WorldWideScience

Sample records for nuclear energy options

  1. Nuclear energy - an option for Croatian sustainable development

    International Nuclear Information System (INIS)

    Mikulicic, V.; Skanata, D.; Simic, Z.

    1996-01-01

    The uncertainties of growth in Croatian future energy, particularly electricity demand, together with growing environmental considerations and protection constraints, are such that Croatia needs to have flexibility to respond by having the option of expanding the nuclear sector. The paper deals with nuclear energy as an option for croatian sustainable economic development. The conclusion is that there is a necessity for extended use of nuclear energy in Croatia because most certainly nuclear energy can provide energy necessary to sustain progress. (author)

  2. National energy planning with nuclear option

    International Nuclear Information System (INIS)

    Soetrisnanto, Arnold Y.; Hastowo, Hudi; Soentono, Soedyartomo

    2002-01-01

    National energy planning with nuclear option. Energy planning development is a part of the sustainable development that supports the attainment of national development goals. The objective of the study is to support the national planning and decision-making process in the energy and electric sector in Indonesia with nuclear option for period of 1998-2027. This study performs the provision of detailed economic sector and regional energy demand projection by MAED simulation model based on the economic and population scenarios. The optimization of the future energy supply such as electricity supply taking all known Indonesian energy sources and all relevant technologies into consideration by MARKAL Model. The results shows that Indonesia's need for final energy is forecasted to increase two times, from 4028,4 PJ at the beginning of study become 8145,6 PJ at the end of study. Performing the sensitivity study, it is predicted that nuclear energy could be introduced in the Java-Bali electricity grid about year 2016

  3. Sustainablility of nuclear and non-nuclear energy supply options in Europe

    International Nuclear Information System (INIS)

    Kirchsteiger, C.

    2007-01-01

    In the course of the current discussion on promoting the economical competitiveness of sustainable energy systems, especially renewable and non-CO 2 -intensive ones, interest in nuclear energy has re-awakened in Europe (''nuclear renaissance''). This paper starts with presenting the concept of energy sustainability and its main elements. Next, an overview of the main results of sustainability assessments for different energy supply options (nuclear, fossil, renewables) covering full energy chains is given. Nuclear energy's typical strong and weak points are identified from a sustainability point of view. On the basis of these results, it is argued that more emphasis on nuclear energy's (very good) total cost performance, i.e. incl. externalities, rather than on its (very good) contribution to combating climate change would stronger benefit its ''renaissance''. Finally, the development of an overall EU-wide framework is proposed in order to assess the sustainability performance of alternative energy supply options, incl. nuclear, across their lifecycle and thus support decision making on developing sustainable energy mixes. (orig.)

  4. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Dixon, B.W.; Piet, S.J.

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected

  5. Nuclear power- the inevitable option for future energy needs

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    1995-01-01

    In the ensuring era development and deployment of electrical power sources will be governed by environmental changes, energy security and economical competitiveness. In the energy-mix scenario nuclear power has the potential and will make significant contributions in the coming decades. It is certain that nuclear power will continue to play a vital role in bridging the widening gap of demand and availability of energy in the years to come. In sum and substance, with the limited energy options available with India, nuclear power must assume greater share to meet the rapidly growing energy demands. Fortunately, country has a sound base for achieving the goal. 14 tabs., 3 figs

  6. Nuclear Energy: A Competitive and Safe Option, The EDF Experience

    International Nuclear Information System (INIS)

    Colas, F.

    1998-01-01

    Today, nuclear energy seems challenged by fossil energies, especially gas. However, the 1997's French government survey over energy options still places nuclear energy at the top of the list. The reasons why and how safe nuclear energy is still competitive are detailed in this paper. Most recent data from EDF's reactor will be discussed in terms of environmental and electricity production issues. The methods and management used to attain these results are explained for the different phases: design, construction, operation, and maintenance. The beneficial aspects over industrial development and local employment will be underlined. The influence of nuclear energy on EDF's financial results are shown, from past programme to today's operation. As most of french reactors are designed to adapt their output to the changes of load in the national grid, results are, as a conclusion, discussed in a small and medium electrical grid perspective. (author)

  7. Energy and the environment: 'the nuclear option'

    International Nuclear Information System (INIS)

    Hawley, Robert

    1997-01-01

    The world's consumption of primary energy continues to rise rapidly, mainly because of the developing countries who cannot yet provide the services essential to improving the quality of life. Increasing energy consumption, the effect it will have on the world's finite resources and, more importantly, on the environment, leave the world's population facing serious challenges. This paper will briefly consider the power generation technology options that offer sustainable development including the role that nuclear power plays today, and will need to play in the next century, to preserve and improve the quality of life worldwide. (author)

  8. The nuclear energy option an alternative for the 90s

    CERN Document Server

    Cohen, Bernard L

    1990-01-01

    University of Pittsburgh physicist Cohen provides accessible, scientifically sound risk analyses of the energy options that he believes must be exercised in the next 10 years. This update of his work on public energy policy stands opposed to the stack of recent greenhouse effect-oriented titles by proposing more nuclear power plants (including fuel reprocessing plants) as statistically the safest, most environmentally sound solution. Cohen advances the debate on energy policy for all sides by first quantifying the human health costs of coal- and oil-generated electricity, and by debunking solar technology's deus ex machina role. In this context, Cohen looks at issues surrounding nuclear power since Three Mile Island, such as the "unsolved problem" of nuclear waste disposal and the "China Syndrome." Media people especially are urged to re-examine "nuclear hysteria" (no one ever writes about " deadly natural gas," Cohen notes), and even anti-nuclear activists will find the study's appendices and notes a sourceb...

  9. Sustainable nuclear energy dilemma

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2013-01-01

    Full Text Available Sustainable energy development implies the need for the emerging potential energy sources which are not producing adverse effect to the environment. In this respect nuclear energy has gained the complimentary favor to be considered as the potential energy source without degradation of the environment. The sustainability evaluation of the nuclear energy systems has required the special attention to the criteria for the assessment of nuclear energy system before we can make firm justification of the sustainability of nuclear energy systems. In order to demonstrate the sustainability assessment of nuclear energy system this exercise has been devoted to the potential options of nuclear energy development, namely: short term option, medium term option, long term option and classical thermal system option. Criteria with following indicators are introduced in this analysis: nuclear indicator, economic indicator, environment indicator, social indicator... The Sustainability Index is used as the merit for the priority assessment among options under consideration.

  10. A new option for exploitage of future nuclear energy. Accelerator driven radioactive clean nuclear power system

    International Nuclear Information System (INIS)

    Ding Dazhao

    2000-01-01

    Nuclear energy is an effective, clean and safe energy resource. But some shortages of the nuclear energy system presently commercial available obstruct further development of the nuclear energy by heavy nuclear fission. Those are final disposal of the high level radioactive waste, inefficient use of the uranium resource and safety issue of the system. Innovative technical option is seeking for by the nuclear scientific community in recent ten years in aiming to overcome these obstacles, namely, accelerator driven sub-critical system (ADS). This hybrid system may bridge over the gap between presently commercial available nuclear power system and the full exploitation of the fusion energy. The basic principle of ADS is described and its capability in waste transmutation, conversion of the nuclear fuel are demonstrated by two examples--AD-fast reactor and AD-heavy water thermal reactor. The feasibility of ADS and some projects in US, Japan, etc are briefly discussed. The rationale in promoting the R and D of ADS in China is emphasized as China is at the beginning stage of its ambitious project in construction of the nuclear power

  11. Nuclear energy for seawater desalination - options in future

    International Nuclear Information System (INIS)

    Yadav, M.K.; Murugan, V.; Balasubramaniyan, C.; Nagaraj, R.; Dangore, Y.

    2010-01-01

    Full text: With ever increasing water scarcity, many alternatives are being tried to supplement the existing water resources. There are regions where water is scarce and population is growing and is at the mercy of inadequate supplies. Seawater constitutes a practically unlimited source of saline water. When desalted, it can augment the existing potable water resources for the people in nearby area and also meet the increasing demand. BARC has been engaged in the field of desalination and developed expertise in both thermal and membrane technologies. It has setup 6300 M 3 /D Nuclear Desalination Demonstration Project (NDDP) at Kalpakkam, where both membrane and thermal technologies have been used for sea water desalination. Desalination process needs energy and nuclear energy is strong option in view of limited fossil fuels and environmental concerns. Multi Stage Flash (MSF) plant based on thermal technology has been coupled to MAPS Reactors and Sea Water Reverse Osmosis (SWRO) plant is based on membrane technology. This paper discusses various aspects of coupling of desalination plant with nuclear reactors and also discusses salient features of hybridization of thermal and membrane technologies

  12. Nuclear energy-an essential option for sustainable development of global economy

    International Nuclear Information System (INIS)

    Tokio Kanoh

    2005-01-01

    Increased use of nuclear energy is an essential option for us to take the sustainable development of the global economy. The reasons are as follows: 1. Energy demand, especially in oil demand; 2. Environmental impact, especially greenhouse effect and carbon dioxide emissions, CO 2 emissions to be reduced 40% by increased use of nuclear power; 3. In the era of hydrogen, nuclear power can contribute in two ways. One is hydrogen production by electrolysis of water in conventional light water reactors powered by less costly late night electricity and the other by paralysis using high temperature gas produced in a high temperature testing reactor, Electric power consumption will increase 50% from 1990 to 2050. What is striking about his projection is types of fuels in use for power generation at that time which will consist of 60% nuclear, 10% hydro and 10% of other renewable energies. In other words, nearly 80% of fuels will be non-fossil sources

  13. National Options for a Sustainable Nuclear Energy System: MCDM Evaluation Using an Improved Integrated Weighting Approach

    Directory of Open Access Journals (Sweden)

    Ruxing Gao

    2017-12-01

    Full Text Available While the prospects look bright for nuclear energy development in China, no consensus about an optimum transitional path towards sustainability of the nuclear fuel cycle has been achieved. Herein, we present a preliminary study of decision making for China’s future nuclear energy systems, combined with a dynamic analysis model. In terms of sustainability assessment based on environmental, economic, and social considerations, we compared and ranked the four candidate options of nuclear fuel cycles combined with an integrated evaluation analysis using the Multi-Criteria Decision Making (MCDM method. An improved integrated weighting method was first applied in the nuclear fuel cycle evaluation study. This method synthesizes diverse subjective/objective weighting methods to evaluate conflicting criteria among the competing decision makers at different levels of expertise and experience. The results suggest that the fuel cycle option of direct recycling of spent fuel through fast reactors is the most competitive candidate, while the fuel cycle option of direct disposal of all spent fuel without recycling is the least attractive for China, from a sustainability perspective. In summary, this study provided a well-informed decision-making tool to support the development of national nuclear energy strategies.

  14. Meeting world energy needs. The economic and environmental aspects of the nuclear option

    International Nuclear Information System (INIS)

    Ward, D.P.; Chalpin, D.M.

    1994-01-01

    Tabulated capital, operating, and overall production costs for nuclear, coal, and gas-fuelled power show that nuclear power is a viable option for meeting the world's energy needs. The advantage of nuclear, otherwise limited to certain markets, is seen to be much greater when credit is taken for environmental factors, namely emissions of carbon dioxide and acidic gases by fossil-fuelled plants. 5 figs

  15. Considering environmental health risks of energy options. Hydraulic fracturing and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    MacDonell, Margaret; Raymond, Michelle; Burganowski, Rachael; Vetrone, Andrea; Alonzo, Sydney [Argonne National Laboratory, Argonne, IL (United States). Environmental Science Div.

    2014-07-01

    Growing public concerns about climate change and environmental health impacts related to energy production have led to increased consideration of alternate sources. Nuclear power and unconventional oil and shale gas development are among the options least favored by the public, with pollutant releases resulting from routine operations as well as accidents being among the key concerns. Advances in ICT approaches and the increasingly widespread accessibility of information resources and tools have facilitated community-based initiatives and broader data sharing that can directly contribute to more informed evaluations of energy options, toward more sustainable programs from the local to the global scale.

  16. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Brent W. Dixon; Steven J. Piet

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ∼100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation - Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in

  17. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  18. Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

  19. An Evaluation of Energy Storage Options for Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dufek, Eric J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    examination of energy storage options that could be integrated with nuclear generation. Figure 1 provides an overview of the 2015 energy mix by sector, which shows that NPPs are currently used exclusively for electricity generation that is ultimately consumed in the residential, commercial, and industrial sectors. Some areas for NPP energy growth in the future include power generation for electrified transportation and thermal generation for storage and industrial applications. Currently, most industrial thermal energy users combust fossil resources (i.e., coal or natural gas) to meet the energy needs of the processes, but heat from nuclear operations could also be used in certain specific applications.

  20. An Evaluation of Energy Storage Options for Nuclear Power

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bragg-Sitton, Shannon M.; Dufek, Eric J.

    2017-01-01

    examination of energy storage options that could be integrated with nuclear generation. Figure 1 provides an overview of the 2015 energy mix by sector, which shows that NPPs are currently used exclusively for electricity generation that is ultimately consumed in the residential, commercial, and industrial sectors. Some areas for NPP energy growth in the future include power generation for electrified transportation and thermal generation for storage and industrial applications. Currently, most industrial thermal energy users combust fossil resources (i.e., coal or natural gas) to meet the energy needs of the processes, but heat from nuclear operations could also be used in certain specific applications.

  1. Assessment of industrial energy options based on coal and nuclear systems

    International Nuclear Information System (INIS)

    Anderson, T.D.; Bowers, H.I.; Bryan, R.H.; Delene, J.G.; Hise, E.C.; Jones, J.E. Jr.; Klepper, O.H.; Reed, S.A.; Spiewak, I.

    1975-07-01

    Industry consumes about 40 percent of the total primary energy used in the United States. Natural gas and oil, the major industrial fuels, are becoming scarce and expensive; therefore, there is a critical national need to develop alternative sources of industrial energy based on the more plentiful domestic fuels--coal and nuclear. This report gives the results of a comparative assessment of nuclear- and coal-based industrial energy systems which includes technical, environmental, economic, and resource aspects of industrial energy supply. The nuclear options examined were large commercial nuclear power plants (light-water reactors or high-temperature gas-cooled reactors) and a small [approximately 300-MW(t)] special-purpose pressurized-water reactor for industrial applications. Coal-based systems selected for study were those that appear capable of meeting environmental standards, especially with respect to sulfur dioxide; these are (1) conventional firing using either low- or high-sulfur coal with stack-gas scrubbing equipment, (2) fluidized-bed combustion using high-sulfur coal, (3) low- and intermediate-Btu gas, (4) high-Btu pipeline-quality gas, (5) solvent-refined coal, (6) liquid boiler fuels, and (7) methanol from coal. Results of the study indicated that both nuclear and coal fuel can alleviate the industrial energy deficit resulting from the decline in availability of natural gas and oil. However, because of its broader range of application and relative ease of implementation, coal is expected to be the more important substitute industrial fuel over the next 15 years. In the longer term, nuclear fuels could assume a major role for supplying industrial steam. (U.S.)

  2. New options for developing of nuclear energy using an accelerator-driven reactor

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1997-01-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor. Thus, the necessity of early introduction of the fast reactor can be moderated. High reliability of the proton accelerator, which is essential to implementing an accelerator-driven reactor in the nuclear energy field can be achieved by a slight extension of the accelerator's length, with only a small economical penalty. Subcritical operation provides flexible nuclear energy options including high neutron economy producing the fuel, transmuting high-level wastes, such as minor actinides, and of converting efficiently the excess Pu and military Pu into proliferation-resistant fuel

  3. Ghana and the nuclear power option

    International Nuclear Information System (INIS)

    Fletcher, J.J.; Ennison, I.

    2000-01-01

    For every country, dependable and continuous supply of electricity is a prerequisite for ensuring sustainable development. In Ghana, Ghanaians have currently known the consequences of disrupted and inadequate supply of electricity. Globally too the call of ''Agenda 21'' of the Rio de Janeiro Conference (Earth Summit) to engage in the development and supply of electricity in a sustainable manner imposes on us certain limitations in our choice of energy option to utilise. Taking into account the high economic and population growths with the subsequent increase in demand for electricity in the 21st century, the fact that Ghana has no coal and imports oil which will be in dwindling supply in the 21st century and that the total hydro supply in Ghana will not be sufficient for our electricity demand in the next century, this paper proposes that Ghana starts now to plan for the introduction of the nuclear option so that in the long term we may have in place an environmentally friendly, dependable and reliable supply of energy. The paper also highlights the economic competitiveness of nuclear power over the other energy options in Ghana and addresses the apprehension and misunderstanding surrounding the nuclear power option. (author)

  4. National Option of China's Nuclear Energy Systems for Spent Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R.X. [University of Science and Technology, Daejeon (Korea, Republic of); Ko, W. I.; Lee, S. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Along with safety concerns, these long standing environmental challenges are the major factors influencing the public acceptance of nuclear power. Although nuclear power plays an important role in reducing carbon emissions from energy generation, this could not fully prove it as a sustainable energy source unless we find a consensus approach to treat the nuclear wastes. There are currently no countries that have completed a whole nuclear fuel cycle, and the relative comparison of the reprocessing spent fuel options versus direct disposal option is always a controversial issue. Without exception, nowadays, China is implementing many R and D projects on spent fuel management to find a long-term solution for nuclear fuel cycle system transition, such as deep geological repositories for High Level Waste (HLW), Pu Reduction by Solvent Extraction (PUREX) technology, and fast reactor recycling Mixed U-Pu Oxide (MOX) fuels, etc. This paper integrates the current nation's projects of back-end fuel cycle, analyzes the consequences of potential successes, failures and delays in the project development to future nuclear fuel cycle transition up to 2100. We compared the dynamic results of four scenarios and then assessed relative impact on spent fuel management. The result revealed that the fuel cycle transition of reprocessing and recycling of spent fuel would bring advantages to overall nuclear systems by reducing high level waste inventory, saving natural uranium resources, and reducing plutonium management risk.

  5. Contemplating future energy options

    International Nuclear Information System (INIS)

    Pooley, D.

    2005-01-01

    All political parties in the UK accept that we should move away from our reliance on fossil fuels towards a much greater use of alternative energy technologies. Nuclear power is one of these but finds minimal support in the political spectrum. The article reviews the European Commission's Advisory Group on Energy submission to the EC's report entitled 'Key Tasks for European Energy R and D'. The 'strength and weaknesses' of the various 'alternative energy' systems (including nuclear power) are summarised and then the key R and D tasks which, if they are carried out successfully, should make the eight selected technologies significantly more attractive. However, the message here is clear enough: there are no easy options, only a range of very imperfect possibilities, despite what enthusiastic proponents of each may say. Nuclear fission is certainly one of the most attractive options available, but the industry needs to continue to strive to eliminate the possibility of significant off-site releases, whether caused by plant failure or by human error or intention, and to prove beyond reasonable doubt the safety of high-level radioactive waste disposal. (author)

  6. The electricity supply options in Cuba and the potential role of nuclear energy

    International Nuclear Information System (INIS)

    Perez Martin, D.; Lopez Lopez, I.

    2000-01-01

    Cuba is poor in primary energy resources. After an economic crisis initiated in 1990, a recuperation process began in 1994, but in the electric sector we could not reach the 1989 generation level. A comparative assessment of different options to cover electricity demand until 2015 performed using DECADES tools shows that the most important options are: hydro, nuclear, biomass, combined cycle and combustion turbines. The nuclear power option in the evaluated electric system expansion cases can play an important economic and environment role. The introduction of one nuclear power plant will save 330 million dollars in the expansion of the national electricity system. Environment emissions calculations during the study period, taking into consideration only the generation step, show that only the introduction of one NPP until 2015 will produce significant environment benefits. With the assumption that in generation step hydro, nuclear and biomass plants do not produce emissions, if the amount of electricity generated by these plants during study period would be generated in conventional Oil Steam Boilers with typical emission factors for Cuban conditions, the CO 2 emissions would increase in 26 millions tonnes, 576 thousand tonnes of SO x and 102 thousand tonnes of NO x . The NPP cover 80% of these reductions. (author)

  7. Nuclear energy - option for the future. Proceedings

    International Nuclear Information System (INIS)

    1996-01-01

    The goal of this conference was to analyse the future national and international problems arising with energy supplies with regard to the large mass flows and CO 2 flows involved in the use of nuclear energy. The following topics are dealt with: - nuclear energy, world-wide energy management and developments in Europe and Asia - disposal and ultimate waste disposal, plutonium management, an assessment of the Chernobyl accident 10 years on - new reactor developments in the energy mix - the costs arising with nuclear energy in the energy mix. In view of the demand made by climate researchers, to reduce CO 2 , and the additional construction work planned in the eastern and Asian areas, it will remain necessary for the Federal Republic of Germany,too, to maintain the know-how and technology for nuclear energy generation. (orig./DG)

  8. Report of “the 2013 international forum on peaceful use of nuclear energy, nuclear non-proliferation and nuclear security. Ensuring nuclear non-proliferation and nuclear security of nuclear fuel cycle options in consideration of the accident at TEPCO's Fukushima Daiichi Nuclear Power Station”

    International Nuclear Information System (INIS)

    Yamamura, Tsukasa; Suda, Kazunori; Tomikawa, Hirofumi; Suzuki, Mitsutoshi; Kuno, Yusuke; Mochiji, Toshiro

    2014-03-01

    The Japan Atomic Energy Agency (JAEA) held “International Forum on Peaceful Use of Nuclear Energy, Nuclear Non-proliferation and Nuclear Security – Ensuring Nuclear Non-Proliferation and Nuclear Security of Nuclear Fuel Cycle Options in consideration of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station –” on 3 and 4 December 2013, with the Japan Institute of International Affairs (JIIA) and School of Engineering, The University of Tokyo, as co-hosts. In the Forum, officials from Japan, the United States, France and International Atomic Energy Agency (IAEA) explained their efforts regarding peaceful use of nuclear energy and nuclear non-proliferation. Discussion was made in two panels, entitled “Nuclear non-proliferation and nuclear security measures of nuclear fuel cycle options in consideration of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station” and “Roles of safeguards and technical measures for ensuring nuclear non-proliferation for nuclear fuel cycle options”. In the first panel based on the implications of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station on the domestic and global nuclear energy use and increased interest in the back end of nuclear fuel cycle, discussion was made on nuclear non-proliferation and nuclear security challenges on both fuel cycle options from the policy and institutional viewpoints whereas in the second panel the roles of safeguards and proliferation resistant nuclear technology including plutonium burning technology in ensuring nuclear non-proliferation and nuclear security in the back end of nuclear fuel cycle were discussed. Officials and experts from Japan, IAEA, the United States, France and Republic of Korea participated in the panel and made contributions to active discussion. This report includes abstracts of keynote speeches, summaries of two panel discussions and materials of the presentations in the forum. The editors take full responsibility for the wording

  9. 77 FR 19278 - Informational Meeting on Nuclear Fuel Cycle Options

    Science.gov (United States)

    2012-03-30

    ... DEPARTMENT OF ENERGY Informational Meeting on Nuclear Fuel Cycle Options AGENCY: Office of Fuel... activities leading to a comprehensive evaluation and screening of nuclear fuel cycle options in 2013. At this... fuel cycle options developed for the evaluation and screening provides a comprehensive representation...

  10. Nuclear energy: a necessary option

    International Nuclear Information System (INIS)

    Robles N, A. G.; Ramirez S, J. R.; Esquivel E, J.

    2017-09-01

    With the decree of the Energy Reform and with the creation of the Electricity Industry and Energy Transition Laws; nuclear energy is incorporated into these as a source of clean energy. Currently, the share of electricity generation using conventional technologies is 80% and clean technologies of 20% of which hydroelectric plants represent 50% of these. While the operation of hydroelectric, wind, solar plants, etc. have contributed to reduce greenhouse gas emissions (GGE), the global effort to mitigate climate change has not observed the expected results, according to the meeting of COP 21 in Paris, where 196 countries agreed, unanimously, to limit the increase of the temperature at 2 degrees Celsius or less for before the year 2100. In Paris, Mexico voluntarily submitted its national mitigation and adaptation contribution to climate change by issuing 162 M ton of CO 2eq as a goal to 2030, that is a ΔGGE of -22%. This means that the electricity sector should contribute to the reduction of 139 M ton of CO 2eq and a ΔGGE of -31%. According to some experts, the goal of reducing gases for the sector could be achieved during the period defined in the Agreement, provided that the share of clean energies is added as established in the Energy Reform and the Development Program of the National Electric System 2016-2030, which establishes the addition of 35,532 MW (62%) of installed capacity in clean technologies, where nuclear energy participates with 4,191 MW (7%) that is, 2,651 MW more. Thus, this article aims to show the importance of the use of nuclear energy in the electricity sector to reduce GGE, achieve international commitments and combat climate change. (Author)

  11. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  12. U.S. energy policy: The nuclear energy option

    International Nuclear Information System (INIS)

    Erb, K.

    1992-01-01

    Thank you for the opportunity to talk about the role of nuclear energy in the President's National Energy Strategy, particularly as it affects your discussions at this International Aging Research Information Conference. Dr. D. Allan Bromley, the President's Science Advisor, asked me to convey to you his interest in your work - he has had a long association with your field - and to express his determination to work to help assure that nuclear energy realizes its potential as a safe, clean source of a substantial portion of our electricity. Dr. Bromley also asked me to read a message to the Conferees assembled here today, and I will do so at the conclusion of my remarks. The National Energy Strategy, or NES, is now just over one year old, and it is rapidly being translated into action. For example, the President's budget request proposes investing over $1.1 billion in FY 1993 toward implementation of the NES, an increase of 39% over our expenditures in 1991, the year the NES was formulated. This budget will support a broad range of activities, including results-oriented R ampersand D on a broad range of energy technologies. The Senate has passed an energy bill containing many of the elements of the NES, and the House is expected to pass a similar bill. But the aspect of the strategy that I want to discuss today is its conclusion that nuclear energy will become an increasingly important component of our energy supply portfolio. The NES reflects the realization that nuclear power provides an attractive means of generating the electricity that will be needed to support our economic growth and consequent improvements in quality of life as we move into the next century

  13. Uranium Resource Availability Analysis of Four Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Youn, S. R.; Lee, S. H.; Jeong, M. S.; Kim, S. K.; Ko, W. I.

    2013-01-01

    Making the national policy regarding nuclear fuel cycle option, the policy should be established in ways that nuclear power generation can be maintained through the evaluation on the basis of the following aspects. To establish the national policy regarding nuclear fuel cycle option, that must begin with identification of a fuel cycle option that can be best suited for the country, and the evaluation work for that should be proceeded. Like all the policy decision, however, a certain nuclear fuel cycle option cannot be superior in all aspects of sustain ability, environment-friendliness, proliferation-resistance, economics, technologies, which make the comparison of the fuel cycle options very complicated. For such a purpose, this paper set up four different fuel cycle of nuclear power generation considering 2nd Comprehensive Nuclear Energy Promotion Plan(CNEPP), and analyzed material flow and features in steady state of all four of the fuel cycle options. As a result of an analysis on material flow of each nuclear fuel cycle, it was analyzed that Pyro-SFR recycling is most effective on U resource availability among four fuel cycle option. As shown in Figure 3, OT cycle required the most amount of U and Pyro-SFR recycle consumed the least amount of U. DUPIC recycling, PWR-MOX recycling, and Pyro-SFR recycling fuel cycle appeared to consumed 8.2%, 12.4%, 39.6% decreased amount of uranium respectively compared to OT cycle. Considering spent fuel can be recycled as potential energy resources, U and TRU taken up to be 96% is efficiently used. That is, application period of limited uranium natural resources can be extended, and it brings a great influence on stable use of nuclear energy

  14. Energy options

    International Nuclear Information System (INIS)

    Hampton, Michael

    1999-01-01

    This chapter focuses on energy options as a means of managing exposure to energy prices. An intuitive approach to energy options is presented, and traditional definitions of call and put options are given. The relationship between options and swaps, option value and option exercises, commodity options, and option pricing are described. An end-user's guide to energy option strategy is outlined, and straight options, collars, participating swaps and collars, bull and bear spreads, and swaption are examined. Panels explaining the defining of basis risk, and discussing option pricing and the Greeks, delta hedging, managing oil options using the Black-Scholes model, caps, floors and collars, and guidelines on hedging versus speculation with options are included in the paper

  15. Perspective on long-range nuclear energy options

    International Nuclear Information System (INIS)

    Harms, W.O.

    1977-01-01

    The study group whose effort is presented here concluded that the United States urgently needs to have a breeder option available for possible deployment before the year 2000 primarily because of uncertainties in the availability of fossil fuels and uranium supplies. It was recommended that the U/Pu LMFBR program proceed as planned, including prompt construction of the CRBRP and its associated fuel cycle facilities. Alternative cycle studies should be pursued, but without significantly delaying the current program. There are technological choices which, in suitable political contexts, may somewhat reduce proliferation risks; of these, only those that employ breeders preserve the breeder option (and the nuclear option in the long term. These alternatives must be coupled with political agreements to have any significant effect on proliferation potential internationally. These same political agreements should suffice to control the U/Pu breeder cycle; there is only a difference in degree between the U/Pu and the denatured Th/U-233 cycles

  16. The nuclear option in Canada - why it is gaining ground

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Alizadeh, A.; Hedges, K.R.; Tighe, P.

    2005-01-01

    Over the last five years, the nuclear option in Canada has gone from 'off-the-radar' to an essential part of the energy debate. In Ontario, in particular, building new nuclear plants, along with life-extension of existing plants, has been recommended by government commissions as one of the vital energy-supply options to be pursued. Both life-extension and introduction of new nuclear power plants are complicated by uncertainties in the energy market, and by changes in the organizational and policy environment. Public and policy-maker recognition of the nuclear role are steadily growing, but commercial conditions to support nuclear projects are still difficult to define and obtain. In Canada, as in many OECD countries, the need to add to electricity infrastructure is becoming apparent. Life-extension of existing nuclear units, and projects to build new unit, are being planned. The key challenges, once energy policy issues have been addressed, are mainly commercial. Based on its successful experience with overseas projects such as Quinshan, and on its evolutionary approach to design of new, advanced power plants, AECL is well placed to meet these challenges and launch a new round of nuclear projects. Overall, the Canadian perspective is towards increasing support for the nuclear option. Canada is poised to join the vanguard of the broadening nuclear power expansion. (orig.)

  17. Proceedings of the Workshop on Program Options in Intermediate-Energy Physics. Keynote address: New directions in intermediate-energy nuclear physics

    International Nuclear Information System (INIS)

    Brown, G.E.

    1980-05-01

    This report presents the keynote address given by G.E. Brown at a LASL colloquium on August 21, 1979, for the Workshop on Program Options in Intermediate-Energy Physics. Professor Brown reviewed major topics of interest in intermediate-energy nuclear physics and suggested experimental approaches that might be most productive in the near future. 22 figures

  18. DPRK energy sector development priorities: Options and preferences

    International Nuclear Information System (INIS)

    Hippel, David von; Hayes, Peter

    2011-01-01

    The goal of international negotiations with the Democratic People's Republic of Korea (DPRK), when they begin again, will be to convince the DPRK to give up its nuclear weapons and the capabilities to produce them. The DPRK's energy sector is a key to resolution of the issue. Thus offering a well-considered, well-structured package of energy sector assistance options will be key to the sustainable success of the negotiations. This article briefly reviews some of the key options for DPRK energy assistance ranging from human capacity-building in fields like energy efficiency, renewable energy, and energy markets, to assistance with rebuilding key electricity and coal mining infrastructure, to integrated pilot energy/electricity grid/economic development projects on the county level, to light-water nuclear reactors. It then reviews preferences for DPRK assistance options as offered by North Koreans, and a summary of the likely points of view of the key DPRK actors that will be involved in negotiations.

  19. Nuclear Option for a Secure and Sustainable Energy Supply

    International Nuclear Information System (INIS)

    Kolundzija, V.; Mesarovic, M.

    2002-01-01

    Present energy policy is required to ensure a balance between security of supply, competitiveness and environmental requirements. Recent changes involved by deregulation and liberalization of electricity and natural gas markets even strengthen such a policy. However, dependency on external energy sources carries risks that have to be managed since a large proportion of both oil and gas reserves are found in politically unstable regions. Electrical energy is a fundamental prerequisite for a civilized life and an essential commodity, but it cannot be stored and this restricts the extent to which there can be a real free market for electricity. Therefore, relying on imports of electricity to a large extent may prove unsecure because this requires a true, completely open market in which the opportunities for cross-border trade are effective and balanced and transport connections are adequate. This is equally applied to the countries in the South-Eastern Europe, despite very good prospects for development of the regional electricity market there. In this regard, the use of nuclear energy has not any risk associated with external dependency because there are abundant quantities of uranium available world-wide from many diverse sources. The inherent mitigation of supply risk associated with the use of uranium should act as an incentive to the further use of nuclear energy. In addition, already very large stocks of fuel assemblies and fuel-making materials available, especially when these are measured in terms of power generating capacity per year at current production rates. It is, therefore, very important for any country to recognize such strategic aspect of nuclear energy when addressing the issue of security of power supply. Nuclear option is in a unique position to restore its original role of the main source of energy with an increased attention paid to the security of electricity supply as well as regulatory changes affecting fossil fuels, particularly with due

  20. Nuclear Power Remains Important Energy Option for Many Countries, IAEA Ministerial Conference Concludes

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: Nuclear power remains an important option for many countries to improve energy security, provide energy for development and fight climate change, the International Ministerial Conference on Nuclear Power in the 21st Century concluded today. Participants also emphasised the importance of nuclear safety in the future growth of nuclear power, noting that nuclear safety has been strengthened worldwide following the March 2011 accident at TEPCO's Fukushima Daiichi Nuclear Power Station. The Conference was organised by the International Atomic Energy Agency (IAEA) in cooperation with the Nuclear Energy Agency (NEA) of the Organisation for Economic Co-operation and Development (OECD), and hosted by the Government of the Russian Federation through the State Atomic Energy Corporation ROSATOM. Sergei Kirienko, Director General of the State Atomic Energy Corporation ROSATOM, said: ''The Conference has achieved its main goal: to confirm that nuclear energy is an important part of the world's energy-mix. The innovative character of this type of energy provides us with sustainable development in the future. The closed nuclear fuel cycle and fusion may open for humanity absolutely new horizons. The Conference underlined the leading role of the IAEA in promoting the peaceful use of nuclear power and provision of the non-proliferation regime. Russia as a co-founder of the IAEA will always support its efforts to develop and expand safety and security standards all over the world.'' ''I believe we can look ahead with confidence and optimism to the future of nuclear power in the 21st century,'' said IAEA Director General Yukiya Amano. After the accident at the Fukushima Daiichi Nuclear Power Plant in Japan in March 2011, ''effective steps have been taken to make nuclear power plants safer everywhere,'' he stressed. ''Nuclear power will make a significant and growing contribution to sustainable development in the coming decades. The IAEA is committed to ensuring that the

  1. Energy options. Preparing for an uncertain future

    International Nuclear Information System (INIS)

    Andrews, H.R.; Harvey, M.

    1988-02-01

    We must begin now to plan to replace fossil fuels as a major energy source. Few energy sources are capable of supplying the vast amount of energy required. The only options that can play a major role are coal, hydro-electricity, and nuclear. The soft energy options are not reliable: we cannot control the blowing of the wind or the shining of the sun; biomass is susceptible to disease. If we were to become too dependent on these we would be surrendering our energy system to the vagaries of nature. A strong electrical system is a cornerstone of energy security. Surplus capacity is often criticized, but a shortfall in supply will cause industrial chaos. Nuclear power is based on a sustainable resource supply, uses a proven technology, is economically competitive, and causes minimal harm to human populations and the environment

  2. Nuclear energy option for energy security and sustainable development in India

    International Nuclear Information System (INIS)

    Mallah, Subhash

    2011-01-01

    India is facing great challenges in its economic development due to the impact on climate change. Energy is the important driver of economy. At present Indian energy sector is dominated by fossil fuel. Due to international pressure for green house gas reduction in atmosphere there is a need of clean energy supply for energy security and sustainable development. The nuclear energy is a sustainable solution in this context to overcome the environmental problem due to fossil fuel electricity generation. This paper examines the implications of penetration of nuclear energy in Indian power sector. Four scenarios, including base case scenario, have been developed using MARKAL energy modeling software for Indian power sector. The least-cost solution of energy mix has been measured. The result shows that more than 50% of the electricity market will be captured by nuclear energy in the year 2045. This ambitious goal can be expected to be achieved due to Indo-US nuclear deal. The advanced nuclear energy with conservation potential scenario shows that huge amounts of CO 2 can be reduced in the year 2045 with respect to the business as usual scenario.

  3. The possible role of nuclear energy in Italy

    International Nuclear Information System (INIS)

    Esposto, Stefano

    2008-01-01

    Italy, after the vote of the referendum in 1987, stopped producing electricity from nuclear fuel for the energy demand. This paper analyses the current Italian energy outlook and clarifies how the choice to abandon the nuclear option damaged our economy. Nowadays, the possible reintroduction of civil nuclear option is hindered by groups claiming that nuclear energy is not convenient and is incredibly dangerous. In this paper it is clarified with international references how this is not correct and why Italy should start thinking seriously and without prejudices at future energy options

  4. The possible role of nuclear energy in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Esposto, Stefano [University of Rome ' La Sapienza' , Via Eudossiana 9, 00187 Rome (Italy)], E-mail: stefanoesposto@gmail.com

    2008-05-15

    Italy, after the vote of the referendum in 1987, stopped producing electricity from nuclear fuel for the energy demand. This paper analyses the current Italian energy outlook and clarifies how the choice to abandon the nuclear option damaged our economy. Nowadays, the possible reintroduction of civil nuclear option is hindered by groups claiming that nuclear energy is not convenient and is incredibly dangerous. In this paper it is clarified with international references how this is not correct and why Italy should start thinking seriously and without prejudices at future energy options.

  5. Nuclear energy in Malaysia

    International Nuclear Information System (INIS)

    Jacob, F.X.

    1996-01-01

    The Malaysian Vision 2020 envisages doubling of the its economy every ten years for the next three decades. The Second Outline Perspective plan 1991-2000 (OPP2), also known as the National Development Policy (NDP) will set the pace to enable Malaysia to become a fully developed nation by the year 2020. The Malaysian economy is targeted to grow at 7 percent per annum in the decade of OPP2. In view of the targets set under Vision 2020, it is important to ensure that energy does not become a constraint to growth, and this sector develops in a least cost basis. Energy is crucial for industrialization and no modern industrial state can function without it. The paper presents a description of the main utilities in the country. Their installed capacities, maximum demand, generation mix and customers served are discussed. The electricity demand forecast till the year 2020 is presented. The paper presents this for 4 scenarios - a low growth, business as usual scenario, a moderate growth, business as usual scenario, a moderate growth, energy efficient scenario and a targeted growth, energy efficient scenario. The energy resources in the country is described together with its energy policy. The country's four-fuel policy is elaborated with the various options discussed. The environmental and pricing policies with regards to energy is also briefly given. Finally the nuclear option is presented in this context of the country's energy policy. The country had undertaken various studies for the nuclear option. These studies are given in the paper. The purpose of these studies and what the government decided is also discussed. Finally the prospects for the nuclear option in the future for the country is discussed. It is concluded that while, for the present, the nuclear option is not considered by the government, this may not be so in the future. The various reasons for this is given and the paper concludes that it may be prudent to keep this option under constant review. (J.P.N.)

  6. Nuclear technology options

    International Nuclear Information System (INIS)

    Salvatores, Massimo

    2013-01-01

    Different strategies and motivations in different countries have led to diverse options. In Europe the SNETP (Sustainable Nuclear Energy Technology Platform) has the objective of developing R&D supporting GEN-II (present) and GEN-III nuclear systems under development; allowing sustainability and minimisation of waste burden, promoting advanced Gen-IV Fast Reactors; and accounting for a Nuclear Cogeneration Industrial Initiative. A remarkable initiative in the USA has been the promotion of small modular reactors (SMRs) – at less than 300 MWe in capacity, much smaller than typical reactors – which can be an ideal choice for (remote) areas which cannot support a larger reactor. Compact scalable design offers a host of potential safety, construction and economic benefits. More “upbeat” strategies are expected in other areas of the world where significant increase in nuclear energy demand is predicted in the next decades. If this growth materialises, future fuel cycles characteristics, feasibility and acceptability will be crucial. This paper will discuss different scenarios for future fuel cycles, resources optimisation and/or waste minimization, the range from full fast reactor deployment to phase-out, management of spent nuclear fuel and the significant potential benefits of advanced cycles. The next 45 years will be dominated by deployment of standard large or medium size plants operating for 60 years. Available resources do allow it. However, fuel cycle will be a growing and most challenging issue and early assessments will be needed for public acceptance and policy decisions.

  7. The nuclear energy debate

    International Nuclear Information System (INIS)

    Rippon, S.

    1976-01-01

    With reference to the public discussion which is taking place at the moment concerning the future of nuclear energy in the UK, the document from the Advisory Council on Research and Development for Fuel and Power and also the report of the Royal Commission on Environmental Pollution are considered. Although there have been many other projections of UK and world energy requirements prepared by many different organisations, few cover such a wide range of scenarios in such detail as the ACORD report. The Royal Commission report contains many reassuring findings on the more extreme claims of the worldwide anti-nuclear movement, but one cannot read it without gaining the impression that the nuclear option is the energy source they would most like to do without. It is felt that against this background, it would seem to be time for the power industry to stop defending nuclear energy as an acceptable necessity and rather promoting it as the best energy option. (U.K.)

  8. Nuclear Option in Korea

    International Nuclear Information System (INIS)

    Han, K. I.

    2002-01-01

    With sixteen(16) operating nuclear units in Korea, the share of nuclear power generation reached 41% of the total electric power generation as of December 2000. A prediction is that it would further increase to 44.5% by year 2015 according to the national long term power development plan. Four units are currently under construction with 6 more units in order. With little domestic energy resource and increasing energy demand to support national economic growth, Korea has chosen nuclear power as one of the major energy sources to ensure stable power supply and to promote energy self-sufficiency. It has been recognized that nuclear power in Korea is not a selective option but rather a necessity. The Korean nuclear power development started with construction of a 600 MWe size reactor that was designed and constructed by foreign vendors. As the national grid capacity became larger, the size of nuclear units increased to 1000 MWe class. In the mean time, the need for nuclear technology self-reliance grew not only in operation and maintenance but also in construction, manufacturing and design. For this, a nuclear technology self-reliance program has been embarked with the support of the Government and utility, and the 1000 MWe class KSNP(Korean Standard Nuclear Power Plant) has been developed. The KSNPs are currently being designed, manufactured, constructed and operated by relevant Korean entities themselves. To fit into a larger capacity national grid and also to improve nuclear economic competitiveness, the 1400 MWe class KNGR(Korean Next Generation Reactor) design has been developed uprating the 1000 MWe KSNP design. Its construction project is currently under contract negotiation, and is planned to be finished by 2010. In the mean time, to be ready for future electric power market deregulation, the 600 MWe class small KSNP design is being developed downsizing the KSNP. A modular small size reactor, SMART(System Integrated Modular Advanced Reactor) is also being

  9. Nuclear energy in view

    International Nuclear Information System (INIS)

    1982-01-01

    This leaflet advertises the availability of the following from UKAEA: film and video titles (nuclear fuel cycle; energy for all; power from the atom; using radioactivity; fast reactor; energy - the nuclear option; principles of fission; radiation); slide-tape packs (16 titles); other information services. (U.K.)

  10. The economics of nuclear energy

    International Nuclear Information System (INIS)

    Wilmer, P.

    2004-01-01

    In common with many of the issues surrounding nuclear energy, there is some truth in the popular claim that nuclear energy is 'not economic', but this is far from being a universal truth. This paper puts forward the view that, overall, nuclear energy can be a competitive source of electricity and a realistic economic option for the future. (author)

  11. The future of the nuclear option

    International Nuclear Information System (INIS)

    Frost, B.R.T.

    1992-01-01

    This paper reports on the future of the nuclear option. No nuclear power reactors have been ordered in the U.S.A. since 1975, but the number of operating reactors has increased to the 115 operating today. The demand for electric power continues to grow. At this time, concern over the environmental effects of fossil fuels has grown; global warming and acid rain effects are major determinants of energy policy. In these circumstances nuclear power may be the only viable option to meet the growing demand for electricity. In the past decade the nuclear power industry has addressed its major critics by standardizing designs, improving operator training, and developing safe methods of disposing of waste products. Fast breeder reactors have taken a new lease on life through the American Integral Fast Reactor (IFR) design which is inherently safe, proliferation resistant, and helps the waste-disposal problem. It will probably not be commercially available until well into the next century. The extension of reactor life raises questions of long-term thermal and radiation effects

  12. Role of nuclear energy in Thailand

    International Nuclear Information System (INIS)

    Chongkum, Somporn

    2003-01-01

    Nuclear energy in Thailand can be highlighted when the Office of Atomic Energy for Peace (OAEP) was established since 1961 for taking role of nuclear safety regulation, conducting research and promotion for peaceful uses of nuclear energy. Its main facilities were the 1 megawatt Thai Research Reactor-1 (TRR-1) and the Cobalt-60 Gamma Irradiator. Since then there have been substantial progress made on utilization of nuclear energy in various institutions and in private sectors. Nowaday, there are around 500 units of nuclear energy users in Thailand, i.e. 100 units in medicine, 150 units in education and 250 units in industry. In terms of nuclear power for electricity generation, the Electricity Generating Authority of Thailand (EGAT) has conducted the activities to support the nuclear power plant project since 1972 however, because there is widespread public concerned about nuclear safety, waste disposal and recently economic problems in Thailand, nuclear energy option is not put in immediate plan for alternative energy resource. Within the short future, increased in economical, demand fir electricity and safe operation of nuclear plants will likely be demonstrated and recognized. Nuclear energy should remain as an option in the long-term energy strategies for Thailand. (author)

  13. BS degree in nuclear engineering or a nuclear option

    International Nuclear Information System (INIS)

    Williams on, T.G.

    1988-01-01

    Many nuclear engineering educators are concerned about the health of nuclear engineering academic departments. As part of a review of the BS nuclear engineering degree program at the University of Virginia, the authors surveyed several local utilities with operating nuclear plants about their needs for nuclear engineering graduates. The perception of many of the utility executives about a nuclear engineering degree and about a nuclear option in another engineering curriculum does not agree with the way the authors view these two degrees. The responses to two of the survey questions were of particular interest: (1) does your company have a preference between nuclear engineering graduates and graduates in other fields with a nuclear option? (2) what do you consider to be a minimum level of education in nuclear engineering for a nuclear option in mechanical engineering? All of the four utilities that were surveyed stated a preference for mechanical or electrical engineers with a nuclear option, although two indicated that there are certain jobs for which a nuclear engineering graduate is desired

  14. Approach to studying the nuclear power option in Malaysia

    International Nuclear Information System (INIS)

    Jamal Khair Ibrahim; Mohamad Zam Zam

    1986-01-01

    As a rapid growth in industrialisation and population policy, energy consumption in Malaysia has increased cosiderably. The nation is pursuing a course of diversification of primary energy sources: gas, hydro, coal and oil. Recently nuclear power programme is assessed and evaluated as another energy option in the fuel strategy. Studies of infrastructure, manpower technological and other related considerations are included. Impacts and policy implications of the introduction of nuclear power in Malaysia are also discussed. (A.J.)

  15. Nuclear primary energy carriers. Short version

    Energy Technology Data Exchange (ETDEWEB)

    Jaeck, W

    1978-04-01

    Basing on our present knowledge the following energy sources for energy supply must be taken into consideration in the long term: regenerative energy sources, fission energy gained by breeder reactors, nuclear fusion. While regenerative energy sources were treated at full length in the study 'Energy Sources for Tomorrow' the present study specifies the other two energy options. The availability and the reliability of nuclear primary energy carrier supply is described in detail and the conversion systems available or still being developed are investigated with regard to their specific consumption of primary energy. Topical questions concerning the proliferation stability of the fuel cycles and techniques are subject to the INFCE program. With reference to the nuclear energy documentation activities of the Federal Government this study is supposed to supply further fundamental material on nuclear primary energy carriers, consumption and readiness for application. Thus it will contribute to the question: 'Is nuclear energy an option which guarantees energy supply in the long term for the Federal Republic of Germany'. (orig.) 891 UA 892 ARA.

  16. Nuclear primary energy carriers. Pt. 1

    International Nuclear Information System (INIS)

    1978-04-01

    Basing on our present knowledge the following energy sources for energy supply must be taken into consideration in the long term: regenerative energy sources, fission energy gained by breeder reactors, nuclear fusion. While regenerative energy sources were treated at full length in the study 'Energy Sources for tomorrow' the present study specifies the other two energy options. The availability and the reliability of nuclear primary energy carrier supply is described in detail and the conversion systems available or still being developed are investigated with regard to their specific consumption of primary energy. Topical questions concerning the proliferation stability of the fuel cycles and techniques are subject to the INFCE programme. With reference to the nuclear energy documentation activities of the Federal Govenment this study is supposed to supply further fundamental material on nuclear primary energy carriers, consumption and readiness for application. Thus it will contribute to the question: 'Is nuclear energy an option which guarantees energy supply in the long term for the Federal Republic of Germany'. (orig.) [de

  17. The role of nuclear power in the option zero emission technologies for fossil fuels

    International Nuclear Information System (INIS)

    Corak, Z.

    2006-01-01

    The energy sector is one of the main sources of greenhouse gas (GHG) emissions particularly carbon dioxide (CO2) increasing concerns due to their potential risk to induce global warming and climate change. The Parties having signed the Kyoto Protocol in December 1997, committed to decrease their GHG emissions. The Protocol states that countries shall undertake promotion, research, development and increased use of new and renewable forms of energy, of carbon dioxide sequestration technologies and of advanced and innovative environmentally sound technologies. The one significant option that is not specifically mentioned is nuclear energy which is essentially carbon-free. There are a number of technical options that could help reducing, or at least slowing the increase of, GHG emissions from the energy sector. The list of options includes: improving the efficiency of energy conversion and end-use processes; shifting to less carbon intensive energy sources (e.g. shifting from coal to natural gas); developing carbon-free or low-carbon energy sources; and carbon sequestration (e.g. planting forests or capturing and storing carbon dioxide). It must be pointed out that nuclear power is one of the few options that are currently available on the market, competitive in a number of countries, especially if global costs to society of alternative options are considered; practically carbon-free; and sustainable at large-scale deployment. The nuclear power could play significant role in alleviating the risk of global climate change. The main objective of the article is to present sequestration options, their cost evaluation as well as comparation with alternative possibilities of nuclear energy production. (author)

  18. Identification of the real options in a program of nuclear plants

    International Nuclear Information System (INIS)

    Camacho G, D.; Diaz N, M. J.; Reinking C, A.

    2008-01-01

    The development of our societies and our economies this intimately related to electric power and this as well with the generating sources, due to the projection of world-wide growth should go associate with a strategy of growth of energy generation. Considering to the nuclear power as an option to satisfy the energy needs that a country can provide two main immediate benefits: The stabilization of prices of security of provision of electric power of the nation. The care of the environment, since the gas discharges greenhouse are almost null. At the moment nuclear energy represents economically a viable option for the capital investment, taking into account the development from technology, the policies implemented by the state and the prices of other fuels. Due to the great investment that its require for the nuclear plants are necessary to use financial tools that allow to analyze the future scenes in which ours investment can be seen affected and to value the flexibility of being able to enlarge, to postpone or to stop our project in order to have majors profits or to diminish the lost ones. This valuation of the flexibility can be obtained from the called method Real Options. By analysis of Real Options the process is understood to apply to the methodology of the Financial Options to the valuation of projects or the management of real assets. The Real Options appear in flexible plans, projects, activities or enterprise investments, like for example, to leave or to sell the investment project before concluding it, changing to their use or its technology, to prolong their life, the option to choose, one or the other capacity, among others possibilities. In this work is an example of the application of the method of Real Options in the decision to invest or to defer the investment for the construction of a nuclear plant following the behavior of the tariffs in the market or the costs of generation of other technologies with which a nuclear plant competes. (Author)

  19. Nuclear energy. Choice for GHG emission reduction and sustainable energy development in China

    International Nuclear Information System (INIS)

    Zhang Rui; Zou Lin; Wang Yongping

    2007-01-01

    In this paper, the sustainability of China's energy development and the major challenges in four energy priorities are discussed by establishing and applying of Indicators of Sustainable Energy Development (ISED) with consideration of nuclear power as one viable option. On this basis, China's Energy Strategy to 2020 is discussed in detail. On the other hand, the crucial role that nuclear energy will play in the fields of emission reduction and climate change is discussed by analyzing illustrative models under different energy development scenarios. An assessment on what could look like in a fast developing country like China when an equivalent fund was invested in five different energy options of hydro-power, coal-fired power, nuclear power, wind power and gas-fired power would be presented with a discussion about possible future international climate protection regimes and the methodologies to evaluate the potential roles of those energy options, especially, the nuclear energy. (author)

  20. Energy priorities and options for the European Community

    International Nuclear Information System (INIS)

    Audland, C.J.

