which contains a complex of obstacles that typify the situation of Western women. The question is asked…

  15. Infusing Real World Experiences into Engineering Education

    Science.gov (United States)

    National Academies Press, 2012

    2012-01-01

    The aim of this report is to encourage enhanced richness and relevance of the undergraduate engineering education experience, and thus produce better-prepared and more globally competitive graduates, by providing practical guidance for incorporating real world experience in US engineering programs. The report, a collaborative effort of the…

  16. University Engineering Education and Training in Nigeria ...

    African Journals Online (AJOL)

    The Nigerian University engineering education and training system is be-set by a number of inadequacies - low entry standards, non-uniformity in entry process for all engineering faculties in the country, moderate academic quality of entrants for the profession, low level knowledge of Mathematics and physical Sciences for ...

  17. Enterprise 3.0 in Engineering Education

    Science.gov (United States)

    Ahrens, Andreas; Zascerinska, Jelena

    2011-01-01

    Enterprise 3.0 offers potential solutions for the quality, maintenance and sustainable development of services. The synergy between Enterprise 3.0 and engineering education advances the development of innovative products, processes and services in the European economy. Aim of the research is to analyze student engineers' use of Enterprise 3.0…

  18. Supply and demand of nuclear education

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    On June 6, 2011, the Atomexpo-2011 International Forum held a round-table discussion dedicated to Prospects of nuclear education in countries that plan to advance their nuclear power, and in countries that are about to launch their nuclear programmes. More than 80 participants representing many nations and international organizations discussed issues associated with the development of nuclear education and training infrastructure, as well as prospects for international cooperation in this sector [ru

  19. Nuclear waste disposal educational forum

    International Nuclear Information System (INIS)

    1982-01-01

    In keeping with a mandate from the US Congress to provide opportunities for consumer education and information and to seek consumer input on national issues, the Department of Energy's Office of Consumer Affairs held a three-hour educational forum on the proposed nuclear waste disposal legislation. Nearly one hundred representatives of consumer, public interest, civic and environmental organizations were invited to attend. Consumer affairs professionals of utility companies across the country were also invited to attend the forum. The following six papers were presented: historical perspectives; status of legislation (Senate); status of legislation (House of Representatives); impact on the legislation on electric utilities; impact of the legislation on consumers; implementing the legislation. All six papers have been abstracted and indexed for the Energy Data Base

  20. Building an integrated nuclear engineering and nuclear science human resources pipeline at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Sneed, A.; Sikorski, B.; Lineberry, M.; Jolly, J.

    2004-01-01

    In a joint effort with the Argonne National Laboratory - West (ANL-W), the Idaho National Engineering and Environmental Laboratory (INEEL) has assumed the lead role for nuclear energy reactor research for the United States Government. In 2005, these two laboratories will be combined into one entity, the Idaho National Laboratory (INL). There are two objectives for the INL: (1) to act as the lead systems integrator for the Department of Energy's Office of Nuclear Energy Science and Technology and, (2) to establish a Center for Advanced Energy Studies. Focusing on the Center for Advanced Energy Studies, this paper presents a Human Resources Pipeline Model outlining a nuclear educational pathway that leads to university and industry research partnerships. The pathway progresses from education to employment and into retirement. Key to the model is research and mentoring and their impact upon each stage. The Center's success will be the result of effective and advanced communications, faculty/student involvement, industry support, inclusive broadbased involvement, effective long-term partnering, and increased federal and state support. (author)

  1. Transition from high schools to engineering education

    DEFF Research Database (Denmark)

    Kolmos, Anette; Holgaard, Jette Egelund; Clausen, Nicolaj Riise

    2017-01-01

    Pre-university engineering education has received increasing attention to attract more students to engineering and make them better prepared to enter engineering studies at university level. Denmark is one of the countries that offer established high school curriculum that makes engineering...... the core identity of the school. In a longitudinal research project, the cohort of all Danish engineering students who were enrolled in 2010 has been followed. This study takes a quantitative approach to highlight the differences in preparedness for engineering students who have a background...... themselves as being better prepared in relation to the conduct of experiments, engineering analysis and tolls, as well as in relation to process competences as design, problem solving and teamwork. The students from the profession-oriented high schools also find themselves better prepared in relation...

  2. Design of compact nuclear power marine engineering simulator

    International Nuclear Information System (INIS)

    Gao Jinghui; Xing Hongchuan; Zhang Ronghua; Yang Yanhua; Xu Jijun

    2004-01-01

    The essentiality of compact nuclear power marine engineering simulator (NPMES) is discussed. The technology of nuclear power plant engineering simulator (NPPES) for NPMES development is introduced, and the function design, general design and model design are given in details. A compact NPMES based on the nuclear power marine of 'Mutsu' is developed. The design can help the development of NPMES, which will improve operation safety and management efficiency of marine. (authors)

  3. Gerontechnology in higher engineering education

    NARCIS (Netherlands)

    Rietsema, J.; Graafmans, J.; Taipale, V.; Charness, N.

    1998-01-01

    This paper is based on experiences with designing an educational programme on gerontechnology at Eindhoven University of Technology (TUE) and designing and developing various international gerontechnology courses. There are two major goals for education in gerontechnology: (1) creation of a

  4. Results in Developing an Engineering Degree Program in Safeguards and Security of Nuclear Materials at Moscow Engineering Physics Institute

    International Nuclear Information System (INIS)

    Kryuchkov, Eduard F.; Geraskin, Nikolay I.; Killinger, Mark H.; Goodey, Kent O.; Butler, Gilbert W.; Duncan, Cristen L.

    2007-01-01

    The world's first master's degree program in nuclear safeguards and security, established at Moscow Engineering Physics Institute (MEPhI), has now graduated nine classes of students. Most of the graduates have gone on to work at government agencies, research organizations, or obtain their PhD. In order to meet the demand for safeguards and security specialists at nuclear facilities, MEPhI established a 5-1/2 year engineering degree program that provides more hands-on training desired by facilities. In February 2004, the first students began their studies in the new discipline Nuclear Material Safeguards and Nonproliferation. This class, as well as other subsequent classes, included students who started the program in their third year of studies, as the first 2-1/2 years consists of general engineering curriculum. Fourteen students made up the first graduating class, receiving their engineering degrees in February 2007. The topics addressed in this paper include specific features of the program caused by peculiarities of Russian education legislation and government quality control of academic education. This paper summarizes the main joint actions undertaken by MEPhI and the US National Laboratories in conjunction with the U.S. Department of Energy, to develop the engineering degree program. Also discussed are the program's specific training requirements, student internships, and job placement. The paper concludes with recommendations from a recent international seminar on nonproliferation education and training

  5. Education of biomedical engineering in Taiwan.

    Science.gov (United States)

    Lin, Kang-Ping; Kao, Tsair; Wang, Jia-Jung; Chen, Mei-Jung; Su, Fong-Chin

    2014-01-01

    Biomedical Engineers (BME) play an important role in medical and healthcare society. Well educational programs are important to support the healthcare systems including hospitals, long term care organizations, manufacture industries of medical devices/instrumentations/systems, and sales/services companies of medical devices/instrumentations/system. In past 30 more years, biomedical engineering society has accumulated thousands people hold a biomedical engineering degree, and work as a biomedical engineer in Taiwan. Most of BME students can be trained in biomedical engineering departments with at least one of specialties in bioelectronics, bio-information, biomaterials or biomechanics. Students are required to have internship trainings in related institutions out of campus for 320 hours before graduating. Almost all the biomedical engineering departments are certified by IEET (Institute of Engineering Education Taiwan), and met the IEET requirement in which required mathematics and fundamental engineering courses. For BMEs after graduation, Taiwanese Society of Biomedical Engineering (TSBME) provides many continue-learning programs and certificates for all members who expect to hold the certification as a professional credit in his working place. In current status, many engineering departments in university are continuously asked to provide joint programs with BME department to train much better quality students. BME is one of growing fields in Taiwan.

