WorldWideScience

Sample records for nuclear energy system

  1. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  2. Emerging nuclear energy systems and nuclear weapon proliferation

    International Nuclear Information System (INIS)

    Gsponer, A.; Sahin, S.; Jasani, B.

    1983-01-01

    Generally when considering problems of proliferation of nuclear weapons, discussions are focused on horizontal proliferation. However, the emerging nuclear energy systems currently have an impact mainly on vertical proliferation. The paper indicates that technologies connected with emerging nuclear energy systems, such as fusion reactors and accelerators, enhance the knowledge of thermonuclear weapon physics and will enable production of military useful nuclear materials (including some rare elements). At present such technologies are enhancing the arsenal of the nuclear weapon states. But one should not forget the future implications for horizontal proliferation of nuclear weapons as some of the techniques will in the near future be within the technological and economic capabilities of non-nuclear weapon states. Some of these systems are not under any international control. (orig.) [de

  3. Future development of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  4. Energy accounting in nuclear power systems

    International Nuclear Information System (INIS)

    Symonds, J.L.; Essam, P.; Stocks, K.

    1976-01-01

    Energy analysis is a systematic way of tracing and accounting for the flows of energy through an industrial system and apportioning a quantity of the primary energy input to each of the goods and services sent out. The application of energy accounting to nuclear power stations and their growth in generating systems is discussed. Misunderstandings arising from discrepancies and weaknesses in some published simple analyses of hypothetical growth situations are outlined. Results of a more complex energy flow analysis are used to demonstrate that current nuclear energy programs are running at an energy profit. Large fossil fuel savings will occur in a real electrical grid system under anticipated nuclear power growth rates. These savings will give a new dimension in planning the use of fossil energy resources which will still be needed for transport and industrial processes, such as steelmaking, for some time to come. (author)

  5. Energy accounting in nuclear power systems

    International Nuclear Information System (INIS)

    Symonds, J.L.; Essam, P.; Stocks, K.

    1975-10-01

    Energy analysis is a systematic way of tracing and accounting for the flows of energy through an industrial system and apportioning a quantity of the primary energy input of the goods and services sent out. The application of energy accounting to nuclear power stations and their growth in generating systems is discussed. Misunderstandings arising from discrepancies and weaknesses in some published simple analyses of hypothetical growth situations are outlined. Results of a more complex energy flow analysis are used to demonstrate that current nuclear energy programs are running at an energy profit. Large fossil fuel savings will occur in a real electrical grid system under anticipated nuclear power growth rates. These savings will give a new dimension in planning the use of fossil energy resources which will still be needed for transport and industrial processes, such as steel-making, for some time to come. (author)

  6. An approach to a self-consistent nuclear energy system

    International Nuclear Information System (INIS)

    Fujii-e, Yoichi; Arie, Kazuo; Endo, Hiroshi

    1992-01-01

    A nuclear energy system should provide a stable supply of energy without endangering the environment or humans. If there is fear about exhausting world energy resources, accumulating radionuclides, and nuclear reactor safety, tension is created in human society. Nuclear energy systems of the future should be able to eliminate fear from people's minds. In other words, the whole system, including the nuclear fuel cycle, should be self-consistent. This is the ultimate goal of nuclear energy. If it can be realized, public acceptance of nuclear energy will increase significantly. In a self-consistent nuclear energy system, misunderstandings between experts on nuclear energy and the public should be minimized. The way to achieve this goal is to explain using simple logic. This paper proposes specific targets for self-consistent nuclear energy systems and shows that the fast breeder reactor (FBR) lies on the route to attaining the final goal

  7. Nuclear technologies for local energy systems

    International Nuclear Information System (INIS)

    McDonnell, F.N.; Lynch, G.F.

    1990-03-01

    If nuclear energy is to realize its full potential as a safe and cost-effective alternative to fossil fuels, applications beyond those that are currently being serviced by large, central nuclear power stations must be identified and appropriate reactors developed. The Canadian program on reactor systems for local energy supply is at the forefront of these developments. This program emphasizes design simplicity, low power density and fuel rating, reliance on natural processes, passive systems, and reduced reliance on operator action. The first product, the SLOWPOKE Energy System, is a 10 MW heat source specifically designed to provide hot water to satisfy the needs of local heating systems for building complexes, institutions and municipal district heating systems. A demonstration heating reactor has been constructed at the Whiteshell Nuclear Research Establishment in Manitoba and has been undergoing an extensive test program since first operation in 1987 July. Based on the knowledge learned from the design, construction, licensing and operational testing of this facility, the design of the 10 MW commercial-size unit is well advanced, and Atomic Energy of Canada Limited is prepared to commit the construction of the first commercial unit. Although the technical demonstration of the concept is important, it is recognized that another crucial element is the public and regulatory acceptance of small nuclear systems in urban areas. The decision by a community to commit the construction of a SLOWPOKE Energy System brings to a sharp focus the current public apprehension about nuclear technologies

  8. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    International Nuclear Information System (INIS)

    2014-01-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a ''hybrid system'' that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear - Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to

  9. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Forsberg, Charles [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Collins, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  10. Emerging nuclear energy systems: Economic challenge: Revision 1

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1986-01-01

    Future nuclear energy systems may achieve substantially lower energy costs than those of existing fossil energy systems and comparable capital costs. Such low cost nuclear energy would provide a strong economic incentive to minimize the use of fossil fuels. If these low cost nuclear energy systems emerge in the next few decades, 21st century civilization may be able to avert potentially disastrous CO 2 induced global climate changes. 12 refs., 1 fig

  11. The role of nuclear energy system for Korean long-term energy supply strategy

    International Nuclear Information System (INIS)

    Chae, K.N.; Lee, D.G.; Lim, C.Y.; Lee, B.W.

    1995-01-01

    The energy supply optimization model MESSAGE-III is improved to evaluate the role of nuclear energy system in Korean long-term energy supply strategy. Emphasis is placed on the potential contribution of nuclear energy in case of environmental constraints and energy resource limitation. The time horizon is 1993-2040. A program to forecast useful energy demand is developed, and optimization is performed from the overall energy system to the nuclear energy system. Reactor and fuel cycle strategy and the expanded utilization options for nuclear energy system are suggested. FBRs, HTGRs and thorium fuel cycle would play key roles in the long run. The most important factors for nuclear energy in Korean energy supply strategy would be the availability of fossil fuels, CO 2 reduction regulation, and the supply capability of nuclear energy. (author)

  12. Scenario-based roadmapping assessing nuclear technology development paths for future nuclear energy system scenarios

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Roelofs, Ferry; Yacout, Abdellatif

    2009-01-01

    Nuclear energy may play a significant role in a future sustainable energy mix. The transition from today's nuclear energy system towards a future more sustainable nuclear energy system will be dictated by technology availability, energy market competitiveness and capability to achieve sustainability through the nuclear fuel cycle. Various scenarios have been investigated worldwide each with a diverse set of assumptions on the timing and characteristics of new nuclear energy systems. Scenario-based roadmapping combines the dynamic scenario-analysis of nuclear energy systems' futures with the technology roadmap information published and analysed in various technology assessment reports though integrated within the nuclear technology roadmap Nuclear-Roadmap.net. The advantages of this combination is to allow mutual improvement of scenario analysis and nuclear technology roadmapping providing a higher degree of confidence in the assessment of nuclear energy system futures. This paper provides a description of scenario-based roadmapping based on DANESS and Nuclear-Roadmap.net. (author)

  13. Nuclear system for problems of environment, economy, and energy. (1) Nuclear energy role and potential for energy system in Asia

    International Nuclear Information System (INIS)

    Ujita, Hiroshi; Matsui, Kazuaki; Sekimoto, Hiroshi

    2005-01-01

    Role and potential of nuclear energy system in the energy options is discussed from the viewpoint of sustainable development with protecting from global warming. It is important for mitigation of global warming that the developing countries will use nuclear power effectively. The policy that nuclear power is considered as Clean Development Mechanism would be the good measure for that. (author)

  14. The attitude to nuclear energy in comparison with other energy systems

    International Nuclear Information System (INIS)

    Fuchs, D.

    1991-01-01

    The subject of the study is the analysis of trends, the level and the determinants of the attitude to nuclear energy on the basis of survey data from representative samples. The emphasis is on analyzing the attitude to nuclear energy in the context of the so-called new political line of conflict. The most striking result of the trend analysis of the attitude to four energy systems - nuclear energy, coal, mineral oil, natural gas - was the drastic decline in the acceptance of nuclear energy in the time period covered by the available time series. The trends observed lead one to suppose that the evaluation of energy systems is no simple numbers game of the kind that means a more negative assessment of one energy system unavoidably leads to a more positive assessment of the other and vice versa, but that the individual energy systems are judged at least in part independently of one another. Effective public relations information and events may play an important part in changing attitudes to the individual energy systems. Structural factors are primarily a change in political values and an increased political competence on the part of the citizens. Both these factors taken together have created a greater perception of and sensitivity to the side-effects of the technical-industrial growth process. This aspect of the side-effects has been politicized by the New Social Movements particularly with reference to nuclear energy. Provided that political lines of conflict are important and lasting mechanisms for structuring, then nuclear energy will probably remain a constant theme, because of its importance in symbolizing fundamental problems at the technical-industrial growth process. (orig./HSCH) [de

  15. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  16. INPRO Methodology to evaluate the Mexico nuclear energy system

    International Nuclear Information System (INIS)

    Cruz S, R. R.; Martin del C, C.

    2016-09-01

    The International Atomic Energy Agency has developed the so-called International Project on Fuel Cycles and Innovative Nuclear Reactors (INPRO), in order to make nuclear energy available to meet the energy needs of the 21 century, in a sustainable way. One of the tasks of the project is the evaluation of the nuclear systems, to check whether they meet the objectives of the project and whether they are sustainable. This paper explains the rationale and general characteristics of the project in the evaluation of nuclear energy systems based on the concept of sustainable development. It describes the methodology developed to carry out this evaluation, divided into seven areas, such as economic, environmental, security, etc., which together make up the sustainable development of energy through nuclear systems. The economic area is analyzed and the evaluation criteria and parameters established by INPRO are discussed, in order to evaluate the Mexican nuclear energy system using Nest (software developed within the same project) as a tool to support the economic evaluation of nuclear systems. Based on the energy strategy proposed by the Energy Secretary of the Mexican Government which seeks to reduce the greenhouse gas emissions from the national electricity generation park, two types of reactor of currently available technology (A BWR and AP1000), were compared and these in turn with other alternative energy generation technologies, such as combined cycle, geothermal and wind plants. Also, the results of the application of the INPRO methodology are presented. Finally, the recommendations on actions that could lead the Mexican nuclear energy system towards sustainable development and conclusions on the application of the methodology to the Mexican case are mentioned. (Author)

  17. Analysis and design of nuclear energy information systems

    International Nuclear Information System (INIS)

    Yohanes Dwi Anggoro; Sriyana; Arief Tris Yuliyanto; Wiku Lulus Widodo

    2015-01-01

    Management of research reports and activities of the Center for Nuclear Energy System Assessment (PKSEN), either in the form of documents and the results of other activities, are important part of the series of activities PKSEN mission achievement. Management of good documents will facilitate the provision of improved inputs or use the maximum results. But over the past few years, there are still some problem in the management of research reports and activities performed by PKSEN. The purpose of this study is to analyze and design flow layout of the Nuclear Energy Information System to facilitate the implementation of the Nuclear Energy Information System. In addition to be used as a research management system and PKSEN activities, it can also be used as information media for the community. Nuclear Energy Information System package is expected to be ''one gate systems for PKSEN information. The research methodology used are: (i) analysis of organizational systems, (ii) the analysis and design of information systems; (iii) the analysis and design of software systems; (iv) the analysis and design of database systems. The results of this study are: had identified and resources throughout the organization PKSEN activation, had analyzed the application of SIEN using SWOT analysis, had identified several types of devices required, had been compiled hierarchy of SIEN, had determined that the database system used is a centralized database system and had elections MySQL as DBMS. The result is a basic design of the Nuclear Energy Information System) which will used as a research and activities management system of PKSEN and also can be used as a medium of information for the community. (author)

  18. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond L; Murphy, Arthur T; Rosenthal, Daniel I

    1987-01-01

    Nuclear Energy: An Introduction to the Concepts, Systems, and Applications of Nuclear Processes introduces the reader to the concepts, systems, and applications of nuclear processes. It provides a factual description of basic nuclear phenomena, as well as devices and processes that involve nuclear reactions. The problems and opportunities that are inherent in a nuclear age are also highlighted.Comprised of 27 chapters, this book begins with an overview of fundamental facts and principles, with emphasis on energy and states of matter, atoms and nuclei, and nuclear reactions. Radioactivi

  19. On the safety performance of the advanced nuclear energy systems

    International Nuclear Information System (INIS)

    Li Shounan

    1999-01-01

    Some features on the safety performances of the Advanced Nuclear Energy Systems are discussed. The advantages and some peculiar problems on the safety of Advanced Nuclear Energy Systems with subcritical nuclear reactor driven by external neutron sources are also pointed out in comparison with conventional nuclear reactors

  20. The position, role and development prospects of nuclear energy in China energy system

    International Nuclear Information System (INIS)

    Zheng Yuhui; Yan Jimin

    1996-12-01

    The fundamental features of the present energy system of China are discussed and analyzed. and it is pointed out that since the founding of the People's Republic of China, although the energy construction, including the development and use of nuclear energy, has achieved great success, the average energy resource per capita is still low. The following major issues, such as the transportation pressure raised from the energy structure of taking coal as the main, the increasing seriousness of environmental pollution, large amount of greenhouse gases emission and low 'energy efficiency', etc., have constrained the sustainable development of national economy and society. In accordance with the position of nuclear energy in the strategy of the energy development in south-east coastal areas of China, and the analysis of 'value criteria' and 'decision goal' system for the development and use of nuclear energy, it is thought the development of nuclear energy is an important way and the optimum selection to optimize China's energy system. In accordance with the fundamental policy and technical line, and the technical ability and foundation conditions, the strategic target, scale and overall arrangement for the development of China's nuclear power are proposed and the bright future for the development of China's nuclear power industry is comprehensively discussed and analyzed. (14 refs., 7 figs., 20 tabs.)

  1. Nuclear energy in Canada: the CANDU system

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1979-10-01

    Nuclear electricity in Canada is generated by CANDU nuclear power stations. The CANDU reactor - a unique Canadian design - is fuelled by natural uranium and moderated by heavy water. The system has consistently outperformed other comparable nuclear power systems in the western world, and has an outstanding record of reliability, safety and economy. As a source of energy it provides the opportunity for decreasing our dependence on dwindling supplies of conventional fossil fuels. (auth)

  2. Multi-component nuclear energy system to meet requirement of self-consistency

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, Vladimir; Shmelev, Anotolii; Korovin, Yorii

    2000-01-01

    Environmental harmonization of nuclear energy technology is considered as an absolutely necessary condition in its future successful development for peaceful use. Establishment of Self-Consistent Nuclear Energy System, that simultaneously meets four requirements - energy production, fuel production, burning of radionuclides and safety, strongly relies on the neutron excess generation. Implementation of external non-fission based neutron sources into fission energy system would open the possibility of approaching Multicomponent Self-Consistent Nuclear Energy System with unlimited fuel resources, zero radioactivity release and high protection against uncontrolled proliferation of nuclear materials. (author)

  3. Dynamic performance analysis of two regional Nuclear Hybrid Energy Systems

    International Nuclear Information System (INIS)

    Garcia, Humberto E.; Chen, Jun; Kim, Jong S.; Vilim, Richard B.; Binder, William R.; Bragg Sitton, Shannon M.; Boardman, Richard D.; McKellar, Michael G.; Paredis, Christiaan J.J.

    2016-01-01

    In support of more efficient utilization of clean energy generation sources, including renewable and nuclear options, HES (hybrid energy systems) can be designed and operated as FER (flexible energy resources) to meet both electrical and thermal energy needs in the electric grid and industrial sectors. These conceptual systems could effectively and economically be utilized, for example, to manage the increasing levels of dynamic variability and uncertainty introduced by VER (variable energy resources) such as renewable sources (e.g., wind, solar), distributed energy resources, demand response schemes, and modern energy demands (e.g., electric vehicles) with their ever changing usage patterns. HES typically integrate multiple energy inputs (e.g., nuclear and renewable generation) and multiple energy outputs (e.g., electricity, gasoline, fresh water) using complementary energy conversion processes. This paper reports a dynamic analysis of two realistic HES including a nuclear reactor as the main baseload heat generator and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by their application in scenarios with multiple commodity production and high renewable penetration. It is performed for regional cases – not generic examples – based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses. - Highlights: • Hybrids including renewables can operate as dispatchable flexible energy resources. • Nuclear energy can address high variability and uncertainty in energy systems. • Nuclear hybrids can reliably provide grid services over various time horizons. • Nuclear energy can provide operating reserves and grid inertia under high renewables. • Nuclear hybrids can greatly reduce GHG emissions and support grid and industry needs.

  4. Experience in Modelling Nuclear Energy Systems with MESSAGE: Country Case Studies

    International Nuclear Information System (INIS)

    2018-01-01

    Member States have recognized the increasing need to model future nuclear power scenarios in order to develop strategies for sustainable nuclear energy systems. The IAEA model for energy supply strategy alternatives and their general environmental impacts (MESSAGE) code is a tool that supports energy analysis and planning in Member States. This publication documents the experience gained on modelling and scenario analysis of nuclear energy systems (NES) using the MESSAGE code through various case studies performed by the participating Member States on evaluation and planning for nuclear energy sustainability at the regional or national level. The publication also elaborates on experience gained in modelling of global nuclear energy systems with a focus on specific aspects of collaboration among technology holder and technology user countries and the introduction of innovative nuclear technologies. It presents country case studies covering a variety of nuclear energy systems based on a once-through fuel cycle and a closed fuel cycle for thermal reactors, fast reactors and advanced systems. The feedback from case studies proves the analytical capabilities of the MESSAGE model and highlight the path forward for further advancements in the MESSAGE code and NES modelling.

  5. A new option for exploitage of future nuclear energy. Accelerator driven radioactive clean nuclear power system

    International Nuclear Information System (INIS)

    Ding Dazhao

    2000-01-01

    Nuclear energy is an effective, clean and safe energy resource. But some shortages of the nuclear energy system presently commercial available obstruct further development of the nuclear energy by heavy nuclear fission. Those are final disposal of the high level radioactive waste, inefficient use of the uranium resource and safety issue of the system. Innovative technical option is seeking for by the nuclear scientific community in recent ten years in aiming to overcome these obstacles, namely, accelerator driven sub-critical system (ADS). This hybrid system may bridge over the gap between presently commercial available nuclear power system and the full exploitation of the fusion energy. The basic principle of ADS is described and its capability in waste transmutation, conversion of the nuclear fuel are demonstrated by two examples--AD-fast reactor and AD-heavy water thermal reactor. The feasibility of ADS and some projects in US, Japan, etc are briefly discussed. The rationale in promoting the R and D of ADS in China is emphasized as China is at the beginning stage of its ambitious project in construction of the nuclear power

  6. Self-consistent nuclear energy systems

    International Nuclear Information System (INIS)

    Shimizu, A.; Fujiie, Y.

    1995-01-01

    A concept of self-consistent energy systems (SCNES) has been proposed as an ultimate goal of the nuclear energy system in the coming centuries. SCNES should realize a stable and unlimited energy supply without endangering the human race and the global environment. It is defined as a system that realizes at least the following four objectives simultaneously: (a) energy generation -attain high efficiency in the utilization of fission energy; (b) fuel production - secure inexhaustible energy source: breeding of fissile material with the breeding ratio greater than one and complete burning of transuranium through recycling; (c) burning of radionuclides - zero release of radionuclides from the system: complete burning of transuranium and elimination of radioactive fission products by neutron capture reactions through recycling; (d) system safety - achieve system safety both for the public and experts: eliminate criticality-related safety issues by using natural laws and simple logic. This paper describes the concept of SCNES and discusses the feasibility of the system. Both ''neutron balance'' and ''energbalance'' of the system are introduced as the necessary conditions to be satisfied at least by SCNES. Evaluations made so far indicate that both the neutron balance and the energy balance can be realized by fast reactors but not by thermal reactors. Concerning the system safety, two safety concepts: ''self controllability'' and ''self-terminability'' are introduced to eliminate the criticality-related safety issues in fast reactors. (author)

  7. Technical features to enhance proliferation resistance of nuclear energy systems

    International Nuclear Information System (INIS)

    2010-01-01

    It is generally accepted that proliferation resistance is an essential issue for the continued development and sustainability of nuclear energy. Several comprehensive assessment activities on the proliferation resistance of the nuclear fuel cycle have previously been completed, notably the International Nuclear Fuel Cycle Evaluation (INFCE) carried out under the auspices of the IAEA, and the Non-proliferation Alternative Systems Assessment Program (NASAP) review carried out by the USA. There have been, however, relatively few comprehensive treatments of the issue following these efforts in the 1970s. However, interest in and concern about this issue have increased recently, particularly because of greater interest in innovative nuclear fuel cycles and systems. In 2000, the IAEA initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) and the US Department of Energy initiated the Generation IV International Forum (GIF). These projects are aimed at the selection and development of concepts of innovative nuclear energy systems and fuel cycles. Proliferation resistance is one of the fundamental considerations for both projects. In this context, the IAEA in 2001 initiated a study entitled 'Technical Aspects of Increasing Proliferation Resistance of the Nuclear Fuel Cycle'. This task is not intended as an effort to assess the merits of a particular fuel cycle system for the future, but to describe a qualitative framework for an examination of the proliferation resistance provided by the intrinsic features of an innovative nuclear energy system and fuel cycle. This task also seeks to provide a high level survey of a variety of innovative nuclear energy systems and fuel cycles with respect to that framework. The concept of proliferation resistance is considered in terms of intrinsic features and extrinsic measures. The intrinsic features, sometimes referred to as the physical/technical aspects, are those features that result from the

  8. Sustainable minireactors: A framework for decentralized nuclear energy systems

    International Nuclear Information System (INIS)

    Harms, A.A.; Sassin, W.W.

    1983-01-01

    The concept of a nuclear energy system consisting of numerous small, specialized nuclear reactors providing heat or electricity for localized/regional purposes is considered. It is envisaged that a ''parent'' nuclear facility would sustain the fuel needs of many small nuclear energy ''satellites'' and possibly provide other fuel-management services. The choice of fuel cycle and the operational features of these satellites may be determined by the form of energy required, public and social preferences, and institutional factors. Three distinct classes of distributed systems, each based on extensions of existing nuclear technology, are identified and discussed. In addition to the points emphasized concerning the types of minireactors and the fuel cycles chosen, it is important to recognize the potential for mass-production of these smaller facilities. Also, if the fuel-consuming part of the system is widely distributed geographically and if the fuel can be stored, the simultaneous failure of substantial parts of the energy supply system seems unlikely. Finally, if there were a local need for medium-power facilities, provision for the stacking of minireactors to attain a specified power level could be introduced

  9. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond L

    1993-01-01

    This expanded, revised, and updated fourth edition of Nuclear Energy maintains the tradition of providing clear and comprehensive coverage of all aspects of the subject, with emphasis on the explanation of trends and developments. As in earlier editions, the book is divided into three parts that achieve a natural flow of ideas: Basic Concepts, including the fundamentals of energy, particle interactions, fission, and fusion; Nuclear Systems, including accelerators, isotope separators, detectors, and nuclear reactors; and Nuclear Energy and Man, covering the many applications of radionuclides, r

  10. The generation IV nuclear reactor systems - Energy of future

    International Nuclear Information System (INIS)

    Ohai, Dumitru; Jianu, Adrian

    2006-01-01

    Ten nations joined within the Generation IV International Forum (GIF), agreeing on a framework for international cooperation in research. Their goal is to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in an economically competitive way while addressing the issues of safety, proliferation, and other public perception concerns. The objective is for the Gen IV systems to be available for deployment by 2030. Using more than 100 nuclear experts from its 10 member nations, the GIF has developed a Gen IV Technology Roadmap to guide the research and development of the world's most advanced, efficient and safe nuclear power systems. The Gen IV Technology Roadmap calls for extensive research and development of six different potential future reactor systems. These include water-cooled, gas-cooled, liquid metal-cooled and nonclassical systems. One or more of these reactor systems will provide the best combination of safety, reliability, efficiency and proliferation resistance at a competitive cost. The main goals for the Gen IV Nuclear Energy Systems are: - Provide sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel use for worldwide energy production; - Minimize and manage their nuclear waste and noticeably reduce the long-term stewardship burden in the future, improving the protection of public health and the environment; - Increase the assurance that these reactors are very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased protection against acts of terrorism; - Have a clear life-cycle cost advantage over other energy sources; - Have a level of financial risk comparable to other energy projects; - Excel in safety and reliability; - Have a low likelihood and degree of reactor core damage. (authors)

  11. Defense nuclear energy systems selection methodology for civil nuclear power applications

    International Nuclear Information System (INIS)

    Scarborough, J.C.

    1986-01-01

    A methodology developed to select a preferred nuclear power system for a US Department of Defense (DOD) application has been used to evaluate preferred nuclear power systems for a remote island community in Southeast Asia. The plant would provide ∼10 MW of electric power, possibly low-temperature process heat for the local community, and would supplement existing island diesel electric capacity. The nuclear power system evaluation procedure was evolved from a disciplined methodology for ranking ten nuclear power designs under joint development by the US Department of Energy (DOE) and DOD. These included six designs proposed by industry for the Secure Military Power Plant Program (now termed Multimegawatt Terrestrial Reactor Program), the SP-100 Program, the North Warning System Program, and the Modular Advanced High-Temperature Gas-Cooled Reactor (HTGR) and Liquid-Metal Reactor (LMR) programs. The 15 evaluation criteria established for the civil application were generally similar to those developed and used for the defense energy systems evaluation, except that the weighting factor applied to each individual criterion differed. The criteria and their weighting (importance) functions for the civil application are described

  12. Sustainable nuclear energy dilemma

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2013-01-01

    Full Text Available Sustainable energy development implies the need for the emerging potential energy sources which are not producing adverse effect to the environment. In this respect nuclear energy has gained the complimentary favor to be considered as the potential energy source without degradation of the environment. The sustainability evaluation of the nuclear energy systems has required the special attention to the criteria for the assessment of nuclear energy system before we can make firm justification of the sustainability of nuclear energy systems. In order to demonstrate the sustainability assessment of nuclear energy system this exercise has been devoted to the potential options of nuclear energy development, namely: short term option, medium term option, long term option and classical thermal system option. Criteria with following indicators are introduced in this analysis: nuclear indicator, economic indicator, environment indicator, social indicator... The Sustainability Index is used as the merit for the priority assessment among options under consideration.

  13. Nuclear Hybrid Energy Systems: Imperatives, Prospects, and Challenges

    International Nuclear Information System (INIS)

    Aumeier, Steven E.

    2010-01-01

    As global population reaches an expected 8 billion people by 2030, primary energy consumption is expected to increase by almost 40% from approximately 520 exajoules consumed today to almost 740 exajoules. Much of this increase is expected to come from non-Organization for Economic Cooperation and Development (OECD) nations, and Asia specifically. In these economies, energy used for transportation is expected to grow substantially, as is industrial, commercial and to a lesser degree residential energy use, creating considerable pressure on global and local energy markets. The magnitude and timing of growth in energy consumption likely will create a global imperative to deploy energy production technologies that balance the three pillars of energy security: (1) economic stability - related to the affordability of energy products, stability and predictability in their price, and the efficient and effective deployment of global capital resources in their development; (2) environmental sustainability - related to minimizing the negative impacts of energy production to air, land, and water systems and advancing the long-term viability of using a particular resource in a way that does not limit future generations ability to prosper; (3) resource security - related to the ability to access energy resources and products where and when necessary, in an affordable and predictable manner. One approach to meeting these objectives is hybrid energy systems (HES). Broadly described, HES are energy product production plants that take two or more energy resource inputs (typically includes both carbon and non-carbon based sources) and produce two or more energy products (e.g. electricity, liquid transportation fuels, industrial chemicals) in an integrated plant. Nuclear energy integration into HES offers intriguing potential, particularly if smaller (<300 MWe) reactors are available. Although the concept of using nuclear energy in a variety of non-electrical process applications is

  14. Nuclear Energy Center Site Survey, 1975. Part II. The U.S. electric power system and the potential role of nuclear energy centers

    International Nuclear Information System (INIS)

    1976-01-01

    Information related to Nuclear Energy Centers (NEC) in the U.S. is presented concerning the U.S. electric power system today; electricity demand history and forecasts; history and forecasts of the electric utility industry; regional notes; the status, history, and forecasts of the nuclear role; power plant siting problems and practices; nuclear facilities siting problems and practices; origin and evolution of the nuclear energy center concept; conceptualized description of nuclear energy centers; potential role of nuclear energy centers; assumptions, criteria, and bases; typical evolution of a nuclear energy center; and the nuclear fuel cycle

  15. Economic assessment of nuclear energy from systems theory's point of view

    International Nuclear Information System (INIS)

    Iliffe, C.

    1976-01-01

    A report is given on how systems theory can be incorporated in nuclear energy and in which manner it can be applied. As opposed to previous considerations in which the development of nuclear energy in the form of cost effects of the energy produced in a nuclear power plant was assessed and the power plant was considered as insular plant, today this is replaced by the investigation of the individual nuclear power plants by a system of several such plants. The economy criterium of such a system is considered as the quotient of 'discounted' expenditure and discounted electro-energy production. The total discounted electricity generation by the nuclear power plant system also includes the energy production of new nuclear power plants to come and allows their special economy assessment. This method eliminates the question of the buying and selling price of plutonium and the interest payment of the expenditure for using Pn fuel. The discount programme, the systems costs, concessions in discounting, the minimization of the consumption, and the plutonium valuation are individually dealt with in detail. The solution to the linear three-interval programme is given in the appendix. (HR/LH) [de

  16. Status of the new nuclear energy systems study in CIAE

    International Nuclear Information System (INIS)

    Ding, D.; Luo, Z.; Xu, M.

    2003-01-01

    The nuclear energy civil-application has been started in China. To meet the long-term sustainable primary energy supply it could be envisaged that the nuclear power systems will be developed in large scale. Following three key points must be satisfied by the future nuclear energy systems: - more safer nuclear energy systems than recent those should be developed to decrease the risk of core-melten and unforeseen release of radioactive materials; - long lived minor actinides and long lived fission products must be safely treated to assure a proper environment; - uranium resource should be sufficiently utilized. In order to meet above general requirements, the fast reactor technology development has been launched and the basic researches of Accelerator Driven Subcritical facility (ADS) system has been started in China. The activity of the construction of the China Experimental Fast Reactor and plan for next step, some calculation results on core physics study of ADS, some results on target physics and a proposed verification facility are briefed in the paper. (author)

  17. Nuclear energy. An introduction to the concepts, systems, and applications of nuclear processes. 3. ed.

    International Nuclear Information System (INIS)

    Murray, R.L.

    1988-01-01

    An overview of nuclear energy and its uses is given, aimed at nuclear engineers, plant designers and radiation physicists. The three parts deal with the basic concepts, nuclear systems (including particle accelerators, radiation detectors, breeder reactors and fusion reactors) and nuclear energy and man. This latter section includes chapters on the history of nuclear energy, effects of radiation, isotopes, reactor safety, nuclear propulsion, radiation protection, radioactive waste disposal, laws and regulations economics and nuclear explosions. The final chapter looks to the future of nuclear energy. Each of the 27 chapters has a brief summary and exercises at the end. The appendices give selected references, conversion factors and atomic and nuclear data. (U.K.)

  18. Change of nuclear administrative system and long-term program for nuclear energy in Japan

    International Nuclear Information System (INIS)

    Yun, S. W.; Yang, M. H.; Jeong, H. S.

    2001-01-01

    Japanese new governmental adminstrative system was restructured and became in operation from January 1, 2001 including newly establishment of the Ministry of Cabinet. Accordingly, Japanese nuclear administrative system were also changed significantly, in order to reflect the changing policy environment and response to them more efficiently in the use and development of nuclear energy. Atomic Energy Commission, Nuclear Safety Commission administrated by Science and Technology Agency in the past, were moved to the Ministry of Cabinet, and Integrated Science and Technology Council was also newly established under the Ministry of Cabinet. And Ministry of Economy, Trade and Industry(METI) is in charge of nuclear energy policy and the Ministry of Education, Culture, Sports, Science and Technology(MEXT) is in charge of nuclear academic science consequently. At the same time, the revision work of 'Long-term Program for Research, Development and Utilization of Nuclear of Japan' established in 1994, has been carried out from 1999 in order to set up the long term based national nuclear policy towards the 21st century, and finally the results were open to the public in November 2000. Major changes of nuclear policy of Japan the will be good references in the establishing future national nuclear policy for the use and development of nuclear energy

  19. Development for a multi-purpose nuclear energy supply system

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Shimazu, Yoichiro; Sato, Kotaro; Imamura, Mitsuru; Tsuji, Masashi

    2009-01-01

    Hokkaido is one of the four largest island of Japan located in the northern, most of the area, where the atmospheric temperature goes lower than the other area in winter. Thus, an average energy consumption per capita is larger in amount during cold seasons. Nowadays this energy is supplied by fossil fuels. On the other hand, problem of the green house gas emission should be controlled as much as possible in order to avoid global warming. From this point of view, the authors have discussed with local people on the possibility to utilize nuclear clean energy in the daily life in Hokkaido district. Recently some leaders in local towns become interested to such activities and they want information about nuclear energy and related systems. It is a very good chance for us to exchange information on nuclear energy with regards to public acceptance, fears of nuclear power or radiation, the extent of satisfaction to be sure for construction of urban nuclear plants and requirements for such plants. We prepared technical presentation materials and visited a selected towns and continued discussion in various aspects. For example, proposal of a proto type design concept of a small reactor, safety, heat energy supply system. The audience was mainly representatives of the towns firstly and gradually ordinal people also attended the meetings. Based on the information, it could be expected to establish a concept for such district energy supply system. In this paper, some examples and results through these activities are presented. (author)

  20. Nuclear Energy System Department annual report. (April 1, 2002 - March 31, 2003)

    International Nuclear Information System (INIS)

    Nakajima, Hajime; Shibata, Keiichi; Kugo, Teruhiko

    2003-09-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 2002 (April 1, 2002 - March 31, 2003). The Department has carried out researches and developments (R and Ds) of innovative nuclear energy system and their related fundamental technologies to ensure the long-term energy supply in Japan. The report deals with the R and Ds of an innovative water reactor, called Reduced-Moderation Water Reactor (RMWR), which has the capability of multiple recycling and breeding of plutonium using light water reactor technologies. In addition, as basic studies and fundamental researches of nuclear energy system in general, described are intensive researches in the fields of reactor physics, thermal-hydraulics, nuclear data, nuclear fuels, and materials. These activities are essential not only for the R and Ds of innovative nuclear energy systems but also for the improvement of safety and reliability of current nuclear energy systems. The maintenance and operation of reactor engineering facilities belonging to the Department support experimental activities. The activities of the research committees to which the Department takes a role of secretariat are also summarized. (author)

  1. Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Lindley, B.A.; Parks, G.T.; Nuttall, W.J.; Gregg, R.; Hesketh, K.W.; Kannan, U.; Krishnani, P.D.; Singh, B.; Thakur, A.; Cowper, M.; Talamo, A.

    2014-01-01

    Highlights: • We study three open cycle Th–U-fuelled nuclear energy systems. • Comparison of these systems is made to a reference U-fuelled EPR. • Fuel cycle modelling is performed with UK NNL code “ORION”. • U-fuelled system is economically favourable and needs least separative work per kWh. • Th–U-fuelled systems offer negligible waste and proliferation resistance advantages. - Abstract: In this study, we have sought to determine the advantages, disadvantages, and viability of open cycle thorium–uranium-fuelled (Th–U-fuelled) nuclear energy systems. This has been done by assessing three such systems, each of which requires uranium enriched to ∼20% 235 U, in comparison to a reference uranium-fuelled (U-fuelled) system over various performance indicators, spanning material flows, waste composition, economics, and proliferation resistance. The values of these indicators were determined using the UK National Nuclear Laboratory’s fuel cycle modelling code ORION. This code required the results of lattice-physics calculations to model the neutronics of each nuclear energy system, and these were obtained using various nuclear reactor physics codes and burn-up routines. In summary, all three Th–U-fuelled nuclear energy systems required more separative work capacity than the equivalent benchmark U-fuelled system, with larger levelised fuel cycle costs and larger levelised cost of electricity. Although a reduction of ∼6% in the required uranium ore per kWh was seen for one of the Th–U-fuelled systems compared to the reference U-fuelled system, the other two Th–U-fuelled systems required more uranium ore per kWh than the reference. Negligible advantages and disadvantages were observed for the amount and the properties of the spent nuclear fuel (SNF) generated by the systems considered. Two of the Th–U-fuelled systems showed some benefit in terms of proliferation resistance of the SNF generated. Overall, it appears that there is little

  2. Nuclear renaissance in Asia. Energy security and development of nuclear power generation system

    International Nuclear Information System (INIS)

    Nakasugi, Hideo

    2009-01-01

    The energy policy and strategy of development of nuclear power generation system of China, India and Korea are stated on the basis of use of light water reactors (LWRs). The conditions of power generation and introduction plans of nuclear energy of other Asian countries such as Vietnam, Thailand, Indonesia, Malaysia and Philippines are described. The power plant capacity of China increased from 50,500 MW in 2004, to 65,000 MW in 2005, and the target value is 40,000 MW of operating nuclear plants and 18,000 MW in building in 2020. China is lagging behind in peaceful use of nuclear energy technologies. A plan for the reform of nuclear industry and nuclear power generation projects of China are summarized. Total power plant capacity of India is 145,000 MW, but the nuclear plant capacity is 4,120 MW in 2008 and 63,000 MW of the target in 2032. Development of nuclear power, circumstance, and cooperation with other countries' industries are explained. 17,716 MW of nuclear power is in operation, 6,800 MW in building and 2,800 MW in the planning stage in Korea. History of development of national reactors and the subjects of development of the fourth generation reactor of Korea are stated. Management system of nuclear power plants in China, technical bases of nuclear power plants in China, development system of nuclear power generation in India, the conditions of power production of Korea in 2008, the capacity factor of Korea, Japan and world from 1998 to 2008, and comparison of nuclear industries in China, India and Korea are illustrated. (S.Y.)

  3. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would

  4. ICENES '91:Sixth international conference on emerging nuclear energy systems

    International Nuclear Information System (INIS)

    1991-01-01

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, μ-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session

  5. Ship-Based Nuclear Energy Systems for Accelerating Developing World Socioeconomic Advance

    Science.gov (United States)

    Petroski, Robert; Wood, Lowell

    2014-07-01

    Technological, economic, and policy aspects of supplying energy to newly industrializing and developing countries using ship-deployed nuclear energy systems are described. The approach analyzed comprises nuclear installations of up to gigawatt scale deployed within currently mass-produced large ship hulls which are capable of flexibly supplying energy for electricity, water desalination and district heating-&-cooling with low latencies and minimized shoreside capital expenditures. Nuclear energy is uniquely suited for mobile deployment due to its combination of extraordinary energy density and high power density, which enable enormous supplies of energy to be deployed at extremely low marginal costs. Nuclear installations on ships also confer technological advantages by essentially eliminating risk from earthquakes, tsunamis, and floods; taking advantage of assured access to an effectively unlimited amount of cooling water, and involving minimal onshore preparations and commitments. Instances of floating nuclear power stations that have been proposed in the past, some of which are currently being pursued, have generally been based on conventional LWR technology, moreover without flexibility or completeness of power output options. We consider nuclear technology options for their applicability to the unique opportunities and challenges of a marine environment, with special attention given to low-pressure, high thermal margin systems with continuous and assured afterheat dissipation into the ambient seawater. Such systems appear promising for offering an exceptionally high degree of safety while using a maximally simple set of components. We furthermore consider systems tailored to Developing World contexts, which satisfy societal requirements beyond electrification, e.g., flexible sourcing of potable water and HVAC services, servicing time-varying user requirements, and compatibility with the full spectrum of local renewable energy supplies, specifically including

  6. Cost-benefit analysis of multi-regional nuclear energy systems deployment

    International Nuclear Information System (INIS)

    Van Den Durpel, L.G.G.; Wade, D.C.; Yacout, A.M.

    2007-01-01

    The paper describes the preliminary results of a cost/benefit-analysis of multi-regional nuclear energy system approaches with a focus on how multi-regional approaches may benefit a growing nuclear energy system in various world regions also being able to limit, or even reduce, the costs associated with the nuclear fuel cycle and facilitating the introduction of nuclear energy in various regions in the world. The paper highlights the trade-off one might envisage in deploying such multi-regional approaches but also the pay backs possible and concludes on the economical benefits one may associate to regional fuel cycle centres serving a world-fleet of STAR (small fast reactors of long refueling interval) where these STARs may be competitive compared to the LWRs (Light Water Reactors) as a base-case nuclear reactor option. (authors)

  7. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E. II; Rochau, Gary Eugene

    2009-01-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink(reg s ign), an extension of MATLAB(reg s ign), is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  8. Nuclear Hybrid Energy Systems Initial Integrated Case Study Development and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US Department of Energy Office of Nuclear Energy established the Nuclear Hybrid Energy System (NHES) project to develop a systematic, rigorous, technically accurate set of methods to model, analyze, and optimize the integration of dispatchable nuclear, fossil, and electric storage with an industrial customer. Ideally, the optimized integration of these systems will provide economic and operational benefits to the overall system compared to independent operation, and it will enhance the stability and responsiveness of the grid as intermittent, nondispatchable, renewable resources provide a greater share of grid power.

  9. Nuclear Hybrid Energy Systems Regional Studies: West Texas & Northeastern Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deason, Wesley R [Idaho National Lab. (INL), Idaho Falls, ID (United States); Vilim, Richard B. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [[NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases not generic examples based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  10. Reliability estimation for multiunit nuclear and fossil-fired industrial energy systems

    International Nuclear Information System (INIS)

    Sullivan, W.G.; Wilson, J.V.; Klepper, O.H.

    1977-01-01

    As petroleum-based fuels grow increasingly scarce and costly, nuclear energy may become an important alternative source of industrial energy. Initial applications would most likely include a mix of fossil-fired and nuclear sources of process energy. A means for determining the overall reliability of these mixed systems is a fundamental aspect of demonstrating their feasibility to potential industrial users. Reliability data from nuclear and fossil-fired plants are presented, and several methods of applying these data for calculating the reliability of reasonably complex industrial energy supply systems are given. Reliability estimates made under a number of simplifying assumptions indicate that multiple nuclear units or a combination of nuclear and fossil-fired plants could provide adequate reliability to meet industrial requirements for continuity of service

  11. Energy System Expectations for Nuclear in the 21. Century: A Plausible Range

    International Nuclear Information System (INIS)

    Langlois, Lucille M.; McDonald, Alan; Rogner, Hans-Holger; Vera, Ivan

    2002-01-01

    This paper outlines a range of scenarios describing what the world's energy system might look like in the middle of the century, and what nuclear energy's most profitable role might be. The starting point is the 40 non-greenhouse-gas-mitigation scenarios in the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change (IPCC, 2000). Given their international authorship and comprehensive review by governments and scientific experts, the SRES scenarios are the state of the art in long-term energy scenarios. However, they do not present the underlying energy system structures in enough detail for specific energy technology and infrastructure analyses. This paper therefore describes initial steps within INPRO (The International Project on Innovative Nuclear Reactors and Fuel Cycles of the International Atomic Energy Agency) to translate the SRES results into a range of possible nuclear energy technology requirements for mid-century. The paper summarizes the four SRES scenarios that will be used in INPRO and the reasons for their selection. It provides illustrative examples of the sort of additional detail that is being developed about the overall energy system implied by each scenario, and about specific scenario features particularly relevant to nuclear energy. As recommended in SRES, the selected scenarios cover all four SRES 'story-line families'. The energy system translations being developed in INPRO are intended to indicate how energy services may be provided in mid-century and to delineate likely technology and infrastructure implications. They will indicate answers to questions like the following. The list is illustrative, not comprehensive. - What kind of nuclear power plants will best fit the mid-century energy system? - What energy forms and other products and services provided by nuclear reactors will best fit the mid-century energy system? - What would be their market shares? - How difficult will it be to site new nuclear

  12. Chilean Nuclear Energy Commission dosimetric information system

    International Nuclear Information System (INIS)

    Guerrero Vallejos, Patricia Andrea

    1997-01-01

    This thesis discusses the nuclear radiation that people who work with radioactive material is exposed to and its control by the Chilean Nuclear Energy Commission. A full analysis of the System is presented with information about the Commission and the Department of Nuclear and Radiological Safety which runs the System. Ana analysis of the System is presented in order to obtain requirements. Management flow diagrams, the processes involved and current problems experienced by the users are described. A design logic is modeled producing Data Flow Diagrams (DFD). based on this physical design, or, Model of Physical Data, is prepared including tables, attributes, types of data, primary and foreign keys. A description is presented of how the System is implemented, the tools that are used and how the testing phase is carried out. The Dosimetry System meets the criteria for a Software Engineering project, where the basic cycle was used as a working methodology. The System developed supports the dosimetric control of people exposed to radioactive material. (author)

  13. MEHODOLOGY FOR PROLIFERATION RESISTANCE FOR ADVANCE NUCLEAR ENERGY SYSTEMS

    International Nuclear Information System (INIS)

    YUE, M.; CHANG, L.Y.; BARI, R.

    2006-01-01

    The Technology Goals for Generation IV nuclear energy systems highlight Proliferation Resistance and Physical Protection (PRandPP) as one of the four goal areas for Generation 1V nuclear technology. Accordingly, an evaluation methodology is being developed by a PRandPP Experts Group. This paper presents a possible approach, which is based on Markov modeling, to the evaluation methodology for Generation IV nuclear energy systems being developed for PRandPP. Using the Markov model, a variety of proliferation scenarios can be constructed and the proliferation resistance measures can be quantified, particularly the probability of detection. To model the system with increased fidelity, the Markov model is further developed to incorporate multiple safeguards approaches in this paper. The approach to the determination of the associated parameters is presented. Evaluations of diversion scenarios for an example sodium fast reactor (ESFR) energy system are used to illustrate the methodology. The Markov model is particularly useful because it can provide the probability density function of the time it takes for the effort to be detected at a specific stage of the proliferation effort

  14. Soft computing trends in nuclear energy system

    International Nuclear Information System (INIS)

    Paramasivan, B.

    2012-01-01

    In spite of so many advancements in the power and energy sector over the last two decades, its survival to cater quality power with due consideration for planning, coordination, marketing, safety, stability, optimality and reliability is still believed to remain critical. Though it appears simple from the outside, yet the internal structure of large scale power systems is so complex that event management and decision making requires a formidable preliminary preparation, which gets still worsened in the presence of uncertainties and contingencies. These aspects have attracted several researchers to carryout continued research in this field and their valued contributions have been significantly helping the newcomers in understanding the evolutionary growth in this sector, starting from phenomena, tools, methodologies to strategies so as to ensure smooth, stable, safe, reliable and economic operation. The usage of soft computing would accelerate interaction between the energy and technology research community with an aim to foster unified development in the next generation. Monitoring the mechanical impact of a loose (detached or drifting) part in the reactor coolant system of a nuclear power plant is one of the essential functions for operation and maintenance of the plant. Large data tables are generated during this monitoring process. This data can be 'mined' to reveal latent patterns of interest to operation and maintenance. Rough set theory has been applied successfully to data mining. It can be used in the nuclear power industry and elsewhere to identify classes in datasets, finding dependencies in relations and discovering rules which are hidden in databases. An important role may be played by nuclear energy, provided that major safety, waste and proliferation issues affecting current nuclear reactors are satisfactorily addressed. In this respect, a large effort is under way since a few years towards the development of advanced nuclear systems that would use

  15. Unattended nuclear systems for local energy supply

    International Nuclear Information System (INIS)

    Lynch, G.F.; Bancroft, A.R.; Hilborn, J.W.; McDougall, D.S.; Ohta, M.M.

    1988-02-01

    This paper describes recent developments in a small nuclear heat and electricity production system - the SLOWPOKE Energy System - that make it possible to locate the system close to the load, and that could have a major impact on local energy supply. The most important unique features arising from these developments are walk-away safety and the ability to operate in an unattended mode. Walk-away safety means that radiological protection is provided by intrinsic characteristics and does not depend on either engineered safety systems or operator intervention. This, in our view, is essential to public acceptance. The capability for unattended operation results from self-regulation; however, the performance can be remotely monitored. The SLOWPOKE Energy System consists of a water-filled pool, operating at atmospheric pressure, which cools and moderates a beryllium-reflected thermal reactor that is fuelled with 100 to 400 kg of low-enriched uranium. The pool water also provides shielding from radioactive materials trapped in the fuel. Heat is drawn from the pool and transferred either to a building hot-water distribution system or to an organic liquid which is converted to vapour to drive a turbine-generator unit. Heating loads between 2 qnd 10 MWt, and electrical loads up to 1 MWe can be satisfied. SLOWPOKE is a dramatic departure from conventional nuclear power reactors. Its nuclear heat source is intrinsically simple, having only one moving part: a solid neutron absorber which is slowly withdrawn from the reactor to balance the fuel burnup. Its power is self-regulated and excessive heat production cannot occur, even for the most severe combinations of system failure. Cooling of the fuel is assured by natural physical processes that do not depend on mechanical components such as pumps. These intrinsic characteristics assure public safety and ultra high reliability

  16. Unattended nuclear systems for local energy supply

    International Nuclear Information System (INIS)

    Lynch, G.F.; Bancroft, A.R.; Hilborn, J.W.; McDougall, D.S.; Ohta, M.M.

    1986-10-01

    This paper describes recent developments in a small nuclear heat and electricity production system - the SLOWPOKE energy system - that make it possible to locate the system close to the load, and that could have a major impact on local energy supply. The most important unique features arising from these developments are walk-away safety and the ability to operate in an unattended mode. Walk-away safety means that radiological protection is provided by intrinsic characteristics and does not depend on either engineered safety systems or operator intervention. This, in our view, is essential to public acceptance. The capability for unattended operation results from self-regulation, however the performance can be remotely monitored. The SLOWPOKE energy system consists of a water-filled pool, operating at atmospheric pressure, which cools and moderates a beryllium-reflected thermal reactor that is fuelled with 100 to 400 kg of low enriched uranium. The pool water also provides shielding from radioactive materials trapped in the fuel. Heat is drawn from the pool and transferred either to a building hot-water distribution system or to an organic liquid which is converted to vapour to drive a turbine-generator unit. Heating loads between 2 and 10 MWt, and electrical loads up to 1 MWe can be satisfied. SLOWPOKE is a dramatic departure from conventional nuclear power reactors. Its nuclear heat source is intrinsically simple, having only one moving part: a solid neutron absorber which is slowly withdrawn from the reactor to balance the fuel burnup. Its power is self-regulated and excessive heat production cannot occur, even for the most severe combinations of system failure. Cooling of the fuel is assured by natural physical processes that do not depend on mechanical components such as pumps. These intrinsic characteristics assure public safety and ultra high reliability. (author)

  17. Sensitivity analysis of synergistic collaborative scenarios towards sustainable nuclear energy systems

    International Nuclear Information System (INIS)

    Fesenko, G.; Kuznetsov, V.; Poplavskaya, E.