    1984-01-01

    The paper discusses the energy priorities and options for the European Community. Reasons for the recent improvement in the efficiency of energy use are briefly discussed, as well as the outlook for 1990, priorities for the future, solid fuels. natural gas, electricity and nuclear energy. Energy policy considerations in the United Kingdom are also mentioned. (U.K.)

  1. Radiological impacts of spent nuclear fuel management options. A comparative study

    International Nuclear Information System (INIS)

    2000-01-01

    Given its potential significance for public health and the environment, the impact of radioactive releases during important steps of nuclear energy production must be considered when selecting among different fuel cycles. With this in mind, the OECD Nuclear Energy Agency (NEA) has undertaken a comparative study to the radiological impacts of two main fuel cycle options : one with and one without reprocessing of spent nuclear fuel. The study compares the respective impacts of the two options based on generic models and assumptions as well as actual data. It concludes that the difference between them is not significant. A wealth of recent data assembled and evaluated by an international expert team is provided in annex. (authors)

  2. Nuclear energy: a necessary option; Energia nuclear: una opcion necesaria

    Energy Technology Data Exchange (ETDEWEB)

    Robles N, A. G. [Comision Federal de Electricidad, Periferico Sur No. 4156, Col. Jardines del Pedregal, 01900 Ciudad de Mexico (Mexico); Ramirez S, J. R.; Esquivel E, J., E-mail: ambar.robles@cfe.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    With the decree of the Energy Reform and with the creation of the Electricity Industry and Energy Transition Laws; nuclear energy is incorporated into these as a source of clean energy. Currently, the share of electricity generation using conventional technologies is 80% and clean technologies of 20% of which hydroelectric plants represent 50% of these. While the operation of hydroelectric, wind, solar plants, etc. have contributed to reduce greenhouse gas emissions (GGE), the global effort to mitigate climate change has not observed the expected results, according to the meeting of COP 21 in Paris, where 196 countries agreed, unanimously, to limit the increase of the temperature at 2 degrees Celsius or less for before the year 2100. In Paris, Mexico voluntarily submitted its national mitigation and adaptation contribution to climate change by issuing 162 M ton of CO{sub 2eq} as a goal to 2030, that is a ΔGGE of -22%. This means that the electricity sector should contribute to the reduction of 139 M ton of CO{sub 2eq} and a ΔGGE of -31%. According to some experts, the goal of reducing gases for the sector could be achieved during the period defined in the Agreement, provided that the share of clean energies is added as established in the Energy Reform and the Development Program of the National Electric System 2016-2030, which establishes the addition of 35,532 MW (62%) of installed capacity in clean technologies, where nuclear energy participates with 4,191 MW (7%) that is, 2,651 MW more. Thus, this article aims to show the importance of the use of nuclear energy in the electricity sector to reduce GGE, achieve international commitments and combat climate change. (Author)

  3. An analysis of international nuclear fuel supply options

    Science.gov (United States)

    Taylor, J'tia Patrice

    As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet

  4. Radiological impacts of spent nuclear fuel management options

    International Nuclear Information System (INIS)

    Riotte, H.; Lazo, T.; Mundigl, S.

    2000-01-01

    An important technical study on radiological impacts of spent nuclear fuel management options, recently completed by the NEA, is intended to facilitate informed international discussions on the nuclear fuel cycle. The study compares the radiological impacts on the public and on nuclear workers resulting from two approaches to handling spent fuel from nuclear power plants: - the reprocessing option, that includes the recycling of spent uranium fuel, the reuse of the separated plutonium in MOX fuel, and the direct disposal of spent MOX fuel; and the once-through option, with no reprocessing of spent fuel, and its direct disposal. Based on the detailed research of a group of 18 internationally recognised experts, under NEA sponsorship, the report concludes that: The radiological impacts of both the reprocessing and the non-reprocessing fuel cycles studied are small, well below any regulatory dose limits for the public and for workers, and insignificantly low as compared with exposures caused by natural radiation. The difference in the radiological impacts of the two fuel cycles studied does not provide a compelling argument in favour of one option or the other. The study also points out that other factors, such as resource utilisation efficiency, energy security, and social and economic considerations would tend to carry more weight than radiological impacts in decision-making processes. (authors)

  5. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  6. Nuclear energy: Where do we go from here?

    Science.gov (United States)

    Muslim, Dato'Noramly, Dr

    2015-04-01

    As Malaysia progresses towards 2020, the depleting resource of oil and gas has forced a re-look at alternatives to replace fossil fuels as energy sources. Among the viable options is nuclear energy, enabling us to meet energy needs and sustain national development in the twenty-first century. Three essential steps Malaysia must take to introduce nuclear power into its energy mix are: energy planning, infrastructure development, and deployment. Malaysia has to face a series of challenges, including public acceptance, waste management, minimizing proliferation risk, and ensuring the security of nuclear plants and materials. Timely development of qualified and competent manpower is a key limiting factor in the development and transfer of nuclear technologies — and education and training take time, effort and money. There is a need for political will. Within the Asian region, China, Korea and Japan are in the forefront in utilizing nuclear power to meet electricity demands. Countries such as UAE, Bangladesh, Vietnam and Turkey are moving ahead with the nuclear option for electricity generation and they have begun planning and construction of nuclear power plants. Against this backdrop, what are Malaysia's moves? This paper discusses various options and challenges, obstacles and repercussions in meeting future energy demands.

  7. Nuclear energy: Where do we go from here?

    International Nuclear Information System (INIS)

    Muslim, Dato’ Dr Noramly

    2015-01-01

    As Malaysia progresses towards 2020, the depleting resource of oil and gas has forced a re-look at alternatives to replace fossil fuels as energy sources. Among the viable options is nuclear energy, enabling us to meet energy needs and sustain national development in the twenty-first century. Three essential steps Malaysia must take to introduce nuclear power into its energy mix are: energy planning, infrastructure development, and deployment. Malaysia has to face a series of challenges, including public acceptance, waste management, minimizing proliferation risk, and ensuring the security of nuclear plants and materials. Timely development of qualified and competent manpower is a key limiting factor in the development and transfer of nuclear technologies — and education and training take time, effort and money. There is a need for political will. Within the Asian region, China, Korea and Japan are in the forefront in utilizing nuclear power to meet electricity demands. Countries such as UAE, Bangladesh, Vietnam and Turkey are moving ahead with the nuclear option for electricity generation and they have begun planning and construction of nuclear power plants. Against this backdrop, what are Malaysia’s moves? This paper discusses various options and challenges, obstacles and repercussions in meeting future energy demands

  8. Nuclear energy: Where do we go from here?

    Energy Technology Data Exchange (ETDEWEB)

    Muslim, Dato’ Dr Noramly, E-mail: noramlymuslim@yahoo.com [Visiting Professor, Universiti Tenaga Nasional, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    As Malaysia progresses towards 2020, the depleting resource of oil and gas has forced a re-look at alternatives to replace fossil fuels as energy sources. Among the viable options is nuclear energy, enabling us to meet energy needs and sustain national development in the twenty-first century. Three essential steps Malaysia must take to introduce nuclear power into its energy mix are: energy planning, infrastructure development, and deployment. Malaysia has to face a series of challenges, including public acceptance, waste management, minimizing proliferation risk, and ensuring the security of nuclear plants and materials. Timely development of qualified and competent manpower is a key limiting factor in the development and transfer of nuclear technologies — and education and training take time, effort and money. There is a need for political will. Within the Asian region, China, Korea and Japan are in the forefront in utilizing nuclear power to meet electricity demands. Countries such as UAE, Bangladesh, Vietnam and Turkey are moving ahead with the nuclear option for electricity generation and they have begun planning and construction of nuclear power plants. Against this backdrop, what are Malaysia’s moves? This paper discusses various options and challenges, obstacles and repercussions in meeting future energy demands.

  9. Nuclear desalination option for the international reactor innovative and secure (IRIS) design

    International Nuclear Information System (INIS)

    Ingersoll, D. T.; Binder, J. L.; Conti, D.; Ricotti, M. E.

    2004-01-01

    The worldwide demand for potable water is on the rise. A recent market survey by the World Resources Institute shows a doubling in desalinated water production every ten years from both seawater and brackish water sources. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh per cubic meter of produced desalted water. At current U.S. water use rates, 1 kW of energy capacity per capita (or 1000 MW for every one million people) would be required to meet water needs with desalted water. The choice of the desalination technology determines the form of energy required: electrical energy for reverse osmosis systems, relatively low quality thermal energy for distillation systems, and both electrical and thermal energy for hybrid systems such as pre-heat RO systems. Nuclear energy plants are attractive for large scale desalination application. Nuclear plants can provide both electrical and thermal energy in an integrated, co-generated fashion to produce a spectrum of energy products including electricity, desalted water, process heat, district heating, and potentially hydrogen generation. A particularly attractive option for nuclear desalination is to couple it with an advanced, modular, passively safe reactor design such as the International Reactor Innovative and Secure (IRIS) plant. This allows for countries with smaller electrical grid needs and infrastructure to add new electrical and desalination capacity in smaller increments and at distributed sites. The safety by design nature of the IRIS reactor will ensure a safe and reliable source of energy even for countries with limited nuclear power experience and infrastructure. Two options for the application of the IRIS nuclear power plant to the cogeneration of electricity and desalted water are presented, including a coupling to a reverse osmosis plant and a multistage flash distillation plant. The results from an economic assessment of the two options are also presented.(author)

  10. Nuclear system for problems of environment, economy, and energy. (1) Nuclear energy role and potential for energy system in Asia

    International Nuclear Information System (INIS)

    Ujita, Hiroshi; Matsui, Kazuaki; Sekimoto, Hiroshi

    2005-01-01

    Role and potential of nuclear energy system in the energy options is discussed from the viewpoint of sustainable development with protecting from global warming. It is important for mitigation of global warming that the developing countries will use nuclear power effectively. The policy that nuclear power is considered as Clean Development Mechanism would be the good measure for that. (author)

  11. Energy policy options for Illinois. Proceedings. [26 papers

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Twenty-six papers presented at the Fifth Annual Oil Illinois Energy Conference are categorized into five sections, namely: An overview of U.S. and Illinois Energy Policy; Energy Policy; Conservation--Solar--Biomass and Solid Wastes; Energy Policy; Petroleum and Natural Gas; Energy Policy; Coal and Electric Utilities; and Economic and Consumer Concerns. One paper, A Perspective on Long-Range Nuclear Energy Options, by William O. Harms has previously appeared in EAPA 4: 1364. (MCW)

  12. Recommendations for a Department of Energy Nuclear Energy R and D Agenda Volume 2 Appendices

    International Nuclear Information System (INIS)

    1997-01-01

    The current US nuclear energy policy is primarily formulated as part of the nation's overall energy policy. In addition, nuclear energy policy is impacted by other US policies, such as those for defense and environment, and by international obligations through their effects on nuclear weapons dismantlement and stewardship, continued reliance on space and naval nuclear power sources, defense waste cleanup, and on nuclear nonproliferation. This volume is composed of the following appendices: Appendix 1--Objectives of the Federal Government Nuclear Energy Related Policies and Research and Development Programs; Appendix 2--Nuclear Energy and Related R and D in the US; Appendix 3--Summary of Issues That Drive Nuclear Energy Research and Development; Appendix 4: Options for Policy and Research and Development; Appendix 5--Pros and Cons of Objectives and Options; and Appendices 6--Recommendations

  13. Recommendations for a Department of Energy Nuclear Energy R and D Agenda Volume 2 Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The current US nuclear energy policy is primarily formulated as part of the nation`s overall energy policy. In addition, nuclear energy policy is impacted by other US policies, such as those for defense and environment, and by international obligations through their effects on nuclear weapons dismantlement and stewardship, continued reliance on space and naval nuclear power sources, defense waste cleanup, and on nuclear nonproliferation. This volume is composed of the following appendices: Appendix 1--Objectives of the Federal Government Nuclear Energy Related Policies and Research and Development Programs; Appendix 2--Nuclear Energy and Related R and D in the US; Appendix 3--Summary of Issues That Drive Nuclear Energy Research and Development; Appendix 4: Options for Policy and Research and Development; Appendix 5--Pros and Cons of Objectives and Options; and Appendices 6--Recommendations.

  14. Energy and the need for nuclear power

    International Nuclear Information System (INIS)

    1982-11-01

    The subject is discussed under the headings: fuel and mankind (world population estimates); fuel supply and demand (world nuclear and total primary energy demand forecasts); oil dependence; oil, gas and coal (world oil production and consumption; world coal reserves); nuclear option (consumption of nuclear energy in Western Europe; nuclear plant worldwide at December 1981; uranium reserves 1981); renewable resources; price of energy; Britain's need for nuclear power. (U.K.)

  15. Nuclear option

    International Nuclear Information System (INIS)

    Olson, P.S.

    1983-01-01

    The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% from the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed

  16. Energy options for the United Kingdom

    International Nuclear Information System (INIS)

    Warner, P.C.

    1979-03-01

    The purpose of this paper is to put together a picture of the energy policy options of the United Kingdom, drawn mainly from official documents but supplemented by comments and conclusions from the author. For some people the current energy debate is simplified down to nuclear power for and against. Much of this thinking seems to arise from misunderstanding, and the more the technical and social facts behind policy can be sorted out by discussions, the more sensible eventual policy will be. One extreme view, for instance, is that opinion is divided between those who are 'pro-industry, pro-production, and pro-nuclear' and those who are 'interested in ecology and therefore anti-nuclear.' Associations like those are high on the list of myths that need to be dispelled. It is therefore a further purpose of this paper to contribute to the general background of facts for those who are interested in this country's energy policies and who may not have time or the opportunity to work through original sources. Although the theme throughout is energy in the United Kingdom, it will be realised that extension to the world scale simply enhances shortages and problems. The paper is in sections, entitled: overall UK energy consumption; coal; oil; gas; the energy gap; alternative energy sources; the balance of primary resource need; electricity; the nuclear power programme; timing of power plant orders; conclusions. (U.K.)

  17. Distributed Energy Implementation Options

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Chandralata N [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-13

    This presentation covers the options for implementing distributed energy projects. It distinguishes between options available for distributed energy that is government owned versus privately owned, with a focus on the privately owned options including Energy Savings Performance Contract Energy Sales Agreements (ESPC ESAs). The presentation covers the new ESPC ESA Toolkit and other Federal Energy Management Program resources.

  18. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Forsberg, Charles [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Collins, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  19. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    International Nuclear Information System (INIS)

    2014-01-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a ''hybrid system'' that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear - Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to

  20. Nuclear waste disposal: regional options for the Western Pacific

    International Nuclear Information System (INIS)

    Childs, I.

    1985-01-01

    The disposal of nuclear waste is a complex environmental problem involving the technology of containing a radiation hazard and the political problem of finding an acceptable site for a hazardous waste facility. The focus of discussion here is the degree to which Western Pacific countries are committed to nuclear power as an energy source, and the political and economic interdependencies in the region which will influence waste disposal options

  1. Scale and the acceptability of nuclear energy

    International Nuclear Information System (INIS)

    Wilbanks, T.J.

    1984-01-01

    A rather speculative exploration is presented of scale as it may affect the acceptability of nuclear energy. In our utilization of this energy option, how does large vs. small relate to attitudes toward it, and what can we learn from this about technology choices in the United States more generally. In order to address such a question, several stepping-stones are needed. First, scale is defined for the purposes of the paper. Second, recent experience with nuclear energy is reviewed: trends in the scale of use, the current status of nuclear energy as an option, and the social context for its acceptance problems. Third, conventional notions about the importance of scale in electricity generation are summarized. With these preliminaries out of the way, the paper then discusses apparent relationships between scale and the acceptance of nuclear energy and suggests some policy implications of these preliminary findings. Finally, some comments are offered about general relationships between scale and technology choice

  2. Nuclear Energy - a Part of a Solution to Generate Electric Power in Croatia?

    International Nuclear Information System (INIS)

    Mikulicic, V.; Simic, Z.

    1998-01-01

    The growth in Croatian energy, particularly electricity, demand together with growing environmental considerations is such that Croatia needs to have flexibility to respond, by having the option of expanding the nuclear sector. This paper deals with nuclear energy as an option for sustainable Croatian economic development, and with the nuclear power controversy. The conclusion is that there is a necessity for extended use of nuclear energy in Croatia. Most certainly the nuclear technology can provide the energy necessary to sustain progress and, as a country without coal, Croatia should favour nuclear power utilisation as the lowest cost option for base-load electricity generation. (author)

  3. Alternatives to nuclear energy

    International Nuclear Information System (INIS)

    Terrado, E.N.

    1981-01-01

    This article discusses several possibilities as alternatives to nuclear energy and their relevance to the Philippine case. The major present and future fuel alternatives to petroleum and nuclear energy are coal, geothermal heat, solar energy and hydrogen, the first two of which are being used. Different conversion technologies are also discussed for large scale electricity production namely solar thermal electric conversion (STC), photovoltaic electric power system (PEPS) and ocean thermal energy conversion (OTEC). Major environmental considerations affect the choice of energy sources and technologies. We have the problem of long term accumulation of radioactive waste in the case of nuclear energy; in geothermal and fossil-fuels carbon dioxide uranium and accumulation may cause disastrous consequences. With regard to Philippine option, the greatest considerations in selecting alternative energy options would be resources availability - both energy and financial and technology status. For the country's energy plan, coal and geothermal energy are expected to play a significant role. The country's coal resources are 1.4 billion metric tons. For geothermal energy, 25 volcanic centers were identified and has a potential equivalent to 2.5 x 10 6 million barrels of oil. Solar energy if harnessed, being in the sunbelt, averaging some 2000 hours a year could be an energy source. The present dilemma of the policy maker is whether national resources are better spent on large scale urban-based energy projects or whether those should be focused on small scale, rural oriented installations which produced benefits to the more numerous and poorer members of the population. (RTD)

  4. A case for reviving the nuclear option

    International Nuclear Information System (INIS)

    Smith, S.H. Jr.

    1991-01-01

    The US simply cannot afford to ignore an energy source that provides the economic, environmental, and strategic benefits that nuclear power has provided over the past three decades. Compared to the mix of coal, oil, and gas that would have been used to generate electricity in its absence, nuclear power has saved American consumers almost $5 billion in electricity charges since 1973; has cut annual SO 2 emissions by 5 million tons, NO x emissions by 2 million tons, and CO 2 emissions by 128 million tons; and has reduced annual oil imports by 270 million barrels. Indications are that the new advanced design reactors presently under development will be able to provide consumers with competitively priced electricity for decades to come. However, political issues, not technical ones, stand in the way. The industry is doing its part to make nuclear energy a viable option. But the industry cannot do it alone. Universities, environmental groups, political organizations, and others also have important roles to play

  5. Options contracts in the nuclear fuel industry

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1995-01-01

    This article discusses options trading in the nuclear fuels industry. Although there now exists no formal options market in the nuclear industry, flexibilities, or embedded options, are actually quite common in the long-term supply contracts. The value of these flexibilities can be estimated by applying the methods used to evaluate options. The method used is the Black-Scholes Model, and it is applied to a number of examples

  6. Nuclear power. A cornerstone of energy security

    International Nuclear Information System (INIS)

    Andrews, H.R.; Harvey, M.

    1985-09-01

    Energy options for Canada are examined. Increasing difficulties with oil and gas supplies will induce a growth in electricity demand beyond that presently projected. Nuclear power is the only option that can supply as much energy as needed for as long as needed at predictable costs and with minimal environmental effects

  7. Energy options and regional cooperation on nuclear energy in the Asia-Pacific region

    International Nuclear Information System (INIS)

    Shin, Jae In

    1986-10-01

    This paper reviews the extensive forms of Asia-Pacific regional cooperation in nuclear power to develop and provide economical and reliable energy supply for sound economical growths of developing countries in this region, which has seen rapid growth of energy consumption more than anywhere else in recent years. Nuclear power has received keen attention from DCs because it can provide a self-reliable energy supply and promote development of high technology in the associated engineering and manufacturing industries locally. However, due to the particular characteristics in nuclear power technology, a close cooperation is required between the seller(industrialized) and buyer(developing) countries. The Asia-Pacific regional cooperation in nuclear power is a step toward providing mutual benefits to the countries involved in this region, and this paper explores potential ways in formulating basic and systematic approaches and areas of full scope cooperation. (author)

  8. Nuclear energy in China

    International Nuclear Information System (INIS)

    Gourievidis, G.

    1984-01-01

    Having first outlined the main problems China must resolve in the field of energy supply, this paper presents the nuclear option trends established by the government, recalls the different stages in the nuclear Chinese development programme, achievements and projects. The organization of nuclear research and industry, as also the fuel cycle situation and uranium resources are then described. Finally, the international nuclear cooperation policy carried out by the chinese government and more particularly the agreement settled with France are presented [fr

  9. Editorial : Introduction to Energy Strategy Reviews theme issue “Nuclear energy today & strategies for tomorrow”

    NARCIS (Netherlands)

    Rogner, H.H.; Weijermars, R.

    2013-01-01

    Finding the optimum energy supply system is one of the aims of energy strategy research and nuclear energy is a much debated real option. Proponents of nuclear energy argue that there are no technologies without risks and that nuclear power is needed for meeting growing energy demand in the emerging

  10. Sweden beyond oil: nuclear commitments and solar options

    International Nuclear Information System (INIS)

    Loennroth, M.; Johansson, T.B.; Steen, P.

    1982-01-01

    The paper argues that both a nuclear and a solar future are technically possible, but that institutional differences are vast. There is a consensus in Sweden to keep long term options open. Approaches are identified that will allow Sweden to postpone as many decisions as possible as to which path to follow. Decentralized systems require emphasis on local planning, and will require substantial expansions of authority of local planners. A nuclear future would require substantial increases in central planning and would also require substantial institutional change if most energy is to be provided by nuclear energy in 2015. The primary near term reform needed to maintain maximum flexibility includes: (1) strengthening of local authority, especially in areas relating to district heating and conservation; (2) regulatory reform to assure adequate financing on the local level, and to assure adequate balancing of conservation and supply financing; (3) increased national control over large energy users; (4) state financed procurement and development of new energy technologies, especially smaller scale technologies; (5) national land use planning; (6) electric utility reform to encourage dispersed electric technologies

  11. Long term energy system analysis of Japan based on 'options for energy and environment' by the energy and environmental council

    International Nuclear Information System (INIS)

    Hagiwara, Naoto; Kurosawa, Atsushi

    2013-01-01

    Implications to Japanese energy system are discussed especially in terms of primary energy supply and power generation portfolio, using sensitivity analysis results by an optimization type energy model based on TIMES modeling framework. We updated energy service demand, efficiency in energy conversion and consumption, and power generation costs based on the recent energy policy document called 'Options for Energy and Environment'. The time horizon of the model is 2050. The sensitivity analysis results are presented for 'Three scenarios for 2030' including nuclear phase out scenarios with/without CO 2 emission constraint. The results are compared with 'Options for Energy and Environment'. (author)

  12. An environmental perspective on Lithuania's energy options

    International Nuclear Information System (INIS)

    Banks, A.; Todd, J.

    1995-01-01

    The views of experts on Lithuania's energy options are reviewed. On the one hand, nuclear energy is seen as an island of stability in the power industry in the conditions of economic crisis, and some decision-makers believe that Lithuania cannot survive without nuclear. On the other hand, the Ignalina NPP is the largest Chernobyl-type RBMK plant within the former Soviet Union, posing a dangerous environmental hazard to the Baltic Sea region, and no upgrading seems to be capable of bringing the reactors up to the safety standards of today's Western reactors. Many experts believe that the only solution is to shut the reactors down as soon as possible. (P.A.) 33 refs

  13. Energy exotic options

    International Nuclear Information System (INIS)

    Kaminski, V.; Gibner, S.; Pinnamaneni, K.

    1999-01-01

    This chapter with 88 references focuses on the use of exotic options to control exposure to energy prices. Exotic options are defined, and the conversion of a standard option into an exotic option and pricing models are examined. Pricing and hedging exotic options, path-dependent options, multi-commodity options, options on the minimum-or-maximum of two commodities, compound options, digital options, hybrid and complex structures, and natural gas daily options are described. Formulas for option pricing for vanilla, barrier, compound, options on minimum or maximum of two assets, and look back options are given in an appendix

  14. Nuclear energy and the greenhouse effect

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1990-01-01

    The extent and nature of the greenhouse effect are examined and placed in an environmental and historical context. The effect of energy policies on the greenhouse effect are discussed and the offending countries are identified. What energy policies would mitigate the greenhouse effect, and yet make good sense whether or not the effect proves to be real? Conservation is a desirable though not completely understood strategy. Conservation may not be a better bet in every instance than is increase in supply. If the greenhouse effect turns out to be real, nuclear energy can be one of the supply options that we turn to. If the greenhouse effect turns out to be false, and acceptable, economic nuclear option is surely better than one that does nothing but create strife and dissension. Let us remember that nuclear energy is the only large-scale non-fossil source other than hydropower that has been demonstrated to be practical. (author)

  15. Future of nuclear energy technology in Switzerland

    International Nuclear Information System (INIS)

    Tiberini, A.; Brogli, R.; Jermann, M.; Alder, H.P.; Stratton, R.W.; Troyon, F.

    1988-01-01

    Despite the present gloom surrounding the nuclear option for electricity and heat generation, there are still people in Switzerland in industry, research, banking and even politics willing and capable to think in terms of long-range projections. The basis for these projections is the belief that a well-functioning and prosperous society always needs large and reliable sources of acceptably priced energy, which must be generated with a high respect for the necessity of a clean environment. Being aware of the current low acceptance level of the nuclear option, efforts to keep this option open are directed to achieving the following goals: to maintain and improve the country's capabilities to safely operate the four existing nuclear power plants of Beznau (twin units), Muehleberg, Goesgen and Leibstadt; to keep the capability of extending the applications of nuclear energy technology. In practice, this could be in the fields of district heating, fusion, and advanced power reactors

  16. Nuclear energy in the European energy mix operation

    International Nuclear Information System (INIS)

    Gueldner, R.

    2009-01-01

    The world nuclear energy is on the upswing. This is shown by lifetime extensions up to 60 years and the construction of new nuclear power plants. Especially, the progressive climate change requires new, definitive, fast and decisive solutions. Europe has to find the right energy mix for the future having the magic triangle of environmental sustainability, security of supply and economic affordability in mind. At the centre of all the efforts made by many countries all over the world, nuclear is one vital key technology to face and combat global warming. Nuclear has a positive eco-balance, nuclear gives security of supply and nuclear power generation is competitive. Beside this the most important fact is and will be the high safety to run a nuclear power plant. The energy mix in the EU of the next decades will be defined today. It is vital to consider every option, which can contribute to a sustainable energy mix. Nuclear alone is not the solution for all problems but there will be no sustainable solution without nuclear. (author)

  17. Nuclear energy at the turning point

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, A.M.

    1977-07-01

    In deciding the future course of nuclear energy, it is necessary to re-examine man's long-term energy options, in particular solar energy and the breeder reactor. Both systems pose difficultiies: energy from the sun is likely to be expensive as well as limited, whereas a massive world-wide deployment of nuclear breeders will create problems of safety and of proliferation. Nuclear energy's long-term success depends on resolving both of these problems. Collocation of nuclear facilities with a system of resident inspectors are measures that ought to help increase the proliferation-resistance as well as the safety of a large-scale, long-term nuclear system based on breeders. In such a long-term system a strengthened International Atomic Energy Agency (IAEA) is viewed as playing a central role.

  18. Alternative energy options

    International Nuclear Information System (INIS)

    Bennett, K.F.

    1983-01-01

    It is accepted that coal will continue to play the major role in the supply of energy to the country for the remainder of the century. In this paper, however, emphasis has been directed to those options which could supplement coal in an economic and technically sound manner. The general conclusion is that certain forms of solar energy hold the most promise and it is in this direction that research, development and implementation programmes should be directed. Tidal energy, fusion energy, geothermal energy, hydrogen energy and fuel cells are also discussed as alternative energy options

  19. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S.

    2000-12-01

    This study identified the role of nuclear energy in the following three major aspects. First of all, this study carried out cost effectiveness of nuclear as a CDM technology, which is one of means of GHG emission reduction in UNFCCC. Secondly, environmental externalities caused by air pollutants emitted by power options were estimated. The 'observed market behaviour' method and 'responses to hypothetical market' method were used to estimate objectively the environmental external costs by electric source, respectively. Finally, the role of nuclear power in securing electricity supply in a liberalized electricity market was analyzed. This study made efforts to investigate whether nuclear power generation with high investment cost could be favored in a liberalized market by using 'option value' analysis of investments

  20. The implications of the nuclear option in Quebec

    International Nuclear Information System (INIS)

    Sauvageau, P.A.; Boivin, M.

    1979-10-01

    Problems concerning the nuclear option as a component of the energy balance of Quebec are presented. The demand for electrical energy for the periods 1977-1985 and 1985-2000, the energy resources of Quebec, and an analysis of nuclear fission energy are considered. In 1978 65.5 percent of Quebec's energy needs were supplied by imported petroleum, 7.1 percent by imported gas, and 1.4 percent by imported coal. Hydroelectricity supplied 21.9 percent of the energy budget in 1976. According to projections electricity's share will be around 41 percent in 1990 after conservation, and approximately 50 percent in 2000, while petroleum and gas will have 44 percent, new energies 5 percent, and coal 1 percent. The acceptability of nuclear power can be broken down into six factors, for each of which a decision criterion can be recognized: technical feasibility, economic feasibility, security of supply, side effects for Quebec, human and ecological risks, and socio-political factors. The first four criteria are acceptable and even in certain cases desirable. The acceptability of risks is subjective and should be a collective decision, and therefore is policitcal. Even if Quebec does not need nuclear at the present or in the next decade, it is still a form of energy which it will be necessary to come to terms with eventually. Thus it is important to maintain the capacity to have recourse to it, and to start a program of public dialogue by setting up a 'Permanent Council for Energy Forecasting'. The democratic participation of a well-informed population in a neutral and objective nuclear debate is thus essential. (LL)

  1. The new economics of nuclear energy

    International Nuclear Information System (INIS)

    Salian, Ramesh; Prasanna Kumar, N.

    2012-01-01

    With 15% of the world's population and an economic growth rate that increases the aspiration of its people to better quality of life, India has a voracious appetite for energy. Nuclear power is one of the options of providing safe, environmentally benign, reliable and economically competitive energy services. Nuclear power world over provides about 16% of electricity through 440 nuclear power plants with a total installed capacity of 361.582 GW (as of January 2004, IAEA PRIS data). Nuclear energy has traditionally played a small role in meeting India's energy requirements. Nuclear power makes up only 4,120 MW, constituting 2.6%, of the total electricity generation capacity. India is a power hungry nation and needs to switch over from its tremendous dependence on fossil fuels to alternative sources of energy like solar energy, bio energy and nuclear energy. Indian nuclear power plants have progressively attained excellent operation performances. However, the changing economic and geopolitical situation in the energy sector has made it imperative to emphasize the significance of nuclear energy in the future energy landscape of the country. The present paper discuss the importance, demand and supply pattern of nuclear energy and its economics. (author)

  2. Energy crisis in Nigeria: The nuclear option and the necessary regulatory framework for its success

    International Nuclear Information System (INIS)

    Faru, T.A.; Abubakar, M.B.; Sulaiman, S.

    2007-01-01

    Limited access or inappropriate planning and utilization of modern energy remain one of the major constrains to socio-economic development of Nigeria. The total installed electricity generation including that from all other sources based on PHCN estimates is about 6,603 MW and total exploitable hydro potential is currently at 12,220 MW. The electricity demand projection for a 10% annual growth of the GDP was given as 16,000 MW, 30,000 MW and 192,000 MW for the years 2010, 2015 and 2030 respectively. The electricity as currently generated is therefore grossly inadequate to meet our Domestic Demands, National Economic Empowerment and Development Strategy (NEEDS) and the Millennium Development Goals. This work is the study in the energy requirements for sustainable development. The study has also looked at the potential contributions of various energy resources for meeting this demand. It has identified the limitations of these sources in satisfying the National Energy Requirement and has highlighted the suitability of Nuclear Energy the option in meeting the projected energy demand and the necessary framework for its success

  3. The nuclear option

    International Nuclear Information System (INIS)

    De Villiers, J.W.L.

    1982-01-01

    Atomic Energy Board President, Dr J.W.L. de Villiers, looks at South Africa's power needs and seeks to justify the country's move into nuclear energy. South Africa's energy requirements, energy resources, future prospects for nuclear energy in South Africa and resource independence are discussed

  4. Outlook for nuclear fission energy

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1978-01-01

    The electric utility industry has made a substantial commitment to nuclear power. The industrial capability to produce nuclear plants is large and well established. Nevertheless, nuclear energy in the United States is at the crossroad, and the direction it will take is not at all assured. The postponements, cancellations, and lack of orders for new plants over the past three years raise some serious questions about the future. The present problems of nuclear energy are primarily nontechnical in nature. If the nontechnical issues can be resolved, the future for nuclear looks bright indeed. The LWR and other converters could provide strong competition for coal and other electric power options for a half century or more. If development goals are met, the nuclear breeder offers the prospect of a very large supply of energy at stabilized prices over a time span of centuries

  5. Nuclear Waste Vitrification in the U.S.: Recent Developments and Future Options

    International Nuclear Information System (INIS)

    Vienna, John D.

    2010-01-01

    Nuclear power plays a key role in maintaining current world wide energy growth while minimizing the greenhouse gas emissions. A disposition path for used nuclear fuel (UNF) must be found for this technology to achieve its promise. One likely option is the recycling of UNF and immobilization of the high-level waste (HLW) by vitrification. Vitrification is the technology of choice for immobilizing HLW from defense and commercial fuel reprocessing around the world. Recent advances in both recycling technology and vitrification show great promise in closing the nuclear fuel cycle in an efficient and economical fashion. This article summarizes the recent trends developments and future options in waste vitrification for both defense waste cleanup and closing the nuclear fuel cycle in the U.S.

  6. The perspectives of nuclear option for Croatia

    International Nuclear Information System (INIS)

    Feretic, D.

    2004-01-01

    In order to satisfy the expected level of electricity consumption in Croatia it will be necessary, as a minimum, until the year 2020 to install about 2000 MW in new power plants. Gas and coal fired plants presently are main competitors to nuclear power plants. In near future it my be different due to expected problems with gas availability and cost increase and also in adverse environmental impact (particularly due to CO 2 emissions) of coal fired plants. Nuclear power plants have advantage not only in economics of produced energy but also in impact to the environment. Preservation of knowledge obtained during construction of NPP Krsko is also an important reason to maintain nuclear option. Pre construction and construction period for new plants (particularly for coal fired and nuclear plants) could be long so that timely start of preparatory activities is indispensable to meet the required schedule.(author)

  7. Reasons for the nuclear power option

    International Nuclear Information System (INIS)

    Rotaru, I.; Glodeanu, F.; Mauna, T.

    1994-01-01

    Technical, economical and social reasons, strongly supporting the nuclear power option are reviewed. The history of Romanian nuclear power program is outlined with a particular focus on the Cernavoda Nuclear Power Plant project. Finally the prospective of nuclear power in Romania are assessed

  8. Department of Energy Nuclear Energy Standards Program

    International Nuclear Information System (INIS)

    Silver, E.G.

    1980-01-01

    The policy with respect to the development and use of standards in the Department of Energy (DOE) programs concerned with maintaining and developing the nuclear option for the civilian sector (both in the form of the currently used light water reactors and for advanced concepts including the Liquid Metal Fast Breeder Reactor), is embodied in a Nuclear Standards Policy, issued in 1978, whose perspectives and philosophy are discussed

  9. Impact of the Nuclear Option on the Environment and the Economy

    International Nuclear Information System (INIS)

    Rohatgi, Upendra S.; Jo, Jae H.; Lee, John C.; Bari, Robert A.

    2002-01-01

    The impact of the nuclear option in the national energy outlook on the environment and the U.S. economy is analyzed with the MARKAL-MACRO energy systems computer code. The base case projection by the U.S. Energy Information Administration is the starting point for this study. The possibility of license renewal of the current fleet of U.S. nuclear power plants is considered as well as the introduction of cost-competitive advanced light water reactors. Electricity energy sector projections for fossil fuel plants, renewable energy sources, and nuclear power plants are analyzed on a least cost basis. The impact of constraints on the emissions of greenhouse gases is included in the analysis. It is found that it would be economically favorable to introduce as many as 300 additional nuclear power plants in the United States by the year 2025 to meet emission constraints of limiting emission to the 1990 level in the years beyond 2010

  10. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S

    2000-12-01

    This study identified the role of nuclear energy in the following three major aspects. First of all, this study carried out cost effectiveness of nuclear as a CDM technology, which is one of means of GHG emission reduction in UNFCCC. Secondly, environmental externalities caused by air pollutants emitted by power options were estimated. The 'observed market behaviour' method and 'responses to hypothetical market' method were used to estimate objectively the environmental external costs by electric source, respectively. Finally, the role of nuclear power in securing electricity supply in a liberalized electricity market was analyzed. This study made efforts to investigate whether nuclear power generation with high investment cost could be favored in a liberalized market by using 'option value' analysis of investments.

  11. Going nuclear. Some implications of the introduction of nuclear energy as the basic primary energy supply of a developped society

    International Nuclear Information System (INIS)

    Haefele, W.; Sassin, W.

    1975-01-01

    On the basis of nuclear energy as primary energy source, the future development potentialities of secondary energies are considered; these energy forms are coal gaseification, process heat for industrial uses and district heating, and mainly hydrogen production which represents 60% of the future secondary energy demands. By using decision tree method, the eventuality of using nuclear energy as unique energy source is examined, and the successive options implied in this approach are analyzed [fr

  12. The attitude to nuclear energy in Georgia

    International Nuclear Information System (INIS)

    Saralidze, Z.

    2000-01-01

    Georgia, as a new independent state, is facing new problems regarding energy sources in the conditions of market economy. Great attention is given by the Government to search for various ways and versions to overcome the energy crisis. While nuclear energy may be an option for some reasons detailed in the paper, a nuclear power plant is not officially considered as an alternative. (author)

  13. Role of nuclear option in sustainable power system planning in Croatia

    International Nuclear Information System (INIS)

    Tomsic, Z.; Kovacevic, T.; Feretic, D.

    1998-01-01

    To support the projected economic growth, electricity consumption in Croatia should rise by an average annual rate of at least 2.3% till the year 2030. After examining the potentials of new renewable energy sources (wind and solar energy and biomass) for large-scale electricity generation, projections of the required new generating capacities are made and possible developing scenarios of Croatian power system created. Nuclear and non-nuclear expansion options are analyzed, and optimal capacity and generation mixes are found on the basis of annual production costs and the assumption that the natural gas availability is limited. Emissions of SO 2 , NO x , particulates and CO 2 to the atmosphere in both options are calculated. Apart from that, it is analyzed how the hypothetical introduction of a CO 2 emission charge would affect the optimal capacity mix. (author)

  14. The nuclear energy in the frame of the energy sources

    International Nuclear Information System (INIS)

    Bogas, J.

    2008-01-01

    This article analyses the different technological alternatives for addressing the energy challenges of our society (security of supply, competitiveness and sustain ability), emphasizing the need for nuclear energy to achieving those goals. Recently, the view of society about nuclear power has shifted from a position of outright hostility towards an acceptance still not totally defined. That is so, that people of environmentalism as the founders of Green peace James Love lock, Patrick Moore or the writer Gwyneth Cravens have said that nuclear energy is the option to produce energy that less increases CO 2 emissions, and that without it targets for reduction may not meet. (Author) 4 refs

  15. The role of nuclear energy system for Korean long-term energy supply strategy

    International Nuclear Information System (INIS)

    Chae, K.N.; Lee, D.G.; Lim, C.Y.; Lee, B.W.

    1995-01-01

    The energy supply optimization model MESSAGE-III is improved to evaluate the role of nuclear energy system in Korean long-term energy supply strategy. Emphasis is placed on the potential contribution of nuclear energy in case of environmental constraints and energy resource limitation. The time horizon is 1993-2040. A program to forecast useful energy demand is developed, and optimization is performed from the overall energy system to the nuclear energy system. Reactor and fuel cycle strategy and the expanded utilization options for nuclear energy system are suggested. FBRs, HTGRs and thorium fuel cycle would play key roles in the long run. The most important factors for nuclear energy in Korean energy supply strategy would be the availability of fossil fuels, CO 2 reduction regulation, and the supply capability of nuclear energy. (author)

  16. Completion of Population of and Quality Assurance on the Nuclear Fuel Cycle Options Catalog.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arnold, Matthew Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    An Evaluation and Screening team supporting the Fuel Cycle Technologies Program Office of the United States Department of Energy, Office of Nuclear Energy is conducting an evaluation and screening of a comprehensive set of fuel cycle options. These options have been assigned to one of 40 evaluation groups, each of which has a representative fuel cycle option [Todosow 2013]. A Fuel Cycle Data Package System Datasheet has been prepared for each representative fuel cycle option to ensure that the technical information used in the evaluation is high-quality and traceable [Kim, et al., 2013]. The information contained in the Fuel Cycle Data Packages has been entered into the Nuclear Fuel Cycle Options Catalog at Sandia National Laboratories so that it is accessible by the evaluation and screening team and other interested parties. In addition, an independent team at Savannah River National Laboratory has verified that the information has been entered into the catalog correctly. This report documents that the 40 representative fuel cycle options have been entered into the Catalog, and that the data entered into the catalog for the 40 representative options has been entered correctly.

  17. Book of Abstracts of 9th International Conference: Nuclear Option in Countries with Small and Medium Electricity Grids

    International Nuclear Information System (INIS)

    2012-01-01

    The conference is organized with intention to focus on specific aspects of usage of nuclear energy for electricity production in small and medium countries. Importance of international cooperation for the assessment of the nuclear option has been recognised by the International Atomic Energy Agency (IAEA). As a result of this recognition, the Conference is organized in co-operation with IAEA. Croatian State Office for Radiological and Nuclear Safety and University of Zagreb, Faculty of Electrical Engineering and Computing have also participated in Conference organization. Session topics reflect some current emphasis, such as country energy needs, operation and safety of the operating nuclear power plants. The conference also focuses on the exchange of experience and co-operation in the fields of fuel cycle, radioactive waste management, regulatory practices and liability and insurance for nuclear damage. All contributed papers are grouped in 10 sessions: Energy planning and nuclear option; Power reactors and technologies; Nuclear energy and environment; Operation and maintenance experience; Safety culture; Nuclear safety analyses; Reactor physics and nuclear fuel cycle; Radioactive waste management and decommissioning; Public relations; Regulatory practice and general papers.

  18. USP university students social representations and views on nuclear power as energy option

    International Nuclear Information System (INIS)

    Farias, Luciana A.; Favaro, Deborah I.T.

    2011-01-01

    The Nuclear Energy Research Institute (IPEN) is located on the campus of the University of Sao Paulo and has long been publishing nuclear science projects in order to improve public opinion and disseminate nuclear energy issues. However, few studies have investigated the perception of university students concerning nuclear energy. This study questioned whether the location of a nuclear research facility, as well as promotion of scientific projects, can positively influence student opinion when the nuclear research reactor is on campus and used purely for research purposes. This study further investigated the students' understanding of the terms 'nuclear energy' as well as their perception of the social issues involved. Free evocations of words were produced and collected starting from the stimulative inductor 'Nuclear Energy'. In this test, the interviewees are asked to associate five words and answer a questionnaire. A total of 124 students were interviewed for this study: 62 from the Chemistry, Pharmacy, Environmental Chemistry, Chemical Engineering and Nutrition Departments, 29 from the Oceanography Department and 33 from the Economics, Business Administration and Accounting Department. A total of 78% of the interviewed students answered that they had basic or average knowledge of nuclear energy, 46% claimed to have no knowledge of IPEN and the remainder students have answered that IPEN's activities were aimed at research in energy and production of radiopharmaceuticals, which shows little knowledge of the activities of the Institute. However, these students indicated Nuclear Energy as a strong for the diversification of energy sources. It should be noted that this study was undertaken before the nuclear accident caused by the 2011 Japan tsunami and earthquake. (author)

  19. Nuclear energy and the greenhouse problem

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2001-01-01

    Last November - almost in parallel with the Hague Meeting on Climate Change - more than 1,500 of the world's top nuclear scientists and energy technologists met in Washington DC, at the Joint Conference of the American Nuclear Society, the European Nuclear Society, the Nuclear Energy Institute and the International Nuclear Energy Academy. Unlike the United Nations follow up to the Kyoto protocol, which ended in disarray, a note of high optimism and informed realism pervaded the nuclear conference which, among its multiple streams of subject material and papers by international experts, carried the two main themes of Long Term Globally Sustainable Energy Options and Nuclear Energy and the Greenhouse Problem. This paper considers the immense contribution to Greenhouse gas emission minimisation made by nuclear energy in 1999. In that year the global electricity production by the world's 435 nuclear power stations was 2,398 TWh or 16% of total electricity generation or 5% of total primary energy production. The amount of avoided carbon dioxide emission because of the use of nuclear energy in 1999 was 2.4 billion tonnes. This is 10% of total emissions. Japan's 54 nuclear power stations alone save the equivalent of Australia's total Greenhouse emissions. The secret of this success is Australia's uranium fuel

  20. Radiation effects, nuclear energy and comparative risks

    International Nuclear Information System (INIS)

    Gopinath, D.V.

    2007-01-01

    Nuclear energy had a promising start as an unlimited, inexpensive and environmentally benign source of energy for electricity generation. However, over the decades its growth was severely retarded due to concerns about its possible detrimental effects on the well-being of mankind and the environment. Since such concerns are essentially due to the gigantic magnitude of radioactivity and ionizing radiations associated with nuclear energy, this article starts with a comprehensive account of effects of the ionizing radiation on living systems. Quantitative description of types of radiation exposure and their varied effects is given. The origin, type and magnitude of mutagenic effects of radiation are described. The concept of radiation risk factors, basis for their evaluation and their currently accepted values are presented. With this background, origin and magnitude of radioactivity and associated ionizing radiations in nuclear reactors are presented and the elaborate measures to contain them are described. It is recognized that notwithstanding all the measures taken in the nuclear industry, certain amount of radiation exposure, however small, is inevitable and the values, based on the experience world over, are presented. Estimated health risk due to such exposures is evaluated. For a comparative analysis, risks in other options of electricity generation such as hydel and fossil-fuelled plants are described. It is seen that on an overall basis, the nuclear option is no more risky than the other commonly employed options, and is in fact, significantly less. Lastly, since every option of electricity generation entails some risk, the case of 'no addition of electricity, and its impact on the society are considered. Based on the analysis of extensive data provided by UNDP on the human development parameters for different countries in the world, it is shown that at least for developing countries, any option of addition of electricity would be far more desirable than the

  1. Federal Nuclear Energy Program: a synopsis

    International Nuclear Information System (INIS)

    1983-01-01

    This document provides an overview of the new nuclear policy objectives and initiatives and summarizes the Department of Energy programmatic strategy to realize the full nuclear potential. Analyses have been made within the context of prevailing and potential economic conditions, alternative energy options and prior nuclear performance and growth patterns. The Department's organizational structure, which was realigned in June 1982 to conform with the activities mandated by the Administration's policy, is also discussed. The individual program elements for nuclear research and development are described as they contribute to a fully integrated fuel cycle and power generation system. Federal and commercial responsibilities for developmental activity are delinated, and relationship of the programs to broad national energy objectives is specified

  2. Pakistan energy consumption scenario and some alternate energy option

    International Nuclear Information System (INIS)

    Maher, M.J.

    1997-01-01

    Pakistan with its energy-deficient resources is highly dependent on import-oriented energy affected the economy because of repeated energy price hike on international horizon. The energy consumption pattern in Pakistan comprises about two-third in commercial energy and one-third in non-commercial forms. Most of the country's energy requirements are met by oil, gas hydro power, coal, nuclear energy and thermal power. Pakistan meets it's commercial energy requirements indigenously up to 64%. The balance of deficit of 35-40% is met through import. The consumption of various agro-residues and wood as fuel also plays a vital role. The analysis shows that emphasis needs to be placed on new and renewable resources of energy besides adopting technologies for energy conservation. Renewable energy depends on energy income and constitutes the development process. The are several renewable energy options such as biogas technology, micro-hydro power generation, direct solar energy and biomass energy conservation etc. By improving the conservation techniques as designs of solar converters, pre treating the biomass fuel, increasing the effectiveness of carbonization and pyrolysis increases the energy production. (A.B.)

  3. Nuclear energy in the 21st century. Address at Joint IAEA/CNNC seminar on 21st century nuclear energy development in China, 23 May 1997 Beijing

    International Nuclear Information System (INIS)

    Blix, H.

    1997-05-01

    The address discusses the following issues: the increasing demand for energy; the energy efficiency factor; the role of oil and gas; fossil fuels and environment; share of renewable in the future; evolution toward higher density energy sources; factors influencing the choice of the nuclear option; new generations of nuclear power plants; waste management; nuclear safety; strengthening safeguards; nuclear power and nuclear weapons

  4. Nuclear energy outlook: a GE perspective

    International Nuclear Information System (INIS)

    Fuller, J.

    2006-01-01

    Full text: Full text: As one of the world's leading suppliers of power generation and energy delivery technologies, GE Energy provides comprehensive solutions for coal, oil, natural gas and nuclear energy; renewable resources such as wind, solar and biogas, along with other alternative fuels. With the ever increasing demand for energy and pressures to decrease greenhouse gas emissions, global trends indicate a move towards building more base line nuclear generation capacity. As a reliable, cost-competitive option for commercial power generation, nuclear energy also addresses many of the issues the world faces when it comes to the environment. Since developing nuclear reactor technology in the 1950s, GE's Boiling Water Reactor (BWR) technology accounts for more than 90 operating plants in the world today. Building on that success, GE's ABWR design is now the first and only Generation 111 nuclear reactor in operation today. This advanced reactor technology, coupled with current construction experience and a qualified global supply chain, make ESBWR, GE's Generation III+ reactor design, an attractive option for owners considering adding nuclear generation capacity. In pursuit of new technologies, GE has teamed with Silex to develop, commercialize and license third generation laser enrichment technology. By acquiring the exclusive rights to develop and commercialize this technology, GE is positioned to support the anticipated global demands for enriched uranium. At GE, we are continuing to develop imaginative ideas and investing in products that are cost effective, increase productivity, limit greenhouse gas emissions, and improve safety and security for our customers

  5. Energy options?; Energie opties?

    Energy Technology Data Exchange (ETDEWEB)

    Van Sark, W. (ed.)

    2006-05-15

    March 2006 the so-called Options Document was published by the Energy research Centre of the Netherlands (ECN) and the Netherlands Environmental Assessment Agency (MNP). The document is an overview of technical options to reduce energy consumption and emission of greenhouse gases up to 2020. Next to a brief summary of the document a few reactions and comments on the contents of the document are given. [Dutch] Maart 2006 publiceerde het Energieonderzoek Centrum Nederland (ECN) en het Milieu- en Natuurplanbureau (MNP) het zogenaamde Optiedocument energie en emissies 2010-2020. Daarin wordt een overzicht gegeven van de technische mogelijkheden voor vermindering van het energieverbruik en de uitstoot van broeikasgassen en luchtverontreinigende stoffen tot 2020. Naast een korte samenvatting van het document worden enkele reacties gegeven op de inhoud.

  6. Nuclear energy and climate change

    International Nuclear Information System (INIS)

    Gonzalez Jimenez, A.