  6. The World Nuclear University: New partnership in nuclear education

    International Nuclear Information System (INIS)

    2007-07-01

    The important role which the IAEA plays in assisting Member States in the preservation and enhancement of nuclear knowledge and in facilitating international collaboration in this area has been recognized by the General Conference of the International Atomic Energy Agency in resolutions GC(46)/RES/11B, GC(47)/RES/10B, GC(48)/RES/13 and GC(50)/RES/13. A continued focus of IAEA activities in managing nuclear knowledge is to support Member States to secure and sustain human resources for the nuclear sector, comprising both the replacement of retiring staff and building of new capacity. The IAEA assists Member States, particularly developing ones, in their efforts to sustain nuclear education and training in all areas of nuclear technology for peaceful purposes, which is a necessary prerequisite for succession planning, in particular through the networking of nuclear education and training, including activities of the World Nuclear University (WNU) and the Asian Network for Education in Nuclear Technology (ANENT). The report on the attached CD-ROM, The World Nuclear University: New Partnership in Nuclear Education, gives an overview of the history of the development of the World Nuclear University and related IAEA activities and contains an analysis and recommendations from the first WNU Summer Institute, held in 2005 in the USA

  7. Nuclear reactor engineering: Reactor design basics. Fourth edition, Volume One

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in design and operation of nuclear power plants. Extensively updated, the fourth edition includes new material on reactor safety and risk analysis, regulation, fuel management, waste management, and operational aspects of nuclear power. This volume contains the following: energy from nuclear fission; nuclear reactions and radiations; neutron transport; nuclear design basics; nuclear reactor kinetics and control; radiation protection and shielding; and reactor materials

  8. Reaching the next generation of nuclear engineers

    International Nuclear Information System (INIS)

    Djokic, Denia; Fratoni, Massimiliano

    2008-01-01

    The University of California, Berkeley (UCB) American Nuclear Society (ANS) Student Section hosted two outreach events for young students between the ages of seven and twelve. The students were part of a private after-school club called Adventures Through Open Minds Science TM club for kids (A.T.O.M.S. club for kids) heated by Leslie Buchalter. Buchalter is an expert in early education and teaches children fundamental scientific concepts by using 'kid language' and associating usually difficult ideas with something even the very young children can understand. The greatest challenge for us UCB student organizers was to follow this manner of teaching and to construct activities that would always keep the attention of the children. We put together an array of fundamental concept demonstrations based on this philosophy. For example, the concept of half-life was taught by repeatedly tossing M and M's onto a surface and removing the upside down M and M's, and the concept of a nuclear chain reaction was introduced using a mousetrap-and-ping-pong-ball contraption. The main lessons learned were that the children most successfully absorbed ideas by engaging the students activity in the concept demonstrations, by using concepts and vocabulary already familiar to them which encouraged them to answer questions about familiar topics, and by creating a playful game out of every learning opportunity. (author)

  9. The view at nuclear renaissance via actual European and Slovak approach to nuclear education

    International Nuclear Information System (INIS)

    Slugen, Vladimir

    2010-01-01

    In the last decade, preservation and optimal nuclear knowledge management are becoming a rising challenge worldwide. Many papers and experts talks at different conferences stressed attention on stagnating or decreasing expertise connecting to decreased numbers of graduates, professors or research workers. Several networks were created in the Europe in frame of the 5. and 6. EURATOM Framework Programme accented international collaboration in training and education physics (EUPEN, STEPS) or in nuclear power engineering (ENEN, NEPTUNO). In the Central-European region, there exists a very extensive and also effective international collaboration in nuclear industry and education. Similarly good situation is also among universities and technical high schools in this area. Actually, the Slovak University of Technology in Bratislava has established contacts with many universities abroad in the area of utilization of research and training reactors. One of good examples of international collaboration is ENEN - European Nuclear Education Network Association which resulted in a formation of 'Eugene Wigner Training Courses on Reactor Physics Experiments' running in the last 2 years as a mutual effort of the Budapest University of Technology and Economics (Budapest, Hungary), Czech Technical University (Prague, Czech Republic), University of Technology (Vienna, Austria), and Slovak University of Technology in Bratislava (Bratislava, Slovakia). In total 69 participants from different European countries as Austria, Belgium, Bulgaria, Czech Republic, Finland, Italy, Israel, Romania, Slovakia, Slovenia, Sweden and Switzerland took part at these international training courses so far. In the frame of these courses, students of nuclear engineering vivisited three different experimental facilities located at the course organisers' institutes and carried out experimental laboratory practices. The preservation of nuclear knowledge is possible only via effective use of all tools. The high

  10. The view at nuclear renaissance via actual European and Slovak approach to nuclear education

    Energy Technology Data Exchange (ETDEWEB)

    Slugen, Vladimir [Slovak University of Technology, FEI STU, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2010-07-01

    In the last decade, preservation and optimal nuclear knowledge management are becoming a rising challenge worldwide. Many papers and experts talks at different conferences stressed attention on stagnating or decreasing expertise connecting to decreased numbers of graduates, professors or research workers. Several networks were created in the Europe in frame of the 5. and 6. EURATOM Framework Programme accented international collaboration in training and education physics (EUPEN, STEPS) or in nuclear power engineering (ENEN, NEPTUNO). In the Central-European region, there exists a very extensive and also effective international collaboration in nuclear industry and education. Similarly good situation is also among universities and technical high schools in this area. Actually, the Slovak University of Technology in Bratislava has established contacts with many universities abroad in the area of utilization of research and training reactors. One of good examples of international collaboration is ENEN - European Nuclear Education Network Association which resulted in a formation of 'Eugene Wigner Training Courses on Reactor Physics Experiments' running in the last 2 years as a mutual effort of the Budapest University of Technology and Economics (Budapest, Hungary), Czech Technical University (Prague, Czech Republic), University of Technology (Vienna, Austria), and Slovak University of Technology in Bratislava (Bratislava, Slovakia). In total 69 participants from different European countries as Austria, Belgium, Bulgaria, Czech Republic, Finland, Italy, Israel, Romania, Slovakia, Slovenia, Sweden and Switzerland took part at these international training courses so far. In the frame of these courses, students of nuclear engineering vivisited three different experimental facilities located at the course organisers' institutes and carried out experimental laboratory practices. The preservation of nuclear knowledge is possible only via effective use of all

  11. Remote Experiments in Control Engineering Education Laboratory

    Directory of Open Access Journals (Sweden)

    Milica B Naumović

    2008-05-01

    Full Text Available This paper presents Automatic Control Engineering Laboratory (ACEL - WebLab, an under-developed, internet-based remote laboratory for control engineering education at the Faculty of Electronic Engineering in Niš. Up to now, the remote laboratory integrates two physical systems (velocity servo system and magnetic levitation system and enables some levels of measurement and control. To perform experiments in ACEL-WebLab, the "LabVIEW Run Time Engine"and a standard web browser are needed.

  12. Engineering education as a complex system

    Science.gov (United States)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-12-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating problem-solving orientations that emerge within students' thinking as they progress through an engineering curriculum. It is proposed that the traditional engineering education model, while analytically rigorous, is characterised by properties that, although necessary, are insufficient for preparing students to address complex issues of the twenty-first century. A Synthesis and Design Studio model for engineering education is proposed, which maintains the necessary rigor of analysis within a uniquely complex yet sufficiently structured learning environment.

  13. Engineering education in 21st century

    Science.gov (United States)

    Alam, Firoz; Sarkar, Rashid; La Brooy, Roger; Chowdhury, Harun

    2016-07-01

    The internationalization of engineering curricula and engineering practices has begun in Europe, Anglosphere (English speaking) nations and Asian emerging economies through the Bologna Process and International Engineering Alliance (Washington Accord). Both the Bologna Process and the Washington Accord have introduced standardized outcome based engineering competencies and frameworks for the attainment of these competencies by restructuring existing and undertaking some new measures for an intelligent adaptation of the engineering curriculum and pedagogy. Thus graduates with such standardized outcome based curriculum can move freely as professional engineers with mutual recognition within member nations. Despite having similar or near similar curriculum, Bangladeshi engineering graduates currently cannot get mutual recognition in nations of Washington Accord and the Bologna Process due to the non-compliance of outcome based curriculum and pedagogy. This paper emphasizes the steps that are required to undertake by the engineering educational institutions and the professional body in Bangladesh to make the engineering competencies, curriculum and pedagogy compliant to the global engineering alliance. Achieving such compliance will usher in a new era for the global mobility and global engagement by Bangladesh trained engineering graduates.