    2013-01-01

    The paper presents results of the study on the role of collaboration among countries towards sustainable global nuclear energy systems. The study explores various market shares for nuclear fuel cycle services, possible scale of collaboration among countries and assesses benefits and issues relevant for collaboration between suppliers and users of nuclear fuel cycle services. The approach used in the study is based on a heterogeneous world model with grouping of the non-personified nuclear energy countries according to different nuclear fuel cycle policies. The methodology applied in the analysis allocates a fraction of future global nuclear energy generation to each of such country-groups as a function of time. The sensitivity studies performed show the impacts of the group shares on the scope of collaboration among countries and on the resulting possible reactor mix and nuclear fuel cycle infrastructure versus time. The study quantitatively demonstrates that the synergistic approach to nuclear fuel cycle has a significant potential for offering a win-win collaborative strategy to both, technology holders and technology users on their joint way to future sustainable nuclear energy systems. The study also highlights possible issues on such a collaborative way. (authors)

  18. Development of integrated systems dynamics models for the sustainability assessment of nuclear energy

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Yacout, Abdellatif; Wade, Dave

    2005-01-01

    Nuclear energy is increasingly perceived as an attractive mature energy generation technology that can deliver an answer to the worldwide increasing energy demand while respecting environmental concerns as well as contributing to a reduced dependence on fossil fuel. Advancing nuclear energy deployment demands an assessment of nuclear energy with respect to all sustainability dimensions allowing full stakeholder involvement in deciding on the role of nuclear energy as part of a sustainable energy generation mix in the future. Integrated system dynamics models of nuclear energy systems are interesting tools for such assessment studies allowing performing material flow accounting, environmental impact, economic competitiveness and socio-political analysis and this for time-evolving nuclear energy systems. No single tool today is capable of covering all the dimensions for such integrated assessment while various developments are ongoing in different places around the world to make such tools available in the nearby future. Argonne National Laboratory has embarked on such tool development since the year 2000 and has developed various tools among which the DANESS-code shall be described in some more detail in this paper. (author)

  19. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Tightly coupled nuclear-renewable hybrid energy systems (N-R HESs) are an option that can generate zero-carbon, dispatchable electricity and provide zero-carbon energy for industrial processes at a lower cost than alternatives. N-R HESs are defined as systems that are managed by a single entity and link a nuclear reactor that generates heat, a thermal power cycle for heat to electricity conversion, at least one renewable energy source, and an industrial process that uses thermal and/or electrical energy. This report provides results of an analysis of two N-R HES scenarios. The first is a Texas-synthetic gasoline scenario that includes four subsystems: a nuclear reactor, thermal power cycle, wind power plant, and synthetic gasoline production technology. The second is an Arizona-desalination scenario with its four subsystems a nuclear reactor, thermal power cycle, solar photovoltaics, and a desalination plant. The analysis focuses on the economics of the N-R HESs and how they compare to other options, including configurations without all the subsystems in each N-R HES and alternatives where the energy is provided by natural gas.

  20. Development and implementation of nuclear energy in energy system in Yugoslavia

    International Nuclear Information System (INIS)

    Ljubic, V.; Vukovic, D.; Vrhovac, S.

    1986-01-01

    All electrical demand analyses made in the last years show that besides hydro and thermal power plants in further development of electric power supply system in Yugoslavia, it will be necessary to approach successively with implementation of nuclear power plants. Quite a number of scientific and professional analyses have been done with the purpose to make the necessary conditions for the construction of nuclear power plants in the future. By reason of extra complexity and the necessity of the large amount of investment, it was concluded that the implementation, of nuclear energy in Yugoslavia has to be planned on uniform policy in development and uniform technological-technical concept. In the paper all till now finished activities in implementation of nuclear power plants in energy sector in Yugoslavia as well as planned future activities have been described. (author)

  1. Role of nuclear fusion in future energy systems and the environment under future uncertainties

    International Nuclear Information System (INIS)

    Tokimatsu, Koji; Fujino, Jun'ichi; Konishi, Satoshi; Ogawa, Yuichi; Yamaji, Kenji

    2003-01-01

    Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. This is because the prospects for nuclear fusion are quite uncertain and the investments therefore carry the risk of quite large regrets, even though investment is needed in order to develop the technology. The timeframe by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we identify three roles that nuclear fusion will take on when breakeven prices are achieved: (i) a portion of the electricity market in 2100, (ii) reduction of annual global total energy systems cost, and (iii) mitigation of carbon tax (shadow price of carbon) under CO 2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction timeframe for nuclear fusion, capacity projections of nuclear fusion, CO 2 target in 2100, capacity utilization ratio of options in energy/environment technologies, and utility discount rates. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050-2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO 2 concentration constraint

  2. Nuclear Hybrid Energy Systems - Regional Studies. West Texas and Northeastern Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deason, Wesley R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Vilim, Richard B. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases - not generic examples - based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  3. Nuclear energy system department annual report. April 1, 2000 - March 31, 2001

    International Nuclear Information System (INIS)

    Osugi, Toshitaka; Takase, Kazuyuki; Kunii, Katsuhiko

    2002-03-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 2000 (April 1, 2000 - March 31, 2001). The Department has been organized from April 1998. The main research activity is aimed to build the basis of the development of future nuclear energy systems. The research activities of the Department cover basic nuclear and atomic and molecular data evaluation, conceptual design of a reduced-moderation water reactor, reactor physics experiments and development of the reactor analysis codes, experiment and analysis of thermal-hydrodynamics, energy system analysis and assessment, development of advanced materials for a reactor, lifetime reliability assessment on structural material, development of advanced nuclear fuel, study of nuclear transmutation systems, design of a marine reactor and the research for a nuclear ship system. The maintenance and operation of reactor engineering facilities belonging to the Department are undertaken. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  4. A self-consistent nuclear energy supply system

    International Nuclear Information System (INIS)

    Fujii-e, Y.; Morita, T.; Kawakami, H.; Arie, K.; Suzuki, M.; Iida, M.; Yamazaki, H.

    1992-01-01

    A self-consistent nuclear energy supply system (SCNESS) is investigated for a Fast Reactor. SCNESS is proposed as a future stable energy supplier with no harmful influence on humans or environment for the ultimate goal of nuclear energy development. SCNESS should be inherently safe, be able to breed fissionable material, and transmute long-lived radioactive nuclides (i.e., minor actinides and long-lived fission products). The relationship between these characteristics and the spatial assignment of excess neutrons (v-1) for each characteristic are analyzed. The analysis shows that excess neutrons play an intrinsic role in realizing SCNESS. The reactor concept of SCNESS is investigated by considering utilization of excess neutrons. Results show that a small-size axially double-layered annular core with metal fuel is a choice candidate for SCNESS. SCNESS is concluded feasible. (author). 4 refs., 9 figs

  5. Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES)

    International Nuclear Information System (INIS)

    Yoshioka, Ritsuo; Mitachi, Koshi

    2013-01-01

    The authors have been promoting nuclear energy technology based on thorium molten salt as Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES). This system is a combination of fission power reactor of Molten Salt Reactor (MSR), and Accelerator Molten Salt Breeder (AMSB) for production of fissile 233 U with connecting chemical processing facility. In this paper, concept of THORIMS-NES, advantages of thorium and molten salt recent MSR design results such as FUJI-U3 using 233 U fuel, FUJI-Pu, large sized super-FUJI, pilot plant miniFUJI, AMSB, and chemical processing facility are described. (author)

  6. Nuclear Energy and Renewables interaction: System Effects in Low-carbon Electricity Systems

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Cometto, Marco

    2013-01-01

    This report presents a synthesis of the OECD/NEA study 'Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems'. It addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as nuclear power, in terms of their effects on electricity systems. These effects add costs to the production of electricity, which are not usually transparent. The report recommends that decision-makers should take into account such system costs and internalise them according to a 'generator pays' principle, which is currently not the case. Analysing data from six OECD/NEA countries, the study finds that including the system costs of variable renewables at the level of the electricity grid increases the total costs of electricity supply by up to one-third, depending on technology, country and penetration levels. In addition, it concludes that, unless the current market subsidies for renewables are altered, dispatchable technologies will increasingly not be replaced as they reach their end of life and consequently security of supply will suffer. This implies that significant changes in management and cost allocation will be needed to generate the flexibility required for an economically viable coexistence of nuclear energy and renewables in increasingly de-carbonised electricity systems

  7. Public attitudes towards nuclear power and alternative energy systems

    International Nuclear Information System (INIS)

    1984-10-01

    Phase I of this study analyzed attitudes and beliefs of respondents drawn from Metro-Manila. The second phase utilized a sample drawn from residents near a geothermal power plant site in Southern Philippines. Four dimensions of beliefs (psychological/environmental risks, technological benefits/development, economic benefits/implications and socio-political implications/benefits) were identified through factor analysis of belief items on nuclear energy and refined empirically to determine perceptions of respondents about all energy systems. Identification of the relationships between dimensions provided insight into the shared perceptions about each energy system held by the various groups of respondents. The overall attitude of the respondents towards energy systems (nuclear, solar, hydro, geothermal and oil) was determined using three attitude measures: Fishbein model, Osgood's semantic differential technique, and direct response to unfavorability/favorability scale. The belief dimensions were correlated with the attitude measures to determine the degree of contribution of each dimension to attitude. A comparative analysis was made to differentiate attitudes and beliefs held by the PRO and CON nuclear groups, and by the subsamples: university students, science teachers and barangay leaders of the Metro-Manila sample. Attitudes and beliefs relating to the demographic variables were also examined for the two samples. (author)

  8. Social response to nuclear power and alternative energy systems

    International Nuclear Information System (INIS)

    Savellano, R.A.; Bulaon, C.A.

    1986-01-01

    Phase I of this study analyzed attitudes and beliefs of respondents drawn from Metro Manila. The second phase utilized a sample drawn from residents near a geothermal power plant site in the Southern Philippines. Four dimensions of beliefs (psychological environmental risks, technological benefits/development, economic benefits/implications, and socio-political/implications/benefit) were identified through factor analysis of beliefs items on nuclear energy and refined empirically to determine perceptions of respondents about all other energy systems. Identification of the relationship between dimensions provided insight into the shared perceptions about each energy system held by the various groups of respondents. The overall attitude of the respondents towards energy systems (nuclear, solar, hydro, geothermal and oil) was determined using three attitude measures: the Fishbein model, Osgood's semantic differential technique, and direct response to unfavorability/favorability scale. The belief dimensions were correlated with the attitude measures to determine the degree of contribution to attitude. A comparative analysis was made to different attitudes and beliefs held by the PRO and CON nuclear groups and by the subsamples: university students, science teachers and barangay leaders of Metro Manila sample. Attitudes and beliefs relating to the demographic variables were also examined for the two samples. (author)

  9. Advanced nuclear energy systems and the need of accurate nuclear data: the n_TOF project at CERN

    CERN Document Server

    Colonna, N; Praena, J; Lederer, C; Karadimos, D; Sarmento, R; Domingo-Pardo, C; Plag, R; Massimi, C; Calviani, M; Guerrero, C; Paradela, C; Belloni, F

    2010-01-01

    To satisfy the world's constantly increasing demand for energy, a suitable mix of different energy sources has to be devised. In this scenario, an important role could be played by nuclear energy, provided that major safety, waste and proliferation issues affecting current nuclear reactors are satisfactorily addressed. To this purpose, a large effort has been under way for a few years towards the development of advanced nuclear systems with the aim of closing the fuel cycle. Generation IV reactors, with full or partial waste recycling capability, accelerator driven systems, as well as new fuel cycles are the main options being investigated. The design of advanced systems requires improvements in basic nuclear data, such as cross-sections for neutron-induced reactions on actinides. In this paper, the main concepts of advanced reactor systems are described, together with the related needs of new and accurate nuclear data. The present activity in this field at the neutron facility n\\_TOF at CERN is discussed.

  10. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  11. Nuclear energy system department annual report. April 1, 2001 - March 31, 2002

    International Nuclear Information System (INIS)

    Nakajima, Hajime; Ohnuki, Akira; Kunii, Katsuhiko

    2003-03-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 2001 (April 1, 2001 - March 31, 2002). The Department has been organized from April 1998. The main research activity is aimed to build the basis of the development of future nuclear energy systems. The research activities of the Department cover basic nuclear data evaluation, conceptual design of a reduced-moderation water reactor, reactor physics experiments and development of the reactor analysis codes, experiment and analysis of thermal-hydrodynamics, energy system analysis and assessment, development of advanced materials for a reactor, lifetime reliability assessment on structural material, development of advanced nuclear fuel, design of a marine reactor and the research for a nuclear ship system. The maintenance and operation of reactor engineering facilities belonging to the Department are undertaken. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  12. Summary Report of the INL-JISEA Workshop on Nuclear Hybrud Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mark Antkowiak; Richard Boardman; Shannon Bragg-Sitton; Robert Cherry; Mark Ruth

    2012-07-01

    Hybrid energy systems utilize two or more energy resources as inputs to two or more physically coupled subsystems to produce one or more energy commodities as outputs. Nuclear hybrid energy systems can be used to provide load-following electrical power to match diurnal to seasonal-scale changes in power demand or to compensate for the variability of renewable wind or solar generation. To maintain economical, full rate operation of the nuclear reactor, its thermal energy available when power demand is low could be diverted into making synthetic vehicle fuels of various types. The Institute for Nuclear Energy Science and Technology (INEST) and the Joint Institute for Strategic Energy Analysis (JISEA) co-sponsored an international workshop to identify research topics important in advancing the potential use of hybrid systems with a specific focus on nuclear-renewable hybrid systems. The workshop included presentations ranging from energy challenges and research and development (R&D) directions being pursued by nations to multiple options for hybrid systems. Those options include one that is being commercialized to other opportunities and analysis results quantifying them. The workshop also involved two breakout sessions - one focused on thermal energy management issues especially at unit-operation scale and the second focused on system operations issues including system controls, regulatory issues, technical and economic analysis, and market challenges. A discussion involving the full group focused on more general issues such as societal involvement and participation. Key criteria for selecting hybrid energy system projects and metrics for comparing them were also identified by the full group. The workshop's findings are being used initially by INEST to define topics for a research preproposal solicitation.

  13. The global greenhouse effect and the advanced nuclear energy system

    International Nuclear Information System (INIS)

    Byong Whi Lee

    1998-01-01

    In spite of future uncertainty, Korea is very much committed to nuclear energy as a major source of electric power expansion, because of its lack of domestic energy resources. A long term nuclear power program has resulted in 11 nuclear power plants of 9.6 GWe in operation, 2 units under construction and 7 planned. This means that the share of nuclear power in Korean electricity production would be about 38% in 2006. Many other countries were faced with the problem of global warming which is related to carbondioxide emission from the use of fossil fuels. According to Korean experience, it could be concluded that substitution of fossil fuels would be the most efficient and economic means of reducing the greenhouse gas emissions. In addition to nuclear and hydropower, the most promising other non-fossil sources are geothermal energy, biomass, solar thermal energy, photovoltaic systems, wind power, tidal power, wave power and ocean thermal electric conversion

  14. INPRO Methodology to evaluate the Mexico nuclear energy system; Metodologia INPRO para evaluar el sistema de energia nuclear de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cruz S, R. R.; Martin del C, C., E-mail: crzslns.ricardoruben@gmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2016-09-15

    The International Atomic Energy Agency has developed the so-called International Project on Fuel Cycles and Innovative Nuclear Reactors (INPRO), in order to make nuclear energy available to meet the energy needs of the 21 century, in a sustainable way. One of the tasks of the project is the evaluation of the nuclear systems, to check whether they meet the objectives of the project and whether they are sustainable. This paper explains the rationale and general characteristics of the project in the evaluation of nuclear energy systems based on the concept of sustainable development. It describes the methodology developed to carry out this evaluation, divided into seven areas, such as economic, environmental, security, etc., which together make up the sustainable development of energy through nuclear systems. The economic area is analyzed and the evaluation criteria and parameters established by INPRO are discussed, in order to evaluate the Mexican nuclear energy system using Nest (software developed within the same project) as a tool to support the economic evaluation of nuclear systems. Based on the energy strategy proposed by the Energy Secretary of the Mexican Government which seeks to reduce the greenhouse gas emissions from the national electricity generation park, two types of reactor of currently available technology (A BWR and AP1000), were compared and these in turn with other alternative energy generation technologies, such as combined cycle, geothermal and wind plants. Also, the results of the application of the INPRO methodology are presented. Finally, the recommendations on actions that could lead the Mexican nuclear energy system towards sustainable development and conclusions on the application of the methodology to the Mexican case are mentioned. (Author)

  15. A “Grammar” for assessing the performance of power-supply systems: Comparing nuclear energy to fossil energy

    International Nuclear Information System (INIS)

    Diaz-Maurin, François; Giampietro, Mario

    2013-01-01

    This article illustrates an innovative approach for the characterization and comparison of the performance of power-supply systems. The concept of ‘grammar’ forces to declare the pre-analytical decisions about: (i) semantic and formal categories used for the accounting – primary energy sources (PES), energy carriers (EC), and production factors; (ii) the set of functional and structural elements of the power-supply system included in the analysis. After having tamed the systemic ambiguity associated with energy accounting, it becomes possible to generate a double assessment referring to: (i) external constraints – the consumption of PES and the generation of waste and pollution; and (ii) internal constraints – the requirements of production factors such as human labor, power capacity, internal consumption of EC for making EC. The case study provided compares the production of EC (electricity) with “nuclear energy” and “fossil energy”. When considering internal constraints, nuclear energy requires about twice as much power capacity (5.9–9.5 kW/GWh vs. 2.6–2.9 kW/GWh) and 5–8 times more labor (570–640 h/GWh vs. 80–115 h/GWh). Things do not improve for nuclear energy when looking at external constraints – e.g. the relative scarcity of PES. This may explain the difficulties faced by nuclear energy to gain interest from investors. -- Highlights: ► A new approach to assess the performance of power-supply systems is provided. ► A biophysical analysis of the production process is based on the concept of grammar. ► A grammar is capable of handling the inherent ambiguity associated with energy. ► The performance of nuclear energy and fossil energy is compared using this grammar. ► Nuclear energy demonstrates a lower performance than fossil energy in making electricity.

  16. Soft energy vs nuclear energy

    International Nuclear Information System (INIS)

    Ando, Yoshio

    1981-01-01

    During the early 1960s, a plentiful, inexpensive supply of petroleum enabled Japanese industry to progress rapidly; however, almost all of this petroleum was imported. Even after the first oil crisis of 1973, the recent annual energy consumption of Japan is calculated to be about 360 million tons in terms of petroleum, and actual petroleum forms 73% of total energy. It is necessary for Japan to reduce reliance on petroleum and to diversify energy resources. The use of other fossil fuels, such as coal, LNG and LPG, and hydraulic energy, is considered as an established alternative. In this presentation, the author deals with new energy, namely soft energy and nuclear energy, and discusses their characteristics and problems. The following kinds of energy are dealt with: a) Solar energy, b) Geothermal energy, c) Ocean energy (tidal, thermal, wave), d) Wind energy, e) Biomass energy, f) Hydrogen, g) Nuclear (thermal, fast, fusion). To solve the energy problem in future, assiduous efforts should be made to develop new energy systems. Among them, the most promising alternative energy is nuclear energy, and various kinds of thermal reactor systems have been developed for practical application. As a solution to the long-term future energy problem, research on and development of fast breeder reactors and fusion reactors are going on. (author)

  17. Advanced energy system with nuclear reactors as an energy source

    International Nuclear Information System (INIS)

    Kato, Y.; Ishizuka, T.; Nikitin, K.

    2007-01-01

    recovery system is also applicable to a fast reactor (FR) with a supercritical CO 2 gas turbine that achieves higher cycle efficiency than conventional sodium cooled FRs with steam turbines. The FR will eliminate problems of conventional FRs related to safety, plant maintenance, and construction costs. The FR consumes efficiently trans-uranium elements (TRU) produced in light water reactors as fuel and reduce long-lived radioactive wastes or environmental loads of long term geological disposal. An Advanced Energy System (AES) with nuclear reactors as an energy source has been proposed which supply electricity and heat to cities. The AES has three objectives: 1. Save energy resources and reduce green house gas emissions, attaining total energy utilization efficiency higher than 85% through waste heat recovery and utilization. 2. Foster a recycling society that produces methane and methanol for fuel cells from waste products of cities and farms. 3. Consume TRU produced in LWRs as fuel for FRs, and reduce long-lived radioactive wastes or environmental loads of long term geological disposal. References 1. Y. Kato, T. Nitawaki and K. Fujima, 'Zero Waste Heat Release Nuclear Cogeneration System, 'Proc. 2003 Intl. Congress on Advanced Nuclear Power Plants (ICAPP'03), Cordoba, Spain, May 4-7, 2003, Paper 3313. 2. Y. Kato, T. Nitawaki and Y. Muto, 'Medium Temperature Carbon Dioxide Gas Turbine Reactor, 'Nucl. Eng. Design, 230, pp. 195-207 (2004). 3. H. N. Tran and Y. Kato, 'New 2 37Np Burning Strategy in a Supercritical CO 2 Cooled Fast Reactor Core Attaining Zero Burnup Reactivity Loss,' Proc. American Nuclear Society's Topical Meeting on Reactor Physics (PHYSOR 2006), Vancouver, British Columbia, Canada, September 10-14, 2006

  18. Workshop on IAEA Tools for Nuclear Energy System Assessment for Long-Term Planning and Development

    International Nuclear Information System (INIS)

    2009-01-01

    The purpose of the workshop is to present to Member States tools and methods that are available from the IAEA in support of long-term energy planning and nuclear energy system assessments, both focusing on the sustainable development of nuclear energy. This includes tools devoted to energy system planning, indicators for sustainable energy development, the INPRO methodology for Nuclear Energy System Assessment (NESA) and tools for analysing nuclear fuel cycle material balance. The workshop also intends to obtain feedback from Member States on applying the tools, share experiences and lessons learned, and identify needs for IAEA support

  19. Nuclear-Renewable Hybrid Energy System Market Analysis Plans

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2016-06-09

    This presentation describes nuclear-renewable hybrid energy systems (N-R HESs), states their potential benefits, provides figures for the four tightly coupled N-R HESs that NREL is currently analyzing, and outlines the analysis process that is underway.

  20. Developing competence based qualification system in the nuclear energy sector

    International Nuclear Information System (INIS)

    Ceclan, Mihail

    2016-01-01

    The Institute for Energy and Transport of the Joint Research Centre, European Commission, developed a strategy and road map for ECVET implementation. The JRC road map for European Credit System for Vocational Education and Training (ECVET) implementation has reached the stage of Competence-Based Qualification System development. The Competence-Based Qualification System can help bridge the gap between Human Resources demand and supply in the nuclear market by structuring qualifications in small independent parts. This very specific ECVET feature of a qualification, facilitates the process of competences accumulation and the lifelong learning, mobility and flexible learning pathways. New developments are presented about the Competence-Based Qualification System development for the nuclear energy sector.

  1. Developing competence based qualification system in the nuclear energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Ceclan, Mihail [European Commission, Petten (Netherlands). Inst. for Energy and Transport

    2016-04-15

    The Institute for Energy and Transport of the Joint Research Centre, European Commission, developed a strategy and road map for ECVET implementation. The JRC road map for European Credit System for Vocational Education and Training (ECVET) implementation has reached the stage of Competence-Based Qualification System development. The Competence-Based Qualification System can help bridge the gap between Human Resources demand and supply in the nuclear market by structuring qualifications in small independent parts. This very specific ECVET feature of a qualification, facilitates the process of competences accumulation and the lifelong learning, mobility and flexible learning pathways. New developments are presented about the Competence-Based Qualification System development for the nuclear energy sector.

  2. Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems : Method comments to a NEA report

    OpenAIRE

    Söder, Lennart

    2012-01-01

    OECD Nuclear Energy Agency (NEA) released a new report on 29 November 2012. The study recommends that decision-makers should take full electricity system costs into account in energy choices and that such costs should be internalised according to a “generator pays” principle. The study, entitled Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems, addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as ...

  3. Nuclear Energy General Objectives

    International Nuclear Information System (INIS)

    2011-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way it achieves this objective is to issue publications in various series. Two of these series are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III, paragraph A.6, of the IAEA Statute, the IAEA safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are primarily written in a regulatory style, and are binding on the IAEA for its own activities. The principal users are Member State regulatory bodies and other national authorities. The IAEA Nuclear Energy Series consists of reports designed to encourage and assist research on, and development and practical application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia and politicians, among others. The information is presented in guides, reports on the status of technology and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The series complements the IAEA's safety standards, and provides detailed guidance, experience, good practices and examples on the five areas covered in the IAEA Nuclear Energy Series. The Nuclear Energy Basic Principles is the highest level publication in the IAEA Nuclear Energy Series and describes the rationale and vision for the peaceful uses of nuclear energy. It presents eight Basic Principles on which nuclear energy systems should be based to fulfil nuclear energy's potential to help meet growing global energy needs. The Nuclear Energy Series Objectives are the second level publications. They describe what needs to be

  4. Nuclear Hybrid Energy System Model Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  5. National energy and nuclear power system plans of the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.

    1977-01-01

    Continuous and secure procurement of energy is of vital importance for our national economy. This has been demonstrated drastically during and after the energy crisis in 1973. Therefore, the aim of energy policy in the Federal Republic of Germany is to make energy available: (1) in always sufficient quantities; (2) with a maximum degree of security of supply; (3) in a way to protect the environment to a maximum extent; (4) at the cheapest possible cost to the economy. The other aim of our energy policy is to diversify the basis of primary energy sources in order to reduce our dependence on imported oil as fast as this is possible under reasonable economic conditions. For these reasons our efforts are concentrated on the development of nuclear and new non-nuclear energy sources as well as on the development of technologies on energy conservation. The concept of the Federal Republic of Germany for the development of new energy sources is outlined in the FRG program of energy research and technology. It combines the continuation of the 4. nuclear program of FRG (1973-1976) and the skeleton program of non-nuclear energy research (1974-1977). In continuation of existing activites the main object of the new program will be again the development of nuclear energy concentrating on advanced reactor systems, nuclear fuel cycle and safety and radiation protection research. In addition large efforts are made in the area of coal technology, the development of new primary and secondary energy sources and methods for energy conservation. Until 1985 in the FRG the percentage of nuclear energy will be increased from 2% of today to 15% in 1985, i.e. approximately 45.000 MWe. The development of nuclear power systems will be performed by industry and nuclear research centers. At present there are about 25.000 people working in this area

  6. The self-consistent energy system with an enhanced non-proliferated core concept for global nuclear energy utilization

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Arie, Kazuo; Araki, Yoshio; Sato, Mitsuyoshi; Mori, Kenji; Nakayama, Yoshiyuki; Nakazono, Ryuichi; Kuroda, Yuji; Ishiguma, Kazuo; Fujii-e, Yoichi

    2008-01-01

    A sustainable nuclear energy system was developed based on the concept of Self-Consistent Nuclear Energy System (SCNES). Our study that trans-uranium (TRU) metallic fuel fast reactor cycle coupled with recycling of five long-lived fission products (LLFP) as well as actinides is the most promising system for the sustainable nuclear utilization. Efficient utilization of uranium-238 through the SCNES concept opens the doors to prolong the lifetime of nuclear energy systems towards several tens of thousand years. Recent evolution of the concept revealed compatibility of fuel sustainability, minor actinide (MA) minimization and non-proliferation aspects for peaceful use of nuclear energy systems through the discussion. As for those TRU compositions stabilized under fast neutron spectra, plutonium isotope fractions are remained in the range of reactor grade classification with high fraction of Pu240 isotope. Recent evolution of the SCNES concept has revealed that TRU recycling can cope with enhancing non-proliferation efforts in peaceful use with the 'no-blanket and multi-zoning core' concept. Therefore, the realization of SCNES is most important. In addition, along the process to the goals, a three-step approach is proposed to solve concurrent problems raised in the LWR systems. We discussed possible roles and contribution to the near future demand along worldwide expansion of LWR capacities by applying the 1st generation SCNES. MA fractions in TRU are more than 10% from LWR discharged fuels and even higher up to 20% in fuels from long interim storages. TRU recycling in the 1st generation SCNES system can reduce the MA fractions down to 4-5% in a few decades. This capability significantly releases 'MA' pressures in down-stream of LWR systems. Current efforts for enhancing capabilities for energy generation by LWR systems are efficient against the global warming crisis. In parallel to those movements, early realization of the SCNES concept can be the most viable decision

  7. Nuclear energy at the turning point

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, A.M.

    1977-07-01

    In deciding the future course of nuclear energy, it is necessary to re-examine man's long-term energy options, in particular solar energy and the breeder reactor. Both systems pose difficultiies: energy from the sun is likely to be expensive as well as limited, whereas a massive world-wide deployment of nuclear breeders will create problems of safety and of proliferation. Nuclear energy's long-term success depends on resolving both of these problems. Collocation of nuclear facilities with a system of resident inspectors are measures that ought to help increase the proliferation-resistance as well as the safety of a large-scale, long-term nuclear system based on breeders. In such a long-term system a strengthened International Atomic Energy Agency (IAEA) is viewed as playing a central role.

  8. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    -ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

  9. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    International Nuclear Information System (INIS)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-01-01

    -ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales

  10. Expert judgment for nuclear energy

    International Nuclear Information System (INIS)

    Choi, Young Sung; Lee, Sun Ho; Lee, Byong Whi

    2000-01-01

    Public perception on nuclear energy is much influenced by subjective impressions mostly formed through sensational and dramatic news of mass media or anti-nuclear groups. However, nuclear experts, those who have more relevant knowledge and information about nuclear energy, may have reasonable opinion based on scientific facts or inferences. Thus their opinion and consensus should be examined and taken into account during the process of nuclear energy policy formulation. For the purpose of eliciting experts' opinion, the web-based on-line survey system (eBOSS) was developed. Using the survey system, experts' views on nuclear energy were tallied, analyzed and compared with the public's. Based on the survey results, the paper suggests some recommendations about the future direction of the public information program in Korea

  11. Is nuclear energy ethically justifiable?

    International Nuclear Information System (INIS)

    Zuend, H.

    1987-01-01

    Nuclear technology offers the chance to make an extremely long term contribution to the energy supply of the earth. The use of nuclear energy is ethically justifiable, provided that several fundamental rules are obeyed during the technical design of nuclear installations. Such fundamental rules were unequivocally violated in the nuclear power plant Chernobyl. They are, however, fulfilled in the existing Swiss nuclear power plants. Improvements are possible in new nuclear power plants. Compared to other usable energy systems nuclear energy is second only to natural gas in minimal risk per generated energy unit. The question of ethical justification also may rightly be asked of the non-use of nuclear energy. The socially weakest members of the Swiss population would suffer most under a renunciation of nuclear energy. Future prospects for the developing countries would deteriorate considerably with a renunciation by industrial nations of nuclear energy. The widely spread fear concerning the nuclear energy in the population is a consequence of non-objective discussion. 8 refs., 2 figs

  12. Life-cycle impacts from novel thorium–uranium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Fenner, R.A.; Nuttall, W.J.; Parks, G.T.

    2015-01-01

    Highlights: • LCA performed for three open cycle Th–U-fuelled nuclear energy systems. • LCA for open cycle U-fuelled nuclear energy system (Areva’s EPR) used as benchmark. • U-fuelled EPR had lowest emissions per kWh over all systems studied in this work. • LCA model developed for thorium recovered from monazitic beach sands. • LCA model developed for the production of heavy water. - Abstract: Electricity generated from nuclear power plants is generally associated with low emissions per kWh generated, an aspect that feeds into the wider debate surrounding nuclear power. This paper seeks to investigate how life-cycle emissions would be affected by including thorium in the nuclear fuel cycle, and in particular its inclusion in technologies that could prospectively operate open Th–U-based nuclear fuel cycles. Three potential Th–U-based systems operating with open nuclear fuel cycles are considered: AREVA’s European Pressurised Reactor; India’s Advanced Heavy Water Reactor; and General Atomics’ Gas-Turbine Modular Helium Reactor. These technologies are compared to a reference U-fuelled European Pressurised Reactor. A life-cycle analysis is performed that considers the construction, operation, and decommissioning of each of the reactor technologies and all of the other associated facilities in the open nuclear fuel cycle. This includes the development of life-cycle analysis models to describe the extraction of thorium from monazitic beach sands and for the production of heavy water. The results of the life-cycle impact analysis highlight that the reference U-fuelled system has the lowest overall emissions per kWh generated, predominantly due to having the second-lowest uranium ore requirement per kWh generated. The results highlight that the requirement for mined or recovered uranium (and thorium) ore is the greatest overall contributor to emissions, with the possible exception of nuclear energy systems that require heavy water. In terms of like

  13. Generation IV Nuclear Energy Systems Ten-Year Program Plan Fiscal Year 2005, Volume 1

    International Nuclear Information System (INIS)

    None

    2005-01-01

    As reflected in the U.S. ''National Energy Policy'', nuclear energy has a strong role to play in satisfying our nation's future energy security and environmental quality needs. The desirable environmental, economic, and sustainability attributes of nuclear energy give it a cornerstone position, not only in the U.S. energy portfolio, but also in the world's future energy portfolio. Accordingly, on September 20, 2002, U.S. Energy Secretary Spencer Abraham announced that, ''The United States and nine other countries have agreed to develop six Generation IV nuclear energy concepts''. The Secretary also noted that the systems are expected to ''represent significant advances in economics, safety, reliability, proliferation resistance, and waste minimization''. The six systems and their broad, worldwide research and development (R and D) needs are described in ''A Technology Roadmap for Generation IV Nuclear Energy Systems'' (hereafter referred to as the Generation IV Roadmap). The first 10 years of required U.S. R and D contributions to achieve the goals described in the Generation IV Roadmap are outlined in this Program Plan

  14. Nuclear Energy System Department annual report (April 1, 1998 - March 31, 1999)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 1998 (April 1, 1998 - March 31, 1999). The Department has been organized from April 1998. The main research activity is aimed to build the basis of the development of future nuclear energy system. The research activities of the fiscal year cover basic nuclear and atomic and molecular data evaluation, conceptual design of reduced-moderation water reactor, development of reactor analysis code, reactor physics study on fast neutron system, control and sensing technology development for nuclear reactor, experiment and analysis of thermal-hydrodynamics, development of advanced material for reactor, lifetime reliability assessment on structural material for advanced reactor, development of advanced nuclear fuel, design of marine reactor and the research for nuclear ship system. The maintenance and operation of reactor engineering facilities belonging to the Department are undertaken. The activities of the research committee to which the Department takes a role of secretariat are also summarized in this report. The 98 papers are indexed individually. (J.P.N.)

  15. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  16. A study on the proliferation resistance evaluation methodology for nuclear energy system

    International Nuclear Information System (INIS)

    Kim, Min Su

    2007-02-01

    The framework of proliferation resistance evaluation methodology, based on attribute analysis and scenario analysis, for nuclear energy system is suggested in order to allow for the comprehensive assessment of proliferation resistance by addressing the intrinsic and extrinsic features of nuclear energy system. Proliferation resistance is viewed within the context of the success tree model of proliferator's diversion attempt and expressed by the value of top event probability of the success tree model. This study focused on the method that the value of top event is estimated. The methodology uses two different methods to quantify the likelihood of basic events constituting the top event. The likelihood of basic event success affected by intrinsic feature of nuclear energy system was assessed by using multi-attribute utility theory and likelihood of basic event related to the diversion detection measures was assessed by direct expert elicitation. The value of top event was calculated based on the intersection of probabilities of basic event success. Feasibility of the methodology was explored by applying it to selected reference nuclear energy systems. System-Integrated Modular Advanced Reactor (SMART) system and Light Water Reactor (LWR) were chosen as reference systems and the value proliferation resistance of SMART and LWR were evaluated. Characteristics of inherent features and hypothesized safeguards measures of both systems were identified and used as input data to evaluate proliferation resistance. The results and conclusions are applicable only within the context of subjectivity of this methodology

  17. Assessment of industrial energy options based on coal and nuclear systems

    International Nuclear Information System (INIS)

    Anderson, T.D.; Bowers, H.I.; Bryan, R.H.; Delene, J.G.; Hise, E.C.; Jones, J.E. Jr.; Klepper, O.H.; Reed, S.A.; Spiewak, I.

    1975-07-01

    Industry consumes about 40 percent of the total primary energy used in the United States. Natural gas and oil, the major industrial fuels, are becoming scarce and expensive; therefore, there is a critical national need to develop alternative sources of industrial energy based on the more plentiful domestic fuels--coal and nuclear. This report gives the results of a comparative assessment of nuclear- and coal-based industrial energy systems which includes technical, environmental, economic, and resource aspects of industrial energy supply. The nuclear options examined were large commercial nuclear power plants (light-water reactors or high-temperature gas-cooled reactors) and a small [approximately 300-MW(t)] special-purpose pressurized-water reactor for industrial applications. Coal-based systems selected for study were those that appear capable of meeting environmental standards, especially with respect to sulfur dioxide; these are (1) conventional firing using either low- or high-sulfur coal with stack-gas scrubbing equipment, (2) fluidized-bed combustion using high-sulfur coal, (3) low- and intermediate-Btu gas, (4) high-Btu pipeline-quality gas, (5) solvent-refined coal, (6) liquid boiler fuels, and (7) methanol from coal. Results of the study indicated that both nuclear and coal fuel can alleviate the industrial energy deficit resulting from the decline in availability of natural gas and oil. However, because of its broader range of application and relative ease of implementation, coal is expected to be the more important substitute industrial fuel over the next 15 years. In the longer term, nuclear fuels could assume a major role for supplying industrial steam. (U.S.)

  18. Nuclear energy in the operation of the spanish electric system

    International Nuclear Information System (INIS)

    Atienza, L.

    2008-01-01

    Nuclear energy plays a basic role in electricity production in Spain. Its high availability rate, the predictability of its fuel recharges, its high operational reliability, its geographical location, the stability of its costs, with its fuel having low weight in the cost structure, the security of supply that the possibility of storing its fuel on-site in the power plant gives and the absence of CO 2 emissions are some of the advantages nuclear energy presents. Its stiffness for demand variations, its sudden disconnections, which are infrequent but with high impact on System Operation, the social perception and nuclear waste management must also be weighted up. (Author)

  19. Siting studies for an asymptotic U.S. energy supply system based primarily on nuclear energy

    International Nuclear Information System (INIS)

    Burwell, C.C.

    1977-01-01

    The nuclear energy center (NEC) concept is an approach to siting wherein nuclear facilities would be clustered in and delimited to a relatively small number of locations throughout the United States. These designated centers would be concurrently developed to their full capability over several decades, at which time, they would be several times larger than the largest nuclear power stations in existence today. The centers would be permanently dedicated to nuclear operations including the future decommissioning of functionally obsolescent facilities as well as the commissioning of their replacements. The criteria for and characteristics of an acceptable nuclear energy system that could supply most of the U.S. energy requirements in the distant future are discussed. The time period is unspecified but occurs when fossil-fuel resources are depleted to such an extent that their use is economic only in special situations, and is not economic, in general, for use as fuel

  20. Nanomaterials and nanotechnologies in nuclear energy chemistry

    International Nuclear Information System (INIS)

    Shi, W.Q.; Yuan, L.Y.; Li, Z.J.; Lan, J.H.; Zhao, Y.L.; Chai, Z.F.

    2012-01-01

    With the rapid growth of human demands for nuclear energy and in response to the challenges of nuclear energy development, the world's major nuclear countries have started research and development work on advanced nuclear energy systems in which new materials and new technologies are considered to play important roles. Nanomaterials and nanotechnologies, which have gained extensive attention in recent years, have shown a wide range of application potentials in future nuclear energy system. In this review, the basic research progress in nanomaterials and nanotechnologies for advanced nuclear fuel fabrication, spent nuclear fuel reprocessing, nuclear waste disposal and nuclear environmental remediation is selectively highlighted, with the emphasis on Chinese research achievements. In addition, the challenges and opportunities of nanomaterials and nanotechnologies in future advanced nuclear energy system are also discussed. (orig.)

  1. Optimum strategies for nuclear energy system development (method of synthesis)

    International Nuclear Information System (INIS)

    Belenky, V.Z.

    1983-01-01

    The problem of optimum long-term development of the nuclear energy system is considered. The optimum strategies (i.e. minimum total uranium consumption) for the transition phase leading to a stationary regime of development are found. For this purpose the author has elaborated a new method of solving linear problems of optimal control which can include jumps in trajectories. The method gives a possibility to fulfil a total synthesis of optimum strategies. A key characteristic of the problem is the productivity function of the nuclear energy system which connects technological system parameters with its growth rate. There are only two types of optimum strategies, according to an increasing or decreasing productivity function. Both cases are illustrated with numerical examples. (orig.) [de

  2. Future perspective of nuclear energy utilization and expected role of HTGR. JAERI's energy systems analysis research

    International Nuclear Information System (INIS)

    Sato, Osamu

    1996-01-01

    Studies have been made in JAERI in order to assess the possibility of using nuclear energy symbiotically with fossil and biomass fuels, and to evaluate its implications for the environment. The application system of high temperature nuclear heat has been designed for this purpose with various technology options. The core of the system is a set of technologies for hydrogen production and its application to produce clean and convenient fuels from fossil or biomass sources. The results of analytical studies using the MARKAL model have indicated sufficient possibilities of combining nuclear energy effectively with fossil or biomass fuels via hydrogen produced by high temperature nuclear heat. In addition to providing clean and convenient liquid fuels on a large scale, the combined system will contribute to the substantial reduction of long-term CO 2 emissions. The relatively high cost of this system will be well justified when CO 2 emission penalties are taken into account. (J.P.N.)

  3. Summary Report of the INL-JISEA Workshop on Nuclear Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Antkowiak, M.; Ruth, M.; Boardman, R.; Bragg-Sitton, S.; Cherry, R.; Shunn, L.

    2012-07-01

    The Institute for Nuclear Energy Science and Technology (INEST) and the Joint Institute for Strategic Energy Analysis (JISEA) co-sponsored an international workshop to identify research topics important in advancing the potential use of hybrid systems with a specific focus on nuclear-renewable hybrid systems. The workshop included presentations ranging from energy challenges and research and development directions being pursued by nations to multiple options for hybrid systems. Those options include one that is being commercialized to other opportunities and analysis results quantifying them. The workshop also involved two breakout sessions--one focused on thermal energy management issues especially at unit-operation scale and the second focused on system operations issues including system controls, regulatory issues, technical and economic analysis, and market challenges. A discussion involving the full group focused on more general issues such as societal involvement and participation. Key criteria for selecting hybrid energy system projects and metrics for comparing them were also identified by the full group.

  4. Nuclear-Renewable Energy Systems Secondary Product Market Analysis Study

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Wesley Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    In order to properly create a program surrounding the development of any technological concept it is necessary to fully understand the market in which it is being developed. In the case of Integrated Nuclear-Renewable Hybrid Energy Systems (HES), there are two economic markets in which it must be able to participate in: the electricity market and the secondary product market associated with the specific system. The purpose of the present report is to characterize the secondary product market in the U.S. and to provide recommendations for further developing the HES program. While HESs have been discussed in depth in many other reports, it is helpful to discuss them briefly in the present work [REF]. The concept of the HES can be deduced to a system, featuring a combination of a nuclear power plant, a renewable energy source, and an industrial manufacturing plant . The system is designed in a fashion that allows it either to produce electricity or to manufacture a secondary product as needed. The primary benefit of this concept lies in its ability to maximize economic performance of the integrated system and to manufacture products in a carbon-free manner. A secondary benefit is the enhanced supply-side flexibility gained by allowing the HES to economically provide grid services. A key tenant to nuclear power plant economics in today’s electricity market is their ability to operate at a very high capacity factor. Unfortunately, in regions with a high penetration of renewable energy, the carbon free energy produced by nuclear power may not be needed at all times. This forces the nuclear power plant to find a user for its excess capacity. This may include paying the electric grid to find a user, releasing energy to the environment by ‘dumping steam’, or reducing power. If the plant is unable to economically or safely do any of these actions, the plant is at risk of being shutdown. In order to allow for nuclear power plants to continue to contribute carbon free

  5. Nuclear-Renewable Energy Systems Secondary Product Market Analysis Study

    International Nuclear Information System (INIS)

    Deason, Wesley Ray

    2015-01-01

    In order to properly create a program surrounding the development of any technological concept it is necessary to fully understand the market in which it is being developed. In the case of Integrated Nuclear-Renewable Hybrid Energy Systems (HES), there are two economic markets in which it must be able to participate in: the electricity market and the secondary product market associated with the specific system. The purpose of the present report is to characterize the secondary product market in the U.S. and to provide recommendations for further developing the HES program. While HESs have been discussed in depth in many other reports, it is helpful to discuss them briefly in the present work [REF]. The concept of the HES can be deduced to a system, featuring a combination of a nuclear power plant, a renewable energy source, and an industrial manufacturing plant . The system is designed in a fashion that allows it either to produce electricity or to manufacture a secondary product as needed. The primary benefit of this concept lies in its ability to maximize economic performance of the integrated system and to manufacture products in a carbon-free manner. A secondary benefit is the enhanced supply-side flexibility gained by allowing the HES to economically provide grid services. A key tenant to nuclear power plant economics in today's electricity market is their ability to operate at a very high capacity factor. Unfortunately, in regions with a high penetration of renewable energy, the carbon free energy produced by nuclear power may not be needed at all times. This forces the nuclear power plant to find a user for its excess capacity. This may include paying the electric grid to find a user, releasing energy to the environment by -dumping steam', or reducing power. If the plant is unable to economically or safely do any of these actions, the plant is at risk of being shutdown. In order to allow for nuclear power plants to continue to contribute carbon free

  6. Study of a nuclear energy supplied steelmaking system for near-term application

    International Nuclear Information System (INIS)

    Yan, Xing L.; Kasahara, Seiji; Tachibana, Yukio; Kunitomi, Kazuhiko

    2012-01-01

    Conventional steelmaking processes involve intensive fossil fuel consumption and CO 2 emission. The system resulting from this study ties a steelmaking plant to a nuclear plant. The latter supplies the former all energy and feedstock with the exception of iron ore. The actual design takes on a multi-disciplinary approach: The nuclear plant employs a proven next-generation technology of fission reactor with 950 °C outlet temperature to produce electricity and heat. The plant construction saving and high efficiency keep the cogeneration cost down. The steelmaking plant employs conventional furnaces but substitutes hydrogen and oxygen for hydrocarbons as reactant and fuel. Water decomposition through an experimentally-demonstrated thermochemical process manufactures the feedstock gases required. Through essential safety features, particular a fully-passive nuclear safety, the design achieves physical proximity and yet operational independence of the two plants to facilitate inter-plant energy transmission. Calculated energy and material balance of the integrated system yields slightly over 1000 t steel per 1 MWt yr nuclear thermal energy. The steel cost is estimated competitive. The CO 2 emission amounts to 1% of conventional processes. The sustainable performance, economical potential, robust safety, and use of verified technological bases attract near-term deployment of this nuclear steelmaking system. -- Highlights: ► A steelmaking concept is proposed based on multi-disciplinary approach. ► It ties advanced nuclear fission reactor and energy conversion to thermochemical manufacture and direct iron making. ► Technological strength of each area is exploited to integrate a final process. ► Heat and material balance of the process is made to predict performance and cost. ► The system rules out fossil fuel use and CO 2 emission, and is near-term deployable.

  7. Solar energy versus nuclear energy as energy sources at the transition period

    International Nuclear Information System (INIS)

    Sastroamidjojo, MSA.

    Technical aspects and social aspects of nuclear power plants and solar energy system as energy sources, were comparatively evaluated. The evaluation proves that solar energy is better than nuclear energy. (SMN)

  8. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  9. Nuclear energy system department annual report. April 1, 1999 - March 31, 2000

    International Nuclear Information System (INIS)

    2001-03-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 1999 (April 1, 1999 - March 31, 2000). The Department has been organized from April 1998. The main research activity is aimed to build the basis of the development of a future nuclear energy system. The research activities of the fiscal year cover basic nuclear and atomic and molecular data evaluation, conceptual design of a reduced-moderation water reactor, reactor physics experiments and development of the reactor analysis codes, experiment and analysis of thermal-hydrodynamics, development of advanced materials for a reactor, lifetime reliability assessment on structural material, development of advanced nuclear fuel, design of a marine reactor and the research for a nuclear ship system. The maintenance and operation of reactor engineering facilities belonging to the Department are undertaken. The activities of the research committee to which the Department takes a role of secretariat are also summarized in this report. (author)

  10. Academic Design Of Canada's Energy Systems And Nuclear Science Research Centre

    International Nuclear Information System (INIS)

    Bereznai, G.; Perera, S.

    2010-01-01

    The University of Ontario Institute of Technology (UOIT) is at the forefront of alternative energy and nuclear research that focuses on the energy challenges that are faced by the province of Ontario, the industrial heartland of Canada. While the university was established as recently as 2002 and opened its doors to its first students in 2003, it has already developed a comprehensive set of undergraduate and graduate programs, and a reputation for research intensiveness. UOIT offers dedicated programs in nuclear engineering and energy systems engineering to ensure a continued supply of trained employees in these fields. The ability to provide talented and skilled personnel to the energy sector has emerged as a critical requirement of ensuring Ontario's energy future, and to meet this need UOIT requires additional teaching and research space in order to offer its energy related programs. The Governments of Canada and of the Province of Ontario recognized UOIT's achievements and contributions to post-secondary education in the field of clean energy in general and nuclear power in particular, and as part of the economic stimuli funded by both levels of government, approved $45 M CAD for the construction of a 10,000 m 2 'Energy Systems and Nuclear Science Research Centre' at UOIT. The building is scheduled to be ready for occupancy in the summer of 2011. The paper presents the key considerations that lead to the design of the building, and gives details of the education and research programs that were the key in determining the design and layout of the research centre. (authors)

  11. Fast accelerator driven subcritical system for energy production: nuclear fuel evolution

    International Nuclear Information System (INIS)

    Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria A.F.; Costa, Antonella L.

    2011-01-01

    Accelerators Driven Systems (ADS) are an innovative type of nuclear system, which is useful for long-lived fission product transmutation and fuel regeneration. The ADS consist of a coupling of a sub-critical nuclear core reactor and a proton beam produced by a particle accelerator. These particles are injected into a target for the neutrons production by spallation reactions. The neutrons are then used to maintain the fission chain in the sub-critical core. The aim of this study is to investigate the nuclear fuel evolution of a lead cooled accelerator driven system used for energy production. The fuel studied is a mixture based upon "2"3"2Th and "2"3"3U. Since thorium is an abundant fertile material, there is hope for the thorium-cycle fuels for an accelerator driven sub-critical system. The target is a lead spallation target and the core is filled with a hexagonal lattice. High energy neutrons are used to reduce the negative reactivity caused by the presence of protoactinium, since this effect is most pronounced in the thermal range of the neutron spectrum. For that reason, such material is not added moderator to the system. In this work is used the Monte Carlo code MCNPX 2.6.0, that presents the the depletion/ burnup capability. The k_e_f_f evolution, the neutron energy spectrum in the core and the nuclear fuel evolution using ADS source (SDEF) and kcode-mode are evaluated during the burnup. (author)

  12. Nuclear energy and economic competitiveness in several normative systems

    International Nuclear Information System (INIS)

    Thomas, S.

    2009-01-01

    The serious challenge imposed by the necessity of reducing the gases emission of greenhouse effect in the electric generation sector, it has renovated the interest in the new plants construction of nuclear energy. Nevertheless, since the use of the nuclear energy began to descend ago more of 25 years, it is has speculated continually about the possible nuclear rebirth. Are such predictions based in solid basis or are mere groundless prognostics? The objective of the present document is to analyze the economic aspects of the nuclear energy, to identify the key factors that they allow to determine its competitiveness and to sound the possible markets for the new plants of nuclear energy. To achieve this, it is divided in the following sections: Revision of the current state of the nuclear energy, including the location, the type and capacity of the plants; Identification of the variables that determine the economic situation of the nuclear energy; Revision of the recent predictions and of the economic aspects of the Olkiluoto nuclear power plant of Finland; A revision by market of the possible future of the new nuclear facilities in the coming decade. (Author)

  13. A coupled nuclear reactor thermal energy storage system for enhanced load following operation

    International Nuclear Information System (INIS)

    Alameri, Saeed A.; King, Jeffrey C.