    2002-01-01

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO 2 emissions. (Author)

  7. Nuclear energy: exit or revival? International aspects

    International Nuclear Information System (INIS)

    2001-11-01

    This colloquium took place less than 1 year after the decision of the US of revival of their nuclear program. Thus the international context has changed, even if nuclear contestation remains as strong as in the past. Among governments, some positions preach the banishment of nuclear energy while others consider the nuclear option as the only solution to meet the growing up energy demand and the future environmental and economical stakes. This report makes a synthesis of the different talks given by the participants during the 3 round tables of the colloquium on the future of nuclear energy: the ecological stake, the democratic stake, and the energy policy stake. Four talks of French government representatives open and conclude the debates of the different round tables. (J.S.)

  8. Environment and future of the nuclear energy in France

    International Nuclear Information System (INIS)

    Lebas, G.

    1999-01-01

    This work presents the problem of the renewal of the French electro-nuclear park with respect to the energetic, economical, environmental, political and ethical aspects. The theoretical framework chosen for this analysis is the one of sustainable development because of the uncertainty, irreversibility and equity aspects characterizing this choice. Thus, this work evaluates the capacity of the nuclear technology to ensure the simultaneous reproduction of the economical sphere, of the human sphere and of the biosphere. The past, present and future energy situation of France is analyzed in the first chapter together with the characteristics of the nuclear choice. In the second chapter, the analysis of the different possible energy options leads to the conclusion that the nuclear option remains the most suitable for a conciliation between economy and ecology, but that a diversification of the reactor technologies is necessary to take advantage of the efficiency of each technology with respect to its use. The nuclear choice has the advantage to limit the arbitration between the economical, ecological, political and human stakes. The realization of the diversification project supposes to leave opened all energy options and to be prepared to the replacement of the present day power plants by 2010-2020. The success of this policy will depend on the risk mastery and information efforts that public authorities and nuclear industry actors will carry on to avoid any social opposition with respect to nuclear energy. (J.S.)

  9. The French experience in nuclear energy: Reasons for success

    International Nuclear Information System (INIS)

    Plante, J.

    2000-01-01

    Nuclear energy for France represents a viable option in meeting energy demands in the near and medium terms due to few energy resources and dependency on imported oil. Basic decisions to launch the French nuclear program, successive series of PWRs installed and standardization due to technical progress are highlighted in this paper. (author)

  10. Nuclear energy option, as seen from the economic point of view

    International Nuclear Information System (INIS)

    Kuehne, K.

    1980-01-01

    The attempt is made to assess realistically the prospects of utilizing nuclear energy. The emphasis is more on realization probabilities in connection with other energy sources than on strategies and planning. In doing so, safety and environmental issues are left out. The developments of nearly two decades are outlined. The data presented come from quotations of numerous recognized studies. As a result, the author is sceptical vis-a-vis the minimum and maximum values set up for individual energy sources by the year 2000. A few critical remarks are made on the economy of nuclear energy compared to coal and petroleum. (UA) [de

  11. The role of nuclear energy in the generation of electricity in Brazil

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1981-01-01

    A comparative calculation of the potential of conventional electricity-generating energy sources-hydroelectric, coal, nuclear - according to different cost levels of generated energy is presented. Assuming a plausible estimate of the demand increase for electricity in the country, calculations show that nuclear energy will have an important role in Brazil only in the second decade of the next century. The potential of some other alternative electricity generating sources is calculated - shale and biomass (bagasse and biogas of vinhoto are discussed) - indicating that by that time nuclear energy will indeed be an option, but not necessarily the only one or the best. Finally a chronological table has been worked out indicating a construction schedule for the reactors in case the option is for nuclear energy - keeping in mind that this option does not depend exclusively on technical and economic but also political criteria and therefore requires a democratic decision-making process. (Author) [pt

  12. Global architecture of innovative nuclear energy

    International Nuclear Information System (INIS)

    Andreeva-Andrievskaya, L.N.; Kagramanyan, V.S.; Usanov, V.I.; )

    2011-01-01

    The study Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors including a Closed Fuel Cycle (GAINS), aimed at harmonization of tools used to assess various options for innovative development of nuclear energy, modeling of jointly defined scenarios and analysis of obtained results is presented in the paper. Objectives and methods of the study, issues of spent fuel and fissile materials management are discussed. Investment risks and economic indicators are also described [ru

  13. Optimal electricity generation system expansion and nuclear power option in Belarus

    International Nuclear Information System (INIS)

    Yakushau, A.; Mikhalevich, A.

    2000-01-01

    After having declared independence, the Republic of Belarus was forced to import 90% of fuel consumed and 25% of electricity. The deficit of peak electric capacity reached 40%. The imported fuel covers the last years because the drop in the production reduced the energy consumption in the Republic but not the needs of the energy sector. Annual payments for imported fuel and electricity are equal to the sum of an annual state budget of Belarus (about 1.5 billion USD) and current debts were not lower 300 million. Comparative analysis of the different scenarios of the electricity generation system expansion showed that an optimum way for electricity generation is installation of the combine cycle units and construction nuclear power plants. The results of the study also showed that the option based on replacement of deficit of the electricity generation by the way of the construction combine cycle units with capacities 450 MW turned out to be the best solution among non nuclear options. (author)

  14. The importance of university research in maintaining the nuclear option

    International Nuclear Information System (INIS)

    Bruschi, H.J.; Hochreiter, L.E.

    1991-01-01

    The role of the university in maintaining and revitalizing the nuclear option should have four goals. First, it must attract highly skilled students who have an interest in math and science and help foster their interest in nuclear science and engineering. Next, it must present a state-of-the-art educational program that contains meaningful research to maintain these students. The third goal of nuclear engineering departments is to provide the nontechnical student a fair assessment of benefits and risks associated with commercial nuclear power relative to other sources of electricity. Lastly, it must effectively communicate to all students a compelling vision of nuclear power as a vital energy resource that will grow. The most difficult role for the university is to successfully convey a future for those in the nuclear science and engineering program

  15. Energy Outlook and the role of nuclear power

    International Nuclear Information System (INIS)

    Rosen, Morris

    1998-01-01

    With projections of sharply rising energy consumption and continuing global dependence on fossil fuel sources, environmental pollution and greenhouse gas emission could reach severe damaging levels. The global challenge is to develop strategies that foster a sustainable energy future less dependent on fossil fuels. Low environmental impacts and a vast fuel resource potential should allow nuclear power to have a meaningful role in the supply of energy during the next century. Nuclear power for over 40 years has contributed significantly to world energy needs, currently providing more than 6% of primary energy and 17% of global electricity. Low environmental impacts and a vast fuel resource potential should allowed to contribute substantially to meeting the sustainable energy challenge.. Although there is some awareness on both the technical and political level of nuclear power's advantages, it is not a globally favored option in a sustainable energy future. A sizeable sector of public opinion remains hesitant or opposed to its increased use, some even to a continuation at present levels. This paper, after some discussion of the rising energy consumption, concentrates on a comparison of the environmental impacts of the available energy options. (author)

  16. Competitiveness of nuclear energy - Key findings from an OECD study

    International Nuclear Information System (INIS)

    Bertel, Evelyne

    2006-01-01

    Economic competitiveness always has been a cornerstone in decision making for electricity generation options but the liberalization of energy markets has enhanced its importance. For private investors in de-regulated markets the economic attractiveness of a project is often 'the' driving factor. For plant owners and operators reducing costs is a key objective. The relative competitiveness of nuclear energy as compared with alternatives has been investigated in a recent OECD study which noted some evolution in the ranking of different options as compared with results published seven years ago. In particular the volatility of fossil fuel prices, notably natural gas for electricity generation, along with technical progress enhancing the reliability and availability factor of nuclear power plants have had a significant influence on comparative economic performance of base-load options. Furthermore, as governments implement progressively policies to address global climate change threat, the moves to internalize the costs of carbon emissions is increasing the competitiveness of low-carbon options such as renewable energy sources and nuclear power versus coal and to a lesser extent gas. (authors)

  17. The nuclear energy like an option in Mexico before the climatic change

    International Nuclear Information System (INIS)

    Hernandez M, B.; Puente E, F.; Ortiz O, H. B.; Avila P, P.; Flores C, J.

    2014-10-01

    The current energy poverty, the future necessities of energy and the climatic change caused by the global warming, are factors that associates each, manifest with more clarity the unsustainable production way and energy consumption that demands the society in the current life. This work analyzes the nuclear energy generation like an alternative from the environmental view point that ties with the sustainable development and the formulation of energy use models that require the countries at global level. With this purpose were collected and reviewed documented data of the energy resources, current and future energy consumption and the international commitments of Mexico regarding to greenhouse gases reduction. For Mexico two implementation scenarios of nuclear reactors type BWR and A BWR were analyzed, in compliance with the goals and policy development established in the National Strategy of Climatic Change and the National Strategy of Energy; the scenarios were analyzed through the emissions to the air of CO 2 , (main gas of greenhouse effect) which avoids when the energy production is obtained by nuclear reactors instead of consumptions of traditional fuels, such as coal, diesel, natural gas and fuel oil. The obtained results reflect that the avoided emissions contribute from 4.2% until 40% to the national goal that Mexico has committed to the international community through the Convention Marco of the United Nations against the Climatic Change (CMNUCC). These results recommends to the nuclear energy like a sustainable energy solution on specific and current conditions for Mexico. (Author)

  18. Energy Security and the Role of Nuclear power

    International Nuclear Information System (INIS)

    Kim, Jinwoo

    2008-01-01

    Nuclear power is expected to play a more important role to cope with rapidly changing energy market environment. Recently re-evaluation on nuclear energy is taking place in major countries like USA, Japan, and Sweden. It is of particular interest in Korea to make out optimal level of nuclear power from energy security perspectives. This paper is aiming to derive options for optimal fuel mix and sets up scenarios on major premises such back-end costs and fuel price of nuclear, and CO 2 emission cost. Six scenarios are analyzed for optimal fuel mix and additional cases are examined for the effect on CO 2 emission. The model outcomes suggest to construct 3∼13 units of 1,400 MW nuclear reactors by 2030 to meet ever-growing power demand. It is found that base-load facilities are taking about 70% of total installed capacity in any case. As a reasonable option, 9 units (12.6 GW) of nuclear is recommended to be built, taking 37.0% of total installed capacity in 2030. CO 2 emission turns out to be largely affected by nuclear proportion, which is sensitive to environmental cost. However, expansion of renewable energy or demand side management is found to have rather on CO 2 emission. Energy security aspects need to be considered in developing an optimal fuel mix of power generation. But In-depth studies are needed to obtain a practical range of optimal level of nuclear power from energy security point of view

  19. Prospects for nuclear energy under a Reagan administration

    International Nuclear Information System (INIS)

    Doub, W.O.

    1981-01-01

    The press is told that media treatment of nuclear energy has been superficial and often irresponsible. The press is responsible for much of the public's apprehension, and should work in cooperation with the industry to present objective facts of nuclear energy economics and safety. The Reagan administration intends to reverse the impact of the Carter policies on the nuclear option by supporting commercial reprocessing and shifting the focus from conservation and renewable energy sources back to nuclear energy. New management structure and responsibilities will address the US decline as a world leader in nuclear energy and realign the country with its traditional trading partners. This will reverse the erosion of the Non-Proliferation Treaty and the authority of the International Energy Agency. Current economic problems could delay utility plant expansion without some steps toward deregulation

  20. Nuclear energy and climate change; Energia nuclear y cambio climatico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Jimenez, A.

    2002-07-01

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO{sub 2} emissions. (Author)

  1. Nuclear energy and natural environment. Information seminar

    International Nuclear Information System (INIS)

    1994-01-01

    The material of the Jadwisin 93' seminar is the collection 20 of 19 articles discussing aspects of the subject of nuclear energy and natural environment. The lectures were presented at six sessions: 1) Nuclear energy applications in medicine, agriculture, industry, food preservation and protection of the environment; 2) Nuclear power in the world; 3) Public attitudes towards different energy options, the example of Sweden; 4) Nuclear power in neighbouring countries; 5) Radiation and human health; 6) Radioactive waste management and potential serious radiological hazards. The general conclusion of the seminar can be as follows. In some cases the nuclear power is a source of environment pollution but very often nuclear techniques are now used and certainly more often in the future will be used for environment and human health protection

  2. Nuclear Energy Principles, Practices, and Prospects

    CERN Document Server

    Bodansky, David

    2008-01-01

    The world faces serious difficulties in obtaining the energy that will be needed in coming decades for a growing population, especially given the problem of climate change caused by fossil fuel use. This book presents a view of nuclear energy as an important carbon-free energy option. It discusses the nuclear fuel cycle, the types of reactors used today and proposed for the future, nuclear waste disposal, reactor accidents and reactor safety, nuclear weapon proliferation, and the cost of electric power. To provide background for these discussions, the book begins with chapters on the history of the development and use of nuclear energy, the health effects of ionizing radiation, and the basic physics principles of reactor operation. The text has been rewritten and substantially expanded for this edition, to reflect changes that have taken place in the eight years since the publication of the first edition and to provide greater coverage of key topics. These include the Yucca Mountain repository plans, designs ...

  3. Recycling and transmutation of spent fuel as a sustainable option for the nuclear energy development

    International Nuclear Information System (INIS)

    Maiorino, Jose R.; Moreira, Joao M.L.

    2013-01-01

    The objective of this paper is to discuss the option of recycling and transmutation of radioactive waste against Once-through Fuel Cycle (OTC) based on uranium feed under the perspective of sustainability. We use a qualitative analysis to compare OTC with closed fuel cycles based on studies already performed such as the Red Impact Project and the comparative study on accelerator driven systems and fast reactors for advanced fuel cycles performed by the Nuclear Energy Agency. The results show that recycling and transmutation fuel cycles are more attractive than the OTC from the point of view of sustainability. The main conclusion is that the decision about the construction of a deep geological repository for spent fuel disposal must be reevaluated. (author)

  4. Public perceptions of nuclear power, climate change and energy options in Britain: summary findings of a survey conducted during October and November 2005

    Energy Technology Data Exchange (ETDEWEB)

    Wouter Poortinga; Nick Pidgeon; Irene Lorenzoni [University of East Anglia, Norwich (United Kingdom). Centre for Environmental Risk, School of Environmental Sciences

    2006-07-01

    This report presents the findings of a large-scale British survey (n=1491) of public opinion towards future energy options for the nation, with a focus on attitudes to nuclear power in the context of climate change. People are generally more interested and concerned about climate change than they are about nuclear power. People tend to favour renewable energy sources over fossil fuels, whilst nuclear power is the least favoured of the three. When asked about the future contribution of energy sources to reliable and secure electricity supplies, a slightly different picture appears: renewables are still most favoured, but nuclear power now gains a ranking above coal and oil and one comparable with gas. People do differentiate various electricity generation sources in terms of their (generally positive and negative) factors. In this respect the general stigma attached to nuclear power remains. Specifically, many people think it creates dangerous waste and is a hazard to human health. On the other hand, most people perceive wind power as clean, safe, good for the economy and cheap. Coal on the other hand is seen as polluting and (correctly) as a cause of climate change. If the costs of supplying the UK's energy needs were the same from either nuclear power or renewable energy sources, 77% of the respondents indicated they would prefer renewable energy sources. Less than 10% would prefer nuclear power over renewables under such circumstances. There was a strong preference for solutions other than nuclear power to mitigate climate change, such as promoting renewable energies (78%), or through lifestyle changes and energy efficiency (76%). 14 refs., 3 tabs.

  5. Costs and advantages of nuclear energy

    International Nuclear Information System (INIS)

    Almoguera, R.

    2006-01-01

    Recent studies on nuclear energy competitiveness show that considering only the economics this option is the most economic one to generate the base load electricity in most of the countries which do not have plenty of alternative fuels, being this advantage both for the actual prices formation and for their stability on the long term. Should we add the strategic and environmental benefits linked to: Kioto emissions limits, short and long term supply security, national wealth increase due to quality and price of the supply and enhancement of related enterprises, the goodness of nuclear energy to supply a significant share of the electricity demand in most of the countries is evident. For the investors to make decisions for this option, some conditions have to be assured: regulatory stability, favourable national energy policy and expectation for the future, predictable and proven licensing process and expectation for moderate interest rates in the long term. (Author)

  6. Book of Abstracts of 7th International Conference on Nuclear Option in Countries with Small and Medium Electricity Grids

    Energy Technology Data Exchange (ETDEWEB)

    Cavlina, N; Pevec, D; Bajs, T

    2008-07-01

    The conference is organized with intention to focus on specific aspects of usage of nuclear energy for electricity production in small and medium countries. Importance of international cooperation for the assessment of the nuclear option has been recognised by the International Atomic Energy Agency (IAEA). As a result of this recognition, the Conference is organized in co-operation with IAEA. Session topics reflect some current emphasis, such as country energy needs, accommodation on Kyoto restriction on CO{sub 2} emission, new reactor technologies, operation and safety of the operating nuclear power plants. The conference also focuses on the exchange of experience and co-operation in the fields of fuel cycle, radioactive waste management, regulatory practices and liability and insurance for nuclear damage. All contributed papers are grouped in 10 sessions: Energy planning and nuclear option; Power reactors and technologies; Operation and maintenance experience; Safety culture; Nuclear safety analyses; Reactor physics and nuclear fuel cycle; Radioactive waste management and decommissioning; Public relation; Regulatory practice; Liability and insurance for nuclear damage.

  7. Book of Abstracts of 7th International Conference on Nuclear Option in Countries with Small and Medium Electricity Grids

    International Nuclear Information System (INIS)

    Cavlina, N.; Pevec, D.; Bajs, T.

    2008-01-01

    The conference is organized with intention to focus on specific aspects of usage of nuclear energy for electricity production in small and medium countries. Importance of international cooperation for the assessment of the nuclear option has been recognised by the International Atomic Energy Agency (IAEA). As a result of this recognition, the Conference is organized in co-operation with IAEA. Session topics reflect some current emphasis, such as country energy needs, accommodation on Kyoto restriction on CO 2 emission, new reactor technologies, operation and safety of the operating nuclear power plants. The conference also focuses on the exchange of experience and co-operation in the fields of fuel cycle, radioactive waste management, regulatory practices and liability and insurance for nuclear damage. All contributed papers are grouped in 10 sessions: Energy planning and nuclear option; Power reactors and technologies; Operation and maintenance experience; Safety culture; Nuclear safety analyses; Reactor physics and nuclear fuel cycle; Radioactive waste management and decommissioning; Public relation; Regulatory practice; Liability and insurance for nuclear damage

  8. Nuclear energy and challenges for India

    International Nuclear Information System (INIS)

    Kamalapur, Gopalkrishna Dhruvaraj

    2017-01-01

    The challenge for the nuclear community is to assure that nuclear power remains a viable option in meeting the energy requirements of the next century. It could be a major provider of electricity for base load as well as for urban transport in megacities. It can play a role in non-electric applications in district heating, process industries, maritime transport. (author)

  9. Energy options for residential buildings assessment

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Dincer, Ibrahim; Esmailzadeh, Ebrahim

    2013-01-01

    Highlights: ► Studying various building energy options. ► Assessing these options from various points. ► Comparing these options for better environment and sustainability. ► Proposing renewable energy options as potential solutions. - Abstract: The building sector, as one of the major energy consumers, demands most of the energy research to assess different energy options from various aspects. In this paper, two similar residential buildings, with either low or high energy consumption patterns, are chosen as case studies. For these case studies, three different renewable energy technology and three different hybrid systems are designed for a specified size. Then, the environmental impact indices, renewable energy indices, and the renewable exergy indices have been estimated for every energy options. Results obtained show that the hybrid systems (without considering the economics factors) are superior and having top indices. The importance of the energy consumption patterns in buildings are proven by the indices. By cutting the energy consumption to about 40% the environment index would increase by more than twice (2.1). Utilization of the non-fossil fuels is one part of the solution to environmental problems while energy conservation being the other. It has been shown that the re-design of the energy consumption model is less complex but more achievable for buildings.

  10. Nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Verfondern, K.

    2007-01-01

    In the long term, H 2 production technologies will be strongly focusing on CO 2 -neutral or CO 2 -free methods. Nuclear with its virtually no air-borne pollutants emissions appears to be an ideal option for large-scale centralized H 2 production. It will be driven by major factors such as production rates of fossil fuels, political decisions on greenhouse gas emissions, energy security and independence of foreign oil uncertainties, or the economics of large-scale hydrogen production and transmission. A nuclear reactor operated in the heat and power cogeneration mode must be located in close vicinity to the consumer's site, i.e., it must have a convincing safety concept of the combined nuclear/ chemical production plant. A near-term option of nuclear hydrogen production which is readily available is conventional low temperature electrolysis using cheap off-peak electricity from present nuclear power plants. This, however, is available only if the share of nuclear in power production is large. But as fossil fuel prices will increase, the use of nuclear outside base-load becomes more attractive. Nuclear steam reforming is another important near-term option for both the industrial and the transportation sector, since principal technologies were developed, with a saving potential of some 35 % of methane feedstock. Competitiveness will benefit from increasing cost level of natural gas. The HTGR heated steam reforming process which was simulated in pilot plants both in Germany and Japan, appears to be feasible for industrial application around 2015. A CO 2 emission free option is high temperature electrolysis which reduces the electricity needs up to about 30 % and could make use of high temperature heat and steam from an HTGR. With respect to thermochemical water splitting cycles, the processes which are receiving presently most attention are the sulfur-iodine, the Westinghouse hybrid, and the calcium-bromine (UT-3) cycles. Efficiencies of the S-I process are in the

  11. Proceedings and Book of Abstracts of 8th International Conference: Nuclear Option in Countries with Small and Medium Electricity Grids

    International Nuclear Information System (INIS)

    2010-01-01

    The conference is organized with intention to focus on specific aspects of usage of nuclear energy for electricity production in small and medium countries. Importance of international cooperation for the assessment of the nuclear option has been recognised by the International Atomic Energy Agency (IAEA). As a result of this recognition, the Conference is organized in co-operation with IAEA. Session topics reflect some current emphasis, such as country energy needs, accommodation on Kyoto restriction on CO 2 emission, new reactor technologies, operation and safety of the operating nuclear power plants. The conference also focuses on the exchange of experience and co-operation in the fields of fuel cycle, radioactive waste management, regulatory practices and liability and insurance for nuclear damage. All contributed papers are grouped in 10 sessions: Energy planning and nuclear option; Power reactors and technologies; Nuclear energy and environment; Operation and maintenance experience; Safety culture; Nuclear safety analyses; Reactor physics and nuclear fuel cycle; Radioactive waste management and decommissioning; Public relations; Regulatory practice and general papers.

  12. Risks and benefits of nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.

    2008-01-01

    Based on a study published by the OECD Nuclear Energy Agency in mid-2007, the paper covers economic, environmental and social aspects of nuclear and other energy chains. It describes an analytical framework and identifies indicators to assess different energy chains on a comprehensive basis. Illustrative results of authoritative studies on life cycle analysis of electricity generation chains are presented to highlight benefits and drawbacks of alternative options. Examples of quantitative and qualitative indicators for different chains, covering environmental burdens such as air emissions and solid waste streams, social aspects such as health impacts and aversion to risk, and economic factors, are analyzed and compared. A key finding from the review of published literature is that nuclear energy systems in operation have very good performance for a wide range of indicators covering economic, environmental and social aspects. Although the results of analytical studies are case and context specific, they indicate that the nuclear option offers attractive characteristics for sustainable future energy mixes. The importance of policy goals and priorities in the assessment of alternative options is highlighted and the paper offers some insights on the use of multi-criteria decision tools to support policy making. It is shown in particular that the ranking of nuclear and other electricity generation systems may differ depending on the respective weights of economic, environmental and social factors. The role of technology progress is underlined as a major tool to enhance the performance of nuclear energy systems in order to design and implement advanced reactors and fuel cycle schemes addressing better the challenges of the 21. century in the energy sector. The evolution from the current generation of reactors to generation III+ and eventually generation IV systems is described and their role in strengthening the potential contribution of nuclear energy to sustainable

  13. Use of nuclear energy and land warming

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Jose Alberto Maia; Sordi, Gian Maria Agostino Angelo; Frazao, Selma Violato; Zago, Franco Raphael do Carmo [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], E-mail: blosspriester@gmail.com, E-mail: gmsordi@ipen.br, E-mail: selma.violato@terra.com.br, E-mail: fzago@ipen.br

    2007-07-01

    The world is facing an energy requirement that hardly will be covered by renewable sources actually researched. Though there is almost unanimity in the scientific community about the fact that nuclear energy is still a better option to replace oil and coal, environmental restrictions go on vigorous. And consequently, this non-consensus on nuclear energy benefits, greenhouse effect and weakening of ozone layer go on causing the land warming. In Brazil, nuclear plants are competitive and are capable to produce energy in a safe way, thus contributing to the stabilization of the national electric system and to the expansion of installed capacity and as alternative source of energy and applications for peaceful purposes, preserving the environment and planet inhabitants. (author)

  14. Nuclear energy. Ambiguous lessons from history

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Nuclear power is treated from the historical viewpoint; in particular, the question is discussed whether hopes and expectations from the beginning of the 'nuclear era' have come true. It is suggested that the efforts were driven by political rather than economic considerations. It is demonstrated that the development of nuclear power was no consequence of the oil crisis; actually the situation developed the other way round: the oil crisis was a consequence of the failure of the nuclear option. The fact that the nuclear programme failed to bring the expected results to Western countries is analyzed. The contribution of nuclear to total energy generated will not reach - in the near future at least - the expected proportion: nuclear is actually less competitive because the threat to the environment which some opponents attach to nuclear energy has become mirrored in economic aspects. (M.D.). 33 refs

  15. Investments in electricity generation in Croatian liberalized market: energy option

    International Nuclear Information System (INIS)

    Androcec, I.; Viskovic, A.; Slipac, G.

    2004-01-01

    The Republic of Croatia should have enough capacities built on its own territory to cover system's peak load at any time for ensuring a long-term reliability of its operation. According to annual increasing of electricity consumption and progressive shutdown of the oldest generating plants, the security of future electricity supply depends on new investments. The market, i.e. a competitive generation, is the driving force in the construction of new power plants. The main stimulus for the construction is the possibility of definite return of invested capital and enabling potential investors to realize the expected revenues (profit). The construction of generating capacities is subject of authorisation procedure or tendering procedure, by approval of the Energy Regulatory Council. The electricity market opening in Croatia is parallel process with establishment of regional energy market in South East Europe where the decision of investment in new power plant will be defined by regional investment priorities, all in the aspect of European Union enlargement. In those liberalisation conditions it is necessary to realize all possible energy options according to the Strategy of Energy Development of Republic of Croatia and to the regional energy market requirements or European Union Directives. New power plant will be realized, because of objective circumstances, through construction of gas power plant or coal power plant and possible nuclear power plant, and in much smaller size through construction of hydro power plants or power plants on renewable energy sources. The possibility of any energy option will be considered in view of: investment cost, operation and maintenance cost, fuel price, external costs, public influence, and through investor's risk. This paper is aiming to analyse the possibility of nuclear power plant construction in Croatia as well as in other small and medium electricity grids. Nuclear option will be comprehensively considered in technical

  16. Multi-criteria Evaluation of Nuclear Option

    International Nuclear Information System (INIS)

    Feretic, D.; Tomsic, Z.; Jaksic, D.

    2002-01-01

    When evaluating power system expansion scenarios there is a need to take into consideration a range of measurable and non-measurable impacts. Measurable impacts are fixed and variable production costs and, recently, external costs. Non-measurable impacts include public attitude to certain energy technology and investor's risk in achieving the expected profit (regulatory and political risk). Public attitude has a large and sometimes essential impact on decision-making. It is mostly associated with the expected environmental impact of a potential power plant and can be divided in rational and non-rational part. Rational part, which is in proportion with scientifically approved environmental impact of energy options (inversely proportional to external costs) is relatively small, while the other, non-rational category which is not proportional with the actual environmental impact (especially in the case of nuclear power), is much larger. Investor's risk in achieving the expected profit is mostly associated with possible changes of domestic or foreign regulations or policy that can influence power plant operation and long-term fuel availability and price. Two factors that affect decision-making should be distinguished. The first is the total impact of certain non-measurable factor and the other is the impact of certain technology on that non-measurable factor like public impact, for example. The objective of multi-criteria evaluation, after weighting and quantification of all impacts is to determine the most acceptable power system expansion option. In the article a simplified quantification will be made of measurable (investment costs, annual maintenance costs, fuel price, indirect costs of power plants) and non-measurable (public attitude, investor's risk) elements that affect future investment decision. For that purpose possible relative values of non-measurable impacts of different options will be determined (their weights and impact on relative increase of annual

  17. A Methodology for Comparative Assessment of Energy Options: The Case of Mexico

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Francois, Juan-Luis

    2008-01-01

    This paper presents the development of a methodology to measure the sustainability of alternatives for electricity generation. It is based on the evaluation of indicators in three dimensions of sustainability. No single technology exhibited superior performance on the basis of all indicators and it was necessary the application of a method to make the aggregation of all the indicators, taking into account the relative importance in the decision. In this study, a fuzzy logic inference system was developed to build a decision function that depends on all the indicators. The purpose is to rank the energy options in terms of economic, environmental and social sustainability. All the decision elements are combined and integrated in an inference logic system that takes into account weights of different indicators. The methodology was applied to evaluate the sustainability of nuclear, wind, natural gas, coal, hydro and oil technologies under Mexican conditions. When only the economic dimension is considered nuclear is the best option, if the environmental dimension is also considered the nuclear option is the best alternative too. When the social dimension is also taken into account the nuclear option is the worst. These results are obtained using the same weight to each dimension to accomplish with the equilibrium principle of the sustainability. (authors)

  18. Shungnak Energy Configuration Options.

    Energy Technology Data Exchange (ETDEWEB)

    Rosewater, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Power systems in rural Alaska villages face a unique combination of challenges that can increase the cost of energy and lowers energy supply reliability. In the case of the remote village of Shungnak, diesel and heating fuel is either shipped in by barge or flown in by aircraft. This report presents a technical analysis of several energy infrastructure upgrade and modification options to reduce the amount of fuel consumed by the community of Shungnak. Reducing fuel usage saves money and makes the village more resilient to disruptions in fuel supply. The analysis considers demand side options, such as energy efficiency, alongside the installation of wind and solar power generation options. Some novel approaches are also considered including battery energy storage and the use of electrical home heating stoves powered by renewable generation that would otherwise be spilled and wasted. This report concludes with specific recommendations for Shungnak based on economic factors, and fuel price sensitivity. General conclusions are also included to support future work analyzing similar energy challenges in remote arctic regions.

  19. Economics and environmental impacts of nuclear energy in comparison with other energy systems

    International Nuclear Information System (INIS)

    Bennett, L.

    1994-01-01

    The results of the 1992 OECD/NEA-IEA study on comparative electricity generation costs of nuclear and fossil-fuelled power plants are presented. It is focused on plants that could be commercially available for commissioning in the year 2000 or shortly thereafter. The generation costs for nuclear, relative to coal or natural gas fuelled power plants, are shown. The attractiveness of these three main fuel options for large base load power stations for commissioning around the year 2000 is critically dependent on the discount rate required by the utility or government. Higher discount rates (10%) favour the low investment cost option, gas, whilst lower discount rates (5%) favour the low fuel cost option. The role of nuclear power in avoiding greenhouse gas emissions is illustrated, as well as penetration of nuclear power, displacing fossil fuels for electricity generation and annual change in CO 2 emissions in varies countries from 1975 to 1992 as a function of the nuclear share in electricity generation for 1992. A comparison between quantities of fuel and wastes for nuclear and fossil fuelled power plants is given. Some issues of impacts of particular energy sources on health and the environment are outlined. In the conclusions, nuclear power is considered to be the most likely non-fossil-fuel technology that could be deployed on a large scale for electricity generation, if the objectives of advanced nuclear power development programmes are met and social acceptability of nuclear energy is reached. 9 figs., 2 ann., 16 refs. (I.P.)

  20. Nuclear Power Options Viability Study. Volume 4. Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D B; White, J D; Sims, J W [eds.

    1986-09-01

    Documents in the Nuclear Power Options Viability Study (NPOVS) bibliography are classified under one of four headings or categories as follows: nuclear options; light water reactors; liquid metal reactors; and high temperature reactors. The collection and selection of these documents, beginning early in 1984 and continuing through March of 1986, was carried out in support of the study's objective: to explore the viabilities of several nuclear electric power generation options for commercial deployment in the United States between 2000 and 2010. There are approximately 550 articles, papers, reports, and books in the bibliography that have been selected from some 2000 surveyed. The citations have been made computer accessible to facilitate rapid on-line retrieval by keyword, author, corporate author, title, journal name, or document number.

  1. Nuclear Power Options Viability Study. Volume 4. Bibliography

    International Nuclear Information System (INIS)

    Trauger, D.B.; White, J.D.; Sims, J.W.

    1986-09-01

    Documents in the Nuclear Power Options Viability Study (NPOVS) bibliography are classified under one of four headings or categories as follows: nuclear options; light water reactors; liquid metal reactors; and high temperature reactors. The collection and selection of these documents, beginning early in 1984 and continuing through March of 1986, was carried out in support of the study's objective: to explore the viabilities of several nuclear electric power generation options for commercial deployment in the United States between 2000 and 2010. There are approximately 550 articles, papers, reports, and books in the bibliography that have been selected from some 2000 surveyed. The citations have been made computer accessible to facilitate rapid on-line retrieval by keyword, author, corporate author, title, journal name, or document number

  2. Challenges of deploying nuclear energy for power generation in Malaysia

    Science.gov (United States)

    Jaafar, Mohd Zamzam; Nazaruddin, Nurul Huda; Lye, Jonathan Tan Thiam

    2017-01-01

    Under the 10th Malaysia Plan (2010-2015) and the Economic Transformation Programme (ETP), nuclear energy was identified as a potential long-term option to be explored for electricity generation in Peninsular Malaysia. The energy sector in Malaysia currently faces several concerns including depleting domestic gas supply which will affect security and reliability of supply as well as overdependance on fossil fuels - mainly gas and imported coal, and nuclear energy may offer a possible solution to these issues as well as global climate change concern. Pursuing the nuclear option, Malaysia Nuclear Power Corporation (MNPC) is undertaking a series of comprehensive studies to facilitate an informed Government decision on the matter. This paper aims to discuss the many challenges towards the peaceful use of nuclear energy for electricity generation in the context of the New Energy Policy 2010 to achieve a balanced and sustainable energy mix. This effort will continue in the 11th Malaysia Plan (2016-2020) with emphasis on implementing a comprehensive communications plan and public awareness programme for the potential use of nuclear energy in the future. In analysing the challenges for the development of nuclear energy in Malaysia, the traditional triple bottom line (TBL) framework for sustainability, encompassing economic, social and environmental objectives is utilized. An additional factor, technical, is also included in the analysis to provide a more holistic view. It is opined that the main challenges of developing nuclear energy for electricity generation in a newcomer country like Malaysia can be attributed primarily to domestic non-technical factors compared to the technical factor.

  3. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Tightly coupled nuclear-renewable hybrid energy systems (N-R HESs) are an option that can generate zero-carbon, dispatchable electricity and provide zero-carbon energy for industrial processes at a lower cost than alternatives. N-R HESs are defined as systems that are managed by a single entity and link a nuclear reactor that generates heat, a thermal power cycle for heat to electricity conversion, at least one renewable energy source, and an industrial process that uses thermal and/or electrical energy. This report provides results of an analysis of two N-R HES scenarios. The first is a Texas-synthetic gasoline scenario that includes four subsystems: a nuclear reactor, thermal power cycle, wind power plant, and synthetic gasoline production technology. The second is an Arizona-desalination scenario with its four subsystems a nuclear reactor, thermal power cycle, solar photovoltaics, and a desalination plant. The analysis focuses on the economics of the N-R HESs and how they compare to other options, including configurations without all the subsystems in each N-R HES and alternatives where the energy is provided by natural gas.

  4. Nuclear power as an option in electrical generation planning for Croatia

    International Nuclear Information System (INIS)

    Feretic, D.; Tomsic, Z.; Cavlina, N.; Kovacevic, T.

    2000-01-01

    The expected increase of electricity consumption in the next two decades, if covered mainly by domestic production, will require roughly 4500 MW of new installed capacity. The question is which resource mix would be optimal for the future power plants. Taking into account lack of domestic resources for electricity generation, current trends in the European energy markets, and environmental impact of various energy technologies, it seems reasonable for Croatia to keep the nuclear option open in the future energy planning. In line with that conclusion, this paper analyzes how the introduction of nuclear power plants would influence future power system expansion plans in Croatia, and the possibility to meet the Kyoto requirement. The effects of CO 2 emission tax and external costs on the optimal capacity mix and the emissions levels are also examined. (author)

  5. Prospective of the nuclear energy, technological tendency

    International Nuclear Information System (INIS)

    Cruz F, G. De la; Salaices A, M.

    2004-01-01

    The world's concern about the energy supply in the near future, has had as an answer diverse proposals in which two multinational initiatives are highlighted, that of the International Project on Nuclear Innovative Reactors and Fuel Cycles (INPRO) and that of the Generation-l V International Forum (GIF). Both initiatives direct their efforts to the development of new technologies in nuclear energy that would satisfy the energy requirements of the future. In this article, an analysis based on a) the available information on these technologies, b) a joint study (IEA/OECD/IAEA) on the new technologies regarding its capacity to confront the current challenges of the nuclear energy, and c) the authors' experience and knowledge about the phenomenology, design and security of nuclear facilities, is presented. Moreover, the technologies that, in the authors' opinion, will have the better possibilities to compete successfully in the energy markets and could be one of the viable options to satisfy the energy demands of the future, are described. (Author)

  6. Pawnee Nation Energy Option Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-31

    In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Based on the request of Pawnee Nation’s Energy Task Force the research team, consisting Tribal personnel and Summit Blue Consulting, focused on a review of renewable energy resource development potential, funding sources and utility organizational along with energy savings options. Elements of the energy demand forecasting and characterization and demand side options review remained in the scope of work, but were only addressed at a high level. Description of Activities Performed Renewable Energy Resource Development Potential The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Energy Efficiency Options While this was not a major focus of the project, the research team highlighted common strategies for reducing energy use in buildings. The team also discussed the benefits of adopting a building energy code and

  7. Evaluating options for sustainable energy mixes in South Korea using scenario analysis

    International Nuclear Information System (INIS)

    Hong, Sanghyun; Bradshaw, Corey J.A.; Brook, Barry W.

    2013-01-01

    To mitigate greenhouse gas emissions, coal-fired electricity infrastructure needs to be replaced by low-carbon electricity generation options. Here we examine a range of possible alternative scenarios for sustainable electricity generation in South Korea, considering both physical and economic limits of current technologies. The results show that South Korea cannot achieve a 100% renewable energy mix and requires at least 55 GW of backup capacity. Given that constraint, we modelled seven scenarios: (i) the present condition, (ii) the First National Electricity Plan configuration, (iii) renewable energy (including 5 GW photovoltaic) with fuel cells or (iv) natural gas backup, (v) maximum renewable energy (including 75 GW photovoltaic) with natural gas, (vi) maximum nuclear power, and (vii) nuclear power with natural gas. We then quantify levelised cost of electricity, energy security, greenhouse gas emissions, fresh water consumption, heated water discharge, land transformation, air pollutant emissions, radioactive waste disposal, solid waste disposal and safety issues for each modelled mix. Our analysis shows that the maximum nuclear power scenario yields the fewest overall negative impacts, and the maximum renewable energy scenario with fuel cells would have the highest negative impacts. - Highlights: ► Due to physical limits of renewable sources, renewable energy cannot provide total electricity consumption in South Korea. ► A massive expansion of solar power will act to save only a small amount of backup fuel at greatly increased costs. ► A huge supply of natural gas capacity is essential, due to the absence of feasible large-scale energy storage. ► A pathway to maximize renewable energy causes more environmental and economic disadvantages than the status quo. ► Maximizing nuclear power is the most sustainable option for South Korea

  8. Nuclear energy: exit or revival? International aspects; Energie nucleaire: sortie ou relance? Aspects internationaux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-11-01

    This colloquium took place less than 1 year after the decision of the US of revival of their nuclear program. Thus the international context has changed, even if nuclear contestation remains as strong as in the past. Among governments, some positions preach the banishment of nuclear energy while others consider the nuclear option as the only solution to meet the growing up energy demand and the future environmental and economical stakes. This report makes a synthesis of the different talks given by the participants during the 3 round tables of the colloquium on the future of nuclear energy: the ecological stake, the democratic stake, and the energy policy stake. Four talks of French government representatives open and conclude the debates of the different round tables. (J.S.)

  9. Idaho's Energy Options

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Neilson

    2006-03-01

    This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

  10. Economical viability of the nuclear option in Mexico

    International Nuclear Information System (INIS)

    Ortiz, R.; Alonso, G.; Sanchez, J.

    2006-01-01

    Due to the high volatility of the gas prices and the concern for CO2 emissions, the nuclear option seems to be an option that needs to consider in a electricity expansion portfolio. In this paper a levelized electricity cost analysis is performed to compared different scenarios of electricity generation using combined cycles by using gas and nuclear power stations. The scenarios comprises different discount rates for the investment that goes from 5% to 12%, gas prices from 4.44 USD/mmBTU to 7 USD/mmBTU and overnight cost for Nuclear Power Plants from 1200 USD/kW to 1600 USD/kW. The overall cash flow including investment is analyzed during the whole life of the power plants to test the convenience of the best option in the long run

  11. Future energy options for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Zaric, Z P

    1982-05-01

    An educated guess is made of the energy demand in developing countries well into the next century in order to estimate the possible role of new and renewable sources in meeting this demand. The world is roughly divided into industrialized (IND) and developing (LDC) countries. A plot of energy demand in both parts shows a possible structure of mixed energy to meet LDC demand, but there is a gap between demand and supply from conventional sources in LDCs that has to be met by new and renewable sources. When the demand for specific energy forms is projected, as much as two thirds of the final energy needed from new sources should be based on centralized-electricity and liquid-fuels technologies. Solar and geothermal energy must compete with nuclear and thermonuclear breeders, while solar prospects for chemical fuel supply in LDCs lacking adequate coal reserves seems promising. There is a large gap in research and development (R and D) spending on new energy between the two parts, which means that LDCs will have inappropriate technology at a high price. An increase in R and D spending on a regional basis should target funds to appropriate options. 6 references, 7 figures.

  12. The status and role of nuclear energy in the sustainable energy development strategy in China

    International Nuclear Information System (INIS)

    Wang Yongping; Zhao Shoufeng; Zheng Yuhui; Yuan Yujun; Rao Shuang; Liu Qun; Ding Ruijie

    2006-03-01

    The status and role of nuclear energy in the energy security and sustainable energy development strategy in China are discussed. Specifically, the role of nuclear energy in meeting the requirements of energy and electricity supply, environment protection and greenhouse gas (GHG) emission-reduction is focused on. The report is mainly composed of three component parts. The serious situation and challenges concerning the national energy security and energy sustainable development are expounded. It is indicated that the development of nuclear energy is the objective requirement for optimizing national energy structure. It is proposed that the development of nuclear energy is the important security option for safely supplying the national energy and electricity in the future. It is elaborated that the development of nuclear energy is the inevitable selection for carrying out the national energy and electricity sustainable development. Nuclear energy is a preference coinciding with the principles of the circular economy, a selection contributing to improvement of ecological environment and an inexhaustible resource in the long term. Some suggestions are put forward to the nuclear energy development in China. (authors)

  13. Evaluation of different fuel cycle options in accordance with nuclear energy production planning in Turkey. Final report for the period 15 December 1995 - 1 July 1998

    International Nuclear Information System (INIS)

    Uzmen, R.

    1998-08-01

    For two decades, Turkey has been considering the implementation of a nuclear power program in order to ensure a secure and ecologically non-pollutant electricity supply, and a site was selected at Akkuyu on the Mediterranean coaast. The energy gap predicted in recent projections could be partly filled by nuclear power. The present plan of the Ministry of Energy schedules the commissioning of at least 2,000 MWe nuclear capacity by 2010. In this report, firstly reference reactors were selected and then requirements of fuel material and services for these reactors were discussed according to Turkey's energy generation scenarios. For this study the reactor selection criteria are: 1) Provenness by operation, 2) Plant power rating, 3) Generic safety, and 4) Licensability. In this study, two types of reactors (PWR and PHWR) that meet the safety and selection criteria were taken into consideration. For Turkey's case, fuel demand and options were discussed according to these reactor types. Status and trends in the world in nuclear electricity generation, nuclear power projection, uranium production, uranium supply and demand relationships, future trends in supply and demand and supply projection were investigated. World uranium market, uranium prices analysis, refining and conversion, enrichment, fuel fabrication, fuel burnup and back-end options were thoroughly discussed. The economics of the nuclear fuel cycle was investigated, fuel costs for PWR and PHWR were calculated. As a result of the obtained reference data a table was prepared for fuel material and services requirements according to reactor type and size. The need for nuclear power in Turkey was discussed in detail, focussing on primary resources in Turkey, demand predictions, usage ratios of domestic and imported resources. Electricity generation scenarios for Turkey were discussed and final conclusions were drawn for Turkey's case. Comparisons of the domestic and imported resources in accordance with the

  14. Future nuclear energy scenarios for Europe

    International Nuclear Information System (INIS)

    Roelofs, F.; Van Heek, A.

    2010-01-01

    Nuclear energy is back on the agenda worldwide. In order to prepare for the next decades and to set priorities in nuclear R and D and investment, market share scenarios are evaluated. This allows to identify the triggers which influence the market penetration of future nuclear reactor technologies. To this purpose, scenarios for a future nuclear reactor park in Europe have been analysed applying an integrated dynamic process modelling technique. Various market share scenarios for nuclear energy are derived including sub-variants with regard to the intra-nuclear options taken, e.g. introduction date of Gen-III (i.e. EPR) and Gen-IV (i.e. SCWR, HTR, FR) reactors, level of reprocessing, and so forth. The assessment was undertaken using the DANESS code which allows to provide a complete picture of mass-flow and economics of the various nuclear energy system scenarios. The analyses show that the future European nuclear park will exist of combinations of Gen-III and Gen-IV reactors. This mix will always consist of a set of reactor types each having its specific strengths. Furthermore, the analyses highlight the triggers influencing the choice between different nuclear energy deployment scenarios. In addition, a dynamic assessment is made with regard to manpower requirements for the construction of a future nuclear fleet in the different scenarios. (authors)

  15. GC Side Event: Africa's Energy Needs and the Potential Role of Nuclear Power. Presentations

    International Nuclear Information System (INIS)

    2015-01-01

    Energy is central to development, and energy availability, accessibility and affordability are central challenges for most African countries. Due to rapidly growing energy demand, the need for socioeconomic development, persistent concerns over climate change and environmental impacts and dependence on imported supplies of fossil fuels, African Member States are looking into possible options to secure sustainable energy supplies, including nuclear energy. The IAEA assists those countries in assessing the nuclear power option and building the necessary infrastructure for a safe, secure and sustainable nuclear power programme. This year, the IAEA is conducting Integrated Nuclear Infrastructure Review (INIR) missions to three African countries (Nigeria, Kenya and Morocco) considering introducing nuclear power. The side event presents recent updates from Africa on the potential role of nuclear power, including the IAEA Third Regional Conference on Energy and Nuclear Power in Africa, held in Mombasa, Kenya, in April 2015, an initiative to launch a new African network for enhancing nuclear power programme development, and others. The event reports on recent developments in several African Member States considering, embarking on, or expanding national nuclear power programmes.

  16. Comparative studies of energy supply options in Poland for 1997-2020

    International Nuclear Information System (INIS)

    2002-08-01

    Poland depends heavily on coal to satisfy national demands for electricity. Currently, over 90% of electricity generation is produced by coal fired power plants. Because of the large dependence on coal and environmental impacts of large-scale coal combustion the country looks for a more diversified energy mix. As ways of diversification, Poland is considering the expanded role of natural gas and, potentially, nuclear power in the future energy mix. This publication describes the analysis of several diversification options for the Polish energy sector conducted by a national team in the framework of an IAEA Technical Cooperation project implemented in 1999-2000. The project provided a set of proven IAEA methodologies and tools that was utilized for a comprehensive analysis and comparison of the options including their economic competitiveness and environmental impacts. The publication is intended primarily for senior experts and technical staff in governmental organizations, research institutes, industries and utilities, who are in charge of technical analysis or decision making related to long term energy and power supply options. The report was prepared in 2001 by the staff of the Energy Market Agency (EMA, Warsaw, Poland) that was the leading Polish organization in carrying out the study

  17. Nuclear energy as a part of national energy strategy of Slovenia

    International Nuclear Information System (INIS)

    Stritar, A.

    2002-01-01

    Slovenian National Committee of the World Energy Council has prepared the draft of the National Energy Strategy of Slovenia for next 20 years. Following are the main conclusions of the nuclear part of proposed National Energy Strategy of Slovenia: NPP Krsko should operate until the end of its lifetime; possibilities for the extension of the operating lifetime of NPP Krsko should be investigated; possible new nuclear units of smaller size should be seriously considered after 2010; advantage should be taken of established knowledge basis and infrastructure and the option for construction of additional nuclear unit for production for European electricity market should be kept open; the site for the low and intermediate waste repository should be found as soon as possible, while the spent nuclear fuel should be stored temporarily until some regional solutions are available.(author)

  18. Nuclear energy: Between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications.

    Science.gov (United States)

    Prăvălie, Remus; Bandoc, Georgeta

    2018-03-01

    For decades, nuclear energy has been considered an important option for ensuring global energy security, and it has recently started being promoted as a solution for climate change mitigation. However, nuclear power remains highly controversial due to its associated risks - nuclear accidents and problematic radioactive waste management. This review aims to assess the viability of global nuclear energy economically (energy-wise), climatically and environmentally. To this end, the nuclear sector's energy- and climate-related advantages were explored alongside the downsides that mainly relate to radioactive pollution. Economically, it was found that nuclear energy is still an important power source in many countries around the world. Climatically, nuclear power is a low-carbon technology and can therefore be a viable option for the decarbonization of the world's major economies over the following decades, if coupled with other large-scale strategies such as renewable energies. These benefits are however outweighed by the radioactive danger associated to nuclear power plants, either in the context of the nuclear accidents that have already occurred or in that of the large amounts of long-lived nuclear waste that have been growing for decades and that represent a significant environmental and societal threat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    2000-01-01

    The concept of sustainable development, which emerged from the report of the 1987 World Commission on Environment and Development (the Brundtland report), is of increasing interest to policy makers and the public. In the energy sector, sustainable development policies need to rely on a comparative assessment of alternative options, taking into account their economic, health, environmental and social aspects, at local, regional and global levels. This publication by the OECD Nuclear Energy Agency investigates nuclear energy from a sustainable development perspective, and highlights the opportunities and challenges that lie ahead in this respect. It provides data and analyses that may help in making trades-off and choices in the energy and electricity sectors at the national level, taking into account country-specific circumstances and priorities. It will be of special interest to policy makers in the nuclear and energy fields

  20. Nuclear energy socially acceptable as a possible solution for the Brazilian energy demand

    International Nuclear Information System (INIS)

    Milanez, Jimes Vasco; Almeida, Ricardo Dias; Carmo, Fausto Silva do

    2006-01-01

    In this work we try to investigate the potential, with emphasis on Brazil, of new nuclear power technologies in development related to estimated growth of energy demand in comparison to traditional nuclear power and others alternatives generation, under criteria such as technical and economic viability, respect to the environmental and particularly acceptability of the society. It is demonstrated that fourth generation of nuclear power shows an option to be considered in the medium and long-term for energy generation significantly clean, efficient and safe, should be, therefore, better investigated, mainly focusing on accelerator driven systems

  1. Nuclear fusion - Inexhaustible source of energy for tomorrow

    International Nuclear Information System (INIS)

    Leiser, M.; Demchenko, V.