  14. Expertise preservation in nuclear technology - the new master course ''nuclear safety engineering'' at the RWTH Aachen

    International Nuclear Information System (INIS)

    Backus, Sabine; Heuters, Michael

    2011-01-01

    The energy concept of the German federal Government in 2010 emphasizes the importance of nuclear energy within the energy policy. The lifetime extension of German nuclear power plants and the long-term safety of radioactive waste storage is the new challenge with respect to the expertise preservation in Germany. The owners of nuclear utilities have started to assist new research programs in the field of nuclear engineering at the German universities. RWE Power and ThyssenKrupp have signed a cooperation contract in 2007 with the RWTH Aachen. The companies bear the expenses for professorships ''nuclear fuel cycle'', ''simulation in nuclear engineering'' and ''reactor safety and engineering''. An elongation of the contract is planned. A master course ''nuclear safety engineering'' over 4 semesters covers the complete fuel cycle. The authors discuss issues concerning the information of students, experiences with the expectations of students concerning their future employment, acceptance of nuclear energy and related topics.

  15. embracing the future of engineering education in nigeria

    African Journals Online (AJOL)

    HOD

    Nigerian engineering teaching style and outputs, some of the challenges being faced by engineering education in. Nigeria .... feelings and reactions of the students in this situation ...... new century," Chemical Engineering Education, vol. 34, pp ...

  16. Labor market trends for nuclear engineers through 2005

    International Nuclear Information System (INIS)

    Seltzer, N.; Blair, L.M.

    1996-10-01

    Between 1983 and 1989, employment of nuclear engineers in the nuclear energy field increased almost 40 percent while the annual number of nuclear engineering degrees awarded decreased by almost one-fourth. There were, on average, more job openings for new graduates than there were new graduates available to fill the jobs during the 1980s. This trend reversed in the l990s as nuclear engineering employment in the nuclear energy field decreased from 11,500 in 1991 to 9,400 in 1995. During roughly the same period, the annual number of nuclear engineering degrees increased by 11 percent. As a result, from 1990 through 1995, the number of new graduate nuclear engineers available in the labor supply far exceeded the number of job openings for new graduates in the nuclear energy field. This oversupply of new graduates was particularly acute for 1993 through 1995. During 1996--1997, a relative improvement is expected in job opportunities in the nuclear energy field for new graduates; however, a large oversupply is still expected (almost twice as many graduates available for employment as there are job openings). For 1998 through 2000, some improvement is expected in the relative number of job opportunities for new graduates in the nuclear energy field. Nuclear engineering jobs in the nuclear energy field are expected to decrease only slightly (by less than 150) during this period. Also a 10--15% decrease in the annual number of degrees and available supply of new graduates is expected. Overall, an oversupply is expected (140 graduates available per 100 job openings for new graduates in the nuclear energy field), but this is still a substantial improvement over the current period. For 2001 through 2005, if enrollments and degrees continue to decline, the labor market for new graduates is expected to be approximately balanced. This assumes, however, that the number of degrees and the available supply of new graduates will decrease by 25% from 1995 levels

  17. Comparing Two Approaches for Engineering Education Development

    DEFF Research Database (Denmark)

    Edström, Kristina; Kolmos, Anette

    2012-01-01

    During the last decade there have been two dominating models for reforming engineering education: Problem/Project Based Learning (PBL) and the CDIO Initiative. The aim of this paper is to compare the PBL and CDIO approaches to engineering education reform, to identify and explain similarities...... and differences. CDIO and PBL will each be defined and compared in terms of the original need analysis, underlying educational philosophy and the essentials of the respective approaches to engineering education. In these respects we see many similarities. Circumstances that explain differences in history...... approaches have much in common and can be combined, and especially that the practitioners have much to learn from each other’s experiences through a dialogue between the communities. This structured comparison will potentially indicate specifically what an institution experienced in one of the communities...

  18. Globalization and Organizational Change: Engineers' Experiences and Their Implications for Engineering Education

    Science.gov (United States)

    Lucena, Juan C.

    2006-01-01

    The demand for flexible engineers presents significant challenges to engineering education. Among these is the need for engineers to be prepared to understand and deal with organizational change. Yet engineering education and research on engineers have overlooked the impact of organizational change on engineering work. After outlining the impact…

  19. Teaching Interdisciplinary Engineering and Science Educations

    DEFF Research Database (Denmark)

    Kofoed, Lise B.; S. Stachowicz, Marian

    2014-01-01

    In this paper we study the challenges for the involved teachers who plan and implement interdisciplinary educations. They are confronted with challenges regarding their understanding of using known disciplines in a new interdisciplinary way and see the possibilities of integrating disciplines when...... creating new knowledge. We will address the challenges by defining the term interdisciplinary in connection with education, and using the Problem Based Learning educational approach and experience from the engineering and science educational areas to find the obstacles. Two cases based on interdisciplinary...... and understand how different expertise can contribute to an interdisciplinary education....

  20. Chemical Engineering Education - Current and Future Trends

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    topics (transport phenomena, separations, reaction engineering, etc.) must remain strong, should the applications that currently emphasize commodity chemicals also include new topics such as sustainability, and product design? In Europe, the European Federation of Chemical Engineering (EFCE) has taken...... has a product focus. With this shift of the chemical industry, what should be the curriculum of the chemical engineering degrees at the BSc- and MSc-levels, and, are the skill set of chemical engineers appropriate for this altered chemical industry? While the basic skill set, defined by the core...... a leading role to define the chemical engineering curriculum. The result has been a set of recommendations for the first (BSc), second (MSc) and third (PhD) cycle chemical engineering education aligned to the Bologna Process. They recommend that students studying towards bachelor and masters qualifications...

  1. Quality Management of Engineering Education

    DEFF Research Database (Denmark)

    Bentz, Sigurd

    1997-01-01

    Quality management has made a major impact on many commercial and manufacturing companies. Although higher education are similar to companies in some respects, they are different in others. So a well established commercial quality management system can't simply be transferred to higher education...

  2. Reorganization and the present situation of the department of nuclear engineering of the national universities in Japan

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Tanaka, Satoru; Imanishi, Nobutsugu; Takeda, Toshikazu; Kudo, Kazuhiko

    2000-01-01

    On July 1999, the 36th Conference on Isotopes in Physics and Engineering was held, where a panel discussion titled on 'new development on nuclear energy and radiation education at universities' was carried out. In the discussion, reports from every universities were stated and some opinion exchanges were carried out. Every representatives of faculty mentioned not only on how nuclear energy and radiation education became, but also on general problems on recent engineering education (for example, what education is aimed under maintenance of what cooperation with the other faculties and specialties). Here were introduced on five cases of typical universities in Japan (Hokkaido, Tokyo, Kyoto, Osaka, and Kyushu Universities), where present states and future scopes in the Nuclear Engineering Faculty and its graduate school were described at a standpoint of their educational researches on nuclear energy. (G.K.)

  3. Nuclear education and training: cause for concern?

    International Nuclear Information System (INIS)

    Yamagata, H.

    2000-01-01

    Many diverse technologies, currently serving nations worldwide, would be adversely affected if there was an inadequate number of nuclear scientists and engineers in the future with appropriate scientific and technical backgrounds and university curricula. (author)

  4. Innovation and Research on Engineering Education

    DEFF Research Database (Denmark)

    de Graaff, Erik; Kolmos, Anette

    2014-01-01

    Our Western society depends strongly on continuous technological innovation. Engineers, the designers of the future technology need extensive competencies to face the challenge of dealing with ever increasing complexity. In some areas more than half the knowledge they learn in University is obsol......Our Western society depends strongly on continuous technological innovation. Engineers, the designers of the future technology need extensive competencies to face the challenge of dealing with ever increasing complexity. In some areas more than half the knowledge they learn in University...... is obsolete by the time the enter practice. Recognition of these issues has recently resulted in worldwide increase of attention for innovation of engineering education. This chapter presents a brief outline of the traditions in higher engineering education culminating in the stage of research and development...... in the last century. Next, the recent revival of engineering education research is described, contrasting the developments in the USA with Europe and the rest of the world. The efforts in the USA appear to follow Boyer’s concept scholarship of teaching, and aim for the establishment of engineering education...