    2013-01-01

    Nuclear power plants operate most economically at a constant power level, providing base load electric power. In an energy grid containing a high fraction of renewable power sources, nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling a nuclear reactor to a large thermal energy storage block will allow the reactor to better respond to variable power demands. In the system described in this paper, a Prismatic core Advanced High Temperature Reactor supplies constant power to a lithium chloride molten salt thermal energy storage block that provides thermal power as needed to a closed Brayton cycle energy conversion system. During normal operation, the thermal energy storage block stores thermal energy during the night for use in the times of peak demand during the day. In this case, the nuclear reactor stays at a constant thermal power level. After a loss of forced circulation, the reactor reaches a shut down state in less than half an hour and the average fuel, graphite and coolant temperatures remain well within the design limits over the duration of the transient, demonstrating the inherent safety of the coupled system. (author)

  14. The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry

    International Nuclear Information System (INIS)

    Ruth, Mark; Cutler, Dylan; Flores-Espino, Francisco; Stark, Greg; Jenkin, Thomas

    2016-01-01

    This report is one of a series of reports that Idaho National Laboratory and National Renewable Energy Laboratory are producing to investigate the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). Previous reports provided results of an analysis of two N-R HES scenarios. This report builds that analysis with a Texas-synthetic gasoline scenario providing the basis in which the N-R HES sells heat directly to an industrial customer. Subsystems were included that convert electricity to heat, thus allowing the renewable energy subsystem to generate heat and benefit from that revenue stream. Nuclear and renewable energy sources are important to consider in the energy sector's evolution because both are considered to be clean and non-carbon-emitting energy sources.

  15. The Future of Nuclear Energy As a Primary Source for Clean Hydrogen Energy System in Developing Countries

    International Nuclear Information System (INIS)

    Ahmed, K.; Shaaban, H.

    2007-01-01

    The limited availability of fossil fuels compared to the increasing demand and the connected environmental questions have become topics of growing importance and international attention. Many other clean alternative sources of energy are available, but most of them are either relatively undeveloped technologically or are not yet fully utilized. Also, there is a need for a medium which can carry the produced energy to the consumer in a convenient and environmentally acceptable way. In this study, a fission reactor as a primary energy source with hydrogen as an energy carrier is suggested. An assessment of hydrogen production from nuclear energy is presented. A complete nuclear-electro-hydrogen energy system is proposed for a medium size city (population of 500,000). The whole energy requirement is assessed including residential, industrial and transportation energies. A preliminary economical and environmental impact study is performed on the proposed system. The presented work could be used as a nucleus for a feasibility study for applying this system in any newly established city

  16. Nuclear energy in the world future

    International Nuclear Information System (INIS)

    Haefele, W.; Jaek, W.

    1983-01-01

    Starting from the actual position in the electricity market nuclear energy will grow up to the stabilizing factor in this field. The market penetration of breeding and fusion systems, therefore, will be the next important milestones of nuclear energy development. On the other hand nuclear energy as well as the electric grid itself are good examples for the reconstruction of the non-electric energy market which is dominated by resource and environmental problems. To overcome these problems the installation of a refining step for fossil energy resources and a new transport system besides the electric grid are the next steps toward a crisis-proof energy supply system. (orig.) [de

  17. Utility and risk of nuclear energy

    International Nuclear Information System (INIS)

    Barnert, H.; Borsch, P.; Feldmann, A.; Merz, E.; Muench, E.; Oesterwind, D.; Voss, A.; Wolters, J.

    1979-09-01

    The present report contains lectures of a seminar that was arranged by the programme group nuclear power and environment of the Kernforschungsanlage Juelich . The items were: 1) Do we need nuclear energy. An attempt at a system analytic answer. 2) Energy production by means of nuclear fission. 3) The nuclear power plants. 4) Nuclear energy and radiation hazard. 5) Safety of nuclear power plants. (RW) [de

  18. Nuclear Energy in Space Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1968-01-01

    Nuclear space programs under development by the Atomic Energy Commission are reviewed including the Rover Program, systems for nuclear rocket propulsion and, the SNAP Program, systems for generating electric power in space. The letters S-N-A-P stands for Systems for Nuclear Auxiliary Power. Some of the projected uses of nuclear systems in space are briefly discussed including lunar orbit, lunar transportation from lunar orbit to lunar surface and base stations; planetary exploration, and longer space missions. The limitations of other sources of energy such as solar, fuel cells, and electric batteries are discussed. The excitement and visionary possibilities of the Age of Space are discussed.

  19. Nuclear technology: the role of the IAEA. Ninth international conference on emerging nuclear energy systems, Tel Aviv, 28 June 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document reproduces the text of the conference given by the Director General of the IAEA at the Ninth International Conference on Emerging Nuclear Energy Systems, in Tel Aviv, Israel, on 28 June 1998. The Director General outlines the role of the IAEA in assisting its Member States to meet the challenges facing the use of nuclear energy, based on the Agency' mandate on the following inter-related tasks: ta act as a catalyst for the scientific community and as a hub for state-of-the-art technology; to act as a centre for the transfer of nuclear technologies so as to ensure their accessibility to member State in general, and to developing countries in particular; to assist Member States to make informed and appropriate choices concerning the energy mix by producing comparative assessments of nuclear and other technologies; to strive for the highest level of safety in all areas of the use of nuclear energy; and to assure, through its verification system, the pledges to use nuclear energy exclusively for peaceful purposes are fulfilled

  20. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  1. Heterogeneous world model and collaborative scenarios of transition to globally sustainable nuclear energy systems

    Directory of Open Access Journals (Sweden)

    Kuznetsov Vladimir

    2015-01-01

    Full Text Available The International Atomic Energy Agency's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO is to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21st century in a sustainable manner. The INPRO task titled “Global scenarios” is to develop global and regional nuclear energy scenarios that lead to a global vision of sustainable nuclear energy in the 21st century. Results of multiple studies show that the criteria for developing sustainable nuclear energy cannot be met without innovations in reactor and nuclear fuel cycle technologies. Combining different reactor types and associated fuel chains creates a multiplicity of nuclear energy system arrangements potentially contributing to global sustainability of nuclear energy. In this, cooperation among countries having different policy regarding fuel cycle back end would be essential to bring sustainability benefits from innovations in technology to all interested users. INPRO has developed heterogeneous global model to capture countries’ different policies regarding the back end of the nuclear fuel cycle in regional and global scenarios of nuclear energy evolution and applied in a number of studies performed by participants of the project. This paper will highlight the model and major conclusions obtained in the studies.

  2. Net-energy analysis of nuclear and wind power systems

    International Nuclear Information System (INIS)

    Tyner, G.T. Sr.

    1985-01-01

    The following question is addressed: can nuclear power and wind power (a form of solar energy) systems yield enough energy to replicate themselves out of their own energy and leave a residual of net energy in order to provide society with its needs and wants. Evidence is provided showing that there is a proportionality between the real monetary cost and energy inputs. The life-cycle, economic cost of the energy-transformation entity is the basis for calculating the amount of energy needed, as inputs, to sustain energy transformation. This study is unique as follows: others were based on preliminary cost and performance estimates. This study takes advantage of updated cost and performance data. Second, most prior studies did not include the energy cost of labor, government, and financial services, transmission and distribution, and overhead in arriving at energy inputs. This study includes all economic costs as a basis for calculating energy-input estimates. Both static (single-entity analysis) and dynamic (total systems over time) analyses were done and the procedures are shown in detail. It was found that the net-energy yield will be very small and most likely negative. System costs must be substantially lowered or efficiencies materially improved before these systems can become sources of enough net energy to drive the United States economic system at even the present level of economic output

  3. Nuclear energy

    International Nuclear Information System (INIS)

    Hesketh, Ross.

    1985-01-01

    The subject is treated under the headings: nuclear energy -what is it; fusion (principles; practice); fission (principles); reactor types and systems (fast (neutron) reactors as breeders; fast reactors; thermal reactors; graphite-moderated thermal reactors; the CANDU reactor; light water reactors - the BWR and the PWR); the nuclear fuel cycle (waste storage; fuel element manufacture; enrichment processes; uranium mining); safety and risk assessment; the nuclear power industry and the economy (regulating authorities; economics; advantages and disadvantages). (U.K.)

  4. Neutron balance as indicator of long-term resource availability in growing nuclear energy system

    Energy Technology Data Exchange (ETDEWEB)

    Blandinskiy, Victor [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2017-09-15

    The article describes neutron balance in nuclear energy system as necessary but not sufficient indicator of long-term sustainability. Three models are introduced to evaluate neutron balance based on nuclide chain evolution and reaction rates comparison. The indicator introduced is used to compare several nuclear energy systems consisting of thermal, fast and molten salt reactors.

  5. Energy: nuclear energy

    International Nuclear Information System (INIS)

    Lung, M.

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  6. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  7. The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    This report is one of a series of reports that Idaho National Laboratory and National Renewable Energy Laboratory are producing to investigate the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). Previous reports provided results of an analysis of two N-R HES scenarios. This report builds that analysis with a Texas-synthetic gasoline scenario providing the basis in which the N-R HES sells heat directly to an industrial customer. Subsystems were included that convert electricity to heat, thus allowing the renewable energy subsystem to generate heat and benefit from that revenue stream. Nuclear and renewable energy sources are important to consider in the energy sector's evolution because both are considered to be clean and non-carbon-emitting energy sources.

  8. Fusion-supported decentralized nuclear energy system

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1979-04-01

    A decentralized nuclear energy system is proposed comprising mass-produced pressurized water reactors in the size range 10 to 300 MW (thermal), to be used for the production of process heat, space heat, and electricity in applications where petroleum and natural gas are presently used. Special attention is given to maximizing the refueling interval with no interim batch shuffling in order to minimize fuel transport, reactor downtime, and opportunity for fissile diversion. These objectives demand a substantial fissile enrichment (7 to 15%). The preferred fissile fuel is U-233, which offers an order of magnitude savings in ore requirements (compared with U-235 fuel), and whose higher conversion ratio in thermal reactors serves to extend the period of useful reactivity and relieve demand on the fissile breeding plants (compared with Pu-239 fuel). Application of the neutral-beam-driven tokamak fusion-neutron source to a U-233 breeding pilot plant is examined. This scheme can be extended in part to a decentralized fusion energy system, wherein remotely located large fusion reactors supply excess tritium to a distributed system of relatively small nonbreeding D-T reactors

  9. The application of nuclear energy for seawater desalination. The Candesal nuclear desalination system

    International Nuclear Information System (INIS)

    Humphries, J.R.; Sweeney, C.B.

    1997-01-01

    As the global consumption of water increases with growing population and rising levels of industrialization, major new sources of potable water production must be developed. Desalination of seawater is an energy intensive process which brings with it a demand for additional energy generation capacity. The Candesal nuclear desalination/cogeneration system has been developed to address both requirements, providing improved water production efficiency and lower costs. To meet large scale water production requirements the Candesal system integrates a nuclear energy source, such as the CANDU reactor, with a reverse osmosis (ro) desalination facility, capturing the waste heat from the electrical generation process to improve the efficiency of the ro process. By also using advanced feed water pre-treatment and sophisticated system design integration and optimization techniques, the net results is a substantial improvement in energy efficiency, economics, and environmental impact. The design is also applicable to a variety of conventional energy sources, and applies over the full range of desalination plant sizes. Since potable water production is based on membrane technology, brackish water and tertiary effluent from waste water treatment can also be used as feed streams to the system. Also considered to be a fundamental component of the Candesal philosophy is a technology transfer program aimed at establishing a complete local capability for the design, fabrication, operation and maintenance of these facilities. Through a well defined and logical technology transfer program, the necessary technologies are integrated into a nation's industrial capability and infrastructure, thus preparing local industry for the long term goal of manufacturing large scale, economical and environmentally benign desalination facilities. (author). 8 refs, 3 figs

  10. Development of nuclear energy and nuclear policy in China

    International Nuclear Information System (INIS)

    You Deliang

    1993-11-01

    Status of nuclear power development in China, nuclear policy and nuclear power programme are described. Issues regarding nuclear fuel cycle system, radioactive waste management and international cooperation in the field of peaceful use of nuclear energy are discussed

  11. Energy Production and Transmutation of Nuclear Waste by Accelerator Driven Systems

    Science.gov (United States)

    Zhivkov, P. K.

    2018-05-01

    There is a significant amount of highly radiotoxic long-life nuclear waste (NW) produced by NPP (Nuclear Power Plants). Transmutation is a process which transforms NW into less radiotoxic nuclides with a shorter period of half-life by spallation neutrons or radiative capture of neutrons produced by ADS (Accelerator Driven System). In the processes of transmutation new radioactive nuclides are produced. ADS is big energy consumer equipment. It is a method for production of a high-flux and high-energy neutron field. All these processes occur in ADS simultaneously. ADS is able to transmute actinides and produce energy simultaneously. The article considers the energy production problems in ADS. Several ideas are developed regarding the solution of the global energy supply.

  12. Is nuclear energy ethically justifiable?

    International Nuclear Information System (INIS)

    Zuend, H.

    1988-01-01

    Nuclear technology brings the chance to provide an essential long term contribution to the energy supply of the world population and to use the raw materials uranium and thorium which have no other use. The use of nuclear energy is ethically justifiable providing certain simple fundamental rules for the design of nuclear facilities are observed. Such rules were clearly violated before the reactor accident at Chernobyl. They are, however, observed in our existing nuclear power plants. Compared with other energy systems nuclear energy has, with the exception of natural gas, the lowest risk. The consideration of the ethical justification of nuclear energy must also include the question of withdrawal. A withdrawal would have considerable social consequences for the industrial nations as well as for the developing countries. The problem of spreading alarm (and concern) by the opponents of nuclear energy should also be included in the ethical justification. 8 refs., 2 figs

  13. Neutron excess generation by fusion neutron source for self-consistency of nuclear energy system

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, V.; Chmelev, A.

    1999-01-01

    The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based on the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities. (author)

  14. Nuclear energy and the nuclear energy industry

    International Nuclear Information System (INIS)

    Bromova, E.; Vargoncik, D.; Sovadina, M.

    2013-01-01

    A popular interactive multimedia publication on nuclear energy in Slovak. 'Nuclear energy and energy' is a modern electronic publication that through engaging interpretation, combined with a number of interactive elements, explains the basic principles and facts of the peaceful uses of nuclear energy. Operation of nuclear power plants, an important part of the energy resources of developed countries, is frequently discussed topic in different social groups. Especially important is truthful knowledgeability of the general public about the benefits of technical solutions, but also on the risks and safety measures throughout the nuclear industry. According to an online survey 'Nuclear energy and energy' is the most comprehensive electronic multimedia publication worldwide, dedicated to the popularization of nuclear energy. With easy to understand texts, interactive and rich collection of accessories stock it belongs to modern educational and informational titles of the present time. The basic explanatory text of the publication is accompanied by history and the present time of all Slovak nuclear installations, including stock photos. For readers are presented the various attractions legible for the interpretation, which help them in a visual way to make a more complete picture of the concerned issue. Each chapter ends with a test pad where the readers can test their knowledge. Whole explanatory text (72 multimedia pages, 81,000 words) is accompanied by a lot of stock of graphic materials. The publication also includes 336 photos in 60 thematic photo galleries, 45 stock charts and drawings, diagrams and interactive 31 videos and 3D models.

  15. Education of nuclear energy specialists

    International Nuclear Information System (INIS)

    Paulikas, V.

    1999-01-01

    Preparation system of nuclear energy specialists in Lithuania is presented. Nuclear engineers are being prepared at Kaunas University of Technology. Post-graduates students usually continue studies at Obninsk Nuclear Energy Institute in Russia. Many western countries like Sweden, Finland and US is providing assistance in education of Lithuanian specialists. Many of them were trained in these countries

  16. The sustainable development of nuclear energy

    International Nuclear Information System (INIS)

    Guo Huifang

    2012-01-01

    The wide use of nuclear energy has promoted the development of China's economy and the improvement of people's living standards. To some extent, the exploitation of nuclear power plants will solve the energy crisis faced with human society. Before the utilization of nuclear fusion energy, nuclear fission energy will be greatly needed for the purpose of alleviating energy crisis for a long period of time. Compared with fossil fuel, on the one hand, nuclear fission energy is more cost-efficient and cleaner, but on the other hand it will bring about many problems hard to deal with, such as the reprocessing and disposal of nuclear spent fuel, the contradiction between nuclear deficiency and nuclear development. This paper will illustrate the future and prospect of nuclear energy from the perspective of the difficulty of nuclear development, the present reprocessing way of spent fuel, and the measures taken to ensure the sustainable development of nuclear energy. By the means of data quoting and comparison, the feasibility of sustainable development of nuclear energy will be analyzed and the conclusion that as long as the nuclear fuel cycling system is established the sustainable development of nuclear energy could be a reality will be drawn. (author)

  17. Proliferation resistance characteristics of advanced nuclear energy systems: a safeguard ability point of view

    International Nuclear Information System (INIS)

    Sevini, F.; Cojazzi, G.G.M.; Renda, G.

    2008-01-01

    Among the international community there is a renewed interest in nuclear power systems as a major source for energy production in the near to mid future. This is mainly due to concerns connected with future availability of conventional energy resources, and with the environmental impact of fossil fuels. International initiatives have been set up like the Generation 4. International Forum (GIF), the International Project on Innovative Nuclear Reactors and Fuel Cycles (IAEA-INPRO), and, partially, the US driven Global Nuclear Energy Partnership (GNEP), aimed at defining and evaluating the characteristics, in which future innovative nuclear energy systems (INS) will have to excel. Among the identified characteristics, Proliferation Resistance plays an important role for being able to widely deploy nuclear technology worldwide in a secure way. Studies having the objective to assess Proliferation Resistance of nuclear fuel cycles have been carried out since the nineteen seventies, e.g., the International Nuclear Fuel Cycle Evaluation (INFCE) and the Non-proliferation Alternative Systems Assessment Program (NASAP) initiatives, and all agree in stating that absolute intrinsic proliferation resistance, although desirable, is not achievable in the foreseeable future. The above finding is still valid; as a consequence, every INS will have to comply with agreements related to the Non Proliferation Treaty (NPT) and will require safeguards measures, implemented through extrinsic measures. This consideration led to a renewed interest in the Safeguard ability concept which can be seen as a bridge between intrinsic features and extrinsic features and measures.

  18. Heterogeneous world model and collaborative scenarios of transition to globally sustainable nuclear energy systems - 15483

    International Nuclear Information System (INIS)

    Kuznetsov, V.; Fesenko, G.

    2015-01-01

    The International Atomic Energy Agency's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) is to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21. century in a sustainable manner. The INPRO task titled 'Global scenarios' is to develop global and regional nuclear energy scenarios that lead to a global vision of sustainable nuclear energy in the 21. century. Results of multiple studies show that the criteria for developing sustainable nuclear energy cannot be met without innovations in reactor and nuclear fuel cycle technologies. Combining different reactor types and associated fuel chains creates a multiplicity of nuclear energy system arrangements potentially contributing to global sustainability of nuclear energy. In this, cooperation among countries having different policy regarding fuel cycle back end would be essential to bring sustainability benefits from innovations in technology to all interested users. INPRO has developed heterogeneous global model to capture countries' different policies regarding the back end of the nuclear fuel cycle in regional and global scenarios of nuclear energy evolution and applied in a number of studies performed by participants of the project. This paper will highlight the model and major conclusions obtained in the studies. (authors)

  19. Nuclear waste problem: does new Europe need new nuclear energy?

    International Nuclear Information System (INIS)

    Alekseev, P.; Dudnikov, A.; Subbotin, S.

    2003-01-01

    Nuclear Energy for New Europe - what does it mean? New Europe - it means in first order joined Europe. And it is quite clear that also efforts in nuclear energy must be joined. What can be proposed as a target of joint efforts. Improvement of existing plants, technologies, materials? - Certainly, but it is performed already by designers and industry themselves. There exists a problem, which each state using nuclear energy faces alone. It is nuclear waste problem. Nowadays nuclear waste problem is not completely solved in any country. It seems reasonable for joining Europe to join efforts in solving this problem. A satisfactory solution would reduce a risk connected with nuclear waste. In addition to final disposal problem solution it is necessary to reduce total amount of nuclear waste, that means: reducing the rates of accumulation of long-lived dangerous radionuclides; reducing the existing amounts of these radionuclides by transmutation. These conditions can be satisfied in reasonable time by burning of minor actinides and, if possible, by transmutation of long-lived fission products. However we can use this strategy effectively if we will design and construct nuclear energy as a system of which components are united by nuclear fuel cycle as a system-forming factor. The existing structures and approaches may become insufficient for new Europe. Therefore among the initial steps in considering nuclear waste problem must be considering possible promising fuel cycles for European nuclear energy. So, does new Europe need new nuclear energy? It seems, yes. (author)

  20. Social Institutions and Nuclear Energy

    Science.gov (United States)

    Weinberg, Alvin M.

    1972-01-01

    Nuclear technologists can offer an all but infinite source of relatively cheap and clean energy" but society must decide whether the price of eternal vigilance needed to ensure proper and safe operation of its nuclear energy system" is worth the benefits. (Author/AL)

  1. The role of nuclear energy for Korean long-term energy supply strategy : application of energy demand-supply model

    International Nuclear Information System (INIS)

    Chae, Kyu Nam

    1995-02-01

    An energy demand and supply analysis is carried out to establish the future nuclear energy system of Korea in the situation of environmental restriction and resource depletion. Based on the useful energy intensity concept, a long-term energy demand forecasting model FIN2USE is developed to integrate with a supply model. The energy supply optimization model MESSAGE is improved to evaluate the role of nuclear energy system in Korean long-term energy supply strategy. Long-term demand for useful energy used as an exogeneous input of the energy supply model is derived from the trend of useful energy intensity by sectors and energy carriers. Supply-side optimization is performed for the overall energy system linked with the reactor and nuclear fuel cycle strategy. The limitation of fossil fuel resources and the CO 2 emission constraints are reflected as determinants of the future energy system. As a result of optimization of energy system using linear programming with the objective of total discounted system cost, the optimal energy system is obtained with detailed results on the nuclear sector for various scenarios. It is shown that the relative importance of nuclear energy would increase especially in the cases of CO 2 emission constraint. It is concluded that nuclear reactor strategy and fuel cycle strategy should be incorporated with national energy strategy and be changed according to environmental restriction and energy demand scenarios. It is shown that this modelling approach is suitable for a decision support system of nuclear energy policy

  2. Nuclear energy and professional engineers. Possibility of utilization of professional engineer system

    International Nuclear Information System (INIS)

    Tanaka, Shunichi; Nariai, Hideki; Madarame, Haruki; Hattori, Takuya; Kitamura, Masaharu; Fujie, Takao

    2008-01-01

    Nuclear and radiation professional engineer system started in 2004 and more than 250 persons have passed the second-step professional engineer examination, while more than 1,000 persons for the first-step examination. This special issue on possibility of utilization of professional engineer system consists of six relevant articles from experts of nuclear organizations and academia. They expect the role of professional engineer in the area of nuclear energy to enhance technology advancement and awareness of professional ethics from their respective standpoints. (T. Tanaka)

  3. The important roles of nuclear energy in the future energy system of China

    International Nuclear Information System (INIS)

    Yingzhong, L.

    1984-01-01

    The goal of Four Modernizations in China requires doubling present energy production by the year 2000. Because of uneven geographic distribution of coal and hydropower resources, difficulties in exploitation and transportation, and environmental issues, conventional energy alone could not meet the tremendous energy demand in the most densely populated and highly industrialized coastal provinces. Therefore nuclear energy will play an increasingly important role in such regions and is now considered indispensable for the development of China's economy. Nuclear energy will supply not only base-load electricity but district heating and process heat in these provinces. Another promising potential application of nuclear heat will be in the petroleum industry. Nuclear energy will find broad applications in various sectors of China's economy as the country achieves the Four Modernizations. (author)

  4. Nuclear Energy and Renewables. System Effects in Low-carbon Electricity Systems - Executive Summary

    International Nuclear Information System (INIS)

    2012-01-01

    This report addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as nuclear power, in terms of their effects on electricity systems. These effects add costs to the production of electricity, which are not usually transparent. The report recommends that decision-makers should take into account such system costs and internalise them according to a 'generator pays' principle, which is currently not the case. Analysing data from six OECD/NEA countries, the study finds that including the system costs of variable renewables at the level of the electricity grid increases the total costs of electricity supply by up to one-third, depending on technology, country and penetration levels. In addition, it concludes that, unless the current market subsidies for renewables are altered, dispatchable technologies will increasingly not be replaced as they reach their end of life and consequently security of supply will suffer. This implies that significant changes in management and cost allocation will be needed to generate the flexibility required for an economically viable coexistence of nuclear energy and renewables in increasingly de-carbonised electricity systems. (authors)

  5. Nuclear reactions video (knowledge base on low energy nuclear physics)

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Kozhin, A.

    1999-01-01

    The NRV (nuclear reactions video) is an open and permanently extended global system of management and graphical representation of nuclear data and video-graphic computer simulation of low energy nuclear dynamics. It consists of a complete and renewed nuclear database and well known theoretical models of low energy nuclear reactions altogether forming the 'low energy nuclear knowledge base'. The NRV solves two main problems: 1) fast and visualized obtaining and processing experimental data on nuclear structure and nuclear reactions; 2) possibility for any inexperienced user to analyze experimental data within reliable commonly used models of nuclear dynamics. The system is based on the realization of the following principal things: the net and code compatibility with the main existing nuclear databases; maximal simplicity in handling: extended menu, friendly graphical interface, hypertext description of the models, and so on; maximal visualization of input data, dynamics of studied processes and final results by means of real three-dimensional images, plots, tables and formulas and a three-dimensional animation. All the codes are composed as the real Windows applications and work under Windows 95/NT

  6. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  7. A Roadmap of Innovative Nuclear Energy System

    Science.gov (United States)

    Sekimoto, Hiroshi

    2017-01-01

    Nuclear is a dense energy without CO2 emission. It can be used for more than 100,000 years using fast breeder reactors with uranium from the sea. However, it raises difficult problems associated with severe accidents, spent fuel waste and nuclear threats, which should be solved with acceptable costs. Some innovative reactors have attracted interest, and many designs have been proposed for small reactors. These reactors are considered much safer than conventional large reactors and have fewer technical obstructions. Breed-and-burn reactors have high potential to solve all inherent problems for peaceful use of nuclear energy. However, they have some technical problems with materials. A roadmap for innovative reactors is presented herein.

  8. Nuclear energy

    International Nuclear Information System (INIS)

    Kuhn, W.

    1986-01-01

    This loose-leaf collection is made up of five didactically prepared units covering the following subjects: basic knowledge on nuclear energy, nuclear energy in relation to energy economy, site issues, environmental compatibility of nuclear energy, and nuclear energy in the focus of political and social action. To this was added a comprehensive collection of material: specific scientific background material, a multitude of tables, diagrams, charts etc. for copying, as well as 44 transparent charts, mostly in four colours. (orig./HP) [de

  9. Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?

    Directory of Open Access Journals (Sweden)

    Behnam Zakeri

    2015-03-01

    Full Text Available Towards low-carbon energy systems, there are countries with ongoing plans for expanding their nuclear power capacity, and simultaneously advancing the role of variable renewable energy sources (RES, namely wind and solar energy. This crossroads of capital-intensive, baseload power production and uncontrollable, intermittent RES may entail new challenges in the optimal and economic operation of power systems. This study examines this case by hourly analysis of a national-level energy system with the EnergyPLAN modeling tool, coupled with wind integration simulations (including uncertainty implemented using MATLAB. We evaluate the maximum feasible wind integration under different scenarios for nuclear power plants, energy demand, and the flexibility of energy infrastructure for a real case study (Finland. We propose wind-nuclear compromise charts to envision the impact of any mix of these two technologies on four parameters: total costs, power exchange, carbon emissions, and renewable energy integration. The results suggest that nuclear power constrains the room for maximum uptake of wind energy by a descending parabolic relationship. If nuclear power production exceeds 50% of the total power demand, wind will be unlikely to penetrate in shares over 15% of the respective demand. Moreover, we investigate the role of four flexibility options: demand side management, electrical energy storage, smart electric heating, and large-scale heat pumps (backed with thermal energy storage. Heat pumps (which are in connection with combined heat and power (CHP and district heating systems offer the highest efficiency in balancing excess power from variable RES. However, power-to-heat options offer a limited capability for absorbing excess power, as oversupply arises mainly in the periods with relatively low demand for heat. This calls for longer-term energy storage and/or other flexibility options to achieve the planned targets in wind-nuclear scenarios.

  10. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B.

    2006-12-01

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics

  11. Economic Analysis of Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B

    2006-12-15

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics.

  12. Optimal design of base isolation and energy dissipation system for nuclear power plant structures

    International Nuclear Information System (INIS)

    Zhou Fulin

    1991-01-01

    This paper suggests the method of optimal design of base isolation and energy dissipation system for earthquake resistant nuclear power plant structures. This method is based on dynamic analysis, shaking table tests for a 1/4 scale model, and a great number of low cycle fatigue failure tests for energy dissipating elements. A set of calculation formulas for optimal design of structures with base isolation and energy dissipation system were introduced, which are able to be used in engineering design for earthquake resistant nuclear power plant structures or other kinds of structures. (author)

  13. Nuclear energy and energy security

    International Nuclear Information System (INIS)

    Mamasakhlisi, J.

    2010-01-01

    Do Georgia needs nuclear energy? Nuclear energy is high technology and application of such technology needs definite level of industry, science and society development. Nuclear energy is not only source of electricity production - application of nuclear energy increases year-by-year for medical, science and industrial use. As an energy source Georgia has priority to extend hydro-power capacity by reasonable use of all available water resources. In parallel regime the application of energy efficiency and energy conservation measures should be considered but currently this is not prioritized by Government. Meanwhile this should be taken into consideration that attempts to reduce energy consumption by increasing energy efficiency would simply raise demand for energy in the economy as a whole. The Nuclear energy application needs routine calculation and investigation. For this reason Government Commission is already established. But it seems in advance that regional nuclear power plant for South-Caucasus region would be much more attractive for future

  14. Nuclear energy outlook 2008

    International Nuclear Information System (INIS)

    2008-01-01

    With the launch today of its first Nuclear Energy Outlook, the OECD Nuclear Energy Agency (NEA) makes an important contribution to ongoing discussions of nuclear energy's potential role in the energy mixes of its member countries. As world energy demand continues to grow unabated, many countries face serious concerns about the security of energy supplies, rising energy prices and climate change stemming from fossil fuel consumption. In his presentation, the NEA Director-General Luis Echavarri is emphasizing the role that nuclear power could play in delivering cost-competitive and stable supplies of energy, while also helping to reduce greenhouse gas emissions. In one Outlook scenario, existing nuclear power technologies could provide almost four times the current supply of nuclear-generated electricity by 2050. Under this scenario, 1400 reactors of the size commonly in use today would be in operation by 2050. But in order to accomplish such an expansion, securing political and societal support for the choice of nuclear energy is vital. An ongoing relationship between policy makers, the nuclear industry and society to develop knowledge building and public involvement will become increasingly important, the publication notes. Moreover, governments have a clear responsibility to maintain continued effective safety regulation, advance efforts to develop radioactive waste disposal solutions and uphold and reinforce the international non-proliferation regime. The authors find that the security of energy from nuclear power is more reliable than that for oil or gas. Additionally, uranium's high energy density means that transport is less vulnerable to disruption, and storing a large energy reserve is easier than for fossil fuels. One tonne of uranium produces the same energy as 10 000 to 16 000 tonnes of oil using current technology. Ongoing technological developments are likely to improve that performance even more. Until the middle of the century the dominant reactor

  15. Nuclear energy in our future

    International Nuclear Information System (INIS)

    Hennies, H.H.

    1988-01-01

    Nuclear energy for electricity generation will extend its market portion in Europe in the coming decades because: 1) its economic and/or environment-relevant advantages compared with the fossil energy sources are so explicit that the latter will no longer be competitive; 2) the improvements of the system engineering, which are presently being implemented and are to be expected in the future, will enhance the safety facilities to the extent that accident risk will cease to be a decisive factor; 3) energy-saving effects or the use of solar energy will not provide an appropriate large scale alternative for coal and/or nuclear energy; 4) the problems of radioactive waste disposal will be definitely solved within the foreseeable future. Considering all the technological systems available the light water reactor will continue to dominate. The change to the breeder reactor is not yet under discussion because of the medium-term guaranteed uranium supply. The use of nuclear technology in the heating market will depend for the moment on the availability and cost of oil and gas development. In principle nuclear energy can play an important role also in this sector

  16. Nuclear energy: today and tomorrow in the RSA

    International Nuclear Information System (INIS)

    Schumann, W.A.

    1985-01-01

    The energy content of relevant materials and world energy resources are briefly discussed. A short review is given of the typical fission fuel cycle. The article also covers the fundamental aspects of uranium enrichment and the disposal of radio-active material as part of the conventional nuclear fuel cycle. The present nuclear energy situation and possible alternatives for the future of power supply in South Africa is discussed. The alternative energy production systems are based on the spectrum of choices presented by the nuclear energy continuum of nuclear fission, fusion and spallation particle accelerator systems

  17. Nuclear energy, needs and policies

    International Nuclear Information System (INIS)

    Yousefpour, B.; Rahimi, A.R.

    2002-01-01

    As an oil-and gas-rich state, Iran is among the main energy exporting countries of the world. No doubt, economic development in a country causes increase in its energy demand. Having a glance at the statistics of energy consumption in Iran during the past three decades reveals that energy consumption has been quadrupled. Due to dependability of the country's energy-supply system on fossil industries and thanks to the increasing demand, social and economic development will face great problems. For this reason, the problem has prompted Iranian officials to diversify the country's energy-supply system, as it has been give top priority in the policies of the first and second plans. The discovered and undiscovered fields of applied nuclear sciences and technologies indicate the importance of transferring and developing nuclear technologies for different countries' economic systems. Like many other countries, Iran is also in dire need of transferring nuclear technology and applying the related sciences in various fields, paving the way for economic, agricultural, medical development and having a more active presence in the international markets through quality and standard products. Iran has all the time called for a Middle East region free of nuclear weapons and expressed its concern over production and development of atomic weapons by certain regional countries and called it a serious threat to its national and regional security

  18. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond

    2001-01-01

    Nuclear Energy, Fifth Edition provides nuclear engineers, plant designers and radiation physicists with a comprehensive overview of nuclear energy and its uses, discusses potential problems and provides an outlook for the futureNew and important trends are discussed including probabilistic safety analysis (PSA), deregulation of the electric power industry to permit competition in the supply of electricity; improvements in performance characteristics of nuclear power plants, such as capacity factor, production costs, and safety factors; storage and disposal of all types of radioactive w

  19. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  20. Energy transition and phasing out nuclear

    International Nuclear Information System (INIS)

    Laponche, Bernard

    2013-05-01

    In the first part of this report, the author outlines and comments the need of an energy transition in the world: overview of world challenges (world energy consumption and its constraints, a necessary energy transition, new actors and new responsibilities), and describes the German example of an energy transition policy. In the second part, he presents and discusses the main reasons for phasing out nuclear: description of a nuclear plant operation (fission and chain reaction, heat production, production of radioactive elements, how to stop a nuclear reactor), safety and risk issues (protection arrangements, risk and consequence of a nuclear accident), issue of radioactive wastes, relationship between civil techniques and proliferation of nuclear weapons. In a third part, the author proposes an overview of the energy issue in France: final energy consumption, electricity production and consumption, primary energy consumption, characteristics of the French energy system (oil dependency, electricity consumption, and high share of nuclear energy in electricity production). In a last part, the author addresses the issue of energy transition in a perspective of phasing out nuclear: presentation of the Negawatt scenario, assessments made by Global Chance, main programmes of energy transition

  1. Reconsidering relations between nuclear energy and security concepts

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2004-01-01

    Relations between nuclear energy and security concepts can be clarified through investigation into the multivocal nature of security concepts. While military uses of nuclear energy significantly influence national security, peaceful uses of nuclear energy contribute energy security, which is an expanded concept of national security. Military and peaceful uses of nuclear energy have reciprocal actions, thus influencing national security and energy security, respectively. Nuclear security, which means security of nuclear systems themselves, recently attracts the attention of the international society. Nuclear security directly influences national security issues. On the other hand, along with nuclear safety, nuclear security becomes a prerequisite for energy security through peaceful uses of nuclear energy. In investigating into relations between nuclear energy and security concepts, the difficulty of translating the English word of 'nuclear security' into Japanese as well as other languages is found. (author)

  2. Sustainablility of nuclear and non-nuclear energy supply options in Europe

    International Nuclear Information System (INIS)

    Kirchsteiger, C.

    2007-01-01

    In the course of the current discussion on promoting the economical competitiveness of sustainable energy systems, especially renewable and non-CO 2 -intensive ones, interest in nuclear energy has re-awakened in Europe (''nuclear renaissance''). This paper starts with presenting the concept of energy sustainability and its main elements. Next, an overview of the main results of sustainability assessments for different energy supply options (nuclear, fossil, renewables) covering full energy chains is given. Nuclear energy's typical strong and weak points are identified from a sustainability point of view. On the basis of these results, it is argued that more emphasis on nuclear energy's (very good) total cost performance, i.e. incl. externalities, rather than on its (very good) contribution to combating climate change would stronger benefit its ''renaissance''. Finally, the development of an overall EU-wide framework is proposed in order to assess the sustainability performance of alternative energy supply options, incl. nuclear, across their lifecycle and thus support decision making on developing sustainable energy mixes. (orig.)

  3. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  4. Development of generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Oka, Yoshiaki; Ogawa, Masuro; Ichimiya, Masakazu; Noda, Hiroshi

    2003-01-01

    The fifth 'Generation IV International Forum (GIF), Policy Group Meetings' was held at the Zen-Nikku Hotel in Tokyo, on September 19-20, 2002, under participations of Abraham, Secretary of DOE in U.S.A., Columbani, Secretary of CEA in France, Fujiie, Chairman of CAE in Japan, Kano, Parliamental Minister of MIS in Japan, and so on. Ten nations entering GIF (Argentina, Brazil, Canada, France, Japan, Korea, South Africa, Switzerland, U.K., and U.S.A.) selected six next generation nuclear energy concepts for objects of international cooperative research and development aiming at its practice by 2030. These concepts applicable to not only power generation, but also hydrogen production, sea water purification, and so on, are sodium liquid metal cooled reactor (Japan), high temperature gas cooled reactor (France), Super-critical pressure water cooled reactor (SCWR: Canada), Lead metal cooled reactor (Switzerland), Gas cooled fast reactor (U.S.A.), and molten salts reactor. On the generation IV nuclear reactor systems aiming to further upgrade their sustainability, safety, economical efficiency, and nuclear non proliferation, the 'Plans on Technical Development' (Road-map) to decide priority of their R and Ds has been cooperatively discussed under frameworks of international research cooperation by the GIF members nations. Here were shared descriptions on nuclear fuel cycle as a remise of technical evaluation and adopted concepts by Japanese participants contributing to making up the Road-map. (G.K.)

  5. Energy security strategy and nuclear power

    International Nuclear Information System (INIS)

    Toichi, Tsutomu; Shibata, Masaharu; Uchiyama, Yoji; Suzuki, Tatsujiro; Yamazaki, Kazuo

    2006-01-01

    This special edition of 'Energy security strategy and nuclear power' is abstracts of the 27 th Policy Recommendations 'The Establishment of an International Energy Security System' by the Japan Forum on International Relations, Inc on May 18 th , 2006. It consists of five papers: Energy security trend in the world and Japan strategy by Tsutomu Toichi, Establishment of energy strategy supporting Japan as the focus on energy security by Masaharu Shibata, World pays attention to Japan nuclear power policy and nuclear fuel cycle by Yoji Uchiyama, Part of nuclear power in the energy security - the basic approach and future problems by Tatsujiro Suzuki, and Drawing up the energy strategy focused on the national interests - a demand for the next government by Kazuo Yamazaki. (S.Y.)

  6. A semiclassical treatment of correlation energy for nuclear systems

    International Nuclear Information System (INIS)

    Nielsen, M.

    1988-01-01

    Starting with the separation of the many-body density operator in two parts, one describing the one-body aspects of the full density and the other containing all dynamic correlations information, the semiclassical approximation for the system correlation energy, was calculated. It is showm that, in this case, the Gaussian Wave Packets Phase Space Representation is more convenient than the Wely-Wigner Rrepresentation for the analysis of the semiclassical correlation energy. Using a phenomenological interaction, the correlation energy to the nuclear matter and some simmetric finite nucleus was calculated. The Fermi Surface Diffusivity, was also calculated. Finally, from the relation between this theory and the pertubation theory, we have done some considerations about the viability on the local densities expansion for energy functionals. (author) [pt

  7. CO2 and the world energy system: The role of nuclear power

    International Nuclear Information System (INIS)

    Fulkerson, W.; Jones, J.E. Jr.

    1989-01-01

    The greenhouse effect, and other transnational and global environment, health and safety issues, require energy system planning on an international scale. Consideration of equity between nations and regions, particularly between the industrialized and developing countries, is an essential ingredient. For the immediate future, the next several decades at least, fossil fuels will remain the predominant energy sources. More efficient use of energy seems to be the only feasible strategy for the near to mid-term to provide growing energy services for the world economy while moderating the increasing demand for fossil fuels. In the longer term, nonfossil sources are essential for a sustainable world energy system, and nuclear power can play an important, if not dominant, role. The challenge is to design and implement a safe and economic nuclear power world enterprise which is socially acceptable and is complimentary to other nonfossil sources. The elements of such an enterprise seem clear and include: much safer reactors, preferably passively safe, which can be developed at various scales; development of economic resource extension technologies; effective and permanent waste management strategies; and strengthened safeguards against diversion of nuclear materials to weapons. All of these elements can best be developed as cooperative international efforts. In the process, institutional improvements are equally as important as technological improvements; the two must proceed hand-in-hand. 14 refs., 4 figs., 1 tab

  8. CO2 and the world energy system: the role of nuclear power

    International Nuclear Information System (INIS)

    Fulkerson, W.; Jones, J.E. Jr.

    1992-01-01

    The greenhouse effect, and other transnational and global environment, health and safety issues, require energy system planning on an international scale. Consideration of equity between nations and regions, particularly between the industrialized and developing countries, is an essential ingredient. For the immediate future, the next several decades at least, fossil fuels will remain the predominant energy sources. More efficient use of energy seems to be the only feasible strategy for the near to mid-term to provide growing energy services for the world economy while moderating the increasing demand for fossil fuels. In the longer term, nonfossil sources are essential for a sustainable world energy system, and nuclear power can play an important, if not dominant, role. The challenge is to design and implement a safe and economic nuclear power world enterprise which is socially acceptable and is complimentary to other nonfossil sources. The elements of such an enterprise seem clear and include: much safer reactors, preferably passively safe, which can be deployed at various scales; development of economic resource extension technologies; effective and permanent waste management strategies; and strengthened safeguards against diversion of nuclear materials to weapons. All of these elements can best be developed as cooperative international efforts. In the process, institutional improvements are equally as important as technological improvements; the two must proceed hand-in-hand. (orig.)

  9. Nuclear energy: the opinion of future

    International Nuclear Information System (INIS)

    Mathis, Agostino; Monti, Stefano

    2006-01-01

    The article described the international programs for development of nuclear systems of new generation for energy production with which many countries have started the development of new concepts of nuclear reactors to put in production in the next decades in order to protect the environment. At last it comes made the aspects of economy of nuclear energy [it

  10. Nuclear primary energy carriers. Short version

    Energy Technology Data Exchange (ETDEWEB)

    Jaeck, W

    1978-04-01

    Basing on our present knowledge the following energy sources for energy supply must be taken into consideration in the long term: regenerative energy sources, fission energy gained by breeder reactors, nuclear fusion. While regenerative energy sources were treated at full length in the study 'Energy Sources for Tomorrow' the present study specifies the other two energy options. The availability and the reliability of nuclear primary energy carrier supply is described in detail and the conversion systems available or still being developed are investigated with regard to their specific consumption of primary energy. Topical questions concerning the proliferation stability of the fuel cycles and techniques are subject to the INFCE program. With reference to the nuclear energy documentation activities of the Federal Government this study is supposed to supply further fundamental material on nuclear primary energy carriers, consumption and readiness for application. Thus it will contribute to the question: 'Is nuclear energy an option which guarantees energy supply in the long term for the Federal Republic of Germany'. (orig.) 891 UA 892 ARA.

  11. Nuclear primary energy carriers. Pt. 1

    International Nuclear Information System (INIS)

    1978-04-01

    Basing on our present knowledge the following energy sources for energy supply must be taken into consideration in the long term: regenerative energy sources, fission energy gained by breeder reactors, nuclear fusion. While regenerative energy sources were treated at full length in the study 'Energy Sources for tomorrow' the present study specifies the other two energy options. The availability and the reliability of nuclear primary energy carrier supply is described in detail and the conversion systems available or still being developed are investigated with regard to their specific consumption of primary energy. Topical questions concerning the proliferation stability of the fuel cycles and techniques are subject to the INFCE programme. With reference to the nuclear energy documentation activities of the Federal Govenment this study is supposed to supply further fundamental material on nuclear primary energy carriers, consumption and readiness for application. Thus it will contribute to the question: 'Is nuclear energy an option which guarantees energy supply in the long term for the Federal Republic of Germany'. (orig.) [de

  12. Utilization of atomic energy in Asia and nuclear nonproliferation system

    International Nuclear Information System (INIS)

    Ishii, Makoto

    1995-01-01

    The economical growth in East Asia is conspicuous as it was called East Asian Miracle, and also the demand of energy increased rapidly. The end of Cold War created the condition for the further development in this district. Many countries advanced positively the plan of atomic energy utilization, and it can be said that the smooth progress of atomic energy utilization is the key for the continuous growth in this district in view of the restriction of petroleum resources and its price rise in future and the deterioration of global environment. The nuclear nonproliferation treaty (NPT) has accomplished large role, but also its limitation became clear. At present, there is not the local security system in Asia, but in order that the various countries in Asia make the utilization of atomic energy and the security compatible, it is useful to jointly develop safety technology, execute security measures and form the nuclear fuel cycle as Asia. Energy and environmental problems in Asia are reported. Threat is essentially intention and capability, and the regulation only by capability regardless of intention brings about unrealistic result. The limitation of the NPT is discussed. The international relation of interdependence deepends after Cold War, and the security in Asia after Cold War is considered. As the mechanism of forming the nuclear fuel cycle for whole Asia, it is desirable to realize ASIATOM by accumulating the results of possible cooperation. (K.I.)

  13. Multi-component Self-Consistent Nuclear Energy System: On proliferation resistance aspect

    International Nuclear Information System (INIS)

    Shmelev, A.; Saito, M; Artisyuk, V.

    2000-01-01

    Self-Consistent Nuclear Energy System (SCNES) that simultaneously meets four requirements: energy production, fuel production, burning of radionuclides and safety is targeted at harmonization of nuclear energy technology with human environment. The main bulk of SCNES studies focus on a potential of fast reactor (FR) in generating neutron excess to keep suitable neutron balance. Proliferation resistance was implicitly anticipated in a fuel cycle with co-processing of Pu, minor actinides (MA) and some relatively short-lived fission products (FP). In a contrast to such a mono-component system, the present paper advertises advantage of incorporating accelerator and fusion driven neutron sources which could drastically improve characteristics of nuclear waste incineration. What important is that they could help in creating advanced Np and Pa containing fuels with double protection against uncontrolled proliferation. The first level of protection deals with possibility to approach long life core (LLC) in fission reactors. Extending the core life-time to reactor-time is beneficial from the proliferation resistance viewpoint since LLC would not necessarily require fuel management at energy producing site, with potential advantage of being moved to vendor site for spent fuel refabrication. Second level is provided by the presence of substantial amounts of 238 Pu and 232 U in these fuels that makes fissile nuclides in them isotopically protected. All this reveals an important advantage of a multi-component SCNES that could draw in developing countries without elaborated technological infrastructure. (author)

  14. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  15. Nuclear information access system

    International Nuclear Information System (INIS)

    Ham, C. H.; Yang, M. H.; Yoon, S. W.

    1998-01-01

    The energy supply in the countries, which have abundant energy resources, may not be affected by accepting the assertion of anti-nuclear and environment groups. Anti-nuclear movements in the countries which have little energy resources may cause serious problem in securing energy supply. Especially, it is distinct in Korea because she heavily depends on nuclear energy in electricity supply(nuclear share in total electricity supply is about 40%).The cause of social trouble surrounding nuclear energy is being involved with various circumstances. However, it is very important that we are not aware of the importance of information access and prepared for such a situation from the early stage of nuclear energy's development. In those matter, this paper analyzes the contents of nuclear information access system in France and Japan which have dynamic nuclear development program and presents the direction of the nuclear access regime through comparing Korean status and referring to progresses of the regime

  16. Integration of renewable energies and nuclear power into North African Energy Systems: An analysis of energy import and export effects

    International Nuclear Information System (INIS)

    Supersberger, Nikolaus; Fuehrer, Laura

    2011-01-01

    The North African countries Morocco, Algeria, Tunisia, Libya and Egypt have been and are currently experiencing rapid growth in energy demand. This development confronts their political leaders with the question of how to expand or diversify their countries' generation capacities. In this context, renewable energies and nuclear power constitute options that have rarely been exploited so far in the region. This article analyzes the drawbacks and benefits of both alternatives, with a special focus on import and export dynamics. When attempting to make the strategic decision between renewables and atomic power, North African regional specifics and circumstances have to be taken into account. Hence, in a first step, the article characterizes the energy systems of the North African countries and presents scenarios for their future development. In a second step, it scrutinizes the energy challenges these states face in terms of domestic concerns and foreign affairs. Finally, a case study of Algeria is used to demonstrate how renewable energies, but not nuclear power, are able to respond to North African energy challenges. - Research highlights: → Using nuclear power would require fuel imports over the entire operation time. → Hence, energy exporters (Algeria, Libya) would become dependent on fuel imports. → Renewable energies can make North African countries less fuel import dependent. → Nuclear technologies would have to be imported over the whole life cycle of plants. → Domestic production for renewables technologies could be established after a first phase of technology imports.

  17. High education and nuclear energy

    International Nuclear Information System (INIS)

    Ghitescu, Petre; Prisecaru, Ilie; Stefanescu, Petre

    1998-01-01

    The Faculty of Energy of the University 'Politecnica' in Bucharest is the only faculty in Romania in the field of nuclear energy education. With an experience of more than 29 years, the Faculty of Energy offers the major 'Nuclear Power Plants', which students graduate after a 5-year education as engineers in the Nuclear Power Plant major. Among the principal objectives of the development and reshape of the Romanian education system was mentioned the upgrading of organizational forms by introducing the transfer credit system, and starting in the fall '97 by accrediting Radioprotection and Nuclear Safety Master education. As a result of co-operation and assistance offered by TEMPUS-SENECA program, the new major is shaped and endowed with a modern curriculum harmonized with UE and IAEA requirements and a modern and performing laboratory. This way the Romanian higher education offers a fully correct and concordant structure with UE countries education. (authors)

  18. Long-term cost targets for nuclear energy

    International Nuclear Information System (INIS)

    Rogner, H.H.; McDonald, A.

    2004-01-01

    In 2000 the International Atomic Energy Agency (IAEA) began the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) to help guide nuclear R and D strategies targeted on anticipated mid-century energy system needs. One part of INPRO seeks to develop cost targets for new designs to be competitive in mid-century markets. The starting point was the 40 scenarios of the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change. This paper summarizes four of the SRES scenarios, one from each of the four SRES scenario families. It discusses their implications for nuclear energy, including cost targets, and develops for each an 'aggressive nuclear' variant. The aggressive nuclear variants estimate the potential market for nuclear energy if, by improving faster than assumed by the SRES authors, nuclear energy can make inroads into vulnerable market shares projected for its competitors. In addition to projected demands for nuclear generated electricity, hydrogen and heat, the aggressive variants include prospective demand for nuclear desalination and use in upgrading fossil fuels. The paper then presents learning rates and implied cost targets consistent with the aggressive nuclear variants of the SRES scenarios. One provocative initial result is that many of the scenarios with substantial nuclear expansion do not seem to require big reductions in nuclear investment costs. One interpretation discussed at the end of the paper highlights the difference between cost reductions consistent with long-term energy system optimization based on perfect foresight, and cost reductions necessary to attract private investment in today's 'deregulating' and uncertain energy markets. (orig.)