    1989-09-01

    The purpose of this paper is to provide a general description of nuclear fusion as an energy option for the future and to clarify to some extent the various issues - scientific, technological, economic and environmental - which are likely to be relevant to controlled thermonuclear fusion. Section 1 describes the world energy problem and some advantages of nuclear fusion compared to other energy options. Sections 2 and 3 describe the fundamentals of fusion energy, plasma confinement, heating and technological aspects of fusion researches. Some plasma confinement schemes (tokamak, stellarator, inertial confinement fusion) are described. The main experimental results and parameter devices are cited to illustrate the state of the art as of 1989. Various engineering problems associated with reactor design, magnetic systems, materials, plasma purity, fueling, blankets, environment, economics and safety are discussed. A description of both bilateral and multilateral efforts in fusion research under the auspices of the IAEA is presented in Section 4. (author). 11 refs, 4 figs, 1 tab

  2. An assessment of Turkey's nuclear energy policy in light of South Korea's nuclear experience

    International Nuclear Information System (INIS)

    Sirin, Selahattin Murat

    2010-01-01

    Nuclear energy, which was once considered as the fuel of future and was abandoned after Chernobyl accident, has emerged recently in developed and developing countries as an option to combat climate change, to secure supply and to achieve sustainable development. Turkey, a developing country where most of the electricity is produced from fossil fuels and which has energy security problems, has adopted a new legislation giving financial incentives for nuclear power plant construction, along with a tender in 2008. However, the tender ended in a stalemate after the Council of State's decision in November 2009. An evaluation of Turkey's nuclear policy in light of South Korea's nuclear experience gives us an explanation as to why Turkey failed in the last tender. Basically it was due to lack of a long term nuclear energy policy that comprehends social, economical, technical and political aspects of nuclear energy. Thus, it is argued that Turkey can benefit from nuclear energy if it formulates a comprehensive nuclear energy plan clearly interwoven with its economic development plans, establishes a proper legal framework and has domestic industry participation in nuclear technology development.

  3. Incorporating externalities in the assessment of different energy options for electricity production

    International Nuclear Information System (INIS)

    Jacomino, Vanusa Maria Feliciano; Souza, Jair Albo Marques de; Grynberg, Suely Epsztein; Aronne, Ivan Dionysio

    2002-01-01

    The production of electricity considering its full chain cycle arises major local, regional and global environmental impacts. This fact and the need of several countries to establish energy plans for the next decades and also the recognition that environmental issues are playing important role in the decision-making process justify the interest in appropriate and comprehensive methodologies and tools to deal with this matter, to be applied mainly in the power sector. The main aim of the present investigation was the implementation and application of a simplified methodology based on the impact pathway (or damage function) approach which is being proposed by International Atomic Energy Agency (IAEA) for the estimation of externalities arising from the full chain cycle of different energy sources for electricity production in its Member States. The externalities arising from different options, including coal, oil, gas and nuclear, were estimated. A computer model based on the optimization of non-linear functions was used as a support tool for decision-making in the power sector. Taking into consideration the externalities from the air emissions of different options, nuclear power is the best solution even taking into consideration the effects of high consequence/low probability accidents. It should be noted that this investigation is not only being used to implement an environmental database, but also in enhancing the Brazilian capability in evaluating the different energy options for electricity production in the framework of sustainable development. (author)

  4. A comparison of hydrogen with alternate energy forms from coal and nuclear energy

    International Nuclear Information System (INIS)

    Cox, K.E.

    1976-01-01

    Alternate energy forms that can be produced from coal and nuclear energy have been analyzed on efficiency, economic and end-use grounds. These forms include hydrogen, methane, electricity, and EVA-ADAM, a 'chemical heat pipe' approach to energy transmission. The EVA-ADAM system for nuclear heat appears to be economically competitive with the other energy carriers except over very large distances. The cost of hydrogen derived from coal is approximately equal to that of methane derived from the same source when compared on an equal BTU basis. Thermochemically derived hydrogen from nuclear energy shows a break-even range with hydrogen derived from coal at coal costs of from Pound33 to 80/ton depending on the cost of nuclear heat. Electricity and electrolytically derived hydrogen are the most expensive energy carriers and electricity's use should be limited to applications involving work rather than heat. Continued work in thermochemical hydrogen production schemes should be supported as an energy option for the future. (author)

  5. Sustainability of nuclear energy in Mexico: comparison with other sources

    International Nuclear Information System (INIS)

    Martin-del-Campo, C.; Francois, J. L.

    2006-01-01

    Because of the importance of energy to sustainable development of Mexico, it is necessary to develop a tool which permits to make a comparative assessment of energy alternative options. This tool must take into a count their characteristics in terms of their economic, health, environmental and social impacts, both, positive and negative, local, regional and global. This paper describes a methodology to measure the sustainability of nuclear and other different sources for electricity generation. The first step consists on the search of common indicators to be compared. These indicators take into account the great variety of economic, social, and environmental impacts to be considered in the specific Mexican country. A total of fourteen indicators were considered grouped in three dimensions: economic, environmental and social. The second step is to obtain the values of all the indicators for each of the alternative options being compared. These values must be calculated taking into account the economic and technological characteristics of the country. The third step is to utilize an aggregation method to integrate all the indicators in an overall sustainable qualification. Fuzzy Logic was applied for the aggregation of indicators and was used to make sensitive analyses. Finally this paper presents the results for the case of the Mexican power system generation. The main result of the comparison is that nuclear energy in Mexico is an option more sustainable than gas, coal, and hydroelectric. Some sensitive analyses were also made to investigate the implication of the uncertainties in the indicator's values. Coal was in all cases the least sustainable option with largest environmental impacts. Wind energy was also included in a study case, the results of this assessment comparison showed that wind option in Mexico has an overall qualification very close to nuclear option when a backup power system is not included

  6. The Nuclear Energy Option for the U.S. - How Far Are We from Public Acceptance?

    International Nuclear Information System (INIS)

    Biedscheid, J.A.; Devarakonda, M.

    2004-01-01

    The recent rise of oil and gasoline prices accompanied by reluctant acknowledgement that traditional sources of energy are limited has renewed public interest in renewable energy sources. This perspective on energy is focusing attention on and facilitating acceptance of alternative energy concepts, such as solar, wind, and biomass. The nuclear energy alternative, while clean with potentially abundant fuel supplies and associated with low costs, is burdened with the frequently negative public opinion reserved for things nuclear. Coincident with the heightened examination of alternative energy concepts, 2004 marks the 25-year anniversary of the Three Mile Island accident. Since this pivotal accident in 1979, no new reactor licenses have been granted in the U.S. The resolution of the issues of nuclear waste management and disposition are central to and may advance public discussions of the future use of nuclear energy. The U.S. Department of Energy (DOE) is currently preparing the licensing application for Yucca Mountain, which was designated in 2003 as the site for a high-level waste and spent nuclear fuel repository in the U.S. The DOE also has been operating a deep geologic repository for the permanent disposal of transuranic (TRU) waste since 1999. The operational status of the Waste Isolation Pilot Plant (WIPP) as a repository for TRU waste was successfully realized along with the lesson learned that stakeholder trust and acceptance are as critical to the success of a repository program as the resolution of technical issues and obtaining regulatory approvals. For the five years of its operation and for decades prior, the challenge of attaining public acceptance of the WIPP has persisted for reasons aligned with the opposition to nuclear energy. Due to this commonality, the nuclear waste approach to public acceptance, with its pros and cons, provides a baseline for the examination of an approach for the public acceptance of nuclear energy in the U.S. This paper

  7. Energy options open to mankind beyond the turn of the century

    International Nuclear Information System (INIS)

    Haefele, W.

    1977-01-01

    Nuclear power is described as having the potential to provide mankind with almost unlimited energy beyond the year 2000. In terms of engineering and economics, the scale of the nuclear fuel cycle is in hundreds of GW, as compared to the GW dimension of present electricity supply units. Energy demand is considered the yardstick for measuring long-term options. Major parameters of this global approach are economic growth of industrialized nations, development of less developed countries, and population growth. Also, long-term trends away from labour-intensive economies (mostly oriented towards agriculture) towards energy-intensive and/or capital-intensive economies must be analysed. Different schemes of world economic orders must also be accounted for, such as the International Development Strategies for the 1970s and the New Economic Order. The 50-TW mark of future global energy demand used in this paper as a guideline is based on them, as well as on a medium population growth estimate of about 12 thousand million. Soft renewable energy sources have regional significance. They, as well as energy conservation, can provide up to a few TW at best. Solar power, if harvested on a global scale, would become a hard technology with large-scale storage and extensive transport and land use. Future large-scale applications of nuclear power would have to go beyond electricity generation. Breeding would allow the use of thin uranium resources, including those of the seas. Power production from either fission or fusion (D-T) breeders could be concentrated in regional energy parks up to 1TW with complete fuel cycles, using liquid or gaseous secondary energy carriers for long-range transport. Coal, which has the largest potential of all fossil resources, can serve as an option for the transition period. Used as a secondary energy carrier and combined with process heat, it could service, e.g., the transport sector for two centuries. Concluding, the author advises that this rather

  8. Comparison and evaluation of nuclear power plant options for geosynchronous power stations

    International Nuclear Information System (INIS)

    Williams, J.R.

    1975-01-01

    A solution to the safety, safeguards, and radwaste disposal problems of nuclear power is to locate the breeder reactor power plants far out in geosynchronous orbit and beam the power to earth with microwaves. The generation of nuclear power in space is technologically feasible and has already been demonstrated on a small scale. It has also been shown that high efficiency microwave transmission of power from synchronous orbit to earth is feasible and is not hazardous. The reactor safety problem would be virtually eliminated because of the remoteness of the satellite power station in geosynchronous orbit. The worst possible accident at such a plant would have negligible effect on the earth, certainly less than the high altitude nuclear explosions which have been conducted in the past. Accidental re-entry from geosynchronous orbit could not occur because of the very large velocity change required. The safeguards problem can be virtually eliminated by adopting the following procedures: 1) The plant is initially started up using U-235 fuel or bred plutonium or U-233 from another geosynchronous power plant, 2) Once the plant is operating, only nonhazardous fertile materials (thorium or depleted uranium) are shipped up from earth, 3) The fissile fuel is bred and used in space, and none of this highly toxic fissile material is ever returned to earth. The radioactive waste could be concentrated and ejected in canisters into deep space away from the earth. The geosynchronous nuclear power plant offers unlimited nuclear power without nuclear hazards or nuclear pollution, but at somewhat higher cost. Whether or not society will be willing to pay these higher costs of nuclear power from space, or whether new energy resources such as nuclear fusion or solar power become feasible, remains to be seen. A prudent course to follow would be to give careful consideration to all future options for large scale energy generation, including the option of nuclear power from space

  9. Public acceptance of nuclear energy in Mexico

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon; Palacios, Javier; Gomez, Armando

    2008-01-01

    One of the main constraints to adopt a nuclear program is the public acceptance. In Mexico, at least, it lacks of an adequate promotion of its benefits and challenges. A big stigma for nuclear electricity production is the association with nuclear weapons, along with myths and misconceptions and bad information about nuclear energy. Mexico has adopted an energy policy to diversify the electricity sources and nuclear energy is among the alternatives to achieve this goal because current studies show that is a safe and a competitive option from an economical point of view. Public opinion plays a very important role in the policy decision making to adopt the deployment of new reactor units; therefore it is necessary to define communication strategies to promote nuclear energy. The current study is an investigation to learn what is the perception and positioning about nuclear energy as a starting point to define the way to improve public acceptance. The national assessment carry on here is divided in two parts, the first one is a qualitative study to know knowledge level, associations and nuclear perception, identifying controversy items and expectations about advantages and disadvantages to define the adequate question to be used in the second part, which is a quantitative study that shows the acceptance of nuclear energy at national level and in particular in two sites that are suitable to deploy new nuclear reactors. From the results of this study some communication and persuasion strategies to improve public perception are defined and they could be used as part of a nuclear program. (author)

  10. Malaysian public perception towards nuclear power energy-related issues

    Science.gov (United States)

    Misnon, Fauzan Amin; Hu, Yeoh Siong; Rahman, Irman Abd.; Yasir, Muhamad Samudi

    2017-01-01

    Malaysia had considered nuclear energy as an option for future electricity generation during the 9th Malaysia Development Plan. Since 2009, Malaysia had implemented a number of important preparatory steps towards this goal, including the establishment of Nuclear Power Corporation of Malaysia (MNPC) as first Nuclear Energy Programme Implementing Organization (NEPIO) in Malaysia. In light of the establishment of MNPC, the National Nuclear Policy was formulated in 2010 and a new comprehensive nuclear law to replace the existing Atomic Energy Licensing Act (Act 304) is currently in the pipeline. Internationally, public acceptance is generally used to gauge the acceptance of nuclear energy by the public whenever a government decides to engage in nuclear energy. A public survey was conducted in between 14 March 2016 to 10 May 2016 focusing on the Malaysian public acceptance and perception towards the implementation of nuclear energy in Malaysia. The methodology of this research was aim on finding an overview of the general knowledge, public-relation recommendation, perception and acceptance of Malaysian towards the nuclear power development program. The combination of information gathered from this study can be interpreted as an indication of the complexity surrounding the development of nuclear energy and its relationship with the unique background of Malaysian demography. This paper will focus mainly on energy-related section in the survey in comparison with nuclear energy.

  11. Exploring nuclear energy scenarios - implications of technology and fuel cycle choices

    International Nuclear Information System (INIS)

    Rayment, Fiona; Mathers, Dan; Gregg, Robert

    2014-01-01

    Nuclear Energy is recognised globally as a mature, reliable low carbon technology with a secure and abundant fuel source. Within the UK, Nuclear Energy is an essential contributor to the energy mix and as such a decision has been made to refresh the current nuclear energy plants to at least replacement of the existing nuclear fleet. This will mean the building of new nuclear power plant to ensure energy production of 16 GWe per annum. However it is also recognised that this may not be enough and as such expansion scenarios ranging from replacement of the existing fleet to 75 GWe nuclear energy capacity are being considered (see appendix). Within these energy scenarios, a variety of options are being evaluated including electricity generation only, electricity generation plus heat, open versus closed fuel cycles, Generation III versus Generation IV systems and combinations of the above. What is clear is that the deciding factor on the type and mix of any energy programme will not be on technology choice alone. Instead a complex mix of Government policy, relative cost of nuclear power, market decisions and public opinion will influence the rate and direction of growth of any future energy programme. The UK National Nuclear Laboratory has supported this work through the use and development of a variety of assessment and modelling techniques. When assessing nuclear energy scenarios, the technology chosen will impact on a number of parameters within each scenario which includes but is not limited to: - Economics, - Nuclear energy demand, - Fuel Supply, - Spent fuel storage / recycle, - Geological repository volumetric and radiological capacity, - Sustainability - effective resource utilisation, - Technology viability and readiness level. A number of assessment and modelling techniques have been developed and are described further. In particular, they examine fuel cycle options for a number of nuclear energy scenarios, whilst exploring key implications for a particular

  12. Option valuation for energy issues

    International Nuclear Information System (INIS)

    Ostertag, K.; Llerena, P.; Richard, A.

    2004-01-01

    In many industrial and economic situations, decision processes, both individual and collective, have to simultaneously face uncertainty and irreversibility of some kind. This is particularly valid for energy choices if they are linked to technological alternatives. The purpose of this book is to highlight specific aspects of these situations. This is done from the particular perspective of option valuation. The contributions to this book grew out of an international workshop on ''Option valuation in energy and environmental issues'' held at the Fraunhofer ISI in February 2003. This workshop brought together reseachers from energy economics, but also researchers working on option valuation in other empirical fields or with a more theoretical perspective. This is reflected in the organisation of the book, which starts with some theory-oriented contributions and subsequently presents more applied contributions in the field of energy economics with an extension to water infrastructure in the annex. (orig.)

  13. The role of nuclear power in sustainable energy strategies

    International Nuclear Information System (INIS)

    Semenov, B.A.; Bennett, L.L.; Bertel, E.

    1993-01-01

    The purpose of this paper is to provide an overview of future demand outlooks for energy, electricity and nuclear power, as a background for discussion of the design and operation aspects of advanced nuclear power systems. The paper does not attempt to forecast the actual outcomes of nuclear power programmes, since this will depend upon many factors that cannot be predicted with certainty. Rather, the paper outlines the size of the opportunity for nuclear power, in terms of the expected growth in energy and electricity demands, the need to diversify energy supply options and substitute depletable fossil fuels by other energy sources, and the need to mitigate health and environmental impacts including in particular those arising from the the atmospheric emissions from burning of fossil fuels. 7 refs

  14. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S.

    1999-12-01

    The objective of this study is to analyze how the economics of nuclear power generation are affected by the change in nuclear environmental factors and then, to suggest desirable policy directions to improve the efficiency of the use of nuclear energy resources in korea. This study focused to analyze the impact of the change in 3 major nuclear environmental factors in Korea on the economics of nuclear power generation. To do this, environmental external cost, nuclear R and fund, and carbon emission control according to UNFCCC were selected as the major factors. First of all, this study evaluated the impacts on the health and the environment of air pollutants emitted from coal power plant and nuclear power plant, two major electric power generating options in Korea. Then, the environmental external costs of those two options were estimated by transforming the health and environmental impact in to monetary values. To do this, AIRPACTS and 'Impacts of atmospheric release' model developed by IAEA were used. Secondly, the impact of nuclear R and D fund raised by the utility on the increment of nuclear power generating cost was evaluated. Then, the desirable size of the fund in Korea was suggested by taking into consideration the case of Japan. This study also analyzed the influences of the fund on the economics of nuclear power generation. Finally, the role of nuclear power under the carbon emission regulation was analyzed. To do this, the econometric model was developed and the impact of the regulation on the national economy was estimated. Further efforts were made to estimate the role by developing CGE model in order to improve the reliability of the results from the econometric model

  15. Book of abstracts of 10th International Conference on Nuclear Option in Countries with Small and Medium Electricity Grids

    International Nuclear Information System (INIS)

    2014-01-01

    The International Conference "Nuclear Option in Countries with Small and Medium Electricity Grids" is the tenth in a series of meetings on the same topics organized biennially by the Croatian Nuclear Society. This topical conference was initiated in 1996 and the first conference took place in Opatija, the following seven in Dubrovnik and the last one in Zadar. This year, it again takes place in Zadar. The conference is organized with intention to focus on specific aspects of usage of nuclear energy for electricity production in small and medium sized countries. Importance of international cooperation for the assessment of the nuclear option has been recognised by the International Atomic Energy Agency (IAEA). As a result of this recognition, the Conference is organized in co-operation with IAEA. Croatian State Office for Radiological and Nuclear Safety and University of Zagreb, Faculty of Electrical Engineering and Computing have also participated in Conference organization. Session topics reflect some current emphasis, such as country energy needs, new reactor technologies, operation and safety of the operating nuclear power plants. The conference also focuses on the exchange of experience and co-operation in the fields of fuel cycle, radioactive waste management, regulatory practice and liability.

  16. A European nuclear sector to face future energy challenges?

    International Nuclear Information System (INIS)

    Legee, F.; Thais, F.

    2010-01-01

    Very early Europe chose the way of nuclear energy to produce electricity but progressively different countries followed different policies and now the nuclear landscape of the European Union is various: some countries are full-fledged, some stopped their program a long ago and others are in a phase-out period. The stakes of the climatic change and a framed strategy of the European Union have led to a renewal of the nuclear option. Great-Britain has already launched a program of new power plants. Poland, Bulgaria, Slovenia and Hungary want to develop nuclear energy to be less dependant on Russian oil and gas exports. In other countries like Germany, Austria, Sweden we can notice a positive change in favour of nuclear power of their public opinion. A recent OECD study shows that nuclear power stays largely competitive in Europe despite rising construction costs. The harmonization of the nuclear safety regulations throughout Europe appears clearly as an objective of the European Union. As for the management of radioactive wastes the European Union favors the disposal in deep geological layers, but as for the options: direct storage or reprocessing, a common European policy is out of reach at the moment. (A.C.)

  17. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management.

  18. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    International Nuclear Information System (INIS)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo

    2015-01-01

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management

  19. Analysis of Japan's energy and environment strategy after the Fukushima nuclear plant accident

    International Nuclear Information System (INIS)

    Homma, Takashi; Akimoto, Keigo

    2013-01-01

    This paper examines economic analyses of the “Options for Energy and the Environment” proposed by the Japanese government. The main focuses of the analyses are the power generation mix in 2030, and particularly electricity supply shares of nuclear power. The options proposed by the government assume drastic energy efficiency improvements, increase in renewable energy, and deep CO 2 emission reductions. Considerable energy savings are assumed by the government even in the baseline scenario, and these are inconsistent with historical growth trends for GDP and power demand. We modify the energy savings baseline scenario for consistency with the historical trends and historical electricity savings after the nuclear power accident. In order to provide a wider array of options, particularly those with fewer negative impacts on GDP, this paper proposes alternative options under a revised baseline. In the alternative options, we assume lower shares of renewable energy in electricity supply and lower carbon price. The economic impacts for the alternative options are much smaller than those assumed by the government. The economic analyses provided in this paper will help future policy making for energy and environment in Japan. - Highlights: • This paper provides economic analyses on future energy scenarios proposed by the Japanese government. • Energy savings of the government's scenarios are inconsistent with historical trends. • We modify baseline scenario of energy savings and propose alternative options. • Economic impacts for alternative options are smaller than those by the government

  20. Draft nuclear energy policy statement for DOE report to the International Energy Agency: long version

    International Nuclear Information System (INIS)

    1994-01-01

    US national energy policy recognizes that the continued development of commercial nuclear power in the United States is vital to US national security and energy stability since it is a significant domestic energy resource that is relatively free from international pressures. As of this writing (August 1989) the United States had 108 nuclear power reactors in commercial status. In January 1989 nuclear energy produced 46 billion KwH or 20% of total US electricity generated in contrast to 45 billion KwH (18.8%) produced in January 1988. The US Federal Government has been engaged in a variety of activities to ensure that nuclear energy remains a safe, economically competitive and environmentally acceptable option. Much of the federal effort in recent months has been devoted to developing initiatives designed to remove institutional and regulatory obstacles to the continued use of nuclear power as part of the US energy system. Within this context, the following paragraphs summarize the major features of the current status of the US nuclear energy program and policies

  1. The role of nuclear energy in brazilian energy matrix: socioeconomic and environmental aspects

    International Nuclear Information System (INIS)

    Schirmer, Priscila

    2016-01-01

    With the large increase of energy demand in the world, either for the continued expansion of industrialization, or by the raise of consumption, are increasing the need for energy sources diversification and the search for cleaner alternatives of energy production. Nuclear power has been considered as an option to curb the emission of greenhouse gases and reduce the dependence of fossil fuels. However, nuclear energy is an issue that still causes a lot of doubt and questions, turning the development of this work very important for a better understanding of the lay public as well as to contribute and encourage future research through an assessment of their environmental and socio-economic aspects, discussing the risks, benefits, and an assessment of the expansion of nuclear energy use, including an overview of nuclear energy in Brazil. Concluding that nuclear energy can contribute to the expansion of the Brazilian energy matrix, as the only heat source able to ensure constant supply of energy without emitting greenhouse gases. Considering that Brazil dominates the technology of the nuclear fuel cycle, and has a large reserves of uranium. A larger share of nuclear energy in the Brazilian energy matrix can generate greater diversification of the same, valuing the environmental and economic sustainability of the country and reducing the system's vulnerability. However, nuclear generation should not be considered as the only solution to the energy problems of the country, but make a part of it by the combination with other renewable sources, increasing the diversity and energy security of the country. (author)

  2. Comparing energy storage options for renewable energy integration

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    -inclusive 100% renewable energy scenario developed for the Danish city Aalborg based on wind power, bio-resources and low-temperature geothermal heat. The paper investigates the system impact of different types of energy storage systems including district heating storage, biogas storage and electricity storage......Increasing penetrations of fluctuating energy sources for electricity generation, heating, cooling and transportation increase the need for flexibility of the energy system to accommodate the fluctuations of these energy sources. Controlling production, controlling demand and utilizing storage...... options are the three general categories of measures that may be applied for ensuring balance between production and demand, however with fluctuating energy sources, options are limited, and flexible demand has also demonstrated limited perspective. This paper takes its point of departure in an all...

  3. World's energy appetite may crave nuclear power

    International Nuclear Information System (INIS)

    Fulkerson, W.; Anderson, T.D.

    1996-01-01

    As scientists come to agree that global warming is a real phenomenon, it may be time to jumpstart the stalled nuclear industry. World population is expected to double by the end of the 21st century, and the lion's share of growth will be in developing nations. open-quotes More people and more economic activity will require more energy,close quotes say William Fulkerson, a senior fellow at the Joint Institute for Energy and the Environment in Knoxville, Tennessee, and Truman D. Anderson, formerly director of planning at Oak Ridge National Laboratory. There are only three viable options to fossil fuel plants, the authors say: nuclear fission, nuclear fusion, and such renewable energy sources as solar and wind. The advantages of nuclear energy are well known, the authors say. open-quotes It emits no greenhouse gases, and potentially it can be expanded almost without limit anywhere in the world, providing the controversies that surround it can be resolved.close quotes However, to garner public acceptance, a new generation of supersafe nuclear reactors, invulnerable to terrorism and conversion to weapons, will need to be developed, the authors say

  4. Report of the International Consultative Group on Nuclear Energy

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The International Consultative Groups on Nuclear Energy adopted as its working premise the proposition that nuclear power will play a significant part in meeting future energy needs in an increasing number of countries. The Group's concern has been to examine the international political and economic conditions under which civil nuclear activities may be conducted safely, rationally, and in a manner generally acceptable to the world community. The views are presented in sections entitled: Energy and Nuclear Power; Establishing Nuclear Options; Nuclear Safety and the Public Interest; Nuclear Trade and Nuclear Proliferation; Conditions for the Future in which five conditions are summarized. The Group believes that if nuclear power is to be available to meet an increasing fraction of the world's future energy needs, nuclear power must, despite the difficulty of the sort-term climate, be systematically developed, without interruption or undue delay; earn and retain public acceptance; present technologies for using uranium more efficiently and be developed and tested as soon as possible, with both the coming decades and the 21st century in mind; be less feared; and convince countries depending on nuclear technology, services, or materials of continued international access to them under safeguards, on acceptable terms

  5. Sustainable energy provision: a comparative assessment of the various electricity supply options

    International Nuclear Information System (INIS)

    Voss, A.

    2000-01-01

    The provision of electricity is of central importance for economic growth and societal development. While numerous societal and economic benefits arise from the use of electricity, the production of electricity can also have negative impacts on the environment and the climate system. The commitment to sustainable development calls for the evaluation of the extent to which the different electricity supply options fulfill the sustainability criteria. The conceptual framework of Life Cycle Assessment (LCA) can provide a solid basis for a comparative assessment of different electricity supply options with regard to their environmental impacts, raw material requirements as well as their resulting external costs. Results of a comprehensive comparative assessment of nuclear energy and other electricity options are presented. (author)

  6. Fossil fuels, renewable and nuclear options to meet the energy and the environmental challenges

    International Nuclear Information System (INIS)

    Bacher, P.; Moncomble, J.E.

    1995-01-01

    In order to meet the world strongly growing energy demand, and especially electricity demand, there are a number of primary energy sources: hydro and new renewable, oil, natural gas, coal and nuclear. The energy mix adopted in each country will depend on a number of factors, such as geography, security of supply, financing capacity, environment, etc. Shares of the different fuels in electricity output are reviewed. Nuclear energy facts and issues are discussed from safety, environment and economics points of view, with a particular view on long-lived wastes that can be and are strictly controlled; properly managed, a nuclear program can be very cost efficient as demonstrated in France, Belgium or Canada, and it has many advantages: site selection, security of supply, no air pollution. 3 refs., 5 figs

  7. A Strategy for Nuclear Energy Research and Development

    International Nuclear Information System (INIS)

    Bennett, Ralph G.

    2008-01-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: (1) Increase the electricity generated by non-emitting sources to mitigate climate change, (2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, (3) Reduce the transportation sector's dependence on imported fossil fuels, and (4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy's share will require a coordinated research effort-combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R and D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R and D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally

  8. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S

    1999-12-01

    The objective of this study is to analyze how the economics of nuclear power generation are affected by the change in nuclear environmental factors and then, to suggest desirable policy directions to improve the efficiency of the use of nuclear energy resources in korea. This study focused to analyze the impact of the change in 3 major nuclear environmental factors in Korea on the economics of nuclear power generation. To do this, environmental external cost, nuclear R and fund, and carbon emission control according to UNFCCC were selected as the major factors. First of all, this study evaluated the impacts on the health and the environment of air pollutants emitted from coal power plant and nuclear power plant, two major electric power generating options in Korea. Then, the environmental external costs of those two options were estimated by transforming the health and environmental impact in to monetary values. To do this, AIRPACTS and 'Impacts of atmospheric release' model developed by IAEA were used. Secondly, the impact of nuclear R and D fund raised by the utility on the increment of nuclear power generating cost was evaluated. Then, the desirable size of the fund in Korea was suggested by taking into consideration the case of Japan. This study also analyzed the influences of the fund on the economics of nuclear power generation. Finally, the role of nuclear power under the carbon emission regulation was analyzed. To do this, the econometric model was developed and the impact of the regulation on the national economy was estimated. Further efforts were made to estimate the role by developing CGE model in order to improve the reliability of the results from the econometric model.

  9. Nuclear Versus Coal plus CCS. A Comparison of Two Competitive Base-Load Climate Control Options

    Energy Technology Data Exchange (ETDEWEB)

    Tavoni, F. [Fondazione Eni Enrico Mattei, Sustainable Development, Milan (Italy); Van der Zwaan, B.C.C. [ECN Policy Studies, Petten (Netherlands)

    2011-10-15

    In this paper, we analyze the relative importance and mutual behavior of two competing base-load electricity generation options that each are capable of contributing significantly to the abatement of global CO2 emissions: nuclear energy and coal-based power production complemented with CO2 capture and storage (CCS). We also investigate how, in scenarios developed with an integrated assessment model that simulates the economics of a climate-constrained world, the prospects for nuclear energy would change if exogenous limitations on the spread of nuclear technology were relaxed. Using the climate change economics model World Induced Technical Change Hybrid, we find that until 2050 the growth rates of nuclear electricity generation capacity would become comparable to historical rates observed during the 1980s. Given that nuclear energy continues to face serious challenges and contention, we inspect how extensive the improvements of coal-based power equipped with CCS technology would need to be if our economic optimization model is to significantly scale down the construction of new nuclear power plants.

  10. Nuclear Versus Coal plus CCS. A Comparison of Two Competitive Base-Load Climate Control Options

    International Nuclear Information System (INIS)

    Tavoni, F.; Van der Zwaan, B.C.C.

    2011-01-01

    In this paper, we analyze the relative importance and mutual behavior of two competing base-load electricity generation options that each are capable of contributing significantly to the abatement of global CO2 emissions: nuclear energy and coal-based power production complemented with CO2 capture and storage (CCS). We also investigate how, in scenarios developed with an integrated assessment model that simulates the economics of a climate-constrained world, the prospects for nuclear energy would change if exogenous limitations on the spread of nuclear technology were relaxed. Using the climate change economics model World Induced Technical Change Hybrid, we find that until 2050 the growth rates of nuclear electricity generation capacity would become comparable to historical rates observed during the 1980s. Given that nuclear energy continues to face serious challenges and contention, we inspect how extensive the improvements of coal-based power equipped with CCS technology would need to be if our economic optimization model is to significantly scale down the construction of new nuclear power plants.

  11. Nuclear energy, energy for the present and the future

    International Nuclear Information System (INIS)

    Arredondo S, C.

    2008-01-01

    In this work we will try to show that nuclear energy can contribute to the generation energy in the present and the future, considering that its effect on the climatic change is relatively low and that the fuels that uses are available a large scale. At the moment it is had already commercial thermal fission reactors , there are also them of fast fission that allow the fuel rearing, although these last ones in much smaller number, with both types of fission nuclear reactors can be obtained a very important contribution to the generation of energy at world-wide level during the time that is necessary so that it is developed, constructs and operates the first commercial fusion reactor. The energy that is generated in the present and future must come from different sources, which require to be reliable, to have little effect on the environment, to have wide reserves of fuels and to be viable from an economic and social point of view, they must be viable and safe. Between possible alternative energies it is counted on the lot, the wind one, the geothermal one, originating of the tides and some others. An energy that must be considered so that it has arrived at his maturity and he is already able to contribute widely to cover the present needs and future it is nuclear energy, as much the originating one of the fission of a heavy centre like obtained when fusing two light centers. On base in the nuclear fuel reserves at world-wide level a simple calculation takes control of the lapse in which energy by means of the nuclear fission in rearing can be generated reactors expresses demonstrating that the time sufficient to finish to the investigation and development of fusion reactors which they generate energy in economic, safe and reliable form. Combining these two options the nuclear energy can be considered the future like for the present and the future with practically null effects in the climatic change. (Author)

  12. MHR fuel cycle options for future sustainability of nuclear power

    International Nuclear Information System (INIS)

    Baxter, Alan; Venneri, Francesco; Rodriguez, Carmelo; Fikani, Michael

    2005-01-01

    The future sustainability of the nuclear option is not significantly tied to the level of resources. For example, current high quality uranium reserves (∼3.34x10 6 tons) are enough for more than 55 years at present consumption rates (IAEA estimate). Doubling of the present uranium ore price (∼$26/kg) could create about a tenfold increase in resources, providing more than 550 years of supply at present rates (World Nuclear Association estimate). There are also thorium reserves which are estimated to be about three times those of uranium, and would allow for a significant increase in annual consumption levels. The key to a sustainable nuclear future is really tied to the political and technical problems of long term waste disposal, and the perceived risks of nuclear weapons proliferation. Thus fuel cycle options for a sustainable nuclear future must address and solve these issues. High temperature, Gas-Cooled, Graphite Moderated, reactors (MHRs) have nuclear and operational characteristics to provide multiple fuel cycle options to solve these issues. Three fuel cycles for the MHD are described in this paper, and their capabilities for meeting a sustainable nuclear future in terms of nuclear waste minimization and destruction, and reduction of proliferation risk, are discussed. (author)

  13. Strategic areas for non-electric application of nuclear energy in Indonesia

    International Nuclear Information System (INIS)

    Sasmojo, S.; Subki, I.R.; Lasman, A.N.

    1997-01-01

    An attempt is made to identify strategic areas, whereby non-electric application of nuclear energy may be justified. Subject to further evaluation, particularly on the economic aspects, non-electric application of nuclear energy in Indonesia may have justifiable strategic role in the long term sustainability of the development of the country. The key arguments are: (a) within not too far distant future, domestic resources constraints of oil and natural gas will strongly be felt, especially if the current trend in the rate of production of the two commodities has to be maintained to satisfy the growing demand for energy and to secure foreign exchange earning; (b) nuclear option, in concurrent with coal and biomass options, can provide the need for heat supply required to undertake strategic schemes for (i) improving oil production capacity; (ii) prolong the availability of oil and natural gas by displacing their uses as heat sources in industry, whenever appropriate; (iii) coal conversion to synthetic natural gas (SNG), or synthesis gas, to substitute or at least supplement the use of natural gas as industrial chemical feedstock; and (iv) sea water desalination by evaporation, to overcome shortage of fresh drinking and industrial water supply, as well as to secure its reliability and availability. In terms of carbon emission to the atmosphere, the nuclear option offers an interesting choice. In view of those, serious consideration for further technical assessment, and thorough evaluation on the economic viability and social acceptability for the option is recommended. (author). 7 refs, 5 figs, 2 tabs

  14. Identification of the real options in a program of nuclear plants; Identificacion de las opciones reales en un programa de plantas nucleoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Camacho G, D.; Diaz N, M. J.; Reinking C, A. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail: danielkmacho@yahoo.com.mx

    2008-07-01

    The development of our societies and our economies this intimately related to electric power and this as well with the generating sources, due to the projection of world-wide growth should go associate with a strategy of growth of energy generation. Considering to the nuclear power as an option to satisfy the energy needs that a country can provide two main immediate benefits: The stabilization of prices of security of provision of electric power of the nation. The care of the environment, since the gas discharges greenhouse are almost null. At the moment nuclear energy represents economically a viable option for the capital investment, taking into account the development from technology, the policies implemented by the state and the prices of other fuels. Due to the great investment that its require for the nuclear plants are necessary to use financial tools that allow to analyze the future scenes in which ours investment can be seen affected and to value the flexibility of being able to enlarge, to postpone or to stop our project in order to have majors profits or to diminish the lost ones. This valuation of the flexibility can be obtained from the called method Real Options. By analysis of Real Options the process is understood to apply to the methodology of the Financial Options to the valuation of projects or the management of real assets. The Real Options appear in flexible plans, projects, activities or enterprise investments, like for example, to leave or to sell the investment project before concluding it, changing to their use or its technology, to prolong their life, the option to choose, one or the other capacity, among others possibilities. In this work is an example of the application of the method of Real Options in the decision to invest or to defer the investment for the construction of a nuclear plant following the behavior of the tariffs in the market or the costs of generation of other technologies with which a nuclear plant competes. (Author)

  15. Congressman-scientist looks at nuclear energy

    International Nuclear Information System (INIS)

    McCormack, M.

    1976-01-01

    Rep. McCormack aired his views on energy in general and nuclear energy's role in the energy mix of the U.S., stating that this is not an academic debate because the nation is in mortal danger. He further states, our national security, the stability of our economic systems, even our political institutions may well depend upon our ability to develop responsible energy policies and implement rational programs to carry them into effect. It is no exaggeration to say that members of organized labor can play a decisive role in initiating and supporting positive action programs and make the difference between success and catastrophe for our nation during the balance of the century. This is true for all union members and all unions, from the officers of the International to the individuals at the local level.'' Rep. McCormack is known as a nuclear energy advocate, but he also supports solar energy development, geothermal energy, electric cars, ground transportation, conservation, fission programs, and the breeder program. After reviewing the facts that energy demands will increase and the restraints being imposed resulting in long lead times for all energy sources, the author concludes that nuclear energy is needed. He announced that ERDA will soon tell its options and programs for safety disposing of nuclear wastes--that of converting the wastes to a solid glass. A summary of some voting records in Congress on various energy programs was given and Rep. McCormack said that support in Congress on programs that he deemed necessary has been difficult to muster

  16. The status and role of nuclear energy in the sustainable energy development strategy in China

    International Nuclear Information System (INIS)

    Pan Ziqiang; Wang Yongping; Zhao Shoufeng; Zheng Yuhui

    2005-01-01

    The status and role of nuclear energy in the sustainable energy development strategy in China are discussed in this research report. Specifically, the role of nuclear energy in meeting the requirements of energy and electricity supply, environment protection and greenhouse gas (GHG) emission-reduction is focused on. The report is mainly composed of three component parts. The serious situation and challenges concerning the national energy security and energy sustainable development, and major tasks proposed to carry out the strategy of energy sustainable development are expounded in the first part. In the second part, the position and role of nuclear energy in China are elaborated and analyzed in detail. Firstly, it is indicated that the development of nuclear energy is the objective requirement for optimizing national energy structure. From the viewpoint of climate and environment protection, energy mix is required to transit from conventional fossil fuels to clean and high-quality energy sources. The potential role of nuclear energy in energy structure optimization in China is compared with that of hydro and other renewable energy sources. Secondly, it is proposed that the development of nuclear energy is the important security option for safely supplying the national energy and electricity in the future, mainly from the point of nuclear power providing stable and reliable power supply, relieving the burden of coal exploitation and transportation and reducing the risk of energy security caused by dependence on oil and natural gas. Thirdly, it is elaborated that the development of nuclear energy is the inevitable selection for carrying out the national energy and electricity sustainable development. It is given further details that nuclear energy is a clean and economical energy option, a preference coinciding with the principles of the circular economy, a feasible technical choice to greatly reduce emission of greenhouse gases, a selection contributing to

  17. How available is the nuclear option

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1982-01-01

    Energy ministers and heads of government of the major industrialized countries specify that we must make much greater use of nuclear energy by the end of this century. Developing countries give ample warning that their needs are just beginning to be felt. Experts are unanimous that the age of oil is finished and that coal and nuclear must be used to displace oil. Yet the facts today point in a different direction. What is the problem. Is more nuclear really needed. Is it really available. There is no technological factor that would preclude a much-larger role for nuclear energy. The conclusion must be that, despite all the brave pronouncements, decision makers do not want nuclear. This chapter considers some of the bases for this conclusion and deals with the reasons for concluding that there are no current technological impediments to nuclear energy

  18. Nuclear disarmament. Options for the coming non-proliferation treaty surveillance cycle

    International Nuclear Information System (INIS)

    Mueller, Harald

    2011-01-01

    The report is aimed on the nuclear disarmament discussion with respect to the disagreement of nuclear weapon states and those without nuclear weapons, esp. the non-aligned movement (NAM) concerning the non-proliferation treaty. The report covers the following issues: The role of the non-proliferation treaty, nuclear disarmament in the last surveillance conference 2010, the different disarmament philosophies, the possibilities of bridging the disagreement, further disarmament options for the future non-proliferation treaty surveillance cycle, German options for the future surveillance cycle.

  19. Environmental and waste disposal options in nuclear engineering curricula

    International Nuclear Information System (INIS)

    Elleman, T.S.; Gilligan, J.G.

    1991-01-01

    The strong national emphasis on waste and environmental issues has prompted increasing interest among nuclear engineering students in study options that will prepare them for careers in these areas. Student interest appears to focus principally on health physics, radioactive waste disposal, and environmental interactions with radionuclides. One motivation for this interest appears to be the growing national programs in environmental restoration and waste remediation that have produced fellowship support for nuclear engineering students as well as employment opportunities. Also, the recent National Academy of sciences study on nuclear engineering education specifically emphasized the importance of expanding nuclear engineering curricula and research programs to include a greater emphasis on radioactive waste and environmental issues. The North Carolina State University (NCSU) Department of Nuclear Engineering is attempting to respond to these needs through the development of course options that will allow students to acquire background in environmental subjects as a complement to the traditional nuclear engineering education

  20. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  1. Sustainable uranium energy - an optional future

    International Nuclear Information System (INIS)

    Meneley, D.

    2015-01-01

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more reasonable to expect

  2. Sustainable uranium energy - an optional future

    Energy Technology Data Exchange (ETDEWEB)

    Meneley, D. [Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)

    2015-06-15

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more

  3. Necessity of nuclear energy in energetic world context

    International Nuclear Information System (INIS)

    Lopez Rodriguez, M.

    1981-01-01

    Different opinions on nuclear energy make the middle citizen feel confounded and wonder hundreds of questions to wwhich an easy reply is not found. May be if nuclear energy is really necessary, the first of these questions, without noticing that necessity is a vague concept with a double interpretation. To some, those support a total change in the actual society into more primitive situations, the energy pattern the world has chosen -both the East and West models- is annoying, and they consider a pattern based on ''soft energies''to be the solution to the social scheme they imagined. To others, those who think on an economic, industrial and social development in the countries, it should be based on a strong energy pattern, which could supply what the world needs more and more, nuclear energy is, at least nowadays, an unavoidable necessity and an inevitable option. The document shown has been prepared on the conclusions of the most recent works on the subject, and it is deduced from all of them what everybody considers to be the future energy demand for the year 2000 and its distribution into energy sources, nuclear energy includes. The two basic parameters for tAe valuation of this demand are the increasing of population and gross national product. Available energy resources are mentioned on the document and, mainly, the nuclear capacity of each country. (author) [es

  4. Cost-benefit analysis of multi-regional nuclear energy systems deployment

    International Nuclear Information System (INIS)

    Van Den Durpel, L.G.G.; Wade, D.C.; Yacout, A.M.

    2007-01-01

    The paper describes the preliminary results of a cost/benefit-analysis of multi-regional nuclear energy system approaches with a focus on how multi-regional approaches may benefit a growing nuclear energy system in various world regions also being able to limit, or even reduce, the costs associated with the nuclear fuel cycle and facilitating the introduction of nuclear energy in various regions in the world. The paper highlights the trade-off one might envisage in deploying such multi-regional approaches but also the pay backs possible and concludes on the economical benefits one may associate to regional fuel cycle centres serving a world-fleet of STAR (small fast reactors of long refueling interval) where these STARs may be competitive compared to the LWRs (Light Water Reactors) as a base-case nuclear reactor option. (authors)

  5. Pawnee Nation Energy Option Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-21

    Pawnee Nation of Oklahoma Energy Option Analyses In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Description of Activities Performed The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor

  6. Proceedings of the International Conference: Nuclear option in countries with small and medium electricity grid

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    The conference of Croatian Nuclear Society ``Nuclear option in countries with small and medium electricity grid`` is based on experience from last conference of Croatian Nuclear Society in Opatija and on the same philosophy of serving the needs of small or medium present or future user countries. Session topics reflect some current emphasis, such as accommodation of Kyoto restriction on CO{sub 2} emission, or liability and insurance for nuclear damage. In order to achieve best safety and operational standards these countries with limited human and material resources must put greater emphasis on their rational and efficient use. Consequently the world wide developments on innovative reactors` systems and improved concepts for fuel utilisation and waste disposal are substantial interest. Appropriate selections of reactor technology, fuel cycle and decommission strategies are of paramount importance. There are very successful examples of achieving safety and good operational records, so the exchange of experience and cooperation amongst that group of countries would be of great value. As in the future of nuclear energy there will be many more countries with only small or medium nuclear systems, collecting specific experience and cooperation between the like countries will be an additional value to the now prevailing equipment supplier - national utility relationships. Here is presented nine sessions: 1. Energy Options in Countries with Small and Medium Grids 2. Reactors for Small and Medium Electricity Grids 3. Operation and Maintenance Experience 4. Deterministic Safety Analysis 5. Probabilistic Safety Analysis 6. Radioactive Waste Management and Decommissioning 7. Public Relations 8. Emergency Preparedness 9. Liability and Insurance for Nuclear Damage

  7. Proceedings of the International Conference: Nuclear option in countries with small and medium electricity grid

    International Nuclear Information System (INIS)

    1998-01-01

    The conference of Croatian Nuclear Society ''Nuclear option in countries with small and medium electricity grid'' is based on experience from last conference of Croatian Nuclear Society in Opatija and on the same philosophy of serving the needs of small or medium present or future user countries. Session topics reflect some current emphasis, such as accommodation of Kyoto restriction on CO 2 emission, or liability and insurance for nuclear damage. In order to achieve best safety and operational standards these countries with limited human and material resources must put greater emphasis on their rational and efficient use. Consequently the world wide developments on innovative reactors' systems and improved concepts for fuel utilisation and waste disposal are substantial interest. Appropriate selections of reactor technology, fuel cycle and decommission strategies are of paramount importance. There are very successful examples of achieving safety and good operational records, so the exchange of experience and cooperation amongst that group of countries would be of great value. As in the future of nuclear energy there will be many more countries with only small or medium nuclear systems, collecting specific experience and cooperation between the like countries will be an additional value to the now prevailing equipment supplier - national utility relationships. Here is presented nine sessions: 1. Energy Options in Countries with Small and Medium Grids 2. Reactors for Small and Medium Electricity Grids 3. Operation and Maintenance Experience 4. Deterministic Safety Analysis 5. Probabilistic Safety Analysis 6. Radioactive Waste Management and Decommissioning 7. Public Relations 8. Emergency Preparedness 9. Liability and Insurance for Nuclear Damage

  8. Perspectives of nuclear energy in the view of the World Energy Council

    International Nuclear Information System (INIS)

    Doucet, G.

    2003-01-01

    Since 1930, the World Energy Council (WEC) has been closely involved in problems associated with the use of nuclear power. At the meeting then held by the WEC Executive Committee in Berlin, Albert Einstein drew the attention of power utilities to this new source of energy. In addition to optimized use, technical progress, and waste management, the WEC regards aspects of safety, proliferation, and sustainability of nuclear power as matters of special importance. In the energy scenarios elaborated by the WEC since the 1980s, nuclear power plays one of the leading roles in the future energy mix. The sustainable management of energy resources, worldwide climate protection, but also equal access to energy for all people, require the use of nuclear power and the furtherance of its options. Moreover, the use of nuclear power in the industrialized countries helps to stabilize energy prices worldwide. This is in the interest especially of developing countries, for which low-cost, accessible energy sources are vital factors. The electricity supply crisis in California in 2001 has shown the continuity of supply to be one of the factors important in the deregulation of energy markets. Bottlenecks in electricity supply because of a lack of acceptance of electricity generation are problems affecting the future of industrialized countries. For instance, the increasing digitization of every-day life demands reliable power supply. In its studies of all available energy sources the WEC found no alternative to nuclear power. Factors of importance in the future development and use of nuclear power are public acceptance and the ability, and willingness, to take decisions in economic issues. Waste management, proliferation, safety, and research and development are other priorities. As a source of power protecting the climate, stabilizing costs, and offering a considerable potential, nuclear power is compatible with the objectives of sustainable development for the world of tomorrow

  9. Nuclear Energy: Combating Climate Change

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Paillere, Henri; )

    2015-10-01

    Global electricity demand is expected to increase strongly over the coming decades, even assuming much improved end-use efficiency. Meeting this demand while drastically reducing CO 2 emissions from the electricity sector will be a major challenge. Given that the once-significant expectations placed on carbon capture and storage are rapidly diminishing, and given that hydropower resources are in limited supply, there are essentially only two options to de-carbonise an ever increasing electricity sector: nuclear power and renewable energy sources such as wind and solar PV. Of these two options, only nuclear provides firmly dispatchable base-load electricity, since the variability of wind and solar PV requires flexible back-up that is frequently provided by carbon-intensive peak-load plants. The declining marginal value of electricity production and the security of electricity supply are additional issues that must be taken into account. Nuclear power plants do, however, face challenges due to their large up-front capital costs, complex project management requirements and difficulties in siting. As technologies with high fixed costs, both nuclear power and renewables must respond to the challenge of acquiring long-term financing, since investments in capital-intensive low-carbon technologies are unlikely to be forthcoming in liberalised wholesale markets. In order to substantially de-carbonise the electricity systems of OECD countries, policy-makers must understand the similarities, differences and complementarities between nuclear and renewables in the design of future low-carbon electricity systems. The value of dispatchable low-carbon technologies, such as hydro and nuclear, for the safe and reliable functioning of electricity systems must also be recognised. Should the de-carbonisation of electricity sectors in the wake of COP 21 become a reality, nuclear power might well be the single most important source of electricity by 2050, thanks mainly to the

  10. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  11. General aspects concerning the nuclear energy and the public opinion

    International Nuclear Information System (INIS)

    Glodeanu, F.; Bilegan, I.; Chirica, T.

    1993-01-01

    The nuclear power successfully competes, from technical and economic point of view all the other energy sources, having a much less environmental impact. Its expansion is limited in our days by the acceptance of local communities. Thus, for the success of a nuclear power project, the public information becomes a strategic option of the company management, and the Romanian Energy Authority - RENEL is now implementing the first steps of its programme aiming at this objective. (author). 23 refs

  12. Options identification programme for demonstration of nuclear desalination

    International Nuclear Information System (INIS)

    1996-08-01

    This report responds to Resolutions GC(XXXVIII)/RES/7 in 1994 and GC(XXXIX)/RES/15 in 1995 at the IAEA General Conference, which requested the Director General to initiate a two year Options Identification Programme to identify and define practical options for demonstration of nuclear desalination and to submit a report on this programme to the General Conference of 1996. This programme was implemented by a Working Group, consisting of experts from interested Member States and IAEA staff, through a combination of periodic meetings and individual work assignments. It resulted in identification of a few practical options, based on reactor and desalination technologies which are themselves readily available without further development being required at the time of demonstration. The report thus provides a perspective how to proceed with demonstration of nuclear desalination, which is expected to help solving the potable water supply problem in the next century. Refs, figs, tabs

  13. Nuclear energy in future sustainable, competitive energy mixes

    International Nuclear Information System (INIS)

    Echavarri, L.

    2002-01-01

    nuclear power. For the medium term, 2030-2050, new reactors aiming at reducing capital costs, enhancing safety and improving the efficiency of natural resource use are being developed by designers. In order to address new challenges of deregulated markets, innovative reactor designs should enhance economic competitiveness and reduce financial risks of nuclear energy. The renewed interest of governments for the nuclear option (e.g., US, Finland) has triggered national and international initiatives (GIF, INPRO) aiming at defining and implementing co-operative R and D programmes leading to the deployment of a new generation of nuclear systems meeting the economic, environmental and social goals of sustainable development. International co-operation is essential for a successful renaissance of nuclear energy in the competitive context of the new millennium. Sharing experience, expertise and know-how across countries offers unique opportunities for synergy and cost effectiveness. Intergovernmental organisations such as NEA can play a key role in this regard through providing a framework for exchanging information and undertaking joint projects. (author)

  14. Free energy option and its relevance to improve domestic energy demands in southern Nigeria

    Directory of Open Access Journals (Sweden)

    Moses Eterigho Emetere

    2016-11-01

    Full Text Available The aim of this paper is to seek an energy option that would benefit the growing energy demands. Domestic energy demands in southern Nigeria had increased greatly due to failing power programs and seasonal migrations. The fossil fuel option is gradually fading away due to environmental pollution and recent dynamic cost. The renewable energy option had been celebrated with little success in the coastal area of southern Nigeria. At the moment, the renewable energy option is very expensive with little guarantee on its efficiency with time. The data set used for this study was obtained from the Davis weather installation in Covenant University. The free energy option was considered. The cost and its environmental implication for domestic use were comparatively discussed alongside other energy options — using the Life cycle cost analysis. It was found out that free energy option is more affordable and efficient for domestic use.