  5. Engineering a General Education Program: Designing Mechanical Engineering General Education Courses

    Science.gov (United States)

    Fagette, Paul; Chen, Shih-Jiun; Baran, George R.; Samuel, Solomon P.; Kiani, Mohammad F.

    2013-01-01

    The Department of Mechanical Engineering at our institution created two engineering courses for the General Education Program that count towards second level general science credit (traditional science courses are first level). The courses were designed for the general student population based upon the requirements of our General Education Program…

  6. Estimates of the radiation environment for a nuclear rocket engine

    International Nuclear Information System (INIS)

    Courtney, J.C.; Manohara, H.M.; Williams, M.L.

    1992-01-01

    Ambitious missions in deep space, such as manned expeditions to Mars, require nuclear propulsion if they are to be accomplished in a reasonable length of time. Current technology is adequate to support the use of nuclear fission as a source of energy for propulsion; however, problems associated with neutrons and gammas leaking from the rocket engine must be addressed. Before manned or unmanned space flights are attempted, an extensive ground test program on the rocket engine must be completed. This paper compares estimated radiation levels and nuclear heating rates in and around the rocket engine for both a ground test and space environments

  7. Brief 74 Nuclear Engineering Enrollments and Degrees Survey, 2014 Data

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-15

    The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014, and enrollments for fall 2014. There are three academic programs new to this year's survey. Thirty-five academic programs reported having nuclear engineering programs during 2014, and data were provided by all thirty-five. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Two nuclear engineering programs have indicated that health physics option enrollments and degrees are also reported in the health physics enrollments and degrees survey.

  8. Integrating design and purchasing [in nuclear engineering] with Ingecad

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Ingecad was developed by the Ingevision division of Framatome to overcome deficiencies in traditional computer-aided design. It was developed for nuclear power project engineering around the principle of the shared management of a common database, thus making it possible to integrate several engineering disciplines. The multiuser database is managed and accessed by the different application softwares, corresponding to particular aspects of the engineering task: electrical and process control schematics; plant piping design; pressurized equipment design etc. The use of a common database ensures coherence between the different engineering disciplines, particularly between the process engineering, the plant layout design, the piping, and the instrumentation and control engineering. (author)

  9. Oral Assessment in Engineering Education

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech

    2010-01-01

    This paper describes an oral assessment technique that has been used for over 20 years at the Centre of Maritime Studies and Engineering in the Faroe Islands. The technique has proven less laborious for the examiners and the students agree that this technique not only assesses their surface...

  10. Nuclear energy and professional engineers. Possibility of utilization of professional engineer system

    International Nuclear Information System (INIS)

    Tanaka, Shunichi; Nariai, Hideki; Madarame, Haruki; Hattori, Takuya; Kitamura, Masaharu; Fujie, Takao

    2008-01-01

    Nuclear and radiation professional engineer system started in 2004 and more than 250 persons have passed the second-step professional engineer examination, while more than 1,000 persons for the first-step examination. This special issue on possibility of utilization of professional engineer system consists of six relevant articles from experts of nuclear organizations and academia. They expect the role of professional engineer in the area of nuclear energy to enhance technology advancement and awareness of professional ethics from their respective standpoints. (T. Tanaka)

  11. Social capital in engineering education

    Science.gov (United States)

    Brown, Shane

    A theoretical argument is presented to suggest that engineering curriculum be designed to develop social capital. Additionally, the value of social capital in the retention of students in the College of Engineering, and the development, role, and value of social capital in an electrical engineering laboratory is evaluated. Data collected includes participant observations, informal and formal student interviews, and a researcher-designed survey. Social capital consists of interaction among individuals (networks), social rules that encourage interactions such as trust and reciprocity (norms), and the value of these networks and norms to the individual and the group. A large body of evidence suggests that social capital is valuable in terms of retention and multiple measures of academic achievement. The importance of social capital in retention was verified by students that have left engineering and those that remain, in terms of interactions with peers, teaching assistants, and engineering faculty; and a lack of sense of community in freshman engineering courses. Students that have left engineering differed in their perceptions of social capital from those that remain in their frustrations with teaching methods that encourage little discussion or opportunities to ask questions about assumptions or approaches. The open-ended nature of laboratory assignments, extensive required troubleshooting, and lack of specific directions from the teaching assistants were found to encourage the development of social capital in the laboratory setting. Degree centrality, a network measure of social capital as the number of ties an individual has within a social network, was found to be positively correlated with laboratory grade. Student perceptions of the importance of interactions with other students on success in the laboratory setting has a negative model effect on academic achievement in the laboratory. In contrast, student perceptions of the quality of interactions with

  12. MINA-2008: an approach renewed to the Masters of Nuclear Engineering and its Applications in Spain

    International Nuclear Information System (INIS)

    Herranz, L. E.; Garcia-Cuesta, J. C.; Falcon, S.; Marco, M.; Couhoud, M.

    2008-01-01

    Inspired by the so-called nuclear renaissance, the challenge of preserving nuclear knowledge and expertise and on the basis of the European Education Area, the Master's degree in Nuclear Engineering and Applications (MINA) has been set up by CIEMAT, in close collaboration with Spanish Universities and the national nuclear industries, with a drastically renewed approach. The MINA, born as a professionalizing masters intends to build a bridge between University education and technical know-how demanded by todays nuclear industry and organizations. In short, an enabling training that will provide participants with the actual skills that nuclear sector needs. The five major MINA keystone become are professional orientation, full scope, integrating policy, excellence in mastering and plural academic acceptance. These principles as well as other major MINA features are described in detail in this paper. (Author)

  13. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Hodong; Choi, Iljae

    2013-04-01

    The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The demonstration of pyroprocess technology which is proliferation resistance nuclear fuel cycle technology can reduce spent fuel and recycle effectively. Through this, people's trust and support on nuclear power would be obtained. Deriving the optimum nuclear fuel cycle alternative would contribute to establish a policy on back-end nuclear fuel cycle in the future, and developing the nuclear transparency-related technology would contribute to establish amendments of the ROK-U. S. Atomic Energy Agreement scheduled in 2014

  14. Strategy for Nuclear Technology Education at Uppsala University

    International Nuclear Information System (INIS)

    Osterlund, M.; Hakansson, A.; Tengborn, E.

    2010-01-01

    After the TMI accident 1979, and later the Tjernobyl accident, the future of nuclear power was vividly debated in Sweden. The negative public opinion governed a number of political decisions that marked an ambition to out-phase nuclear power prior to 2010. Due to this, the student's interest in nuclear technology ceased and together with the fact that public funding to nuclear technology was withdrawn, academic research and education within the field were effectively dismounted. In the beginning of 1990 it became clear to the society that nuclear power could not easily be closed down and the issue of the future competence supply to the nuclear industry was initiated. In the mid-nineties the situation became acute due to the fact that personnel in the nuclear industry started to retire in an increasing pace necessitating measures to be taken in order to secure the future operation of the nuclear power plants. In the year 2000, the Swedish nuclear power plants, Westinghouse Electric Sweden and the Swedish Radiation Safety Authority embarked a project together with the three major universities in the field, Uppsala University, The Royal Institute of Technology and Chalmers University of Technology. The aim of this project was to define a financial platform for reconstructing the Swedish research and education in nuclear technology. The project, named the Swedish Centre for Nuclear Technology (SKC), has during a decade been the major financier to nuclear technology research and education. Using funding from SKC, Uppsala University formulated a strategy along two tracks: 1) Instead of creating ambitious master programs in nuclear technology, the already existing engineering programs in a wide range of fields were utilized to expose as many students as possible to nuclear technology. 2) A program was initiated together with the nuclear industry aiming at educating newly employed personnel. The result is encouraging; starting from essentially zero, typically 100

  15. Effect of nuclear education on public attitude

    International Nuclear Information System (INIS)