  19. Teaching simulator for divulgation of the nuclear energy

    International Nuclear Information System (INIS)

    Ortega B, M.G.; Gutierrez F, R.

    2003-01-01

    To solicitude of the authorities of the 'Universum' sciences museum of the UNAM, it develops a highly interactive computational system, to provide of information to the population in general about basic principles, uses and benefits of the nuclear energy. The objective is to achieve a better understanding and acceptance of the nuclear technology in our country. The system allows the visualization and simulation of nuclear processes as well as of its applications. The system is divided in three levels: basic, intermediate and simulation. In the basic level multimedia information is included on diverse basic concepts of the nuclear energy. The intermediate level includes the description and operation of some systems of the Laguna Verde nuclear power plant (CNLV). Finally the simulation level contains representative scenarios that the user can control by means of virtual control panels of the main systems of the CNLV. Inside the system a part of interactive games is included with the purpose that the user remembers with more easiness all the concepts and advantages of the nuclear energy mentioned during the previous levels. The system contributes, by means of the development of multimedia computational tools and of simulation, to the popularization of the use and applications of the nuclear energy in Mexico. (Author)

  20. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Oh, K. B.

    2002-12-01

    This study deals with current energy issues, environmental aspects of energy, project feasibility evaluation, and activities of international organizations. Current energy issues including activities related with UNFCCC, sustainable development, and global concern on energy issues were surveyed with focusing on nuclear related activities. Environmental aspects of energy includes various topics such as, inter- industrial analysis of nuclear sector, the role of nuclear power in mitigating GHG emission, carbon capture and sequestration technology, hydrogen production by using nuclear energy, Life Cycle Analysis as a method of evaluating environmental impacts of a technology, and spent fuel management in the case of introducing fast reactor and/or accelerator driven system. Project feasibility evaluation includes nuclear desalination using SMART reactor, and introduction of COMFAR computer model, developed by UNIDO to carry out feasibility analysis in terms of business attitude. Activities of international organizations includes energy planning activities of IAEA and OECD/NEA, introduction of the activities of FNCA, one of the cooperation mechanism among Asian countries. In addition, MESSAGE computer model was also introduced. The model is being developed by IAEA to effectively handle liberalization of electricity market combined with environmental constraints

  1. Nuclear energy worldwide

    International Nuclear Information System (INIS)

    Fertel, M.

    2000-01-01

    In this short paper the author provides a list of tables and charts concerning the nuclear energy worldwide, the clean air benefits of nuclear energy, the nuclear competitiveness and the public opinion. He shows that the nuclear energy has a vital role to play in satisfying global energy and environmental goals. (A.L.B)

  2. Nuclear Energy Stakeholders in Argentina

    International Nuclear Information System (INIS)

    Gadano, Julian

    2017-01-01

    Mr Gadano, Undersecretary for Nuclear Energy, Argentina spoke from the perspective of a country looking forward to becoming a member of the NEA. He reviewed the place of nuclear energy in his country's energy mix and called attention to its role in positively addressing the global challenges of climate change and energy security. Mr Gadano also described the federal system which governs Argentina. Drawing on his expertise as a lawmaker and nuclear regulator but also as an academic sociologist, he stressed that reaching agreement on siting initiatives for example requires a sustainable relation with stakeholders, including regional governments. This is important because in the end, 'the best project is the one you can finish'

  3. International Nuclear Information System 1983-1996. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    1997-03-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with the International Nuclear Information System (INIS). INIS was established in 1969 to announced the scientific literature published worldwide on the peaceful uses of nuclear energy. All books are published in English. It should be noted that prices of books are quoted in Austrian Schillings. The prices do not include local taxes and are subject to change without notice. All books in this catalogue are 21 x 30 cm, paper-bound, unless otherwise stated. In addition all books in this catalogue, except for the INIS Input Training Kit, are available on microfiche. For information on the microfiche versions, contact the INIS Clearinghouse of the IAEA

  4. A sidelight on the history Korea nuclear energy

    International Nuclear Information System (INIS)

    Park, Ik Su

    1999-12-01

    It deals with a sidelight on the history of Korea nuclear energy through debate. It includes a lot of debates, which are about opinions on agreement of nuclear energy, three people's debates on agreement of nuclear energy between Korea and U.S.A development of nuclear energy and revolution of technology, introduction of reactor for generation of electricity, discuss over business of Korea nuclear power, the system of nuclear power plants, the issues on administration for nuclear power and radiation safety, the important things of Korea nuclear power business and Let's keep the first reactor; TRIGA-MARK-II and III.

  5. Nuclear power plant safety in the framework of future energy systems

    International Nuclear Information System (INIS)

    Kroeger, W.

    1995-01-01

    The work in the direction of 'sustainability' must, in the author's opinion, include the development of appropriate sustainability criteria. These must be concretised in such a way that they can be considered as technically mature and that one can derive from them further requirements for the development of energy systems. Once such criteria have been defined and accepted and dogmatism is driven back, nuclear technology would have considerable chances. On a planetary level, nuclear energy has a convincing perspective. The ongoing development work and the tendencies followed thereby, including a new safety cannot last for ever. An unprejudiced debate on nuclear risks, as can be observed at many places, on adequate internalisation of external costs, on the 'value' of technology for a country are signs of a 'normalisation'. However, this process is not (yet) robust and reliable, or even manageable. (author) 9 figs., 3 tabs

  6. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    Directory of Open Access Journals (Sweden)

    Robert Petroski

    2012-11-01

    Full Text Available A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole disposal of nuclear waste. In addition to these technological components, it also possesses the sociopolitical quality of manifest safety, which involves engineering to a very high degree of safety in a straightforward manner, while concurrently making the safety characteristics of the resulting nuclear systems continually manifest to society as a whole. Near-term aspects of this nuclear system are outlined, and representative parameters given for a system of global scale capable of supplying energy to a planetary population of 10 billion people at a per capita level enjoyed by contemporary Americans, i.e., of a type which might be seen a half-century hence. In addition to being sustainable from a resource standpoint, the described nuclear system is also sustainable with respect to environmental and human health impacts, including those resulting from severe accidents.

  7. A roadmap for nuclear energy technology

    Science.gov (United States)

    Sofu, Tanju

    2018-01-01

    The prospects for the future use of nuclear energy worldwide can best be understood within the context of global population growth, urbanization, rising energy need and associated pollution concerns. As the world continues to urbanize, sustainable development challenges are expected to be concentrated in cities of the lower-middle-income countries where the pace of urbanization is fastest. As these countries continue their trajectory of economic development, their energy need will also outpace their population growth adding to the increased demand for electricity. OECD IEA's energy system deployment pathway foresees doubling of the current global nuclear capacity by 2050 to reduce the impact of rapid urbanization. The pending "retirement cliff" of the existing U.S. nuclear fleet, representing over 60 percent of the nation's emission-free electricity, also poses a large economic and environmental challenge. To meet the challenge, the U.S. DOE has developed the vision and strategy for development and deployment of advanced reactors. As part of that vision, the U.S. government pursues programs that aim to expand the use of nuclear power by supporting sustainability of the existing nuclear fleet, deploying new water-cooled large and small modular reactors to enable nuclear energy to help meet the energy security and climate change goals, conducting R&D for advanced reactor technologies with alternative coolants, and developing sustainable nuclear fuel cycle strategies. Since the current path relying heavily on water-cooled reactors and "once-through" fuel cycle is not sustainable, next generation nuclear energy systems under consideration aim for significant advances over existing and evolutionary water-cooled reactors. Among the spectrum of advanced reactor options, closed-fuel-cycle systems using reactors with fast-neutron spectrum to meet the sustainability goals offer the most attractive alternatives. However, unless the new public-private partnership models emerge

  8. Accelerator driven nuclear energy and transmutation systems

    International Nuclear Information System (INIS)

    Boldeman, J.W.

    1999-01-01

    Nuclear power generation has been a mature industry for many years. However, despite the overall safety record and the great attractions of nuclear power, especially in times of concern about green house gases emissions, there continues to be some lack of public acceptance of this technology. This sensitivity to nuclear power has several elements in addition to the concern of a potential nuclear accident. These include the possible diversion of plutonium into nuclear weapon production and the concern about the long term storage of plutonium and other transuranic elements. A concept which seeks to allay these fears but still takes advantage of the nuclear fuel cycle and utilises decades of research and development in this technology, is the idea of using modern accelerators to transmute the long lived radio nuclides and simultaneously generate power. A review of the novel concepts for energy production and transmutation of isotopes will be presented. Of the various proposals, the most developed is the Energy Amplifier Concept promoted by Rubbia. The possibility of using high-energy, high-current accelerators to produce large fluxes of neutrons has been known since the earliest days of accelerator technology. E.O. Lawrence, for example, promoted the concept of producing nuclear material with such an accelerator. The Canadians in the early 50s considered using accelerators to produce fuel for their heavy water reactors and there were well advanced designs for a device called the Intense Neutron Generator. The speculative idea of using accelerator produced neutrons for the transmutation of transuranic elements (i.e. elements such as neptunium plutonium and other elements with higher Z atomic number) has also been studied extensively, notably at a number of laboratories in the US, Europe and Japan. However at this time, all facilities that have actually been constructed have been designed primarily for condensed matter studies i.e. studies of the structural properties

  9. Modification of the Japanese first nuclear ship reactor for a regional energy supply system

    International Nuclear Information System (INIS)

    Sato, K.; Shimazu, Y.; Narabayashi, T.; Tsuji, M.

    2008-01-01

    Nuclear Ship Mutsu was developed as the first experimental nuclear ship of Japan. It has several advantages as a prototype for regional energy supply system. Considering the attractive advantages of the Mutsu reactor, we investigated the feasibility of development of a small regional energy system by adopting the Mutsu reactor as a starting model. The system could supply with not only electricity but also heat. Heat could be used for hot-water supply, a heating system of a house, melting snow and so on, especially for those in northern part of Japan. The system should satisfy the requirements for GEN IV systems and the current regulations. From this point of view, the modification of the reactor was initiated by taking into improvements and technology of the state of arts to fulfill the requirements such as (1) Longer core life without refueling, (2) Reactivity adjustment for load change without control rods or soluble boron, (3) Simpler operations for load changes and (4) Ultimate safety with sufficient passive capability. Currently it is assumed to use basic standard 17x17 fuel assembly design for WH type PWRs. Nuclear design calculations are carried out by 'SRAC 2002 ', which has been developed in Japan Atomic Energy Agency. Several problems have not been solved yet, but we confirmed the proposed core has about 10 years life time. So the proposed core has a possibility to be used for a small regional energy system. (authors)

  10. Nuclear energy

    International Nuclear Information System (INIS)

    Rippon, S.

    1984-01-01

    Do we need nuclear energy. Is it safe. What are the risks. Will it lead to proliferation. The questions are endless, the answers often confused. In the vigorous debates that surround the siting and operation of nuclear power plants, it is all too easy to lose sight of the central issues amid the mass of arguments and counter-arguments put forward. And there remains the doubt, who do we believe. This book presents the facts, simply, straightforwardly, and comprehensibly. It describes the different types of nuclear reactor, how they work, how energy is produced and transformed into usable power, how nuclear waste is handled, what safeguards are built in to prevent accident, contamination and misuse. More important, it does this in the context of the real world, examining the benefits as well as the dangers of a nuclear power programme, quantifying the risks, and providing an authoritative account of the nuclear industry worldwide. Technically complex and politically controversial, the contribution of nuclear energy to our future energy requirements is a crucial topic of our time. (author)

  11. Nuclear energy and society Russian dimension

    International Nuclear Information System (INIS)

    Gagarinski, A.Yu.

    2010-01-01

    Since the very beginning of its brief history, nuclear energy was doomed to public attention - because of its first application. For 50 years of existence it failed to become one of traditional energy technologies, which the society would assess on the basis of its actual advantages (such as energy efficiency, resource availability and environmental acceptability). Nuclear weapons and crisis of confidence resulting from severe accidents have both formed the attitude to nuclear. This paper considers the basic antinuclear arguments, such as proliferation, waste and severe accidents. The current status of relations between nuclear energy and the public is still close (not only in Russia, but also in almost all European countries) to this state of politicization of nuclear and constant irrational fear radiation causes among people. Nevertheless, the positive trend in the attitude towards nuclear energy is obvious, both in Russia and in the world. In 2006, the long-expected 'new nuclear energy policy' (with returned budgetary financing of the new nuclear build) was announced in Russia at the highest governmental level. After that the worldwide recognition of the need to develop nuclear energy was only growing. The scale of global energy development is so large that all sources capable of making a contribution will find their demand. In the same time, public opinion in the world inseparably connects the issue of energy security with measures to combat climate changes. The '2 deg. C problem', if solvable at all, could be addressed only by simultaneous implementation of all possible emission reduction measures (including carbon-free energy technologies) on an unprecedented scale. Emission-free nuclear energy can actually become a system capable of sustainable and prompt development. This paper considers the issues, which could hamper nuclear development and negatively impact the public attitude towards nuclear. (authors)

  12. A systemic approach to the discussion of sustainability of nuclear energy

    International Nuclear Information System (INIS)

    Aegerter, Irene

    2001-01-01

    In 1998 the four Swiss Scientific Academies formed a working group to study sustainability of electricity production. Having been a member of this group since the beginning I witnessed the evolution of the discussion that led to a consensus. The group found the criteria of sustainability to be special for nuclear energy. While the resource uranium is not needed for any other purpose and thus the use of uranium is sustainable, the possible harm to future generations by nuclear reactors is difficult to evaluate: the potential damage can be large but the probability of its occurrence is very small. Therefore some people judge nuclear power as an environmentally friendly source of electricity production and an important contribution towards a sustainable energy future whereas others look at the potential damage and value nuclear power as not sustainable. The discussion of alternatives then reveals that it is definitely not sustainable to replace nuclear power by fossil fuels. This was a consensus reached by the members of the working group, which consists of the pro and anti nuclear camp. Sustainable energy production is a complex topic and not easy to tackle with our everyday methods. The group decided to solve the problem with a systemic approach to get to know the hidden and indirect effects of electricity production and usage. A system approach brings a new concept into the often blocked discussion of proponents and antinuclear people. In order to assure that a holistic evaluation results which reaches a high degree of consensus, several subgroups were formed representing divergent views on the issues analysed. These groups do not communicate their findings while work on their cross impact matrices (CIMs) is under way. The results are compared and discrepancies are discussed. Usually this shows that once the wording of the variables is corrected and their interpretations are shared by the parties involved, consensus concerning evaluations is achieved

  13. Glossary of nuclear energy

    International Nuclear Information System (INIS)

    Seo, Du Hwan

    1987-01-01

    This book gives descriptions of explanations of terminologies concerning to nuclear energy such as analysis of financial safety of nuclear energy, radwaste disposal, fast breeder reactor, nuclear reactor and device, nuclear fuel and technique for concentration, using of nuclear energy radiation and measurement, plan for development of nuclear energy and international institution. This book includes 160 terms on nuclear energy and arranges in Korean alphabetical order.

  14. Nuclear energy

    International Nuclear Information System (INIS)

    Wethe, Per Ivar

    2009-01-01

    Today we know two forms of nuclear energy: fission and fusion. Fission is the decomposition of heavy nuclei, while fusion is the melting together of light nuclei. Both processes create a large surplus of energy. Technologically, we can currently only use fission to produce energy in today's nuclear power plants, but there is intense research worldwide in order to realize a controlled fusion process. In a practical context, today's nuclear energy is a sustained source of energy since the resource base is virtually unlimited. When fusion technology is realized, the resource supply will be a marginal problem. (AG)

  15. Nuclear energy data

    International Nuclear Information System (INIS)

    2002-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (authors)

  16. Nuclear energy data

    International Nuclear Information System (INIS)

    2003-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  17. I wonder nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Cheol

    2009-04-15

    This book consists seven chapters, which are powerful nuclear energy, principle of nuclear fission, nuclear energy in our daily life, is nuclear energy safe?, what is radiation?, radiation spread in pur daily life and radiation like a spy. It adds nuclear energy story through quiz. This book with pictures is for kids to explain nuclear energy easily.

  18. Energy: nuclear energy; Energies: l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Lung, M. [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France)

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  19. Nuclear energy in future sustainable, competitive energy mixes

    International Nuclear Information System (INIS)

    Echavarri, L.

    2002-01-01

    Full text: Nuclear energy is an established component of electricity supply worldwide (16%) and in particular in OECD (nearly a quarter). It is supported by a mature industry benefiting from extensive experience (more than 8 000 reactor years of commercial operation) and dynamic R and D programmes implemented by governments and industries. Existing nuclear power plants are competing successfully in deregulated electricity markets owing to their low marginal production costs, their technical reliability (availability factors exceeding 80% in many countries) and good safety performance. Stringent safety requirements and radiation protection regulations in place in OECD countries allow potential impacts of nuclear energy facilities on human health and the environment to remain extremely low. Furthermore, nuclear energy, a nearly carbon free source, contributes to alleviating the risk of global climate change (worldwide, GHG emissions from the energy sector are already 8% lower than they would be without nuclear energy). Issues related to high-level waste management and disposal are being addressed in comprehensive, step by step approach. Progress towards the implementation of deep geological repositories is being demonstrated (e.g., Yucca Mountain in the US, Olkiluoto in Finland) and research on innovative fuel cycles aiming at partitioning and transmutation of minor actinides is being actively pursued. Up to 2010-2020, nuclear energy will maintain its role mainly through capacity upgrade and lifetime extension of existing plants, in many cases the most cost effective means to increase power capacity and generation. Examples are provided by utility policies and decisions in a number of OECD countries (e.g., Spain, Sweden, Switzerland, UK, US). Although only few new units are being or will be built in the very near term, their construction and operation is bringing additional experience on advanced evolutionary nuclear systems and paving the way for the renaissance of

  20. Nuclear energy and nuclear weapons

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1983-06-01

    We all want to prevent the use of nuclear weapons. The issue before us is how best to achieve this objective; more specifically, whether the peaceful applications of nuclear energy help or hinder, and to what extent. Many of us in the nuclear industry are working on these applications from a conviction that without peaceful nuclear energy the risk of nuclear war would be appreciably greater. Others, however, hold the opposite view. In discussing the subject, a necessary step in allaying fears is understanding some facts, and indeed facing up to some unpalatable facts. When the facts are assessed, and a balance struck, the conclusion is that peaceful nuclear energy is much more part of the solution to preventing nuclear war than it is part of the problem

  1. Nuclear energy data

    International Nuclear Information System (INIS)

    2004-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional graphical information as compared with previous editions allowing a rapid comparison between capacity and requirements in the various phases of the nuclear fuel cycle. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  2. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This report is one of a series of reports that investigate the technical and economic aspects of Nuclear-Renewable Hybrid Energy Systems. It provides the results of an analysis of two scenarios. The first is a Texas-synthetic gasoline scenario and the second is an Arizona-desalination scenario. The analysis focuses on the economics of the N-R HESs and how they compare to other options, including configurations without all the subsystems in each N-R HES and alternatives in which natural gas provides the energy.

  3. Nuclear energy - basis for hydrogen economy

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    The development of human civilization in general as well as that of every country in particular is in direct relation to the assurance of a cost effective energy balance encompassing all industrial spheres and everyday activities. Unfortunately, the uncontrolled utilization of Earth's energy resources is already causing irreversible damage to various components of the eco-system of the Earth. Nuclear energy used for electricity and hydrogen production has the biggest technological potential for solving of the main energy outstanding issues of the new century: increasing of energy dependence; global warming. Because of good market position the political basis is assured for fast development of new generation nuclear reactors and fuel cycles which can satisfy vigorously increasing needs of affordable and clean energy. Political conditions are created for adequate participation of nuclear energy in the future global energy mix. They must give chance to the nuclear industry to take adequate part in the new energy generation capacity.(author)

  4. Does nuclear energy have a future?

    International Nuclear Information System (INIS)

    Kienle, F.

    1989-01-01

    Nuclear energy contributes 17% to global electricity production and almost 40% to the public supply in Germany. Operators of nuclear power plants are having to invest considerable effort in trying to set the public thinking and boring public opinion away from an emotional rejection towards a rational consideration of the risks of different energy systems. It is argued that in view of the specific problems of environmental pollution through CO 2 it should be possible to bring about public acceptance of nuclear energy utilization. (DG) [de

  5. Global Energy Challenges of the 21. Century and Nuclear Energy

    International Nuclear Information System (INIS)

    Gagarinskiy, Andrey

    2008-01-01

    The paper considers the world energy demand till the middle of the century, as well as possible forecasting solution for this challenge. On the base of the mathematical model developed in the Kurchatov Institute in 2003- 2006, the vision of the global nuclear energy system and its potential contribution in the energy mix was analyzed. The rate of rapprochement between specific energy consumptions in different countries of the world is a key parameter determining the energy market strain. It was shown that a continuation of the current world trends of this rapprochement would result in an energy resource deficit already in the nearest future. The energy mix picture would contain an 'unsatisfied demand' area of about 10 000 Mtoe of total energy to be consumed by the mid-century Supposing that the mankind has to meet the 'unsatisfied demand' by nuclear energy, the global energy challenges of the 21. century energy do not impose any upper limit on nuclear energy development, the scale of which would be determined by development opportunities. Russia, as one of the pioneers of the First Nuclear Era, possesses great experience of solving the key issues of nuclear energy of the 20. century, and is capable to play an important role in dealing with the challenges faced by nuclear in the 21. century. (authors)

  6. Risk reducation of nuclear energy and its role in energy mix

    International Nuclear Information System (INIS)

    Tanaka, Satoru

    2013-01-01

    This article was newly written for useful discussion on energy policy based on the lecture at the Japan Science Council symposium 'How to amend energy policy after the Fukushima nuclear accident' held in July 2012. Basic standpoints of energy policy and positioning of nuclear power according to the 2010 energy basic program were reviewed. Nuclear power capacity was expected to increase from 49.5 GWe in 2007 to 68 GWe in 2030 to assure energy security. The accident forced energy policy to be amended starting with nuclear power zero base. The accident actualized the safety risks of nuclear power utilization, which were discussed from fragilities of three areas: (1) design basis, (2) emergency preparedness/response and (3) regulation system. Concrete measures to reduce risks of nuclear disaster were proposed. Role and responsibility of scientists was commented. Trend of energy policy based on basic philosophy selection for three scenarios in 2030 at the lecture time was confirmed and significance of nuclear power utilization was summarized from many-sided view points. (T. Tanaka)

  7. INPRO Methodology for Sustainability Assessment of Nuclear Energy Systems: Environmental Impact from Depletion of Resources

    International Nuclear Information System (INIS)

    2015-01-01

    INPRO is an international project to help ensure that nuclear energy is available to contribute in a sustainable manner to meeting the energy needs of the 21st century. A basic principle of INPRO in the area of environmental impact from depletion of resources is that a nuclear energy system will be capable of contributing to the energy needs in the 21st century while making efficient use of non-renewable resources needed for construction, operation and decommissioning. Recognizing that a national nuclear energy programme in a given country may be based both on indigenous resources and resources purchased from abroad, this publication provides background materials and summarizes the results of international global resource availability studies that could contribute to the corresponding national assessments

  8. Nuclear energy. Selective bibliography

    International Nuclear Information System (INIS)

    2011-07-01

    This bibliography gathers articles and books from the French National Library about civil nuclear energy, its related risks, and its perspectives of evolution: general overview (figures, legal framework, actors and markets, policies); what price for nuclear energy (environmental and health risks, financing, non-proliferation policy); future of nuclear energy in energy policies (nuclear energy versus other energies, nuclear phase-out); web sites selection

  9. Industrial Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides a detailed overview of the potential use of nuclear energy for industrial systems and/or processes which have a strong demand for process heat/steam and power, and on the mapping of nuclear power reactors proposed for various industrial applications. It describes the technical concepts for combined nuclear-industrial complexes that are being pursued in various Member States, and presents the concepts that were developed in the past to be applied in connection with some major industries. It also provides an analysis of the energy demand in various industries and outlines the potential that nuclear energy may have in major industrial applications such as process steam for oil recovery and refineries, hydrogen generation, and steel and aluminium production. The audience for this publication includes academia, industry, and government agencies.

  10. Application of optimization methods for nuclear energy system performance assessment by the MESSAGE software

    International Nuclear Information System (INIS)

    Andrianov, A.A.; Kuptsov, I.S.; Utyanskaya, T.V.

    2016-01-01

    This paper defines the multi-objective optimization and uncertainty treatment modules for the IAEA energy planning software MESSAGE intended for multi-objective optimization and sustainability assessments of innovative nuclear energy systems with account of uncertainty [ru

  11. Change impact analysis on the life cycle carbon emissions of energy systems – The nuclear example

    International Nuclear Information System (INIS)

    Nian, Victor

    2015-01-01

    Highlights: • This paper evaluates the life cycle carbon emission of nuclear power in a scenario based approach. • It quantifies the impacts to the LCA results from the change in design parameters. • The methodology can give indications towards preferred or favorable designs. • The findings contribute to the life cycle inventories of energy systems. - Abstract: The life cycle carbon emission factor (measured by t-CO 2 /GW h) of nuclear power is much lower than those of fossil fueled power generation technologies. However, the fact of nuclear energy being a low carbon power source comes with many assumptions. These assumptions range from system and process definitions, to input–output definitions, to system boundary and cut-off criteria selections, and life cycle inventory dataset. However, there is a somewhat neglected but critical aspect – the design aspect. This refers to the impacts on the life cycle carbon emissions from the change in design parameters related to nuclear power. The design parameters identified in this paper include: (1) the uranium ore grade, (2) the critical process technologies, represented by the average initial enrichment concentration of 235 U in the reactor fuel, and (3) the size of the nuclear power reactor (measured by the generating capacity). If not properly tested, assumptions in the design aspect can lead to an erroneous estimation on the life cycle carbon emission factor of nuclear power. In this paper, a methodology is developed using the Process Chain Analysis (PCA) approach to quantify the impacts of the changes in the selected design parameters on the life cycle carbon emission factor of nuclear power. The concept of doing so broadens the scope of PCAs on energy systems from “one-off” calculation to analysis towards favorable/preferred designs. The findings from the analyses can serve as addition to the life cycle inventory database for nuclear power as well as provide indications for the sustainability of

  12. Nuclear energy today

    International Nuclear Information System (INIS)

    2003-01-01

    Energy is the power of the world's economies, whose appetite for this commodity is increasing as the leading economies expand and developing economies grow. How to provide the energy demanded while protecting our environment and conserving natural resources is a vital question facing us today. Many parts of our society are debating how to power the future and whether nuclear energy should play a role. Nuclear energy is a complex technology with serious issues and a controversial past. Yet it also has the potential to provide considerable benefits. In pondering the future of this imposing technology, people want to know. - How safe is nuclear energy? - Is nuclear energy economically competitive? - What role can nuclear energy play in meeting greenhouse gas reduction targets? - What can be done with the radioactive waste it generates? - Does its use increase the risk of proliferation of nuclear weapons? - Are there sufficient and secure resources to permit its prolonged exploitation? - Can tomorrow's nuclear energy be better than today's? This publication provides authoritative and factual replies to these questions. Written primarily to inform policy makers, it will also serve interested members of the public, academics, journalists and industry leaders. (author)

  13. Nuclear energy and public opinion. Chilean Nuclear Energy Commission (CCHEN) dissemination and extension program

    International Nuclear Information System (INIS)

    Oviedo, Gonzalo Torres; Quintana, Rosamel Mufioz

    2000-01-01

    In Chile, demand for electricity will soon exceed water resources. The country will then face severe energy dependence, with very little control over generation costs, and with increasing emission of contaminating gases into the atmosphere. Nuclear energy may be considered an appropriate and stabilizing alternative for the system in the medium term, the benefits of nuclear generation to be thus extended to a country which has a moderate demand for electricity. This new scenario will require an additional technical and regulating effort by CCHEN and by the state, as well as re-orientation of their activities in connection with public opinion. The Public Nuclear Energy Education Program, initiated in 1976 by CCHEN, has been developed for purposes of achieving public acceptance of nuclear energy as a way of facilitating development of various activities which pertain to CCHEN's scope of action, and of creating a climate which is favorable to acceptance of nuclear energy as an alternative source of energy. Thus, the object is that the public draw informed conclusions on the benefits and risks implicit in the use of isotopes, radiation, and nuclear power generation. The Program consists of activities for high school students aimed at vocational orientation of those who stand out in the science area, training and extension activities for teachers, journalists, and professionals, a program of guided tours of the nuclear centers, a publicity campaign conducted in the various media and, since 1980, massive distribution of brochures and magazines. There are no declared anti-nuclear movements in Chile. Nevertheless, there are opinions against nuclear power in different relevant sectors. Lately, the social communication media have preferred CCHEN as their source of information, a fact which makes it possible for the latter to have access to good coverage of its activities

  14. System effects of nuclear energy and renewables in low-carbon electricity Systems

    International Nuclear Information System (INIS)

    Keppler, J.H.; Gameron, R.; Cometto, M.

    2012-01-01

    Electricity produced by variable renewable energies significantly affects the economics of dispatchable power generators, in particular those of nuclear power, both in the short run and the long run; the outcome of these competing factors will depend on the amount of variable renewables being introduced, local conditions and the level of carbon prices. An assessment of grid-level system costs (including the costs for grid connection, extension and reinforcement, as well as the added costs for balancing and back-up, but excluding the financial costs of intermittency and the impacts on security of supply, the environment, siting and safety), reveals a considerable difference between those of dispatchable technologies and those of variable renewables. Using a common methodology and a broad array of country-specific data, the grid-level system costs for Finland, France, Germany, the Republic of Korea, the United Kingdom and the United States were calculated for nuclear, coal, gas, onshore wind, offshore wind and solar PV both at 10 pc and 30 pc penetration levels. Variable renewables are creating a market environment in which dispatchable technologies can no longer finance themselves through revenues in 'energy only' wholesale markets; this has serious implications for the security of electricity supplies. Four main policy recommendations are proposed

  15. The NRNU MEPhI activities in the development and applications of advanced tools for innovative nuclear energy systems sustainability assessments - 5020

    International Nuclear Information System (INIS)

    Andrianov, A.; Dogov, A.; Kuptsov, I.; Fedorova, E.; Svetlichnyy, L.; Utianskaia, T.; Korovin, Y.

    2015-01-01

    This report delineates the multi-objective optimization and uncertainty treatment modules for the IAEA energy planning software MESSAGE developed at the National Research Nuclear University MEPhI and the Obninsk Institute for Nuclear Power Engineering intended for multi-objective optimization and sustainability assessments of innovative nuclear energy systems with account of uncertainty. The authors present some results of implementation of these tools for multi-objective nuclear energy system optimization studies. The developed software allows searching for compromises between the conflicting factors that determine the nuclear energy systems' effectiveness and calculating corresponding trade-off rates; carrying out comparative multi-criteria analysis of alternatives as well as choosing, ranking, and sorting corresponding options taking into account the evolution dynamics, structure and organization of a nuclear fuel cycle and the most important system constraints and restrictions. (authors)

  16. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  17. System of radiation monitoring of nuclear hazardous facilities in Institute of Atomic Energy of National Nuclear Centre

    International Nuclear Information System (INIS)

    Azarov, V.A.; Meshin, M.M.; Shuklin, G.S.

    1996-01-01

    Issues of radiation monitoring (RM) at reactor complex of Inst. of Atomic Energy (IAE) are discussed in report. The National Nuclear Centre's reactor base consists of 2 complexes situated in 2 different locations: Bajkal-1 and IGR. So far as IAE has common mythology for RM at all hazardous nuclear facilities the issues of RM for Baikal-1 and IGR Radiation monitoring system includes: - personal dosimetric control of personnel, maintaining the reactor systems and research laboratories; RM of industrial buildings; - RM of technical areas of technical area of the facility; sanitary system of dosimetry control (DC); etc. The description of stationary DC system of the complex based on 'System' facility are given. Baikal is surround by sanitary area with radius of 5 km and with its centre in the reactor location. Complexity of studying the radiation status on the territory of Baikal-1 and its surroundings is the result of nuclear testing conducted at the test site in the past, reactor operation with open exhaust of coolant into atmosphere while testing on Nuclear Rocket Engines program as well as global fall out of radionuclides

  18. Nuclear Energy, a way for tomorrow spacecrafts

    International Nuclear Information System (INIS)

    2002-01-01

    To better explore the solar system, the NASA will uses new propulsion modes, in particular the nuclear energy. These articles present the research programs in the domain and the particularities of the nuclear energy in the projects. (A.L.B.)

  19. Nuclear re-think [The case for nuclear energy

    International Nuclear Information System (INIS)

    Moore, P.

    2006-01-01

    In the early 1970s, Patrick Moore, a co-founder of Greenpeace, believed that nuclear energy was synonymous with nuclear holocaust. Thirty years on, his views have changed because nuclear energy is the only non-greenhouse-gas-emitting power source that can effectively replace fossil fuels while satisfying the world's increasing demand for energy. Today, 441 nuclear plants operating globally avoid the release of nearly 3 billion tonnes of CO 2 emissions annually-the equivalent of the exhaust from more than 428 million cars. Concerns associated with nuclear energy are discussed including costs of nuclear energy, safety of nuclear plants, radioactive waste management, vulnerability of nuclear plants to terrorist attacks and diversion of nuclear fuel for weaponization. It is concluded that nuclear energy is the best way to produce safe, clean, reliable baseload electricity, and will play a key role in achieving global energy security. With climate change at the top of the international agenda, we must all do our part to encourage a nuclear energy renaissance

  20. Analysis on long-term perspective of nuclear energy in the global energy system in terms of CO2 mitigation

    International Nuclear Information System (INIS)

    Sugiyama, T.; Uotani, M.

    2001-01-01

    The value of nuclear energy is analyzed for prevention of global warming and climate change by means of a global energy model, which finds the cost minimum energy system over the time range of 2000 - 2100. Six scenarios are examined in this analysis, considering two scenarios of economic growth rate, two scenarios of electrification rate, and FBR introduction or not. The results indicate that progress of electricity generation is the key to reduce the global CO 2 emission, and the role of FBRs with its nuclear fuel cycle is very robust against any economic conditions. (author)

  1. Nuclear imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.; Horrigan, F.A.

    1975-01-01

    This invention relates to a nuclear imaging system for mapping the source of high energy nuclear particles from a living organ which has selectively absorbed a radioactive compound by spatially coding the energy from the source in a Fresnel pattern on a detector and decoding the detector output to prouce an image of the source. The coding is produced by a Fresnel zone plate interposed between the nuclear energy source and the detector whose position is adjustable with respect to the detector to focus the slices of the nuclear source on the detector. By adjusting the zone plate to a plurality of positions, data from a plurality of cross-sectional slices are produced from which a three-dimensional image of the nuclear source may be obtained. (Patent Office Record)

  2. Federal Nuclear Energy Program: a synopsis

    International Nuclear Information System (INIS)

    1983-01-01

    This document provides an overview of the new nuclear policy objectives and initiatives and summarizes the Department of Energy programmatic strategy to realize the full nuclear potential. Analyses have been made within the context of prevailing and potential economic conditions, alternative energy options and prior nuclear performance and growth patterns. The Department's organizational structure, which was realigned in June 1982 to conform with the activities mandated by the Administration's policy, is also discussed. The individual program elements for nuclear research and development are described as they contribute to a fully integrated fuel cycle and power generation system. Federal and commercial responsibilities for developmental activity are delinated, and relationship of the programs to broad national energy objectives is specified

  3. National Option of China's Nuclear Energy Systems for Spent Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R.X. [University of Science and Technology, Daejeon (Korea, Republic of); Ko, W. I.; Lee, S. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Along with safety concerns, these long standing environmental challenges are the major factors influencing the public acceptance of nuclear power. Although nuclear power plays an important role in reducing carbon emissions from energy generation, this could not fully prove it as a sustainable energy source unless we find a consensus approach to treat the nuclear wastes. There are currently no countries that have completed a whole nuclear fuel cycle, and the relative comparison of the reprocessing spent fuel options versus direct disposal option is always a controversial issue. Without exception, nowadays, China is implementing many R and D projects on spent fuel management to find a long-term solution for nuclear fuel cycle system transition, such as deep geological repositories for High Level Waste (HLW), Pu Reduction by Solvent Extraction (PUREX) technology, and fast reactor recycling Mixed U-Pu Oxide (MOX) fuels, etc. This paper integrates the current nation's projects of back-end fuel cycle, analyzes the consequences of potential successes, failures and delays in the project development to future nuclear fuel cycle transition up to 2100. We compared the dynamic results of four scenarios and then assessed relative impact on spent fuel management. The result revealed that the fuel cycle transition of reprocessing and recycling of spent fuel would bring advantages to overall nuclear systems by reducing high level waste inventory, saving natural uranium resources, and reducing plutonium management risk.

  4. Nuclear energy dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-15

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  5. Nuclear energy dictionary

    International Nuclear Information System (INIS)

    1978-03-01

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  6. The energy yield of nuclear energy

    International Nuclear Information System (INIS)

    Smith, Ph.B.

    1983-01-01

    In this paper, a comparison is made between the energy produced in a nuclear cycle in a light-water reactor without recycling of plutonium or uranium on the one hand and the energy stored into the system to realize this energy production on the other. Only empirical data are used, which means that some energy costs are omitted because no empirical data were available (e.g. energy needed to waste processing and waste disposal). The following steps are taken into account: production and processing of ores, conversion and enrichment of fuels, construction and shutdown of the reactor itself. (Auth.)

  7. A prehistory of nuclear energy development

    International Nuclear Information System (INIS)

    Yoshikawa, Hideo

    2007-01-01

    Evolutionary progress of the LWR plants in the last half-century was reviewed in series. As a prehistory of nuclear energy development, this first lecture presented (1) discovery of nuclear energy and development of the atomic bomb and (2) development of the reactor system using nuclear energy for making electricity and for naval propulsion. The first nuclear reactor to produce electricity was the small Experimental Breeder Reactor (EBR-1) in Idaho, in the USA, which started up in December 1951. The Pressurized Water Reactor (PWR) for naval use was developed under Hyman Rickover in the USA. The Mark I prototype naval reactor started up in March 1953 in Idaho, and the first nuclear-powered submarine, NS Nautilus, with the Mark II reactor was put into service in January 1955. (T. Tanaka)

  8. Editorial : Introduction to Energy Strategy Reviews theme issue “Nuclear energy today & strategies for tomorrow”

    NARCIS (Netherlands)

    Rogner, H.H.; Weijermars, R.

    2013-01-01

    Finding the optimum energy supply system is one of the aims of energy strategy research and nuclear energy is a much debated real option. Proponents of nuclear energy argue that there are no technologies without risks and that nuclear power is needed for meeting growing energy demand in the emerging

  9. Nuclear Energy Division. 2009 Activity report

    International Nuclear Information System (INIS)

    2009-01-01

    After a presentation of the future investment programme of the nuclear energy department at the French national Nuclear Research Center (CEA), this report proposes a description of tomorrow's industrial nuclear systems (back-end of future fuel cycle, fourth generation systems, basic scientific and technological research), describes how current nuclear industrial systems are optimized (front-end and back-end of fuel cycle, second and third generation reactors). It presents the main tools for nuclear development: simulation programme, the Jules Horowitz reactor project, maintenance of specific facilities, research valorisation. It reports the activities related to the clean-up and dismantling in different nuclear sites, presents the activities of CEA's nuclear research centres (Saclay, Cadarache, Marcoule), briefly presents the transverse material programme, recalls some events, and gives some key figures

  10. Energy strategies and nuclear power

    International Nuclear Information System (INIS)

    Hafele, W.

    1983-01-01

    The results of two quantitative scenarios balancing global energy supply with demand for the period 1980-2030 are reviewed briefly. The results suggest that during these 50 years there will be a persistent demand worldwide for liquid fuels, a continuing reliance on ever more expensive and ''dirty'' fossil fuels, and a limited penetration rate of nuclear generated electricity into the energy market. The paper therefore addresses a possible ''second'' grid driven by nuclear heat - a grid based not on electricity but on ''clean'' liquid fuels manufactured from gaseous and solid fossil fuels using nuclear power. Such a second grid would be an important complement to the electricity grid if the world is to progress towards a truly sustainable energy system after 2030

  11. HYPER (hybrid power extraction reactor): a system for clean nuclear energy

    International Nuclear Information System (INIS)

    Park, W.S.; Shin, U.; Han, S.-J.; Song, T.Y.; Choi, B.H.; Park, C.K.

    2000-01-01

    The Korea Atomic Energy Research Institute (KAERI) has been performing accelerator driven system related research and development (RID) called HYPER (hybrid power extraction reactor) for the transmutation of nuclear waste and energy production through the transmutation process. HYPER program is within the frame work of the national mid and long-term nuclear research plan. KAERI is aiming to develop the elemental technologies for the subcritical transmutation system by the year of 2001 and build a small bench scale test facility (∝5 MW) by the year of 2006. Some major features of HYPER have been developed and employed. On-power fueling concepts are employed to keep system power constant with a minimum variation of accelerator power. A hollow cylinder-type metal fuel is designed for the on-line refueling concept. Lead-bismuth (Pb-Bi) is adopted as a coolant and spallation target material. 1 GeV 16 mA proton beam is designed to be provided for HYPER. HYPER is to transmute about 380 kg of TRU a year and produce 1000 MW of power. The support ratio of HYPER for LWR units producing the same power is believed to be 5∝6. (orig.)

  12. Nuclear energy

    International Nuclear Information System (INIS)

    Seidel, J.

    1990-01-01

    This set of questions is based on an inquiry from the years 1987 to 1989. About 250 people af all age groups - primarily, however, young people between 16 and 25 years of age - were asked to state the questions they considered particularly important on the subject of nuclear energy. The survey was carried out without handicaps according to the brain-storming principle. Although the results cannot claim to be representative, they certainly reflect the areas of interest of many citizens and also their expectations, hopes and fears in connection with nuclear energy. The greater part of the questions were aimed at three topic areas: The security of nuclear power-stations, the effects of radioactivity on people and the problem of waste disposal. The book centres around these sets of questions. The introduction gives a general survey of the significance of nuclear energy as a whole. After this follow questions to do with the function of nuclear power stations, for the problems of security and waste disposal - which are dealt with in the following chapters - are easier to explain and to understand if a few physical and technical basics are understood. In the final section of the book there are questions on the so-called rejection debate and on the possibility of replacing nuclear energy with other energy forms. (orig./HP) [de

  13. Energy and nuclear power planning study for Armenia

    International Nuclear Information System (INIS)

    2004-07-01

    The Energy and Nuclear Power Planning (ENPP) study for Armenia has been conducted under the technical cooperation programme of the International Atomic Energy Agency (IAEA). The objective of the study was to analyze the electricity demand as part of the total final energy demand in various scenarios of Armenian socioeconomic and technological development, and to develop economically optimized electric generating system expansion plans for meeting the electric power demand, and to assess the role that nuclear energy could play within these optimal programs. The specific objectives of this study were: to define the role that nuclear power could play in the future electricity supply in Armenia, based on a least-cost expansion planning analysis of the country's power system; to analyze the environmental impacts of such a nuclear power development; to evaluate the financial viability of the envisaged nuclear power development program; to train a group of Armenian experts in the use of the IAEA's energy models

  14. Control Systems for a Dynamic Multi-Physics Model of a Nuclear Hybrid Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [ORNL; Fugate, David W [ORNL; Cetiner, Sacit M [ORNL

    2017-01-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as either thermal power, electrical power, or both. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different local markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  15. The nuclear energy in the seawater desalination

    International Nuclear Information System (INIS)

    Moreno A, J.; Flores E, R.M.

    2004-01-01

    In general, the hydric resources of diverse regions of the world are insufficient for to satisfy the necessities of their inhabitants. Among the different technologies that are applied for the desalination of seawater are the distillation processes, the use of membranes and in particular recently in development the use of the nuclear energy (Nuclear Desalination; System to produce drinkable water starting from seawater in a complex integrated in that as much the nuclear reactor as the desalination system are in a common location, the facilities and pertinent services are shared, and the nuclear reactor produces the energy that is used for the desalination process). (Author)

  16. Dossier nuclear energy

    International Nuclear Information System (INIS)

    1993-11-01

    The present Dutch government compiled the title document to enable the future Dutch government to declare its opinion on the nuclear energy problemacy. The most important questions which occupy the Dutch society are discussed: safe application and risks of nuclear energy, radioactive wastes and other environmental aspects, and the possible danger of misusing nuclear technology. In chapter two attention is paid to the policy, as formulated by the Dutch government, with regard to risks of nuclear power plants. Next the technical safety regulations that have to be met are dealt with. A brief overview is given of the state of the art of commercially available nuclear reactors, as well as reactors under development. The nuclear waste problem is the subject of chapter three. Attention is paid to the Dutch policy that has been formulated and is executed, the OPLA-program, in which the underground storage of radioactive wastes is studied, the research on the conversion of long-lived radioactive isotopes to short-lived radioactive isotopes, and planned research programs. In chapter four, other environmental effects of the use of nuclear power are taken into consideration, focusing on the nuclear fuel cycle. International obligations and agreements to guarantee the peaceful use of nuclear energy (non-proliferation) are mentioned and discussed in chapter four. In chapter six the necessity to carry out surveys to determine public support for the use of nuclear energy is outlined. In the appendices nuclear energy reports in the period 1986-present are listed. Also the subject of uranium supplies is discussed and a brief overview of the use of nuclear energy in several other countries is given. 2 tabs., 5 annexes, 63 refs

  17. Building sustainable energy systems: the role of nuclear-derived hydrogen

    International Nuclear Information System (INIS)

    Hans-Holger Rogner; Sanborn Scott, D.

    2001-01-01

    Global climate change is the most critical environmental threat of the 21. century. As evidenced in the preliminary draft of the Intergovernmental Panel on Climate Change (IPCC) new Third Assessment Report (TAR), the scientific support for this conclusion is both extensive and growing. In this paper we first review features of the 21. century energy system - how that system evolved and where it seems to be taking us, unless there are clear and aggressive multinational initiatives to mitigate and then reverse the contribution that today's energy system makes to the risks of global climate change. The paper then turns to the extensive deployment of the two non-carbon based energy currencies electricity and hydrogen, which we will call hydricity, that we believe are essential for future reductions in anthropogenic carbon dioxide (CO 2 ) emissions. Of these two, hydrogen will be the newcomer to energy systems. Popular thinking often identifies renewable as the category of energy sources that can provide electricity and hydrogen in sufficient quantities, although much of the public does not realize there will still be a need for a chemical currency to allow renewable to power the market where carbon is most difficult to mitigate, transportation. Renewable, however, while able to make important contributions to future energy supplies, cannot realistically provide the magnitude of energy that will be required. The paper outlines the quantitative limits to the overall renewable contribution and argues that the large-scale deployment of nuclear fission will be essential for meeting future energy needs while limiting greenhouse gas (GHG) emissions. (authors)

  18. Nuclear energy inquiries

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1993-02-01

    Our choice of energy sources has important consequences for the economy and the environment. Nuclear energy is a controversial energy source, subject to much public debate. Most individuals find it difficult to decide between conflicting claims and allegations in a variety of technical subjects. Under these circumstances, knowledge of various relevant inquiries can be helpful. This publication summarizes the composition and major findings of more than thirty nuclear energy inquiries. Most of the these are Canadian, but others are included where they have relevance. The survey shows that, contrary to some claims, virtually every aspect of nuclear energy has been subject to detailed scrutiny. The inquiries' reports include many recommendations on how nuclear energy can be exploited safely, but none rejects it as an acceptable energy source when needed. (Author) 38 refs

  19. Joint Thesaurus. Part I (A-L) + Part II (M-Z)[International Nuclear Information System. Energy Technology Data Exchange

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-04-01

    This is the 1st revision of the INIS/ETDE Joint Thesaurus. It contains 20 953 valid descriptors and 8 600 forbidden terms. It was last updated in December 2003. The Joint Thesaurus contains the controlled terminology for indexing all information within the subject scope of both INIS (International Nuclear Information System) and ETDE (Energy Technology Data Exchange) information systems. The terminology is intended for use in subject description for input or retrieval of information in those systems. The thesaurus is a terminological control device used in translating from the natural language of documents, indexers or users into a more constrained system language It is also a controlled and dynamic vocabulary of semantically and generically related terms which covers a specific domain of knowledge. The domain of knowledge covered by this Thesaurus includes physics (in particular, plasma physics, atomic and molecular physics, and especially nuclear and high-energy physics), chemistry, materials, earth sciences, radiation biology, radioisotope effects and kinetics, applied life sciences, radiology and nuclear medicine, isotope and radiation source technology, radiation protection, radiation applications, engineering, instrumentation, fossil fuels, synthetic fuels, renewable energy sources, advanced energy systems, fission and fusion reactor technology, safeguards and inspection, waste management, environmental aspects of the production and consumption of energy from nuclear and non-nuclear sources, energy efficiency and energy conservation, economics and sociology of energy production and use, energy policy, and nuclear law. The terms in the Thesaurus are listed alphabetically, and with each alphabetic entry a word block containing the terms associated with the particular entry is displayed. In the word block, terms that have a hierarchical relationship to the entry are identified by the symbols BT and NT, for Broader Term and Narrower Term. Those with an affinitive

  20. Future nuclear energy policy based on the Broad Outline of Nuclear Energy Policy

    International Nuclear Information System (INIS)

    Saito, Shinzo

    2006-01-01

    The Broad Outline of Nuclear Energy Policy for about ten years was determined by the Cabinet meeting of Japan. Nuclear power plant safety and regulation, nuclear waste management, nuclear power production and nuclear power research and development were discussed. It determined that 3 nuclear power plants, which are building, should be built, and about 10 plants will be built to product 30 to 40 % of Japan electricity generation after 2030. FBR will be operated until 2050. The nuclear fuel cycle system will be used continuously. The nuclear power plant safety and nuclear waste management are so important for the nuclear industry that these subjects were discussed in detail. In order to understand and use the quantum beam technology, the advanced institutions and equipments and network among scientists, industry and people should be planed and practically used. (S.Y.)

  1. Guides about nuclear energy in South Korea

    International Nuclear Information System (INIS)

    2004-03-01

    This document summarizes the main information on nuclear energy in South Korea: number of reactors in operation, type, date of commissioning, nuclear facilities under construction, nuclear share in power production, companies and organizations (Korea electric power company (KEPCO), Korea atomic energy institute (KAERI), Korea institute of nuclear safety (KINS), Korea nuclear energy foundation (KNEF), Korea hydro and nuclear power (KHNP), nuclear environment technology institute (NETEC), Korea basic science institute (KBSI)), nuclear fuel fabrication, research works on waste disposal, nuclear R and D in fission and fusion, safety of nuclear facilities, strategies under study (1000 MWe Korea standard nuclear power plant (KSNP), 1400 MWe advanced power reactor (APR), small power water cooled reactors (system-integrated modular advanced reactor (SMART) research program), development of fast reactors (Kalimer research program), development of the process of direct use of PWR fuel in Candu (DUPIC), use of reprocessing uranium, transmutation of trans-uranian and wastes (KOMAC program), first dismantling experience (Triga Mark II and III research reactors). (J.S.)

  2. Nuclear energy and nuclear technology in Switzerland

    International Nuclear Information System (INIS)

    Graf, P.

    1975-01-01

    The energy crisis, high fuel costs and slow progress in the development of alternative energy sources, e.g. solar energy have given further impetus to nuclear power generation. The Swiss nuclear energy programme is discussed and details are given of nuclear station in operation, under construction, in the project stage and of Swiss participation in foreign nuclear stations. Reference is made to the difficulties, delays and resulting cost increases caused by local and regional opposition to nuclear power stations. The significant contributions made by Swiss industry and Swiss consulting engineers are discussed. (P.G.R.)