  15. Energy: nuclear energy

    International Nuclear Information System (INIS)

    Lung, M.

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  16. A roadmap for nuclear energy technology

    Science.gov (United States)

    Sofu, Tanju

    2018-01-01

    The prospects for the future use of nuclear energy worldwide can best be understood within the context of global population growth, urbanization, rising energy need and associated pollution concerns. As the world continues to urbanize, sustainable development challenges are expected to be concentrated in cities of the lower-middle-income countries where the pace of urbanization is fastest. As these countries continue their trajectory of economic development, their energy need will also outpace their population growth adding to the increased demand for electricity. OECD IEA's energy system deployment pathway foresees doubling of the current global nuclear capacity by 2050 to reduce the impact of rapid urbanization. The pending "retirement cliff" of the existing U.S. nuclear fleet, representing over 60 percent of the nation's emission-free electricity, also poses a large economic and environmental challenge. To meet the challenge, the U.S. DOE has developed the vision and strategy for development and deployment of advanced reactors. As part of that vision, the U.S. government pursues programs that aim to expand the use of nuclear power by supporting sustainability of the existing nuclear fleet, deploying new water-cooled large and small modular reactors to enable nuclear energy to help meet the energy security and climate change goals, conducting R&D for advanced reactor technologies with alternative coolants, and developing sustainable nuclear fuel cycle strategies. Since the current path relying heavily on water-cooled reactors and "once-through" fuel cycle is not sustainable, next generation nuclear energy systems under consideration aim for significant advances over existing and evolutionary water-cooled reactors. Among the spectrum of advanced reactor options, closed-fuel-cycle systems using reactors with fast-neutron spectrum to meet the sustainability goals offer the most attractive alternatives. However, unless the new public-private partnership models emerge

  17. Role of nuclear fusion in future energy systems and the environment under future uncertainties

    International Nuclear Information System (INIS)

    Tokimatsu, Koji; Fujino, Jun'ichi; Konishi, Satoshi; Ogawa, Yuichi; Yamaji, Kenji

    2003-01-01

    Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. This is because the prospects for nuclear fusion are quite uncertain and the investments therefore carry the risk of quite large regrets, even though investment is needed in order to develop the technology. The timeframe by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we identify three roles that nuclear fusion will take on when breakeven prices are achieved: (i) a portion of the electricity market in 2100, (ii) reduction of annual global total energy systems cost, and (iii) mitigation of carbon tax (shadow price of carbon) under CO 2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction timeframe for nuclear fusion, capacity projections of nuclear fusion, CO 2 target in 2100, capacity utilization ratio of options in energy/environment technologies, and utility discount rates. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050-2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO 2 concentration constraint

  18. France and Germany nuclear energy policies revisited: A veblenian appraisal

    Directory of Open Access Journals (Sweden)

    Petit Pascal

    2013-01-01

    Full Text Available Nuclear energy policy should have been a major area of cooperation for France and Germany, playing a lead role in the energy policy of the EU. Yet they have retained different options, especially regarding nuclear energy while the EU energy policy remained very indicative. These two “coordinated economies” should have been able to cooperate more closely on this issue. While the reasons for this difference in behavior have much to do with the specificities of the nuclear energy, they are more precisely related to the continuously rising level of security requirements, a learning process in which the magnitude of risks and time lengths appeared, even before Fukushima, to go beyond rational boundaries on which cooperation (as well as market ventures could be based. This raises the issue in the present state of the technologies of the possibility of an international governance of this nuclear industry.

  19. Fusion option to dispose of spent nuclear fuel and transuranic elements

    International Nuclear Information System (INIS)

    Gohar, Y.

    2000-01-01

    The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k eff of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's

  20. Social, economic and environmental assessment of energy and water desalination options for the Brazilian polygon of drought using the IRIS reactor

    International Nuclear Information System (INIS)

    Baptista Filho, D. P.; Cegalla, M.; Raduan, R. N.; Barroso, A. C. O.; Molnary, L.; Lima, F. R. A.; Lira, C. A. B. O.; Lima, R. C. F.

    2004-01-01

    The paper discuss a project conceived to perform a social, economic and environmental assessment of the use of IRIS Reactor for electricity generation and water desalination in the most dry region of Brazil, the Polygon of Drought. The project is financed by the Fund of Energy of the Brazilian Council on Research and Development (CNPq) of the Brazilian Ministry of Science and Technology (MCT), and it will be performed by the Federal University of Pernambuco (UFPe) and the Energetic and Nuclear Research Institute (IPEN) of the Brazilian Nuclear Energy Commission (CNEN). The project will provide comparisons between nuclear and gas options. The final objective of the project is to offer effective evaluations considering the total costs (direct and externalisation) of the different energy options and also the social and environmental aspects associated with them.(author)

  1. The Role of Nuclear Energy for Long-term National Energy Planning

    International Nuclear Information System (INIS)

    Soetrisnanto, Arnold Y; Adiwardojo; Soentono, Soedyartomo

    2001-01-01

    Energy planning development is a part of the sustainable development that supports the attainment of national development goals. The objective of the study is to support the national planning and decision-making process in the energy and electric sector in Indonesia with nuclear option for period of 1997- 2027. This study performs the provision of detailed economic sector and regional energy demand projection by MAED simulation model based on the economic and population scenarios. Then continued with the optimization of the future energy supply such as electricity supply taking all known Indonesian energy sources and all relevant technologies into consideration by MARKAL Model. The result shows that Indonesia's need for final energy is forecasted to increase two times, from 4,028.4 PJ at the beginning of study become 8,145.6 PJ at the end of study. The more the use of fossil fuels are tightened and enforced because of its environmental impact, the earlier the nuclear power becomes part of the optimum generation mix. In the case IEA1001 (reduction of 1% CO 2 emission), nuclear energy is needed in Jawa-Bali region in the earliest possibility i.e. year 2018 corresponding to 0.37 GW and it will increase in the next years

  2. Nuclear Energy Agency. 6. activity report. 1977

    International Nuclear Information System (INIS)

    1978-01-01

    NEA has, as a primary objective, to ensure through international co-operation that the nuclear option is available for consideration in its true worth. The safety and regulatory aspects of nulear development have represented in 1977 about two thirds of NEA's total effort; and a high degree of priority was given to questions of nuclear safety and of radioactive waste management. Similarly, the growing need of Member countries for an integrated appraisal of technical, economic, safety, environmental and political questions influencing the nuclear fuel cycle was increasingly taken into account. Finally, a general effort was made to achieve greater visibility for the positive results of the NEA programme, as a contribution to improved public understanding of the factors underlying nuclear power programmes. As in previous years, the NEA programme continued to involve close collaboration with the International Atomic Energy Agency (IAEA) and the Commission of the European Communities. Within the OECD, close collaboration was maintained with the Combined Energy Staff and the Environment Directorate

  3. Holistic-integrated analysis and evaluation of nuclear energy for sustainable energy supply; Ganzheitlich-integrierte Betrachtung der Kernenergie im Hinblick auf eine nachhaltige Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Wissel, Steffen [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER)

    2012-11-01

    Germany has decided in 2011 nuclear phase-out by the end of 2022. The European Commission is still convinced of the safe use of nuclear energy as option for carbon reduction in the energy supply. In the European energy market the decisions of neighboring countries have an impact on the national energy systems. The contribution covers a holistic-integrated analysis based on technical, economic and ecologic aspects of nuclear energy for sustainable energy supply in comparison with other fossil and renewable systems.

  4. ASTM STANDARD GUIDE FOR EVALUATING DISPOSAL OPTIONS FOR REUSE OF CONCRETE FROM NUCLEAR FACILITY DECOMMISSIONING

    International Nuclear Information System (INIS)

    Phillips, Ann Marie; Meservey, Richard H.

    2003-01-01

    Within the nuclear industry, many contaminated facilities that require decommissioning contain huge volumes of concrete. This concrete is generally disposed of as low-level waste at a high cost. Much of the concrete is lightly contaminated and could be reused as roadbed, fill material, or aggregate for new concrete, thus saving millions of dollars. However, because of the possibility of volumetric contamination and the lack of a method to evaluate the risks and costs of reusing concrete, reuse is rarely considered. To address this problem, Argonne National Laboratory-East (ANL-E) and the Idaho National Engineering and Environmental Laboratory teamed to write a ''concrete protocol'' to help evaluate the ramifications of reusing concrete within the U.S. Department of Energy (DOE). This document, titled the Protocol for Development of Authorized Release Limits for Concrete at U.S. Department of Energy Site (1) is based on ANL-E's previously developed scrap metal recycle protocols; on the 10-step method outlined in DOE's draft handbook, Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material (2); and on DOE Order 4500.5, Radiation Protection of the Public and the Environment (3). The DOE concrete protocol was the basis for the ASTM Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning, which was written to make the information available to a wider audience outside DOE. The resulting ASTM Standard Guide is a more concise version that can be used by the nuclear industry worldwide to evaluate the risks and costs of reusing concrete from nuclear facility decommissioning. The bulk of the ASTM Standard Guide focuses on evaluating the dose and cost for each disposal option. The user calculates these from the detailed formulas and tabulated data provided, then compares the dose and cost for each disposal option to select the best option that meets regulatory requirements. With this information

  5. Nuclear energy versus other energy sources

    International Nuclear Information System (INIS)

    King, F.K.

    1994-01-01

    This paper deals with nuclear and other sources of energy as they relate to the production of electricity. It first examines the current role of electricity in the world and its means of production and how future economic growth, associated with growing populations striving for better living conditions, will lead to increased demands for new electricity generation. The second part of the paper deals with the health and environmental impacts of the major options for generating electricity likely to be used to meet this need, and how a comparative assessment of these impacts is important to understand the full implications of electricity generation planning decisions. 6 refs, 12 figs

  6. A new scenery for nuclear energy at Brazil

    International Nuclear Information System (INIS)

    Vieira, Wilson J.; Menezes, Artur; Claro, Luiz H.; Urbina, Ligia M. Soto

    1999-01-01

    In a not so distant future, nuclear energy will substitute other forms of electric energy generation. In this work it is shown that recent factors around the world, that is, globalization, the need for technological innovation, quality programs, and the need to stop devastation of the planet by human activity is promoting a change in attitude of the population in respect to nuclear energy. A new public opinion is rising in a world which comes to the end of the millennium in the middle of a scientific and technological revolution, as important as the 1500 s discoveries or the French revolution. These facts reveal a historical moment to boost nuclear energy development. The reasons for this assumption are: the rise in scientific and technological activities promoted by the competition between countries to gain positions in production an exportation of goods and services with aggregate technology; the public acceptation of nuclear energy which is now considered as the most proper option to stop the environment damage caused by fossil fuels; the generalization of nuclear applications. These reasons prove the need of the human being to know and utilize the most complex phenomena of Nature to proceed in the road of its own evolution. (author)

  7. Nuclear energy and security

    International Nuclear Information System (INIS)

    Blejwas, Thomas E.; Sanders, Thomas L.; Eagan, Robert J.; Baker, Arnold B.

    2000-01-01

    Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadership or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity

  8. Realizing the potential of nuclear energy

    International Nuclear Information System (INIS)

    Walske, C.

    1982-01-01

    The future of nuclear power, just as the future of America, can be viewed with optimism. There is hope in America's record of overcoming obstacles, but growth is essential for that hope to be realized. Despite the downturn in energy demand made possible by conservation, we will need a 35% growth in total energy for new workers and production. Electricity generated by nuclear or coal can make US production more cost-competitive, and it can power mass-transit systems, electric heat pumps, and communications and information systems. Changes in electricity and gross national product (GNP) have been more closely in step since 1973 than have total energy and GNP. The nuclear power units now under construction will add 80,000 megawatts to the 56,000 now on line. It is important to note that, while utilities are cancelling plans for nuclear plants, they aren't ordering new coal plants, which shows the impact of the high cost of money. Interest rates must come down and public-relations efforts to sell electricity must improve to change the situation. Although capital shortages are real, waste disposal is a problem of perception that was politically induced because the government failed to provide a demonstration of safety as the French are doing. Streamlined regulatory and insurance procedures can help to justify optimism in the nuclear option. 4 figures

  9. The nuclear energy in debate. Myths, realities and climatic changes; A energia nuclear em debate. Mitos, realidades e mudancas climaticas

    Energy Technology Data Exchange (ETDEWEB)

    Matthes, Felix; Rosenkranz, Gerd; Bermann, Celio (orgs.)

    2003-07-01

    This study argues myths and the truths that involve nuclear energy: on the one hand, the universal issue on the nuclear energy and its supposed contribution for the global warming reduction, and another one, there are many lower-risk options available to fight against climate change. Investing in nuclear energy carries not only considerable health, financial and security risks, it may also prove to be a dangerous lock-in and dead end. Twenty years after the nuclear disaster of Chernobyl, any attempts by the nuclear industry to celebrate its revival and to paint itself as the solution to climate change should be rejected. Policy makers around the world should learn from its people, who largely resist the use of nuclear energy. In this context the authors firmly believe that nuclear energy is no answer to climate change. A short-sighted renaissance of nuclear energy would require considerable amounts of public money, which should rather be invested in the development and deployment of renewable energy technologies and energy efficiency measures.

  10. Development perspectives of nuclear energy in Morocco

    International Nuclear Information System (INIS)

    Mekki-Berrada, A.

    1987-01-01

    Morocco is on the way to developing and gaining access to advanced technologies which will allow it to take good advantage of its natural resources. Most of the fuels necessary for electricity production have to be imported. Nuclear energy appears a better alternative to imported oil or coal, mainly due to kWh price competitivness, great potential of uranium in phosphates and to the limitations placed on the coal option by harbour and transport infrastructure. The first nuclear power plant is planned to go into operation in the year 2000

  11. Nuclear energy and the nuclear energy industry

    International Nuclear Information System (INIS)

    Bromova, E.; Vargoncik, D.; Sovadina, M.

    2013-01-01

    A popular interactive multimedia publication on nuclear energy in Slovak. 'Nuclear energy and energy' is a modern electronic publication that through engaging interpretation, combined with a number of interactive elements, explains the basic principles and facts of the peaceful uses of nuclear energy. Operation of nuclear power plants, an important part of the energy resources of developed countries, is frequently discussed topic in different social groups. Especially important is truthful knowledgeability of the general public about the benefits of technical solutions, but also on the risks and safety measures throughout the nuclear industry. According to an online survey 'Nuclear energy and energy' is the most comprehensive electronic multimedia publication worldwide, dedicated to the popularization of nuclear energy. With easy to understand texts, interactive and rich collection of accessories stock it belongs to modern educational and informational titles of the present time. The basic explanatory text of the publication is accompanied by history and the present time of all Slovak nuclear installations, including stock photos. For readers are presented the various attractions legible for the interpretation, which help them in a visual way to make a more complete picture of the concerned issue. Each chapter ends with a test pad where the readers can test their knowledge. Whole explanatory text (72 multimedia pages, 81,000 words) is accompanied by a lot of stock of graphic materials. The publication also includes 336 photos in 60 thematic photo galleries, 45 stock charts and drawings, diagrams and interactive 31 videos and 3D models.

  12. Comparative assessment of electricity generation options for Mexico

    International Nuclear Information System (INIS)

    Cecilia, Martin Del Campo; Francois, Juan Luis

    2009-01-01

    This paper presents an approach to the evaluation of sustainability of energy options for the electricity generation in Mexico. The study evaluated technologies that could be planned in the short term because their high maturity. The purpose was to rank the energy options based on the evaluation of a set of criteria grouped in impact areas for each dimension of the sustainability: economic, environmental and social. Obviously, no single technology exhibited superior performance on the basis of all the criteria and it was necessary to apply a mult criteria decision analysis (MCDA). In total this study all the decision elements were combined and integrated in an inference fuzzy logic system that takes into account the weights of different indicators. The methodology was applied to compare five technologies based on wind, nuclear, natural gas, coal, hydro and oil resources under the current Mexican conditions. In view of the features of the energy options, oil and gas are subject to limited energy resources. Coal and oil show relatively unfavorable ecological and accident risk characteristics. Gas is by far the option with the best performance among the fossil fuel options. In the case of nuclear energy, the economic, environmental and health indicators are highly favorable, however, social indicators for nuclear energy are unfavorable but they are also very controversial and additional studies must be carried out. The global sustainability of hydro, nuclear, wind and natural gas resulted very close; so these energy options must be considered in the generation expansion planning studies to search the expansion plans with the better combination of generation, energetic diversification and emissions, between other criteria

  13. The opening of electricity markets: the stakes for the nuclear energy

    International Nuclear Information System (INIS)

    Maillard, M.

    2002-01-01

    This article is a reprint of the opening talk of M. Maillard, general director of DGEMP (general direction of energy and raw materials, French ministry of economy, finances and industry), given at the 2002 annual meeting of the French society of nuclear energy (SFEN). In his talk, M. Maillard presents, first, the international context of the liberalization of electricity markets (the lessons learnt after the Californian crisis, the situation of the existing nuclear park, the questions relative to the nuclear revival, the conditions of a conservation of the nuclear option beyond the existing facilities). Then he analyzes the French situation and its specificities (pluri-annual planning of investments, mastered liberalization and competitiveness of the nuclear energy, preparation of future date-lines in agreement with the decommissioning of the oldest PWR reactors). (J.S.)

  14. Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?

    Directory of Open Access Journals (Sweden)

    Behnam Zakeri

    2015-03-01

    Full Text Available Towards low-carbon energy systems, there are countries with ongoing plans for expanding their nuclear power capacity, and simultaneously advancing the role of variable renewable energy sources (RES, namely wind and solar energy. This crossroads of capital-intensive, baseload power production and uncontrollable, intermittent RES may entail new challenges in the optimal and economic operation of power systems. This study examines this case by hourly analysis of a national-level energy system with the EnergyPLAN modeling tool, coupled with wind integration simulations (including uncertainty implemented using MATLAB. We evaluate the maximum feasible wind integration under different scenarios for nuclear power plants, energy demand, and the flexibility of energy infrastructure for a real case study (Finland. We propose wind-nuclear compromise charts to envision the impact of any mix of these two technologies on four parameters: total costs, power exchange, carbon emissions, and renewable energy integration. The results suggest that nuclear power constrains the room for maximum uptake of wind energy by a descending parabolic relationship. If nuclear power production exceeds 50% of the total power demand, wind will be unlikely to penetrate in shares over 15% of the respective demand. Moreover, we investigate the role of four flexibility options: demand side management, electrical energy storage, smart electric heating, and large-scale heat pumps (backed with thermal energy storage. Heat pumps (which are in connection with combined heat and power (CHP and district heating systems offer the highest efficiency in balancing excess power from variable RES. However, power-to-heat options offer a limited capability for absorbing excess power, as oversupply arises mainly in the periods with relatively low demand for heat. This calls for longer-term energy storage and/or other flexibility options to achieve the planned targets in wind-nuclear scenarios.

  15. Nuclear energy. Unmasking the mystery

    International Nuclear Information System (INIS)

    1988-08-01

    The Standing Committee on Energy, Mines and Resources of the House of Commons of Canada undertook a study of the economics of nuclear power in Canada. This is its report on the evidence it heard. It found that maintaining the nuclear power option is vital to Canada's interests. The Committee recommended that: the schedule for establishing a commercial high-level radioactive waste repository be advanced; the basic insurance coverage on nuclear facilities be raised; the federal government increase its financial support of Atomic Energy of Canada Ltd. (AECL); AECL expand its research and development activities, including non-nuclear R and D; AECL be allowed to hold a minority interest in any component of AECL that is privatized; any new entity created by privatization from AECL be required to remain under Canadian control; the Atomic Energy Control Act be altered to allow the Atomic Energy Control Board (AECB) to recover costs through licensing fees and user charges, while the AECB's parliamentary appropriation is increased to offset remaining costs of operations; membership on the AECB be increased from one to five full-time members, retaining the present four part-time members; the AECB hold its hearings in public; the name of the AECB be changed so it is more readily distinguishable from AECL; the AECB establish an office of public information; and that federal and provincial governments cooperate more closely to identify opportunities where more efficient use of electricity could be achieved and to promote those measures that can attain the greatest economic efficiency

  16. Advanced Reactor Technology Options for Utilization and Transmutation of Actinides in Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2009-09-01

    Renewed interest in the potential of nuclear energy to contribute to a sustainable worldwide energy mix is strengthening the IAEA's statutory role in fostering the peaceful uses of nuclear energy, in particular the need for effective exchanges of information and collaborative research and technology development among Member States on advanced nuclear power technologies (Articles III-A.1 and III-A.3). The major challenges facing the long term development of nuclear energy as a part of the world's energy mix are improvement of the economic competitiveness, meeting increasingly stringent safety requirements, adhering to the criteria of sustainable development, and public acceptability. The concern linked to the long life of many of the radioisotopes generated from fission has led to increased R and D efforts to develop a technology aimed at reducing the amount of long lived radioactive waste through transmutation in fission reactors or accelerator driven hybrids. In recent years, in various countries and at an international level, more and more studies have been carried out on advanced and innovative waste management strategies (i.e. actinide separation and elimination). Within the framework of the Project on Technology Advances in Fast Reactors and Accelerator Driven Systems (http://www.iaea.org/inisnkm/nkm/aws/fnss/index.html), the IAEA initiated a number of activities on utilization of plutonium and transmutation of long lived radioactive waste, accelerator driven systems, thorium fuel options, innovative nuclear reactors and fuel cycles, non-conventional nuclear energy systems, and fusion/fission hybrids. These activities are implemented under the guidance and with the support of the IAEA Nuclear Energy Department's Technical Working Group on Fast Reactors (TWG-FR). This publication compiles the analyses and findings of the Coordinated Research Project (CRP) on Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste (2002

  17. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    determined effort would be needed to achieve more significant near-term use. The timing and extent of this implementation will of course depend on the rate of escalation of fossil-fuel prices, the local availability of alternative energy sources, and the general level of public confidence in nuclear technology. This paper reviews the prospects for NPH systems. including the nature of the potential market, some of the promising NHP reactor design options of current interest, and Canadian and global experience. (author)

  18. Nuclear energy and process heating

    International Nuclear Information System (INIS)

    Kozier, K.S.

    1999-10-01

    effort would be needed to achieve more significant near-term use. The timing and extent of this implementation will of course depend on the rate of escalation of fossil-fuel prices, the local availability of alternative energy sources, and the general level of public confidence in nuclear technology. This paper reviews the prospects for NPH systems. including the nature of the potential market, some of the promising NHP reactor design options of current interest, and Canadian and global experience. (author)

  19. International Nuclear Societies Council vision for the second fifty years of nuclear energy

    International Nuclear Information System (INIS)

    Hatcher, S.R.

    1994-01-01

    A vision of the future is presented in the context of ongoing social and technological development. The most compelling moral and ethical issue facing the world at the close of the 20th Century is to help the peoples of the poorer countries in their struggle for a reasonable quality of life, while at the same time they face a dramatic increase in their population. The new society will need vastly more energy than the world of today. It will need all supply options that can provide the energy in an economic environmentally sustainable manner. Nuclear energy will be a vital element in this supply pattern, provided that it continues to demonstrate the imperatives of safe operation and economic competitiveness. Other applications of nuclear energy will add their own impact to the improving quality of life. 5 refs., 1 fig

  20. Ship-Based Nuclear Energy Systems for Accelerating Developing World Socioeconomic Advance

    Science.gov (United States)

    Petroski, Robert; Wood, Lowell

    2014-07-01

    Technological, economic, and policy aspects of supplying energy to newly industrializing and developing countries using ship-deployed nuclear energy systems are described. The approach analyzed comprises nuclear installations of up to gigawatt scale deployed within currently mass-produced large ship hulls which are capable of flexibly supplying energy for electricity, water desalination and district heating-&-cooling with low latencies and minimized shoreside capital expenditures. Nuclear energy is uniquely suited for mobile deployment due to its combination of extraordinary energy density and high power density, which enable enormous supplies of energy to be deployed at extremely low marginal costs. Nuclear installations on ships also confer technological advantages by essentially eliminating risk from earthquakes, tsunamis, and floods; taking advantage of assured access to an effectively unlimited amount of cooling water, and involving minimal onshore preparations and commitments. Instances of floating nuclear power stations that have been proposed in the past, some of which are currently being pursued, have generally been based on conventional LWR technology, moreover without flexibility or completeness of power output options. We consider nuclear technology options for their applicability to the unique opportunities and challenges of a marine environment, with special attention given to low-pressure, high thermal margin systems with continuous and assured afterheat dissipation into the ambient seawater. Such systems appear promising for offering an exceptionally high degree of safety while using a maximally simple set of components. We furthermore consider systems tailored to Developing World contexts, which satisfy societal requirements beyond electrification, e.g., flexible sourcing of potable water and HVAC services, servicing time-varying user requirements, and compatibility with the full spectrum of local renewable energy supplies, specifically including

  1. Pricing and Hedging Quanto Options in Energy Markets

    DEFF Research Database (Denmark)

    Benth, Fred Espen; Lange, Nina; Myklebust, Tor Åge

    approach we derive a closed form option pricing formula for energy quanto options, under the assumption that the underlying assets are log-normally distributed. Our approach encompasses several interesting cases, such as geometric Brownian motions and multifactor spot models. We also derive delta and gamma......In energy markets, the use of quanto options have increased significantly in the recent years. The payoff from such options are typically written on an underlying energy index and a measure of temperature and are suited for managing the joint price and volume risk in energy markets. Using an HJM...... expressions for hedging. Furthermore, we illustrate the use of our model by an empirical pricing exercise using NYMEX traded natural gas futures and CME traded Heating Degree Days futures for New York....

  2. Options Study - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2010-09-01

    The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to

  3. Fuel choice, nuclear energy, climate and carbon

    International Nuclear Information System (INIS)

    Shpyth, A.

    2012-01-01

    For the second time since the start of commercial nuclear electricity generation, an accident has the world wondering if uranium will be among the future fuel choices in electricity production. Unfortunate when one considers the low-carbon footprint of this energy option. An accident involving a nuclear power plant, or more appropriately the perceived risks associated with an accident at a nuclear power plant, is but one of the issues that makes the impact assessment process related to nuclear energy projects challenging. Other aspects, including the time scales associated with their siting, licensing, operation and decommissioning, also contribute to the challenge. Strategic environmental assessments for future fuel choices in electricity generation, particularly ones that consider the use of life cycle assessment information, would allow for the effective evaluation of the issues identified above. But more importantly from an impact assessment perspective, provide for a comparative assertion for public disclosure on the environmental impacts of fuel choice. This would provide the public and government decision makers with a more complete view of the role nuclear energy may be able to play in mitigating the climate and carbon impacts of increased electricity production, and place issues of cost, complexity and scale in a more understandable context.

  4. If Canada is serious about reducing greenhouse gases, we need nuclear energy

    International Nuclear Information System (INIS)

    Lemieux, C.

    2003-01-01

    Canada's energy options are reviewed in light of the need to find practical solutions to supply the nation's growing demand for power, coupled with equally pressing need to reduce greenhouse gas emissions to meet Kyoto commitments, and to do so without costing Canadians jobs and economic disaster. Among the options available - renewable, hydro, fossil fuels, nuclear -- nuclear power is identified as the only one that promises to meet the growing demand for power without the practical, economic and environmental disadvantages associated with the alternatives. Based on Canadian experience with nuclear power in the past, it is pointed out that between 1971 and 2000 Canada , by using nuclear fuel , has averted the production of 32 million tonnes of acid gases, millions of tonnes of other pollutants and well over a billion tonnes of carbon dioxide, while producing only 14 per cent of its energy requirements from nuclear fuel The principal argument made is that given our position as the world's leading supplier of uranium to electric utilities, the safety record of our CANDU reactors , and the fact that nuclear power is one of the cleanest large-scale energy source, nuclear power has the potential to make significant contribution to Canada's ability to meet its future energy requirements, and achieve the GHG emission reduction targets imposed by the Kyoto Agreement, without causing serious harm to the economy. The author goes as far as to say that without serious consideration being given to nuclear power, Canada has no chance even to come close to its Kyoto greenhouse emission targets without disastrous consequences to the economy. (author)

  5. Options to improve energy efficiency for educational building

    Science.gov (United States)

    Jahan, Mafruha

    The cost of energy is a major factor that must be considered for educational facility budget planning purpose. The analysis of energy related issues and options can be complex and requires significant time and detailed effort. One way to facilitate the inclusion of energy option planning in facility planning efforts is to utilize a tool that allows for quick appraisal of the facility energy profile. Once such an appraisal is accomplished, it is then possible to rank energy improvement options consistently with other facility needs and requirements. After an energy efficiency option has been determined to have meaningful value in comparison with other facility planning options, it is then possible to utilize the initial appraisal as the basis for an expanded consideration of additional facility and energy use detail using the same analytic system used for the initial appraisal. This thesis has developed a methodology and an associated analytic model to assist in these tasks and thereby improve the energy efficiency of educational facilities. A detailed energy efficiency and analysis tool is described that utilizes specific university building characteristics such as size, architecture, envelop, lighting, occupancy, thermal design which allows reducing the annual energy consumption. Improving the energy efficiency of various aspects of an educational building's energy performance can be complex and can require significant time and experience to make decisions. The approach developed in this thesis initially assesses the energy design for a university building. This initial appraisal is intended to assist administrators in assessing the potential value of energy efficiency options for their particular facility. Subsequently this scoping design can then be extended as another stage of the model by local facility or planning personnel to add more details and engineering aspects to the initial screening model. This approach can assist university planning efforts to

  6. Evaluating nuclear power as the next baseload generation option

    International Nuclear Information System (INIS)

    Jackson, K.J.; Sanford, M.O.

    1992-01-01

    Numerous factors must be taken into account when planning to meet baseload generating needs of the next century. Examining nuclear power as an option to meet these needs offers significant challenges with respect to evaluating and managing the business risks. This paper describes one mechanism to accomplish this while continuing to participate in industry activities targeted at advancing the nuclear option. One possible model of pursuing high-risk, long-term projects, like nuclear power, is to spread these risks among the project participants and for each organization to commit slowly. With this model of progressive engagement, participants may invest in early information gathering with the objective of uncertainty reduction at preliminary stages in the project, before large investments must be made. For nuclear power, a partnership between a utility (or utility group) and a supplier team may well be the best means of implementing such a model. A partnership also provides opportunity to develop the long-term relationships within the industry which are imperative

  7. Summary Report of the INL-JISEA Workshop on Nuclear Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Antkowiak, M.; Ruth, M.; Boardman, R.; Bragg-Sitton, S.; Cherry, R.; Shunn, L.

    2012-07-01

    The Institute for Nuclear Energy Science and Technology (INEST) and the Joint Institute for Strategic Energy Analysis (JISEA) co-sponsored an international workshop to identify research topics important in advancing the potential use of hybrid systems with a specific focus on nuclear-renewable hybrid systems. The workshop included presentations ranging from energy challenges and research and development directions being pursued by nations to multiple options for hybrid systems. Those options include one that is being commercialized to other opportunities and analysis results quantifying them. The workshop also involved two breakout sessions--one focused on thermal energy management issues especially at unit-operation scale and the second focused on system operations issues including system controls, regulatory issues, technical and economic analysis, and market challenges. A discussion involving the full group focused on more general issues such as societal involvement and participation. Key criteria for selecting hybrid energy system projects and metrics for comparing them were also identified by the full group.

  8. On-Site or Off-Site Renewable Energy Supply Options?

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    The concept of a Net Zero Energy Building (Net ZEB) encompasses two options of supplying renewable energy, which can offset energy use of a building, in particular on-site or off-site renewable energy supply. Currently, the on-site options are much more popular than the off-site; however, taking...... into consideration the limited area of roof and/or façade, primarily in the dense city areas, the Danish weather conditions, the growing interest and number of wind turbine co-ops, the off-site renewable energy supply options could become a meaningful solution for reaching ‘zero’ energy goal in the Danish context...... five technologies, i.e., two on-site options: (1) photovoltaic, (2) micro combined heat and power, and three off-site options: (1) off-site windmill, (2) share of a windmill farm and (3) purchase of green energy from the 100% renewable utility grid. The results indicate that in case of the on...

  9. An architecture for nuclear energy in the 21st century

    International Nuclear Information System (INIS)

    Arthur, E.D.; Cunningham, P.T.; Wagner, R.L. Jr.

    1998-01-01

    Nuclear energy currently plays a significant role in the energy economies of the US and other major industrial nations. Its future (several scenarios are described later) may involve significant growth in developing countries but controversy and debate surrounds future nuclear energy scenarios. In that ongoing debate, proponents and critics both appear to assume that nuclear technologies, practices and institutions will continue over the long term to look much as they do today. This paper discusses possible global and regional nuclear energy scenarios, and proposes changes in the global nuclear architecture that could reshape technologies, practices and institutions of nuclear energy over the coming decades. In doing so the array of choices available for exercising the nuclear energy option could be enlarged, making such a potential deployment less problematic and perhaps less controversial. How fuel discharged from power reactors is used and disposed of is a central issue of nuclear energy's present controversy and central factor in determining its long-term potential. Many proponents of nuclear power, especially outside the US, believe that extracting all the energy available in reactor fuel--and, in particular, recovering the plutonium from discharged fuel for recycling through breeder reactors--is necessary to realize the technology's ultimate potential as a source of virtually inexhaustible energy. Others consider the plutonium contained in discharged fuel to be a challenge to waste disposal and a potential proliferation risk. Focusing on the back end of the nuclear fuel cycle as a principal arena for improvement represents a fruitful pathway towards creating a significantly improved fuel-cycle architecture

  10. Some wind-energy storage options

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, F R; Ljungstroem, O [ed.

    1976-01-01

    Systems capable of storing energy generated from the wind can be categorized in terms of electrochemical energy storage systems, thermal energy storage systems, kinetic energy systems, and potential energy systems. Recent surveys of energy storage systems have evaluated some of these available storage technologies in terms of the minimum economic sizes for utility applications, estimated capital costs of these units, expected life, dispersed storage capabilities, and estimated turn-around efficiencies of the units. These are summarized for various types of energy storage options.

  11. Prospective opportunities for using the innovative nuclear reactors in Armenian energy sector long-term programme development

    International Nuclear Information System (INIS)

    Gevorgyan, A.

    2003-01-01

    Full text: In the base of the long-term planning for the Armenian energy sector development there have been laid the principles of energy independence and energy security, and not only those of least-cost criteria. The concept of energy security for Armenia under the existing conditions can be formulated in the following way - the country should have guaranteed ability for the reliable energy supply for all requirements of society both under the sustainable development and in extreme conditions. Ensuring the energy security is the main task and responsibility of all the state institutions without exceptions. In order to ensure the country's energy security, it is necessary to guarantee its energy independence. It means that the country's energy sector should be minimum dependent on the imported fuels, that is, it should be achieved the maximum utilization of the domestic energy sources. Taking the above-mentioned principles as a basis, we have modeled the Armenian electric-energy sector long-term development taking into account the future needs to cover the electricity demand forecasted. Two options were considered: the energy sector development including the nuclear energy scenario, and the option without the nuclear way of electricity generation, called combined cycle scenario. Summarizing the experience of energy crisis, lasted in Armenia during 1992-1996, we can assert that, upon having 40% energy independence, the normal functioning of practically all the life-support systems of Armenia in wide range of emergency situations can be assured. And only restarting Unit 2 of the ANPP made it possible to stop that crisis evolution and enable the country to move toward the further economic development. Besides, the environmental aspects are also among the most important components of the energy security. The ecological factors were included into the study when modeling scenarios of long-term energy development. As it is known, while nuclear power plants do not produce

  12. Pricing and Hedging Quanto Options in Energy Markets

    DEFF Research Database (Denmark)

    Benth, Fred Espen; Lange, Nina; Myklebust, Tor Åge

    2015-01-01

    –Jarrow–Morton approach, we derive a closed-form option pricing formula for energy quanto options under the assumption that the underlying assets are lognormally distributed. Our approach encompasses several interesting cases, such as geometric Brownian motions and multifactor spot models. We also derive Delta and Gamma......In energy markets, the use of quanto options has increased significantly in recent years. The payoff from such options are typically written on an underlying energy index and a measure of temperature. They are suited to managing the joint price and volume risk in energy markets. Using a Heath...... expressions for hedging. Further, we illustrate the use of our model by an empirical pricing exercise using NewYork Mercantile Exchange-traded natural gas futures and Chicago Mercantile Exchange-traded heating degree days futures for NewYork....

  13. Case study on comparative assessment of nuclear and coal-fueled electricity generation options and strategy for nuclear power development in China

    International Nuclear Information System (INIS)

    Zhao Shiping; Shi Xiangjun; Bao Yunqiao; Mo Xuefeng; Wei Zhihong; Fang Dong; Ma Yuqing; Li Hong; Pan Ziqiang; Li Xutong

    2001-01-01

    China, as other countries in the world, is seeking for a way of sustainable development. In energy/electricity field, nuclear power is one of electric energy options considering the Chinese capability of nuclear industry. The purpose of this study is to investigate the role of nuclear power in Chinese energy/electricity system in future by comprehensive assessment. The main conclusions obtained from this study are: (1) China will need a total generation capacity of 750 - 879 GW in 2020, which means new power units of 460 - 590 GW generation capacity will be built from 2001 to 2020. (2) the total amount of SO 2 emission from power production will rise to 16 - 18 Mt in 2020, about 2.8 - 3.2 times of 1995, even if the measures to control SO 2 emission are taken for all new coal units. (3) CO 2 emission from electricity generation will reach 21 - 24 Gt in 2020. (4) the environmental impacts and health risks of coal-fired energy chain are greater than that of nuclear chain. The normalized health risk caused by coal chain is 20.12 deaths/GW·a but 4.63 deaths/GW·a by nuclear chain in China. (5) As estimated by experts, there will be a shortage of 200 GW in 2050 in China even if considering the maximum production of coal, the utilization of hydropower and renewable resource. Nuclear power is the only way to fill the gap between demand and supply

  14. Kalaeloa Energy System Redevelopment Options Including Advanced Microgrids.

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, Marion Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Baca, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); VanderMey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    In June 2016, the Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) in collaboration with the Renewable Energy Branch for the Hawaii State Energy Office (HSEO), the Hawaii Community Development Authority (HCDA), the United States Navy (Navy), and Sandia National Laboratories (Sandia) established a project to 1) assess the current functionality of the energy infrastructure at the Kalaeloa Community Development District, and 2) evaluate options to use both existing and new distributed and renewable energy generation and storage resources within advanced microgrid frameworks to cost-effectively enhance energy security and reliability for critical stakeholder needs during both short-term and extended electric power outages. This report discusses the results of a stakeholder workshop and associated site visits conducted by Sandia in October 2016 to identify major Kalaeloa stakeholder and tenant energy issues, concerns, and priorities. The report also documents information on the performance and cost benefits of a range of possible energy system improvement options including traditional electric grid upgrade approaches, advanced microgrid upgrades, and combined grid/microgrid improvements. The costs and benefits of the different improvement options are presented, comparing options to see how well they address the energy system reliability, sustainability, and resiliency priorities identified by the Kalaeloa stakeholders.

  15. Coupling of copper-chloride hybrid thermochemical water splitting cycle with a desalination plant for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, Mehmet F.; Dincer, Ibrahim; Naterer, Greg F.; Rosen, Marc A.

    2010-01-01

    Energy and environmental concerns have motivated research on clean energy resources. Nuclear energy has the potential to provide a significant share of energy supply without contributing to environmental emissions and climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another pathway for the utilization of nuclear thermal energy. One option for nuclear-based hydrogen production via thermochemical water decomposition uses a copper-chloride (Cu-Cl) cycle. Another societal concern relates to supplies of fresh water. Thus, to avoid causing one problem while solving another, hydrogen could be produced from seawater rather than limited fresh water sources. In this study we analyze a coupling of the Cu-Cl cycle with a desalination plant for hydrogen production from nuclear energy and seawater. Desalination technologies are reviewed comprehensively to determine the most appropriate option for the Cu-Cl cycle and a thermodynamic analysis and several parametric studies of this coupled system are presented for various configurations. (author)

  16. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    International Nuclear Information System (INIS)

    Hong, Seong Hee; Kim, Myung Hyun

    2016-01-01

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  17. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  18. Nuclear energy

    International Nuclear Information System (INIS)

    Kuhn, W.

    1986-01-01

    This loose-leaf collection is made up of five didactically prepared units covering the following subjects: basic knowledge on nuclear energy, nuclear energy in relation to energy economy, site issues, environmental compatibility of nuclear energy, and nuclear energy in the focus of political and social action. To this was added a comprehensive collection of material: specific scientific background material, a multitude of tables, diagrams, charts etc. for copying, as well as 44 transparent charts, mostly in four colours. (orig./HP) [de

  19. Development of real options model for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Kenji

    2004-01-01

    As the Japanese electricity market is deregulated, it becomes more important for electric utilities to recognize their financial risks and to adopt strategic and scientific decision making methodology. We have developed two models for valuation of Japanese nuclear power plants to support utilities' decision making. One is a net present value (NPV) model using discounted cash flow analysis method. Another is a real options model. This model is based on strict financial technology theory and can calculate value of early retirement, life extension and new unit addition options of nuclear units under electricity price uncertainty. This can also derive an optimal period for retirement, life extension and new unit addition. (author)

  20. Nuclear power in open energy markets: A case study of Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2007-01-01

    For many decades, like many developed countries, Turkey has controlled her electricity sector as a state-owned monopoly. However, faced with rapid electricity demand growth, Turkey started to consider nuclear option. The present paper aims at evaluating both the present status of nuclear power in general and its implications for Turkish energy market in particular. After examining existing nuclear power technology and providing a brief overview of nuclear power economics; it focuses on the repercussions of nuclear power for Turkish energy market. The paper concludes that, in the short run, it may be considered to keep nuclear power within Turkish energy mix because it is an important carbon-free source of power that can potentially make a significant contribution to both Turkey's future electricity supply and efforts to strengthen Turkey's security of supply. However, in the long term, nuclear power should be retained in Turkey only if it has a lower cost than competing technologies

  1. Market Potential for Non-electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H.; Nisan, S.

    2002-01-01

    The paper presents results of a recent IAEA study to assess the market potential for non-electric applications of nuclear energy in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, energy supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric energy services. The study makes a distinction between the market size (demand for a given service) and the market potential for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear energy entering into non-electric markets. (authors)

  2. Preliminary study of the nuclear power option in Belarus

    International Nuclear Information System (INIS)

    Grusha, N.M.; Kazazyan, V.T.; Malykhin, A.P.; Mikhalevich, A.A.; Yakushau, A.P.; Yaroshevich, O.I.

    1999-01-01

    The Republic of Belarus possesses an economy with many energy intensive branches. At the same time the share of domestic energy resources is about 15% of total energy demand. The share of the payment for primary energy resources reaches 60% or USD 2 billion of the total energy import. That is comparable with the annual state budget. In addition to that, about half of the installed capacities have reached their operation life and 90% of the units have to be retrofitted or replaced until 2010. Thus, the problem of energy supply is one of the most important ones for Belarus' economy. The nuclear power appears to be one of the possible ways for solving the energy demand problem in Belarus which has, as in case of many countries of Central and South-Eastern Europe, limited energy resources. In 1992 - 1994 the works for studying the possibility of NPP siting were recommenced and six relatively competitive sites have been chosen out from 54 possible locations for NPP siting. Parallely, works on assessment of environmental NPP effect in these sites were carried out. As concerning the reactors to be purchased and installed in the sites selected, the following options were taken into consideration: PWR of American Company WESTINGHOUSE; PWR N4 of France Company FRAMATOME; PWR KONVOI of German Company SIEMENS. Also promising are the new generation of Russian Reactor NPP, namely NPP - 91, NPP - 92 and NPP with NGWWER - 640 reactors. Preliminary assessment having in view the feasibility characteristics, safety, reliability as well as the degree of completion shows the Russian projects NPP - 92 and NGWWER - 640 as more preferably at present. Concerning the radioactive waste management, sites for storing low and medium active waste have been determined as well as regions for high active waste disposal. At present Belarus Republic disposes of a definite production, engineering and scientific potential, which can be used when the nuclear power program will be launched. Construction

  3. Nuclear energy and energy security

    International Nuclear Information System (INIS)

    Mamasakhlisi, J.

    2010-01-01

    Do Georgia needs nuclear energy? Nuclear energy is high technology and application of such technology needs definite level of industry, science and society development. Nuclear energy is not only source of electricity production - application of nuclear energy increases year-by-year for medical, science and industrial use. As an energy source Georgia has priority to extend hydro-power capacity by reasonable use of all available water resources. In parallel regime the application of energy efficiency and energy conservation measures should be considered but currently this is not prioritized by Government. Meanwhile this should be taken into consideration that attempts to reduce energy consumption by increasing energy efficiency would simply raise demand for energy in the economy as a whole. The Nuclear energy application needs routine calculation and investigation. For this reason Government Commission is already established. But it seems in advance that regional nuclear power plant for South-Caucasus region would be much more attractive for future

  4. Assessment of the human resources infrastructure for nuclear energy program in Macedonia

    International Nuclear Information System (INIS)

    Chaushevski, A.; Spasevska, H.; Nikolova-Poceva, S.; Popov, P.

    2015-01-01

    Macedonia is a country with no nuclear power and research reactors. The nuclear application is currently only in the medical industry, agriculture and food industry, accompanied by radiation measuring and protection activities in these sectors. On the other side the energy needs have been increasing in the last ten years, which resulted in electrical energy import of about 20–30% (around 3000 GWh). Nuclear power is one of the options for satisfying energy needs in the next 50 years. One of the crucial problems in nuclear energy implementation are human resources needs and educational infrastructure development in this field. No matter what will be the future energy scenario in the Republic of Macedonia, the nuclear educational program is the first step to have HR in the field of nuclear energy. This paper presents the proposed direction for having HR in nuclear energy program in a small country such as the Republic of Macedonia. Taking into account the existing national education program related to nuclear topics and in particular to nuclear power, and following the guidance and recommendations from the international nuclear educational programs at the IAEA, EHRO and others, the planning of the educational nuclear programs and human resources development in the Republic of Macedonia has been carried out. This includes the enhancing the capabilities of the national regulatory body in the Republic of Macedonia. (authors) Keywords: NEP (Nuclear Energy Program), HR (Human Resources), NEPIO (Nuclear Energy Program Implementation Organization), NRB (Nuclear Regulatory Body), NPP

  5. The role of nuclear energy in brazilian energy matrix: socioeconomic and environmental aspects; O papel da energia nuclear na matriz energetica brasileira: aspectos socioeconomicos e ambientais

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, Priscila

    2016-09-01

    With the large increase of energy demand in the world, either for the continued expansion of industrialization, or by the raise of consumption, are increasing the need for energy sources diversification and the search for cleaner alternatives of energy production. Nuclear power has been considered as an option to curb the emission of greenhouse gases and reduce the dependence of fossil fuels. However, nuclear energy is an issue that still causes a lot of doubt and questions, turning the development of this work very important for a better understanding of the lay public as well as to contribute and encourage future research through an assessment of their environmental and socio-economic aspects, discussing the risks, benefits, and an assessment of the expansion of nuclear energy use, including an overview of nuclear energy in Brazil. Concluding that nuclear energy can contribute to the expansion of the Brazilian energy matrix, as the only heat source able to ensure constant supply of energy without emitting greenhouse gases. Considering that Brazil dominates the technology of the nuclear fuel cycle, and has a large reserves of uranium. A larger share of nuclear energy in the Brazilian energy matrix can generate greater diversification of the same, valuing the environmental and economic sustainability of the country and reducing the system's vulnerability. However, nuclear generation should not be considered as the only solution to the energy problems of the country, but make a part of it by the combination with other renewable sources, increasing the diversity and energy security of the country. (author)

  6. NMTC/JAM, Simulates High Energy Nuclear Reactions and Nuclear-Meson Transport Processes

    International Nuclear Information System (INIS)

    Furihata, Shiori

    2002-01-01

    1 - Description of program or function: NMTC/JAM is an upgraded version of the code system NMTC/JAERI97. NMTC/JAERI97 simulates high energy nuclear reactions and nucleon-meson transport processes. It implements an intra-nuclear cascade model taking account of the in-medium nuclear effects and the pre-equilibrium calculation model based on the exciton one. For treating the nucleon transport process, the nucleon-nucleus cross sections are revised to those derived by the systematics of Pearlstein. Moreover, the level density parameter derived by Ignatyuk is included as a new option for particle evaporation calculation. A geometry package based on the Combinatorial Geometry with multi-array system and the importance sampling technique is implemented in the code. Tally function is also employed for obtaining such physical quantities as neutron energy spectra, heat deposition and nuclide yield without editing a history file. The code can simulate both the primary spallation reaction and the secondary particle transport in the intermediate energy region from 20 MeV to 3.5 GeV by the use of the Monte Carlo technique. The code has been employed in combination with the neutron-photon transport codes available to the energy region below 20 MeV for neutronics calculation of accelerator-based subcritical reactors, analyses of thick target spallation experimented and so on. 2 - Methods: High energy nuclear reactions induced by incident high energy protons, neutrons and pions are simulated with the Monte Carlo Method by the intra-nuclear nucleon-nucleon reaction probabilities based on an intra-nuclear nucleon cascade model followed by the particle evaporation including high energy fission process. Jet-Aa Microscopic transport model (JAM) is employed to simulate high energy nuclear reactions in the energy range of GeV. All reaction channels are taken into account in the JAM calculation. An intra-nuclear cascade model (ISOBAR code) taking account of the in-medium nuclear effects

  7. Public Acceptance of Nuclear Energy in Mexico

    International Nuclear Information System (INIS)

    Ramirez-Sanchez, Jose R.; Alonso, Gustavo; Palacios, H. Javier

    2006-01-01

    energy. Also we can say that in Mexico there are few nuclear information centers one is located at Laguna Verde power plant, and there is other one at Instituto Nacional de Investigaciones Nucleares (ININ). So if we want to improve public acceptance in Mexico we should design a well defined strategy to communicate nuclear issues to the public. This strategy should point out many aspects of nuclear power as discussed before. In addition, recent economic studies performed at ININ, indicate that, nuclear energy is currently is price competitive with other sources based on fossil fuels. This facts are currently under discussion with government entities, and now acceptance of government entities is increasing. Even there was a public announce of Mexican government in the sense that Mexico is considering the nuclear option as a part of its energy strategy for the near future. (authors)

  8. Nuclear energy and sustainable development: recent trends

    International Nuclear Information System (INIS)

    Singh, B.P.