    Ohnishi, Teruaki

    1995-01-01

    A method is proposed to assess the effect of nuclear education. In this method, the nuclear education is treated as a part of the activities for public acceptance (PA), and a unit PA activity is assumed to give the same effect on the public, in essence, as a unit of nuclear information given by the newsmedia. Moreover, the change of attitude to nuclear energy is assumed to originate from enhanced understanding which, in turn, is brought by the stimulus given by the nuclear education. With the values of constants determined by using the data in Japan, example calculations were made for the educational time b 0 and the infiltration rate of education into minors B as parameters. It became clear from this calculation that the attitude to nuclear energy formed in the age of school children plays an essential role in shaping future public opinion since it is held in individuals without any notable modification for a long time after its formation, and that the effect of nuclear education to minors emerges depending on the variables b 0 and B in a highly non-linear manner. It was also found that there exists an optimum condition for nuclear education to attain the maximum amelioration of public opinion under a given condition of man-power for educational workers. (author)

  16. Engine cycle design considerations for nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T.

    1993-01-01

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown

  17. ENEN's approaches and initiatives for nuclear education and training

    International Nuclear Information System (INIS)

    Safieh, Joseph; De Regge, Peter; Kusumi, Ryoko

    2011-01-01

    The European Nuclear Education Network (ENEN), established in 2003 through the EU Fifth Framework Programme (FP) project, was given a more permanent character by the foundation of the ENEN Association, a legal nonprofit-making body pursuing an instructive and scientific aim. Its main objective is the preservation and further development of expertise in the nuclear fields by higher education and training. This objective is realized through the cooperation between EU universities involved in education and research in nuclear disciplines, nuclear research centers and the nuclear industry. As of May 2009, the ENEN has 47 members in 17 EU countries. Since 2007 the ENEN Association has concluded a Memorandum of Understanding (MoU) with partners beyond Europe for further cooperation, such as South Africa, Russian Federation and Japan. The ENEN has good collaboration with national networks and international organizations, like Belgian Nuclear Education Network (BNEN) and the International Atomic Energy Agency (IAEA). The ENEN has provided support to its Members for the organization of and participation to selected E and T courses in nuclear fields. Based on the mutual recognition of those courses, the ENEN developed a reference curriculum in nuclear engineering, consisting of a core package of courses and optional substitute courses in nuclear disciplines, to be realized as the European Master of Science in Nuclear Engineering (EMSNE). From the experience gained through the EMSNE, a European Master of Science in Nuclear Disciplines will be delivered in the near future, extending ENEN's certification to other disciplines such as radiation protection and waste management and disposal. The ENEN-II Coordination Action consolidated and expanded the achievements of the ENEN and the NEPTUNO projects attained by the ENEN in respectively the 5th and 6th Framework Programmes. The objective of the ENEN-II project was to develop the ENEN Association in a sustainable way in the areas

  18. Nuclear education in public health and nursing

    International Nuclear Information System (INIS)

    Winder, A.E.; Stanitis, M.A.

    1988-01-01

    Twenty-three public health schools and 492 university schools of nursing were surveyed to gather specific information on educational programs related to nuclear war. Twenty public health schools and 240 nursing schools responded. Nuclear war-related content was most likely to appear in disaster nursing and in environmental health courses. Three schools of public health report that they currently offer elective courses on nuclear war. Innovative curricula included political action projects for nuclear war prevention

  19. Status, problems and perspectives of the education on nuclear energetics and nuclear safety within the Technical University of Sofia

    International Nuclear Information System (INIS)

    Lakov, M.; Bonev, B.; Stoyanov, S.; Velev, V.

    2004-01-01

    Education on nuclear energetic within the Technical University of Sofia is conducted since 1966 within the framework of the specialty 'Thermal energetic' at that time, and since 1973, within the specialty 'Thermal and nuclear energetic'. In 1986 is opened a college on nuclear energetic teaching on specialty 'Nuclear Energetic' and 'Automation in Energetic'. Since 1998 the department 'Thermal and nuclear energetic' is the only one within the Republic of Bulgaria having the legal rights to train 'engineers-bachelors' and 'engineers-master of science' on 'Thermal and nuclear energetic', as well as doctors - engineers of the same specialty. The bachelor course is graduated from between 40 and 60 students annually. The training within the bachelor level is 4 years and finishes by defending diploma thesis. Part of the graduated bachelors (between 20 and 30 students) are closely specialized in the area of Nuclear Energetic. The specialization is trained through preparation of diploma thesis within the nuclear area. The master course has 3 semesters including preparation of diploma thesis. Within the master level are prepared 25 students annually. Within the sub-division 'Nuclear Energetic' are promulgated between 2 and 4 competitions for preparation of doctoral thesis annually. At the moment 7 students are preparing doctoral thesis. Graduated engineers on 'Nuclear Energetic' are engaged as operative personnel mainly in Kozloduy NPP. The rest of them are engaged within the engineering and scientific organizations, connected to nuclear energetic

  20. Brief 66 Nuclear Engineering Enrollments and Degrees Survey, 2009 Data

    International Nuclear Information System (INIS)

    Blair, Larry M.

    2010-01-01

    The survey includes degrees granted between September 1, 2008 and August 31, 2009, and fall 2009 enrollments. Thirty-two academic programs reported having nuclear engineering programs during 2009, and data was obtained from all thirty-two.

  1. Nuclear Engineering Enrollments and Degrees Survey, 2007 Data

    International Nuclear Information System (INIS)

    Analysis and Evaluation, Science Education Programs

    2008-01-01

    The survey includes degrees granted between September 1, 2006, and August 1, 2007, and fall 2007 enrollments. Thirty-one academic programs reported having nuclear engineering programs during 2007, and data was obtained for all thirty-one

  2. Nuclear Engineering Enrollments and Degrees Survey, 2008 Data

    International Nuclear Information System (INIS)

    2009-01-01

    The survey includes degrees granted between September 1, 2007, and August 31, 2008, and fall 2008 enrollments. Thirty-one academic programs reported having nuclear engineering programs during 2008, and data was provided by all thirty-one programs

  3. Fuzzy systems and soft computing in nuclear engineering

    International Nuclear Information System (INIS)

    Ruan, D.

    2000-01-01

    This book is an organized edited collection of twenty-one contributed chapters covering nuclear engineering applications of fuzzy systems, neural networks, genetic algorithms and other soft computing techniques. All chapters are either updated review or original contributions by leading researchers written exclusively for this volume. The volume highlights the advantages of applying fuzzy systems and soft computing in nuclear engineering, which can be viewed as complementary to traditional methods. As a result, fuzzy sets and soft computing provide a powerful tool for solving intricate problems pertaining in nuclear engineering. Each chapter of the book is self-contained and also indicates the future research direction on this topic of applications of fuzzy systems and soft computing in nuclear engineering. (orig.)

  4. Human factor engineering applied to nuclear power plant design

    International Nuclear Information System (INIS)

    Manrique, A.; Valdivia, J.C.; Jimenez, A.

    2001-01-01

    For the design and construction of new nuclear power plants as well as for maintenance and operation of the existing ones new man-machine interface designs and modifications are been produced. For these new designs Human Factor Engineering must be applied the same as for any other traditional engineering discipline. Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. Additionally, the big saving achieved by a nuclear power plant having an operating methodology which significantly decreases the risk of operating errors makes it necessary and almost vital its implementation. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. (author)

  5. Russian University Education in Nuclear Safeguards and Security

    International Nuclear Information System (INIS)

    Duncan, Cristen L.; Kryuchkov, Eduard F.; Geraskin, Nikolay I.; Boiko, Vladimir I.; Silaev, Maxim E.; Demyanyuk, Dmitry G.; Killinger, Mark H.; Heinberg, Cynthia L.