  3. Nuclear energy data

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of basic statistics on electricity generation and nuclear power in OECD countries. The reader will find quick and easy reference to the present status of and projected trends in total electricity generating capacity, nuclear generating capacity, and actual electricity production as well as on supply and demand for nuclear fuel cycle services [fr

  4. The energy mix for the next generation: with or without nuclear?

    International Nuclear Information System (INIS)

    Agnes, M.; Tounkara, N.

    2001-01-01

    This paper has been prepared as a contribution to the ongoing debate on nuclear energy and sustainable development. Some of the supporters of sustainable energy systems do not see nuclear power as part of the future: an UNDP (United Nations Development Program) document 'Energy after Rio' suggests a role for nuclear power in a sustainable energy future in very doubtful terms; the Swedish Parliament's February 1997 law launching the phase out of nuclear power is entitled 'Government Bill on a Sustainable Energy Supply'; many environmental organizations underlined the incompatibility of nuclear power and sustainable energy systems; the European Parliament recently excluded nuclear power from the energy sources that can fit into flexibility mechanisms because of its unsustainability. The supporters of nuclear power see climate change concerns as a way to revitalize interest in nuclear power. They call for a significant role of nuclear power in sustainable energy systems mainly because it does not emit any CO 2 . Member countries of International Energy Agency (IEA) recognize the potential contribution of nuclear power to a sustainable energy mix. The Nuclear Energy Agency of OECD recognizes the potential role of nuclear power in sustainable development. In the framework of the United Nations Convention on Climate Change, the nuclear industry as a Non Governmental Organization (NGO) involved in the climate negotiations, emphasizes the role of nuclear power in reducing the greenhouse gas effect. In this debate, radioactive waste is the main argument against the sustainability of nuclear power whilst the fact that nuclear power does not produce emissions of airborne pollutants or CO 2 is used to argue that it can be a great contributor to sustainable energy systems. Our purpose is to go further in the debate: sustainability is not only about climate change and the role of nuclear power in achieving a 'sustainable development' goes further than the reduction of greenhouse

  5. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a

  6. Nuclear energy and process heating

    International Nuclear Information System (INIS)

    Kozier, K.S.

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a determined

  7. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Oh, K. B.

    2004-12-01

    This study evaluated the role of nuclear energy in various aspects in order to provide a more comprehensive standard of judgement to the justification of the utilization of nuclear energy. Firstly, this study evaluated the economic value addition of nuclear power generation technology and Radio-Isotope(RI) technology quantitatively by using modified Input-Output table. Secondly, a comprehensive cost-benefit analysis of nuclear power generation was conducted with an effort to quantify the foreign exchange expenditure, the environmental damage cost during 1986-2015 for each scenario. Thirdly, the effect of the regulation of CO 2 emission on the Korean electric supply system was investigated. In more detail, an optimal composition of power plant mix by energy source was investigated, under the assumption of the CO 2 emission regulation at a certain level, by using MESSAGE model. Finally, the economic spillover effect from technology self-reliance of NSSS by Korea Atomic Energy Research Institute was evaluated. Both production spillover effect and value addition spillover effect were estimated by using Input-Output table

  8. Alternatives to nuclear energy

    International Nuclear Information System (INIS)

    Terrado, E.N.

    1981-01-01

    This article discusses several possibilities as alternatives to nuclear energy and their relevance to the Philippine case. The major present and future fuel alternatives to petroleum and nuclear energy are coal, geothermal heat, solar energy and hydrogen, the first two of which are being used. Different conversion technologies are also discussed for large scale electricity production namely solar thermal electric conversion (STC), photovoltaic electric power system (PEPS) and ocean thermal energy conversion (OTEC). Major environmental considerations affect the choice of energy sources and technologies. We have the problem of long term accumulation of radioactive waste in the case of nuclear energy; in geothermal and fossil-fuels carbon dioxide uranium and accumulation may cause disastrous consequences. With regard to Philippine option, the greatest considerations in selecting alternative energy options would be resources availability - both energy and financial and technology status. For the country's energy plan, coal and geothermal energy are expected to play a significant role. The country's coal resources are 1.4 billion metric tons. For geothermal energy, 25 volcanic centers were identified and has a potential equivalent to 2.5 x 10 6 million barrels of oil. Solar energy if harnessed, being in the sunbelt, averaging some 2000 hours a year could be an energy source. The present dilemma of the policy maker is whether national resources are better spent on large scale urban-based energy projects or whether those should be focused on small scale, rural oriented installations which produced benefits to the more numerous and poorer members of the population. (RTD)

  9. Analytical framework for the analysis/assessment of transition scenarios to sustainable nuclear energy systems and its applications

    International Nuclear Information System (INIS)

    Kuznetsov, V.

    2013-01-01

    IAEA/INPRO (in cooperation with the IAEA's Planning and Economic Studies Section) have developed an internationally verified analytical framework to assist Member States in Nuclear energy development modelling, including material flow analysis, economic assessment and least cost model optimization (IAEA Nuclear Energy Series No. NP-T-1.14 in print). The INPRO Group (in cooperation with the IAEA's Planning and Economic Studies Section) provides training to Member States on mastering and application of this analytical framework to particular problems of national/ collaborative nuclear energy development. For small programmes of the fast reactors/closed nuclear fuel cycle deployment the economic benefits from their introduction would be substantially lower than the amount of investments needed for RD&D, licensing and deployment. Only a few countries in the world with large nuclear energy programmes (30 GW(e) for fast reactors) can bear the burden of the technology development for fast reactors/closed nuclear fuel cycle. Therefore, global nuclear energy system would follow a heterogeneous world model, at least, within the present century

  10. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    Chester, K.

    1982-01-01

    In order to make a real contribution to the nuclear energy debate (is nuclear energy the limitless solution to man's energy problems or the path to man's destruction) people must be aware of the facts. The Science Reference Library (SRL) has a collection of the primary sources of information on nuclear energy - especially journals. This guideline aims to draw attention to the up-to-date literature on nuclear energy and its technology, freely available for consultation in the main Holborn reading room. After explanations of where to look for particular types of information and the SRL classification, the booklet gives lists and brief notes on the sources held. These are abstracting and indexing periodicals and periodicals. Reports, conference proceedings, patents, bibliographies, directories, year-books and buyer's guides are covered very briefly but not listed. Nuclear reactor data and organisations are also listed with brief details of each. (U.K.)

  11. Nuclear energy and the media

    International Nuclear Information System (INIS)

    Mosey, D.

    1985-01-01

    The author believes that it is very important for the public to understand the scientific and engineering realities of nuclear energy systems, so that their support for or their opposition to energy policy decisions will not be based on false premises. While there do exist widespread misconceptions about the safety of nuclear energy, these misconceptions spring from the high degree of emphasis placed on engineered safety by the nuclear energy community in their communications with the public. That this situation continues to exist is largely the result of either a failure of the technocrats to require their professional communicators to learn the elements of the subject or a refusal of these communicators to do so, combined with an underestimation on the part of both groups of public capacity for understanding. The nuclear energy community's concern about public acceptance of its product is to a certain extent misplaced at the present time. Its communication efforts have been image-oriented and generalized and have eschewed technical rigour. The important issue of scientific and engineering illiteracy, especially among those groups with significant input to policy decisions, is being neglected

  12. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    OpenAIRE

    Robert Petroski; Lowell Wood

    2012-01-01

    A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole d...

  13. Press problem related to nuclear energy news reporting

    International Nuclear Information System (INIS)

    Arai, Mitsuo

    2008-01-01

    Since the event of Niigataken Chuetsu-oki Earthquake in 2007 and the subsequent press reports on damage of nuclear power station after it, a stance of media is being questioned. In order to clear this problem, basic organizational structure of the press related to nuclear energy news was analyzed. Local news department, social news department, science news department and economical news department involve in nuclear energy news the accordance with their own situations and concerns. This structure makes problem of nuclear energy news reporting complicated. Changing this system is required but very difficult. It is concluded that the press problem around nuclear energy news is strange. (author)

  14. Regional energy-environment system analysis and the role of low-temperature nuclear heat in North China

    International Nuclear Information System (INIS)

    Lu Yingyun

    1984-01-01

    The consumption of commercial energy in China in 1980 amounted to 603 million tonnes of coal equivalent (tce). By the end of this century, according to preliminary forecasting, it will reach some 1200 million tce at least, but there may still be some gaps in the energy supply. Within the structure of China's current energy supply, coal is the dominating fuel, most of which is burned directly, thus causing serious air pollution particularly in urban areas during the winter season. To take into consideration the environmental impacts in formulating appropriate energy policies and carrying out rational energy planning, a practical regional energy system model in connection with environment impacts has been developed. It is essentially a linear programme model. The model has already been used to evaluate the role of alternative energies and technologies including the nuclear option in North China's future urban energy system. The preliminary results thus obtained have shown that nuclear energy, particularly low-temperature nuclear heat, must be introduced to reduce air pollution and fill the gaps in the energy supply. Since small- or medium-sized heat-only reactors have already been reported to be economical, safe and non-polluting, that will be developed in urban areas in North China to a certain extent by the end of this century. (author)

  15. Nuclear energy data 2010

    CERN Document Server

    2010-01-01

    This 2010 edition of Nuclear Energy Data , the OECD Nuclear Energy Agency's annual compilation of official statistics and country reports on nuclear energy, provides key information on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035 in OECD member countries. This comprehensive overview provides authoritative information for policy makers, experts and other interested stakeholders.

  16. The project 'nuclear long-distance energy'

    International Nuclear Information System (INIS)

    Harth, R.

    1976-01-01

    The Kernforschungsanlage Juelich is intensively involved in research work with the aim of developing new technological skills for the future supply of energy and to lead the way in industry. In the forefront are a rational utilisation of primary energy and a better adjustment of the energy available, to fulfil requirements. In addition, the supply from nuclear power plants was analysed and a new energy supply system was achieved. It offers the possibility of giving nuclear-produced power to a large proportion of consumers fulfilling their heat and electricity needs, in which the accessible degrees of utilisation lie between 49% and 67%. The project 'nuclear long distance energy' is the theme of a report included in the Congress on Rational Utilisation of Energy, held from 20th to 23rd. september 1976 in Berlin. (orig.) [de

  17. Potential nuclear material safeguards applied to the Department of Energy's Civilian Radioactive Waste Management System

    International Nuclear Information System (INIS)

    Danker, W.J.; Floyd, W.

    1993-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) within the U.S. Department of Energy is charged with the responsibility of safe and efficient disposal of this Nation's civilian high-level radioactive waste and spent fuel. Part of this responsibility includes providing for the application of both domestic and international safeguards on nuclear material at facilities of the Civilian Waste Management System. While detailed safeguards requirements for these disposal facilities have yet to be established, once established, they could impact facility design. Accordingly, OCRWM has participated in efforts to develop safeguards approaches for geologic repositories and will continue to participate actively with the Nuclear Regulatory Commission (NRC), International Atomic Energy Agency (IAEA), as well as other Department of Energy (DOE) Offices in efforts to resolve safeguards issues related to spent fuel disposal, to minimize any potential design impacts and to support effective nuclear material safeguards. The following paper discusses current plants and issues related to the application of safeguards to the Civilian Radioactive Waste Management System (CRWMS)

  18. Teaching simulator for divulgation of the nuclear energy; Simulador docente para divulgacion de la energia nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Ortega B, M.G.; Gutierrez F, R. [FI-UNAM, DEPFI Campus Morelos (Mexico)] e-mail: cchavez2@cableonline.com.mx

    2003-07-01

    To solicitude of the authorities of the 'Universum' sciences museum of the UNAM, it develops a highly interactive computational system, to provide of information to the population in general about basic principles, uses and benefits of the nuclear energy. The objective is to achieve a better understanding and acceptance of the nuclear technology in our country. The system allows the visualization and simulation of nuclear processes as well as of its applications. The system is divided in three levels: basic, intermediate and simulation. In the basic level multimedia information is included on diverse basic concepts of the nuclear energy. The intermediate level includes the description and operation of some systems of the Laguna Verde nuclear power plant (CNLV). Finally the simulation level contains representative scenarios that the user can control by means of virtual control panels of the main systems of the CNLV. Inside the system a part of interactive games is included with the purpose that the user remembers with more easiness all the concepts and advantages of the nuclear energy mentioned during the previous levels. The system contributes, by means of the development of multimedia computational tools and of simulation, to the popularization of the use and applications of the nuclear energy in Mexico. (Author)

  19. Freedom from nuclear energy myth

    International Nuclear Information System (INIS)

    Kim, Wonsik

    2001-09-01

    This book generalizes the history of nuclear energy with lots of myths. The contents of this book are a fundamental problem of nuclear power generation, the myth that nuclear energy is infinite energy, the myth that nuclear energy overcomes the crisis of oil, the myth that nuclear energy is cheap, safe and clean, the myth that nuclear fuel can be recycled, the myth that nuclear technology is superior and the future and present of nuclear energy problem related radiation waste and surplus of plutonium.

  20. Future nuclear energy scenarios for Europe

    International Nuclear Information System (INIS)

    Roelofs, F.; Van Heek, A.

    2010-01-01

    Nuclear energy is back on the agenda worldwide. In order to prepare for the next decades and to set priorities in nuclear R and D and investment, market share scenarios are evaluated. This allows to identify the triggers which influence the market penetration of future nuclear reactor technologies. To this purpose, scenarios for a future nuclear reactor park in Europe have been analysed applying an integrated dynamic process modelling technique. Various market share scenarios for nuclear energy are derived including sub-variants with regard to the intra-nuclear options taken, e.g. introduction date of Gen-III (i.e. EPR) and Gen-IV (i.e. SCWR, HTR, FR) reactors, level of reprocessing, and so forth. The assessment was undertaken using the DANESS code which allows to provide a complete picture of mass-flow and economics of the various nuclear energy system scenarios. The analyses show that the future European nuclear park will exist of combinations of Gen-III and Gen-IV reactors. This mix will always consist of a set of reactor types each having its specific strengths. Furthermore, the analyses highlight the triggers influencing the choice between different nuclear energy deployment scenarios. In addition, a dynamic assessment is made with regard to manpower requirements for the construction of a future nuclear fleet in the different scenarios. (authors)

  1. Nuclear energy and radiation

    International Nuclear Information System (INIS)

    Myers, D.K.; Johnson, J.R.

    1980-01-01

    Both the light water reactor and the Canadian heavy water reactor systems produce electricity cheaply and efficiently. They produce some fissionable byproducts, which can be recycled to extend energy sources many-fold. Besides the production of electrical power, the nuclear industry produces various radioistopes used for treatment of cancer, in diagnostic procedures in nuclear medicine, in ionization smoke detectors, and as radioactive tracers with various technological applications including the study of the mechanisms of life. The increment in environmental radiation levels resulting from operation of nuclear power reactors represents a very small fraction of the radiation levels to which we are all exposed from natural sources, and of the average radiation exposures resulting from diagnostic procedures in the healing arts. The total health hazard of the complete nuclear power cycle is generally agreed to be smaller than the hazards associated with the generation of an equal amount of electricity from most other currently available sources of energy. The hazards from energy production in terms of shortened life expectancy are much smaller in all cases than the resulting increase in health and life expectancy. (auth)

  2. Nuclear power prospects in the context of energy trends

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2000-01-01

    In order to put the prospects for nuclear energy development into perspective, a brief presentation is given of the overall trends in energy demand and supply world-wide. Key issues and factors affecting energy policies and choices between alternative sources are highlighted with emphasis on the electricity sector which is the main market for nuclear energy in short and medium terms. The role that nuclear energy could play in future energy mixes and challenges for nuclear energy development are elaborated. This presentation is based on statistical data and analytical work published by OECD Nuclear Energy Agency, as well as by other authoritative international sources such as International Energy Agency (IEA), the World Energy Council (WEC), and the International Institute of Applied Systems Analysis (ILASA)

  3. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of the booklet is to provide an up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear energy or other energy sectors in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. Nuclear energy is described as part of the Finnish electricity market. (orig.)

  4. Accelerator driven systems for energy production and waste incineration: Physics, design and related nuclear data

    International Nuclear Information System (INIS)

    Herman, M.; Stanculescu, A.; Paver, N.

    2003-01-01

    This volume contains the notes of lectures given at the workshops 'Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides and Transmutation of Long-lived Radioactive Waste' and 'Nuclear Data for Science and Technology: Accelerator Driven Waste Incineration', held at the Abdus Salam ICTP in September 2001. The subject of the first workshop was focused on the so-called Accelerator Driven Systems, and covered the most important physics and technological aspects of this innovative field. The second workshop was devoted to an exhaustive survey on the acquisition, evaluation, retrieval and validation of the nuclear data relevant to the design of Accelerator Driven Systems

  5. Accelerator driven systems for energy production and waste incineration: Physics, design and related nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M; Stanculescu, A [International Atomic Energy Agency, Vienna (Austria); Paver, N [University of Trieste and INFN, Trieste (Italy)

    2003-06-15

    This volume contains the notes of lectures given at the workshops 'Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides and Transmutation of Long-lived Radioactive Waste' and 'Nuclear Data for Science and Technology: Accelerator Driven Waste Incineration', held at the Abdus Salam ICTP in September 2001. The subject of the first workshop was focused on the so-called Accelerator Driven Systems, and covered the most important physics and technological aspects of this innovative field. The second workshop was devoted to an exhaustive survey on the acquisition, evaluation, retrieval and validation of the nuclear data relevant to the design of Accelerator Driven Systems.

  6. Nuclear energy questions

    International Nuclear Information System (INIS)

    This work pack contains illustrated booklets entitled: 'Uranium mining'; 'Reactors and radiation'; 'Nuclear waste'; 'Work book on energy'; 'Alternatives now'; 'Future energy choices'; 'Resources handbook'; and 'Tutors' guidelines': a map entitled 'Nuclear power in Britain': and two coloured pictures entitled 'Nuclear prospects' and 'Safe energy'. A cover note states that the material has been prepared for use in schools and study groups. (U.K.)

  7. Nuclear energy and economic competitiveness in several normative systems; Energia nuclear y competitividad economica en varios sistemas normativos

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S. [University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom)

    2009-07-01

    The serious challenge imposed by the necessity of reducing the gases emission of greenhouse effect in the electric generation sector, it has renovated the interest in the new plants construction of nuclear energy. Nevertheless, since the use of the nuclear energy began to descend ago more of 25 years, it is has speculated continually about the possible nuclear rebirth. Are such predictions based in solid basis or are mere groundless prognostics? The objective of the present document is to analyze the economic aspects of the nuclear energy, to identify the key factors that they allow to determine its competitiveness and to sound the possible markets for the new plants of nuclear energy. To achieve this, it is divided in the following sections: Revision of the current state of the nuclear energy, including the location, the type and capacity of the plants; Identification of the variables that determine the economic situation of the nuclear energy; Revision of the recent predictions and of the economic aspects of the Olkiluoto nuclear power plant of Finland; A revision by market of the possible future of the new nuclear facilities in the coming decade. (Author)

  8. Nuclear energy data 2011

    CERN Document Server

    2011-01-01

     . Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of statistics and country reports on nuclear energy, contains official information provided by OECD member country governments on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035. For the first time, it includes data for Chile, Estonia, Israel and Slovenia, which recently became OECD members. Key elements of this edition show a 2% increase in nuclear and total electricity production and a 0.5% increase in nuclear generating ca

  9. Nuclear energy in Spain

    International Nuclear Information System (INIS)

    Villota, C. de

    2007-01-01

    Carlos Villota. Director of Nuclear Energy of UNESA gave an overview of the Spanish nuclear industry, the utility companies and the relevant institutions. Companies of the nuclear industry include firms that produce heavy components or equipment (ENSA), manufacturers of nuclear fuel (ENUSA), engineering companies, the National Company for Radioactive Waste Management (ENRESA), and nuclear power plants (nine units at seven sites). Nuclear energy is a significant component of the energy mix in Spain: 11% of all energy produced in Spain is of nuclear origin, whilst the share of nuclear energy in the total electricity generation is approximately 23%. The five main players of the energy sector that provide for the vast majority of electricity production, distribution, and supply have formed the Spanish Electricity Industry Association (UNESA). The latter carries out co-ordination, representation, management and promotion tasks for its members, as well as the protection of their business and professional interests. In the nuclear field, UNESA through its Nuclear Energy Committee co-ordinates aspects related to nuclear safety and radiological protection, regulation, NPP operation and R and D. Regarding the institutional framework of the nuclear industry, ENSA, ENUSA and ENRESA are controlled by the national government through the Ministry of Economy and Finance and the Ministry of Science and Technology. All companies of the nuclear industry are licensed by the Ministry of Industry, Tourism and Trade (MITYC), while the regulatory body is the Nuclear Safety Council (CSN). It is noteworthy that CSN is independent of the government, as it reports directly to Parliament. (author)

  10. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2008-01-01

    The booklet provides and up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear or energy sector in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. In the booklet nuclear energy is described as part of the Finnish electricity market

  11. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    world. In recent years, the scope of the IAEA's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. The OECD Nuclear Energy Agency, Euratom and the Generation IV International Forum have also shown interest in the non-electric applications of nuclear power based on future generation advanced and innovative nuclear reactors. This report was developed under an IAEA project with the objective of providing updated, balanced and objective information on the current status of hydrogen production processes using nuclear energy. It documents the state of the art of the development of hydrogen as an energy carrier in many Member States, as well as its corresponding production through the use of nuclear power. The report includes an introduction to the technology of nuclear process heat reactors as a means of producing hydrogen or other upgraded fuels, with a focus on high temperature reactor technology to achieve simultaneous generation of electricity and high temperature process heat and steam. Special emphasis is placed on the safety aspects of nuclear hydrogen production systems.

  12. Chilean Nuclear Energy Commission dosimetric information system; Sistema de informacion dosimetrico de la Comision Chilena de Energia Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero Vallejos, Patricia Andrea

    1998-12-31

    This thesis discusses the nuclear radiation that people who work with radioactive material is exposed to and its control by the Chilean Nuclear Energy Commission. A full analysis of the System is presented with information about the Commission and the Department of Nuclear and Radiological Safety which runs the System. Ana analysis of the System is presented in order to obtain requirements. Management flow diagrams, the processes involved and current problems experienced by the users are described. A design logic is modeled producing Data Flow Diagrams (DFD). based on this physical design, or, Model of Physical Data, is prepared including tables, attributes, types of data, primary and foreign keys. A description is presented of how the System is implemented, the tools that are used and how the testing phase is carried out. The Dosimetry System meets the criteria for a Software Engineering project, where the basic cycle was used as a working methodology. The System developed supports the dosimetric control of people exposed to radioactive material. (author) Dissertation to obtain the degree of Computing and Informatics Engineer; 16 refs., 96 figs., 31 tabs.

  13. Nuclear energy and sustainable development: recent trends

    International Nuclear Information System (INIS)

    Singh, B.P.

    2012-01-01

    During the last 50 years or so there is enormous development in various fields like agriculture, industry, medicine, etc. Further, the population on this globe has increased many folds. In order to cater to the needs of the present population there is an increasing demand of electricity in the society. Per capita electricity consumption also is an index of development in the country. Considering the facts like green house effect and global warming, nuclear energy is the better option. But at the same time there are some critical issues like nuclear waste management globally and availability of fissile material in the context of our country. Research and development are going on to take care of these issues where scientists and engineers are working on alternative fuel cycle and new reactor types, for example Accelerator Driven Subcritical (ADS) System is one of them. Since, ADS reactor is a subcritical system, safety related issues are in fact of low concern relative to existing critical reactors. As a matter of fact, the ADS system is the combination of a particle accelerator and a nuclear reactor. In this talk, a detailed description of the need of energy in our country, which can only be met if nuclear energy contributes a substantial energy requirement, will be presented. Further, how the nuclear waste management issues may be addressed, with the new ADS system will also be presented. (author)

  14. Nuclear energy data 2005

    CERN Document Server

    Publishing, OECD

    2005-01-01

    This 2005 edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers a projection horizon lengthened to 2025 for the first time.  It presents the reader with a comprehensive overview on the status and trends in nuclear electricity generation in OECD countries and in the various sectors of the nuclear fuel cycle.

  15. Nuclear energy data 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers projections lengthened to 2030 for the first time and information on the development of new centrifuge enrichment capacity in member countries. The compilation gives readers a comprehensive and easy-to-access overview of the current situation and expected trends in various sectors of the nuclear fuel cycle, providing authoritative information to policy makers, experts and academics working in the nuclear energy field

  16. 4+D digital engineering for advanced nuclear energy systems

    International Nuclear Information System (INIS)

    Jeong, S. G.; Suh, K. Y.; Nam, S. K.

    2007-01-01

    Nuclear power plants (NPPs) require massive quantity of data during the design, construction, operation, maintenance and decommissioning stages because of their special features like size, cost, radioactivity, and so forth. The system engineering thus calls for a fully automated way of managing the information flow spanning their life cycle. In line with practice in disciplines of naval architecture, aerospace engineering, and automotive manufacturing, the paper proposes total digital systems engineering based on three-dimensional (3D) computer-aided design (CAD) models. The signature in the proposal lies with the four-plus-dimensional (4 + D) Technology T M, a critical know-how for digital management. The so-called OPIUM (Optimized Plant Integrated Ubiquitous Management) features a 4 + D Technology T M for nuclear energy systems engineering. The technology proposed in the 3D space and time plus cost coordinates, i.e. 4 + D, is the backbone of digital engineering in the nuclear systems design and management. Based on an integrated 3D configuration management system, OPIUM consists of solutions NOTUS (Nuclear Optimization Technique Ubiquitous System), VENUS (Virtual Engineering Nuclear Ubiquitous System), INUUS (Informatics Nuclear Utilities Ubiquitous System), JANUS (Junctional Analysis Numerical Ubiquitous System) and EURUS (Electronic Unit Research Ubiquitous System). These solutions will help initial simulation capability for NPPs to supply the crucial information. NOTUS contributes to reducing the construction cost of the NPPs by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3D visualization of construction processes and the resulting products intrinsically afford most of the advantages realized by incorporating a purely schedule level detail based the 4

  17. Constitutional compatibility of energy systems

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1983-01-01

    The paper starts from the results of the Enquiry Commission on 'Future Nuclear Energy Policy' of the 8th Federal German Parliament outlining technically feasible energy futures in four 'pathways'. For the purpose of the project, which was to establish the comparative advantages and disadvantages of different energy systems, these four scenarios were reduced to two alternatives: cases K (= nuclear energy) and S (= solar energy). The question to Ge put is: Which changes within our legal system will be ushered in by certain technological developments and how do these changes relate to the legal condition intended so far. Proceeding in this manner will not lead to the result of a nuclear energy system or a solar energy system being in conformity or in contradiction with the constitutional law, but will provide a catalogue of implications orientated to the aims of legal standards: a person deciding in favour of a nuclear energy system or a solar energy system supports this or that development of constitutional policy, and a person purishing this or that aim of legal policy should be consistent and decide in favour of this or that energy system. The investigation of constitutional compatibility leads to the question what effects different energy systems will have on the forms of political intercourse laid down in the constitutional law, which are orientated to models of a liberal constitutional tradition of citizens. (orig./HSCH) [de

  18. NMTC/JAM, Simulates High Energy Nuclear Reactions and Nuclear-Meson Transport Processes

    International Nuclear Information System (INIS)

    Furihata, Shiori

    2002-01-01

    1 - Description of program or function: NMTC/JAM is an upgraded version of the code system NMTC/JAERI97. NMTC/JAERI97 simulates high energy nuclear reactions and nucleon-meson transport processes. It implements an intra-nuclear cascade model taking account of the in-medium nuclear effects and the pre-equilibrium calculation model based on the exciton one. For treating the nucleon transport process, the nucleon-nucleus cross sections are revised to those derived by the systematics of Pearlstein. Moreover, the level density parameter derived by Ignatyuk is included as a new option for particle evaporation calculation. A geometry package based on the Combinatorial Geometry with multi-array system and the importance sampling technique is implemented in the code. Tally function is also employed for obtaining such physical quantities as neutron energy spectra, heat deposition and nuclide yield without editing a history file. The code can simulate both the primary spallation reaction and the secondary particle transport in the intermediate energy region from 20 MeV to 3.5 GeV by the use of the Monte Carlo technique. The code has been employed in combination with the neutron-photon transport codes available to the energy region below 20 MeV for neutronics calculation of accelerator-based subcritical reactors, analyses of thick target spallation experimented and so on. 2 - Methods: High energy nuclear reactions induced by incident high energy protons, neutrons and pions are simulated with the Monte Carlo Method by the intra-nuclear nucleon-nucleon reaction probabilities based on an intra-nuclear nucleon cascade model followed by the particle evaporation including high energy fission process. Jet-Aa Microscopic transport model (JAM) is employed to simulate high energy nuclear reactions in the energy range of GeV. All reaction channels are taken into account in the JAM calculation. An intra-nuclear cascade model (ISOBAR code) taking account of the in-medium nuclear effects

  19. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [ETSII/Universidad Politecnica de Madrid, J.Gutierrez Abascal, 2-28006 Madrid (Spain); Garcia, C.; Garcia, L. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba); Escriva, A.; Perez-Navarro, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, C.P. 46022 Valencia (Spain); Rosales, J. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba)

    2011-06-15

    Highlights: > Utilization of Accelerator Driven System (ADS) for Hydrogen production. > Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. > Application of the Sulfur-Iodine thermochemical process to subcritical systems. > Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  20. Increasing reliability of nuclear energy equipment and at nuclear power plants

    International Nuclear Information System (INIS)

    Ochrana, L.

    1997-01-01

    The Institute of Nuclear Energy at the Technical University in Brno cooperates with nuclear power plants in increasing their reliability. The teaching programme is briefly described. The scientific research programme of the Department of Heat and Nuclear Power Energy Equipment in the field of reliability is based on a complex systematic concept securing a high level of reliability. In 1996 the Department prepared a study dealing with the evaluation of the maintenance system in a nuclear power plant. The proposed techniques make it possible to evaluate the reliability and maintenance characteristics of any individual component in a nuclear power plant, and to monitor, record and evaluate data at any given time intervals. (M.D.)

  1. Nuclear energy: a vital energy choice

    International Nuclear Information System (INIS)

    Pecqueur, Michel

    1980-01-01

    Speaking from the platform of the XIIIth annual session of the International Atomic Energy Agency, at New Delhi, AEC managing director Michel Pecqueur made a solemn appeal to the world community for the decisions which are needed on energy. The present energy crisis can lead the world to a recession and be a factor in grave troubles for peace and balance in the world. The crisis cannot be resolved without accrued recourse to the use of nuclear energy. Two essential themes were outlined: the development of nuclear energy in the world, and the increased reduction of proliferation risks. In concluding, he expressed the hop that with a greater effort in information media, the nuclear fact-of-life would be better accepted by the general public in future, for it is there that lies a brake which may hinder nuclear energy development [fr

  2. Nuclear energy. Economical aspects

    International Nuclear Information System (INIS)

    Legee, F.

    2010-01-01

    This document present 43 slides of a power point presentation containing detailed data on economical and cost data for nuclear energy and nuclear power plants: evolution from 1971 to 2007 of world total primary energy supply, development of nuclear energy in the world, nuclear power plants in the world in 2009, service life of nuclear power plants and its extension; nuclear energy market and perspectives at 2030, the EPR concept (generation III) and its perspectives at 2030 in the world; cost assessment (power generation cost, nuclear power generation cost, costs due to nuclear safety, comparison of investment costs for gas, coal and nuclear power generation, costs for building a nuclear reactor and general cost; cost for the entire fuel cycle, the case of the closed cycle with recycling (MOX); costs for radioactive waste storage; financial costs and other costs such as environmental impacts, strategic stocks, comparative evaluation of the competitiveness of nuclear versus coal and gas

  3. Energy in transition, 1985-2010. Final report of the Committee on Nuclear and Alternative Energy Systems, National Research Council

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This exhaustive study, in assessing the roles of nuclear and alternative energy systems in the nation's energy future, focuses on the period between 1985 and 2010. Its intent is to illuminate the kinds of options the nation may wish to keep open in the future and to describe the actions, policies, and R and D programs that may be required to do so. The timing and the context of these decisions depend not only on the technical, social, and economic features of energy-supply technologies, but also on assumptions about future demand for energy and the possibilities for energy conservation through changes in consumption patterns and improved efficiency of the supply and end-use systems. The committee developed a three-tiered functional structure for the project. The first tier was CONAES itself, whose report embodies the ultimate findings, conclusions, and judgments of the study. To provide scientific and engineering data and economic analyses for the committee, a second tier of four panels was appointed by the committee to examine (1) energy demand and conservation, (2) energy supply and delivery systems, (3) risks and impacts of energy supply and use, and (4) various models of possible future energy systems and decision making. Each panel in turn established a number of resource groups - some two dozen in all - to address in detail an array of more particular matters. Briefly stated, recommended strategies are: (1) increased energy conservation; (2) expansion of the nation's balanced coal and nuclear electrical generation base; (3) retention of the breeder option; (4) stimulation of fluid energy development; and (5) immediate increase in research and development of new energy options to ensure availability over the long term.

  4. The Nuclear Energy Factor In Indian Politics

    Directory of Open Access Journals (Sweden)

    A. A. Boyko

    2017-01-01

    Full Text Available Nuclear energy is a key branch of the world power system. The nuclear energy development is viewed by India as one of the ways to resolve the problem of the energy supply. In 2008 the country gained more opportunities for developing nuclear power sector and solving the national power deficit problem after NSG lifted restrictions on nuclear trade. This resulted in foreign companies emerging on the Indian nuclear market. In 2011 after the major emergency at Fukushima Daiichi Nuclear Power Plant in Japan India faced numerous anti-nuclear protests backed by NGOs, including those with foreign funding, and political parties. The article deals with the question of the political role this anti-nuclear opposition plays in India. According to some researchers the protests are organized by the competitors in order to compromise the business of a Russian company Rosatom in India. However, such demonstrations are spread throughout the country and directed against the competitors of Rosatom as well. The article comes to conclusion that the protests are just a reflection of the political fights in India where nuclear energy is a significant political factor.

  5. Economic principles of optimizing mixed nuclear and non-nuclear electricity systems

    International Nuclear Information System (INIS)

    Gouni, L.

    1984-01-01

    In this chapter, an attempt will be made to show how and why, viewed from the economic angle, nuclear energy and electricity systems supplement each other, since the former requires large size facilities, and the latter provide already existing networks for the supply of all users. Consequently, it is primarily through the electric vector that the rational development of the nuclear industry may be ensured. Section 2.1 sets forth the essential rules for economic calculation. In Section 2.2 we discuss the competitive factors among final-use forms of energy in regard to utilization, and we attempt to show how nuclear energy transmitted through electricity systems may meet such terms. Finally, Section 2.3 deals with, and specifies the characteristics of, electricity systems based on nuclear energy and, in particular, the rates to which they lead. (author)

  6. Preliminary assessment of nuclear energy centers and energy systems complexes in the western United States. Final report

    International Nuclear Information System (INIS)

    Gottlieb, P.; Robinson, J.H.; Smith, D.R.

    1978-02-01

    The Nuclear Energy Center siting opportunities in the eleven western states have been systematically examined. The study area has been divided into 10-mile by 10-mile grid cells, and each cell has been evaluated in terms of overall suitability and site-related costs. Composite suitability consists of a weighted sum of ten important nuclear power plant siting issues; the particular weights used for this study were decided by a Delphi session of twenty individuals with energy facility siting expertise, with at least one representative from each of the eleven western states. Site-related costs consist of the additional expenditures required for seismic hardening (in seismically active areas), electric power transmission lines (for sites significantly far from load centers), and wet/dry cooling system costs

  7. Nuclear energy national plan. The directions for nuclear energy policy in Japan

    International Nuclear Information System (INIS)

    2006-11-01

    Nuclear energy is a key attaining an integrated solution for energy security and global warming issues. Under the Framework for Nuclear Energy Policy Japan aims to (1) maintain the 30 to 40% or more share of nuclear energy on electricity generation up to 2030 and afterwards, (2) promote the nuclear fuel cycle and (3) commercialize the fast-breeder reactors. As for policies to realize the basic targets, the 'Nuclear Energy National Plan' was compiled in August 2006 as follows: (1) Investment to construct new nuclear power plants and replace existing reactors in an era of electric power liberalization, 2) Appropriate use of existing nuclear power plants with assuring safety as a key prerequisite, (3) Steady advancement of the nuclear fuel cycle and strategic reinforcement of nuclear fuel cycle industries, (4) Strategy to secure uranium supplied, (5) Early commercialization of the fast breeder reactor cycle, (6) Achieving and developing advanced, technologies, industries and personnel, (7) Assisting the Japanese nuclear industry in promoting the international development, (8) Involved in and/or creating international frameworks to uphold both nonproliferation and expansion of nuclear power generation, (9) Fostering trust between the sates and communities where plants are located by making public hearings and public relations highly detailed and (10) Steady promotion of measures for disposal of radioactive wastes. Implementation policies were presented in details in this book with relevant data and documents. (T. Tanaka)

  8. Technology Road-map - Nuclear Energy. 2015 edition

    International Nuclear Information System (INIS)

    Houssin, Didier; Dujardin, Thierry; Cameron, Ron; Tam, Cecilia; Paillere, Henri; Baroni, Marco; Bromhead, Amos; Baritaud, Manual; Cometto, Marco; Gaghen, Rebecca; Herzog, Antoine; Remme, Uwe; Urso, Maria-Elena; Vance, Robert

    2015-01-01

    Since the release in 2010 of Technology Road-map: Nuclear Energy (IEA/NEA, 2010), a number of events have had a significant impact on the global energy sector and on the outlook for nuclear energy. They include the Fukushima Daiichi nuclear power plant (NPP) accident in March 2011, the global financial and economic crises that hit many industrialised countries during the period 2008-10 and failings in both electricity and CO 2 markets. Despite these additional challenges, nuclear energy still remains a proven low-carbon source of base-load electricity, and many countries have reaffirmed the importance of nuclear energy within their countries' energy strategies. To achieve the goal of limiting global temperature increases to just 2 deg. C by the end of the century, a halving of global energy-related emissions by 2050 will be needed. A wide range of low-carbon energy technologies will be needed to support this transition, including nuclear energy. This edition of the nuclear road-map prepared jointly by the IEA and NEA take into account recent challenges facing the development of this technology. The 2015 edition of the Nuclear Energy Technology Road-map aims to: Outline the current status of nuclear technology development and the need for additional R and D to address increased safety requirements and improved economics. Provide an updated vision of the role that nuclear energy could play in a low-carbon energy system, taking into account changes in nuclear policy in various countries, as well as the current economics of nuclear and other low-carbon electricity technologies. Identify barriers and actions needed to accelerate the development of nuclear technologies to meet the Road-map vision. Share lessons learnt and good practices in nuclear safety and regulation, front- and back-end fuel cycle practices, construction, decommissioning, financing, training, capacity building and communication. Key findings: Nuclear power is the largest source of low

  9. The results of the investigations of Russian Research Center-'Kurchatov Institute' on molten salt applications to problems of nuclear energy systems

    International Nuclear Information System (INIS)

    Novikov, Vladimir M.

    1995-01-01

    The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research 'Kurchatov Institute' are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on a way of MS application to different nuclear energy systems

  10. Nuclear energy and society

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Shimooka, Hiroshi; Tanaka, Yasumasa; Fujii, Yasuhiko; Misima, Tsuyoshi

    2004-01-01

    Nuclear energy has a strong relation to a society. However, due to accidents and scandals having occurred in recent years, people's reliability to nuclear energy has significantly swayed and is becoming existence of a worry. Analyzing such a situation and grasping the problem contained are serious problems for people engaging in nuclear field. In order that nuclear energy is properly used in society, communication with general public and in nuclear power plant site area are increasingly getting important as well as grasping the situation and surveying measures for overcoming the problems. On the basis of such an analysis, various activities for betterment of public acceptance of nuclear energy by nuclear industry workers, researchers and the government are proposed. (J.P.N.)

  11. Joint thesaurus Part I (A-L) + II (M-Z)[International Nuclear Information System. Energy Technology Data Exchange

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    This is the second revision of the ETDE/INIS Joint Thesaurus, including all updates up to September 2006. It contains 21 147 valid descriptors and 9 114 forbidden terms. The Joint Thesaurus contains the controlled terminology for indexing all information within the subject scopes of the International Nuclear Information System (INIS) and the Energy Technology Data Exchange (ETDE). The terminology is intended for use in subject descriptions for input or retrieval of information in these systems. The thesaurus is a terminological control device used in translating from the natural language of documents, indexers or users into a more constrained system language It is also a controlled and dynamic vocabulary of semantically and generically related terms which covers a specific domain of knowledge. The basic terminology in this thesaurus goes back to the 1969 edition of the EURATOM Thesaurus. The structure subsequently given to that terminology was the result of a systematic study performed by INIS subject specialists. Further expansion of the thesaurus terminology was done by ETDE to incorporate information on all forms of energy. The ETDE/INIS Joint Thesaurus is the result of continued editing, carried out in parallel to the processing of the INIS and ETDE databases. The domain of knowledge covered by the Joint Thesaurus includes physics (in particular, plasma physics, atomic and molecular physics, and especially nuclear and high-energy physics), chemistry, materials science, earth sciences, radiation biology, radioisotope effects and kinetics, applied life sciences, radiology and nuclear medicine, isotope and radiation source technology, radiation protection, radiation applications, engineering, instrumentation, fossil fuels, synthetic fuels, renewable energy sources, advanced energy systems, fission and fusion reactor technology, safeguards and inspection, waste management, environmental aspects of the production and consumption of energy from nuclear and non-nuclear

  12. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Boardman, Richard; Rabiti, Cristian; Suk Kim, Jong; McKellar, Michael; Sabharwall, Piyush; Chen, Jun; Cetiner, M. Sacit; Harrison, T. Jay; Qualls, A. Lou

    2016-01-01

    technologies will aid in achieving reduced GHG emissions, it also presents new challenges to grid management that must be addressed. These challenges primarily derive from the fundamental characteristics of variable renewable generators, such as wind and solar: non-dispatchability, variable production, and reduced electromechanical inertia. This document presents a preliminary research and development (R&D) plan for detailed dynamic simulation and analysis of nuclear-renewable hybrid energy systems (N-R HES), coupled with integrated energy system design, component development, and integrated systems testing. N-R HES are cooperatively-controlled systems that dynamically apportion thermal and/or electrical energy to provide responsive generation to the power grid.

  13. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Suk Kim, Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cetiner, M. Sacit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, T. Jay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. Lou [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    renewable technologies will aid in achieving reduced GHG emissions, it also presents new challenges to grid management that must be addressed. These challenges primarily derive from the fundamental characteristics of variable renewable generators, such as wind and solar: non-dispatchability, variable production, and reduced electromechanical inertia. This document presents a preliminary research and development (R&D) plan for detailed dynamic simulation and analysis of nuclear-renewable hybrid energy systems (N-R HES), coupled with integrated energy system design, component development, and integrated systems testing. N-R HES are cooperatively-controlled systems that dynamically apportion thermal and/or electrical energy to provide responsive generation to the power grid.

  14. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  15. Nuclear Energy Response in the EMF27 Study

    International Nuclear Information System (INIS)

    Kim, Son H.; Wada, Kenichi; Kurosawa, Atsushi; Roberts, Matthew

    2014-01-01

    The nuclear energy response for mitigating global climate change across eighteen participating models of the EMF27 study is investigated. Diverse perspectives on the future role of nuclear power in the global energy system are evident in the broad range of nuclear power contributions from participating models of the study. In the Baseline scenario without climate policy, nuclear electricity generation and shares span 0 - 66 EJ/ year and 0 - 25% in 2100 for all models, with a median nuclear electricity generation of 39 EJ/year (1,389 GWe at 90% capacity factor) and median share of 9%. The role of nuclear energy increased under the climate policy scenarios. The median of nuclear energy use across all models doubled in the 450 ppm CO2e scenario with a nuclear electricity generation of 67 EJ/year (2,352 GWe at 90% capacity factor) and share of 17% in 2100. The broad range of nuclear electricity generation (11 - 214 EJ/year) and shares (2 - 38%) in 2100 of the 450 ppm CO2e scenario reflect differences in the technology choice behavior, technology assumptions and competitiveness of low carbon technologies. Greater clarification of nuclear fuel cycle issues and risk factors associated with nuclear energy use are necessary for understanding the nuclear deployment constraints imposed in models and for improving the assessment of the nuclear energy potential in addressing climate change

  16. Nuclear energy and nuclear weapons proliferation

    International Nuclear Information System (INIS)

    1989-01-01

    A summary of the report dispatched in the middle of 1978 by the Atlantic Council of United States, organized by North American citizens, is presented. The report considers the relation between the production of nucleoelectric energy and the capacity of proliferation of nuclear weapons. The factors which affect the grade of proliferation risk represented by the use of nuclear energy in the world comparing this risk with the proliferation risks independently of nuclear energy, are examined. (M.C.K.) [pt

  17. Review of nuclear energy

    International Nuclear Information System (INIS)

    Mattila, L.; Anttila, M.; Pirilae, P.; Vuori, S.

    1997-05-01

    The report is an overview on the production of the nuclear energy all over the world. The amount of production at present and in future, availability of the nuclear fuel, development of nuclear technology, environmental and safety issues, radioactive waste management and commissioning of the plants and also the competitivity of nuclear energy compared with other energy forms are considered. (91 refs.)

  18. Nuclear energy research in Germany 2009

    International Nuclear Information System (INIS)

    2010-01-01

    Research and development (R and D) in the fields of nuclear reactor safety and safety of nuclear waste and spent fuel management in Germany are carried out at research centers and, in addition, some 32 universities. In addition, industrial research is conducted by plant vendors, and research in plant and operational safety of power plants in operation is organized by operators and by organizations of technical and scientific research and expert consultant organizations. This summary report presents nuclear energy research conducted at research centers and universities in Germany in 2009, including examples of research projects and descriptions of the situation of research and teaching. These are the organizations covered: - Hermann von Helmholtz Association of German Research Centers, - Karlsruhe Institute of Technology (KIT, responsibility of the former Karlsruhe Research Center), - Juelich Research Center (FZJ), - Nuclear Technology Competence Center East, - Dresden-Rossendorf Research Center (FZD), - Rossendorf Nuclear Process Technology and Analysis Association (VKTA), - Dresden Technical University, - Zittau/Goerlitz University of Applied Science, - Institute of Nuclear Energy and Energy Systems (IKE) of the University of Stuttgart. (orig.)

  19. Direction of Nuclear Energy. Activity report 2010

    International Nuclear Information System (INIS)

    2011-11-01

    This report proposes an overview of the research activities performed by the French DEN (Direction de l'Energie Nucleaire, Direction of Nuclear Energy) within the CEA. These activities address the future nuclear industrial systems (4. generation reactors, back-end of the future fuel cycle, basic scientific and technological research), the optimization of the industrial nuclear power (fuel cycle front end, second and third generation reactors, back-end of the present fuel cycle), major tools for the development of nuclear energy (simulation tools, Jules Horowitz reactor, value creation), clean up and dismantling of nuclear facilities (present status, the Passage project in Grenoble, the Aladin project in Fontenay-aux-Roses, projects at Marcoule, flow management of radioactive wastes, materials and disused fuels, transport). Three research centres are presented: Marcoule, Cadarache and Saclay

  20. Radioactivity and nuclear energy

    International Nuclear Information System (INIS)

    Hoffmann, J.; Kuczera, B.

    2001-05-01

    The terms radioactivity and nuclear energy, which have become words causing irritation in the political sphere, actually represent nothing but a large potential for innovative exploitation of natural resources. The contributions to this publication of the Karlsruhe Research Center examine more closely three major aspects of radioactivity and nuclear energy. The first paper highlights steps in the history of the discovery of radioactivity in the natural environment and presents the state of the art in health physics and research into the effects of exposure of the population to natural or artificial radionuclides. Following contributions focus on: Radiochemical methods applied in the medical sciences (diagnostic methods and devices, therapy). Nuclear energy and electricity generation, and the related safety policies, are an important subject. In this context, the approaches and pathways taken in the field of nuclear science and technology are reported and discussed from the angle of nuclear safety science, and current trends are shown in the elaboration of advanced safety standards relating to nuclear power plant operation and ultimate disposal of radioactive wastes. Finally, beneficial aspects of nuclear energy in the context of a sustainable energy policy are emphasized. In particular, the credentials of nuclear energy in the process of building an energy economy based on a balanced energy mix which combines economic and ecologic advantages are shown. (orig./CB) [de

  1. Nuclear, energy, environment, wastes, society - NEEDS

    International Nuclear Information System (INIS)

    2013-01-01

    This document presents the seven projects based on partnerships between several bodies, companies and agencies (CNRS, CEA, Areva, EDF, IRSN, ANDRA, BRGM) on research programmes on nuclear systems and scenarios, on resources (mines, processes, economy), on the processing and packaging of radioactive wastes, on the behaviour of materials for storage, on the impact of nuclear activities on the environment, on the relationship between nuclear, risks and society, and on materials for nuclear energy

  2. Nuclear Energy and the Environment.

    Science.gov (United States)

    International Atomic Energy Agency, Vienna (Austria).

    "Nuclear Energy and the Environment" is a pocket folder of removable leaflets concerned with two major topics: Nuclear energy and Nuclear Techniques. Under Nuclear Energy, leaflets concerning the topics of "Radiation--A Fact of Life,""The Impact of a Fact: 1963 Test Ban Treaty,""Energy Needs and Nuclear Power,""Power Reactor Safety,""Transport,"…

  3. Nuclear energy and jobs

    International Nuclear Information System (INIS)

    Goldfinger, N.

    1976-01-01

    Mr. Goldfinger, Research Director of AFL-CIO, examines the problem of energy in general, nuclear in particular, and the employment relationship. The energy shortages in the U.S. and its dependence on oil are cited. Directly connected with this serious problem relating to energy are jobs, income, and living standards. If energy is not available, industries will be unable to expand to meet the needs of the growing population; and prices of goods will rise. From an evaluation of what experts have said, Mr. Goldfinger concludes that increased coal production and better coal technology cannot meet energy demands; so the sharp increase both in volume and as a percentage of total energy needed in the future will have to come from nuclear power. Development of alternative sources is necessary, he feels, and intense research on these is needed now. The employment impact in the nuclear energy scenario is analyzed according to the trades involved. It is estimated that 1.5 million jobs in the nuclear industry would be open by the year 2000 if nuclear is to provide one-fourth of energy supplies. The employment picture, assuming abandonment of nuclear energy, is then discussed

  4. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y., E-mail: yican.wu@fds.org.cn [Inst. of Nuclear Energy Safety Technology, Hefei, Anhui (China)

    2015-07-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  5. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Wu, Y.

    2015-01-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  6. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  7. Use of nuclear energy and land warming

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Jose Alberto Maia; Sordi, Gian Maria Agostino Angelo; Frazao, Selma Violato; Zago, Franco Raphael do Carmo [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], E-mail: blosspriester@gmail.com, E-mail: gmsordi@ipen.br, E-mail: selma.violato@terra.com.br, E-mail: fzago@ipen.br

    2007-07-01

    The world is facing an energy requirement that hardly will be covered by renewable sources actually researched. Though there is almost unanimity in the scientific community about the fact that nuclear energy is still a better option to replace oil and coal, environmental restrictions go on vigorous. And consequently, this non-consensus on nuclear energy benefits, greenhouse effect and weakening of ozone layer go on causing the land warming. In Brazil, nuclear plants are competitive and are capable to produce energy in a safe way, thus contributing to the stabilization of the national electric system and to the expansion of installed capacity and as alternative source of energy and applications for peaceful purposes, preserving the environment and planet inhabitants. (author)

  8. The Gulf Nuclear Energy Infrastructure Institute (GNEII) Four Years On

    International Nuclear Information System (INIS)

    Finch, Robert J.; Mohagheghi, Amir H.; Solodov, Alexander; Beeley, Philip A.; Boyle, David R.