    2012-01-01

    During the last 50 years or so there is enormous development in various fields like agriculture, industry, medicine, etc. Further, the population on this globe has increased many folds. In order to cater to the needs of the present population there is an increasing demand of electricity in the society. Per capita electricity consumption also is an index of development in the country. Considering the facts like green house effect and global warming, nuclear energy is the better option. But at the same time there are some critical issues like nuclear waste management globally and availability of fissile material in the context of our country. Research and development are going on to take care of these issues where scientists and engineers are working on alternative fuel cycle and new reactor types, for example Accelerator Driven Subcritical (ADS) System is one of them. Since, ADS reactor is a subcritical system, safety related issues are in fact of low concern relative to existing critical reactors. As a matter of fact, the ADS system is the combination of a particle accelerator and a nuclear reactor. In this talk, a detailed description of the need of energy in our country, which can only be met if nuclear energy contributes a substantial energy requirement, will be presented. Further, how the nuclear waste management issues may be addressed, with the new ADS system will also be presented. (author)

  9. Energy supply options for Lithuania: A detailed multi-sector integrated energy demand, supply and environmental analysis

    International Nuclear Information System (INIS)

    2004-09-01

    The Technical Co-operation (TC) project Energy Supply Options for Lithuania: A Detailed Multi-Sector Integrated Energy Demand, Supply and Environmental Analysis (LIT/0/004) was implemented 2001-2002 by a national team with support from the International Atomic Energy Agency (IAEA). The principal objective of the project was to conduct a comprehensive assessment of Lithuania's future energy supply options taking into consideration the early closure of the Ignalina nuclear power plant (Ignalina NPP). Lithuania, a country in transition to full membership of the European Union, has to comply with the energy acquis (Chapter 14). The 'acquis communautaire' (the body of common rights and obligations which bind all the Member States together) must be adopted by all applicant countries. Implementing the acquis requires not only adequate legislation, well functioning institutions (e.g. a regulatory body as required in the electricity and gas directives) or schedules for restructuring the energy sector but also measures to enhance energy supply security, improvement of energy networks, efficiency improvements throughout the energy system and compliance with European environmental standards. Within the overall context of the transition to EU membership, this study focuses on the future development of the electricity sector and the impacts on energy supply security and environmental performance of a closure of Ignalina NPP by 2009, a pre-condition for accession stipulated by the European Union. The project coincided with the preparation of the new National Energy Strategy for Lithuania and therefore was set up to support the strategy formulation process

  10. If Canada is serious about reducing greenhouse gases, we need nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, C.

    2003-07-01

    Canada's energy options are reviewed in light of the need to find practical solutions to supply the nation's growing demand for power, coupled with equally pressing need to reduce greenhouse gas emissions to meet Kyoto commitments, and to do so without costing Canadians jobs and economic disaster. Among the options available -- renewable, hydro, fossil fuels, nuclear -- nuclear power is identified as the only one that promises to meet the growing demand for power without the practical, economic and environmental disadvantages associated with the alternatives. Based on Canadian experience with nuclear power in the past, it is pointed out that between 1971 and 2000 Canada, by using nuclear fuel, has averted the production of 32 million tonnes of acid gases, millions of tonnes of other pollutants and well over a billion tonnes of carbon dioxide, while producing only 14 per cent of its energy requirements from nuclear fuel. The principal argument made is that given our position as the world's leading supplier of uranium to electric utilities, the safety record of our CANDU reactors, and the fact that nuclear power is one of the cleanest large-scale energy source, nuclear power has the potential to make significant contribution to Canada's ability to meet its future energy requirements, and achieve the GHG emission reduction targets imposed by the Kyoto Agreement, without causing serious harm to the economy. The author goes as far as to say that without serious consideration being given to nuclear power, Canada has no chance even to come close to its Kyoto greenhouse emission targets without disastrous consequences to the economy.

  11. IAEA technical meeting on fissile material strategies for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Ganguly, Chaitanyamoy; Koyama, Kazutoshi

    2005-01-01

    A Technical Meeting (TM) on 'Fissile Material Management Strategies for Sustainable Nuclear Energy' was organized by the International Atomic Energy Agency (IAEA) in Vienna from 12 to 15 September 2005. Prior to the TM, three Working Groups (WG) composed of experts from 10 countries prepared Key Issues papers on: 1) Uranium Demand and Supply through 2050; 2) Back-end Fuel Cycle Options; and 3) Sustainable Nuclear Energy beyond 2050: Cross-cutting Issues. Some 36 papers, including 3 key issue papers, were presented during the TM in 3 different sessions. The present paper summarizes the deliberations of the TM. (author)

  12. The future of nuclear energy. 2008 Winter meeting of the Deutsches Atomforum: opening address

    International Nuclear Information System (INIS)

    Hohlefelder, W.

    2008-01-01

    On the global and European scenes, nuclear power is experiencing an upswing, while it continues to be blocked in Germany. Given the pressing issues of climate protection, continuity of energy supply, and the prices of energy resources, the future of nuclear power can well be seen in an optimistic light. There will be a reassessment of nuclear power also in Germany because of the realities to be faced. If you really want to protect the climate, you cannot exclude the nuclear power option. (orig.)

  13. International cooperation in advanced nuclear systems. An option for the future

    International Nuclear Information System (INIS)

    Dee, J.B.; Kupitz, J.; O'Hara, F.

    1986-10-01

    Long-term energy problems are shared by all countries through world trade, and only a global solution can alleviate the anticipated future energy supply shortages for all. The only non-polluting, technologically-proven future energy supply options are offered by advanced nuclear power systems that utilize uranium and thorium as fertile fuel materials. For this reason, every major country with a nuclear power industry has a development programme for fast breeder and/or advanced converter nuclear power reactors. In these programmes international ventures have become the rule rather that the exception. The development of special district heating reactor systems is progressing as a CMEA collaboration. In the field of fast breeder reactors such ventures include the SNR-300, the FBTF, the Superphenix, and also the commercialization programmes BN-800/1600 (COMECON) and the Superphenix-II (ARGO group). The basic objective of the IAEA is to enlarge the contribution of atomic energy to peace, health and prosperity around the world. For those Member States with development programmes the Agency promotes status and planning, to share experience on prototype plant operation, and to cooperate in identifying critical development issues. For Member States without major programmes, the Agency compiles authoritative and objective world-wide plant data, publishes reports on world-wide development status, coordinates small exploratory research programmes and provides technical assistance through expert services and equipment procurement. By providing the only existing global forum for promoting East-West and North-South inter-communication these IAEA activities encourage cooperation between countries engaged in development and inform countries interested to know more about the role of advanced reactors for meeting their future energy needs, which will become today's energy needs in the not-too-distant future

  14. Public communication and nuclear energy

    International Nuclear Information System (INIS)

    Cornado, A.

    2006-01-01

    The article tries to explain why on occasion the public's perception of nuclear is more negative than of any other form of electricity generation or issue related to this field, when in reality public opinion has been gradually losing interest in nuclear in recent years. In fact, we could say that as nuclear loses its interest, its presence in the media grows in relation to the environmental aspects of electricity generation, of which nuclear form a part. Of the accusations directed at the nuclear industry, probably the most frequent one concerns the lack of transparency and lack of information on its activities. This article shows how the nuclear sector is probably one that generates more and better information on its own business. However, the lack of social acceptance of this activity, and of the energy business in general, is recognized. To solve this, mention is made of the example of France and Finland, where a well planned communication policy, implemented on a sustained basis over time, and the invitation to society to take part in these issues have favored a substantial improvement of public acceptance of electric generation sources, and specifically the nuclear option. The article ends with some recommendations that could be applied to Spain. (Author)

  15. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  16. Nuclear energy, energy for the present and the future; Energia nuclear, una energia para el presente y el futuro

    Energy Technology Data Exchange (ETDEWEB)

    Arredondo S, C. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: cas@nuclear.inin.mx

    2008-07-01

    In this work we will try to show that nuclear energy can contribute to the generation energy in the present and the future, considering that its effect on the climatic change is relatively low and that the fuels that uses are available a large scale. At the moment it is had already commercial thermal fission reactors , there are also them of fast fission that allow the fuel rearing, although these last ones in much smaller number, with both types of fission nuclear reactors can be obtained a very important contribution to the generation of energy at world-wide level during the time that is necessary so that it is developed, constructs and operates the first commercial fusion reactor. The energy that is generated in the present and future must come from different sources, which require to be reliable, to have little effect on the environment, to have wide reserves of fuels and to be viable from an economic and social point of view, they must be viable and safe. Between possible alternative energies it is counted on the lot, the wind one, the geothermal one, originating of the tides and some others. An energy that must be considered so that it has arrived at his maturity and he is already able to contribute widely to cover the present needs and future it is nuclear energy, as much the originating one of the fission of a heavy centre like obtained when fusing two light centers. On base in the nuclear fuel reserves at world-wide level a simple calculation takes control of the lapse in which energy by means of the nuclear fission in rearing can be generated reactors expresses demonstrating that the time sufficient to finish to the investigation and development of fusion reactors which they generate energy in economic, safe and reliable form. Combining these two options the nuclear energy can be considered the future like for the present and the future with practically null effects in the climatic change. (Author)

  17. Nuclear fusion as new energy option in a global single-regional energy system model

    International Nuclear Information System (INIS)

    Eherer, C.; Baumann, M.; Dueweke, J.; Hamacher, T.

    2005-01-01

    Is there a window of opportunity for fusion on the electricity market under 'business as usual' conditions, and if not, how do the boundary conditions have to look like to open such a window? This question is addressed within a subtask of the Socio-Economic Research on Fusion (SERF) programme of the European Commission. The most advanced energy-modelling framework, the TIMES model generator developed by the Energy Technology System Analysis Project group of the IEA (ETSAP) has been used to implement a global single-regional partial equilibrium energy model. Within the current activities the potential role of fusion power in various future energy scenarios is studied. The final energy demand projections of the baseline of the investigations are based on IIASA-WEC Scenario B. Under the quite conservative baseline assumptions fusion only enters the model solution with 35 GW in 2100 and it can be observed that coal technologies dominate electricity production in 2100. Scenario variations show that the role of fusion power is strongly affected by the availability of GEN IV fission breeding technologies as energy option and by CO 2 emission caps. The former appear to be a major competitor of fusion power while the latter open a window of opportunity for fusion power on the electricity market. An interesting outcome is furthermore that the possible share of fusion electricity is more sensitive to the potential of primary resources like coal, gas and uranium, than to the share of solar and wind power in the system. This indicates that both kinds of technologies, renewables and fusion power, can coexist in future energy systems in case of CO 2 emission policies and/or resource scarcity scenarios. It is shown that Endogenous Technological Learning (ETL), a more consistent description of technological progress than mere time series, has an impact on the model results. (author)

  18. Advanced nuclear energy systems and the need of accurate nuclear data: the n_TOF project at CERN

    CERN Document Server

    Colonna, N; Praena, J; Lederer, C; Karadimos, D; Sarmento, R; Domingo-Pardo, C; Plag, R; Massimi, C; Calviani, M; Guerrero, C; Paradela, C; Belloni, F

    2010-01-01

    To satisfy the world's constantly increasing demand for energy, a suitable mix of different energy sources has to be devised. In this scenario, an important role could be played by nuclear energy, provided that major safety, waste and proliferation issues affecting current nuclear reactors are satisfactorily addressed. To this purpose, a large effort has been under way for a few years towards the development of advanced nuclear systems with the aim of closing the fuel cycle. Generation IV reactors, with full or partial waste recycling capability, accelerator driven systems, as well as new fuel cycles are the main options being investigated. The design of advanced systems requires improvements in basic nuclear data, such as cross-sections for neutron-induced reactions on actinides. In this paper, the main concepts of advanced reactor systems are described, together with the related needs of new and accurate nuclear data. The present activity in this field at the neutron facility n\\_TOF at CERN is discussed.

  19. Nuclear power component in foresight on energy in Poland

    International Nuclear Information System (INIS)

    Szczurek, J.; Chwaszczewski, S.; Czerski, P.; Luszcz, M.

    2007-01-01

    On behalf of Ministry of Science and Higher Education, the first technology foresight study on future developments in the energy sector is being conducted in Poland. The study aimed to identify energy-related technologies, scenarios, and a mix of energy sources and infrastructure developments that will ensure security of energy supply for Poland. This paper provides a short description of the methodology applied as well as preliminary results and findings of all subtasks of the foresight study referring to the perspective of nuclear power option in Poland, embracing a time horizon of 24 years. (author)

  20. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  1. Nuclear options in Latin America

    International Nuclear Information System (INIS)

    1983-11-01

    An account is given of the Treaty of Tlatelolco, 1967, providing for the designation of Latin America as a Nuclear Weapon-Free Zone (NWFZ); additional protocols attached to the Treaty are available for signature by States outside the region. The Treaty is administered by the Organisation for the Prohibition of Nuclear Weapons in Latin America (OPANAL). Reference is made to its latest meeting, held in May 1983. The present paper also discusses the following: Non-Proliferation Treaty (with references to safeguards agreements concluded between each State and the IAEA); nuclear suppliers' group; peaceful nuclear explosions; nuclear energy programmes in Latin America. (U.K.)

  2. Nuclear and Solar Energy: Implications for Homeland Security

    Science.gov (United States)

    2008-12-01

    sequestration, conservation, and telecommuting to several energy production changes to include both solar and nuclear options.FF80FF Stephen Pacala...nations from developing a weapons program when motivated to do so. India provides a useful historic example. India’s weapons program began with a...civilian power programs, for sufficiently motivated governments.FF162FF However, those who make such arguments

  3. Summary Report of the INL-JISEA Workshop on Nuclear Hybrud Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mark Antkowiak; Richard Boardman; Shannon Bragg-Sitton; Robert Cherry; Mark Ruth

    2012-07-01

    Hybrid energy systems utilize two or more energy resources as inputs to two or more physically coupled subsystems to produce one or more energy commodities as outputs. Nuclear hybrid energy systems can be used to provide load-following electrical power to match diurnal to seasonal-scale changes in power demand or to compensate for the variability of renewable wind or solar generation. To maintain economical, full rate operation of the nuclear reactor, its thermal energy available when power demand is low could be diverted into making synthetic vehicle fuels of various types. The Institute for Nuclear Energy Science and Technology (INEST) and the Joint Institute for Strategic Energy Analysis (JISEA) co-sponsored an international workshop to identify research topics important in advancing the potential use of hybrid systems with a specific focus on nuclear-renewable hybrid systems. The workshop included presentations ranging from energy challenges and research and development (R&D) directions being pursued by nations to multiple options for hybrid systems. Those options include one that is being commercialized to other opportunities and analysis results quantifying them. The workshop also involved two breakout sessions - one focused on thermal energy management issues especially at unit-operation scale and the second focused on system operations issues including system controls, regulatory issues, technical and economic analysis, and market challenges. A discussion involving the full group focused on more general issues such as societal involvement and participation. Key criteria for selecting hybrid energy system projects and metrics for comparing them were also identified by the full group. The workshop's findings are being used initially by INEST to define topics for a research preproposal solicitation.

  4. Dynamic performance analysis of two regional Nuclear Hybrid Energy Systems

    International Nuclear Information System (INIS)

    Garcia, Humberto E.; Chen, Jun; Kim, Jong S.; Vilim, Richard B.; Binder, William R.; Bragg Sitton, Shannon M.; Boardman, Richard D.; McKellar, Michael G.; Paredis, Christiaan J.J.

    2016-01-01

    In support of more efficient utilization of clean energy generation sources, including renewable and nuclear options, HES (hybrid energy systems) can be designed and operated as FER (flexible energy resources) to meet both electrical and thermal energy needs in the electric grid and industrial sectors. These conceptual systems could effectively and economically be utilized, for example, to manage the increasing levels of dynamic variability and uncertainty introduced by VER (variable energy resources) such as renewable sources (e.g., wind, solar), distributed energy resources, demand response schemes, and modern energy demands (e.g., electric vehicles) with their ever changing usage patterns. HES typically integrate multiple energy inputs (e.g., nuclear and renewable generation) and multiple energy outputs (e.g., electricity, gasoline, fresh water) using complementary energy conversion processes. This paper reports a dynamic analysis of two realistic HES including a nuclear reactor as the main baseload heat generator and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by their application in scenarios with multiple commodity production and high renewable penetration. It is performed for regional cases – not generic examples – based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses. - Highlights: • Hybrids including renewables can operate as dispatchable flexible energy resources. • Nuclear energy can address high variability and uncertainty in energy systems. • Nuclear hybrids can reliably provide grid services over various time horizons. • Nuclear energy can provide operating reserves and grid inertia under high renewables. • Nuclear hybrids can greatly reduce GHG emissions and support grid and industry needs.

  5. Probing the nuclear symmetry energy at high densities with nuclear reactions

    Science.gov (United States)

    Leifels, Y.

    2017-11-01

    The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.

  6. Training options for countering nuclear smuggling

    International Nuclear Information System (INIS)

    Ball, D Y; Erickson, S A

    1999-01-01

    The burden of stopping a nuclear smuggling attempt at the border rests most heavily on the front-line customs inspector. He needs to know how to use the technological tools at his disposal, how to discern tell-tale anomalies in export documents and manifests, how to notice psychological signs of a smuggler's tension, and how to search anything that might hide nuclear material. This means that assistance in the counter-nuclear smuggling training of customs officers is one of the most critical areas of help that the United States can provide. This paper discusses the various modes of specialized training, both in the field and in courses, as well as the types of assistance that can be provided. Training for nuclear customs specialists, and supervisors and managers of nuclear smuggling detection systems is also important, and differs from front-line inspector training in several aspects. The limitations of training and technological tools such as expert centers that will overcome these limitations are also discussed. Training assistance planned by DOE/NN-43 to Russia within the Second Line of Defense program is discussed in the light of these options, and future possibilities for such training are projected

  7. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  8. Advanced Demonstration and Test Reactor Options Study

    International Nuclear Information System (INIS)

    Petti, David Andrew; Hill, R.; Gehin, J.; Gougar, Hans David; Strydom, Gerhard; Heidet, F.; Kinsey, J.; Grandy, Christopher; Qualls, A.; Brown, Nicholas; Powers, J.; Hoffman, E.; Croson, D.

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power's share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy's (DOE's) broader commitment to pursuing an 'all of the above' clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate 'advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy'. Advanced reactors are

  9. Energy options and the global environment

    International Nuclear Information System (INIS)

    Colombo, U.

    1986-01-01

    First, a brief historical sketch of the progress of industrialized society and the change in the quantity and quality of energy system accompanying it is made. It is likely to see a very unstable oil market in future, and it is irresponsible to continue the use of oil simply by burning it to obtain heat and electricity. This time is the opportunity to complete a new energy transition, preserving oil for more effective utilization. There is no single energy source which is as versatile, easy to transport and to use, and cheap as oil, therefore, the relative merits and demerits of various available resources must be carefully assessed. Natural gas, the green-house effect caused by burning fossil fuel, hydroelectric power, nuclear fission power, solar, biomass, wind and geothermal energies are discussed. The important alternatives for the future are nuclear fission power, biomass, and by the middle of the next century, nuclear fusion energy. A pluralistic system is the best suitable to the complex society of the next century, having about 8 billion population. A scenario representing the contribution of nuclear energy in 2050 is illustrated, but the clouds on the nuclear horizon must be dispelled. (Kako, I.)

  10. Selection of possible candidate area for nuclear energy facility in Johor, Malaysia

    International Nuclear Information System (INIS)

    Nor Afifah Basri; Ahmad Termizi Ramli

    2012-01-01

    Nuclear power is considered as one of the best option for future energy development in Malaysia. Since Malaysia has no experience in nuclear energy generation, commissioning the first nuclear power plant needs tremendous effort in various aspects. Site selection is one of important step in nuclear power plant commissioning process. This paper proposes candidate sites for nuclear power plant in Mersing, Kota Tinggi, Muar and Batu Pahat district in Johor, Malaysia. The candidate selection process uses the IAEA document and AELB guideline as main reference, supported by site selection procedure by various countries. MapInfo Professional software was used to stimulate the selection process for candidate areas for the nuclear power plant. This paper concluded that Tenggaroh and Jemaluang area are the most suitable area for nuclear power plant facilities in Johor, Malaysia. (Author)

  11. Future nuclear systems, Astrid, an option for the fourth generation: preparing the future of nuclear energy, sustainably optimising resources, defining technological options, sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ter Minassian, Vahe

    2016-01-01

    Energy independence and security of supplies, improved safety standards, sustainably optimised material management, minimal waste production - all without greenhouse gas emissions. These are the Generation IV International Forum specifications for nuclear energy of the future. The CEA is responsible for designing Astrid, an integrated technology demonstrator for the 4. generation of sodium-cooled fast reactors, in accordance with the French Sustainable Nuclear Materials and Waste Management Act of June 28, 2006, and funded as part of the Investments for the Future programme enacted by the French parliament in 2010. Energy management - a vital need and a factor of economic growth - is a major challenge for the world of tomorrow. The nuclear industry has significant advantages in this regard, although it faces safety, resource sustainability, and waste management issues that must be met through continuing technological innovation. Fast reactors are also of interest to the nuclear industry because their recycling capability would solve a number of problems related to the stockpiles of uranium and plutonium. After the resumption of R and D work with EDF and AREVA in 2006, the Astrid design studies began in 2010. The CEA, as owner and contracting authority for this programme, is now in a position to define the broad outlines of the demonstrator 4. generation reactor that could be commissioned during the next decade. A sodium-cooled fast reactor (SFR) operates in the same way as a conventional nuclear reactor: fission reactions in the atoms of fuel in the core generate heat, which is conveyed to a turbine generator to produce electricity. In the context of 4. generation technology, SFRs represent an innovative solution for optimising the use of raw materials as well as for enhancing safety. Here are a few ideas advanced by the CEA. (authors)

  12. NEA activities in 1993. 22. Annual Report of the OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    1994-01-01

    The titles and themes of the ten chapters of this report on NEA activities are: trends in nuclear energy; nuclear development and the fuel cycle (potential contribution of nuclear energy, policy alternatives, maintaining the nuclear option, prospective); reactor safety and regulation (safety research, regulatory approach, safety assessment, accident phenomenology and management, human factors, international standards); radiation protection (revision of the standards, assessment of the protection, international emergency exercises); radioactive waste management (long term safety assessment, in situ evaluation, other radioactive wastes); nuclear science (role, nuclear data, use of supercomputers, actinide transmutation, NEA Data Bank); joint projects (Three Mile Island vessel investigation, Halden reactor project...); legal affairs (liability aspects...); information programme; relations with non-member countries. 28 figs

  13. Energies and media nr 33. Niger. Conditions for the nuclear sector. Waste disposal

    International Nuclear Information System (INIS)

    2010-11-01

    After having evoked the situation of ARLIT's employees who are held as hostages in Niger, and some comments on recent events in the nuclear sector in different countries (energy policy and projects in India, in China, in the USA with opportunities for the French nuclear industry, and in Germany, Belgium, France), this publication discusses the issue of nuclear waste disposal. After having briefly recalled the content of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, it discusses the option of waste storage in deep geological formation, an option which has been chosen by several countries. It questions whether sea beds will ever be a storage option. It comments the case of Germany, of the United States where the storage of high level and long-lived wastes is still facing major problems

  14. Options of electric generation and sustainability

    International Nuclear Information System (INIS)

    Martin del Campo M, C.

    2004-01-01

    In this paper a study on the sustainability of the main electricity generation options is presented. The study is based on a matrix of sustainability indicators developed in Switzerland. A revision of some sustainability studies performed in countries with certain energy diversity and with experience in nuclear power plants operation, is done. Studies, in general, are performed for the power plant life cycle, taking into account economic aspects, fuel prices impact on electricity generation costs, fuel reserves indicators and material consumption. Air emission, waste production and human health impact data are also presented. All the results lead to confirm that nuclear energy has a high degree of sustainability vis a vis other options based on fossil fuels and renewable. Finally some comments are presented in order to highlight the importance that nuclear energy might have in the sustainable development of Mexico. (Author)

  15. Periodical public opinion survey on nuclear energy. Inhabitants living in the Tokyo metropolitan area

    International Nuclear Information System (INIS)

    Shinoda, Yoshihiko; Tsutida, Shouji; Kimura, Hiroshi

    2014-01-01

    Fukushima Daiichi nuclear power plant accident (Fukushima accident) has brought about a great change in many people's perceptions about nuclear power plant safety. When discussing future energy options for Japan, it is important to have a full grasp of the attitude of a large number of people towards nuclear energy. The Atomic Energy Society of Japan has conducted annual questionnaire survey of 500 adults who live within 30 kilometers of Tokyo Station. The aim of this survey is to assess trends in public attitude towards nuclear energy. The authors that designed the questionnaire entries of this survey have been managing questionnaire data as members of the Data Management Working Group under the Social and Environmental Division of the Atomic Energy Society of Japan. We confirmed the change in public attitude towards nuclear energy through this periodical survey after the Fukushima accident. In particular, public concerns about the use of nuclear energy increased after the Fukushima accident, and many people have raised doubts over the use of nuclear energy in the future. (author)

  16. Overall analysis of the cost key factors for the nuclear energy

    International Nuclear Information System (INIS)

    Caero, M.

    1996-01-01

    In 1995, 25,8 % of the world electricity consumption was of nuclear origin, while in the EU this figure is increased up to 50,6 %. In order to maintain and even to increase its share in the electricity generation, Nuclear Energy needs to achieve a good economic performance as a base load source when compared with its competitors, basically coal and gas fired plants. Fossil-fired generation costs have declined over the past ten years, mainly due to lower fossil fuel prices. This factor together with the recently observed tendency of higher discount rates to be applied are challenging the attractiveness of the nuclear energy. Nuclear energy is a capital intensive option. Taken into account extensive standardization programs has been established aiming at cost reductions as well as to increase efficiency of nuclear energy utilization, among their main purposes. Externalities play an important role, as they are already internalized in nuclear generation costs. This is not true for many existing coal-fired plants. Even a great uncertainly exists on greenhouse gas effects. Also decisions on greenhouse gas control and their impact on carbonaceous fuel generation costs cannot be clearly predicted, even in the immediate future. Macroeconomic factors like employment, competitiveness, energy conservation, energy availability, energy demand control, etc are positively influenced by the use of nuclear energy. A sustainable economic development cannot be achieved only relying on fossil fuel generation. As a wrap up sustainable development demands nuclear energy in order to cover the future objectives of energy availability, environmental control and energy cost control. (author)

  17. Nuclear energy development in China: A study of opportunities and challenges

    International Nuclear Information System (INIS)

    Zhou, Sheng; Zhang, Xiliang

    2010-01-01

    With rapid economic development, China faces a great challenge to meet its increasing energy demand. Currently, China's energy supply is dominated by coal consumption, while natural gas and oil are in relative short supply. At the same time, nuclear energy is a relatively clean energy without green-house gas emissions. Considering the growing cost of fossil energy and the limited resources in China, oil supply security, coal mining disasters, the domestic environment pressure, and global climate warming, nuclear energy is an inevitable strategic option. Generally speaking, nuclear energy development has a promising future in China. Its driving factors include the brisk electricity demand, environment impact pressure, oil supply security, and positive public acceptance. Meanwhile, the question still remains whether nuclear energy development in China is sustainable. Just like in other parts of the world, China is also bewildered by the problems of reactor safety, nuclear waste treatment, and risk of proliferation of weapons material. In addition, nuclear technology diversity, shortage of uranium resources, and weak market competitiveness of nuclear power in the short term are certain barriers that China's nuclear energy development also faces. There are also other worrying issues such as: whether public acceptance in the future will change? Whether the current approaches to nuclear waste disposal are still acceptable when nuclear plants gains scale? In this paper, some suggestions and recommendations are put forward on the measures to be followed to 1) enhance domestic nuclear technology development and imported technology localization; 2) reduce the cost of nuclear power and enhance its market competitiveness; 3) accelerate the process of cleanly developing nuclear technology; 4) accelerate the process of developing more efficient reactor and nuclear fuel cycle; and 5) conduct effective publicity work to uphold public acceptance.

  18. CO2 emission reduction strategy and roles of nuclear energy in Japan

    International Nuclear Information System (INIS)

    Sato, Osamu; Shimoda, Makoto; Takematsu, Kenji; Tadokoro, Yoshihiro

    1999-03-01

    An analysis was made on the potential and cost of reducing carbon dioxide (CO 2 ) emissions from Japan's long-term energy systems by using the MARKAL model, developed in the Energy Technology Systems Analysis Programme (ETSAP) of International Energy Agency (IEA). Assuming future growths of GDP, the demand for energy services was estimated for the analytical time horizon 1990-2050. Assumptions were made also on prices and availability of fossil fuels, and on availability of nuclear and renewable energy. CO 2 emissions and system costs were compared between energy demand and supply scenarios defined with different assumptions on nuclear energy, a CO 2 disposal option, and natural gas imports. Main results were as follows. Without nuclear energy, the CO 2 emissions will hardly be reduced because of the increases of coal utilization. CO 2 disposal will be effective in reducing the emissions, however at much higher costs than the case with nuclear energy. The expansion of natural gas imports alone will not reduce the emissions at enough low levels. (author)

  19. Thermal control of high energy nuclear waste, space option. [mathematical models

    Science.gov (United States)

    Peoples, J. A.

    1979-01-01

    Problems related to the temperature and packaging of nuclear waste material for disposal in space are explored. An approach is suggested for solving both problems with emphasis on high energy density waste material. A passive cooling concept is presented which utilized conduction rods that penetrate the inner core. Data are presented to illustrate the effectiveness of the rods and the limit of their capability. A computerized thermal model is discussed and developed for the cooling concept.

  20. British Energy - nuclear power in the private sector

    International Nuclear Information System (INIS)

    Hawley, R.

    1997-01-01

    The first four months of the operation of British Energy as a privatised nuclear utility are briefly reviewed. Operational and financial performance have been good as exemplified by the figures for power output and financial return. Freedom from government control means that the options open to the company are much wider but the need to meet the expectations of shareholders is a major consideration. Added to this, the competitive nature of the electricity industry means that the cost reduction is important, though this cannot be at the expense of safety. Shareholder expectations make the funding of new nuclear power stations unrealistic at present. Increasingly, however, markets are opening up in the maintenance of existing plant and the decommissioning of older plant. The British Energy Group also has considerable expertise in the design, operation and management of power stations and of acting in a competitive energy market that could be exported. British Energy's International Division is in place to develop this potential. (UK)

  1. U.S. Department of Energy Office of Nuclear Technology Research and Eevelopment ((NTRD) comprehensive summary of QA assessments for FY17

    Energy Technology Data Exchange (ETDEWEB)

    Trost, Alan L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-09-14

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) has developed a research and development (R&D) roadmap for its research, development, and demonstration (RD&D) activities to ensure nuclear energy remains a compelling and viable energy option for the U.S. The roadmap defines NE RD&D activities and objectives that address the challenges to research, develop and demonstrate options to the current U.S commercial fuel cycle to enable the safe, secure, economic, and sustainable expansion of nuclear energy, while minimizing proliferation and terrorism risks expanding the use of nuclear power. The roadmap enables the development of technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. In addition, it will help to develop improvements in the affordability of the new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals.

  2. Topnux'96 international conference French nuclear energy society

    International Nuclear Information System (INIS)

    Park, S.K.

    1996-01-01

    Here is the opening address of Mr S. Park, vice-president of the Korea Electric Power Corporation, at the opening session of the Topnux'96 conference. The main ideas of his speech are the following: 1)energy is indispensable for maintaining affluent living standards 2)it is the most important requirement for rapid economic growth 3)overall energy consumption of the world is expected to rise continuously in the next century 4)demand for electricity is greater than growth of overall energy consumption 5)burning of large amount of fossil fuels to meet the energy, including electricity, will bring about serious environmental impact such as air pollution and global warming due to emission of toxic chemical and greenhouse gases 6)nuclear power is one of the most effective and practical alternatives available now for solving this global problem 7)energy should be convenient to use, inexpensive, safe, secured and environment friendly; in this respect, electricity is the most desirable type of energy indispensable for modern civilization and nuclear power is surely one of the viable option for producing electricity. (O.M.)

  3. Nuclear energy worldwide

    International Nuclear Information System (INIS)

    Fertel, M.

    2000-01-01

    In this short paper the author provides a list of tables and charts concerning the nuclear energy worldwide, the clean air benefits of nuclear energy, the nuclear competitiveness and the public opinion. He shows that the nuclear energy has a vital role to play in satisfying global energy and environmental goals. (A.L.B)

  4. American security perspectives: public views on energy, environment, nuclear weapons and terrorism: 2008

    International Nuclear Information System (INIS)

    Herron, Kerry Gale; Jenkins-Smith, Hank C.

    2008-01-01

    We analyze and compare findings from matching national surveys of the US general public on US energy and environmental security administered by telephone and Internet in mid-2008. Key areas of investigation include: energy supplies and reliability; energy vulnerabilities and threats, and relationships among security, costs, energy dependence, alter-native sources, and research and investment priorities. We analyze public assessments of nuclear energy risks and benefits, nuclear materials management issues, and preferences for the future of nuclear energy in the US. Additionally, we investigate environmental issues as they relate to energy security, to include evolving perspectives on global climate change and relationships among environmental issues and potential policy options. We also report findings from an Internet survey of the general public conducted in mid-2008 that investigates assessments of threats to US security; valuations of US nuclear weapons and nuclear deterrence; perspectives on nuclear proliferation; and support for investments in nuclear weapons capabilities. Our analysis of public views on terrorism include assessments of the current threat, progress in the struggle against terrorism, preferences for responding to terrorist attacks at different levels of assumed casualties, and support for domestic policies intended to reduce the threat of terrorism.

  5. A study on the role of nuclear energy in overcoming environment and resource crisis -For the establishment of sustainable energy policy-

    International Nuclear Information System (INIS)

    Han, Pil Soon; Choi, Yung Myung; Ham, Chul Hoon; Cho, Il Hoon; Jung, Heum Soo; Lee, Tae Joon; Lee, Duk Sun

    1995-04-01

    This study is mainly composed of the analyses of the current circumstances and the future views on the global warming and the exhaustion of energy resources related to the use of energy, and the suggestion on the role of nuclear energy as the most prospective countermeasure on energy crisis. The effects of the problems of global warming and energy crisis on the 21st century are look upon and the strategies of each countries to their crises are analyzed in this study. In energy source and the characteristics of nuclear energy resource, and the necessity of the sustainable development of nuclear energy was emphasized. We suggested the enlargement of the development of nuclear energy in the aspects of the international trends, the national economic options and the deficiency of energy resources, and proposed the detail of the short - and long - term strategies on these matters. 22 figs, 39 tabs, 45 refs. (Author)

  6. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  7. Energy Return on Investment from Recycling Nuclear Fuel

    International Nuclear Information System (INIS)

    2011-01-01

    This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

  8. Mitigation of climate change via a copper-chlorine hybrid thermochemical water splitting cycle for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, M.F.; Dincer, I.; Rosen, M.A.

    2009-01-01

    Concerns regarding climate change have motivated research on clean energy resources. While many energy resources have limitations, nuclear energy has the potential to supply a significant share of energy supply without contributing to climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another option for the utilization of nuclear thermal energy. This paper describes nuclear-based hydrogen production technologies and discusses the role of the Cu-Cl cycle for thermochemical water decomposition, potentially driven in part by waste heat from a nuclear generating station, in reducing greenhouse gas emissions. (author)

  9. Nuclear Power and Resource Efficiency—A Proposal for a Revised Primary Energy Factor

    Directory of Open Access Journals (Sweden)

    Ola Eriksson

    2017-06-01

    Full Text Available Measuring resource efficiency can be achieved using different methods, of which primary energy demand is commonly used. The primary energy factor (PEF is a figure describing how much energy from primary resources is being used per unit of energy delivered. The PEF for nuclear power is typically 3, which refers to thermal energy released from fission in relation to electricity generated. Fuel losses are not accounted for. However; nuclear waste represents an energy loss, as current plans for nuclear waste management mostly include final disposal. Based on a literature review and mathematical calculations of the power-to-fuel ratio for nuclear power, PEF values for the open nuclear fuel cycle (NFC option of nuclear power and different power mixes are calculated. These calculations indicate that a more correct PEF for nuclear power would be 60 (range 32–88; for electricity in Sweden (41% nuclear power PEF would change from 1.8 to 25.5, and the average PEF for electricity in the European Union (EU would change from 2.5 to 18. The results illustrate the poor resource efficiency of nuclear power, which paves the way for the fourth generation of nuclear power and illustrates the policy implication of using PEFs which are inconsistent with current waste management plans.

  10. The long term challenges of energy management: keeping all options open

    International Nuclear Information System (INIS)

    Moisan, F.

    2003-01-01

    Before the end of the 21. century, the global energy sector will need to face up to two challenges: climate warming due to greenhouse gas emissions and the increasing scarcity of traditional hydrocarbons. The likely scenarios expected by 2030 demonstrate that we are in the process of witnessing strong growth in the consumption of energy and in CO 2 emissions while at the same time climate experts warn us that we need to achieve a 75 % reduction of emissions in the industrialized nations by 2050. Several technological options may be envisaged in order to meet these challenges including a view generation nuclear power, renewable energy, the storage of carbon dioxide or managing energy consumption, and we need to keep all options open because none of these alone can solve all the problems. The time required for technologies to emerge following research and their penetration into the marketplace can often be several decades. The 2050 deadline is therefore not so at away and we need to stem and reverse the growth in demand from today onwards, something we should da without any misgivings when we consider the considerable uncertainties surrounding supply-side technologies. This profound transformation of our production and consumption methods also involves a change in our lifestyle and our behaviour: our efforts in the field of technological development must be accompanied by a commitment by all citizens to creating a more rational society where energy is concerned. (author)

  11. Advanced Demonstration and Test Reactor Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Gehin, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States); Qualls, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Croson, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy

  12. South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs

    International Nuclear Information System (INIS)

    Hong, Sanghyun; Bradshaw, Corey J.A.; Brook, Barry W.

    2014-01-01

    South Korea is an important case study for understanding the future role of nuclear power in countries with on-going economic growth, and limited renewable energy resources. We compared quantitatively the sustainability of two ‘future-mapping’ exercises (the ‘Governmental’ scenario, which relies on fossil fuels, and the Greenpeace scenario, which emphasises renewable energy and excludes nuclear power). The comparison was based on a range of environmental and technological perspectives, and contrasted against two additional nuclear scenarios that instead envisage a dominant role for nuclear energy. Sustainability metrics included energy costs, external costs (greenhouse-gas emissions, air pollutants, land transformation, water consumption and discharge, and safety) and additional costs. The nuclear-centred scenarios yielded the lowest total cost per unit of final energy consumption by 2050 ($14.37 GJ −1 ), whereas the Greenpeace scenario has the highest ($25.36 GJ −1 ). We used probabilistic simulations based on multi-factor distributional sampling of impact and cost metrics to estimate the overlapping likelihoods among scenarios to understand the effect of parameter uncertainty on the integrated recommendations. Our simulation modelling implies that, despite inherent uncertainties, pursuing a large-scale expansion of nuclear-power capacity offers the most sustainable pathway for South Korea, and that adopting a nuclear-free pathway will be more costly and produce more greenhouse-gas emissions. - Highlights: • Nuclear power has a key role to play in mitigating greenhouse-gas emissions. • The Greenpeace scenario has higher total external cost than the nuclear scenarios. • The nuclear-centred scenarios offer the most sustainable option for South Korea. • The similar conclusions are likely to apply to other Asian countries

  13. Radioactive waste management and spent nuclear fuel storing. Options and priorities

    International Nuclear Information System (INIS)

    Popescu, Ion

    2001-01-01

    As a member of the states' club using nuclear energy for peaceful applications, Romania approaches all the activities implied by natural uranium nuclear fuel cycle, beginning with uranium mining and ending with electric energy generation. Since, in all steps of the nuclear fuel cycle radioactive wastes are resulting, in order to protect the environment and the life, the correct and competent radioactive waste management is compulsory. Such a management implies: a. Separating the radioisotopes in all the effluences released into environment; b. Treating separately the radioisotopes to be each properly stored; c. Conditioning waste within resistant matrices ensuring long term isolation of the radioactive waste destined to final disposal; d. Building radioactive waste repositories with characteristics of isolation guaranteed for long periods of time. To comply with the provisions of the International Convention concerning the safety of the spent nuclear fuel and radioactive waste management, signed on 5 September 1997, Romania launched its program 'Management of Radioactive Wastes and Dry Storing of Spent Nuclear Fuel' having the following objectives: 1. Establishing the technology package for treating and conditioning the low and medium active waste from Cernavoda NPP to prepare them for final disposal; 2. Geophysical and geochemical investigations of the site chosen for the low and medium active final disposal (DFDSMA); 3. Evaluating the impact on environment and population of the DFDSMA; 4. Providing data necessary in the dry intermediate storing of spent nuclear fuel and the continuous and automated surveillance; 5. Establishing multiple barriers for spent nuclear fuel final disposal in order to establish the repository in granitic rocks and salt massives; 6. Designing and testing containers for final disposal of spent nuclear fuel guaranteeing the isolation over at least 500 years; 7. Computational programs for evaluation of radionuclide leakage in environment in

  14. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Lee, H. M.; Oh, K. B.

    2003-12-01

    This study consists of various issues as follows; electricity price regulation in the liberalized electricity market, establishment of carbon emission limit in national electricity sector, the role of nuclear power as an future energy supply option, the future prospect of CO2 capture and sequestration and current research status of that area in Korea, and Preliminary economic feasibility study of MIP(Medical Isotopes Producer). In the price regulation in the liberalized electricity market, the characteristic of liberalized electricity market in terms of regulation was discussed. The current status and future projection of GHG emission in Korean electricity sector was also investigated. After that, how to set the GHG emission limit in the national electricity sector was discussed. The characteristic of nuclear technology and the research in progress were summarized with the suggestion of the possible new application of nuclear power. The current status and future prospect of the CO2 capture and sequestration research was introduced and current research status of that area in Korea was investigated. Preliminary economic feasibility study of MIP(Medical Isotopes Producer), using liquid nuclear fuel to produce medical isotopes of Mo-99 and Sr-89, was performed

  15. Nuclear energy

    International Nuclear Information System (INIS)

    Rippon, S.

    1984-01-01

    Do we need nuclear energy. Is it safe. What are the risks. Will it lead to proliferation. The questions are endless, the answers often confused. In the vigorous debates that surround the siting and operation of nuclear power plants, it is all too easy to lose sight of the central issues amid the mass of arguments and counter-arguments put forward. And there remains the doubt, who do we believe. This book presents the facts, simply, straightforwardly, and comprehensibly. It describes the different types of nuclear reactor, how they work, how energy is produced and transformed into usable power, how nuclear waste is handled, what safeguards are built in to prevent accident, contamination and misuse. More important, it does this in the context of the real world, examining the benefits as well as the dangers of a nuclear power programme, quantifying the risks, and providing an authoritative account of the nuclear industry worldwide. Technically complex and politically controversial, the contribution of nuclear energy to our future energy requirements is a crucial topic of our time. (author)

  16. Glossary of nuclear energy

    International Nuclear Information System (INIS)

    Seo, Du Hwan

    1987-01-01

    This book gives descriptions of explanations of terminologies concerning to nuclear energy such as analysis of financial safety of nuclear energy, radwaste disposal, fast breeder reactor, nuclear reactor and device, nuclear fuel and technique for concentration, using of nuclear energy radiation and measurement, plan for development of nuclear energy and international institution. This book includes 160 terms on nuclear energy and arranges in Korean alphabetical order.

  17. Post-Fukushima trends in russian nuclear energy and public perception

    International Nuclear Information System (INIS)

    Gagarinskiy, A. Yu.

    2012-01-01

    The gloomy 'nuclear spring' of 2011 in practice had virtually no effect on the new nuclear construction program in Russia, which keeps its second place in the world as concerns the number of new NPP units under construction. Russian positions on the world nuclear power plant construction markets have improved. Current intensive analysis of Fukushima-Daiichi accident consequences is already starting to influence not only specific safety enhancement measures at operating units, but also the opinions related to strategic areas of future nuclear energy development. This paper is intended to demonstrate the nuclear community's position on the development strategy, as well as post-Fukushima trends in the activities of public forces, which try to form the attitude towards the nuclear option. (authors)

  18. Nuclear energy and public opinion: an analysis of international experience

    International Nuclear Information System (INIS)

    Souza, Jair A. Marques de; Spitalnik, Jorge

    1996-01-01

    Nuclear power occupies nowadays the third place among the different sources of energy in the world (17%), after coal (40%) and hydropower (18%). In the more developed countries of OECD (Organization for Economic Cooperation and Development), nuclear power already represents the second most utilized source of energy (coal; 40%, nuclear: 24%, hydro: 17%). It has been frequently stated that inadequate public information constitutes one of the main hindrances for broad use worldwide of nuclear power. However, in those countries where nuclear power has been more successful their well informed populations are generally in favor of its utilization. In countries like France, Japan, Republic of Korea and the U.S., big users of nuclear power, public opinion has been either in favor or has evolved favorably to the nuclear option. The experience in this field varies from country to country, depending mainly on their cultural and socio-political traditions. This report summarizes the situation in various countries as background information for possible adaptation to the conditions in Brazil. (author)

  19. Nuclear energy

    International Nuclear Information System (INIS)

    Wethe, Per Ivar

    2009-01-01

    Today we know two forms of nuclear energy: fission and fusion. Fission is the decomposition of heavy nuclei, while fusion is the melting together of light nuclei. Both processes create a large surplus of energy. Technologically, we can currently only use fission to produce energy in today's nuclear power plants, but there is intense research worldwide in order to realize a controlled fusion process. In a practical context, today's nuclear energy is a sustained source of energy since the resource base is virtually unlimited. When fusion technology is realized, the resource supply will be a marginal problem. (AG)

  20. Nuclear fuel cycle. Which way forward for multilateral approaches? An international expert group examines options

    International Nuclear Information System (INIS)

    Pellaud, Bruno

    2005-01-01

    For several years now, the debate on the proliferation of nuclear weapons has been dominated by individuals and countries that violate rules of good behaviour - as sellers or acquirers of clandestine nuclear technology. As a result, the 1968 Treaty on the Non-Proliferation of Nuclear Weapons (NPT) has been declared to be 'inadequate' by some, 'full of loopholes' by others. Two basic approaches have been put forward to tighten up the NPT; both seek to ensure that the nuclear non-proliferation regime maintains its authority and credibility in the face of these very real challenges. One calls for non-nuclear weapon States to accept a partial denial of technology through a reinterpretation of the NPT's provisions governing the rights of access to nuclear technologies. The unwillingness of most non-nuclear-weapon States to accept additional restrictions under the NPT makes this approach difficult. The other approach would apply multinational alternatives to the national operation of uranium-enrichment and plutonium-separation technologies, and to the disposal of spent nuclear fuel. In this perspective, IAEA Director General Mohamed ElBaradei proposed in 2003 to revisit the concept of multilateral nuclear approaches (MNA) that was intensively discussed several decades ago. Several such approaches were adopted at that time in Europe, which became the true homeland of MNAs. Nonetheless, MNAs have failed so far to materialise outside Europe due to different political and economic perceptions. In June 2004, the Director General appointed an international group of experts to consider possible multilateral approaches to the nuclear fuel cycle. The overall purpose was to assess MNAs in the framework of a double objective: strengthening the international nuclear non-proliferation regime and making the peaceful uses of nuclear energy more economical and attractive. In the report submitted to the Director General in February 2005, the Group identified a number of options - options

  1. Nuclear energy data

    International Nuclear Information System (INIS)

    2002-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (authors)

  2. Nuclear energy data

    International Nuclear Information System (INIS)

    2003-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  3. I wonder nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Cheol

    2009-04-15

    This book consists seven chapters, which are powerful nuclear energy, principle of nuclear fission, nuclear energy in our daily life, is nuclear energy safe?, what is radiation?, radiation spread in pur daily life and radiation like a spy. It adds nuclear energy story through quiz. This book with pictures is for kids to explain nuclear energy easily.

  4. Nuclear power, climate change and energy security: Exploring British public attitudes

    Energy Technology Data Exchange (ETDEWEB)

    Corner, Adam; Venables, Dan [School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT (United Kingdom); Spence, Alexa [School of Psychology/Horizon Digital Economy Research, University of Nottingham (United Kingdom); Poortinga, Wouter [Welsh School of Architecture, Cardiff University (United Kingdom); School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT (United Kingdom); Demski, Christina [School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT (United Kingdom); Pidgeon, Nick, E-mail: pidgeonn@cardiff.ac.uk [School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT (United Kingdom)

    2011-09-15

    Public attitudes towards nuclear power in the UK have historically been deeply divided, but as concern about climate change and energy security has exerted an increasing influence on British energy policy, nuclear power has been reframed as a low-carbon technology. Previous research has suggested that a significant proportion of people may 'reluctantly accept' nuclear power as a means of addressing the greater threat of climate change. Drawing on the results of a national British survey (n=1822), the current study found that attitudes towards nuclear remain divided, with only a minority expressing unconditional acceptance. In general, people who expressed greater concern about climate change and energy security and possessed higher environmental values were less likely to favour nuclear power. However, when nuclear power was given an explicit 'reluctant acceptance' framing - allowing people to express their dislike for nuclear power alongside their conditional support - concerns about climate change and energy security became positive predictors of support for nuclear power. These findings suggest that concern about climate change and energy security will only increase acceptance of nuclear power under limited circumstances-specifically once other (preferred) options have been exhausted. - Highlights: > We report data from 2005 to 2010 of British attitudes towards nuclear power and climate change. > Changes in attitudes over the time period were relatively modest. > British population remained relatively divided on nuclear power in 2010. > Concern about climate change was negatively related to evaluations of nuclear power. > Different framings of the issue alter the balance of support for nuclear power.

  5. Nuclear power, climate change and energy security: Exploring British public attitudes

    International Nuclear Information System (INIS)

    Corner, Adam; Venables, Dan; Spence, Alexa; Poortinga, Wouter; Demski, Christina; Pidgeon, Nick

    2011-01-01

    Public attitudes towards nuclear power in the UK have historically been deeply divided, but as concern about climate change and energy security has exerted an increasing influence on British energy policy, nuclear power has been reframed as a low-carbon technology. Previous research has suggested that a significant proportion of people may 'reluctantly accept' nuclear power as a means of addressing the greater threat of climate change. Drawing on the results of a national British survey (n=1822), the current study found that attitudes towards nuclear remain divided, with only a minority expressing unconditional acceptance. In general, people who expressed greater concern about climate change and energy security and possessed higher environmental values were less likely to favour nuclear power. However, when nuclear power was given an explicit 'reluctant acceptance' framing - allowing people to express their dislike for nuclear power alongside their conditional support - concerns about climate change and energy security became positive predictors of support for nuclear power. These findings suggest that concern about climate change and energy security will only increase acceptance of nuclear power under limited circumstances-specifically once other (preferred) options have been exhausted. - Highlights: → We report data from 2005 to 2010 of British attitudes towards nuclear power and climate change. → Changes in attitudes over the time period were relatively modest. → British population remained relatively divided on nuclear power in 2010. → Concern about climate change was negatively related to evaluations of nuclear power. → Different framings of the issue alter the balance of support for nuclear power.

  6. Energy: nuclear energy; Energies: l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Lung, M. [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France)

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  7. Nuclear Energy Development and New Build Expansion

    International Nuclear Information System (INIS)

    Stosic, Z. V.

    2012-01-01

    Early afternoon on March 11th, 2011, a devastating earthquake hit Japan, causing a powerful tsunami which had catastrophic consequences in the Tohoku District. A nuclear accident followed with core meltdowns at the Fukushima Daiichi NPPs (Nuclear Power Plants) at an unprecedented scale and over a lengthy period of time. The findings so far suggest that the insufficient design for tsunamis of the reactor units was responsible for the accident that occurred in the Japanese Fukushima Daiichi NPP. Thus the accident does not fall into the category of residual risk; rather it was due to the fact that the basic design for external impact was insufficient in this case. This is why the design and the safety concept of NPPs around the world had to be reviewed with respect to possible improvement potential. The impact of the Tohoku natural disaster is present not only in Japan but world-wide. The context post-Fukushima creates new challenges, but nuclear perspectives remain solid despite shaken public acceptance and the fundamentals driving nuclear role in sustainable energy mix remain. These are: GROWING DEMAND: Need for new capacity is unchanged to meet growing energy demand (multiplied by two in overall consumption and an 80% increase in global electricity consumption by 2050); REDUCTION OF CO 2 EMISSIONS: Although 50% of world electricity today is generated from burning coal, combating climate change remains a priority and greenhouse gas emissions are to be cut by half by 2050; SECURITY OF SUPPLY: Need for an increased security of supply in a changing geopolitical environment; FOSSIL ENERGY: Fossil resources are dwindling, remain uncertain and are volatile in prices; COMPETITIVENESS: Nuclear remains one of the most competitive low-carbon energy sources and will remain an important option for many countries for a sustainable energy mix. To supply seven billion people (nine billion in 2030) with secure energy needs infrastructure development. This means huge investments

  8. Use of real options in nuclear power plant valuation in the presence of uncertainty with CO2 emission credit

    International Nuclear Information System (INIS)

    Kiriyama, Eriko; Suzuki, Atsuyuki

    2004-01-01

    The purpose of this study is to analyze the value of an investment in power generation assets that do not emit CO 2 , by using a real option model. This study evaluates the effects of future uncertainty on investment decision-making, by focusing on the uncertainty of CO 2 emission credits [yen/t-CO 2 ] in the fairly near future in Japan. Electric utilities are required to keep plans to prepare for various future uncertainties such as the price of CO 2 emission credits. The real option approach can evaluate the option value of decision-making under uncertainty. This study examined the option value of a power plant [yen/KW] to evaluate the effects of an externality under uncertainty. The results showed that nuclear power would have the most value under the forthcoming CO 2 emission limitations. In order to secure the effectiveness of measures against global warming, we should reconsider the roles of nuclear power plants in Japan. Finally, the real option model is shown to be an effective candidate for a decision-making support tool to deal with problems in energy environmental policy. (author)

  9. Enabling optimal energy options under the Clean Development Mechanism

    International Nuclear Information System (INIS)

    Gilau, Asmerom M.; Van Buskirk, Robert; Small, Mitchell J.