    2009-01-01

    As safeguards and security (S and S) systems are installed and upgraded in nuclear facilities throughout Russia, it becomes increasingly important to develop mechanisms for educating future Russian nuclear scientists and engineers in the technologies and methodologies of physical protection (PP) and nuclear material control and accounting (MC and A). As part of the U.S. Department of Energy's (DOE) program to secure nuclear materials in Russia, the Education Project supports technical S and S degree programs at key Russian universities and nonproliferation education initiatives throughout the Russian Federation that are necessary to achieve the overall objective of fostering qualified and vigilant Russian S and S personnel. The Education Project supports major educational degree programs at the Moscow Engineering Physics Institute (MEPhI) and Tomsk Polytechnic University (TPU). The S and S Graduate Program is available only at MEPhI and is the world's first S and S degree program. Ten classes of students have graduated with a total of 79 Masters Degrees as of early 2009. At least 84% of the graduates over the ten years are still working in the S and S field. Most work at government agencies or research organizations, and some are pursuing their PhD. A 5 and 1/2 year Engineering Degree Program (EDP) in S and S is currently under development at MEPhI and TPU. The EDP is more tailored to the needs of nuclear facilities. The program's first students (14) graduated from MEPhI in February 2007. Similar-sized classes are graduating from MEPhI each February. All of the EDP graduates are working in the S and S field, many at nuclear facilities. TPU also established an EDP and graduated its first class of approximately 18 students in February 2009. For each of these degree programs, the American project team works with MEPhI and TPU to develop appropriate curriculum, identify and acquire various training aids, develop and publish textbooks, and strengthen instructor skills

  6. Teaching Engineering Habits of Mind in Technology Education

    Science.gov (United States)

    Loveland, Thomas; Dunn, Derrek

    2014-01-01

    With a new emphasis on the inclusion of engineering content and practices in technology education, attention has focused on what engineering content should be taught and assessed in technology education. The National Academy of Engineering (2010) proposed three general principles for K-12 engineering education in "Standards for K-12…

  7. Engineering Education: A Clear Decision

    Science.gov (United States)

    Strimel, Greg J.; Grubbs, Michael E.; Wells, John G.

    2017-01-01

    The core subjects in P-12 education have a common key characteristic that makes them stable over time. That characteristic is a steady content. For example, in the sciences, the basics of biology remain the same--the cell is the basic building block around which organisms are defined, characterized, structured, etc. Similarly, the basics of…

  8. Systems Engineering Initiative: Undergraduate Education Enhancement in a Regional Education Network

    International Nuclear Information System (INIS)

    Kurwitz, R. C.; Peddicord, K.; Poston, J.; Yang, X.; Bostanci, H.

    2016-01-01

    Full text: The Systems Engineering Initiative (SEI) is an experience based education enhancement programme that forms teams of undergraduate students with faculty and industry mentors to solve problems of interest to industry. This model of innovation creates a new learning paradigm that is outside the traditional classroom based model and fits more of the Master-apprentice model as applied to engineering teams. The SEI programme is currently administered by the Nuclear Power Institute (NPI), a regional nuclear education network, and is being carried out at three partner universities. Previous nuclear related projects have benefited industry and are of high technical quality with publications in peer-reviewed journals and awards for presentations in various forums. Students within the programme have benefited through development of soft skills outside the traditional curriculum, understanding of how their knowledge fits into a nuclear organization, and exposure to career opportunities. Industry and other NPI stakeholders benefit from the development of capable engineers and technicians, positive outreach to the community, and most importantly, knowledge transfer to the next generation of nuclear professionals. (author

  9. The coming crisis in nuclear skills and education

    International Nuclear Information System (INIS)

    Magwood, William D. IV; )

    2017-01-01

    In the early 1990's, nuclear engineering programs in universities across the United States began to collapse. Whereas at the beginning of the decade, there were nearly 2000 nuclear engineering students studying in US colleges and universities, the perception that there was no future career in nuclear technology led to a drop in enrolments to less than 800 by 1998. At the same time, entire programs were closing and university research reactors were being shut down at a rate of almost one each year. A governmental decision was made to reverse this trend. Impactful investments in university research, scholarships and fellowships, and infrastructure - along with vocal support for this field of study from senior government officials and members of Congress - had an immediate impact. Enrolments grew quickly and later accelerated as industry began hiring aggressively. Today, there are around 5000 nuclear engineering students in US schools, many focused on medical applications, non-proliferation, fusion and other areas - including, of course, advanced nuclear energy technologies. The nuclear specialists emerging from these education programs arrived at just the right time, as governmental agencies, industry and scientific organisations rushed to prepare for retirements in the ranks of experienced nuclear engineers. The foresight to support nuclear education in the late 1990's averted what might have been a crisis in human resources by 2010. However today, as we review the situation globally, the potential for a crisis over the next decade in the availability of trained nuclear specialists seems extraordinarily high. In many NEA countries, training of nuclear engineers and scientists is on a steadily declining path. Once highly lauded programs have been significantly diminished or already eliminated. In some fields, such as nuclear chemistry - which is essential in the application of radioactive materials to support advanced medical applications and explore advanced

  10. The challenge of reframing engineering education

    CERN Document Server

    Sale, Dennis

    2014-01-01

    The Challenge of Reframing Engineering Education is the first book to document the experience of implementing the CDIO Engineering Educational Framework in a large educational institution in the Asian context. It focuses on how to successfully implement and manage the key stages, activities and inevitable challenges that have to be negotiated in any large scale curriculum innovation. Its main purpose is to provide a practical resource for curriculum innovators and practitioners on what needs to be done, how and on what basis. It is written in a more narrative style than is typical of the genre, engaging the reader more intimately with the actual decision making processes and rationale that underpins curriculum innovation in the real context of institutional life. The book also encompasses many innovative practices for supporting student learning which are relevant in all mainstream educational contexts. These include an evidence-based learning approach for creative teaching, an explicit model for developing g...

  11. The role of networking for nuclear education

    International Nuclear Information System (INIS)

    Gowin, P.; Yanev, Y.

    2004-01-01

    Nuclear knowledge is the basis for almost all nuclear activities, and education and training are the most fundamental means to transfer knowledge from one generation to the next. Understanding means and trends in knowledge transfer through education and training thus deserves a closer examination. In the past years, a number of trends and questions in nuclear knowledge, education and training have emerged. With declining student enrolment numbers and a general stagnation of the use of nuclear power in some of the IAEA's Member States, the issue of a slow erosion of the knowledge base and the possibility of loosing knowledge has become increasingly important, in particular if seen against the background of a possible renaissance of nuclear power in the future. In other Member States, an expansion of nuclear power is expected, with a corresponding need for human resources. As a result, in many Member States education and training of the next generation and succession planning have become key issues. Several actions are being taken in the nuclear education and training sector, ranging from governmental programs to industry recruitment efforts, but most importantly a trend to increased networking and sharing of resources and facilities has become apparent. This paper starts with a working definition of 'nuclear knowledge' and a review of the history of nuclear knowledge, its accumulation over past decades and trends in its dissemination - either favouring networking and sharing knowledge, e.g. for sustainable development, or restricting such sharing, e.g. in the case of commercially used knowledge. It then examines the present trend to and motivation for increased networking of nuclear education and training as a part of transfer of that knowledge from one generation to the next. After a brief overview about the theory of networking, it can be said that networking can contribute to efficiency, sharing of resources, the effectiveness of programs, the timeliness of

  12. Using Computers in Fluids Engineering Education

    Science.gov (United States)

    Benson, Thomas J.

    1998-01-01

    Three approaches for using computers to improve basic fluids engineering education are presented. The use of computational fluid dynamics solutions to fundamental flow problems is discussed. The use of interactive, highly graphical software which operates on either a modern workstation or personal computer is highlighted. And finally, the development of 'textbooks' and teaching aids which are used and distributed on the World Wide Web is described. Arguments for and against this technology as applied to undergraduate education are also discussed.

  13. English Curriculum in Global Engineer Education Program

    Science.gov (United States)

    Furuya, Okitsugu; Bright, Olga; Saika, Takashi

    The educational goal of the Faculty of Global Engineering (FGE) of the Kogakuin University is to prepare the graduates to be global engineers. The requirements for the global engineer are multifold; having the basic and advanced engineering knowledge together with the international communication skills and experiences. The curriculum at the Kogakuin University has been designed and developed over the last ten years. Among others, “Communication Skills for Global Engineers (CSGE) ” and “Engineering Clinic Program (ECP) ” play essential roles, the former providing the students with the communication skills and the latter engineering design skills. An impact on the students studying together with foreign students is so strong and immeasurable. The English they learned in Japan does not work as well as they thought it would, and the attitude of the foreign students toward studying they observe is a kind of “shocking” . The student who joined ECP abroad/CSGE abroad come back to Japan as a very inspired and different person, the first step becoming a global engineer. In this paper, various aspects of the program will be discussed with the problem areas to be further improved being identified.