    2014-01-01

    Introduction: What is GNEII? • Regionally based Institution → human resource capability → Future decision makers → managers & regulators. • Education & Development → Nuclear energy infrastructure → Integrated safeguards, safety, and security (3S) → Nuclear power fundamentals. • Strategic effort → Coordinated partnership → Responsible national nuclear energy program → Regional context. Why GNEII? • Build indigenous human resources → Education, Research, Technical capacity → Integrated 3S Systems Approach - coupled with - Nuclear Energy Infrastructure. • GNEII Addresses a Need → Increased nuclear power demand → Regional Nuclear Infrastructure → GNEII is a sustainable mechanism for developing a responsible nuclear energy program

  9. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  10. Climatic change and nuclear energy

    International Nuclear Information System (INIS)

    Schneider, M.

    2000-08-01

    The data presented in the different chapters lead to show that nuclear energy ids not a sustainable energy sources for the following reasons: investments in nuclear energy account financing that lacks to energy efficiency programmes. The nuclear programmes have negative effects such the need of great electric network, the need of highly qualified personnel, the freezing of innovation in the fields of supply and demand, development of small performing units. The countries resort to nuclear energy are among the biggest carbon dioxide emitters, because big size nuclear power plants lead to stimulate electric power consumption instead of inducing its rational use. Nuclear energy produces only electric power then a part of needs concerns heat (or cold) and when it is taken into account nuclear energy loses its advantages to the profit of cogeneration installations. Finally nuclear energy is a dangerous energy source, difficult to control as the accident occurring at Tokai MURA showed it in 1998. The problem of radioactive wastes is not still solved and the nuclear proliferation constitutes one of the most important threat at the international level. (N.C.)

  11. The cost of the nuclear energy-turnaround. An early nuclear phase-out and its consequences

    International Nuclear Information System (INIS)

    Baran, Metin

    2013-01-01

    The booklet on the consequences of an early nuclear phase-out includes a description of the value creation strategy in the electricity market and the basic relations of the electricity price formation and a survey and evaluation of selected studies. The analysis was performed for the following studies: Energy policy scenarios for a nuclear phase-out in Germany; Economic consequences of a nuclear phase-out in Germany; Transformation of the electricity production systems with a forced nuclear phase-out - a contribution on sustainable energy systems following the reactor accident of Fukushima; Cost of a nuclear phase-out until 2022 in Germany and Bavaria.

  12. Energy gains from lattice-enabled nuclear reactions

    International Nuclear Information System (INIS)

    Nagel, David J.

    2015-01-01

    The energy gain of a system is defined as the ratio of its output energy divided by the energy provided to operate the system. Most familiar systems have energy gains less than one due to various inefficiencies. By contrast, lattice-enabled nuclear reactions (LENR) offer high energy gains. Theoretical values in excess of 1000 are possible. Energy gains over 100 have already been reported. But, they have not yet been sustained for commercially significant durations. This article summarizes the current status of LENR energy gains. (author)

  13. Study on Communication System of Social Risk Information on Nuclear Energy

    International Nuclear Information System (INIS)

    Hidekazu Yoshikawa; Toshio Sugiman; Yasunaga Wakabayashi; Hiroshi Shimoda; Mika Terado; Mariko Akimoto; Yoshihiko Nagasato

    2004-01-01

    As a new risk communication method for the construction of effective knowledge bases about 'safety and non-anxiety for nuclear energy', a study on new communication method of social risk information by means of electronic communication has been started, by noticing rapid expansion of internet usage in the society. The purpose of this research is to enhance the public acceptance to nuclear power in Japan by the following two aspects. The first is to develop the mutual communication system among the working persons involved in both the operation and maintenance activities for nuclear power plant, by which they will exchange their daily experiences to improve the safety conscious activities to foster 'safety culture' attitude. The other is the development of an effective risk communication system between nuclear society and the general publics about the hot issues of 'what are the concerned involved in the final disposal of high-level radioactive waste?' and 'what should we do to have social consensus to deal with this issue in future'. The authors' research plan for the above purpose is summarized as shown in Table 1. As the first step of the authors' three year research project which started from August 2003, social investigation by questionnaires by internet and postal mail, have been just recently conducted on their risk perception for the nuclear power for the people engaged in nuclear business and women in the metropolitan area, respectively, in order to obtain the relevant information on how and what should be considered for constructing effective risk communication methods of social risk information between the people within nuclear industries and the general public in society. Although there need to be discussed, the contrasting risk images as shown in Fig.1, can be depicted between the nuclear people and general public these days in Japan, from the results of the social investigation. As the conclusion of the authors' study thus far conducted, the

  14. The church and nuclear energy

    International Nuclear Information System (INIS)

    Phillips, G.O.

    1978-03-01

    The subject is covered in sections, entitled: foreword (explaining that report is a synopsis of the Hearing on Nuclear Energy arranged by the World Council of Churches, held in Sigtune, Sweden, June 24 to 29, 1975); humanity's energy needs); alternative sources of energy (nuclear fission, nuclear fusion, non-nuclear processes; some generalisations (concerning the advantages and disadvantages of nuclear energy to various sections of the world); what risks are acceptable (radiation hazards, reactor safety, radioactive wastes, misuse of Pu, safeguarding); nuclear weapons; nuclear energy - a challenge to the Churches; social and ethical issues; certain conclusions; postscript -the American move. (U.K.)

  15. A century of nuclear energy

    International Nuclear Information System (INIS)

    Hug, M.

    2009-01-01

    The author proposes a history of the French nuclear industry and nuclear energy since the Nobel prizes of 1903 and 1911. He describes and comments the context of the energy production sector before the development of the nuclear energy, the development of the institutional context, the successive and different nuclear technologies, the main characteristics of the French program at its beginning, the relationship between the nuclear energy and the public, the main accidents and lessons learned from them, the perspectives of evolution of nuclear energy

  16. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  17. Global architecture of innovative nuclear energy

    International Nuclear Information System (INIS)

    Andreeva-Andrievskaya, L.N.; Kagramanyan, V.S.; Usanov, V.I.; )

    2011-01-01

    The study Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors including a Closed Fuel Cycle (GAINS), aimed at harmonization of tools used to assess various options for innovative development of nuclear energy, modeling of jointly defined scenarios and analysis of obtained results is presented in the paper. Objectives and methods of the study, issues of spent fuel and fissile materials management are discussed. Investment risks and economic indicators are also described [ru

  18. Economics and environmental impacts of nuclear energy in comparison with other energy systems

    International Nuclear Information System (INIS)

    Bennett, L.

    1994-01-01

    The results of the 1992 OECD/NEA-IEA study on comparative electricity generation costs of nuclear and fossil-fuelled power plants are presented. It is focused on plants that could be commercially available for commissioning in the year 2000 or shortly thereafter. The generation costs for nuclear, relative to coal or natural gas fuelled power plants, are shown. The attractiveness of these three main fuel options for large base load power stations for commissioning around the year 2000 is critically dependent on the discount rate required by the utility or government. Higher discount rates (10%) favour the low investment cost option, gas, whilst lower discount rates (5%) favour the low fuel cost option. The role of nuclear power in avoiding greenhouse gas emissions is illustrated, as well as penetration of nuclear power, displacing fossil fuels for electricity generation and annual change in CO 2 emissions in varies countries from 1975 to 1992 as a function of the nuclear share in electricity generation for 1992. A comparison between quantities of fuel and wastes for nuclear and fossil fuelled power plants is given. Some issues of impacts of particular energy sources on health and the environment are outlined. In the conclusions, nuclear power is considered to be the most likely non-fossil-fuel technology that could be deployed on a large scale for electricity generation, if the objectives of advanced nuclear power development programmes are met and social acceptability of nuclear energy is reached. 9 figs., 2 ann., 16 refs. (I.P.)

  19. Preliminary assessment of nuclear energy centers and energy systems complexes in the western United States. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, P.; Robinson, J.H.; Smith, D.R.

    1978-02-01

    The Nuclear Energy Center siting opportunities in the eleven western states have been systematically examined. The study area has been divided into 10-mile by 10-mile grid cells, and each cell has been evaluated in terms of overall suitability and site-related costs. Composite suitability consists of a weighted sum of ten important nuclear power plant siting issues; the particular weights used for this study were decided by a Delphi session of twenty individuals with energy facility siting expertise, with at least one representative from each of the eleven western states. Site-related costs consist of the additional expenditures required for seismic hardening (in seismically active areas), electric power transmission lines (for sites significantly far from load centers), and wet/dry cooling system costs (limited water availability and/or high summer temperatures).

  20. Nuclear energy

    International Nuclear Information System (INIS)

    Hladky, S.

    1985-01-01

    This booklet appeared in a series on technical history. It tries to communicate some of the scientific, technical and social stresses, which have been connected with the application of nuclear energy since its discovery. The individual sections are concerned with the following subjects: the search for the 'smallest particles'; the atomic nucleus; nuclear fission; the 'Manhattan Project'; the time after this - from the euphoria of the 1950's via disillusionment and change of opinion to the state of nuclear energy at the start of the 1980's. The booklet contains many details and is generously illustrated. (HSCH) [de

  1. Presence of renewable sources of energy, cogeneration, energy efficiency and distributed generation in the International Nuclear Information System (INIS)

    International Nuclear Information System (INIS)

    Pares Ferrer, Marianela; Oviedo Rivero, Irayda; Gonzalez Garcia, Alejandro

    2011-01-01

    The International Nuclear Information System (INIS) it was created in 1970 by the International Atomic Energy Agency (OIEA) with the objective of propitiating the exchange of scientific information and technique on the peaceful uses of the energy atomic. INIS processes most of scientific literature and technique in engineering matters nuclear, safeguard and non proliferation and applications in agriculture and health that it generates in the world and it contributes to create a repository of nuclear information for present and future generations. Additionally it includes economic aspects and environmental of other energy sources that facilitate comparative studies for the taking of decisions. The database INIS, is its main informative product and it counts with more than 3 million registrations. One of the services that lends the Center of Administration of the Information and Development of the Energy (CUBAENERGIA), like center INIS in Cuba, is the search of information on the peaceful use of the science and nuclear technology in the Countries Members and the registration of information on their applications in Cuba. More recently, it extends this service to the Renewable Sources application of Energy in the country; as part of the works of administration of the information that it carries out for the National Group of Renewable Energy, Cogeneration, Saving and Energy Efficiency, created in the 2007 and coordinated by the MINBAS with the participation of institutions belonging to Organisms of the Administration Central of the State. In this work the results of a preliminary study are presented on the witnesses in the INIS of the Renewable Sources of Energy, the Cogeneration, Energy Efficiency, and the Distributed Generation. As well as of the application of metric tools to the opposing registrations for the case of the Distributed generation, that which allowed to characterize their historical evolution, the participation for countries in their development and

  2. The convenience of nuclear energy; La conveniencia de la energia nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Lucena, A.

    2007-07-01

    It is unquestionable that the power sources must change, for the same reasons for which the propagandist ones have been appropriated of the nuclear energy: its use is not a sustainable practice and produces the climatic change and other many damages. In this sense, any alternative has to be considered, and, a priori, the nuclear one, that at this moment is very minority in the power system, does not have to be an exception. For that reason it is not necessary to let be critical with anyone of the alternatives that are considered, and this aspect also affects the nuclear energy. (Author)

  3. Health, environmental risks and externalities of nuclear and other energy systems of Russia

    International Nuclear Information System (INIS)

    Vasiliev, A.P.; Demin, V.F.

    2000-01-01

    Due to different reasons the structure of electricity production systems of Russia should be reconsidered and changed. In this reconsideration the results of comparative risk assessment (CRA) and external cost assessment (ECA) are needed. CRA and ECA study has been carried out in the frame of the research program of International Center of Environmental Safety of Ministry of Atomic Energy of Russia. Main directions of this study are: 1) developing CRA and ECA methodology and data base ; 2) performing CRA and ECA for nuclear and other energy systems. Some tendencies in development of electricity production systems in Russia and preliminary results of CRA and ECA are described. (author)

  4. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E. II; Rochau, Gary Eugene

    2010-01-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  5. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Rodriguez, Salvador B.; Ames, David E., II (Texas A& M University, College Station, TX); Rochau, Gary Eugene

    2010-10-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  6. The role of nuclear energy in brazilian energy matrix: socioeconomic and environmental aspects

    International Nuclear Information System (INIS)

    Schirmer, Priscila

    2016-01-01

    With the large increase of energy demand in the world, either for the continued expansion of industrialization, or by the raise of consumption, are increasing the need for energy sources diversification and the search for cleaner alternatives of energy production. Nuclear power has been considered as an option to curb the emission of greenhouse gases and reduce the dependence of fossil fuels. However, nuclear energy is an issue that still causes a lot of doubt and questions, turning the development of this work very important for a better understanding of the lay public as well as to contribute and encourage future research through an assessment of their environmental and socio-economic aspects, discussing the risks, benefits, and an assessment of the expansion of nuclear energy use, including an overview of nuclear energy in Brazil. Concluding that nuclear energy can contribute to the expansion of the Brazilian energy matrix, as the only heat source able to ensure constant supply of energy without emitting greenhouse gases. Considering that Brazil dominates the technology of the nuclear fuel cycle, and has a large reserves of uranium. A larger share of nuclear energy in the Brazilian energy matrix can generate greater diversification of the same, valuing the environmental and economic sustainability of the country and reducing the system's vulnerability. However, nuclear generation should not be considered as the only solution to the energy problems of the country, but make a part of it by the combination with other renewable sources, increasing the diversity and energy security of the country. (author)

  7. INPRO Assessment of the Planned Nuclear Energy System of Belarus. A report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2013-09-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was started in 2001 on the basis of IAEA General Conference resolution GC(44)/RES/21. INPRO activities have since been continuously endorsed by IAEA General Conference resolutions and by the General Assembly of the United Nations. The objectives of INPRO are to help ensure that nuclear energy is available to contribute, in a sustainable manner, to the goal of meeting the energy needs of the 21st century, and to bring together technology holders and users so that they can jointly consider the international and national actions required for ensuring sustainability of nuclear energy through innovations in technology and/or institutional arrangements. To fulfill these objectives, INPRO has developed a set of basic principles, user requirements and criteria, and an assessment method which, taken together, comprise the INPRO methodology for the evaluation of the long term sustainability of innovative nuclear energy systems. The INPRO methodology is documented in IAEA-TECDOC-1575 Rev.1, comprising an overview volume and eight additional volumes covering economics, institutional measures (infrastructure), waste management, proliferation resistance, physical protection, environment (impact of stressors and availability of resources), safety of reactors, and safety of nuclear fuel cycle facilities. This publication is the final report of an assessment of the planned nuclear energy system of Belarus using the INPRO methodology. The assessment was performed in 2009-2011 by Belarusian experts in a strategic partnership with the Russian Federation and with support from the IAEA's INPRO Group

  8. INPRO Assessment of the Planned Nuclear Energy System of Belarus. A report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was started in 2001 on the basis of IAEA General Conference resolution GC(44)/RES/21. INPRO activities have since been continuously endorsed by IAEA General Conference resolutions and by the General Assembly of the United Nations. The objectives of INPRO are to help ensure that nuclear energy is available to contribute, in a sustainable manner, to the goal of meeting the energy needs of the 21st century, and to bring together technology holders and users so that they can jointly consider the international and national actions required for ensuring sustainability of nuclear energy through innovations in technology and/or institutional arrangements. To fulfill these objectives, INPRO has developed a set of basic principles, user requirements and criteria, and an assessment method which, taken together, comprise the INPRO methodology for the evaluation of the long term sustainability of innovative nuclear energy systems. The INPRO methodology is documented in IAEA-TECDOC-1575 Rev.1, comprising an overview volume and eight additional volumes covering economics, institutional measures (infrastructure), waste management, proliferation resistance, physical protection, environment (impact of stressors and availability of resources), safety of reactors, and safety of nuclear fuel cycle facilities. This publication is the final report of an assessment of the planned nuclear energy system of Belarus using the INPRO methodology. The assessment was performed in 2009-2011 by Belarusian experts in a strategic partnership with the Russian Federation and with support from the IAEA's INPRO Group.

  9. The challenges and directions for nuclear energy policy in Japan. Japan's nuclear energy national plan

    International Nuclear Information System (INIS)

    Yanase, Tadao

    2007-01-01

    According to the 'framework for nuclear energy policy' (October, 2005 adopted by cabinet), basic goals of nuclear policy are (1) for nuclear energy to continue to meet more than around 30-40% of electricity supply, and also (2) to further promote a fuel cycle steadily aiming at commercial introduction of a fast breeder by 2050. In order to realize an aim of this framework for nuclear energy policy', the nuclear energy subcommittee of the METI advisory committee deliberated concrete actions and the subcommittee recommendations were drawn up as 'Japan's nuclear energy national plan' in August, 2006 and incorporated as main part of the revised 'basic plan on energy' adopted by the cabinet in March 2007. Backgrounds and directions of future actions for nuclear energy policy were described. (T. Tanaka)

  10. The study on the role of very high temperature reactor and nuclear process heat utilization in future energy systems

    International Nuclear Information System (INIS)

    Yasukawa, Shigeru; Mankin, Shuichi; Sato, Osamu; Tadokoro, Yoshihiro; Nakano, Yasuyuki; Nagano, Takao; Yamaguchi, Kazuo; Ueno, Seiichi.

    1987-11-01

    The objectives of the systems analysis study on ''The Role of High Temperature Nuclear Heat in Future Energy Systems'' under the cooperative research program between Japan Atomic Energy Research Institute and the Massachusetts Institute of Technology are to analyze the effect and the impact of introduction of high temperature nuclear heat in Japanese long-term energy systems aiming at zero environmental emissions from view points of energy supply/demand, economy progress, and environmental protection, and to show the potentials of involved technologies and to extract the associated problems necessary for research and developments. This report describes the results being obtained in these three years from 1985. The present status of our energy system are explained at first, then, our findings concerning on analytical approach, method for analysis, view points to the future, scenario state space, reference energy systems, evolving technologies in it, and results analyzed are described. (author)

  11. Nuclear energy and renewable energies

    International Nuclear Information System (INIS)

    1994-01-01

    The nuclear energy and the renewable energies namely: solar energy, wind energy, geothermal energy and biomass are complementary. They are not polluting and they are expected to develop in the future to replace the fossil fuels

  12. Realizing the potential of nuclear energy

    International Nuclear Information System (INIS)

    Walske, C.

    1982-01-01

    The future of nuclear power, just as the future of America, can be viewed with optimism. There is hope in America's record of overcoming obstacles, but growth is essential for that hope to be realized. Despite the downturn in energy demand made possible by conservation, we will need a 35% growth in total energy for new workers and production. Electricity generated by nuclear or coal can make US production more cost-competitive, and it can power mass-transit systems, electric heat pumps, and communications and information systems. Changes in electricity and gross national product (GNP) have been more closely in step since 1973 than have total energy and GNP. The nuclear power units now under construction will add 80,000 megawatts to the 56,000 now on line. It is important to note that, while utilities are cancelling plans for nuclear plants, they aren't ordering new coal plants, which shows the impact of the high cost of money. Interest rates must come down and public-relations efforts to sell electricity must improve to change the situation. Although capital shortages are real, waste disposal is a problem of perception that was politically induced because the government failed to provide a demonstration of safety as the French are doing. Streamlined regulatory and insurance procedures can help to justify optimism in the nuclear option. 4 figures

  13. Nuclear energy

    International Nuclear Information System (INIS)

    1996-01-01

    Several issues concerning nuclear energy in France during 1996 are presented: permission of a demand for installing underground laboratories in three sites (Marcoule, Bure and Chapelle-Baton); a report assessing the capacity of Superphenix plant to operate as a research tool; the project of merging between Framatome and Gec-Alsthom companies; the revision of a general report on nuclear energy in France; the issue of military plutonium management

  14. Nuclear energy in Armenia

    International Nuclear Information System (INIS)

    Gevorgyan, S.; Kharazyan, V.

    2000-01-01

    This summary represents an overview of the energy situation in Armenia and, in particular, the nuclear energy development during the last period of time. the energy sector of Armenia is one of the most developed economy branches of the country. The main sources of energy are oil products, natural gas, nuclear energy, hydropower, and coal. In the period of 1985-1988 the consumption of these energy resources varied between 12-13 million tons per year of oil equivalent. Imported energy sources accounted for 96% of the consumption. During the period 1993-1995 the consumption dropped to 3 million tons per year. Electricity in Armenia is produced by three thermal, one nuclear, and two major hydroelectric cascades together with a number small hydro units. The total installed capacity is 3558 MW. Nuclear energy in Armenia began its development during the late 1960's. Since the republic was not rich in natural reserves of primary energy sources and the only domestic source of energy was hydro resource, it was decided to build a nuclear power plant in Armenia. The Armenian Nuclear Power Plant (ANPP) Unit 1 was commissioned in 1996 and Unit 2 in 1980. The design of the ANPP was developed in 1968-1969 and was based on the project of Units 3 and 4 of the Novovoronezh NPP. Both units of the plant are equipped with reactors WWER-440 (V -270) type, which are also in use in some power stations in Russian Federation, Bulgaria, and Slovakia. Currently in Armenia, 36% of the total electricity production is nuclear power electricity. (authors)

  15. Management Systems and Safety Culture in the Nuclear Energy Sector (ISO 9001 & GS-R-3)

    International Nuclear Information System (INIS)

    Smetnik, A.; Murlis, D.

    2016-01-01

    Nowadays, the enterprises of the Rosatom State Nuclear Energy Corporation that provides products and services to foreign customers should rely on the requirements to the management systems established by the IAEA Standard GS-R-3 “The management system for facilities and activities”. This results from the fact that in order to enter foreign markets, Russian suppliers have to meet foreign requirements related to quality assurance, protection of the environment, nuclear and radiation safety, etc. For instance, the Finnish customer “Fennovoima” requires full compliance of the management systems of the Russian companies involved in the construction of the Hanhikivi-1 NPP with the GS-R-3 Standard. ISO 9001 quality management systems were widely implemented in the nuclear industry enterprises in Russia. The assessment of compliance of the quality management systems with the established requirements is carried out by the certification bodies. The same relates to the environmental management systems that are implemented at the majority of nuclear industry facilities in Russia. But due to their uniqueness and associated significant risks, the nuclear industry enterprises have to meet current safety requirements and principles established in the IAEA Safety Standards, such as safety culture and risk management.

  16. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    In this presentation author deals with production a consumption of electricity in the Finland. New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  17. Thermodynamic exergy analysis for small modular reactor in nuclear hybrid energy system - 15110

    International Nuclear Information System (INIS)

    Boldon, L.; Liu, L.; Sabharwall, P.; Rabiti, C.; Bragg-Sitton, S.M.

    2015-01-01

    To assess the inherent value of energy in a thermal system, it is necessary to understand both the quantity and quality of energy available or the exergy. We study the case where nuclear energy through a small modular reactor (SMR) is supplementing the available wind energy through storage to meet the needs of the electrical grid. Nuclear power is also being used for the production of hydrogen via high temperature steam electrolysis. For a SMR exergy analysis, both the physical and economic environments must be considered. The physical environment incorporates the energy, raw materials, and reference environment, where the reference environment refers to natural resources available without limit and without cost. This paper aims to explore the use of exergy analysis methods to estimate and optimize SMR resources and costs for individual subsystems, based on thermodynamic principles-resource utilization and efficiency. The paper will present background information on exergy theory; identify the core subsystems in an SMR plant coupled with storage systems in support of renewable energy and hydrogen production; perform a thermodynamic exergy analysis; determine the cost allocation among these subsystems; and calculate unit 'exergetic' costs, unit 'exergo-economic' costs, and first and second law efficiencies. Exergetic and 'exergo-economic' costs ultimately determine how individual subsystems contribute to overall profitability and how efficiencies and consumption may be optimized to improve profitability, making SMRs more competitive with other generation technologies

  18. Nuclear energy - some regulatory aspects

    International Nuclear Information System (INIS)

    Jennekens, Jon.

    1980-03-01

    The nuclear industry is often perceived by the public as being uniquely hazardous. As a consequence, the demands placed upon a nuclear regulatory agency invariably include sorting out the valid from the invalid. As the public becomes better informed, more time should become available for regulating the industry. The Canadian nuclear safety philosophy relies upon fundamental principle and basic criteria which licensees must show they are meeting at all stages in the development of a nuclear facility. In reactors, the concept of defence in depth involves the use of well-qualified personnel, compliance with national and international engineering codes and standards, the separation of process and safety systems, frequent testing of safety systems, redundancy in monitoring, control and initiation systems, multiple barriers against fission product release, and strict enforcement of compliance measurements. The Atomic Energy Control Board is writing a set of licensing guides to cover the whole nuclear fuel cycle; however, these will not lead to the impsition of a 'design by regulation' approach in Canada. (LL)

  19. Nuclear energy = more jobs. [Capital-intensive vs labor-intensive systems

    Energy Technology Data Exchange (ETDEWEB)

    Brookes, L G

    1979-07-01

    In the April 1979 issue of Energy Manager, Dr. David Elliott of Open University says capital-intensive systems employ less labor per unit of output, concluding that nuclear energy represented a poor bargain in terms of money invested per job created. Responding to this earlier article, Dr. Brookes argues that capital-intensive systems may employ less labor per unit of output, but they also produce more output and income per worker. Dr. Brookes uses a simple analysis to illustrate how progress results by increasing capital investment and disagrees strongly with Elliotts conclusions - says output must become more capital-intensive to provide more employment opportunities. Further, he feels that Elliott and other antinuclear and environmentalist writers have fallen into the trap of the fallacy of composition - assuming that what is true for a small number of constituent parts taken singly is true also for the total system taken as a whole. Examples can be found in economics of microeconomic elements which do not add up to the expected macroeconomic composition, which explains why some capital-intensive strategies are good and others are not. The excess income produced by capital-intensive energy strategies supports the service and public administration sectors. 3 figures, 1 table. (DCK)

  20. Quantum nuclear pasta and nuclear symmetry energy

    Science.gov (United States)

    Fattoyev, F. J.; Horowitz, C. J.; Schuetrumpf, B.

    2017-05-01

    Complex and exotic nuclear geometries, collectively referred to as "nuclear pasta," are expected to appear naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta geometries depend on the average baryon density, proton fraction, and temperature and are critically important in the determination of many transport properties of matter in supernovae and the crusts of neutron stars. Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of large scale quantum simulations of pasta phases at baryon densities 0.03 ≤ρ ≤0.10 fm-3 , proton fractions 0.05 ≤Yp≤0.40 , and zero temperature. The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated by tuning two purely isovector observables that are insensitive to the current available experimental data. We find that a minimum total number of nucleons A =2000 is necessary to prevent the results from containing spurious shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at T =0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable solutions are discussed.

  1. Nuclear energy and its synergies with renewable energies

    International Nuclear Information System (INIS)

    Carre, F.; Mermilliod, N.; Devezeaux De Lavergne, J.G.; Durand, S.

    2011-01-01

    France has the ambition to become a world leader in both nuclear industry and in renewable energies. 3 types of synergies between nuclear power and renewable energies are highlighted. First, nuclear power can be used as a low-carbon energy to produce the equipment required to renewable energy production for instance photovoltaic cells. Secondly, to benefit from the complementary features of both energies: continuous/intermittency of the production, centralized/local production. The future development of smart grids will help to do that. Thirdly, to use nuclear energy to produce massively hydrogen from water and synthetic fuels from biomass. (A.C.)

  2. Seven principle of highly effective Nuclear Energy Programs

    International Nuclear Information System (INIS)

    Ferguson, Ch.D.; Reed, Ph.D.

    2010-01-01

    This paper presents seven principles that demand consideration for any country using a nuclear power program or wanting to acquire such a program. These principles are assessing the overall energy system, determining effective use of financial resources for energy development, ensuring high safety standards, implementing best security practices, preventing the spread of nuclear weapons, managing radioactive waste in a safe and secure manner, and enacting a legal framework that encompasses the other principle areas. The paper applies management methods that underscore development of strong independent national capabilities integrated within an interdependent international system. The paper discusses the individual responsibilities of states in all seven principles and offers recommendations for how states can benefit from greater international cooperation in nuclear energy development

  3. Dare nuclear energy with the Australian Nuclear Association

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    Australian authorities have been traditionally opposed to nuclear energy. The interdiction to build nuclear power plants in the Australian states without the approval of the federal authority was even officially written in the environment code in 1999. Today coal provides 75% of the electricity needs of Australia. Because of climate warming, things are changing, the Australian government is now considering the possibility of using nuclear energy and a site located in southern Australian has been selected for the disposal of low and intermediate level radioactive wastes. In this context the Australian Nuclear Association (ANA) is developing an ambitious program for the promotion of all the applications of nuclear energy through the organisation of conferences and meetings with various experts of nuclear industry. The aim is to make the public aware of the assets of nuclear energy. (A.C.)

  4. Nuclear Energy Data - 2017

    International Nuclear Information System (INIS)

    2017-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on total electricity produced by all sources and by nuclear power, fuel cycle capacities and requirements, and projections to 2035, where available. Country reports summarise energy policies, updates of the status in nuclear energy programs and fuel cycle developments. In 2016, nuclear power continued to supply significant amounts of low-carbon baseload electricity, despite strong competition from low-cost fossil fuels and subsidised renewable energy sources. Three new units were connected to the grid in 2016, in Korea, Russia and the United States. In Japan, an additional three reactors returned to operation in 2016, bringing the total to five under the new regulatory regime. Three reactors were officially shut down in 2016 - one in Japan, one in Russia and one in the United States. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects making progress in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports

  5. Nuclear Energy: Pros and Cons

    International Nuclear Information System (INIS)

    Valentukevicius, V.

    1999-01-01

    Early this year the Government of the Republic of Lithuania has basically approved and submitted to the Parliament (Seimas) for their approval the new draft of the National Energy Strategy. It still envisages two scenarios for the Ignalina Nuclear Power Plant. In accordance with one of them, the nuclear plant is to be shut down fairly soon. The greatest advantage of any commercial nuclear plant is that the share of fuel in the production cost is low. That is why efforts are being made to operate nuclear power plants to their full capacity all over the world. At the meantime a system of legal regulation and organisational management has been created and is functioning in Lithuania; Lithuania has joined the key international agreements that regulate the use of nuclear energy; a lot has been done to upgrade safety and reliability of the Ignalina NPP. Lithuania is going to stick to the policy of openness and co-operation with international organisations concerned, at the same time defends the interests of country's population

  6. Nuclear energy of the future, solar energy of the future: some convergencies

    International Nuclear Information System (INIS)

    Flamant, G.

    2006-01-01

    Most medium- and long-term energy scenarios foresee the joint development of renewable and nuclear energies. In other words, the energy sources must be as various as possible. Among the renewable energy sources, the solar energy presents the highest development potential, even if today the biomass and wind energies are quantitatively more developed. In France, the solar power generation is ensured by photovoltaic systems. However, the thermodynamical conversion of solar energy (using concentrating systems) represents an enormous potential at the world scale and several projects of solar plants are in progress in Spain and in the USA. The advantages of this solution are numerous: high efficiency of thermodynamic cycles, possibility of heat storage and hybridization (solar/fuels), strong potential of innovation. Moreover, the solar concentrators allow to reach temperatures higher than 1000 deg. C and thus allow to foresee efficient thermochemical cycles for hydrogen generation. The future solar plants will have to be efficient, reliable and will have to be able to meet the energy demand. In order to reach high thermodynamic cycle efficiencies, it is necessary to increase the temperature of the hot source and to design combined cycles. These considerations are common to the communities of researchers and engineers of both the solar thermal and nuclear industries. Therefore, the future development of generation 4 nuclear power plants and of generation 3 solar plants are conditioned by the resolution of similar problems, like the coolants (molten salts and gases), the materials (metals and ceramics), the heat transfers (hydrogen generation), and the qualification of systems (how solar concentrators can help to perform qualification tests of nuclear materials). Short communication. (J.S.)

  7. Conceptual design of primary coolant purification system using cylindrical membrane for nuclear energy system base on HTGR

    International Nuclear Information System (INIS)

    Piping Supriatna

    2011-01-01

    The recent progress of reactor technology design for next generation reactor will be implemented on cogeneration reactor, which the aim of reactor operation not only for generating electrical energy, but also for other application like desalination, industrial manufacturing process, hydrogen production, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor concept developed for generate energy effectively, efficiently and sustainable, which reserve of uranium and thorium nuclear fuel for cogeneration reactor is supply able for world energy demand until next thousand years. The cogeneration reactor produce temperature output higher than commonly Nuclear Power Plant (NPP), and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this research has been designed modeling and assessment of primary coolant gas purification system with purify and fill up helium gas continuously, by using Cylindrical Helium Splitting Membrane and helium gas inventory system. The result of flow rate helium assessment for the purification system is 0.844x10 -3 kg/sec, where helium flow rate of reactor primary coolant is 120 kg/sec. The result of study show that the Primary Coolant Gas Purification System is enable to be implemented on Cogeneration Reactor HTGR200C. (author)

  8. Nuclear energy supports sustainable development

    International Nuclear Information System (INIS)

    Koprda, V.

    2005-01-01

    The article is aimed at acceptability, compatibility and sustainability of nuclear energy as non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy , radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously abjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  9. Nuclear Energy Data 2013

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants declined in 2012 as a result of operational issues at some facilities and suspended operation at all but two reactors in Japan. Nuclear safety was further strengthened in 2012 following safety reviews prompted by the Fukushima Daiichi nuclear power plant accident. Governments committed to maintaining nuclear power in the energy mix pursued initiatives to increase nuclear generating capacity. In Turkey, plans were finalised for the construction of the first four reactors for commercial electricity production. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Statlinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link [fr

  10. Ultimate Choice for Energy: The Nuclear Energy

    Directory of Open Access Journals (Sweden)

    Metin Yıldırım*

    2007-06-01

    Full Text Available Increases in the prices of oil, hard coal and natural gas, emergence of Russia as a not reliable resource for the natural and the developments in the security of the energy supply again have been started the nuclear energy as a hotly debated issue in the world. This is also a sensitive topic among the opponents and proponents of the nuclear energy in Turkey. Nuclear energy is very important since it provides about 17 % of the electric energy in the world and is used in industry and medical area. However, Turkey has not declared any policy about this yet, because of the worries about the environmental reasons and has not gained any progress about nuclear energy. First of all, Turkey must use her geothermal, hydropower, hard coal, solar and wind energies. Otherwise, Turkey may find herself in a competition with her neighboring countries

  11. Electricity and nuclear energy

    International Nuclear Information System (INIS)

    Krafft, P.

    1987-01-01

    Consequences of getting out from nuclear energy are discussed. It is concluded that the Chernobyl accident is no reason to withdraw confidence from Swiss nuclear power plants. There are no sufficient economizing potential and other energies at disposal to substitute nuclear energy. Switching to coal, oil and gas would increase environmental damages. Economic and social cost of getting out would be too high

  12. Nuclear energy: a sensible alternative

    International Nuclear Information System (INIS)

    Ott, K.O.; Spinrad, B.I.

    1985-01-01

    This book presents information on energy futures; energy demand, energy supplies; exclusive paths and difficult choices--hard, soft, and moderate energy paths; an energy-deficient society; energy shortages; economics of light-water reactors; fast breeder reactor economics; international cooperation in the nuclear field; nuclear recycling; alternative fuels, fuel cycles, and reactors; the nuclear weapons proliferation issue; paths to a world with more reliable nuclear safeguards; the homemade bomb issue; LWR risk assessment; accident analysis and risk assessment; the waste disposal risk; radon problems; risks in our society; health effects of low-level radiation; routine releases of radioactivity from the nuclear industry; low-level radioactivity and infant mortality; the myth of plutonium toxicity; myths about high-level radioactive waste; the aging reactor myth; the police state myth; insurance and nuclear power--the Price-Anderson Act; and solar and nuclear power as partners

  13. Research and development activities of the Joint Research Centre -JRC and its involvement in the development of future nuclear energy systems

    International Nuclear Information System (INIS)

    Schenkel, R.

    2007-01-01

    Besides the policy driven support which the JRC gives to the European Commission and its Member States, the nuclear activities of the JRC also fulfil the Research and Development obligations as enshrined in the EURATOM Treaty. These have for objectives to develop and assemble knowledge in the field of nuclear energy and concern basic actinide research, nuclear data and nuclear measurements, radiation monitoring and radionuclides in the environment, health and nuclear medicine, management of spent fuel and waste, safety of reactors and fuel cycle and nuclear safeguards and non proliferation. The European Union currently imports 50% of its energy and, going by the present trend, this may increase to 70% within 20 years. One third of the electricity in Europe is currently been produced via nuclear fission and the move to innovative reactor systems holds great promise. In May 2006, the European Atomic Energy Community became a Party to the Framework Agreement for International Collaboration on Research and Development of Generation IV Nuclear Energy Systems (GIF Framework Agreement). The 'Generation IV' initiative concerns concepts for nuclear energy systems that can be operated in a manner that will provide a competitive and reliable supply of energy, while satisfactorily addressing nuclear safety, waste, proliferation and public perception concerns. The JRC with its strong international dimension is not only the implementing agent for EURATOM in the Generation IV international forum, but also participates actively in related Research and Development projects. The Research and Development projects are focused on fuel development, reprocessing and irradiation testing, fuel cladding interaction and corrosion, basic data for fuel and reprocessing, reprocessing and waste treatment. In this paper the Research and Development the nuclear activities of the JRC will be presented especially those related to its participation to GIF

  14. Promoting nuclear energy: market price or regulated tariffs? - 5042

    International Nuclear Information System (INIS)

    Percebois, J.

    2015-01-01

    Because of its negative effects, the scheme for aiding renewable energies presently in force in Europe is likely to penalise investments in nuclear energy. The F.I.T. system is a costly mechanism and a source of perverse effects as a switching of the merit order curve on the spot electricity market (with sometimes negative prices). Restoring an equity and 'equal opportunity' for nuclear energy in Europe needs to implement a 'Contract for Differences' scheme for nuclear energy, like the model now gaining favour in the U.K. The contract for differences signed between EDF and the UK government means that if the wholesale price that EDF secures for Hinckley's power falls below the index-linked preset value, the difference will be covered by payments from the UK government. It appears that nuclear power has weakened in Europe by the system of guaranteed purchase prices for renewable energies. Moreover this system is costly. New fairer rules must be implemented in the market. Either the market is left on its own to send the signals to all investors (including renewable energies), or a minimum of regulation is introduced in order to limit the costly surges of under and over capacity. But in the latter case it is necessary to treat all the energy sources in an equal way and guarantee the nuclear industry that it will also recover its fixed costs over the long term)

  15. Changes to Regulatory Systems for more Efficient Nuclear Energy Deployment: An Industry Viewpoint

    International Nuclear Information System (INIS)

    Pelin, H.

    2016-01-01

    Nuclear energy is required to play a much larger role in the energy mix in most credible energy scenarios that address climate change (680 GW additional capacity by 2050 according to IEA, 1000 GW according to World Nuclear Association). To reach these ambitious targets, a concerted effort will be required involving industry, governments and regulators. Changes to regulatory systems and processes – including licensing (design, site, operation), export control, security and waste - is one important area that can stimulate faster and more cost effective development of nuclear capacity. In the past, regulators were mainly concerned with authorizing a limited number of reactors from a limited number of designs under a national standard. Today regulators need resources to assess a wider range of designs, while each licensee needs to complete a thorough safety assessment even if the design has been assessed and approved elsewhere. These developments are the inevitable consequence of globalization and competition within the industry. This paper examines the current state of nuclear regulation in relation to the main attributes of good regulation as defined by the OECD. It further looks at ongoing efforts among regulators to share experience or harmonize requirements, such as within MDEP, or to agree common safety levels, such as in WENRA, in order to reach common positions and improve their regulatory approaches. Finally, it will assess the work of industry to demonstrate the benefits – both in terms of efficiency as well as safety – of harmonised regulations notably through the activities of the World Nuclear Association/CORDEL Working Group. (author)

  16. National Options for a Sustainable Nuclear Energy System: MCDM Evaluation Using an Improved Integrated Weighting Approach

    Directory of Open Access Journals (Sweden)

    Ruxing Gao

    2017-12-01

    Full Text Available While the prospects look bright for nuclear energy development in China, no consensus about an optimum transitional path towards sustainability of the nuclear fuel cycle has been achieved. Herein, we present a preliminary study of decision making for China’s future nuclear energy systems, combined with a dynamic analysis model. In terms of sustainability assessment based on environmental, economic, and social considerations, we compared and ranked the four candidate options of nuclear fuel cycles combined with an integrated evaluation analysis using the Multi-Criteria Decision Making (MCDM method. An improved integrated weighting method was first applied in the nuclear fuel cycle evaluation study. This method synthesizes diverse subjective/objective weighting methods to evaluate conflicting criteria among the competing decision makers at different levels of expertise and experience. The results suggest that the fuel cycle option of direct recycling of spent fuel through fast reactors is the most competitive candidate, while the fuel cycle option of direct disposal of all spent fuel without recycling is the least attractive for China, from a sustainability perspective. In summary, this study provided a well-informed decision-making tool to support the development of national nuclear energy strategies.

  17. Nuclear energy, the climate and nuclear disarmament

    International Nuclear Information System (INIS)

    Knapp, V.

    1998-01-01

    The main concern of Pugwash, with very good reason, is nuclear disarmament, but a negative attitude towards nuclear energy is not only futile, but counterproductive as it misses opportunities to appropriately influence its development. Since nuclear energy cannot be abandoned for ecological (decrease in greenhouse gases emission) and economic reasons as a long term energy source, then efforts should be devoted to make it safe from proliferation, which is possible from scientific and technological point of view

  18. A Study on intensifying efficiency for international collaborative development of Advanced Nuclear Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Dohee; Park, Seongwon; Chang, Moonhee

    2013-08-15

    All the countries of the world are promoting the use of atomic energy to provide against high oil prices, climatic changes, and energy security initiative. A domestic and foreign environment for nuclear energy is changing rapidly and 13 leading countries including Korea are trying to develop advanced technologies on Gen IV nuclear energy system through Gen IV International Forum (GIF). To enhance the effectiveness of the future nuclear energy system development plan, a strategic approach is necessary for GIF program and the connection process with the 4th Nuclear Energy Promotion Program and Nuclear Energy R and D Medium and Long Term 5 year Plan for 2012 ∼ 2016 needs to be prepared. This study was to analyze the global nuclear trends of 2012 and the status of GIF program which is international cooperation activities. Also we examined the domestic R and D status of future nuclear energy systems for developing core technology and commercialization of Gen-IV nuclear energy system. A successful performance of this project enables the effective national cooperation with GIF and promotes the public acceptance by suggesting the technical alternatives for the nuclear safety and the spent fuel management.

  19. The production of radionuclides for nuclear medicine from a compact, low-energy accelerator system.

    Science.gov (United States)

    Webster, William D; Parks, Geoffrey T; Titov, Dmitry; Beasley, Paul

    2014-05-01

    The field of nuclear medicine is reliant on radionuclides for medical imaging procedures and radioimmunotherapy (RIT). The recent shut-downs of key radionuclide producers have highlighted the fragility of the current radionuclide supply network, however. To ensure that nuclear medicine can continue to grow, adding new diagnostic and therapy options to healthcare, novel and reliable production methods are required. Siemens are developing a low-energy, high-current - up to 10 MeV and 1 mA respectively - accelerator. The capability of this low-cost, compact system for radionuclide production, for use in nuclear medicine procedures, has been considered. The production of three medically important radionuclides - (89)Zr, (64)Cu, and (103)Pd - has been considered, via the (89)Y(p,n), (64)Ni(p,n) and (103)Rh(p,n) reactions, respectively. Theoretical cross-sections were generated using TALYS and compared to experimental data available from EXFOR. Stopping power values generated by SRIM have been used, with the TALYS-generated excitation functions, to calculate potential yields and isotopic purity in different irradiation regimes. The TALYS excitation functions were found to have a good agreement with the experimental data available from the EXFOR database. It was found that both (89)Zr and (64)Cu could be produced with high isotopic purity (over 99%), with activity yields suitable for medical diagnostics and therapy, at a proton energy of 10MeV. At 10MeV, the irradiation of (103)Rh produced appreciable quantities of (102)Pd, reducing the isotopic purity. A reduction in beam energy to 9.5MeV increased the radioisotopic purity to 99% with only a small reduction in activity yield. This work demonstrates that the low-energy, compact accelerator system under development by Siemens would be capable of providing sufficient quantities of (89)Zr, (64)Cu, and (103)Pd for use in medical diagnostics and therapy. It is suggested that the system could be used to produce many other

  20. Environmentalists for nuclear energy

    International Nuclear Information System (INIS)

    Comby, B.

    2001-01-01

    Fossil fuels such as coal oil, and gas, massively pollute the Earth atmosphere (CO, CO 2 , SOX, NOX...), provoking acid rains and changing the global climate by increasing the greenhouse effect, while nuclear energy does not participate in these pollutions and presents well-founded environmental benefits. Renewable energies (solar, wind) not being able to deliver the amount of energy required by populations in developing and developed countries, nuclear energy is in fact the only clean and safe energy available to protect the planet during the 21 century. The first half of the book, titled The Atomic Paradox, describes in layman language the risks of nuclear power, its environmental impact, quality and safety standards, waste management, why a power reactor is not a bomb, energy alternatives, nuclear weapons, and other major global and environmental problems. In each case the major conclusions are framed for greater emphasis. Although examples are taken from the French nuclear power program, the conclusions are equally valid elsewhere. The second half of the book is titled Information on Nuclear Energy and the Environment and briefly provides a historical survey, an explanation of the different types of radiation, radioactivity, dose effects of radiation, Chernobyl, medical uses of radiation, accident precautions, as well as a glossary of terms and abbreviations and a bibliography. (author)

  1. Congressman-scientist looks at nuclear energy

    International Nuclear Information System (INIS)

    McCormack, M.

    1976-01-01

    Rep. McCormack aired his views on energy in general and nuclear energy's role in the energy mix of the U.S., stating that this is not an academic debate because the nation is in mortal danger. He further states, our national security, the stability of our economic systems, even our political institutions may well depend upon our ability to develop responsible energy policies and implement rational programs to carry them into effect. It is no exaggeration to say that members of organized labor can play a decisive role in initiating and supporting positive action programs and make the difference between success and catastrophe for our nation during the balance of the century. This is true for all union members and all unions, from the officers of the International to the individuals at the local level.'' Rep. McCormack is known as a nuclear energy advocate, but he also supports solar energy development, geothermal energy, electric cars, ground transportation, conservation, fission programs, and the breeder program. After reviewing the facts that energy demands will increase and the restraints being imposed resulting in long lead times for all energy sources, the author concludes that nuclear energy is needed. He announced that ERDA will soon tell its options and programs for safety disposing of nuclear wastes--that of converting the wastes to a solid glass. A summary of some voting records in Congress on various energy programs was given and Rep. McCormack said that support in Congress on programs that he deemed necessary has been difficult to muster

  2. Dictionary of nuclear energy termination

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-04-15

    This book lists termination of nuclear energy such as abbreviation, symbol, unit of nuclear energy, radiological unit, the symbol for element, isotope chart and the periodic table. This book contains about 5500 words involving to nuclear energy with index in Korean and English. It arranges alphabetically. So, with this book, it is easy and fast to find out the glossary, unit and symbol on nuclear energy.

  3. Dictionary of nuclear energy termination

    International Nuclear Information System (INIS)

    1983-04-01

    This book lists termination of nuclear energy such as abbreviation, symbol, unit of nuclear energy, radiological unit, the symbol for element, isotope chart and the periodic table. This book contains about 5500 words involving to nuclear energy with index in Korean and English. It arranges alphabetically. So, with this book, it is easy and fast to find out the glossary, unit and symbol on nuclear energy.

  4. Nuclear energy of hope and dream

    International Nuclear Information System (INIS)

    2009-02-01

    This book describes nuclear energy as hopeful and helpful energy for our life. It includes a lot of introductions of carbon energy, green energy, an atomic reactor for generation of electricity and research, a nuclear fuel cycle, radiation in life, radiation measurement, a radioisotope, the principle of utilization of radiation, utilization for clinical medicine, nuclear energy and economy, international cooperation of nuclear energy and control of nuclear energy.

  5. A comparison of hydrogen with alternate energy forms from coal and nuclear energy

    International Nuclear Information System (INIS)

    Cox, K.E.

    1976-01-01

    Alternate energy forms that can be produced from coal and nuclear energy have been analyzed on efficiency, economic and end-use grounds. These forms include hydrogen, methane, electricity, and EVA-ADAM, a 'chemical heat pipe' approach to energy transmission. The EVA-ADAM system for nuclear heat appears to be economically competitive with the other energy carriers except over very large distances. The cost of hydrogen derived from coal is approximately equal to that of methane derived from the same source when compared on an equal BTU basis. Thermochemically derived hydrogen from nuclear energy shows a break-even range with hydrogen derived from coal at coal costs of from Pound33 to 80/ton depending on the cost of nuclear heat. Electricity and electrolytically derived hydrogen are the most expensive energy carriers and electricity's use should be limited to applications involving work rather than heat. Continued work in thermochemical hydrogen production schemes should be supported as an energy option for the future. (author)

  6. Nuclear Energy Data - 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants remained steady in 2013 despite the progressive shutdown of all reactors in Japan leading up to September and the permanent closure of six reactors in the OECD area. Governments committed to maintaining nuclear power in the energy mix advanced plans for increasing nuclear generating capacity, and progress was made in the development of deep geological repositories for spent nuclear fuel, with Finland expected to have the first such facility in operation in the early 2020's. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'StatLinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link. (authors)

  7. Germany bars nuclear energy

    International Nuclear Information System (INIS)

    Gaullier, V.

    1999-01-01

    Germany wants a future without nuclear energy, the different steps about the going out of nuclear programs are recalled. The real choice is either fossil energies with their unquestionable safety levels but with an increase of the greenhouse effect or nuclear energy with its safety concerns and waste management problems but without pollutant emission. The debate will have to be set in most European countries. (A.C.)

  8. Towards sustainable nuclear energy: Putting nuclear physics to work

    International Nuclear Information System (INIS)

    Koning, A.J.; Rochman, D.

    2008-01-01

    We have developed a new method to propagate the uncertainties of fundamental nuclear physics models and parameters to the design and performance parameters of future, clean nuclear energy systems. Using Monte Carlo simulation, it is for the first time possible to couple these two fields at the extremes of nuclear science without any loss of information in between. With the help of a large database of nuclear reaction measurements, we have determined the uncertainties of theoretical nuclear reaction models such as the optical, compound nucleus, pre-equilibrium and fission models. A similar assessment is done for the parameters that describe the resolved resonance range. Integrating this into one simulation program enables us to describe all open channels in a nuclear reaction, including a complete handling of uncertainties. Moreover, in one and the same process, values and uncertainties of nuclear reactor parameters are computed. This bypasses all the intermediate steps which have been used so far in nuclear data and reactor physics. Two important results emerge from this work: (a) we are able to quantify the required quality of theoretical nuclear reaction models directly from the reactor design requirements and (b) our method leads to a deviation from the commonly assumed normal distribution for uncertainties of safety related reactor parameters, and this should be taken into account for future nuclear energy development. In particular, calculated k eff distributions show a high-value tail for fast reactor spectra

  9. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation.

  10. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H.

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation

  11. Social aspects of the nuclear energy. Public acceptance. Preliminary

    International Nuclear Information System (INIS)

    1992-06-01

    This report approaches the social aspects of the nuclear energy an public acceptance. It presents the following main topics: historical of the public opposition to the nuclear energy; emergency planning; legislation related to the popular participation; best strategies to acceptance; insurance of nuclear risks; protection of the population and the environment in the licensing; and organization of the licensing system

  12. The nuclear energy debate

    International Nuclear Information System (INIS)

    Hardy, D.

    1984-01-01

    We have not been able to obtain closure in the nuclear energy debate because the public perception of nuclear energy is out of sync with reality. The industry has not been about to deal with the concerns of those opposed to nuclear energy because its reaction has been to generate and disseminate more facts rather than dealing with the serious moral and ethical questions that are being asked. Nuclear proponents and opponents appeal to different moral communities, and those outside each community cannot concede that the other might be right. The Interfaith Program for Public Awareness of Nuclear Issues (IPPANI) has been formed, sponsored by members of the Jewish, Baha'i, Roman Catholic, United, and Anglican faiths, to provide for a balanced discussion of the ethical aspects of energy. (L.L.)