    2007-01-01

    This paper addresses the cost effectiveness of renewable energy technologies in achieving low abatement costs and promoting sustainable developments under the Clean Development Mechanism (CDM). According to the results of our optimal energy option's analysis, at project scale, compared with a diesel-only energy option, photovoltaic (PV)-diesel (PVDB), wind-diesel (WDB) and PV-wind-diesel (PVWDB) hybrids are very cost-effective energy options. Moreover, energy options with high levels of renewable energy, including 100% renewables, have the lowest net present cost and they are already cost effective without CDM. On the other hand, while the removal of about 87% carbon dioxide emissions could be achieved at negative cost, initial investment could increase by a factor of 40, which is one of the primary barriers hindering wider renewable energy applications in developing countries, among others. Thus, in order to increase developing countries' participation in the carbon market, CDM policy should shift from a purely market-oriented approach to investigating how to facilitate renewable energy projects through barrier removal. Thus, we recommend that further research should focus on how to efficiently remove renewable energy implementation barriers as a means to improve developing countries' participation in meaningful emission reduction while at the same time meeting the needs of sustainable economic development

  10. Nuclear energy and nuclear weapons

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1983-06-01

    We all want to prevent the use of nuclear weapons. The issue before us is how best to achieve this objective; more specifically, whether the peaceful applications of nuclear energy help or hinder, and to what extent. Many of us in the nuclear industry are working on these applications from a conviction that without peaceful nuclear energy the risk of nuclear war would be appreciably greater. Others, however, hold the opposite view. In discussing the subject, a necessary step in allaying fears is understanding some facts, and indeed facing up to some unpalatable facts. When the facts are assessed, and a balance struck, the conclusion is that peaceful nuclear energy is much more part of the solution to preventing nuclear war than it is part of the problem

  11. Nuclear energy data

    International Nuclear Information System (INIS)

    2004-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional graphical information as compared with previous editions allowing a rapid comparison between capacity and requirements in the various phases of the nuclear fuel cycle. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  12. French opinion on Nuclear Energy

    International Nuclear Information System (INIS)

    Bucaille, A.

    2003-01-01

    Contrary to what many think or say, most French people do not have a clear-cut opinion about nuclear power. And until public opinion can be accurately assessed, we should be worried of speaking on its behalf. More than half the population of France believes that nuclear power is the cheapest option, but 40% of them have no idea what the situation really is. The French are keenly aware of the what is at stake at the international level, and the fact that energy is becoming a worldwide issue. What they are most concerned about is nuclear waste and the possibility of a catastrophe of the Chernobyl type occurring. Disquiet about the first is now dissipating, after having increased. But attitudes about the second are ambivalent. A quarter of the French are very ignorant about radioactivity. 20% of the population complain that not enough information is forthcoming, particularly as concerns advances in technology. As can be anticipated, awareness of the question of climate change is growing year by year, with increased reporting of storms, floods and heat waves

  13. The role of nuclear energy in Brazilian energy matrix: environmental and socio-economical aspects

    International Nuclear Information System (INIS)

    Bones, Ubiratan A.; Schirmer, Priscila; Ceolin, Celina

    2017-01-01

    Due to the great increase demand for energy in the world, the continuous expansion of industrialization and the increase of consumption, together with the indispensable search for the sustainability of human acts, the need for diversification of the energy matrix and the search for less polluting energy comes increasing. Nuclear energy is increasingly seen as an option to contain greenhouse gas emissions and reduce dependence on fossil fuels. In this context, although it is not a source of renewable energy and also not the solution to all Brazilian problems, it can contribute to the expansion of the Brazilian energy matrix, being the only thermal source capable of guaranteeing the constant supply of energy without emitting greenhouse gases, considering that Brazil dominates nuclear fuel cycle technology and has large uranium reserves. However, this is a topic that generates a great deal of insecurity and questioning, making important the development of this work, both for a better understanding of the public, and to contribute and encourage future research through an evaluation of its environmental and socioeconomic aspects, discussing its risks and assessing the possibilities of expanding its use, including a panoramic view of nuclear energy in Brazil. In addition, for the full development of a country, it is necessary to diversify its energy sources, focusing on environmental and economic sustainability and reducing the vulnerability of the system

  14. Aspect of nuclear power

    International Nuclear Information System (INIS)

    Haghighi Oskoei, R.; Raeis Hosseiny, N.

    2004-01-01

    Over the next 50 years, unless patterns change dramatically, energy production and use will contribute to global warming through large-scale greenhouse gas emissions-hundreds of billions of tonnes of carbon in the form of carbon dioxide. Nuclear power would be one option for reducing carbon emissions. At present, however, this is unlikely: nuclear power faces stagnation and decline. We decided to study the future of nuclear power because we believe this technology , despite the changes it faces, is an important option for the world to meet future energy needs without emitting carbon dioxide and other atmospheric pollutants. Other options include increased efficiency, renewable and sequestration. We believe that all options should be preserved as nations develop strategies at provide energy while meeting important environmental challenges. The nuclear power option will only be exercised, however if the technology demonstrates better economics, improved safety, successful waste management, and low proliferation risk, and if public policies place a significant value on electricity production that does not produce carbon dioxide

  15. New materials options for nuclear systems

    International Nuclear Information System (INIS)

    Jones, R.H.; Garner, F.A.; Bruemmer, S.M.; Gelles, D.S.

    1989-01-01

    Development of new materials for nuclear reactor systems is continuing to produce options for improved reactor designs. Materials with reduced environment-induced crack growth is a key materials issue for the light water reactor (LWR) industry while the development of low activation ferritic, austenitic and vanadium alloys has been an active area for materials development for fusion reactor structural applications. Development of advanced materials such as metal matrix and ceramic matrix composites for reactor systems have received a limited amount of attention. (author)

  16. Nuclear energy. Selective bibliography

    International Nuclear Information System (INIS)

    2011-07-01

    This bibliography gathers articles and books from the French National Library about civil nuclear energy, its related risks, and its perspectives of evolution: general overview (figures, legal framework, actors and markets, policies); what price for nuclear energy (environmental and health risks, financing, non-proliferation policy); future of nuclear energy in energy policies (nuclear energy versus other energies, nuclear phase-out); web sites selection

  17. CO{sub 2} emission reduction strategy and roles of nuclear energy in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Osamu; Shimoda, Makoto; Takematsu, Kenji; Tadokoro, Yoshihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    An analysis was made on the potential and cost of reducing carbon dioxide (CO{sub 2}) emissions from Japan`s long-term energy systems by using the MARKAL model, developed in the Energy Technology Systems Analysis Programme (ETSAP) of International Energy Agency (IEA). Assuming future growths of GDP, the demand for energy services was estimated for the analytical time horizon 1990-2050. Assumptions were made also on prices and availability of fossil fuels, and on availability of nuclear and renewable energy. CO{sub 2} emissions and system costs were compared between energy demand and supply scenarios defined with different assumptions on nuclear energy, a CO{sub 2} disposal option, and natural gas imports. Main results were as follows. Without nuclear energy, the CO{sub 2} emissions will hardly be reduced because of the increases of coal utilization. CO{sub 2} disposal will be effective in reducing the emissions, however at much higher costs than the case with nuclear energy. The expansion of natural gas imports alone will not reduce the emissions at enough low levels. (author)

  18. Hydrogen: Adding Value and Flexibility to the Nuclear Power Industry

    International Nuclear Information System (INIS)

    Lee, J.; Bhatt, V.; Friley, P.; Horak, W.; Reisman, A.

    2004-01-01

    The objective of this study was to assess potential synergies between the hydrogen economy and nuclear energy options. Specifically: to provide a market analysis of advanced nuclear energy options for hydrogen production in growing hydrogen demand; to conduct an impact evaluation of nuclear-based hydrogen production on the economics of the energy system, environmental emissions, and energy supply security; and to identify competing technologies and challenges to nuclear options

  19. Required Assets for a Nuclear Energy Applied R&D Program

    Energy Technology Data Exchange (ETDEWEB)

    Harold F. McFarlane; Craig L. Jacobson

    2009-03-01

    This report is one of a set of three documents that have collectively identified and recommended research and development capabilities that will be required to advance nuclear energy in the next 20 to 50 years. The first report, Nuclear Energy for the Future: Required Research and Development Capabilities—An Industry Perspective, was produced by Battelle Memorial Institute at the request of the Assistant Secretary of Nuclear Energy. That report, drawn from input by industry, academia, and Department of Energy laboratories, can be found in Appendix 5.1. This Idaho National Laboratory report maps the nuclear-specific capabilities from the Battelle report onto facility requirements, identifying options from the set of national laboratory, university, industry, and international facilities. It also identifies significant gaps in the required facility capabilities. The third document, Executive Recommendations for Nuclear R&D Capabilities, is a letter report containing a set of recommendations made by a team of senior executives representing nuclear vendors, utilities, academia, and the national laboratories (at Battelle’s request). That third report can be found in Appendix 5.2. The three reports should be considered as set in order to have a more complete picture. The basis of this report was drawn from three sources: previous Department of Energy reports, workshops and committee meetings, and expert opinion. The facilities discussed were winnowed from several hundred facilities that had previously been catalogued and several additional facilities that had been overlooked in past exercises. The scope of this report is limited to commercial nuclear energy and those things the federal government, or more specifically the Office of Nuclear Energy, should do to support its expanded deployment in order to increase energy security and reduce carbon emissions. In the context of this report, capabilities mean innovative, well-structured research and development programs

  20. Nuclear energy today

    International Nuclear Information System (INIS)

    2003-01-01

    Energy is the power of the world's economies, whose appetite for this commodity is increasing as the leading economies expand and developing economies grow. How to provide the energy demanded while protecting our environment and conserving natural resources is a vital question facing us today. Many parts of our society are debating how to power the future and whether nuclear energy should play a role. Nuclear energy is a complex technology with serious issues and a controversial past. Yet it also has the potential to provide considerable benefits. In pondering the future of this imposing technology, people want to know. - How safe is nuclear energy? - Is nuclear energy economically competitive? - What role can nuclear energy play in meeting greenhouse gas reduction targets? - What can be done with the radioactive waste it generates? - Does its use increase the risk of proliferation of nuclear weapons? - Are there sufficient and secure resources to permit its prolonged exploitation? - Can tomorrow's nuclear energy be better than today's? This publication provides authoritative and factual replies to these questions. Written primarily to inform policy makers, it will also serve interested members of the public, academics, journalists and industry leaders. (author)

  1. Economics of nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.

    2006-01-01

    The paper is based on a recent OECD study on projected costs of generating electricity and other NEA studies on external costs including carbon emissions and global climate change risks. The overall objective of the analysis is to provide key elements for assessing nuclear energy in a sustainable development perspective, taking into account social and environmental aspects. Levelised lifetime costs of generating electricity are presented and compared for nuclear power plants and alternative generation technologies including gas-fired, coal-fired and wind power plants. The data presented refer to state-of-the-art power plants that could be commissioned by 2015 or earlier. Cost drivers and their variability from country to country and technology to technology are analysed. The paper also addresses external costs and benefits of nuclear energy as compared with those of alternative options. In particular, it provides insights regarding the impact of policy measures to reduce greenhouse gas emissions on the relative competitiveness of fossil-fuelled power plants and nearly carbon-free technologies (e.g., nuclear or wind). Other external costs such as social concerns, environmental impacts of residual emissions and contribution to security of energy supply are discussed

  2. Renewable Energy versus Nuclear Power (Summary)

    International Nuclear Information System (INIS)

    Mraz, G.; Wallner, A.

    2014-01-01

    The European Union is divided on the issue of electricity production. While there is consensus that generation technologies need to be low on greenhouse gas- emissions, the question of whether to use renewables or nuclear to meet this power demand is highly controversial. Both options still require financial support and this is not going to change in the near future. This raises the question of where our money should be invested in order to achieve greater economic efficiency: into support for renewable energies (RE) or support for nuclear power plants? This paper sets out to answer this question. The detailed model-based prospective scenario assessment performed in this study provides the basis for estimating future cost developments. After discussing the existing support schemes for renewables, the paper compares these with a nuclear model. The recent state aid case for the construction of the nuclear power plant Hinkley Point in United Kingdom serves as the model for the nuclear option. New milestone in nuclear state aid: Hinkley Point It is planned to construct two additional reactors at Hinkley Point. The EU estimates the total capital needed for construction at € 43 billion. The UK government intends to grant state aid for this project; in accordance with EU state aid rules, the suggested state aid scheme was submitted to the EU Commission for approval as public funds would be used for a company. A central part of the state aid scheme is the Contract for Difference which runs for 35 years. According to this contract, the state commits to compensating any difference between the electricity market price (reference price) and the negotiated Strike Price. Consequently, the plant operator, NNB Generation Company Limited (NNBG), has received a long term price guarantee which, in principle, is analogous to the feed-in tariffs commonly used to support renewable energies. The Strike Price for the first unit to be constructed has been set at € 108 per MWh (with

  3. Nuclear energy role and potential for global sustainable development

    International Nuclear Information System (INIS)

    Ujita, H.; Matsui, K.

    2006-01-01

    The long-term energy supply simulation that optimizes the energy system cost until 2100 for the world is being performed, by using the energy module of GRAPE model, where energy demand under the C02 emission constraint etc. is assumed. The model has been taken up for the trial calculation in I PCC the third report . Role and potential of nuclear energy system in the energy options is discussed here from the viewpoint of sustainable development with protecting from global warming. Taking the effort for energy conservation as major premise, carbon-sequestration for fossil fuel, renewable energy and nuclear energy should be altogether developed under the C02 constraint. Especially, fast breeder reactor will be attached importance to, as the 22nd century is approaching, due to its carbon free and resource limitless features when the nuclear generation cost is cheap as a current light water reactor level. It takes time around 30 years in order for breeding of Pu, a fast breeder reactor will begin to be introduced from around 2030. If the period for the technology establish of nuclear fuel cycle is assumed to be 30 years, it is necessary to start technical development right now. If the Kyoto Protocol, the emission constraint on only the developed countries, is extended in 21st century, it will promote the growth of nuclear power in the developed countries in the first half of the century. After 2050, the developing countries will face the shortage of uranium and plutonium. Carbon emission constraint should be covered all countries in the World not only for the developed countries but also for the developing countries. Therefore, it is important that the developing countries will use nuclear power effectively from the viewpoint of harmonization of energy growth and global environment. The policy that nuclear power is considered as Clean Development Mechanism would mitigate such global warming problems

  4. Nuclear energy. The post-Fukushima situation, debate about the French exception, the energy transition

    International Nuclear Information System (INIS)

    Bezat, J.M.; Tazieff, H.; Morin, H.; Le Hir, P.; Vincent, C.; Labbe, M.H.; Viansson-Ponte, P.; Saint-James, D.; Tatu, M.; Pons, P.; Kempf, H.; Lemaitre, F.; Baudet, M.B.; Armagnac, B. d'; Allix, G.; Foucart, S.; Barroux, R.

    2011-01-01

    Published 8 months after the Fukushima Dai-ichi accident, this special issue of Le Monde newspaper takes stock of the nuclear question. Prior to the Fukushima accident, the civil nuclear industry experienced two other major accidents: Three Miles Island (US, 1979) with limited and controlled impacts, and Chernobyl (USSR, 1986) with enormous impacts. The recent Japanese catastrophe has revived the questions concerning this risky technology. However, according to the IAEA, the civil nuclear energy should continue to develop in the future but in a more moderate way. Germany announced in June 2011 the shutdown of its last reactor by 2022, while France remained an exception until the Fukushima accident with a large political consensus among the general public in favor of nuclear energy. The nuclear phasing out or the energy transition is a complex question which is explored in this special issue. Content: 1 - The nuclear world: a moderate growth of the nuclear industry; interview of Mohamed ElBaradei, former head of IAEA; 441 reactors in operation in the world in January 2011; France has chosen the all-nuclear option; critics: a 'costly, unadapted, useless' nuclear program; interview of Valery Giscard d'Estaing, former French President; the nuclear industry actors; nuclear dismantling: a what cost?; how to manage the 250.000 tons of spent fuels; 2 - A risky technology: radioactivity measurement and effects; how to manage contaminations; four generations of reactors; ITER: a solar project; imagining the unimaginable and anticipating the worse; the wake up of a dozed off fear; the most important accidents: the progress of the three main nuclear catastrophes, the human mistake of Three Mile Island, the days after the Chernobyl accident, in the dead cities around Fukushima; interview of Kenzaburo Oe (Japanese writer); the Blayais power plant to the test; 3 - The energy transition: is France capable to abandon nuclear energy?; Germany is going to re-launch gas- and coal

  5. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  6. Iran's Nuclear Strategy Options and U.S. Foreign Policy Implications

    National Research Council Canada - National Science Library

    Davis, Jimmy D

    2005-01-01

    .... strategic interests. Iran's movement toward a nuclear weapon option creates complex issues for American national security policy makers and highlights the international community's inability to police rogue states effectively...

  7. Applying real options analysis to assess cleaner energy development strategies

    International Nuclear Information System (INIS)

    Cheng, Ching-Tsung; Lo, Shang-Lien; Lin, Tyrone T.

    2011-01-01

    The energy industry, accounts for the largest portion of CO 2 emissions, is facing the issue of compliance with the national clean energy policy. The methodology for evaluating the energy mix policy is crucial because of the characteristics of lead time embedded with the power generation facilities investment and the uncertainty of future electricity demand. In this paper, a modified binomial model based on sequential compound options, which may account for the lead time and uncertainty as a whole is established, and a numerical example on evaluating the optional strategies and the strategic value of the cleaner energy policy is also presented. It is found that the optimal decision at some nodes in the binomial tree is path dependent, which is different from the standard sequential compound option model with lead time or time lag concept. The proposed modified binomial sequential compound real options model can be generalized and extensively applied to solve the general decision problems that deal with the long lead time of many government policies as well as capital intensive investments. - Highlights: → Introducing a flexible strategic management approach for government policy making. → Developing a modified binomial real options model based on sequential compound options. → Proposing an innovative model for managing the long term policy with lead time. → Applying to evaluate the options of various scenarios of cleaner energy strategies.

  8. The Westinghouse AP600 an advanced nuclear option for small or medium electricity grids

    International Nuclear Information System (INIS)

    Bruschi, H. J.; Novak, V.

    1996-01-01

    During the early days of commercial nuclear power, many countries looking to add nuclear power to their energy mix required large plants to meet the energy needs of rapidly growing populations and large industrial complexes. The majority of plants worldwide are in the range of 100 megawatts and beyond. During the 1970s, it became apparent that a smaller nuclear plants would appeal to utilities looking to add additional power capacity to existing grids, or to utilities in smaller countries which were seeking efficient, new nuclear generation capacity for the first time. For instance, the Westinghouse-designed 600 megawatt Krsko plant in Slovenia began operation in 1980, providing electricity to inhabitants of relatively small, yet industrial populations of Slovenia and Croatia. This plant design incorporated the best, proven technology available at that time, based on 20 years of Westinghouse PWR pioneering experience. Beginning in the early 1980s, Westinghouse began to build further upon that experience - in part through the advanced light water reactor programs established by the Electric Power Research institute (EPRI) and the U.S. Department of Energy (DOE) - to design a simplified, advanced nuclear reactor in the 600 megawatt range. Originally, Westinghouse's development of its AP600 (advanced, passive 600-megawatt) plants was geared towards the needs of U.S. utilities which specified smaller, simplified nuclear options for the decades ahead. It soon became evident that the small and medium sized electricity grids of international markets could benefit from this new reactor. From the earliest days of Westinghouse's AP600 development, the corporation invited members of the international nuclear community to take part in the design, development and testing of the AP600 - with the goal of designing a reactor that would meet the diverse needs of an international industry composed of countries with similar, yet different, concerns. (author)

  9. Energy in transition, 1985-2010. Final report of the Committee on Nuclear and Alternative Energy Systems, National Research Council

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This exhaustive study, in assessing the roles of nuclear and alternative energy systems in the nation's energy future, focuses on the period between 1985 and 2010. Its intent is to illuminate the kinds of options the nation may wish to keep open in the future and to describe the actions, policies, and R and D programs that may be required to do so. The timing and the context of these decisions depend not only on the technical, social, and economic features of energy-supply technologies, but also on assumptions about future demand for energy and the possibilities for energy conservation through changes in consumption patterns and improved efficiency of the supply and end-use systems. The committee developed a three-tiered functional structure for the project. The first tier was CONAES itself, whose report embodies the ultimate findings, conclusions, and judgments of the study. To provide scientific and engineering data and economic analyses for the committee, a second tier of four panels was appointed by the committee to examine (1) energy demand and conservation, (2) energy supply and delivery systems, (3) risks and impacts of energy supply and use, and (4) various models of possible future energy systems and decision making. Each panel in turn established a number of resource groups - some two dozen in all - to address in detail an array of more particular matters. Briefly stated, recommended strategies are: (1) increased energy conservation; (2) expansion of the nation's balanced coal and nuclear electrical generation base; (3) retention of the breeder option; (4) stimulation of fluid energy development; and (5) immediate increase in research and development of new energy options to ensure availability over the long term.

  10. Nuclear re-think [The case for nuclear energy

    International Nuclear Information System (INIS)

    Moore, P.

    2006-01-01

    In the early 1970s, Patrick Moore, a co-founder of Greenpeace, believed that nuclear energy was synonymous with nuclear holocaust. Thirty years on, his views have changed because nuclear energy is the only non-greenhouse-gas-emitting power source that can effectively replace fossil fuels while satisfying the world's increasing demand for energy. Today, 441 nuclear plants operating globally avoid the release of nearly 3 billion tonnes of CO 2 emissions annually-the equivalent of the exhaust from more than 428 million cars. Concerns associated with nuclear energy are discussed including costs of nuclear energy, safety of nuclear plants, radioactive waste management, vulnerability of nuclear plants to terrorist attacks and diversion of nuclear fuel for weaponization. It is concluded that nuclear energy is the best way to produce safe, clean, reliable baseload electricity, and will play a key role in achieving global energy security. With climate change at the top of the international agenda, we must all do our part to encourage a nuclear energy renaissance

  11. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    2008-08-01

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the

  12. Fusion as an energy option

    International Nuclear Information System (INIS)

    Steiner, D.

    1976-01-01

    The environmental issues, alternative fusion fuels, the economic potential, and the time scale of fusion power are assessed. It is common for the advocate of a long-term energy source to claim his source (fission, fusion, solar, etc.) as the ultimate solution to man's energy needs. The author does not believe that such a stance will lead to a rational energy policy. Dr. Steiner encourages a long-term energy policy that has as its goal the development of fission breeders, fusion, and solar energy--not be totally reliant on a single source. He does advocate vigorous funding for fusion, not because it is a guarantee for ''clean, limitless, and cheap power,'' but because it may provide an important energy option for the next century

  13. Inevitability of nuclear energy

    International Nuclear Information System (INIS)

    Ramanna, R.

    1997-01-01

    The Indian atomic energy programme that has been launched in the late 1940s, with the courageous vision of Homi Bhabha, had made remarkable progress during the fifties, sixties and till the mid-seventies, leading to the establishment of a comprehensive base of nuclear science, technology and engineering, and the setting up of nuclear power stations. After the Pokharan experiment in 1974, the programme had to face a hostile attitude from the Western powers, with the stoppage of flow of technology and equipment from the West. The programme had shown the resilience to face the challenge, and march ahead, developing a range of indigenous capabilities both within the Department and in the Indian industry, though with a certain loss in the momentum. The successful design, construction and operation of the 100 Mw(t) research reactor Dhruva in Trombay, and the successful commissioning of the Fast Breeder Test Reactor in Kalpakkam, with a unique plutonium-uranium carbide fuel of Indian design, are significant capability demonstrations in the latter phase. On the power front, the twin-unit power stations at Narora (UP) and Kakrapar (Gujarat) have shown excellent performance, with respect to plant availability and capacity factor. This article presents an assessment of the progress achieved so far, amidst the difficulties encountered. Factors accounting for the apparently slow pace of growth are discussed, and the public concerns regarding nuclear safety and safety regulations are also addressed. In a situation where acute power shortages have become a fact of life, and difficulties can be foreseen in the development of coal and hydel resources (which are also limited in extent), the importance of pursuing the nuclear energy option is re-iterated. The need for unstinted government support to the program at this stage is also emphasized. (author)

  14. Nuclear and intermittent renewables: Two compatible supply options? The case of the French power mix

    International Nuclear Information System (INIS)

    Cany, Camille; Mansilla, Christine; Costa, Pascal da; Mathonnière, Gilles; Duquesnoy, Thierry; Baschwitz, Anne

    2016-01-01

    The complementary features of low-carbon power sources are a central issue in designing energy transition policies. The French current electricity mix is characterised by a high share of nuclear power which equalled 76% of the total electric production in 2015. With the increase in intermittent renewable sources, nuclear flexibility is examined as part of the solution to balance electricity supply and demand. Our proposed methodology involves designing scenarios with nuclear and intermittent renewable penetration levels, and developing residual load duration curves in each case. The load modulation impact on the nuclear production cost is estimated. This article shows to which extent the nuclear annual energy production will decrease with high shares of intermittent renewables (down to load factors of 40% for proactive assumptions). However, the production cost increase could be compensated by progressively replacing the plants. Moreover, incentives are necessary if nuclear is to compete with combined-cycle gas turbines as its alternative back-up option. In order to reconcile the social planner with plant operator goals, the solution could be to find new outlets rather than reducing nuclear load factors. Nuclear flexibility could then be considered in terms of using its power to produce heat or hydrogen. - Highlights: •Nuclear flexibility is examined to balance the system with high renewables share. •Impacts of wind and solar shares on the nuclear load factor and LCOE are assessed. •Nuclear fleet replacement must be progressive to ensure competitive load-following. •Incentives are needed for nuclear to compete with CCGT gas back-up. •We recommend considering nuclear flexibility through the power use.

  15. A Real Options Approach to Nuclear Waste Disposal in Sweden

    International Nuclear Information System (INIS)

    Soederkvist, Jonas; Joensson, Kristian

    2004-04-01

    This report is concerned with an investigation of how the real options approach can be useful for managerial decisions regarding the phase-out of nuclear power generation in Sweden. The problem of interest is the optimal time-schedule for phase-out activities, where the optimal time-schedule is defined in purely economical terms. The approach taken is actual construction and application of three real options models, which capture different aspects of managerial decisions. The first model concerns when investments in deep disposal facilities should optimally be made. Although the model is a rough simplification of reality, the result is clear. It is economically advantageous to postpone deep disposal forever. The second model focuses on how the uncertainty of future costs relates to managerial investment decisions. Construction of this model required some creativity, as the nuclear phase-out turns out to be quite a special project. The result from the second model is that there can be a value associated with deferral of investments due to the uncertainty of future costs, but the result is less clear-cut compared to the first model. In the third model, we extend an approach suggested by Louberge, Villeneuve and Chesney. The risk of a nuclear accident is introduced through this model and we develop its application to investigate the Swedish phase-out in particular, which implies that waste continuously disposed. In the third model, focus is shifted from investment timing to implementation timing. The results from the third model are merely qualitative, as it is considered beyond the scope of this work to quantitatively determine all relevant inputs. It is concluded that the phase-out of nuclear power generation in Sweden is not just another area of application for standard real options techniques. A main reason is that although there are a lot of uncertain issues regarding the phase-out, those uncertainties do not leave a lot of room for managerial flexibility if

  16. Nuclear energy dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-15

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  17. Nuclear energy dictionary

    International Nuclear Information System (INIS)

    1978-03-01

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  18. Investigation of economics of nuclear fuel cycle options in the Republic of Korea based on once-through - 5468

    International Nuclear Information System (INIS)

    Cho, S.K.; Yim, M.S.

    2015-01-01

    This study performs an economic evaluation of future nuclear fuel cycle options based on once-through strategy. Various factors of the future development in Korea are also considered including nuclear phase-out, continuous use of nuclear energy at varying growth rate, and the reunification of the Korean peninsula. A spreadsheet model is developed as part of the methodology of screening material flow and economic evaluation and results are discussed for policy planning for Korea as well as for nuclear developing countries. Results indicated that economics improves as the size of nuclear power system increases. We found some significant factors that affect LCOE (levelized cost of electricity) of the back end fuel cycle. Expanded nuclear power program with further construction of nuclear power plant (continuous use and/or the reunification) is a major political variable for LCOE. To keep the cost of nuclear power as low as possible, it is very important to have a proper strategy for the back-end fuel cycle including decommissioning. For continued use of nuclear energy, the Korea needs to develop soon a long-term policy for the back-end fuel cycle rather than taking the 'sit and watch' approach to make best out of the use of nuclear power into the future

  19. Nuclear energy

    International Nuclear Information System (INIS)

    Seidel, J.

    1990-01-01

    This set of questions is based on an inquiry from the years 1987 to 1989. About 250 people af all age groups - primarily, however, young people between 16 and 25 years of age - were asked to state the questions they considered particularly important on the subject of nuclear energy. The survey was carried out without handicaps according to the brain-storming principle. Although the results cannot claim to be representative, they certainly reflect the areas of interest of many citizens and also their expectations, hopes and fears in connection with nuclear energy. The greater part of the questions were aimed at three topic areas: The security of nuclear power-stations, the effects of radioactivity on people and the problem of waste disposal. The book centres around these sets of questions. The introduction gives a general survey of the significance of nuclear energy as a whole. After this follow questions to do with the function of nuclear power stations, for the problems of security and waste disposal - which are dealt with in the following chapters - are easier to explain and to understand if a few physical and technical basics are understood. In the final section of the book there are questions on the so-called rejection debate and on the possibility of replacing nuclear energy with other energy forms. (orig./HP) [de

  20. Accelerators and alternative nuclear fuel management options

    International Nuclear Information System (INIS)

    Harms, A.A.

    1983-01-01

    The development of special accelerators suggests the po tential for new directions in nuclear energy systems evolution. Such directions point towards a more acceptable form of nuclear energy by reason of the consequent accessibility of enhanced fuel management choices. Essential and specifically directed research and development activity needs to be under taken in order to clarify and resolve a number of technical issues

  1. Energy efficiency business options for industrial end users in Latin American competitive energy markets: The case of Colombia

    Science.gov (United States)

    Botero, Sergio

    2002-01-01

    Energy markets today in Latin America and worldwide are being restructured from monopolies, either state-owned or privately-owned, to be more openly competitive and incorporate more participation from the private sector. Thus, the schemes that were formerly developed to foster end use energy efficiency are no longer applicable because they were based on mandatory regulations made with political decisions, without sufficiently considering economic feasibility. A consensus exists that the only way energy efficiency could survive in this new paradigm is by being market oriented, giving better services, and additional options to users. However; there is very little information on what end users prefer, and which options would most satisfy customers. Using Colombia as a case study, this research determines and categorizes the energy efficiency business options for large energy end users that can freely participate in the competitive energy market. The energy efficiency market is understood as a market of services aiming to increase efficiency in energy use. These services can be grouped into seven business options. A survey, following the descriptive method, was sent to energy end users in order to determine their preferences for specific energy efficiency business options, as well as the decision-making criteria taken into account for such options. This data was categorized in ten industry groups. As a conclusion, energy efficiency providers should adapt not only to the economic activity or processes of each customer, but also to the potential business options. It was also found that not all industries consider performance contracting as their most preferred option, as a matter of fact, some industries show much higher preference for conventional business options. Among end users, the divergence in option preferences contrasted with the convergence in decision-making criteria. The decision-making criteria "cost-benefit ratio" overwhelmed all other criterion. End users

  2. Future perspective of nuclear energy utilization and expected role of HTGR. JAERI's energy systems analysis research

    International Nuclear Information System (INIS)

    Sato, Osamu

    1996-01-01

    Studies have been made in JAERI in order to assess the possibility of using nuclear energy symbiotically with fossil and biomass fuels, and to evaluate its implications for the environment. The application system of high temperature nuclear heat has been designed for this purpose with various technology options. The core of the system is a set of technologies for hydrogen production and its application to produce clean and convenient fuels from fossil or biomass sources. The results of analytical studies using the MARKAL model have indicated sufficient possibilities of combining nuclear energy effectively with fossil or biomass fuels via hydrogen produced by high temperature nuclear heat. In addition to providing clean and convenient liquid fuels on a large scale, the combined system will contribute to the substantial reduction of long-term CO 2 emissions. The relatively high cost of this system will be well justified when CO 2 emission penalties are taken into account. (J.P.N.)

  3. Papers of Scientific Seminar Polish Science and Technology for Nuclear Energy of Tomorrow

    International Nuclear Information System (INIS)

    2000-01-01

    The report presents papers and discussion during the seminar organised by Polish Nuclear Society, Institute of Nuclear Chemistry and Technology, Institute of Atomic Energy and National Atomic Agency held 13-14 April 2000 in Madralin near warsaw. The seminar was attended by about 70 participants from many centers and universities. The main topics were connected with decision of Economic Committee of the Government accepting a document entitled 'Principles of energy policy in poland up to year 2020', which predicts low increase of electric energy demand thus excludes construction of nuclear power plants in near future.Authors of papers and participants of discussion pointed out many factors in development of energy supply in the world and in Poland, Which should focus the interest of public opinion on sustained development of energy sources keeping open a nuclear option. The panel discussion was concentrated on the following topics: development of energy sector in Poland, nuclear energy of to-morrow, public information and education and research activities. The main conclusions of seminar may be formulated as follows: 1) pay more attention to realistic and correct assumption of energy demands in future, 2) follow up the tendencies in nuclear reactor technology development associated with nuclear and radiological safety along with storing the radioactive waste and burn-up fuel, 3) nuclear energy cannot be developed without public acceptance, ots positive aspects and mainly proecological character should be highlighted, 4) long term program of public education should be performed especially by proper field of studies at universities and responsible presentation in mass media, 5) intensification of research in widely formulated nuclear energy applications including work on supporting of nuclear energy development in Poland (author)

  4. Dossier nuclear energy

    International Nuclear Information System (INIS)

    1993-11-01

    The present Dutch government compiled the title document to enable the future Dutch government to declare its opinion on the nuclear energy problemacy. The most important questions which occupy the Dutch society are discussed: safe application and risks of nuclear energy, radioactive wastes and other environmental aspects, and the possible danger of misusing nuclear technology. In chapter two attention is paid to the policy, as formulated by the Dutch government, with regard to risks of nuclear power plants. Next the technical safety regulations that have to be met are dealt with. A brief overview is given of the state of the art of commercially available nuclear reactors, as well as reactors under development. The nuclear waste problem is the subject of chapter three. Attention is paid to the Dutch policy that has been formulated and is executed, the OPLA-program, in which the underground storage of radioactive wastes is studied, the research on the conversion of long-lived radioactive isotopes to short-lived radioactive isotopes, and planned research programs. In chapter four, other environmental effects of the use of nuclear power are taken into consideration, focusing on the nuclear fuel cycle. International obligations and agreements to guarantee the peaceful use of nuclear energy (non-proliferation) are mentioned and discussed in chapter four. In chapter six the necessity to carry out surveys to determine public support for the use of nuclear energy is outlined. In the appendices nuclear energy reports in the period 1986-present are listed. Also the subject of uranium supplies is discussed and a brief overview of the use of nuclear energy in several other countries is given. 2 tabs., 5 annexes, 63 refs

  5. Nuclear energy inquiries

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1993-02-01

    Our choice of energy sources has important consequences for the economy and the environment. Nuclear energy is a controversial energy source, subject to much public debate. Most individuals find it difficult to decide between conflicting claims and allegations in a variety of technical subjects. Under these circumstances, knowledge of various relevant inquiries can be helpful. This publication summarizes the composition and major findings of more than thirty nuclear energy inquiries. Most of the these are Canadian, but others are included where they have relevance. The survey shows that, contrary to some claims, virtually every aspect of nuclear energy has been subject to detailed scrutiny. The inquiries' reports include many recommendations on how nuclear energy can be exploited safely, but none rejects it as an acceptable energy source when needed. (Author) 38 refs

  6. Nuclear spent fuel management. Experience and options

    International Nuclear Information System (INIS)

    1986-01-01

    Spent nuclear fuel can be stored safely for long periods at relatively low cost, but some form of permanent disposal will eventually be necessary. This report examines the options for spent fuel management, explores the future prospects for each stage of the back-end of the fuel cycle and provides a thorough review of past experience and the technical status of the alternatives. Current policies and practices in twelve OECD countries are surveyed

  7. Social representation for future teachers on the nuclear energy: probable implications of the public opinion

    International Nuclear Information System (INIS)

    Ayllon, Rafaella Menezes; Farias, Luciana Aparecida; Favaro, Deborah I.T.

    2013-01-01

    This study aimed to study the SR (social representation) regarding the 'Nuclear Energy' (NW) and 'Nuclear Chemistry' (NC) of students of Science - Bachelor of Federal University of Sao Paulo - UNIFESP. Individual questionnaires to research the topic, followed by the presentation of seminars with the focus of the research were applied. The methodology used was the technique of free word (Abric ,1994) which gives the frequency of each element that was mentioned and their average order of evocation, as well as semi -structured questionnaire with questions. Among the first results, it was found that the words 'Bomb' and 'Reactor' were the most mentioned by the group when asked evocations related to 'NE', while the terms 'Health' and 'Safety' are among the least mentioned. When referring to 'NC' the most frequent terms were 'Chemistry' and 'Atoms/Elements and 'Reactor' and 'Development' were less frequent. However, even though as a possible central core elements that match a negative SR theme, these students indicated Nuclear Energy as a strong option/option for diversifying the Brazilian energy matrix

  8. Integration of renewable energies and nuclear power into North African Energy Systems: An analysis of energy import and export effects

    International Nuclear Information System (INIS)

    Supersberger, Nikolaus; Fuehrer, Laura

    2011-01-01

    The North African countries Morocco, Algeria, Tunisia, Libya and Egypt have been and are currently experiencing rapid growth in energy demand. This development confronts their political leaders with the question of how to expand or diversify their countries' generation capacities. In this context, renewable energies and nuclear power constitute options that have rarely been exploited so far in the region. This article analyzes the drawbacks and benefits of both alternatives, with a special focus on import and export dynamics. When attempting to make the strategic decision between renewables and atomic power, North African regional specifics and circumstances have to be taken into account. Hence, in a first step, the article characterizes the energy systems of the North African countries and presents scenarios for their future development. In a second step, it scrutinizes the energy challenges these states face in terms of domestic concerns and foreign affairs. Finally, a case study of Algeria is used to demonstrate how renewable energies, but not nuclear power, are able to respond to North African energy challenges. - Research highlights: → Using nuclear power would require fuel imports over the entire operation time. → Hence, energy exporters (Algeria, Libya) would become dependent on fuel imports. → Renewable energies can make North African countries less fuel import dependent. → Nuclear technologies would have to be imported over the whole life cycle of plants. → Domestic production for renewables technologies could be established after a first phase of technology imports.

  9. Key Issues on Nuclear Energy Non-proliferation in East Asia

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Whang, Joo Ho; Lee, Un Chul

    2005-01-01

    Energy demand in East Asia casts a significant challenge to sustainable economy development and socio-political stability in the region which has experienced tensions throughout the history. The energy demand in this region has been dramatically increased since the start of reform in PRC. DPRK is another challenge. The current electricity consumption in DPRK is around 10% of that in ROK. If the economy of PRC continuously grows to the level of neighboring states and if the living standard of DPRK reaches that of ROK, the energy and electricity demand in the region will certainly be out of control unless the proper measures are taken into actions from today. The only feasible energy option is the nuclear one. PRC already proclaimed its ambitious plan to deploy more than 30 reactors in the near future. In addition, a couple of the South Eastern Asian states expressed their willingness to introduce nuclear power plants in the future. The increase in the use of nuclear energy is expected to bring up the nuclear renaissance in the region. However, without the proper mechanisms to supply fresh fuels and to manage spent nuclear fuels with full compliance of nuclear energy nonproliferation, the new development will inevitably cause the instability in the region. So far many interesting proposals on nuclear cooperation in East Asia were announced. Unfortunately, none of them works out properly yet, partly because the old proposals were too political. To restart the engine of the nuclear cooperation and nonproliferation in the region, it is necessary to find out what would be the common interests of the region not so much related to politics. In this paper, some key technical issues are addressed for future regional joint studies

  10. Research with respect to environmental-friendly energy prospects: experiences with energy system models

    International Nuclear Information System (INIS)

    Kram, T.

    1994-01-01

    The costs and the effects of four basic options with respect to the reduction of CO 2 -emissions are evaluated. The dominant strategy for the nuclear option consists in the substitution of fossil fuel by nuclear energy. At a 50 percent reduction of CO 2 emissions, heating by natural gas is replaced electric power and conventional cars will be replaced by cars. In the carbon dioxide fixation option, fossil fuel remains the dominant energy vector. In this option, CO 2 emissions can be reduced by replacing coal by natural gas, and by introducing carbon dioxide fixation technology in power plants. The option renewable energy sources favours the use of off-shore wind energy and biogas, resulting in a reduction of carbon dioxide emissions up to 40 percent. Higher reduction rates can only be achieved by the use of more expensive technologies such as geothermal and solar energy. In the option rational use of energy, the reduction of carbon dioxide emissions is achieved by energy saving and, among others, the use of fuel cells. The results of the modelling can contribute to identify the most effective or cost-efficient options in view of reducing carbon dioxide emissions. It is concluded that energy saving alone can not contribute to considerable carbon dioxide emission reductions. Carbon dioxide fixations is technically feasible and appears to be the cheapest option. The substitution of fossil fuel by nuclear energy is only cost-efficient for traditional markets. The public acceptance of nuclear energy, its risks and the disposal of radioactive waste have also to be taken into account. (A.S.)

  11. Desalination of Seawater using Nuclear Energy

    International Nuclear Information System (INIS)

    Misra, B.M.

    2006-01-01

    Desalination technologies have been well established since the mid 20th century and are widely deployed in many parts of the world having acute water scarcity problems. The energy for these plants is generally supplied in the form of either steam or electricity largely using fossil fuels. The intensive fuels of fossil fuels raises environmental concerns especially in relation to greenhouse gas emissions. The depleting sources and future price uncertainty of the fossil fuels and their better use for other vital industrial applications is also a factor to be considered for sustainability. The desalination of sea water using nuclear energy is a feasible option to meet the growing demand of potable water. Over 150 reactor-years of operating experience of a nuclear desalination have been accumulated worldwide. Several demonstration programs of nuclear desalination are also in progress to confirm its technical and economic viability under country specific conditions, with the technical coordination or support of IAEA. Recent techno-economic feasibility studies carried out by some Member States indicate the competitiveness of nuclear desalination. This paper presents the salient activities on nuclear desalination in the Agency and in the interested Member states. Economic research on further water cost reduction includes investigation on utilization of waste heat from different reactor types for thermal desalination pre-heat reverse osmosis and hybrid desalination systems. The main challenge for the large scale deployment of nuclear seawater desalination is the lack of infrastructure and the resources in the countries affected by water scarcity problems which are however, interested in adoption of nuclear desalination for the sustainable water resources. Socio-economic and environmental aspects and the public perception are also important factors requiring greater information exchange. (author)

  12. Integrated economic assessment of energy and forestry mitigation options using MARKAL

    International Nuclear Information System (INIS)

    1998-01-01

    There have been a number of economic assessment of GHG mitigation studies carried out in Indonesia. Several alternative mitigation options for energy and non-energy sectors have been described and the economic assessment of the options has been done for each sectors. However, most of the economic assessment particularly for non-energy sector, was not to find a least cost option but the lowest cost options. A program called MARKAL developed by a consortium of energy specialists from more than a dozen countries in the early 1980s, is a program that can be used for optimization, so that the least cost options could be selected. Indonesia has used this program intensively for energy system analysis. Attempt to use this program for other sector has not been developed as this program was designed for energy sector. Therefore, using MARKAL for other sector, all activities of the other sectors should be treated as energy activities. This study is aimed to use MARKAL for analysing both energy and forestry sector together. This paper described briefly the methodology of using MARKAL for both energy and forestry sectors. As the activities in energy sector have unique characteristics, thus only forest activities are described in more detail. (au)

  13. An integrated approach to energy supply and demand: The role of nuclear energy in Southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Neethling, D C; Bredell, J H; Basson, J A [National Energy Council, Lynnwood Ridge (South Africa)

    1990-06-01

    The importance of an integrated approach to the development of an electricity strategy for Southern Africa is emphasized in view of the numerous options and initiatives that are available for supply and demand side management. Apart from present uncertainties concerning future electricity demand, other factors such as the availability of coal and uranium and the comparative costs of nuclear and coal-based electricity are regarded as the most important parameters which have as yet not been sufficiently quantified to decide on the timing and extent of nuclear energy in Southern Africa. (author)

  14. An integrated approach to energy supply and demand: The role of nuclear energy in Southern Africa

    International Nuclear Information System (INIS)

    Neethling, D.C.; Bredell, J.H.; Basson, J.A.

    1990-01-01

    The importance of an integrated approach to the development of an electricity strategy for Southern Africa is emphasized in view of the numerous options and initiatives that are available for supply and demand side management. Apart from present uncertainties concerning future electricity demand, other factors such as the availability of coal and uranium and the comparative costs of nuclear and coal-based electricity are regarded as the most important parameters which have as yet not been sufficiently quantified to decide on the timing and extent of nuclear energy in Southern Africa. (author)

  15. Nuclear energy and nuclear technology in Switzerland

    International Nuclear Information System (INIS)

    Graf, P.

    1975-01-01

    The energy crisis, high fuel costs and slow progress in the development of alternative energy sources, e.g. solar energy have given further impetus to nuclear power generation. The Swiss nuclear energy programme is discussed and details are given of nuclear station in operation, under construction, in the project stage and of Swiss participation in foreign nuclear stations. Reference is made to the difficulties, delays and resulting cost increases caused by local and regional opposition to nuclear power stations. The significant contributions made by Swiss industry and Swiss consulting engineers are discussed. (P.G.R.)

  16. Nuclear energy data

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of basic statistics on electricity generation and nuclear power in OECD countries. The reader will find quick and easy reference to the present status of and projected trends in total electricity generating capacity, nuclear generating capacity, and actual electricity production as well as on supply and demand for nuclear fuel cycle services [fr

  17. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    Chester, K.

    1982-01-01

    In order to make a real contribution to the nuclear energy debate (is nuclear energy the limitless solution to man's energy problems or the path to man's destruction) people must be aware of the facts. The Science Reference Library (SRL) has a collection of the primary sources of information on nuclear energy - especially journals. This guideline aims to draw attention to the up-to-date literature on nuclear energy and its technology, freely available for consultation in the main Holborn reading room. After explanations of where to look for particular types of information and the SRL classification, the booklet gives lists and brief notes on the sources held. These are abstracting and indexing periodicals and periodicals. Reports, conference proceedings, patents, bibliographies, directories, year-books and buyer's guides are covered very briefly but not listed. Nuclear reactor data and organisations are also listed with brief details of each. (U.K.)

  18. Peaceful uses of nuclear energy and IAEA safeguards and related activities

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This paper reports that deliberations on the peaceful uses of nuclear energy, both within and outside the United Nations, have focused on two divergent points of view. One emphasizes the potential benefits of the peaceful application of this source of energy to a variety of purposes, particularly the generation of electric power. The other stresses the risks engendered by the transfer of nuclear material, equipment and technology that might lend themselves to the manufacture of nuclear weapons. Recipient States have traditionally underlined their need and their inherent right to have unimpaired access to the peaceful applications of nuclear energy, while the supplier States, wishing to avoid contributing to the spread of a nuclear-weapon capability among recipients, have advocated restrictions on international transfers, especially of nuclear know-how and installations. In 1977, 15 supplier States agreed upon criteria for the application of IAEA safeguards to exports and formulated requirements to prevent unauthorized transactions, including restrictions on re-exportation. In February 1980, the Conference on the International Nuclear Fuel Cycle Evaluation (INFCE), initiated by the United States, completed a technical evaluation of data and options that it had undertaken to find less proliferation-prone nuclear fuel cycles. Sixty-six States-both suppliers and recipients of nuclear technology-took part in the evaluation, which did not, however, lead to the hoped-for result

  19. Assessment of energy efficiency options in the building sector of Lebanon

    International Nuclear Information System (INIS)

    Chedid, R.B.; Ghajar, R.F.

    2004-01-01

    This paper examines the merits of implementing energy efficiency policies in the building sector in Lebanon following the approach normally adopted in Climate Change studies. The paper first examines the impact of the energy sector on the Lebanese economy, and then assesses the feasibility of implementing suitable energy efficiency options in the building sector. For this purpose, a detailed analysis of the building sector in Lebanon is presented with emphasis on the thermal characteristics of building envelopes and the energy consuming equipment. The long-term benefits of applying energy efficiency options in the building sector are then assessed using a scenario-type analysis that compares these benefits against those of a baseline scenario that assumes no significant implementation of energy efficiency policies. Finally, feasible options are highlighted and recommendations to remove the major barriers hindering the penetration of energy efficiency options in the Lebanese market are provided

  20. Market potential for non-electric applications of nuclear energy

    International Nuclear Information System (INIS)

    2002-01-01

    The objective of this report is to assess the market potential for the non-electric applications of nuclear energy in the near (before 2020) and long (2020-2050) terms. The main non-electric applications are defined here as district heating, desalination (of sea, brackish and waste water), industrial heat supply, ship propulsion and the energy supply for spacecraft. This report is principally devoted to these applications, although a less detailed assessment of some innovative applications (e.g. hydrogen production and coal gasification) is also provided. While the technical details of these applications are covered briefly, emphasis is placed on the economic and other factors that may promote or hinder the penetration of the nuclear option into the market for non-electric energy services. The report is intentionally targeted towards expected demands. It is for this reason that its sections are structured by demand categories and not according to possible reactor types. At the same time, the orientation on the demand side can result in overlaps at the supply side, because the same nuclear reactor can often serve more than one type of demand. Such cases are noted as appropriate. Each section characterizes a specific non-electric application in terms of its market size, its prospects for nuclear technologies and the economic competitiveness of the technologies

  1. Nuclear energy data 2010

    CERN Document Server

    2010-01-01

    This 2010 edition of Nuclear Energy Data , the OECD Nuclear Energy Agency's annual compilation of official statistics and country reports on nuclear energy, provides key information on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035 in OECD member countries. This comprehensive overview provides authoritative information for policy makers, experts and other interested stakeholders.

  2. Nuclear power: A competitive option? Annex 3

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2002-01-01

    Because the future development of nuclear power will depend largely on its economic performance compared to alternatives, the OECD Nuclear Energy Agency (NEA) investigates continuously the economic aspects of nuclear power. This paper provides key findings from a series of OECD studies on projected costs of generating electricity and other related NEA activities. It addresses the cost economics necessary for nuclear units to be competitive, and discusses the challenges and opportunities currently faced by nuclear power. (author)

  3. Freedom from nuclear energy myth

    International Nuclear Information System (INIS)

    Kim, Wonsik

    2001-09-01

    This book generalizes the history of nuclear energy with lots of myths. The contents of this book are a fundamental problem of nuclear power generation, the myth that nuclear energy is infinite energy, the myth that nuclear energy overcomes the crisis of oil, the myth that nuclear energy is cheap, safe and clean, the myth that nuclear fuel can be recycled, the myth that nuclear technology is superior and the future and present of nuclear energy problem related radiation waste and surplus of plutonium.

  4. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of the booklet is to provide an up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear energy or other energy sectors in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. Nuclear energy is described as part of the Finnish electricity market. (orig.)