  14. Institute of Nuclear Engineering: report 1974-1976

    International Nuclear Information System (INIS)

    Amyot, L.

    1976-01-01

    The Institute of Nuclear Engineering is described in terms of its objectives, resources, instructional duties, and research. Basically the Institute is involved in the study of technical, economic and ecological aspects of nuclear installations, basic radioisotopic methods, and general energy problems. (E.C.B.)

  15. Annual technical report - 1987 - Nuclear Engineering Institute - Dept. of Physics

    International Nuclear Information System (INIS)

    Silva, A.G. da; Cabral, S.C.; Bastos, M.A.V.

    1987-01-01

    The research reports carried out in the Physics Department of Nuclear Engineering Institute/Brazilian CNEN, in nuclear physics, isotope production and hazards by irradiation using the CV-28 cyclotron capable to accelerate protons, deuterons, helium and alpha particles with maximum energies of 24, 14, 36 and 28 MeV, respectively, are presented. (M.C.K.) [pt

  16. Fundamentals of nuclear science and engineering

    CERN Document Server

    Shultis, J Kenneth

    2007-01-01

    FUNDAMENTAL CONCEPTS Modern Units The Atom Chart of Nuclides MODERN PHYSICS CONCEPTS The Special Theory of Relativity Radiation as Waves and Particles Quantum Mechanics Derivation of Some Special Relativity Results Solutions to Schrodinger's Wave Equation ATOMIC/NUCLEAR MODELS Development of the Modern Atom Model Models of the Nucleus NUCLEAR ENERGETICS Binding Energy Nucleon Separation Energy Nuclear Reactions Examples of Binary Nuclear Reactions Q-Value for a Reaction Conservation of Charge and the Calculation of Q-values Q-Value for reactions Producing Excited Nuclei RADIOACTIVITY Overview Types of Radioactive Decay Radioactive Decay Diagrams Energetics of Radioactive Decay Characteristics of Radioactive Decay Decay Dynamics Naturally Occurring Radionuclides Radiodating Radioactive Decay Data BINARY NUCLEAR REACTIONS Types of Binary Reactions Kinematics of Binary Two-Product Nuclear Reactions Reaction Threshold Energy Applications of Binary Kinematics Reactions...

  17. Development of Czechoslovak nuclear power engineering

    International Nuclear Information System (INIS)

    Keher, J.

    1985-01-01

    The output of Czechoslovak nuclear power plants is envisaged at 2200 MW by 1985, 4400 MW by 1990 and 10,280 MW by the year 2000. The operation so far is assessed of Bohunice V-1 and Bohunice V-2 power plants as is the construction of the Dukovany nuclear power plant. International cooperation in the fulfilment of the nuclear power programme is based on the General Agreement on Cooperation in the Prospective Development and Interlinkage of CMEA Power Systems to the year 1990, the Agreement on Multilateral International Specialization and Cooperation of Production and on Mutual Deliveries of Nuclear Power Plant Equipment. The most important factor in international cooperation is the Programme of Cooperation between the CSSR and the USSR. The primary target in the coming period is the Temelin nuclear power plant project and the establishment of unified control of the nuclear power complex. (M.D.)

  18. Nuclear engineering career - Phase 2 Argentina. Final report

    International Nuclear Information System (INIS)

    1993-01-01

    The objective of the project was to consolidate and extend the conditions necessary for the development of nuclear technology, and to observe the problems posed by the application of the nuclear energy through the increase and improvement of the scientific and technical infrastructure. The immediate objective of the project was to complete the advancement of research and development activities in nuclear engineering at the Centro Atomico Bariloche and Instituto Balseiro

  19. An Ontology for Software Engineering Education

    Science.gov (United States)

    Ling, Thong Chee; Jusoh, Yusmadi Yah; Adbullah, Rusli; Alwi, Nor Hayati

    2013-01-01

    Software agents communicate using ontology. It is important to build an ontology for specific domain such as Software Engineering Education. Building an ontology from scratch is not only hard, but also incur much time and cost. This study aims to propose an ontology through adaptation of the existing ontology which is originally built based on a…

  20. Virtualization-support Cases in Engineering Education

    DEFF Research Database (Denmark)

    Soler, José

    2011-01-01

    The paper presents cases of applying hardware virtualization techniques as support for education activities in two different courses and a master thesis within the degree International MSc on Telecommunication Engineering at the Technical University of Denmark (DTU). The triggering problem...... is presented in each of the cases, together with the benefits and drawbacks of using virtualization to cope with it....

  1. The Future of Engineering Education--Revisited

    Science.gov (United States)

    Wankat, Phillip C.; Bullard, Lisa G.

    2016-01-01

    This paper revisits the landmark CEE series, "The Future of Engineering Education," published in 2000 (available free in the CEE archives on the internet) to examine the predictions made in the original paper as well as the tools and approaches documented. Most of the advice offered in the original series remains current. Despite new…

  2. Spatial Ability through Engineering Graphics Education

    Science.gov (United States)

    Marunic, Gordana; Glazar, Vladimir

    2013-01-01

    Spatial ability has been confirmed to be of particular importance for successful engineering graphics education and to be a component of human intelligence that can be improved through instruction and training. Consequently, the creation and communication by means of graphics demand careful development of spatial skills provided by the balanced…

  3. Engineering Education as a Complex System

    Science.gov (United States)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-01-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating…

  4. Engineering Education in Research-Intensive Universities

    Science.gov (United States)

    Alpay, E.; Jones, M. E.

    2012-01-01

    The strengths and weaknesses of engineering education in research-intensive institutions are reported and key areas for developmental focus identified. The work is based on a questionnaire and session summaries used during a two-day international conference held at Imperial College London. The findings highlight several common concerns, such as…

  5. Industrial Strength Changes in Engineering Education.

    Science.gov (United States)

    Chatziioanou, Alypios; Sullivan, Edward

    2002-01-01

    Addresses the question of how closely the objectives of industry and engineering education should be aligned. Examines trends in college-business relationships using the example of California Polytechnic State University. Reflects on benefits and problems of closer connections with industry. (SK)

  6. CDIO-CONCEPT FOR ENGINEERING EDUCATION

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents significant good Danish experiment results of a developed CDIO-Concept and approach for active and integrated learning in today’s engineering education of MSc Degree students, and research results from using IT-Tools for CAE/CAD and dynamic modelling, simulation, analysis...

  7. Engineering Design EDUCATION: When, What, and HOW

    Science.gov (United States)

    Khalaf, Kinda; Balawi, Shadi; Hitt, George Wesley; Radaideh, Ahmad

    2013-01-01

    This paper presents an innovative, interdisciplinary, design-and-build course created to improve placement, content, and pedagogy for introductory engineering design education. Infused at the freshman level, the course aims to promote expert design thinking by using problem-based learning (PBL) as the mode of delivery. The course is structured to…

  8. Motivating students in engineering & ICT education

    NARCIS (Netherlands)

    Ir. Peter van Kollenburg; Ir. Dick van Schenk Brill

    2009-01-01

    We found out that 25 % of our students came to study at the Electrical & Electronic Engineering department (E&E) because they were active (as a hobby) in music. Because of this the E&E department offers their students to work in video and audio themes in all projects of their education. From our

  9. Problem Based Learning in Engineering Education

    DEFF Research Database (Denmark)

    Dahms, Mona-Lisa; Sauerbier, Gabriele; Stubbe, Korinna

    2006-01-01

    This paper describes a recent EU-project from five European Institutions. The aim was the development and implementation of a new international Master’s programme for staff development, directed towards the introduction of Problem Based Learning methods in the field of engineering education...