  13. Nuclear legislation system and nuclear program outlook in Thailand

    International Nuclear Information System (INIS)

    Charoensri, Apisara; Morev, Mikhail N.; Imazu, Hidenori; Kosako, Toshiso; Iimoto, Takeshi

    2009-01-01

    In Thailand, radioactive materials are widely used for the industry, medicine, research and development fields. Reported here are background and recent developments in the national nuclear legislation system, including regulation of radiation safety and current status of nuclear program in Thailand. Under the Atomic Energy for Peace Act, the Thai Atomic Energy Commission (Thai AEC) is authorized to approve regulations respecting, the conversion, enrichment, processing, reprocessing, possession, import, export, use, packaging, transport, management and storage of nuclear materials. The most recent developments are related to the New Ministerial Regulation on Licensing Requirements Procedures and Nuclear Material, By-Product or Atomic Energy Processing B. E 2550 (A. D. 2007) issued under the Atomic Energy for Peace Act, B. E. 2504 (A. D. 1961). Currently, the Thai Cabinet is discussing the draft new Atomic Energy for Peace Act which is to revise the Act. The draft Act is to sets forth criteria for protecting individuals, society and the environment from radiation hazards with the perspective for anticipated nuclear power sector development in Thailand. (author)

  14. Gas Turbine Energy Conversion Systems for Nuclear Power Plants Applicable to LiFTR Liquid Fluoride Thorium Reactor Technology

    Science.gov (United States)

    Juhasz, Albert J.

    2014-01-01

    This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.

  15. Framework for Assessing Dynamic Nuclear Energy Systems for Sustainability: Final Report of the INPRO Collaborative Project GAINS

    International Nuclear Information System (INIS)

    2013-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. As an integral part of Phase 2 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), several collaborative projects (CPs) were established by INPRO members. The CP, 'Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle (GAINS)', was one of them. This CP was jointly implemented in 2008-2011 by Belgium, Canada, China, the Czech Republic, France, India, Italy, Japan, the Republic of Korea, the Russian Federation, Slovakia, Ukraine, the United States of America and the European Commission

  16. Can Slovakia to survive without nuclear energy? State and perspectives of nuclear energetics. Attitudes of public to nuclear energy

    International Nuclear Information System (INIS)

    Suchomel, J.; Murinova, S.

    2004-01-01

    In this presentation authors deals with the review of the state of nuclear energetics in the Slovak Republic. Perspectives of nuclear energy and renewable sources of energy as well as attitudes of public to nuclear energy are discussed

  17. Analysis of Russian transition scenarios to innovative nuclear energy system based on thermal and fast reactors with closed nuclear fuel cycle using INPRO methodology

    International Nuclear Information System (INIS)

    Kagramanyan, V.S.; Poplavskaya, E.V.; Korobeynikov, V.V.; Kalashnikov, A.G.; Moseev, A.L.; Korobitsyn, V.E.; Andreeva-Andrievskaya, L.N.

    2011-01-01

    This paper presents the results of the analysis of modeling of Russian nuclear energy (NE) scenarios on the basis of thermal and fast reactors with closed nuclear fuel cycle (NFC). Modeling has been carried out with use of CYCLE code (SSC RF IPPE's tool) designed for analysis of Nuclear Energy System (NES) with closed NFC taking into account plutonium and minor actinides (MA) isotopic composition change during multi-recycling of fuel in fast reactors. When considering fast reactor introduction scenarios, one of important questions is to define optimal time for their introduction and related NFC's facilities. Analysis of the results obtained has been fulfilled using the key INPRO indicators for sustainable energy development. It was shown that a delay in fast reactor introduction led to serious ecological, social and finally economic risks for providing energy security and sustainable development of Russia in long-term prospects and loss of knowledge and experience in mastering innovative technologies of fast reactors and related nuclear fuel cycle. (author)

  18. White paper on nuclear energy, 1996

    International Nuclear Information System (INIS)

    1996-01-01

    Japan has scant energy resources, and more than 80% of its energy demand depends on other countries. The energy problem should be considered not only from the domestic viewpoint of energy supply and demand but also from the global viewpoint. Japanese nuclear power generation accounts for about 30% of its total electric power. The main strategy of Japan is to secure stable energy supply through the establishment of nuclear fuel cycle, and to efficiently use the plutonium and residual uranium recovered from spent nuclear fuel. The sodium leakage from the prototype FBR 'Monju' in December, 1995 raised the anxiety about the nuclear policy. People living in Japan should be assured the peace of mind about the development and utilization of nuclear energy. Regarding coexistence of nuclear energy and people, stronger demand of clearer reflection of public opinion to nuclear policy, holding of the round table conferences on nuclear policy, various efforts toward the coexistence of nuclear energy and people and so on are discussed. The development and utilization of nuclear energy in Japan and overseas are reported on nuclear nonproliferation, safety assurance, information disclosure, present and future of nuclear power generation, international cooperation and others. (K.I.)

  19. Energy paper II: Nuclear energy revival

    International Nuclear Information System (INIS)

    Anonymous

    2008-01-01

    ESI Energy paper is called 'Issue Paper' awarded by think-tank Energy Security Institute. The second issue focuses on the energy security of countries from the perspective of Renaissance of construction of nuclear power plants. Topicality is documented by fluctuations in fossil fuel prices on the world commodity markets and by extortionate potential, disposed by their main producers. The Slovak Republic is actively engaged into international dialogue on the need for the development of nuclear energy.

  20. Nuclear energy achievements and prospects

    International Nuclear Information System (INIS)

    Lewiner, Colette

    1992-01-01

    Within half a century nuclear energy achieved very successful results. Only for European Community, nuclear energy represents 30% in electricity generation. At this stage, one state that the nuclear energy winning cards are competitiveness and Gentleness to the environment. Those winning cards will still be master cards for the 21st century, provided nuclear energy handles rigorously: Safety in concept and operation of power plants; radioactive waste management, and communication

  1. Thermodynamic exergy analysis for small modular reactor in nuclear hybrid energy system

    Directory of Open Access Journals (Sweden)

    Boldon Lauren

    2016-01-01

    Full Text Available Small modular reactors (SMRs provide a unique opportunity for future nuclear development with reduced financial risks, allowing the United States to meet growing energy demands through safe, reliable, clean air electricity generation while reducing greenhouse gas emissions and the reliance on unstable fossil fuel prices. A nuclear power plant is comprised of several complex subsystems which utilize materials from other subsystems and their surroundings. The economic utility of resources, or thermoeconomics, is extremely difficult to analyze, particularly when trying to optimize resources and costs among individual subsystems and determine prices for products. Economics and thermodynamics cannot provide this information individually. Thermoeconomics, however, provides a method of coupling the quality of energy available based on exergy and the value of this available energy – “exergetic costs”. For an SMR exergy analysis, both the physical and economic environments must be considered. The physical environment incorporates the energy, raw materials, and reference environment, where the reference environment refers to natural resources available without limit and without cost, such as air input to a boiler. The economic environment includes market influences and prices in addition to installation, operation, and maintenance costs required for production to occur. The exergetic cost or the required exergy for production may be determined by analyzing the physical environment alone. However, to optimize the system economics, this environment must be coupled with the economic environment. A balance exists between enhancing systems to improve efficiency and optimizing costs. Prior research into SMR thermodynamics has not detailed methods on improving exergetic costs for an SMR coupled with storage technologies and renewable energy such as wind or solar in a hybrid energy system. This process requires balancing technological efficiencies and

  2. Innovative and practical technical development of nuclear energy. Efforts on proposal and recruitment type technical development of nuclear energy

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Shioiri, Akio; Hamada, Jun; Kanagawa, Takashi; Mori, Yukihide; Kouno, Koji

    2003-01-01

    In technical development of nuclear energy conceiving a view on energy environment problem at the 21st Century, technical development on innovative nuclear energy system as well as next generation LWR is an important subject. Even in Japan, on the 'Long-term program for research, development and utilization of nuclear energy (LPRNE)' summarized by the Atomic Energy Commission, investigation on R and Ds of innovative reactors under cooperation of government, industrial field, and universities is required. In the Energy Generalized Engineering Institute, by receiving a subsidy from the Ministry of Economy and Industry since 2000, a proposal recruitment business on innovative and practical technical development of nuclear energy has been carried out. Here were introduced hopeful and unique five themes out of them applied to the recruitment, such as a super-critical pressure water cooling reactor (SCPR), an integrated modular LWR (IMR): technical development for practice, technical development on general purpose boiling transitional analysis method, technical development on direct extraction of U and Pu from consumed fuels based on super-DIREX reprocessing method, and material transfer forecasting in natural barriers at landfill disposal of radioactive wastes. (G.K.)

  3. Evaluation of nuclear energy in the context of energy security

    International Nuclear Information System (INIS)

    Irie, Kazutomo; Kanda, Keiji

    2002-01-01

    This paper analyzes the view expressed by the Japanese government on the role of nuclear energy for energy security through scrutiny of Japan's policy documents. The analysis revealed that the contribution by nuclear energy to Japan's energy security has been defined in two ways. Nuclear energy improves short-term energy security with its characteristics such as political stability in exporting countries of uranium, easiness of stockpiling of nuclear fuels, stability in power generation cost, and reproduction of plutonium and other fissile material for use by reprocessing of spent fuel. Nuclear energy also contributes to medium- and long-term energy security through its characteristics that fissile material can be reproduced (multiplied in the case of breeder reactor) from spent fuels. Further contribution can be expected by nuclear fusion. Japan's energy security can be strengthened not only by expanding the share of nuclear energy in total energy supply, but also by improving nuclear energy's characteristics which are related to energy security. Policy measures to be considered for such improvement will include (a) policy dialogue with exporting countries of uranium, (b) government assistance to development of uranium mines, (c) nuclear fuel stockpiling, (d) reprocessing and recycling of spent fuels, (e) development of fast breeder reactor, and (f) research of nuclear fusion. (author)

  4. Expert systems - basic principles and possible applications in nuclear energy

    International Nuclear Information System (INIS)

    Cain, D.G.; Schmidt, F.

    1987-01-01

    One of the primary goals of the application of mathematical methods and computational techniques in reactor physics is the effective and accurate solution of the neutron diffusion equation under various conditions. To reach this goal still requires much skill, experience, knowledge and imagination as can be seen from various contributions at this and other conferences. Experts are necessary. Will expert systems replace them. We shall discuss this question by describing the basic principles of problem solving by expert systems as compared to problem solving by mathematical and computational methods. From this we shall identify areas of possible applications of the new techniques in nuclear energy and develop some thoughts on present limitations. As a result we conclude that expert systems will not be able to replace experts as long as the experts use the systems to improve their own expertise

  5. PSI nuclear energy research progress report 1988

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-07-01

    The progress report at hand deals with nuclear energy research at PSI. The collection of articles covers a large number of topics: different reactor systems, part of the fuel cycle, the behaviour of structural materials. Examples of the state of knowledege in different disciplines are given: reactor physics, thermal-hydraulics, heat transfer, fracture mechanics, instrumental analysis, mathematical modelling. The purpose of this collection is to give a fair account of nuclear energy research at PSI. It should demonstrate that nuclear energy research is a central activity also in the new institute, the scientific basis for the continuing exploitation of nuclear power in Switzerland is preserved, work has continued not only along established lines but also new research topics were tackled, the quality of work corresponds to international standards and in selected areas is in the forefront, the expertise acquired also finds applications in non-nuclear research tasks. (author) 92 figs., 18 tabs., 316 refs

  6. Reorganization of the Ministries and Agencies and future nuclear energy policy in Japan

    International Nuclear Information System (INIS)

    Kitagishi, Tatsuro; Suzuki, Tatsujiro; Enomoto, Toshiaki; Kawase, Kazuharu; Izuriha, Isao; Shimohirao, Isao; Sakurai, Jun

    2001-01-01

    Japanese governmental Ministries and Agencies were reorganized to a system of one Cabinet Office and twelve Ministries and Agencies on January 6, 2001, by reformation after an interval of about a half of century. Together with this reformation, for an organization executing nuclear energy administration, the Cabinet Office, the Ministry of Education Culture, Sports, Science and Technology, and the Ministry of Economy, Trade and Industry (METI) started. Especially, at the METI, the 'Nuclear Energy Safety and Security Agency' was newly established to unitarity manage safety regulation of the nuclear energy facilities, to enforce system to upgrading of their safety Here were introduced on every content of the organization in the nuclear energy administration, to follow its future subjects under some items on new system and its development, new organization play in liberalization market, expectation to nuclear energy administration at the new system, question on national nuclear safety countermeasure from a standpoint of landing site, stable supply system of electric power, and expectation to suitable safety regulation to secure safety of old nuclear facilities. (G.K.)

  7. Energy Outlook and Nuclear Energy in China

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mooneon; Kang, Jun-young; Song, Kiwon; Park, Hyun Sun; Park, Chang Kue [Pohang university of science and technology, Pohang (Korea, Republic of)

    2015-05-15

    China receives attention from the whole world as not only have they become a country spending the most energy in the world, but also the amount of energy they need is still increasing. Consequently, many problems related to environmental pollution have occurred in China. Recently, China agreed to reduce carbon emission in order to deal with this issue. Therefore, they need to find energy sources other than fossil fuel; the nuclear energy could be an alternative. In addition, it is considered to be a base load owing to its low fuel cost and continuation of electricity generation. In reality, the Chinese government is planning to build about 400 Nuclear Power Plants (NPPs) up to 2050. Therefore, it is expected that China will become a giant market in the nuclear industry. It could give us either chances to join the huge market or challenges to meet not merely nuclear fuel price crisis but competitors from China in the world nuclear power plant market. In any case, it is obvious that the energy policy of China would influence us significantly. Accordingly, we need appropriate prediction of the Chinese nuclear industry to cope with the challenges.

  8. Assessment of high temperature nuclear energy storage systems for the production of intermediate and peak-load electric power

    International Nuclear Information System (INIS)

    Fox, E.C.; Fuller, L.C.; Silverman, M.D.

    1977-01-01

    Increased cost of energy, depletion of domestic supplies of oil and natural gas, and dependence on foreign suppliers, have led to an investigation of energy storage as a means to displace the use of oil and gas presently being used to generate intermediate and peak-load electricity. Dedicated nuclear thermal energy storage is investigated as a possible alternative. An evaluation of thermal storage systems is made for several reactor concepts and economic comparisons are presented with conventional storage and peak power producing systems. It is concluded that dedicated nuclear storage has a small but possible useful role in providing intermediate and peak-load electric power

  9. West Europe without Nuclear Energy

    International Nuclear Information System (INIS)

    1999-01-01

    This document contains basic conclusions of discussion if West Europe can exist without nuclear energy: 1. Presumptions for the nuclear energy removal 2. Regional and international consulting 3. Economic competition 4. Role of the nuclear energy 5. Situation in the energetic industry 6. Costs, safety and public relations 7. Energy policy

  10. Public opinion on nuclear energy - background and causes

    International Nuclear Information System (INIS)

    Rudloff, W.

    1990-01-01

    The nuclear energy discussion is as old as the discovery of nuclear fission. Its technical harnessing is one of the most important basic innovations of this century. The ambivalence of nuclear energy - peaceful and aggresssive utilization habe been equally realized - and potential endangerment by fission products have put a strain on its acceptance worldwide. The forming of public opinion is further complicated by the complexity of the system we call 'nuclear energy'. The beginning of its commercial utilization coincided with the first awareness of the 'limits to growth'. In many discussion and for many groups, also ideologically based ones, nuclear energy plays a substitute role in the social political debate on the 'right' way into the future. By means of one-sided and sometimes distorted representations, many media have contributed to the confusion. Industry and the business world, being interested in nuclear energy, have endeavored to take a stand in its defence, although not always qualitatively or quantitatively appropriate. These endeavors were impeded by sporadic strong politicalization of all relevant decisions. The specific roll behavior of those participating in the discussion was also at times a hindrance. The nuclear energy discussion is not locally limited, it is rather international. This should be taken into consideration in all endeavors for its acceptance. The beginning world-wide climate discussion will inveterately alter the position of nuclear energy and the public's opinion of it. (author)

  11. System size and beam energy effects on probing the high-density behavior of nuclear symmetry energy with pion ratio

    International Nuclear Information System (INIS)

    Zhang Ming; Xiao Zhigang; Li Baoan; Chen Liewen; Yong Gaochan; Zhu Shengjiang

    2010-01-01

    Based on the isospin-and momentum-dependent hadronic transport model IBUU04, we have investigated the π - /π + ratio in the following three reactions: 48 Ca+ 48 Ca, 124 Sn + 124 Sn and 197 Au + 197 Au with nearly the same isospin asymmetry but different masses, at the bombarding energies from 0.25 to 0.6 AGeV. It is shown that the sensitivity of probing the E sym (ρ) with π - /π + increases with increasing the system size or decreasing the beam energy, showing a correlation to the degree of isospin fractionation. Therefore, with a given isospin asymmetry, heavier system at energies near the pion threshold is preferential to study the behavior of nuclear symmetry energy at supra-saturation densities.

  12. The case for nuclear energy. Chapter 2. Nuclear safety and energy security

    International Nuclear Information System (INIS)

    Trosman, G.

    2010-01-01

    The U.S. nuclear safety assistance activities have had a direct and substantial impact on improving safe operations of 67 Soviet-designed commercial nuclear power plants in Armenia, Bulgaria, Czech Republic, Hungary, Kazakhstan, Lithuania, Russia, Slovakia, and Ukraine. The U.S. Department of Energy worked with these host countries both to improve safe nuclear operations and in some cases assist in plant shutdown. Independent international safety reviews have identified significant progress in the Eastern European countries to improve the safety of their nuclear power plants since the early 1990s. In addition, all of the probabilistic risk assessments conducted at these plants show a major reduction in the frequency of core damage accidents since U.S. assistance to improve safety at these reactors began. Improved operational safety follows from the combined efforts to improve operator performance. These efforts include providing simulators for operators to practice handling emergency scenarios, developing emergency operating instructions that guide operators calmly through emergencies, providing safety parameter display systems that give operators immediate graphical information on the status of plant systems and training the operators on the safety basis for the plants they operate

  13. The new economics of nuclear energy

    International Nuclear Information System (INIS)

    Salian, Ramesh; Prasanna Kumar, N.

    2012-01-01

    With 15% of the world's population and an economic growth rate that increases the aspiration of its people to better quality of life, India has a voracious appetite for energy. Nuclear power is one of the options of providing safe, environmentally benign, reliable and economically competitive energy services. Nuclear power world over provides about 16% of electricity through 440 nuclear power plants with a total installed capacity of 361.582 GW (as of January 2004, IAEA PRIS data). Nuclear energy has traditionally played a small role in meeting India's energy requirements. Nuclear power makes up only 4,120 MW, constituting 2.6%, of the total electricity generation capacity. India is a power hungry nation and needs to switch over from its tremendous dependence on fossil fuels to alternative sources of energy like solar energy, bio energy and nuclear energy. Indian nuclear power plants have progressively attained excellent operation performances. However, the changing economic and geopolitical situation in the energy sector has made it imperative to emphasize the significance of nuclear energy in the future energy landscape of the country. The present paper discuss the importance, demand and supply pattern of nuclear energy and its economics. (author)

  14. Nuclear energy and society

    International Nuclear Information System (INIS)

    Bakacs, Istvan; Czeizel, Endre; Hajdu, Janos; Marx, Gyoergy.

    1984-01-01

    The text of a round-table discussion held on the occasion of the 50th anniversary of the discovery of neutron is given. The participants were the Chief Engineer of the Paks Nuclear Power Plant, the first nuclear power plant in Hungary started in November 1982, a geneticist treating the problems of genetic damages caused by nuclear and chemical effects, a nuclear physicist and a journalist interested in the social aspects of nuclear energy. They discussed the political, economical and social problems of nuclear energy in the context of its establishment in Hungary. (D.Gy.)

  15. The nuclear energy of the future: the researches and the objectives

    International Nuclear Information System (INIS)

    2005-01-01

    Today energy problems are global problems. That is why the new generation of energy production by nuclear power must be realized basely on serious forecasts at a world scale. The nuclear energy presents many trumps for an energetic answer, at long-dated, concerning the environment and the resources. This will be for two main conditions: the ability to answer the public opinion anxiety and the development of new systems more high- performance in terms of safety and economy in the framework of the sustainable development and the non proliferation policy. These subjects are at the earth of the CEA missions. This document proposes a detailed presentation of the nuclear origins, the fuel and its cycle, the radioactive wastes and their management,the dismantling and the decommissioning of the nuclear installations, the challenges of the nuclear safety, the energy in the world, the nuclear economy, the nuclear in the world, the researches of the future, the third generation reactors, the research on radioactive wastes, the fuel cycle of the nuclear systems of the future, the uranium resources, the generation four forum, the gas coolant reactors, the thorium, hybrid systems and the thermonuclear fusion. (A.L.B.)

  16. Insurance and the nuclear energy

    International Nuclear Information System (INIS)

    Costa, M.P.R. da.

    1981-01-01

    The insurance is presented as a way to offer the guarantees to the reparing of the nuclear energy damages, enphasizing the adoption of the associations and pools system in Brazil, since the coverings envolved are very high. (A.L.) [pt

  17. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Nakae, Nobuo; Ozawa, Takayuki; Ohta, Hirokazu; Ogata, Takanari; Sekimoto, Hiroshi

    2014-01-01

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria. Metal and nitride fuels with austenitic and ferritic stainless steel (SS) cladding tubes were examined in this study. For the purpose of representative irradiation behavior analyses of the fuel for Innovative Nuclear Energy Systems, the correlations of the cladding characteristics were modeled based on well-known characteristics of austenitic modified 316 SS (PNC316), ferritic–martensitic steel (PNC–FMS) and oxide dispersion strengthened steel (PNC–ODS). The analysis showed that the fuel lifetime is limited by channel fracture which is a nonductile type (brittle) failure associated with a high level of irradiation-induced swelling in the case of austenitic steel cladding. In case of ferritic steel, on the other hand, the fuel lifetime is controlled by cladding creep rupture. The lifetime evaluated here is limited to 200 GW d/t, which is lower than the target burnup value of 500 GW d/t. One of the possible measures to extend the lifetime may be reducing the fuel smeared density and ventilating fission gas in the plenum for metal fuel and by reducing the maximum cladding temperature from 650 to 600 °C for both metal and nitride fuel

  18. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Nobuo, E-mail: nakae-nobuo@jnes.go.jp [Center for Research into Innovative Nuclear Energy System, Tokyo Institute of Technology, 2-12-1-N1-19, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ozawa, Takayuki [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai-mura, Ibaraki-ken 319-1194 (Japan); Ohta, Hirokazu; Ogata, Takanari [Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1, Iwado Kita, Komae-shi, Tokyo 201-8511 (Japan); Sekimoto, Hiroshi [Center for Research into Innovative Nuclear Energy System, Tokyo Institute of Technology, 2-12-1-N1-19, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-03-15

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria. Metal and nitride fuels with austenitic and ferritic stainless steel (SS) cladding tubes were examined in this study. For the purpose of representative irradiation behavior analyses of the fuel for Innovative Nuclear Energy Systems, the correlations of the cladding characteristics were modeled based on well-known characteristics of austenitic modified 316 SS (PNC316), ferritic–martensitic steel (PNC–FMS) and oxide dispersion strengthened steel (PNC–ODS). The analysis showed that the fuel lifetime is limited by channel fracture which is a nonductile type (brittle) failure associated with a high level of irradiation-induced swelling in the case of austenitic steel cladding. In case of ferritic steel, on the other hand, the fuel lifetime is controlled by cladding creep rupture. The lifetime evaluated here is limited to 200 GW d/t, which is lower than the target burnup value of 500 GW d/t. One of the possible measures to extend the lifetime may be reducing the fuel smeared density and ventilating fission gas in the plenum for metal fuel and by reducing the maximum cladding temperature from 650 to 600 °C for both metal and nitride fuel.

  19. What makes nuclear energy (not) acceptable?

    Energy Technology Data Exchange (ETDEWEB)

    Turcanu, C.; Perko, T. [Belgian Nuclear Research Centre (SCK-CEN), Mol (Belgium). Society and Policy Support; Kermisch, C. [Universite Libre de Bruxelles (Belgium). Fonds de la Recherche Scientifique

    2013-08-15

    Higher knowledge has long been hypothesized as leading to better acceptance of nuclear energy, but in the last years other factors such as risk perception and trust in nuclear risk governance were also recognized as key elements. While stakeholder involvement is now fully recognized as a key element for nuclear energy acceptance, there are still questions about the impact of higher knowledge. This paper investigates the relation between knowledge about the nuclear domain, risk perception of nuclear risks, confidence in the management of nuclear technologies, on the one hand, and the attitude towards nuclear energy and opinion about nuclear energy, on the other hand. It also studies the factors that are pleading in favour or against nuclear energy and their relation with the forementioned variables. The study is based on empirical data from a large scale opinion survey in Belgium between 25/05/2011 and 24/06/2011, i.e. the third month after the accident in Fukushima. The sample consisted of 1020 respondents and is representative for the Belgian adult population (18+) with respect to gender, age, region, province, habitat and social class. Our results show that confidence in the safe management of nuclear technologies as well as the perceived strength of the arguments pro/against nuclear are driving factors for people's attitude towards nuclear energy. Higher confidence and stronger adherence to the arguments in favour of nuclear energy lead to higher acceptance. The correlation between knowledge and attitude/opinion towards nuclear energy is statistically significant, but rather low, showing only a weak effect of knowledge on attitudes or opinions about nuclear energy. A weak effect is also observed for risk perception of nuclear risks, lower risk perception leading to a somewhat more positive attitude/opinion about nuclear energy. In the study we also highlight that the main factors seen as pleading in favour or against nuclear energy are the same, both for

  20. German nuclear energy development and international cooperation

    International Nuclear Information System (INIS)

    Schmidt-Kuster, W.J.

    1985-01-01

    The author gives a brief survey on the short, but relatively successful story of nuclear energy in the Federal Republic of Germany (FRG). Like many other countries, FRG had to go through a very difficult period of political indecision and violent opposition from antinuclear groups, supported by large parts of the media. The licensing procedures have been streamlined, nuclear power plants are being built without major interference, and the FRG is making good progress in closing the fuel cycle. This means that nuclear power will play an important role in the energy supply system, although on a lower level than originally anticipated

  1. Nuclear energy in Korea

    International Nuclear Information System (INIS)

    Ahn, J.-H.

    2000-01-01

    The total electricity generated in 1998 was 215,300 GWh with 43,261 MWe of total installed capacity of electric power, while in 1978 when the first Nuclear Power Plant began operation it was 31,510 GWh with 6,916 MWe installed capacity. The share of nuclear power generation in 1998 increased up to 41.7%. Currently, 16 units of nuclear power are operating with an additional four units under construction. Nuclear power has contributed to enhancing energy security and supplying stable energy for Korea. The government's strong commitment to the nuclear power program together with a long-term national policy resulted in favorable conditions for KEPCO to manage the program and promote increasing levels of national participation in successive nuclear power projects. The role of nuclear power as a sustainable energy resource can not be emphasized enough with respect to global environmental issues. Increasing the share of nuclear power in the total installed capacity for electricity generation will undoubtedly play a very important role. (author)

  2. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for goods...

  3. Status and prospects of nuclear energy development in Vietnam

    International Nuclear Information System (INIS)

    Tan, Vuong Huu

    2006-01-01

    In Vietnam, nuclear energy has been used in non-power applications for more than 80 years. Health care is a field of the most popular applications of nuclear energy. Every year, hundreds of thousands of people have been diagnosed and treated using nuclear technologies such as radiotherapy, nuclear medicine. In agricultural sector, radiation mutation breeding techniques have been used successfully in creating high quality varieties of rice, soybean, and have made an active contribution in the food security program of the country. The radiation technology has been applied in preservation and pasteurization of some kinds of food, and in production of bio-promoters, hydro gels, etc. The nuclear techniques such as NDT, NCS, and TRACER have been applied in various industries, geology, environment, etc. Recently, the TRACER technique has been used in the management and exploitation of groundwater in Hochiminh City and the Capital of Hanoi. However, effectiveness and scale of non-power applications of nuclear energy is still moderated, does not meet the potential and demand. The studies of nuclear power introduction to Vietnam been carried out for many years and show its necessity and feasibility for the country. Awareness of the advantages of nuclear energy utilization, the Vietnam Government assigned the Ministry of Science and Technology to formulate the long-term strategy for peaceful utilization of nuclear energy in co-operation with other governmental agencies. On 3rd of January 2006, the Prime Minister has approved the long-term strategy for peaceful utilization of nuclear energy. The goal of the strategy is to set up and develop a nuclear technology industry with high contribution to the socio-economic development as well as the enhancement of the science and technology capability of the country. In order to implement the strategy, main solutions have been proposed: Strengthening and perfecting the organizational and management system; Formulation of nuclear legal

  4. Status and prospects of nuclear energy development in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Vuong Huu [Vietnam Atomic Energy Commission, Hanoi (Viet Nam)

    2006-04-15

    In Vietnam, nuclear energy has been used in non-power applications for more than 80 years. Health care is a field of the most popular applications of nuclear energy. Every year, hundreds of thousands of people have been diagnosed and treated using nuclear technologies such as radiotherapy, nuclear medicine. In agricultural sector, radiation mutation breeding techniques have been used successfully in creating high quality varieties of rice, soybean, and have made an active contribution in the food security program of the country. The radiation technology has been applied in preservation and pasteurization of some kinds of food, and in production of bio-promoters, hydro gels, etc. The nuclear techniques such as NDT, NCS, and TRACER have been applied in various industries, geology, environment, etc. Recently, the TRACER technique has been used in the management and exploitation of groundwater in Hochiminh City and the Capital of Hanoi. However, effectiveness and scale of non-power applications of nuclear energy is still moderated, does not meet the potential and demand. The studies of nuclear power introduction to Vietnam been carried out for many years and show its necessity and feasibility for the country. Awareness of the advantages of nuclear energy utilization, the Vietnam Government assigned the Ministry of Science and Technology to formulate the long-term strategy for peaceful utilization of nuclear energy in co-operation with other governmental agencies. On 3rd of January 2006, the Prime Minister has approved the long-term strategy for peaceful utilization of nuclear energy. The goal of the strategy is to set up and develop a nuclear technology industry with high contribution to the socio-economic development as well as the enhancement of the science and technology capability of the country. In order to implement the strategy, main solutions have been proposed: Strengthening and perfecting the organizational and management system; Formulation of nuclear legal

  5. Proceedings of the nuclear energy symposium, 'nuclear energy and scientists in Asia'

    International Nuclear Information System (INIS)

    1996-03-01

    This publication is the collection of the paper presented at the title meeting on the nuclear energy symposium, nuclear energy and scientists in Asia. The 9 of the presented papers are indexed individually. (J.P.N.)

  6. Nuclear Energy Data - 2016

    International Nuclear Information System (INIS)

    2016-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projections of nuclear generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants increased slightly in 2015, by 0.2% and 0.1%, respectively. Two new units were connected to the grid in 2015, in Russia and Korea; two reactors returned to operation in Japan under the new regulatory regime; and seven reactors were officially shut down - five in Japan, one in Germany and one in the United Kingdom. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects progressing in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Stat Links'. For each Stat Link, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link. (authors)

  7. Nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    2 1/2 years ago a consultation group was formed to help the Section for Social Questions of the Council of Churches in the Netherlands, to answer questions in the area of nuclear energy. During this time the character of the questions has changed considerably. In the beginning people spoke of fear and anxiety over the plans for the application of this new technical development but later this fear and anxiety turned to protest and opposition. This brochure has been produced to enlighten people and try and answer their alarm, by exploring the many facets of the problems. Some of these problems are already being deeply discussed by the public, others play no role in the forming of public opinion. The points of view of the churches over nuclear energy are not expressed, the brochure endeavours to express that nuclear energy problems are a concern for the churches. Technical and economic information and the most important social questions are discussed. (C.F.)

  8. Basic study for development of nuclear heat application systems

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Yoshitomo; Fumizawa, Motoo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1996-05-01

    We need to intensely investigate real possibilities of nuclear heat application systems which exploit high potential of nuclear energy as a promising candidate of the future energy resource in the world. In this report, special interest was placed on coal reforming systems because we thought a compact heat source of nuclear power with a very high energy density might compensate the environmental problem caused by burning a great amount of coal. First, we reviewed state-of-the-art technologies for coal reforming technology with a special attention on coal gasification technologies. Based on these basic data, we proposed several nuclear coal reforming systems and discussed advantages and disadvantages of the systems. We also explored a model with which we could analyze nuclear heat application systems all together. In addition, we investigated possibility and effects of nuclear heat utilization systems producing chemical materials from carbon dioxide in flue gas of fossil fuel power plant. As a result, we showed nuclear heat application systems were useful. (author).

  9. Nuclear energy in the European energy mix operation

    International Nuclear Information System (INIS)

    Gueldner, R.

    2009-01-01

    The world nuclear energy is on the upswing. This is shown by lifetime extensions up to 60 years and the construction of new nuclear power plants. Especially, the progressive climate change requires new, definitive, fast and decisive solutions. Europe has to find the right energy mix for the future having the magic triangle of environmental sustainability, security of supply and economic affordability in mind. At the centre of all the efforts made by many countries all over the world, nuclear is one vital key technology to face and combat global warming. Nuclear has a positive eco-balance, nuclear gives security of supply and nuclear power generation is competitive. Beside this the most important fact is and will be the high safety to run a nuclear power plant. The energy mix in the EU of the next decades will be defined today. It is vital to consider every option, which can contribute to a sustainable energy mix. Nuclear alone is not the solution for all problems but there will be no sustainable solution without nuclear. (author)

  10. Forbidden love. A French position on the future of nuclear energy

    International Nuclear Information System (INIS)

    Jaureguy-Naudin, Maite

    2013-01-01

    The French electricity supply system is based on nuclear energy, with three quarters of total electricity production originating from nuclear power plants. The sector has grown continuously over a period of 60 years. For a long time the realms of politics and science were in consensus about the use of nuclear energy for civil purposes, but now the French nuclear dogma is increasingly being called into question as a result of the disaster in Fukushima, the German decision to phase out nuclear energy and European energy policy in general. How will France shape its future energy policy given these altered framework conditions?

  11. Public acceptance of nuclear energy

    International Nuclear Information System (INIS)

    Reis, J.S.B.

    1984-01-01

    Man, being unacquainted with the advantages of Nuclear Energy associates it with the manufacture of weaponry. However, the benefits of Nuclear Energy is received daily. In Brazil the public has not taken an anti-nuclear position; it is recognized that the Nuclear Plan exists exclusively for peaceful purposes and the authorities keep the community well informed. The Comision Nacional de Energia Nuclear along with the Instituto de Radioproteccion y Dosimetria, Instituto de Ingenieria Nuclear and the Instituto de Investigaciones Energeticas y Nucleares has developed in 27 years of existence, a gradual, accute and effective long term programme for the formation of potentially receptive opinion of Nuclear Energy. (Author)

  12. Limitations of Nuclear Power as a Sustainable Energy Source

    Directory of Open Access Journals (Sweden)

    Joshua M. Pearce

    2012-06-01

    Full Text Available This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability is applied to the nuclear energy sector a global large-scale sustainable nuclear energy system to replace fossil fuel combustion requires the following: (i a radical improvement in greenhouse gas emissions intensity by improved technology and efficiency through the entire life cycle to prevent energy cannibalism during rapid growth; (ii the elimination of nuclear insecurity to reduce the risks associated with nuclear power so that the free market can indemnify it without substantial public nuclear energy insurance subsidies; (iii the elimination of radioactive waste at the end of life and minimization of environmental impact during mining and operations; and (iv the nuclear industry must regain public trust or face obsolescence as a swarm of renewable energy technologies quickly improve both technical and economic performance.

  13. New nuclear projects in the world. Sustainable Nuclear Energy

    International Nuclear Information System (INIS)

    Leon, P. T.

    2011-01-01

    Nuclear power has experienced a major boom in the last few years, primarily because it is a non-CO 2 emitting energy source, it can be produced at competitive costs and it can boost a country's security of supply. there are still two issues to be addressed in relation to the currently used technologies: the degree to which the energy content of nuclear fuel is used, and wastes. A solution to both these aspects would ut nuclear power in the category of sustainable energy. The article provides details on current nuclear plans in the wold, the impact of the Fukushima accident on different countries nuclear plans and the European initiatives for sustainable nuclear energy development. (Author)

  14. Nuclear energy and the environment

    International Nuclear Information System (INIS)

    El-Hinnawi, E.E.

    1980-01-01

    Chapters are presented concerning the environmental impact of mining and milling of radioactive ores, upgrading processes, and fabrication of nuclear fuels; environmental impacts of nuclear power plants; non-radiological environmental implications of nuclear energy; radioactive releases from nuclear power plant accidents; environmental impact of reprocessing; nuclear waste disposal; fuel cycle; and the future of nuclear energy

  15. Nuclear energy and public acceptance

    International Nuclear Information System (INIS)

    El Osery, I.A.

    1988-01-01

    The soundness of use of nuclear energy in electric energy generation has received public concern due to the public highly exaggerated fear of nuclear power. It is the purpose of this paper to clear up some issues of public misunderstanding of nuclear power. Those of most importance are the unjustified fears about safety of nuclear power plants and the misunderstanding of nuclear risks and fears of nuclear power plants environmental impact. The paper is addressed to the public and aims at clarifying these issues in simple, correct, and convincing terms in such a way that links the gap between the scientists of nuclear energy and the general public; this gap which the media has failed to cover and failed to convey honestly and correctly the scientific facts about nuclear energy from the scientists standards to the public

  16. Nuclear energy - a professional assessment

    International Nuclear Information System (INIS)

    1984-01-01

    The report falls under the headings: the role of the Watt Committee in nuclear energy; supply and demand, and economics of nuclear power; technical means (types of reactor; fuel cycle; nuclear energy for applications other than large-scale electricity generation); availability of resources (nuclear fuel; British industrial capacity; manpower requirements for a British nuclear power programme); environment (environmental issues; disposal of radioactive wastes); balance of risk and advantage in the peaceful use of nuclear energy (proliferation; safety and risk; benefits; public acceptability, awareness, education); summary and general comments. (U.K.)

  17. Nuclear energy - a professional assessment

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The report falls under the headings: the role of the Watt Committee in nuclear energy; supply and demand, and economics of nuclear power; technical means (types of reactor; fuel cycle; nuclear energy for applications other than large-scale electricity generation); availability of resources (nuclear fuel; British industrial capacity; manpower requirements for a British nuclear power programme); environment (environmental issues; disposal of radioactive wastes); balance of risk and advantage in the peaceful use of nuclear energy (proliferation; safety and risk; benefits; public acceptability, awareness, education); summary and general comments.

  18. Nuclear energy promise or peril?

    International Nuclear Information System (INIS)

    Van der Zwaan, B.C.C.; Hill, C.R.; Ripka, G.

    1999-01-01

    Nuclear energy will inevitably become an important worldwide issue in the 21. century. The authors are authorities in their own fields and their contributions have been read, discussed and criticized by a wide, international group of experts. The today status of nuclear power is exposed, the authors weigh the pros and cons of nuclear energy. In a near future nuclear energy could play a major role in preventing climate change and atmospheric pollution. The main challenges that put at risk nuclear energy are: nuclear safety, radiation protection, the management of radioactive wastes, the problem of plutonium stocks and the risk of proliferation. For each of these open questions, a specialist makes a precise survey of the situation

  19. Information report nuclear energy in Europe

    International Nuclear Information System (INIS)

    Montesquiou, A. de

    2002-01-01

    This report takes stock on the nuclear energy situation in Europe. The European Union with more than 40% of the nuclear power capacity in the world, is already confronted with the nuclear energy place and stakes in the future energy policy. The report si presented in two main parts. The first part, ''the assets and the weaknesses of the nuclear energy'', deals with the economical aspects which historically based the choice of the nuclear energy and the induced impacts on the environment. The competitiveness of the nuclear energy but also the wastes management problem are discussed. The second part, ''the diplomatic and juridical framework of the nuclear energy development'', details and presents the limits of the EURATOM treaty. (A.L.B.)

  20. Nuclear energy: a reassessment

    International Nuclear Information System (INIS)

    McClure, J.A.; Nader, R.; Udall, M.K.; Walske, C.

    1980-01-01

    This edited transcript of a televised American Enterprise Institute Public Poicy Forum explores the role of nuclear technology in energy production in the US today. A panel made up of Senator James A. McClure, Ralph Nader, Representative Morris K. Udall, and Dr. Carl Walske and moderated by John Charles Daly examines the lessons learned from the accident at the Three Mile Island Nuclear Plant and the public attitudes toward nuclear energy, particularly in light of this accident. The experts discuss alternative energy sources, such as coal, gas, biomass, and solar power as well as conservation and more efficient use of present facilities. The issues of nuclear waste disposal and transport and US commitments to countries not self-sufficient in their energy needs are also explored

  1. Role of nuclear energy in Thailand

    International Nuclear Information System (INIS)

    Chongkum, Somporn

    2003-01-01

    Nuclear energy in Thailand can be highlighted when the Office of Atomic Energy for Peace (OAEP) was established since 1961 for taking role of nuclear safety regulation, conducting research and promotion for peaceful uses of nuclear energy. Its main facilities were the 1 megawatt Thai Research Reactor-1 (TRR-1) and the Cobalt-60 Gamma Irradiator. Since then there have been substantial progress made on utilization of nuclear energy in various institutions and in private sectors. Nowaday, there are around 500 units of nuclear energy users in Thailand, i.e. 100 units in medicine, 150 units in education and 250 units in industry. In terms of nuclear power for electricity generation, the Electricity Generating Authority of Thailand (EGAT) has conducted the activities to support the nuclear power plant project since 1972 however, because there is widespread public concerned about nuclear safety, waste disposal and recently economic problems in Thailand, nuclear energy option is not put in immediate plan for alternative energy resource. Within the short future, increased in economical, demand fir electricity and safe operation of nuclear plants will likely be demonstrated and recognized. Nuclear energy should remain as an option in the long-term energy strategies for Thailand. (author)

  2. Nuclear fission energy: the international scene and the outlook for Italy

    International Nuclear Information System (INIS)

    Monti, S.

    2008-01-01

    Because of concerns about the environment, energy security and energy costs, fission nuclear energy is gaining ground again around the world. In Italy, the research community can help relaunch the national nuclear programmes by providing advanced training, recruiting young engineers and researchers for RD activities, and furthering an immediate cooperation of the Italian system in the principal European and international projects on sustainable nuclear energy [it

  3. Nuclear energy 1985: Nuclear power as an economic factor of growing importance

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Summary of the results of the Technical Sessions and Poster Sessions of the ten Technical Sections: Reactor physics; thermodynamics and fluid dynamics; safety of nuclear facilities; fuel cycle and waste management; fuel elements and fuel element materials; components and component materials; quality assurance; construction and operation of nuclear facilities; fusion technology; energy systems - energy industry; atomic law, radiation protection law, law on the protection against misances, related fields of law. Separate records are available for each paper. (HP) [de

  4. Open discussions on nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    In the first part, economic prospects in the world and in the European Community and their repercussions on energy demand are examined. Supply structure and growth scenari are outlined. Present and potential contribution of nuclear energy to energy supply is developed. The pros and cons are given. In the second part is examined how the production and use of various form of energy including nuclear energy, can affect health and the environment, with special reference to waste of all kinds. Safety problems and risk of accidents are examined in both non nuclear and nuclear sectors. Prospects for a low energy society and economic and social implications of the use of new forms of energy are also discussed

  5. Nuclear energy and nuclear technology

    International Nuclear Information System (INIS)

    Luescher, E.

    1982-01-01

    This book originated in the training courses for teachers of grammar- and secondary schools in Dillingen (Bavaria). The aim of these courses is to become informed about the latest state in one field of physics. The lectures are well-known experts in the respective fields. In the latest study (1980) of the National Academy of Sciences the experts came to the conclusion that without further development nuclear power plants the utilization of too much coal would become necessary and involve irreversible environmental damage (see chapter 6). There are two important obstacles impeding the further extension of nuclear energy. The first problem to be solved is the processing and storage of radioactive waste. This is a more technical task and can be treated in a satisfactory way. The second obstacle is less easy to take as the population has to be convinced that a nuclear power plant can be operated with almost unbelievable safety (see chapter 5) and be shut down safely in the case of incidents. The most promising possibility of controlled nuclear fusion as energy source is still many decades- if feasible at all- away from being performed (see chapter. 7). In the Soviet Union 25% of the electric energy production shall be proceed from nuclear power plants by the year 1990. (orig./GL) [de

  6. Symposium on Nuclear Energy. Proceedings

    International Nuclear Information System (INIS)

    1981-01-01

    The energy problem poses a big challenge to a developing country like the Philippines. The development of renewable energy sources is not enough. Aware then of the limitations of these energy sources, in spite of arguments against nuclear energy we have no other recourse but to go nuclear. This symposium emphasizes the importance of energy development to attain the country's progress and discusses the pros and economics of nuclear power. (RTD)

  7. Perspectives for nuclear energy

    International Nuclear Information System (INIS)

    Baugnet, J.-M.; Abderrahim, H.A.; Dekeyser, J.; Meskens, G.

    1998-09-01

    In Belgium, approximately 60 percent of the produced electricity is generated by nuclear power. At present, nuclear power production tends to stagnate in Europe and North America but is still growing in Asia. The document gives an overview of the present status and the future energy demand with emphasis on electric power. Different evaluation criteria including factors hindering and factors promoting the expansion of nuclear power as well as requirements of new nuclear power plants are discussed. The extension of the lifetime of existing facilities as well as fuel supply are taken into consideration. A comparative assesment of nuclear power with other energy sources is made. The report concludes with estimating the contribution and the role of nuclear power in future energy demand as well as with an overview of future reactors and research and development programmes

  8. Nuclear energy: considerations about nuclear trade

    International Nuclear Information System (INIS)

    Goes Fischer, M.D. de.

    1988-01-01

    A general view of historical aspects of nuclear energy and the arrangements to assure its use for peaceful purposes are presented. Then the internal character of nuclear energy in a juride context is demonstrated; some consideration about the international organizations and conventions and the Brazilian Legislation in the nuclear area are examined. It also deals with the political aspects of nuclear trade and the function of IAEA in this are. Furthermore the restrictions imposed by Non-Proliferation Treaty-NPT, the objectures of the Tlatelolco Treaty and ''London Club'' guidelines. Afterwards the bilateral cooperation under taken by countries and its agreements are discussed. Besides some aspects of agreements made between United States, France Germany and Brazil are discussed [pt

  9. Nuclear energy

    International Nuclear Information System (INIS)

    Panait, A.

    1994-01-01

    This is a general report presenting the section VII entitled Nuclear Power of the National Conference on Energy (CNE '94) held in Neptun, Romania, on 13-16 June 1994. The problems addressed were those relating to electric power produced by nuclear power plant, to heat secondary generation, to quality assurance, to safety, etc. A special attention was paid to the commissioning of the first Romanian nuclear power unit, the Cernavoda-1 reactor of CANDU type. The communications were grouped in four subsections. These were: 1. Quality assurance, nuclear safety, and environmental protection; 2. Nuclear power plant, commissioning, and operation; 3. Nuclear power plant inspection, maintenance, and repairs, heavy water technology; 4. Public opinion education. There were 22 reports, altogether

  10. Energy economics of nuclear and coal fired power plant

    International Nuclear Information System (INIS)

    Lee, Kee Won; Cho, Joo Hyun; Kim, Sung Rae; Choi, Hae Yoon

    1995-01-01

    The upturn of Korean nuclear power program can be considered to have started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type, considering the current trend of construction on the new plants in the United States. However, with the depletion of natural resources, it is desirable to understand the utilization of two competitive utility technologies in terms of of invested energy. Presented in this paper is a comparison between two systems, nuclear power plant and coal fired steam power plant in terms of energy investment. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (IOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. NEA is conducted for power plants in U.S. because the availability of necessary data are limited in Korea. Although NEA does not offer conclusive solution, this method can work as a screening process in decision making. When considering energy systems, results from such analysis can be used as a general guideline. 2 figs., 12 tabs., 5 refs. (Author)

  11. Nuclear energy. Risk or advantage

    International Nuclear Information System (INIS)

    Boettiger, Helmut

    2011-01-01

    Nuclear energy is controversial. But what's all about really in the controversy? It's about more than safty or electricity prices. Nuclear energy is not only a technical or political question, but also a moral, a human. The discussion enter various rational and irrational arguments, beside straightforward arguments various misleading and mendacious exist. The present publication is comprehensively dedicated to the thema of nuclear energy - its pro and contra - and considers its risks and advantages. Thereby the sources of energy, the processes in the nuclear reactor, and the risk potentials (Harrisburg, Chernobyl, Fukushima) are illustratively and reproducibly presented. Extensively the text explains the forms of the radiation, its doses, and the tolerance of it. Also to the theme waste and final disposal an explaining chapter is dedicated and the question for the exit from nuclear energy elucidated. Finally the author appoints with the question ''How considers mankind nuclear energy world-wide'' the international comparison.

  12. Nuclear energy and fuel mix. Impacts of new nuclear power plants after 2020 in the nuclear energy scenarios of the Energy Report 2008

    International Nuclear Information System (INIS)

    Seebregts, A.J.; Snoep, H.J.M.; Van Deurzen, J.; Lako, P.; Poley, A.D.

    2010-03-01

    This report presents facts and figures on new nuclear energy in the Netherlands, in the period after 2020. The information is meant to support a stakeholder discussion process on the role of new nuclear power in the transition to a sustainable energy supply for the Netherlands. The report covers a number of issues relevant to the subject. Facts and figures on the following issues are presented: Nuclear power and the power market (including impact of nuclear power on electricity market prices); Economic aspects (including costs of nuclear power and external costs and benefits, impact on end user electricity prices); The role of nuclear power with respect to security of supply; Sustainability aspects, including environmental aspects; The impact of nuclear power in three 'nuclear energy scenarios' for the Netherlands, within the context of a Northwest European energy market. The scenarios are: (1a) No new nuclear power in the Netherlands ('Base case'); (1b) After closure of the existing Borssele nuclear power plant by the end of 2033, the construction of new nuclear power plant that will operate in 2040. That plant is assumed to be designed not to have a serious core melt down accident (e.g. PBMR) (200 to 500 MWe); (2) New nuclear power shortly after closure the Borssele nuclear power plant in 2033 (1000 to 1600 MWe, 3rd Generation); (3) New nuclear power plants shortly after 2020 (2000 to 5000 MWe, 3rd Generation). Two electricity demand scenario background scenario variants have been constructed based on an average GDP growth of about 2% per year up to 2040. The first variant is based on a steadily growing electricity demand and on currently established NL and EU policies and instruments. It is expected to be largely consistent with a new and forthcoming reference projection 'Energy and Emissions 2010-2020' for the Netherlands (published by ECN and PBL in 2010). A lower demand variant is based on additional energy savings and on higher shares of renewable

  13. 76 FR 67717 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2011-11-02

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear...: [email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory...

  14. 77 FR 26274 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2012-05-03

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear[email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory Committee...

  15. 75 FR 67351 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2010-11-02

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear... [email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory...

  16. 75 FR 13269 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear[email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory Committee...

  17. Finding synergy between local competitiveness and global sustainability to provide a future to nuclear energy

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Yacout, Abdellatif; Wade, Dave

    2008-01-01

    The world's future energy needs will require a mix of energy conversion technologies matched to the local energy market needs while also responding to both local and global socio-political concerns, e.g. energy security, environmental impact, safety and non-proliferation. There is growing recognition worldwide that nuclear energy should not only be part of the solution but maybe as well play a larger share in future's energy supply. The sustainability of future nuclear energy systems is hereby important and a variety of studies have already shown that sustainability of nuclear energy from a resource perspective is achievable via the nuclear fuel cycle though where economic sustainability is essentially defined by the nuclear power plants. The main challenge in deploying sustainable nuclear energy systems will be to find synergies between this local competitiveness of nuclear power plants and the global resource sustainability defined via the nuclear fuel cycle. Both may go hand-in-hand in the long-term but may need government guidance in starting the transition towards such future sustainable nuclear energy systems. (authors)

  18. Political aspects of nuclear energy

    International Nuclear Information System (INIS)

    Kiener, E.