  10. On modern needs in nuclear physics and nuclear safety education

    International Nuclear Information System (INIS)

    Tom Loennroth

    2005-01-01

    The teaching of nuclear physics has a long history, particularly after the second world war, and the present author has 20 years of experience of teaching in that field. The research in nuclear physics has made major advances over the years, and the experiments become increasingly sophisticated. However, very often the university literature lags the development, as is, indeed, the case in all physics education. As a remedy of to-day, the didactic aspects are emphasized, especially at a basic level, while the curriculum content is. still left without upgrade. A standard textbook in basic nuclear physics is, while represent more modern theoretical treatises. The latter two, as their headings indicate, do not treat experimental methods, whereas has a presentation that illustrates methods and results with figures and references. However, they are from the 60 s and 70 s, they are old, and therefore cannot attract modern students of today. Consequently, one has the inevitable feeling that modern university teaching in nuclear physics, and the related area of nuclear safety, must be upgraded. A recent report in Finland, concluded that there is not sufficient nuclear safety education, but that on the other hand, it does not necessarily have to be connected with nuclear physics education, although this is recommendable. Further, the present Finnish university law states that 'The mission of the university shall be to promote free research and scientific and artistic education, to provide higher education based on research, and. to educate students to serve their country and humanity. In carrying out their mission, the universities shall interact with the surrounding society and promote the societal impact o research finding and artistic activities'. This mismatch between the curricula and the required 'societal impact' will be discussed, and examples of implications, usually not implemented, will be given. For nuclear physics specifically, the (lack of) connection between

  11. Advances in chemical engineering in nuclear and process industries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately.

  12. Advances in chemical engineering in nuclear and process industries

    International Nuclear Information System (INIS)

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately

  13. Meeting report of the consultancy meeting on comparison of curricula in nuclear engineering within the ANENT countries

    International Nuclear Information System (INIS)

    2007-01-01

    The participants of the Meeting have agreed to conclude: 1. The participants have been acquainted with the following: a. Curricula on nuclear science and nuclear engineering of the host country - Russia, as well as of the Republic of Korea, India and Vietnam; b. Nuclear education activities of the World Nuclear University (WNU); c. Nuclear education facilities at Moscow Engineering Physics Institute (MEPhI). 2. Discussions and analysis were made on the curricula in nuclear engineering education in the Region. 3. Main efforts were focused on developing a draft of the ANENT Reference Curricula for Master's Degree in Nuclear Engineering. The skeleton of the first draft of the Reference Curricula was created. 4. The idea about the ANENT Master's Degree in Nuclear Engineering (ANENT MDNE) was discussed. Realization of such degree would strongly and directly enhance and heighten the regional educational level in nuclear engineering in the near future. It is also expected to facilitate credit transfer and mutual recognition of degrees within the ANENT member countries in line with the ANENT's long term goals. 5. It was suggested to conduct an intensive exchange of opinions between experts and educators in the ANENT member countries to develop the ANENT MDNE further based on the skeleton of the draft. 6. It was preferable to start more extensive discussion about the idea of the ANENT MDNE and how to realize it effectively and reasonably as soon as possible. 7. The ANENT members were encouraged to discuss about ANENT Activity 4 at the next Meeting of the ANENT Coordination Committee. 8. The participants expressed their heartfelt thanks to the collective of Moscow Engineering Physics Institute (MEPhI) - the Host Organization - and to all the members of the Local Organizing Committee of the Meeting, as well as to the ANENT Scientific Secretary, for the warm atmosphere and perfect conditions provided for the success of the Meeting

  14. Interactive Virtual Reactor and Control Room for Education and Training at Universities and Nuclear Power Plants

    International Nuclear Information System (INIS)

    Satoh, Yoshinori; Li, Ye; Zhu, Xuefeng; Rizwan, Uddin

    2014-01-01

    Efficient and effective education and training of nuclear engineering students and nuclear workers are critical for the safe operation and maintenance of nuclear power plants. With an eye toward this need, we have focused on the development of 3D models of virtual labs for education, training as well as to conduct virtual experiments. These virtual labs, that are expected to supplement currently available resources, and have the potential to reduce the cost of education and training, are most easily developed on game-engine platforms. We report some recent extensions to the virtual model of the University of Illinois TRIGA reactor

  15. Interactive Virtual Reactor and Control Room for Education and Training at Universities and Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Yoshinori; Li, Ye; Zhu, Xuefeng; Rizwan, Uddin [University of Illinois, Urbana (United States)

    2014-08-15

    Efficient and effective education and training of nuclear engineering students and nuclear workers are critical for the safe operation and maintenance of nuclear power plants. With an eye toward this need, we have focused on the development of 3D models of virtual labs for education, training as well as to conduct virtual experiments. These virtual labs, that are expected to supplement currently available resources, and have the potential to reduce the cost of education and training, are most easily developed on game-engine platforms. We report some recent extensions to the virtual model of the University of Illinois TRIGA reactor.

  16. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    Historically, new entrants to the practice of nuclear criticality safety have learned their job primarily by on-the-job training (OJT) often by association with an experienced nuclear criticality safety engineer who probably also learned their job by OJT. Typically, the new entrant learned what he/she needed to know to solve a particular problem and accumulated experience as more problems were solved. It is likely that more formalism will be required in the future. Current US Department of Energy requirements for those positions which have to demonstrate qualification indicate that it should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis i's incompletely developed in some areas. Details of this analysis are provided in this report

  17. Chaos and fractals. Applications to nuclear engineering

    International Nuclear Information System (INIS)

    Clausse, A.; Delmastro, D.F.

    1990-01-01

    This work presents a description of the research lines carried out by the authors on chaos and fractal theories, oriented to the nuclear field. The possibilities that appear in the nuclear security branch where the information deriving from chaos and fractal techniques may help to the development of better criteria and more reliable designs, are of special importance. (Author) [es

  18. Current status nuclear training and education in Indonesia

    International Nuclear Information System (INIS)

    Karsono

    2007-01-01

    Instrumentation. The development of human resources in nuclear science and technology in Indonesia in the last few years has been challenged by several issues such as economic crisis, brain drain, zero-growth policy of the government, the aging of manpower, and the declining interest of the youth in the nuclear field. At present, formal education in nuclear science and technology in Indonesia is limited to only a few institutions of higher education. Indonesia would require many more scientists and engineers with graduate and post-graduate qualifications to intensify its efforts in nuclear R and D. Through ANENT, Indonesia students would have the opportunity to obtain graduate and post-graduate degrees in ANENT member organizations. The establishment of a reference curricula as well as the mutual recognition of degrees may offer students the flexibility to conduct part of the course in their home countries and not have to spend the full course time in institution in another country. Such an arrangement is especially attractive to students who are already employed in nuclear or related organizations. The exchange of academic staff among ANENT member organizations would also benefit countries with limited experience in nuclear education. Academic staff from member organizations with established nuclear education and training courses could assist in curricula design and teaching

  19. 11-th International conference Nuclear power safety and nuclear education - 2009. Abstracts. Part 1. Session: Safety of nuclear technology; Innovative nuclear systems and fuel cycle; Nuclear knowledge management

    International Nuclear Information System (INIS)

    2009-01-01

    The book includes abstracts of the 11-th International conference Nuclear power safety and nuclear education - 2009 (29 Sep - 2 Oct, 2009, Obninsk). Problems of safety of nuclear technology are discussed, innovative nuclear systems and fuel cycles are treated. Abstracts on professional education for nuclear power and industry are presented. Nuclear knowledge management are discussed

  20. Biomedical engineering education--status and perspectives.

    Science.gov (United States)

    Magjarevic, Ratko; Zequera Diaz, Martha L

    2014-01-01

    Biomedical Engineering programs are present at a large number of universities all over the world with an increasing trend. New generations of biomedical engineers have to face the challenges of health care systems round the world which need a large number of professionals not only to support the present technology in the health care system but to develop new devices and services. Health care stakeholders would like to have innovative solutions directed towards solving problems of the world growing incidence of chronic disease and ageing population. These new solutions have to meet the requirements for continuous monitoring, support or care outside clinical settlements. Presence of these needs can be tracked through data from the Labor Organization in the U.S. showing that biomedical engineering jobs have the largest growth at the engineering labor market with expected 72% growth rate in the period from 2008-2018. In European Union the number of patents (i.e. innovation) is the highest in the category of biomedical technology. Biomedical engineering curricula have to adopt to the new needs and for expectations of the future. In this paper we want to give an overview of engineering professions in related to engineering in medicine and biology and the current status of BME education in some regions, as a base for further discussions.