    1989-01-01

    In Switzerland as in other countries public opinion on nuclear energy has drastically changed with time. Surveys show that a majority at present favours abandoning nuclear energy in Switzerland, but does not consider feasible an immediate switchover to other forms of energy. The behaviour is contradictory because increasingly more electric power is used, even after Chernobyl. The resistence has many facets. The debate is largely focused on the question of future technological and economic development. Nuclear energy also became the scapegoat for a development of the last few decades it has not been responsible for (destruction of the environment, waste of natural resources). For the sake of the environment and future economic development, the continued use of nuclear energy has to be ensured. This calls for great efforts in order to convince the people that nuclear power is an essential and logical part of our energy supply. In this process, the fear of a nuclear energy and the unease about industrial society must not be dismissed as irrelevant. (orig.)

  19. Nuclear energy prospects to 2000

    International Nuclear Information System (INIS)

    1982-01-01

    This report describes the potential and trends of electricity use in OECD-countries as the main parameter of nuclear power development, including oil displacement and future generation mix, gives a most recent assessment of nuclear power growth to the year 2000, deals with supply and demand considerations covering the whole fuel cycle, assesses the impact of the nuclear contribution on the overall energy situation according to three energy scenarios and the consequences of a possible nuclear shortfall, and finally reviews other factors influencing nuclear energy growth such as security of supply, economics of nuclear power production as wells as public and utility confidence in nuclear power

  20. Nuclear energy, environmental protection and international conflicts

    International Nuclear Information System (INIS)

    Menke-Glueckert, P.

    1975-01-01

    Some general and some critical remarks on: nuclear energy as an image for politics; nuclear energy as a model for research planning; nuclear controversy; the principle of precaution in nuclear and radiation protection law; reactor safety on probation; advantages and economy of nuclear energy; communication difficulties; the special role of nuclear energy; the need for European site planning; supervision of fissionable materials; the world's energy household in danger; global structure politics and nuclear energy; nuclear energy with a capacity for social innovations. (HP/LN) [de

  1. Draft nuclear energy policy statement for DOE report to the International Energy Agency: long version

    International Nuclear Information System (INIS)

    1994-01-01

    US national energy policy recognizes that the continued development of commercial nuclear power in the United States is vital to US national security and energy stability since it is a significant domestic energy resource that is relatively free from international pressures. As of this writing (August 1989) the United States had 108 nuclear power reactors in commercial status. In January 1989 nuclear energy produced 46 billion KwH or 20% of total US electricity generated in contrast to 45 billion KwH (18.8%) produced in January 1988. The US Federal Government has been engaged in a variety of activities to ensure that nuclear energy remains a safe, economically competitive and environmentally acceptable option. Much of the federal effort in recent months has been devoted to developing initiatives designed to remove institutional and regulatory obstacles to the continued use of nuclear power as part of the US energy system. Within this context, the following paragraphs summarize the major features of the current status of the US nuclear energy program and policies

  2. Nuclear Energy: Combating Climate Change

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Paillere, Henri; )

    2015-10-01

    Global electricity demand is expected to increase strongly over the coming decades, even assuming much improved end-use efficiency. Meeting this demand while drastically reducing CO 2 emissions from the electricity sector will be a major challenge. Given that the once-significant expectations placed on carbon capture and storage are rapidly diminishing, and given that hydropower resources are in limited supply, there are essentially only two options to de-carbonise an ever increasing electricity sector: nuclear power and renewable energy sources such as wind and solar PV. Of these two options, only nuclear provides firmly dispatchable base-load electricity, since the variability of wind and solar PV requires flexible back-up that is frequently provided by carbon-intensive peak-load plants. The declining marginal value of electricity production and the security of electricity supply are additional issues that must be taken into account. Nuclear power plants do, however, face challenges due to their large up-front capital costs, complex project management requirements and difficulties in siting. As technologies with high fixed costs, both nuclear power and renewables must respond to the challenge of acquiring long-term financing, since investments in capital-intensive low-carbon technologies are unlikely to be forthcoming in liberalised wholesale markets. In order to substantially de-carbonise the electricity systems of OECD countries, policy-makers must understand the similarities, differences and complementarities between nuclear and renewables in the design of future low-carbon electricity systems. The value of dispatchable low-carbon technologies, such as hydro and nuclear, for the safe and reliable functioning of electricity systems must also be recognised. Should the de-carbonisation of electricity sectors in the wake of COP 21 become a reality, nuclear power might well be the single most important source of electricity by 2050, thanks mainly to the

  3. Method and system of nuclear energy generation

    International Nuclear Information System (INIS)

    Wilke, W.

    1975-01-01

    The method is based on the nuclear reaction Li 6 (n,α)H 3 . Thermal neutrons, whose generation require a power reactor, are fed to a lithium deuterite target in such a manner that part of the tritons produced in this reaction undergo nuclear fusion of the kind d(T,n)α with the deuterons of the target. The remaining tritons are reacted with additional deuterons. The tritium produced in this reaction is processed and fed back to the lithium target over a triton source. It is also possible to process the tritium to a target, feed deuterons to it, and in addition to give the neutrons produced from the T(d,n)α reaction after slowing down to thermal energy to the lithium target. (DG/LH) [de

  4. Nuclear energy and environment

    International Nuclear Information System (INIS)

    Alves, R.N.

    1987-01-01

    A general view about the use of energy for brazilian development is presented. The international situation of the nuclear field and the pacific utilization of nuclear energy in Brazil are commented. The safety concepts used for reactor and nuclear facilities licensing, the environmental monitoring program and radiation protection program used in Brazil are described. (E.G.) [pt

  5. 78 FR 70932 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2013-11-27

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear[email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory Committee (NEAC...

  6. Nuclear energy and international cooperation

    International Nuclear Information System (INIS)

    Oshima, Keiichi

    1981-01-01

    There is no need to emphasize that nuclear energy cannot be developed without international cooperation at either the industrial or the academic level. In the meanwhile, there have been some marked political, economic and social changes in recent years which are posing constraints to the international cooperation in nuclear energy. The problems and constraints impeding nuclear power programs cannot be overcome by only one nation; international cooperation with common efforts to solve the problems is essential. Nuclear energy is different from fossil energy resources in that it is highly technology-intensive while others are resource-intensive. International cooperation in technology has an entirely different importance in the field of nuclear energy. Educational institutions will play a role in a new era of the international cooperation. (Mori, K.)

  7. Nuclear: an energy in territories

    International Nuclear Information System (INIS)

    Le Ngoc, Boris

    2016-01-01

    After having briefly outlined that introducing a relationship between geography and nuclear energy is a quite recent approach, and by often quoting a researcher (Teva Meyer) specialised in Swedish energy issues, the author briefly discusses how nuclear energy structures territories through meshing and 'polarisation' effects, and economic and social impacts. He also discusses whether territories then become dependent on nuclear activity, what happens when a nuclear plant stops, how the existence of a nuclear plant becomes an identity market for a territory, and how material flows also deal with geography. In the last part, the author notices that in Germany, nuclear industry is considered as an industry like any other one. He finally outlines that geography could be useful to achieve energy transition

  8. Nuclear energy and the greenhouse problem

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2001-01-01

    Last November - almost in parallel with the Hague Meeting on Climate Change - more than 1,500 of the world's top nuclear scientists and energy technologists met in Washington DC, at the Joint Conference of the American Nuclear Society, the European Nuclear Society, the Nuclear Energy Institute and the International Nuclear Energy Academy. Unlike the United Nations follow up to the Kyoto protocol, which ended in disarray, a note of high optimism and informed realism pervaded the nuclear conference which, among its multiple streams of subject material and papers by international experts, carried the two main themes of Long Term Globally Sustainable Energy Options and Nuclear Energy and the Greenhouse Problem. This paper considers the immense contribution to Greenhouse gas emission minimisation made by nuclear energy in 1999. In that year the global electricity production by the world's 435 nuclear power stations was 2,398 TWh or 16% of total electricity generation or 5% of total primary energy production. The amount of avoided carbon dioxide emission because of the use of nuclear energy in 1999 was 2.4 billion tonnes. This is 10% of total emissions. Japan's 54 nuclear power stations alone save the equivalent of Australia's total Greenhouse emissions. The secret of this success is Australia's uranium fuel

  9. Status Report on Modelling and Simulation Capabilities for Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Epiney, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, J. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yigitoglu, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, S. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ganda, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Maronati, G. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-01

    This report summarizes the current status of the modeling and simulation capabilities developed for the economic assessment of Nuclear-Renewable Hybrid Energy Systems (N-R HES). The increasing penetration of variable renewables is altering the profile of the net demand, with which the other generators on the grid have to cope. N-R HES analyses are being conducted to determine the potential feasibility of mitigating the resultant volatility in the net electricity demand by adding industrial processes that utilize either thermal or electrical energy as stabilizing loads. This coordination of energy generators and users is proposed to mitigate the increase in electricity cost and cost volatility through the production of a saleable commodity. Overall, the financial performance of a system that is comprised of peaking units (i.e. gas turbine), baseload supply (i.e. nuclear power plant), and an industrial process (e.g. hydrogen plant) should be optimized under the constraint of satisfying an electricity demand profile with a certain level of variable renewable (wind) penetration. The optimization should entail both the sizing of the components/subsystems that comprise the system and the optimal dispatch strategy (output at any given moment in time from the different subsystems). Some of the capabilities here described have been reported separately in [1, 2, 3]. The purpose of this report is to provide an update on the improvement and extension of those capabilities and to illustrate their integrated application in the economic assessment of N-R HES.

  10. Nuclear energy for the 21. century

    International Nuclear Information System (INIS)

    2005-03-01

    This document gathers 5 introductory papers to this conference about nuclear energy for the 21. century: the French energy policy during the last 30 years (situation of France with respect to the energy supply and demand, main trends of the French energy policy, future of the French nuclear policy); presentation of IAEA (technology transfer, nuclear safety, non-proliferation policy, structure and financial resources, council of governors, general conference, secretariat); nuclear power and sustainable development; promoting safety at nuclear facilities (promoting safety, basics of safety, safety at the design stage, risk management, regulatory control and efficiency of the regulation organization, role of IAEA); nuclear energy today (contribution to sustainable development, safety, best solution for the management of radioactive wastes, future of nuclear energy). (J.S.)

  11. A method of short range system analysis for nuclear utilities

    International Nuclear Information System (INIS)

    Eng, R.; Mason, E.A.; Benedict, M.

    1976-01-01

    An optimization procedure has been formulated and tested that is capable of solving for the optimal generation schedule of several nuclear power reactors in an electric power utility system, under short-range, resource-limited, conditions. The optimization procedure utilizes a new concept called the Opportunity Cost of Nuclear Power (OCNP) to optimally assign the resource-limited nuclear energy to the different weeks and hours in the short-range planning horizon. OCNP is defined as the cost of displaced energy when optimally distributed nuclear energy is marginally increased. Under resource-limited conditions, the short-range 'value' of nuclear power to a utility system is not its actual generation cost, but the cost of the next best alternative supply of energy, the OCNP. OCNP is a function of a week's system reserve capacity, the system's economic loading order, the customer demand function, and the nature of the available utility system generating units. The optimized OCNP value of the short-range planning period represents the utility's short-range energy replacement cost incurred when selling nuclear energy to a neighbouring utility. (author)

  12. International Nuclear Information System in Malaysia

    International Nuclear Information System (INIS)

    Samsurdin Ahamad

    1984-01-01

    Practice of the International Nuclear Information System (INIS) in Malaysia is reviewed. The Nuclear Energy Unit, a participating representative of Malaysia, holds the responsibilities of disseminating information through this system. Its available services relevant to the aims of INIS are discussed

  13. Nuclear and energy policy in Korea. Unchanging illusion of nuclear energy and citizens' challenge

    International Nuclear Information System (INIS)

    Leem, S.J.

    2006-01-01

    Korea is the tenth largest energy consumer in the world; the country ranks sixth in oil consumption, seventh in electricity consumption, and ninth in total CO2 emission. Korea now has 20 reactors in operation, nuclear power producing about 40% of its electricity. Its generating capacity from nuclear power plants is the sixth largest in the world; Korea currently exports nuclear technology. The rapid growth of this industry is attributed to extensive subsidy and protection from the Korean government; supported by government-initiated programs a powerful interest group, which consists of nuclear industries, technocrats, and governmental organizations concerned with nuclear policy, now exerts a major influence upon Korea's energy policy for nuclear expansion. Korea's nuclear power policymakers have, however, met opposition since End of the 1980s. The government's attempt to build a nuclear waste repository has provoked strong resistance from environmental movements and local citizens. Even if the government recently succeeded in designating Kyoungju as the nuclear waste site, the nuclear waste issue has awakened public interest in nuclear problems and strengthening public denunciation of Korea's expansive nuclear power policy. In addition, the activation of the Kyoto Protocol in February 2005 has impelled the government to redirect its energy policy towards a sustainable direction. This article focuses on the status and perspectives of Korea's nuclear power policy, enabling a discussion of the degree to which Korea's nuclear and energy policy has changed yet in many ways remains unchanged. (orig.)

  14. Nuclear energy and the public

    International Nuclear Information System (INIS)

    Kyd, D.R.

    1994-01-01

    This paper is the opening speech from a national seminar on the uses for nuclear energy in everyday life. The speaker, the public information director for the International Atomic Energy Agency (IAEA), stresses the peaceful uses of nuclear energy. He points out that used for peaceful purposes, and prudently, nuclear energy applications have, tremendous benefits to offer mankind in both the industrial world and developing nations

  15. Nuclear energy in relation to the elimination of social conflict

    International Nuclear Information System (INIS)

    Klose, A.

    1980-01-01

    It is pointed out that, in Austria, employers and labour have both been in favour of nuclear energy and that nuclear energy problems have been the main causes of political disagreement. The importance of maintaining employment and stable currency is noted and the question is raised whether technical progress can endanger political stability. Reference is made to the 1979 European nuclear energy conference and the need for finding solutions which do not endanger the political system is emphasised. The importance of a decision on the Zwentendorf nuclear power station is stated. (G.M.E.)

  16. The information in Nuclear Energy: The Experience in Goiania

    International Nuclear Information System (INIS)

    Ferreira, W.M.; Campos, E.P.

    1998-01-01

    After the accident in Goiania the Nuclear Energy National Commission implant in this city a information system for the human population. The objective consisted on giving a technical knowledge about the nuclear energy utilization. This work represents the utilized strategy and the results reached in this program during the period 1991-1996

  17. Innovative Nuclear Energy Systems: State-of-the Art Survey on Evaluation and Aggregation Judgment Measures Applied to Performance Comparison

    Directory of Open Access Journals (Sweden)

    Vladimir Kuznetsov

    2015-04-01

    Full Text Available This paper summarizes the experience gained in the application of multi-criteria decision making and uncertainty treatment methods to a comparative assessment of nuclear energy systems and related nuclear fuel cycles. These judgment measures provide a means for comprehensive evaluation according to different conflicting criteria, such as costs, benefits and risks, which are inevitably associated with the deployment of advanced technologies. Major findings and recommendations elaborated in international and national projects and studies are reviewed and discussed. A careful analysis is performed for multi-criteria comparative assessment of nuclear energy systems and nuclear fuel cycles on the basis of various evaluation and screening results. The purpose of this paper is to discuss the lessons learned, to share the identified solutions, and indicate promising future directions.

  18. Nuclear energy in the future

    International Nuclear Information System (INIS)

    Chaussade, J.P.

    1994-01-01

    Nuclear energy plays a major role in the French economy because of the lack of fossil fuels on the French territory. About 75% of the French electric power is of nuclear origin. This paper gives an analysis of the French public attitude about nuclear energy and the methods used by the nuclear industrialists to better the electro-nuclear image. Communication, advertising and transparency are the best attitudes for a suitable public information and are necessary to reduce the public anxiety after the Chernobyl accident. Television advertising, magazines and organized visits of nuclear installations have allowed to explain the interest of nuclear energy in the environmental reduction of pollutants. However, public information must include the topic about nuclear wastes to remain credible. (J.S.)

  19. INIS: database on peaceful uses on nuclear energy

    International Nuclear Information System (INIS)

    Cianfarani, Michela

    2010-01-01

    The International Atomic Energy Agency (IAEA) has always paid great attention to the distribution of information related to non-military uses of nuclear energy and technology. The organizational structure in charge of the information management within the IAEA is the INIS (International Nuclear Information System) and Nuclear Knowledge Management Section. Since its establishment in 1970, INIS implemented a completely decentralized computer system which each member country can actively contribute to. Due to its decentralized structure and the active participation of the member states, INIS developed through the years the most comprehensive database of non-military uses of nuclear energy and technology. This dissertation is a Thesis in Information retrieval at Department of Library sciences, at 'La Sapienza' University of Rome, Italy. After an historical excursus on INIS database, this work considers different approaches and methods to cataloguing and indexing, through the analysis of INIS Reference Series and the INIS Thesaurus. The last part of the dissertation is dedicated to the software data entry WINFIBRE, which the author used during her collaboration with the Italian Liaison Office at ENEA.

  20. Nuclear Energy Scientific, technical and social perspectives of nuclear-electrical conversion

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2009-01-01

    The book begins with a brief review of basic knowledge historic milestones, radiation physics, biological effects of radiation and radioprotection, and nuclear physics. Then, several subjects in nuclear reactor engineering and nuclear power plants are introduced: a brief description of nuclear reactors and systems in a nuclear power plant, neutron physics, thermal hydraulics (including the thermodynamics of the whole nuclear power plant), nuclear fuels and fuel cycles, dynamic and control of nuclear reactors and nuclear power plant, safety of nuclear reactors, operation of power plants, decisions related with a nuclear power station (including sitting, economic and financial aspects, risks and detriments assessment), and a brief survey of future technologies. In the last chapter, the book enters into other subjects (in part of a philosophical nature) that relate, from the standpoint of energy, social and environmental problems with political issues and current world views

  1. Nuclear energy: public controversies and the analysis of risks

    International Nuclear Information System (INIS)

    Sills, D.L.

    1984-01-01

    Energy is a social concept, the product of social, economic, and political processes that define certain raw materials as resources and thus convert them into usable energy. Like all social concepts, energy is controversial. Out of a wide range of controversies, three are selected for analysis here: (1) the relationship of nuclear power systems to nuclear weapons proliferation; (2) the risks of terrorism and sabotage associated with the operation of nuclear power facilities, including threats to civil liberties; and (3) the problems associated with the long-term management of radioactive wastes. The final section of the paper describes various modes of analyzing risks and the perception of risks. It is concluded that it may take many decades to learn whether nuclear energy is as natural a source of electrical power as wells are of drinking water, or whether nuclear energy is a horror that mankind in the 1980s or 1990s took a hard look at and then backed away. (author)

  2. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  3. Is nuclear energy acceptable

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1977-01-01

    Nuclear hazards are assessed as being unique only in the sense of their unfamiliarity, with future development of nuclear energy dependent on overcoming public fears. Economics is clearly in favor of properly operated nuclear energy facilities for long-term power generation. Risks arise over the potential for human error to permit improper operation and for an industry shutdown because of a reactor accident. Attempts to ascertain accident probabilities have revealed that emergency core cooling systems and containment are not simply parallel, but operate in series and provide more safety than was thought. Insurance liability, resting on the small probability of very costly damage, is felt to be best placed on the utility with the government providing ultimate protection in the event of a potentially bankrupting accident. Problems of nuclear waste handling and low-level release are felt to be solvable with present technology. Proliferation is felt to be a political problem that is incidental to power plants. Public concern is blamed on possible diversion of materials for weapons, unfamiliarity with radiation, and the demand for meticulous handling of materials and operations. Burner reactors are projected to phase out and be replaced by breeder reactors that are operated in physical isolation under strict security by a professional cadre aware of its responsibility. A restructuring of the nuclear industry is called for so that the generation of power can be insulated from the distribution and marketing functions. (13 references)

  4. Organizational Structure in Korea's Nuclear Energy Development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Lee, T. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    This paper explores the cross-sectional and dynamic analysis of nuclear related organizations in Korea to systemize them. Nuclear related organizations in Korea are classified into four large groups as commission, executive branch, public institution and private organization. Table 1 shows the nuclear related organizations in each group. AEC, NSC and their expert commission are all the commissions on nuclear energy. MEST, MKE, MFAT, MND etc. are executive branch related to nuclear energy. In addition, there are also government affiliated agencies, societies, associations and other different types of organizations carrying out tasks entrusted by the government concerning nuclear R and D and safety regulation. As for nuclear related private organizations, there are KEPCO, KHNP, KEPCO-ENC, KEPCO-NF etc

  5. Trace of nuclear energy with pictures

    International Nuclear Information System (INIS)

    1992-05-01

    This book traces the history of development over nuclear energy with pictures, which contains preface, development history of the world, development history of Korea, nuclear power plant in Kori, nuclear power plant in Wolseong, nuclear power plant in Yeonggwang, nuclear power plant in Uljin, nuclear fuel, using of radiation and radioactive isotope, development of nuclear energy in the world and a Chronological table of nuclear energy. This book is written to record the development history of Korea through pictures of the nuclear power plants in Korea.

  6. Developing and using artificial intelligence related to nuclear energy in Romania

    International Nuclear Information System (INIS)

    Ion, R.

    1995-01-01

    The artificial intelligence (AI) (including Expert Systems (ES), its most important branch) could have a certain place in the future developing of nuclear energy with impact on decision aids techniques and support systems, especially for nuclear safety and radiation protection area. First steps -some based on the Canadian experience - were already done in Romania, in developing AI techniques related to nuclear energy. Newcomers are recommended to start with modest and isolate problems in order to build up the necessary hand-on experience. The moment of the large scale AI implementation in the nuclear energy field will be decided by the balance between conventional computing and Ai computing and also between the advantages and disadvantages of AI. In this frame, the opportunity for research developing and using AI in the nuclear energy field is inherent and must be sustained by the research, design and plant operation authorities and also by the high education universities which are recommended to focus their interest towards the AI field for the next specialists in nuclear energy. (Author) 2 Figs., 2 Tabs., 7 Refs

  7. The nuclear energy debate

    International Nuclear Information System (INIS)

    Rippon, S.

    1976-01-01

    With reference to the public discussion which is taking place at the moment concerning the future of nuclear energy in the UK, the document from the Advisory Council on Research and Development for Fuel and Power and also the report of the Royal Commission on Environmental Pollution are considered. Although there have been many other projections of UK and world energy requirements prepared by many different organisations, few cover such a wide range of scenarios in such detail as the ACORD report. The Royal Commission report contains many reassuring findings on the more extreme claims of the worldwide anti-nuclear movement, but one cannot read it without gaining the impression that the nuclear option is the energy source they would most like to do without. It is felt that against this background, it would seem to be time for the power industry to stop defending nuclear energy as an acceptable necessity and rather promoting it as the best energy option. (U.K.)

  8. Thorium Molten-Salt Nuclear Energy Synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Lecocq, A.; Kato, Yoshio; Mitachi, Kohshi.

    1990-01-01

    In the next century, the 'fission breeder' concept will not be practical to solve the global energy problems, including environmental and North-South problems. As a new measure, a simple rational Th molten salt breeding fuel cycle system, named 'Thorium Molten-Salt Nuclear Energy Synergetics (THORIMS-NES)', which composed of simple power stations and fissile producers, is proposed. This is effective to establish the essential improvement in issues of resources, safety, power-size flexibility, anti-nuclear proliferation and terrorism, radiowaste, economy, etc. securing the simple operation, maintenance, chemical processing, and rational breeding fuel cycle. As examples, 155 MWe fuel self-sustaining power station 'FUJI-II', 7 MWe pilot-plant 'miniFUJI-II', 1 GeV-300 mA proton Accelerator Molten-Salt Breeder 'AMSB', and their combined fuel cycle system are explained. (author)

  9. Net energy from nuclear power

    International Nuclear Information System (INIS)

    Rotty, R.M.; Perry, A.M.; Reister, D.B.

    1975-11-01

    An analysis of net energy from nuclear power plants is dependent on a large number of variables and assumptions. The energy requirements as they relate to reactor type, concentration of uranium in the ore, enrichment tails assays, and possible recycle of uranium and plutonium were examined. Specifically, four reactor types were considered: pressurized water reactor, boiling water reactor, high temperature gas-cooled reactor, and heavy water reactor (CANDU). The energy requirements of systems employing both conventional (current) ores with uranium concentration of 0.176 percent and Chattanooga Shales with uranium concentration of 0.006 percent were determined. Data were given for no recycle, uranium recycle only, and uranium plus plutonium recycle. Starting with the energy requirements in the mining process and continuing through fuel reprocessing and waste storage, an evaluation of both electrical energy requirements and thermal energy requirements of each process was made. All of the energy, direct and indirect, required by the processing of uranium in order to produce electrical power was obtained by adding the quantities for the individual processes. The energy inputs required for the operation of a nuclear power system for an assumed life of approximately 30 years are tabulated for nine example cases. The input requirements were based on the production of 197,100,000 MWH(e), i.e., the operation of a 1000 MW(e) plant for 30 years with an average plant factor of 0.75. Both electrical requirements and thermal energy requirements are tabulated, and it should be emphasized that both quantities are needed. It was found that the electricity generated far exceeded the energy input requirements for all the cases considered

  10. Conceptual evaluation of hybrid energy system comprising wind-biomass-nuclear plants for load balancing and for production of renewable synthetic transport fuels

    International Nuclear Information System (INIS)

    Carlsson, Johan; Purvins, Arturs; Papaioannou, Ioulia T.; Shropshire, David; Cherry, Robert S.

    2014-01-01

    Future energy systems will increasingly need to integrate variable renewable energy in order to reduce greenhouse gas emissions from power production. Addressing this trend the present paper studies how a hybrid energy systems comprising aggregated wind farms, a biomass processing plant, and a nuclear cogeneration plant could support high renewable energy penetration. The hybrid energy system operates so that its electrical output tends to meet demand. This is achieved mainly through altering the heat-to-power ratio of the nuclear reactor and by using excess electricity for hydrogen production through electrolysis. Hybrid energy systems with biomass treatment processes, i.e. drying, torrefaction, pyrolysis and synthetic fuel production were evaluated. It was shown that the studied hybrid energy system comprising a 1 GWe wind farm and a 347 MWe nuclear reactor could closely follow the power demand profile with a standard deviation of 34 MWe. In addition, on average 600 m"3 of bio-gasoline and 750 m"3 bio-diesel are produced daily. The reduction of greenhouse gas emissions of up to 4.4 MtCO_2eq annually compared to power generation and transport using conventional fossil fuel sources. (author)

  11. CO2 emission reduction strategy and roles of nuclear energy in Japan

    International Nuclear Information System (INIS)

    Sato, Osamu; Shimoda, Makoto; Takematsu, Kenji; Tadokoro, Yoshihiro

    1999-03-01

    An analysis was made on the potential and cost of reducing carbon dioxide (CO 2 ) emissions from Japan's long-term energy systems by using the MARKAL model, developed in the Energy Technology Systems Analysis Programme (ETSAP) of International Energy Agency (IEA). Assuming future growths of GDP, the demand for energy services was estimated for the analytical time horizon 1990-2050. Assumptions were made also on prices and availability of fossil fuels, and on availability of nuclear and renewable energy. CO 2 emissions and system costs were compared between energy demand and supply scenarios defined with different assumptions on nuclear energy, a CO 2 disposal option, and natural gas imports. Main results were as follows. Without nuclear energy, the CO 2 emissions will hardly be reduced because of the increases of coal utilization. CO 2 disposal will be effective in reducing the emissions, however at much higher costs than the case with nuclear energy. The expansion of natural gas imports alone will not reduce the emissions at enough low levels. (author)

  12. US Department of Energy nuclear energy research initiative

    International Nuclear Information System (INIS)

    Ross, F.

    2001-01-01

    This paper describes the Department of Energy's (DOE's) Nuclear Energy Research Initiative (NERI) that has been established to address and help overcome the principal technical and scientific issues affecting the future use of nuclear energy in the United States. (author)

  13. Nuclear energy basic knowledge

    International Nuclear Information System (INIS)

    Volkmer, Martin

    2013-11-01

    The following topics are dealt with: Atoms, nuclear decays and radioactivity, energy, nuclear fission and the chain reaction, controlled nuclear fission, nuclear power plants, safety installations in nuclear power plants, fuel supply and disposal, radiation measurement and radiation exposition of man. (HSI)

  14. International Nuclear Information System 25 years

    International Nuclear Information System (INIS)

    Behrens, H.; Prinz, H.

    1996-01-01

    In May 1970, the first information was published in the International Nuclear Information System (Inis). This makes Inis the first system in the world to establish a decentralized international database. In creating Inis, the International Atomic Energy Agency wanted to promote the exchange of information about the peaceful uses of nuclear energy among its members. References to the nuclear literature were to be compiled in the most complete way possible. The number of IAEA member countries participating in Inis has increased from an original 38 to 90, that of international organizations, from 12 to 17. The database holds more than 1.8 million documentation units; stocks grow by some 75,000 units annually. The German literature about nuclear research and nuclear technology is collected, evaluated and entered into Inis by the Fachinformationszentrum Karlsruhe. (orig.) [de

  15. Nuclear energy role and potential for global sustainable development

    International Nuclear Information System (INIS)

    Ujita, H.; Matsui, K.

    2006-01-01

    The long-term energy supply simulation that optimizes the energy system cost until 2100 for the world is being performed, by using the energy module of GRAPE model, where energy demand under the C02 emission constraint etc. is assumed. The model has been taken up for the trial calculation in I PCC the third report . Role and potential of nuclear energy system in the energy options is discussed here from the viewpoint of sustainable development with protecting from global warming. Taking the effort for energy conservation as major premise, carbon-sequestration for fossil fuel, renewable energy and nuclear energy should be altogether developed under the C02 constraint. Especially, fast breeder reactor will be attached importance to, as the 22nd century is approaching, due to its carbon free and resource limitless features when the nuclear generation cost is cheap as a current light water reactor level. It takes time around 30 years in order for breeding of Pu, a fast breeder reactor will begin to be introduced from around 2030. If the period for the technology establish of nuclear fuel cycle is assumed to be 30 years, it is necessary to start technical development right now. If the Kyoto Protocol, the emission constraint on only the developed countries, is extended in 21st century, it will promote the growth of nuclear power in the developed countries in the first half of the century. After 2050, the developing countries will face the shortage of uranium and plutonium. Carbon emission constraint should be covered all countries in the World not only for the developed countries but also for the developing countries. Therefore, it is important that the developing countries will use nuclear power effectively from the viewpoint of harmonization of energy growth and global environment. The policy that nuclear power is considered as Clean Development Mechanism would mitigate such global warming problems

  16. Nuclear energy socially acceptable as a possible solution for the Brazilian energy demand

    International Nuclear Information System (INIS)

    Milanez, Jimes Vasco; Almeida, Ricardo Dias; Carmo, Fausto Silva do

    2006-01-01

    In this work we try to investigate the potential, with emphasis on Brazil, of new nuclear power technologies in development related to estimated growth of energy demand in comparison to traditional nuclear power and others alternatives generation, under criteria such as technical and economic viability, respect to the environmental and particularly acceptability of the society. It is demonstrated that fourth generation of nuclear power shows an option to be considered in the medium and long-term for energy generation significantly clean, efficient and safe, should be, therefore, better investigated, mainly focusing on accelerator driven systems

  17. Role of nuclear energy in CO2 emissions reduction

    International Nuclear Information System (INIS)

    Schaefer, H.

    1995-01-01

    Between 1675 and 1992 worldwide primary energy consumption has been multiplied by about 100 and has reached about 11 billions of tons of equivalent weight of coal, while human population has been multiplied by 8 and will probably reach 9 billions in 2030. The increase of atmospheric CO 2 production due to fossil fuel burn up will become a critical pollution and climatic problem which can be significantly reduced by a more widely use of nuclear energy in replacement of primary energies. However, perspectives of nuclear energy depend principally on the safety improvements of nuclear plants and on the solutions found to solve the management of radioactive waste. Renewable energies sources such as photovoltaic plants, wind engines, hydraulic plants have not yet been used at a large scale because they require large surfaces for their installation. To avoid any monolithic solution to solve the energy and environmental problems, a combination of renewable and nuclear energies seems to be a good compromise. For instance, the conception of a safety non-refueling nuclear reactor with an overheating hybrid system combining solar and fossil fuel energies should be conceivable. (J.S.)

  18. An introduction to the axiology of nuclear energy

    International Nuclear Information System (INIS)

    Sawada, Tetsuo

    2005-01-01

    Nuclear energy was developed during World War II and grew immensely within the era of the Cold War. After the Cold War came to an end during the early 1990s, those who benefited from the development of nuclear energy were most likely confronted with a challenge by a new tide of civilization. Although the challenge had not been closely questioned since then, such a new movement abruptly manifested itself after the terrorist attacks on September 11, 2001. After these attacks, many began to realize that global circumstances, especially those concerned with global security, must have changed with the reordering of the world's basic structures that support political and economical developments. Here the world's basic structure is closely related with values, i.e., the system of values. This paper describes the thoughts that reveal the causes and the backgrounds of the events of September 11, the linkage to nuclear energy development, and nuclear civilization in pursuit of the future regime of nuclear energy's harmonization with the global society of the 21st century. (author)

  19. The economics of nuclear energy

    International Nuclear Information System (INIS)

    Wilmer, P.

    2004-01-01

    In common with many of the issues surrounding nuclear energy, there is some truth in the popular claim that nuclear energy is 'not economic', but this is far from being a universal truth. This paper puts forward the view that, overall, nuclear energy can be a competitive source of electricity and a realistic economic option for the future. (author)

  20. Nuclear energy in Asia and regional co-operation

    International Nuclear Information System (INIS)

    Ishii, M.

    1997-01-01

    There is increasing concern in East Asia about regional cooperation in the field of nuclear power. At the APEC conference in Osaka in 1995, APEC (Asia Pacific Economic Cooperation) established an Energy Research Center. The center has started to perform joint research forecasts on energy supply and demand for the region. Japan proposed the inauguration of a Conference on Nuclear Safety in Asia at the Moscow Nuclear Energy Summit in 1996. The first conference was held in Tokyo that year. This year, the conference will be held in Seoul. Japan's Atomic Energy Commission sponsors the International Conference for Nuclear Cooperation in Asia every year. This year marks the eighth conference. The outstanding feature of this year's conference was that so many countries stressed regional cooperation. South Korea proposed the installation of a regional online radiation monitoring system. The Philippines asserted the need for a cooperative mechanism on the lines of ASIATOM. Why is so much concern now being focused on nuclear power cooperation in East Asia? What kind of regional cooperation is necessary, and what kind is possible? What are the unique features of nuclear power cooperation in East Asia? These are the points addressed in this paper. (author)

  1. Exploring nuclear energy scenarios - implications of technology and fuel cycle choices

    International Nuclear Information System (INIS)

    Rayment, Fiona; Mathers, Dan; Gregg, Robert

    2014-01-01

    Nuclear Energy is recognised globally as a mature, reliable low carbon technology with a secure and abundant fuel source. Within the UK, Nuclear Energy is an essential contributor to the energy mix and as such a decision has been made to refresh the current nuclear energy plants to at least replacement of the existing nuclear fleet. This will mean the building of new nuclear power plant to ensure energy production of 16 GWe per annum. However it is also recognised that this may not be enough and as such expansion scenarios ranging from replacement of the existing fleet to 75 GWe nuclear energy capacity are being considered (see appendix). Within these energy scenarios, a variety of options are being evaluated including electricity generation only, electricity generation plus heat, open versus closed fuel cycles, Generation III versus Generation IV systems and combinations of the above. What is clear is that the deciding factor on the type and mix of any energy programme will not be on technology choice alone. Instead a complex mix of Government policy, relative cost of nuclear power, market decisions and public opinion will influence the rate and direction of growth of any future energy programme. The UK National Nuclear Laboratory has supported this work through the use and development of a variety of assessment and modelling techniques. When assessing nuclear energy scenarios, the technology chosen will impact on a number of parameters within each scenario which includes but is not limited to: - Economics, - Nuclear energy demand, - Fuel Supply, - Spent fuel storage / recycle, - Geological repository volumetric and radiological capacity, - Sustainability - effective resource utilisation, - Technology viability and readiness level. A number of assessment and modelling techniques have been developed and are described further. In particular, they examine fuel cycle options for a number of nuclear energy scenarios, whilst exploring key implications for a particular

  2. Nuclear energy and energy outlook to October 2011

    International Nuclear Information System (INIS)

    Torre, A. de la; Mansilla, J. L.; Lopez Jimenez, J.

    2011-01-01

    This article shows a general overview about the nuclear in the world and in Spain. It is also presented a summary on the primary and electrical energy consumption and the nuclear part in the global and in the Spanish energy mix. Data on behaviour of nuclear power plants, emission saving, life extension, the planned and proposed new nuclear plants, etc., are also included. (Author)

  3. 78 FR 76599 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2013-12-18

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy..., General Services Administration, notice is hereby given that the Nuclear Energy Advisory Committee (NEAC... to the Department of Energy's Office of Nuclear Energy on complex science and technical issues that...

  4. Nuclear energy, economy, ecology

    International Nuclear Information System (INIS)

    Stoffaes, C.

    1995-01-01

    As its operating role, its economic competitiveness and its technological control in the area of nuclear energy, the France has certainly to take initiatives in a nuclear renewal activity. The France is criticized in the world for its exclusive position about nuclear energy, but it is well situated to attract attention on the coal risks and particularly about its combustion for environment. (N.C.)

  5. Nuclear energy - overview of development trends

    International Nuclear Information System (INIS)

    1985-01-01

    Proceeding from the organizational structure of the IAEA selected activities of the IAEA in connection with power reactor safety are dealt with. Based on the IAEA's computerized Power Reactor Information System (PRIS) a survey is presented of the most recent statistical data concerning status and trends of nuclear power plant development throughout the world. The central role of the IAEA in assisting Member States in the utilization of nuclear energy for peaceful purposes is underscored. Finally, a brief account of the state-of-the-art of the USSR's nuclear power programme is given

  6. The role of nuclear power in sustainable energy strategies

    International Nuclear Information System (INIS)

    Semenov, B.A.; Bennett, L.L.; Bertel, E.

    1993-01-01

    The purpose of this paper is to provide an overview of future demand outlooks for energy, electricity and nuclear power, as a background for discussion of the design and operation aspects of advanced nuclear power systems. The paper does not attempt to forecast the actual outcomes of nuclear power programmes, since this will depend upon many factors that cannot be predicted with certainty. Rather, the paper outlines the size of the opportunity for nuclear power, in terms of the expected growth in energy and electricity demands, the need to diversify energy supply options and substitute depletable fossil fuels by other energy sources, and the need to mitigate health and environmental impacts including in particular those arising from the the atmospheric emissions from burning of fossil fuels. 7 refs

  7. Present state of the perception gap of nuclear energy between Japanese nuclear energy supplying region and an energy consuming region

    International Nuclear Information System (INIS)

    Ohnishi, Teruaki

    2002-01-01

    Public opinion surveys have been carried out since 1998 on what phase and on what extent of the perception of nuclear energy differs between Japanese dwelling in energy supplying region and an energy-consuming region. Southern Fukui rural district where 15 nuclear reactors are now installed and Osaka urban region of about 100 km apart from Fukui were selected as the respective targets for the energy supplying and consuming regions. Analyses of the data of about 3000 samples have revealed the followings. (1) The public in the nuclear energy supplying region are very friendly to nuclear energy so that only about 20 and 39 of the public are resistive to the general promotion of nuclear energy in Japan and to the construction of another nuclear reactor in their dwelling region, respectively. (2) On the other hand, in the energy-consuming region those respective fractions are 41 and 70 implying strong resistance to nuclear energy in the urban region. (3) Both the degree of interest in and the degree of knowledge on nuclear energy are very low, whereas the extent of fear to nuclear is high for the urban public. (4) Not only the fraction of the public who are satisfied with their present life, but the public fraction who is eagerly support the thought of return-to-nature are very high in the urban region. (5) On the other hand, in the energy supplying region, many peoples eagerly want their life to become more convenient than it is now, and 6) all those trends (I)-(5) are revealed more pronouncedly in the woman than the man. The perception gap of nuclear energy thus became clear between Japanese dwelling in rural and urban regions. On the basis of this knowledge, discussions on the nature of the so-called NIMBY will be made from the socio-psychological viewpoint and propositions will also be made on the methods to dissolve the perception gap of that soft. (author)

  8. The nuclear energy outlook--a new book from the OECD nuclear energy agency.

    Science.gov (United States)

    Yoshimura, Uichiro

    2011-01-01

    This paper summarizes the key points of a report titled Nuclear Energy Outlook, published in 2008 by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, which has 30 member nations. The report discusses the commitment of many nations to increase nuclear power generating capacity and the potential rate of building new electricity-generating nuclear plants by 2030 to 2050. The resulting decrease in carbon dioxide emissions from fossil fuel combustion resulting from an increase in nuclear power sources is described. Other topics that are discussed include the need to develop non-proliferative nuclear fuels, the importance of developing geological disposal facilities or reprocessing capabilities for spent nuclear fuel and high-level radioactive waste materials, and the requirements for a larger nuclear workforce and greater cost competitiveness for nuclear power generation. Copyright © 2010 Health Physics Society

  9. Nuclear energy for a sustainable development

    International Nuclear Information System (INIS)

    Guerrini, B.; Oriolo, F.

    2001-01-01

    Nuclear power currently produces over 628 M tep of the generated energy in 1997 avoiding about 1978 Mt of CO 2 emission and gives a significant contribution to reducing greenhouse gas emission. The competitive position of nuclear power might be strengthened, if market forces or government policy were able to give energy security and to control greenhouse gas, relying upon market mechanism and including environmental costs in economic analysis. In this case, taking into account the entire up-stream and down-stream chains for electricity generation, it can be seen that the greenhouse emission from nuclear plants, is lower than that of renewable energy chains. This paper investigates the potential role of nuclear power in global energy supply up to 2020 and analyzes the opportunities and the challenges for research, governments and nuclear industries of a broad nuclear power development in response to environmental concerns. The authors think that nuclear energy will have to compete in the same framework and under the same conditions as all other energy sources and so analyze the possibility of re-launching nuclear energy: it will have to couple nuclear safety and economic competitiveness [it

  10. Informing parliamentarians on nuclear energy

    International Nuclear Information System (INIS)

    1995-01-01

    This publication contains a selection of the papers presented at an international seminar on informing parliamentarians in the nuclear field. This seminar has been organized by the OECD Nuclear Energy Agency to respond to important information needs. As a matter of fact, providing clear and accurate information to decision-makers is a key element that contributes to the quality of work for legislation for a safe use of nuclear energy. The sessions dealt with : meeting the information needs of parliamentarians and other elected representatives on nuclear energy questions, actors and their respective roles in the information process, means and tools for communicating information on nuclear energy, case studies in communication with elected officials. Abstracts have been prepared for all of the papers in this volume. (TEC)

  11. Restructuring the Energy System. Report of the Energy Commission

    International Nuclear Information System (INIS)

    1995-01-01

    The commission was instructed to examine the current energy policy programs for restructuring and developing the energy system (i.e. phasing out nuclear power and moving to renewable sources) and to analyze the needs for changes; to propose measures for ensuring an efficient electricity supply under the new conditions of a liberalized electricity market; and to present proposals for a schedule for reorganizing the energy system. The report gives a full picture of the Swedish energy system including supply, consumption, prices, environmental impacts, R and D, and international aspects. The commission concludes that one nuclear power plant can be closed during the 1990's without upsetting the power balances. Phasing out all nuclear plants by year 2010 will create problems with the price levels of electricity supply, and will conflict with the CO 2 reduction objective. The proposals for economic control measures for performing the restructuring include: An environmental bonus (or investment support) for environmentally sound electricity production financed by an electricity tax, a tax on nuclear power increasing with the age of the reactors, a reorganization fund to finance new and environmentally acceptable electricity production. Also, energy research should be allotted greater resources, in particular for new technology for electricity production. The commission points towards the possibilities for reducing energy consumption, and especially electricity consumption. Space heating should gradually move away from electric heating. Examples are given on measures for improving energy efficiency and problems with financing such measures should be studied

  12. Society response to nuclear energy

    International Nuclear Information System (INIS)

    Santamaria, N. C.

    2007-01-01

    Energy demand in the world is growing increasingly, among other factors due to economic development. Every way of producing electricity has got their own drawbacks and has implicit environmental impact. Among all the energy sources, nuclear energy is the most polemic because of the way it is presented by the mass media. This aspect provokes controversy to occidental societies which reject this kind of energy with arguments normally based on a wrong and insufficient knowledge of the matter. The antinuclear discourse, promoted late in the seventies, has gone deeply into the collective social unconscious and has undermined public acceptance of nuclear energy due to the fact, deeply exploited by antinuclear groups, of linking nuclear energy with the atomic bombing of Hiroshima and Nagasaki. In this sense, it is important to mention that in Japan there was a profound resentment and opposition to nuclear energy, because the memory of the nuclear bombings was permanently alive. However when the Japanese government told its people that this energy was necessary to boost their industrial development, Japanese citizens in an unprecedented attitude of patriotism overcame their most antagonist feelings, in order to contribute to the industrial development of their country. The result was that most of them voted in favour. Presently Japan gets 30% of its energy by means of 56 nuclear power plants and 1 more is under construction. Antinuclear groups took as their best emblem the accident of Chernobyl to justify their opposition to the nuclear power plants. The manipulation of this accident has been one of the most shameful in the nuclear history. It is widely known among the experts that the reactor used in Chernobyl was a type of military plutonium converter with a positive temperature reactivity coefficient, which made very dangerous its functioning. Any nuclear regulatory commission in democratic and responsible countries would have never authorized the use of this reactor

  13. Generating a quality management system for application in the field of management of nuclear energy area

    International Nuclear Information System (INIS)

    Fernández, L.; Arias, M.

    2013-01-01

    The actual work has as a main objective to present the development of a quality management system to be applicable to the Nuclear Energy Management confines at the National Atomic Energy Commission (CNEA) in Argentina Republic. The GAEN Quality Management Section (SGC) has as main central tasks to streamline, collaborate and facilitate the development of activities and their applications on quality management systems in all the sections and projects belonging to GAEN. This achievement will tend to accredit, certificate and qualify them. Groups of work cooperating with each other integrate the GAEN. They are at present dealing with several tasks. Some outstanding ones are research activities, technology development, design, engineering, assembling, starting, services, and human resources development on Nuclear Reactors and Nuclear Supplies, particularly on powerful nuclear reactors. In 2012, at the annual CNEA Presidential meeting, it was presented one of the several projects from the SGC. It consists in the development of a quality management system available to every area belonging to the GAEN. To carry this project out, it was first begun with the elaboration of Guide Documents which were available for everybody. The documents establish the criteria and general requirements for obtaining guaranteed quality results about the performed activities. At the same time, several areas, sections and Management groups of work have been working united and well-disposed towards the application on their own Management System using the Guide Documents and considering, in addition, some own regards. In conclusion, this first step shows that the developed work facilitates the implementation of Management Systems around the GAEN. (author)

  14. Enhancement mechanisms of low energy nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gareev, F. A.; Zhidkova, I.E.; Ratis, Yu.L. [Joint Institute for Nuclear Research, JINR, 6 Joliot Curie Street, Dubna, Moscow Region 141980 (Russian Federation)

    2006-07-01

    The full review of Russian low energy nuclear reactors is represented. We have concluded that transmutation of nuclei at low energies, LENR, is possible in the framework of the modern physical theory - excitation and ionization of atoms and universal resonance synchronization principle are responsible for it. Investigation of this phenomenon requires knowledge of different branches of science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics. The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor reproducibility of experimental data is due to the fact that LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical reproducibility principle should be reconsidered for LENR experiments. Poor reproducibility and unexplained results do not means that the experiment is wrong.

  15. Enhancement mechanisms of low energy nuclear reactions

    International Nuclear Information System (INIS)

    Gareev, F. A.; Zhidkova, I.E.; Ratis, Yu.L.

    2006-01-01

    The full review of Russian low energy nuclear reactors is represented. We have concluded that transmutation of nuclei at low energies, LENR, is possible in the framework of the modern physical theory - excitation and ionization of atoms and universal resonance synchronization principle are responsible for it. Investigation of this phenomenon requires knowledge of different branches of science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics. The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor reproducibility of experimental data is due to the fact that LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical reproducibility principle should be reconsidered for LENR experiments. Poor reproducibility and unexplained results do not means that the experiment is wrong

  16. Thirty years nuclear energy. 240,000 years of nuclear waste. Why Greenpeace campaigns against nuclear energy

    International Nuclear Information System (INIS)

    Teule, R.

    2004-01-01

    A brief overview is given of the arguments that Greenpeace has against nuclear energy, and why this environmental organization campaigns against the processing of nuclear waste and transportation of Dutch nuclear waste to France [nl

  17. Is nuclear energy justifiable?

    International Nuclear Information System (INIS)

    Roth, E.

    1988-01-01

    This is a comment on an article by Prof. Haerle a theologist, published earlier under the same heading, in which the use of nuclear energy is rejected for ethical reasons. The comment contents the claim mode by the first author that theologists, because they have general ethical competency, must needs have competency to decide on the fittest technique (of energy conversion) for satisfying, or potentially satisfying, the criteria of responsible action. Thus, an ethical comment on, for instance, nuclear energy is beyond the scope of the competency of the churches. One is only entitled as a private person to objecting to nuclear energy, not because of one's position in the church. (HSCH) [de

  18. Nuclear power reactors and hydrogen storage systems

    International Nuclear Information System (INIS)

    Ibrahim Aly Mahmoud El Osery.

    1980-01-01

    Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

  19. Risks and benefits of nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.

    2008-01-01

    Based on a study published by the OECD Nuclear Energy Agency in mid-2007, the paper covers economic, environmental and social aspects of nuclear and other energy chains. It describes an analytical framework and identifies indicators to assess different energy chains on a comprehensive basis. Illustrative results of authoritative studies on life cycle analysis of electricity generation chains are presented to highlight benefits and drawbacks of alternative options. Examples of quantitative and qualitative indicators for different chains, covering environmental burdens such as air emissions and solid waste streams, social aspects such as health impacts and aversion to risk, and economic factors, are analyzed and compared. A key finding from the review of published literature is that nuclear energy systems in operation have very good performance for a wide range of indicators covering economic, environmental and social aspects. Although the results of analytical studies are case and context specific, they indicate that the nuclear option offers attractive characteristics for sustainable future energy mixes. The importance of policy goals and priorities in the assessment of alternative options is highlighted and the paper offers some insights on the use of multi-criteria decision tools to support policy making. It is shown in particular that the ranking of nuclear and other electricity generation systems may differ depending on the respective weights of economic, environmental and social factors. The role of technology progress is underlined as a major tool to enhance the performance of nuclear energy systems in order to design and implement advanced reactors and fuel cycle schemes addressing better the challenges of the 21. century in the energy sector. The evolution from the current generation of reactors to generation III+ and eventually generation IV systems is described and their role in strengthening the potential contribution of nuclear energy to sustainable

  20. Benefits and risks of nuclear energy

    International Nuclear Information System (INIS)

    Barnert, H.; Borsch, P.; Feldmann, A.; Jaek, W.; Muench, E.; Voss, A.; Wolters, J.

    1983-01-01

    In the controversy of the pro's and con's of nuclear energy, emotions and ideologies have replaced factual observations. In this situation, this contribution hopes to offer the public some factual information concerning the problems of nuclear energy. Therefore, the project group Nuclear Energy and the Environment discusses the topics of energy demands, physical principles, fuel cycle, radioactive radiation, and safety of nuclear power plants. (RW) [de