  5. Review of Nuclear Thermal Propulsion Ground Test Options

    Science.gov (United States)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  6. Public communication and nuclear energy; La comunicacion publica y la energia nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Cornado, A.

    2006-07-01

    The article tries to explain why on occasion the public's perception of nuclear is more negative than of any other form of electricity generation or issue related to this field, when in reality public opinion has been gradually losing interest in nuclear in recent years. In fact, we could say that as nuclear loses its interest, its presence in the media grows in relation to the environmental aspects of electricity generation, of which nuclear form a part. Of the accusations directed at the nuclear industry, probably the most frequent one concerns the lack of transparency and lack of information on its activities. This article shows how the nuclear sector is probably one that generates more and better information on its own business. However, the lack of social acceptance of this activity, and of the energy business in general, is recognized. To solve this, mention is made of the example of France and Finland, where a well planned communication policy, implemented on a sustained basis over time, and the invitation to society to take part in these issues have favored a substantial improvement of public acceptance of electric generation sources, and specifically the nuclear option. The article ends with some recommendations that could be applied to Spain. (Author)

  7. Proceedings of the International conference: Nuclear option in countries with small and medium electricity grid

    International Nuclear Information System (INIS)

    1996-01-01

    The conference of Croatian Nuclear Society 'Nuclear option in countries with small and medium electricity grid' was organized with intention to focus on and discuss the specific needs and interests of the countries with small or medium nuclear systems. In order to achieve best safety and operational standards these countries with limited human and material resources must put greater emphasis on their rational and efficient use. For these countries the world wide developments on innovative reactors' systems and improved concepts for fuel utilisation and waste disposal are substantial interest. Appropriate selections of reactor technology, fuel cycle and decommission strategies are of paramount importance. There are very successful examples of achieving safety and good operational records, so the exchange of experience and cooperation amongst that group of countries would be of great value. As in the future of nuclear energy there will be many more countries with only small or medium nuclear systems, collecting specific experience and cooperation between the like countries will be an additional value to the now prevailing equipment supplier - national utility relationships

  8. Proceedings of the International conference: Nuclear option in countries with small and medium electricity grid

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The conference of Croatian Nuclear Society `Nuclear option in countries with small and medium electricity grid` was organized with intention to focus on and discuss the specific needs and interests of the countries with small or medium nuclear systems. In order to achieve best safety and operational standards these countries with limited human and material resources must put greater emphasis on their rational and efficient use. For these countries the world wide developments on innovative reactors` systems and improved concepts for fuel utilisation and waste disposal are substantial interest. Appropriate selections of reactor technology, fuel cycle and decommission strategies are of paramount importance. There are very successful examples of achieving safety and good operational records, so the exchange of experience and cooperation amongst that group of countries would be of great value. As in the future of nuclear energy there will be many more countries with only small or medium nuclear systems, collecting specific experience and cooperation between the like countries will be an additional value to the now prevailing equipment supplier - national utility relationships.

  9. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This report is one of a series of reports that investigate the technical and economic aspects of Nuclear-Renewable Hybrid Energy Systems. It provides the results of an analysis of two scenarios. The first is a Texas-synthetic gasoline scenario and the second is an Arizona-desalination scenario. The analysis focuses on the economics of the N-R HESs and how they compare to other options, including configurations without all the subsystems in each N-R HES and alternatives in which natural gas provides the energy.

  10. Is nuclear energy ethically justifiable?

    International Nuclear Information System (INIS)

    Zuend, H.

    1987-01-01

    Nuclear technology offers the chance to make an extremely long term contribution to the energy supply of the earth. The use of nuclear energy is ethically justifiable, provided that several fundamental rules are obeyed during the technical design of nuclear installations. Such fundamental rules were unequivocally violated in the nuclear power plant Chernobyl. They are, however, fulfilled in the existing Swiss nuclear power plants. Improvements are possible in new nuclear power plants. Compared to other usable energy systems nuclear energy is second only to natural gas in minimal risk per generated energy unit. The question of ethical justification also may rightly be asked of the non-use of nuclear energy. The socially weakest members of the Swiss population would suffer most under a renunciation of nuclear energy. Future prospects for the developing countries would deteriorate considerably with a renunciation by industrial nations of nuclear energy. The widely spread fear concerning the nuclear energy in the population is a consequence of non-objective discussion. 8 refs., 2 figs

  11. The promise of innovation: Nuclear energy horizons

    International Nuclear Information System (INIS)

    Mourogov, V.

    2003-01-01

    The 21st century promises the most open, competitive, and globalized markets in human history, as well as the most rapid pace of technological change ever. For nuclear energy, as any other, that presents challenges. Though the atom now supplies a good share of world electricity, its share of total energy is relatively small, anywhere from four to six per cent depending on how it is calculated. And, while energy is most needed in the developing world, four of every five nuclear plants are in industrialized countries. Critical problems that need to be overcome are well known - high capital costs for new plants, and concerns over proliferation risks and safety, (including safety of waste disposal) stand high among them. The IAEA and other programmes are confronting these problems through ambitious initiatives involving both industrialized and developing countries. They include the collaborative efforts known as the Generation-IV International Forum (GIF) and the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). They use ideas, results and the best experiences from today's research and development tools and advanced types of nuclear energy systems to meet tomorrow's challenges. Though the market often decides the fate of new initiatives, the market is not always right for the common good. Governments, and the people that influence them, play an indispensable role in shaping progress in energy fields for rich and poor countries alike. They shoulder the main responsibilities for fundamental science, basic research, and long-term investments. For energy in particular, government investment and support will prove instrumental in the pace of innovation toward long-term options that are ready to replace limited fossil fuel supplies, and respond to the growing premium put on clean energy alternatives. Yet governments cannot go it alone. The challenges are too diverse and complex, and public concerns - about proliferation or safety - go beyond

  12. Comparative assessment of electricity generation options in the Philippines

    International Nuclear Information System (INIS)

    Leonin, T.V.; Mundo, M.Q.; Venida, L.L.; Arriola, H.; Madrio, E.

    2001-01-01

    The development of a country specific data base on energy sources, facilities and technologies is presented in this paper. It also identified feasible national electricity generating options and electric power system expansion alternatives for the period 2000-2020, and conducted comparative assessments of these options based on economic and environmental considerations. The possible role of nuclear power in the country's future electric energy was also studied. The comparison of three electricity generating options were considered: coal-fired thermal power plant without flue gas desulfurization (FGD), coal-fired thermal power plant with FGD and combined cycle power plant with 300 MW generating capacity each. Based on the analysis of three alternatives, the use of coal-fired power plants equipped with flue gas desulfurization (FGD) should be seriously considered. The government is expected to pursue the full development of local energy sources such as hydropower, geothermal, coal, natural gas and other new and renewable energy sources. However, there will still be a major need for imported oil and coal fuel which will likely supply unidentified energy sources beyond 2010. In the case of nuclear power, the government has not firmed up definite plans for any construction of nuclear power plants after 2010. However, the long term energy development plan still includes the operation of at least two nuclear power plants by the 2020 and this long term range program has not been revised in the recent published updates. (Author)

  13. Nuclear energy questions

    International Nuclear Information System (INIS)

    This work pack contains illustrated booklets entitled: 'Uranium mining'; 'Reactors and radiation'; 'Nuclear waste'; 'Work book on energy'; 'Alternatives now'; 'Future energy choices'; 'Resources handbook'; and 'Tutors' guidelines': a map entitled 'Nuclear power in Britain': and two coloured pictures entitled 'Nuclear prospects' and 'Safe energy'. A cover note states that the material has been prepared for use in schools and study groups. (U.K.)

  14. The importance of nuclear energy for the expansion of Brazil's electricity grid

    International Nuclear Information System (INIS)

    Santos, Ricardo Luis Pereira dos; Rosa, Luiz Pinguelli; Arouca, Maurício Cardoso; Ribeiro, Alan Emanuel Duailibe

    2013-01-01

    This article analyzes the thermal energy options available in the country to support the expansion of Brazil's electricity grid capacity. The country's electricity mix consists primarily of renewable sources of energy and this configuration will be maintained throughout the 21st century. However, grid expansion can no longer benefit from hydroelectric power plants with large reservoirs leading to a greater participation of thermal power plants. Among the thermal sources available in the country, nuclear power has important comparative advantages. Recognizing these benefits, the Brazilian government has established that expanding electricity grid capacity will amount to up to 8000 MW through nuclear energy by 2030. The use of nuclear technology for electricity generation has historically been a controversial issue worldwide and some countries have decided to review their nuclear programs in the aftermath of the 2011 Fukushima nuclear accident. This article shows that increasing the participation of nuclear energy in Brazil's electricity grid will provide important benefits for the country by ensuring energy security, keeping Brazil's electricity mix as one of the cleanest in the world, securing electricity grid reliability and safety and reducing operating costs. - Highlights: • The expansion of the power capacity is essential to support the economic growth. • The increase through hydropower cannot benefit from storage reservoirs. • It will be necessary to increase the capacity thermal power. • Nuclear power has significant comparative advantages in Brazil. • Brazil has institutional base, uranium reserves and nuclear technology

  15. Energy options in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S C [ed.

    1975-01-01

    The United Kingdom faces two issues: how can it survive the present massive increases in oil prices and the probability of even more expensive supplies in the future or how can it adjust to the eventual exhaustion of both fossil and nuclear fuels. The theme of the symposium concerned a search for a practical alternative source of energy to fossil and nuclear fuels and which ones would work in the United Kingdom. Papers were presented entitled: Geothermal Energy; Solar Energy in Britain; and Wind and Water Sources of Energy in the United Kingdom. A final paper, High- and Low-Growth Scenarios, examined these two types for the future. Many questions, answeres and comments about energy sources are contained in a final presentation. (MCW)

  16. Nuclear energy data 2011

    CERN Document Server

    2011-01-01

     . Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of statistics and country reports on nuclear energy, contains official information provided by OECD member country governments on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035. For the first time, it includes data for Chile, Estonia, Israel and Slovenia, which recently became OECD members. Key elements of this edition show a 2% increase in nuclear and total electricity production and a 0.5% increase in nuclear generating ca

  17. The future of nuclear energy in the enlarged European Union

    International Nuclear Information System (INIS)

    Comsa, Olivia; Mingiuc, C.; Paraschiva, M.V.

    2002-01-01

    The paper presents an analysis of the future of nuclear energy at the European level taking into account the main factors which influence its development among which the most important are: - enlargement of EU to 30 member states with different energy structure; - the increase of energy consumption; - the constant increasing of external dependence for energy which is estimated at 70% in the next 20-30 years; - liberalisation of the energy sources and supply sector; - environmental concerns, including climate change. In the Green Paper, nuclear is grouped together with coal, oil, gas and renewables as 'less than perfect' energy options and together with coal it is classed as an 'undesirable' and referred to as a 'source of energy in doubt ' which is ' tainted by the original sin of dual usage (civil and military) in the fuel cycle'. The final conclusion is 'the future of nuclear energy in Europe is uncertain'. It depends on several factors beyond energy demand; including: a solution to the problems of managing nuclear waste, the economic viability of the new generation of power stations, the safety of reactors in Eastern Europe, in particular applicant countries and policies to combat global warming. The 'essential questions' for nuclear is 'How can the community develop fusion technology and reactors for the future, reinforce nuclear safety and find a solution to the problem of nuclear waste?' There are a number of very important factors that will influence the future of nuclear energy inside the European Union. The first and foremost of these is continuing the safe operation of the existing nuclear facilities. The second is the demand for energy, in particular electricity. The third is the nuclear sector's ability to meet a share of this demand in a competitive way. If the demand materialises, there are likely to be reactors available that can further improve nuclear competitiveness while maintaining its recent excellent safety record. It will be the market that

  18. Public views on multiple dimensions of security: nuclear weapons, terrorism, energy, and the environment: 2007

    International Nuclear Information System (INIS)

    Herron, Kerry Gale; Jenkins-Smith, Hank C.

    2008-01-01

    We analyze and compare findings from identical national surveys of the US general public on nuclear security and terrorism administered by telephone and Internet in mid-2007. Key areas of investigation include assessments of threats to US security; valuations of US nuclear weapons and nuclear deterrence; perspectives on nuclear proliferation, including the specific cases of North Korea and Iran; and support for investments in nuclear weapons capabilities. Our analysis of public views on terrorism include assessments of the current threat, progress in the struggle against terrorism, preferences for responding to terrorist attacks at different levels of assumed casualties, and support for domestic policies intended to reduce the threat of terrorism. Also we report findings from an Internet survey conducted in mid 2007 that investigates public views of US energy security, to include: energy supplies and reliability; energy vulnerabilities and threats, and relationships among security, costs, energy dependence, alternative sources, and research and investment priorities. We analyze public assessments of nuclear energy risks and benefits, nuclear materials management issues, and preferences for the future of nuclear energy in the US. Additionally, we investigate environmental issues as they relate to energy security, to include expected implications of global climate change, and relationships among environmental issues and potential policy options.

  19. Public views on multiple dimensions of security : nuclear waepons, terrorism, energy, and the environment : 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Herron, Kerry Gale (University of Oklahoma, Norman, OK); Jenkins-Smith, Hank C. (University of Oklahoma, Norman, OK)

    2008-01-01

    We analyze and compare findings from identical national surveys of the US general public on nuclear security and terrorism administered by telephone and Internet in mid-2007. Key areas of investigation include assessments of threats to US security; valuations of US nuclear weapons and nuclear deterrence; perspectives on nuclear proliferation, including the specific cases of North Korea and Iran; and support for investments in nuclear weapons capabilities. Our analysis of public views on terrorism include assessments of the current threat, progress in the struggle against terrorism, preferences for responding to terrorist attacks at different levels of assumed casualties, and support for domestic policies intended to reduce the threat of terrorism. Also we report findings from an Internet survey conducted in mid 2007 that investigates public views of US energy security, to include: energy supplies and reliability; energy vulnerabilities and threats, and relationships among security, costs, energy dependence, alternative sources, and research and investment priorities. We analyze public assessments of nuclear energy risks and benefits, nuclear materials management issues, and preferences for the future of nuclear energy in the US. Additionally, we investigate environmental issues as they relate to energy security, to include expected implications of global climate change, and relationships among environmental issues and potential policy options.

  20. Department of Energy interest and involvement in nuclear plant license renewal activities

    International Nuclear Information System (INIS)

    Bustard, L.D.; Harrison, D.L.

    1991-01-01

    Recognizing the importance of nuclear license renewal to the nation's energy strategy, the Department of Energy (DOE) initiated a plant lifetime improvement program during 1985 to determine the feasibility of the license renewal option for US nuclear plants. Initial activities of the DOE program focused on determining whether there were technical and economic obstacles that might preclude or limit the successful implementation of the license renewal option. To make this determination, DOE cosponsored with the Electric Power Research Institute (EPRI) pilot-plant efforts by Virginia Electric Power and Northern States Power. Both pilot-plant efforts concluded that life extension is technically and economically feasible. In parallel with the pilot-plant activities, DOE performed national economic studies that demonstrated the economic desirability of life extension. Having demonstrated the feasibility of life extension, DOE, in conjunction with EPRI, selected two lead plants to demonstrate the license renewal process. These lead plants are Yankee Atomic's Yankee Rowe facility and Northern States Power's Monticello facility. DOE also initiated activities to develop the technical and regulatory bases to support the license renewal process in the United States. DOE has recently identified nuclear plant license renewal to be an important element of its National Energy Strategy. This paper summarizes the significant results, conclusions, and ongoing activities of the DOE effort. 18 refs

  1. Introduction to the 'CAS' nuclear propulsion plant for ships: specific safety options

    International Nuclear Information System (INIS)

    Verdeau, J.J.; Baujat, J.

    1978-01-01

    After a brief review of the development of nuclear propulsion in FRANCE (Land Based Prototype PAT 1964 - Navy nuclear ships - Advanced Nuclear Boiler Prototype CAP 1975 and now the CAS nuclear plant), the specific safety options of CAS are presented: cold, compartmented fuel (plates); reduced flow during LOCA; permanent cooling of fuel during LOCA; pressurized, entirely passive containment; no control rod ejection and possibility of temporary storage of spent fuel on board [fr

  2. Nuclear energy in Spain

    International Nuclear Information System (INIS)

    Villota, C. de

    2007-01-01

    Carlos Villota. Director of Nuclear Energy of UNESA gave an overview of the Spanish nuclear industry, the utility companies and the relevant institutions. Companies of the nuclear industry include firms that produce heavy components or equipment (ENSA), manufacturers of nuclear fuel (ENUSA), engineering companies, the National Company for Radioactive Waste Management (ENRESA), and nuclear power plants (nine units at seven sites). Nuclear energy is a significant component of the energy mix in Spain: 11% of all energy produced in Spain is of nuclear origin, whilst the share of nuclear energy in the total electricity generation is approximately 23%. The five main players of the energy sector that provide for the vast majority of electricity production, distribution, and supply have formed the Spanish Electricity Industry Association (UNESA). The latter carries out co-ordination, representation, management and promotion tasks for its members, as well as the protection of their business and professional interests. In the nuclear field, UNESA through its Nuclear Energy Committee co-ordinates aspects related to nuclear safety and radiological protection, regulation, NPP operation and R and D. Regarding the institutional framework of the nuclear industry, ENSA, ENUSA and ENRESA are controlled by the national government through the Ministry of Economy and Finance and the Ministry of Science and Technology. All companies of the nuclear industry are licensed by the Ministry of Industry, Tourism and Trade (MITYC), while the regulatory body is the Nuclear Safety Council (CSN). It is noteworthy that CSN is independent of the government, as it reports directly to Parliament. (author)

  3. A comparative study of health hazards and environmental impacts for electricity generation through nuclear energy hidroelectricity and coal fired thermoeletrical generation

    International Nuclear Information System (INIS)

    Guimaraes, C.A.

    1982-01-01

    Environmental impacts and health hazards were comparatively assessed in regard to electricity generation via nuclear energy, hidraulic dams and coal firing. The main aspects covered the nuclear reactor and its associated nuclear fuel cycle, coal fired thermoelectrical power plant its associated coal industry, and hidroelectrical power plant and its dam. Besides specific comparisons of impacts in the air, water, soil and health hazards an evaluation for the Brazilian case was made based on a forecast of electricity demand up to the year 2020. For the nuclear option the consequences were analysed based on American data since no data is yet available for Brazil. Coal firing option was also analised for based heavily on American data due to small Brazilian experience in this sector of energy generation. For hydroelectrical option Brazilian data were used mostly from CESP for comparative purposes. These alternatives for generation of electricity considered in this study are the most relevant for the next four decades for Brazil. (Author) [pt

  4. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2008-01-01

    The booklet provides and up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear or energy sector in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. In the booklet nuclear energy is described as part of the Finnish electricity market

  5. Nuclear Energy General Objectives

    International Nuclear Information System (INIS)

    2011-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way it achieves this objective is to issue publications in various series. Two of these series are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III, paragraph A.6, of the IAEA Statute, the IAEA safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are primarily written in a regulatory style, and are binding on the IAEA for its own activities. The principal users are Member State regulatory bodies and other national authorities. The IAEA Nuclear Energy Series consists of reports designed to encourage and assist research on, and development and practical application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia and politicians, among others. The information is presented in guides, reports on the status of technology and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The series complements the IAEA's safety standards, and provides detailed guidance, experience, good practices and examples on the five areas covered in the IAEA Nuclear Energy Series. The Nuclear Energy Basic Principles is the highest level publication in the IAEA Nuclear Energy Series and describes the rationale and vision for the peaceful uses of nuclear energy. It presents eight Basic Principles on which nuclear energy systems should be based to fulfil nuclear energy's potential to help meet growing global energy needs. The Nuclear Energy Series Objectives are the second level publications. They describe what needs to be

  6. Nuclear energy data 2005

    CERN Document Server

    Publishing, OECD

    2005-01-01

    This 2005 edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers a projection horizon lengthened to 2025 for the first time.  It presents the reader with a comprehensive overview on the status and trends in nuclear electricity generation in OECD countries and in the various sectors of the nuclear fuel cycle.

  7. A feasibility study on nuclear power options in Mongolia

    International Nuclear Information System (INIS)

    Minato, A.; Sekimoto, H.; Amartaivan, T.

    2010-10-01

    There is a growing interest among utilities in the United States in small and medium reactors due primarily to the smaller investment and perhaps shorter construction time involved as compared to those large reactors. The potential market for small reactors (those below 300 M We) exists, specially with sizes of 50 and 100 M We. A feasibility study was conducted on nuclear power options for Ulaanbaatar, Mongolia, a country which has a potential market for small reactors. The study was focused on an optimization of a combination of coal-fired and nuclear power plants taking into account Mongolia's future nuclear program plan, future population and economic growth, and the increased electricity and district heating demands. (Author)

  8. Nuclear energy data 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers projections lengthened to 2030 for the first time and information on the development of new centrifuge enrichment capacity in member countries. The compilation gives readers a comprehensive and easy-to-access overview of the current situation and expected trends in various sectors of the nuclear fuel cycle, providing authoritative information to policy makers, experts and academics working in the nuclear energy field

  9. Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This standard guide defines the process for developing a strategy for dispositioning concrete from nuclear facility decommissioning. It outlines a 10-step method to evaluate disposal options for radioactively contaminated concrete. One of the steps is to complete a detailed analysis of the cost and dose to nonradiation workers (the public); the methodology and supporting data to perform this analysis are detailed in the appendices. The resulting data can be used to balance dose and cost and select the best disposal option. These data, which establish a technical basis to apply to release the concrete, can be used in several ways: (1) to show that the release meets existing release criteria, (2) to establish a basis to request release of the concrete on a case-by-case basis, (3) to develop a basis for establishing release criteria where none exists. 1.2 This standard guide is based on the “Protocol for Development of Authorized Release Limits for Concrete at U.S. Department of Energy Sites,” (1) from ...

  10. Strategies and options for electricity generation in Egypt up to 2020

    International Nuclear Information System (INIS)

    Yassin, I. M.; Megahed, M. M.; Motayasser, S. S.

    2004-01-01

    Over the period 1970-2000, the total primary energy requirements in Egypt have increased from 7.8 million tones of oil equivalent (Mtoe) to 44.2 Mtoe. In the same period, electricity generation has increased from 6.7 TWh to 73.3 TWh. The demand for both primary energy and electricity is expected to continue at higher growth rates in the future due to the ambitious governmental plans aiming at increasing the gross domestic product (GDP) at an average annual growth rate of 8% up to the year 2020. Because of the limited fossil fuel energy resources and the almost fully utilized hydro energy, Egypt has been considering for sometime the various options for satisfying the increasing demand for electricity, including nuclear energy. To this end, the Nuclear Power Plants Authority carried out a comparative study of the various strategies and options for electricity generation in Egypt with technical assistance from the International Atomic Energy Agency (IAEA) utilizing the DECADES Tool. The main objective of the study was to determine the optimal electricity generation mix up to the year 2020, including nuclear and renewable (solar and wind) energies. DECADES is restricted by some limitation that it did not take into its consideration modeling of some energy forms and systems such as simulation of Renewable Energy Options (REO), in particular thermal/solar and wind plants and simulation of Independent Power Producers (IPP). REO and IPP, as well as the nuclear energy option are expected to play an important role in the future electricity generation mix in Egypt. Therefore it is important to consider its effects economically and environmentally when studying the best expansion system in Egypt. This paper presents the modifications for DECADES modeling to enable simulation for the above energy forms and systems, as well as the results of the comparative assessment study.(author)

  11. Soft energy vs nuclear energy

    International Nuclear Information System (INIS)

    Ando, Yoshio

    1981-01-01

    During the early 1960s, a plentiful, inexpensive supply of petroleum enabled Japanese industry to progress rapidly; however, almost all of this petroleum was imported. Even after the first oil crisis of 1973, the recent annual energy consumption of Japan is calculated to be about 360 million tons in terms of petroleum, and actual petroleum forms 73% of total energy. It is necessary for Japan to reduce reliance on petroleum and to diversify energy resources. The use of other fossil fuels, such as coal, LNG and LPG, and hydraulic energy, is considered as an established alternative. In this presentation, the author deals with new energy, namely soft energy and nuclear energy, and discusses their characteristics and problems. The following kinds of energy are dealt with: a) Solar energy, b) Geothermal energy, c) Ocean energy (tidal, thermal, wave), d) Wind energy, e) Biomass energy, f) Hydrogen, g) Nuclear (thermal, fast, fusion). To solve the energy problem in future, assiduous efforts should be made to develop new energy systems. Among them, the most promising alternative energy is nuclear energy, and various kinds of thermal reactor systems have been developed for practical application. As a solution to the long-term future energy problem, research on and development of fast breeder reactors and fusion reactors are going on. (author)

  12. Nuclear energy: a vital energy choice

    International Nuclear Information System (INIS)

    Pecqueur, Michel

    1980-01-01

    Speaking from the platform of the XIIIth annual session of the International Atomic Energy Agency, at New Delhi, AEC managing director Michel Pecqueur made a solemn appeal to the world community for the decisions which are needed on energy. The present energy crisis can lead the world to a recession and be a factor in grave troubles for peace and balance in the world. The crisis cannot be resolved without accrued recourse to the use of nuclear energy. Two essential themes were outlined: the development of nuclear energy in the world, and the increased reduction of proliferation risks. In concluding, he expressed the hop that with a greater effort in information media, the nuclear fact-of-life would be better accepted by the general public in future, for it is there that lies a brake which may hinder nuclear energy development [fr

  13. Nuclear energy. Economical aspects

    International Nuclear Information System (INIS)

    Legee, F.

    2010-01-01

    This document present 43 slides of a power point presentation containing detailed data on economical and cost data for nuclear energy and nuclear power plants: evolution from 1971 to 2007 of world total primary energy supply, development of nuclear energy in the world, nuclear power plants in the world in 2009, service life of nuclear power plants and its extension; nuclear energy market and perspectives at 2030, the EPR concept (generation III) and its perspectives at 2030 in the world; cost assessment (power generation cost, nuclear power generation cost, costs due to nuclear safety, comparison of investment costs for gas, coal and nuclear power generation, costs for building a nuclear reactor and general cost; cost for the entire fuel cycle, the case of the closed cycle with recycling (MOX); costs for radioactive waste storage; financial costs and other costs such as environmental impacts, strategic stocks, comparative evaluation of the competitiveness of nuclear versus coal and gas

  14. The IAEA international project on innovative nuclear reactors and fuel cycles (INPRO): study on opportunities and challenges of large-scale nuclear energy development

    International Nuclear Information System (INIS)

    Khoroshev, M.; Subbotin, S.

    2006-01-01

    Existing scenarios for global energy use project that demand will at least double over the next 50 years. Electricity demand is projected to grow even faster. These scenarios suggest that the use of all available generating options, including nuclear energy, will inevitably be required to meet those demands. If nuclear energy is to play a meaningful role in the global energy supply in the foreseeable future, innovative approaches will be required to address concerns about economic competitiveness, environment, safety, waste management, potential proliferation risks and necessary infrastructure. In the event of a renaissance of nuclear energy, adequate infrastructure development will become crucial for Member States considering the future use of nuclear power. The IAEA should be ready to provide assistance in this area. A special resolution was adopted by the General Conference in September 2005 on 'Strengthening the Agency's Activities Related to Nuclear Science, Technology and Applications: Approaches to Supporting Nuclear Power Infrastructure Development'. Previously, in 2000, taking into account future energy scenarios and the needs of Member States, the IAEA General Conference had adopted a resolution initiating the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Based on scenarios for the next fifty years, INPRO identified requirements for different aspects of future nuclear energy systems, such as economics, environment, safety, waste management, proliferation resistance and infrastructure and developed a methodology to assess innovative nuclear systems and fuel cycles. Using this assessment tool, the need for innovations in nuclear technology can be defined, which can be achieved through research, development and demonstration (RD and D). INPRO developed these requirements during its first stage, Phase 1A, which lasted from 2001 to mid-2003. In the second stage, Phase 1B (first part), INPRO organized 14 case studies (8 by

  15. Analysis of an option to finance the investment in a nuclear power plant

    International Nuclear Information System (INIS)

    Villanueva M, C.

    2011-11-01

    According to the recent projection of costs of electric generation published by the International Atomic Energy Agency, with a rate of discount of 10% annual the even unitary cost of a nuclear power station of 1,400 MW of capacity would be 98. 75 USD 2010 /MWh, while for a combined cycle of same capacity that burns natural gas the cost it would be 92. 11 USD 2010 /MWh, operating the power stations with a capacity factor of 85% to generate 10,424 annual G Wh. To 5% annual, the costs would decrease at 58. 53 USD 2010 /MWh for the nuclear energy and at 85. 77 USD 2010 /MWh for the combined cycle. In an indifference analysis of the price of natural gas against the investment cost in the nuclear, with a rate of discount of 10% annual the common cost would be 97. 31 USD 2010 /MWh, when the even price of the natural gas was 10. 50 USD 2010 /G J and simultaneously the unitary cost of investment of the nuclear was 4,023 USD 2010 /kw. Under similar conditions, if the investment in the nuclear power station was 4,163 USD 2010 /Kw to redeem it in 60 years of economic useful life the equivalent annuity would be of USD 2010 790.060 millions that would have the same value of the annual invoice of the natural gas consumed by the combined cycle power station to the price of 12. 00 USD 2010 /G J. Then, as example of an excellent option of the Federal Commission of Electricity to finance with own resources budget them a new nuclear power station, the investment could redeem annually with the savings that it would represent to stop to burn natural gas when displacing the equivalent generation in central of combined cycle. (Author)

  16. Real options and asset valuation in competitive energy markets

    Science.gov (United States)

    Oduntan, Adekunle Richard

    The focus of this work is to develop a robust valuation framework for physical power assets operating in competitive markets such as peaking or mid-merit thermal power plants and baseload power plants. The goal is to develop a modeling framework that can be adapted to different energy assets with different types of operating flexibilities and technical constraints and which can be employed for various purposes such as capital budgeting, business planning, risk management and strategic bidding planning among others. The valuation framework must also be able to capture the reality of power market rules and opportunities, as well as technical constraints of different assets. The modeling framework developed conceptualizes operating flexibilities of power assets as "switching options' whereby the asset operator decides at every decision point whether to switch from one operating mode to another mutually exclusive mode, within the limits of the equipment constraints of the asset. As a current decision to switch operating modes may affect future operating flexibilities of the asset and hence cash flows, a dynamic optimization framework is employed. The developed framework accounts for the uncertain nature of key value drivers by representing them with appropriate stochastic processes. Specifically, the framework developed conceptualizes the operation of a power asset as a multi-stage decision making problem where the operator has to make a decision at every stage to alter operating mode given currently available information about key value drivers. The problem is then solved dynamically by decomposing it into a series of two-stage sub-problems according to Bellman's optimality principle. The solution algorithm employed is the Least Squares Monte Carlo (LSM) method. The developed valuation framework was adapted for a gas-fired thermal power plant, a peaking hydroelectric power plant and a baseload power plant. This work built on previously published real options valuation

  17. Social Cost Assessment for Nuclear Fuel Cycle Options in the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Ji-eun; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    This paper will investigate the vast array of economic factors to estimate the true cost of the nuclear power. There are many studies addressing the external costs of energy production. However, it is only since the 1990s that the external costs of nuclear powered electricity production has been studied in detail. Each investigation has identified their own set of external costs and developed formulas and models using a variety of statistical techniques. The objective of this research is to broaden the scope of the parameters currently consider by adding new areas and expanding on the types of situations considered. Previously the approach to evaluating the external cost of nuclear power did not include various fuel cycle options and influencing parameters. Cost has always been a very important factor in decision-making, in particular for policy choices evaluating the alternative energy sources and electricity generation technologies. Assessment of external costs in support of decision-making should reflect timely consideration of important country specific policy objective. PWR-MOX and FR-Pyro are the best fuel cycle in parameter of environment impacts, but OT or OT-ER is proper than FR-Pyro in human beings. Using the OT fuel cycle is better than FR-Pyro to reduce the conflict cost. When energy supply is deficient, FR-Pyro fuel cycle stands longer than other fuel cycles. Proliferation resistance is shown as 'high' in all fuel cycles, so there are no difference between fuel cycles. When the severe accident occurs, FR-Pyro cycle is economical than other OT based fuel cycles.

  18. Nuclear energy national plan. The directions for nuclear energy policy in Japan

    International Nuclear Information System (INIS)

    2006-11-01

    Nuclear energy is a key attaining an integrated solution for energy security and global warming issues. Under the Framework for Nuclear Energy Policy Japan aims to (1) maintain the 30 to 40% or more share of nuclear energy on electricity generation up to 2030 and afterwards, (2) promote the nuclear fuel cycle and (3) commercialize the fast-breeder reactors. As for policies to realize the basic targets, the 'Nuclear Energy National Plan' was compiled in August 2006 as follows: (1) Investment to construct new nuclear power plants and replace existing reactors in an era of electric power liberalization, 2) Appropriate use of existing nuclear power plants with assuring safety as a key prerequisite, (3) Steady advancement of the nuclear fuel cycle and strategic reinforcement of nuclear fuel cycle industries, (4) Strategy to secure uranium supplied, (5) Early commercialization of the fast breeder reactor cycle, (6) Achieving and developing advanced, technologies, industries and personnel, (7) Assisting the Japanese nuclear industry in promoting the international development, (8) Involved in and/or creating international frameworks to uphold both nonproliferation and expansion of nuclear power generation, (9) Fostering trust between the sates and communities where plants are located by making public hearings and public relations highly detailed and (10) Steady promotion of measures for disposal of radioactive wastes. Implementation policies were presented in details in this book with relevant data and documents. (T. Tanaka)

  19. Nuclear energy and the environmental debate: The context of choices

    International Nuclear Information System (INIS)

    Bertel, E.; Vate, J. van de

    1995-01-01

    Environmental issues are high on international agendas. Governments, interest groups, and citizens are increasingly aware of the need to limit environmental impacts from human activities. In the energy sector, one focus has been on greenhouse gas emissions which could lead to global climate change. The issue is likely to be a driving factor in choices about energy options for electricity generation during the coming decades. Nuclear power's future will undoubtedly be influenced by this debate, and its potential role in reducing environmental impacts from the electricity sector will be of central importance

  20. Renewable energy off-grid power systems: options for energy suppliers

    International Nuclear Information System (INIS)

    Trouchet, K.

    1992-01-01

    SURVIVOR ENERGY SYSTEMS package a range of wind-based renewable energy systems for the supply of 24-hour power to off-grid homesteads and communities. This paper presents a leasing package for these power users and illustrates their cost effectiveness in comparison with stand-alone diesel and comparative hybrid power options. This offer is seen as a alternative for energy planners and supply agencies for their off-grid clients. 6 refs., 3 tabs., 3 figs

  1. Nuclear energy and society

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Shimooka, Hiroshi; Tanaka, Yasumasa; Fujii, Yasuhiko; Misima, Tsuyoshi

    2004-01-01

    Nuclear energy has a strong relation to a society. However, due to accidents and scandals having occurred in recent years, people's reliability to nuclear energy has significantly swayed and is becoming existence of a worry. Analyzing such a situation and grasping the problem contained are serious problems for people engaging in nuclear field. In order that nuclear energy is properly used in society, communication with general public and in nuclear power plant site area are increasingly getting important as well as grasping the situation and surveying measures for overcoming the problems. On the basis of such an analysis, various activities for betterment of public acceptance of nuclear energy by nuclear industry workers, researchers and the government are proposed. (J.P.N.)

  2. Nuclear fusion and its large potential for the future world energy supply

    Directory of Open Access Journals (Sweden)

    Ongena Jef

    2016-12-01

    Full Text Available An overview of the energy problem in the world is presented. The colossal task of ‘decarbonizing’ the current energy system, with ~85% of the primary energy produced from fossil sources is discussed. There are at the moment only two options that can contribute to a solution: renewable energy (sun, wind, hydro, etc. or nuclear fission. Their contributions, ~2% for sun and wind, ~6% for hydro and ~5% for fission, will need to be enormously increased in a relatively short time, to meet the targets set by policy makers. The possible role and large potential for fusion to contribute to a solution in the future as a safe, nearly inexhaustible and environmentally compatible energy source is discussed. The principles of magnetic and inertial confinement are outlined, and the two main options for magnetic confinement, tokamak and stellarator, are explained. The status of magnetic fusion is summarized and the next steps in fusion research, ITER and DEMO, briefly presented.

  3. Nuclear energy and nuclear weapons proliferation

    International Nuclear Information System (INIS)

    1989-01-01

    A summary of the report dispatched in the middle of 1978 by the Atlantic Council of United States, organized by North American citizens, is presented. The report considers the relation between the production of nucleoelectric energy and the capacity of proliferation of nuclear weapons. The factors which affect the grade of proliferation risk represented by the use of nuclear energy in the world comparing this risk with the proliferation risks independently of nuclear energy, are examined. (M.C.K.) [pt

  4. The resurgence of nuclear energy. An option for the climatic change and for the emergent countries?

    International Nuclear Information System (INIS)

    Campos A, L.; Nieva G, R.; Mulas, P.; Velez, C.; Ortiz M, J. R.; Thomas, S.; Finon, D.; Woodman, B.; Mez, L.

    2009-01-01

    The modern society is organized in mistaken form. A tremendous inability of the juridical, political, social and cultural system exists to interrelate the ecosystem (the resources that allow the life and the human activity) with the economic way of production, that is to say with the manner like the human beings appropriate of the nature and they transform it to satisfy the reproduction necessities of the capital and the population. Today we are already paying the consequences of this error. Of continuing with this tendency the next six years, a global increase of five centigrade grades is expected in the temperature, with effects like the increase of the sea level, floods, droughts, among other global problems, for what the gases of greenhouse effect are and they will continue being the main environmental challenge of the X XI century because they not represent alone a threat for the development but also for the humanity survival. The world conscience has wakened up, and in most of the countries where is stopped the construction of new nuclear power plants the plans are reconsidered to return the use of this source, being the two main reasons for reconsideration: the concern for the climatic change and the new world perception about the limits of fossil fuel reserves. The world return of the interest for the nuclear energy, it force to take in consideration the energy politics of Mexico whose structure is too much dependent of hydrocarbons and the import of liquefied natural gas and other energies, subject to the prices volatility and in a frame that lacks long term vision. Here the whole problem of the nuclear industry is exposed, the experiences, the risks, the costs, the future of the energy production for the populations that every time has a bigger consumption, the reader will have, this way, a wide panorama of diverse topics and interests that affect to generation of nuclear energy. (Author)

  5. Nuclear Fuel Cycle Evaluation and Real Options

    Directory of Open Access Journals (Sweden)

    L. Havlíček

    2008-01-01

    Full Text Available The first part of this paper describes the nuclear fuel cycle. It is divided into three parts. The first part, called Front-End, covers all activities connected with fuel procurement and fabrication. The middle part of the cycle includes fuel reload design activities and the operation of the fuel in the reactor. Back-End comprises all activities ensuring safe separation of spent fuel and radioactive waste from the environment. The individual stages of the fuel cycle are strongly interrelated. Overall economic optimization is very difficult. Generally, NPV is used for an economic evaluation in the nuclear fuel cycle. However the high volatility of uranium prices in the Front-End, and the large uncertainty of both economic and technical parameters in the Back-End, make the use of NPV difficult. The real option method is able to evaluate the value added by flexibility of decision making by a company under conditions of uncertainty. The possibility of applying this method to the nuclear fuel cycle evaluation is studied. 

  6. Review of nuclear energy

    International Nuclear Information System (INIS)

    Mattila, L.; Anttila, M.; Pirilae, P.; Vuori, S.

    1997-05-01

    The report is an overview on the production of the nuclear energy all over the world. The amount of production at present and in future, availability of the nuclear fuel, development of nuclear technology, environmental and safety issues, radioactive waste management and commissioning of the plants and also the competitivity of nuclear energy compared with other energy forms are considered. (91 refs.)

  7. Radioactivity and nuclear energy

    International Nuclear Information System (INIS)

    Hoffmann, J.; Kuczera, B.

    2001-05-01

    The terms radioactivity and nuclear energy, which have become words causing irritation in the political sphere, actually represent nothing but a large potential for innovative exploitation of natural resources. The contributions to this publication of the Karlsruhe Research Center examine more closely three major aspects of radioactivity and nuclear energy. The first paper highlights steps in the history of the discovery of radioactivity in the natural environment and presents the state of the art in health physics and research into the effects of exposure of the population to natural or artificial radionuclides. Following contributions focus on: Radiochemical methods applied in the medical sciences (diagnostic methods and devices, therapy). Nuclear energy and electricity generation, and the related safety policies, are an important subject. In this context, the approaches and pathways taken in the field of nuclear science and technology are reported and discussed from the angle of nuclear safety science, and current trends are shown in the elaboration of advanced safety standards relating to nuclear power plant operation and ultimate disposal of radioactive wastes. Finally, beneficial aspects of nuclear energy in the context of a sustainable energy policy are emphasized. In particular, the credentials of nuclear energy in the process of building an energy economy based on a balanced energy mix which combines economic and ecologic advantages are shown. (orig./CB) [de

  8. Reactor-based management of used nuclear fuel: assessment of major options.

    Science.gov (United States)

    Finck, Phillip J; Wigeland, Roald A; Hill, Robert N

    2011-01-01

    This paper discusses the current status of the ongoing Advanced Fuel Cycle Initiative (AFCI) program in the U.S. Department of Energy that is investigating the potential for using the processing and recycling of used nuclear fuel to improve radioactive waste management, including used fuel. A key element of the strategies is to use nuclear reactors for further irradiation of recovered chemical elements to transmute certain long-lived highly-radioactive isotopes into less hazardous isotopes. Both thermal and fast neutron spectrum reactors are being studied as part of integrated nuclear energy systems where separations, transmutation, and disposal are considered. Radiotoxicity is being used as one of the metrics for estimating the hazard of used fuel and the processing of wastes resulting from separations and recycle-fuel fabrication. Decay heat from the used fuel and/or wastes destined for disposal is used as a metric for use of a geologic repository. Results to date indicate that the most promising options appear to be those using fast reactors in a repeated recycle mode to limit buildup of higher actinides, since the transuranic elements are a key contributor to the radiotoxicity and decay heat. Using such an approach, there could be much lower environmental impact from the high-level waste as compared to direct disposal of the used fuel, but there would likely be greater generation of low-level wastes that will also require disposal. An additional potential waste management benefit is having the ability to tailor waste forms and contents to one or more targeted disposal environments (i.e., to be able to put waste in environments best-suited for the waste contents and forms). Copyright © 2010 Health Physics Society

  9. Nuclear Energy and the Environment.

    Science.gov (United States)

    International Atomic Energy Agency, Vienna (Austria).

    "Nuclear Energy and the Environment" is a pocket folder of removable leaflets concerned with two major topics: Nuclear energy and Nuclear Techniques. Under Nuclear Energy, leaflets concerning the topics of "Radiation--A Fact of Life,""The Impact of a Fact: 1963 Test Ban Treaty,""Energy Needs and Nuclear Power,""Power Reactor Safety,""Transport,"…

  10. Nuclear energy and jobs

    International Nuclear Information System (INIS)

    Goldfinger, N.

    1976-01-01

    Mr. Goldfinger, Research Director of AFL-CIO, examines the problem of energy in general, nuclear in particular, and the employment relationship. The energy shortages in the U.S. and its dependence on oil are cited. Directly connected with this serious problem relating to energy are jobs, income, and living standards. If energy is not available, industries will be unable to expand to meet the needs of the growing population; and prices of goods will rise. From an evaluation of what experts have said, Mr. Goldfinger concludes that increased coal production and better coal technology cannot meet energy demands; so the sharp increase both in volume and as a percentage of total energy needed in the future will have to come from nuclear power. Development of alternative sources is necessary, he feels, and intense research on these is needed now. The employment impact in the nuclear energy scenario is analyzed according to the trades involved. It is estimated that 1.5 million jobs in the nuclear industry would be open by the year 2000 if nuclear is to provide one-fourth of energy supplies. The employment picture, assuming abandonment of nuclear energy, is then discussed

  11. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  12. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  13. Social acceptability of energy policy: the case of nuclear power and the public

    International Nuclear Information System (INIS)

    Zinberg, D.S.

    1983-01-01

    Public protest against nuclear power and other energy policies in the US, West Germany, and Sweden contrasts sharply with an apparent lack of public involvement in Belgium, Finland, Canada, and several other countries. The author notes that the concept of an energy policy as opposed to using whatever fuel is available and cheapest is new to society, while nuclear power is unique only in its inability to overcome the historical opposition to new technology. The opposition is strengthened by the coalition of many diverse groups and the emergence of public participation in decision making. Dr. Zinberg feels that open negotiation, taken one step at a time, will be needed to depolarize the controversy and retain the nuclear option. 1 reference

  14. Climatic change and nuclear energy

    International Nuclear Information System (INIS)

    Schneider, M.

    2000-08-01

    The data presented in the different chapters lead to show that nuclear energy ids not a sustainable energy sources for the following reasons: investments in nuclear energy account financing that lacks to energy efficiency programmes. The nuclear programmes have negative effects such the need of great electric network, the need of highly qualified personnel, the freezing of innovation in the fields of supply and demand, development of small performing units. The countries resort to nuclear energy are among the biggest carbon dioxide emitters, because big size nuclear power plants lead to stimulate electric power consumption instead of inducing its rational use. Nuclear energy produces only electric power then a part of needs concerns heat (or cold) and when it is taken into account nuclear energy loses its advantages to the profit of cogeneration installations. Finally nuclear energy is a dangerous energy source, difficult to control as the accident occurring at Tokai MURA showed it in 1998. The problem of radioactive wastes is not still solved and the nuclear proliferation constitutes one of the most important threat at the international level. (N.C.)

  15. Nuclear links

    International Nuclear Information System (INIS)

    1981-01-01

    The subject is dealt with in sections: introduction; energy and the third world; world energy consumption 1978; oil -the energy dilemma; nuclear chains - introduction; uranium; Namibia; enrichment and reprocessing; countries with enrichment and reprocessing facilities; waste; conclusion; why take the nuclear option; third world countries with nuclear reactors; the arms connection; government spending and human resources 1977 (by countries); nuclear power - the final solution; the fascists; world bank; campaigns; community action in Plogoff; Australian labour movement; NUM against nuclear power; Scottish campaign; students against nuclear energy; anti-nuclear campaign; partizans; 3W1 disarmament and development; campaign ATOM; CANUC; 3W1; SANE. (U.K.)

  16. Economics of seawater desalination with innovative nuclear reactors and other energy sources: the EURODESAL project

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2004-01-01

    This paper summarises our recent investigations undertaken as part of the EURODESAL project on nuclear desalination, which were carried out by a consortium of four EU and one Canadian, Industrials and two leading EU R and D organisations. Major results of the project, in particular of its economic evaluation work package as discussed in this paper, are: 1. A coherent demonstration of the technical feasibility of nuclear desalination through the development of technical principles for the optimum cogeneration of electricity and water and by exploring the unique capabilities of the innovative nuclear reactors and desalination technologies; verification that the integrated system design does not adversely affect nuclear reactor safety. 2. The development of codes and methods for an objective assessment of the competitiveness and sustainability of proposed solutions through comparison, in European conditions, with fossil and renewable energy based solutions. The results obtained so far seem to be quite encouraging as regards the economical viability of nuclear desalination options. Thus, for example, specific desalination costs ($/m 3 of desalted water) for nuclear systems such as the AP600 and the French PWR900 (reference base case), coupled to Multiple Effect Distillation (MED) or the Reverse Osmosis (RO) processes, are 30% to 60% lower than fossil energy based systems using pulverised coal and natural gas with combined cycle, at low discount rates and recommended fuel prices. Even in the most unfavourable scenarios for nuclear energy (discount rates = 10%, low fossil fuel prices) desalination costs with the nuclear options with the nuclear reactors are 7% to 15% lower, depending upon the desalination capacities. Furthermore, with the high performance coupling schemes developed by the EURODESAL partners, the specific desalination costs of nuclear systems are reduced by another 2% to 14%, even without system and design optimisation. (author)

  17. The church and nuclear energy

    International Nuclear Information System (INIS)

    Phillips, G.O.

    1978-03-01

    The subject is covered in sections, entitled: foreword (explaining that report is a synopsis of the Hearing on Nuclear Energy arranged by the World Council of Churches, held in Sigtune, Sweden, June 24 to 29, 1975); humanity's energy needs); alternative sources of energy (nuclear fission, nuclear fusion, non-nuclear processes; some generalisations (concerning the advantages and disadvantages of nuclear energy to various sections of the world); what risks are acceptable (radiation hazards, reactor safety, radioactive wastes, misuse of Pu, safeguarding); nuclear weapons; nuclear energy - a challenge to the Churches; social and ethical issues; certain conclusions; postscript -the American move. (U.K.)

  18. A century of nuclear energy

    International Nuclear Information System (INIS)

    Hug, M.

    2009-01-01

    The author proposes a history of the French nuclear industry and nuclear energy since the Nobel prizes of 1903 and 1911. He describes and comments the context of the energy production sector before the development of the nuclear energy, the development of the institutional context, the successive and different nuclear technologies, the main characteristics of the French program at its beginning, the relationship between the nuclear energy and the public, the main accidents and lessons learned from them, the perspectives of evolution of nuclear energy

  19. The economics of nuclear energy

    International Nuclear Information System (INIS)

    Brooks, L.G.; Motamen, H.

    1984-01-01

    Attitudes towards nuclear power in one country have always been more influenced by developments elsewhere than is the case with any other industry, with the possible exception of the defence industries. This book is a series of essays on different aspects of nuclear power as seen from different countries. The conclusion that they all arrive at, with one possibly neutral exception, is that nuclear power is the most attractive option on offer for future growth in electricity generation

  20. The importance of nuclear power to energy supply in Switzerland

    International Nuclear Information System (INIS)

    Kiener, E.

    2001-01-01

    The use of nuclear power is a matter of dispute also in Switzerland. The first opposition to plans for the Kaiseraugst nuclear power station near Basel sprang up in the seventies. In Switzerland, referenda are a popular expression of political disputes. On a federal level, a total of six referenda have been conducted about nuclear power since 1979. As a rule, antinuclear projects were rejected by a slim majority, except for the 1990 moratorium initiative. As a consequence, there was a ten-year ban on the construction of new nuclear power plants. Despite efforts by many parties it was not possible to develop a general consensus on an energy supply strategy. Because of the considerable importance to the power economy, and the economy at large, of nuclear power in Switzerland, where the five nuclear power plants in operation generate approx. 38% of the country's electricity, while 58% is produced in hydroelectric plants, a new Nuclear Power Act was adopted by Parliament in late February 2001. It constitutes the framework for the continued safe operation of nuclear power plants, keeps the nuclear option open for future planning, and handles spent fuel and waste management, final storage, and decommissioning. Also possible international solutions of final storage outside of Switzerland are taken into account. In this way, the Swiss government and parliament have advocated the continued use of nuclear power as one element of energy supply. (orig.) [de

  1. Chapter 7: Renewable Energy Options and Considerations for Net Zero Installations

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Samuel

    2017-03-15

    This chapter focuses on renewable energy options for military installations. It discusses typical renewable technologies, project development, and gives examples. Renewable energy can be combined with conventional energy sources to provide part or all of the energy demand at an installation. The appropriate technology mix for an installation will depend on site-specific factors such as renewable resources, energy costs, local energy policies and incentives, available land, mission compatibility, and other factors. The objective of this chapter is to provide basic background information and resources on renewable energy options for NATO leaders and energy personnel.

  2. The contribution of nuclear energy to a sustainable energy system. Volume 3 in the CASCADE MINTS project

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.; Martinus, G.H.; Rosler, H.; Van der Zwaan, B.C.C.; Szabo, L.; Russ, P.; Mantzos, L.; Zeka-Paschou, M.; Blesl, M.; Ellersdorfer, I.; Fahl, U.; Bohringer, C.; Loschel, A.; Pratlong, F.; Le Mouel, P.; Hayhow, I.; Kydes, A.S.; Martin, L.; Rafaj, P.; Kypreos; Sano, F.; Akimoto, K.; Homma, T.; Tomoda, T.

    2006-03-01

    This report provides an overview of the main results from the scenarios analysed in the CASCADE MINTS project to assess the role of nuclear energy in solving global and European energy and environmental issues. Two contrasting scenarios have been analysed, comparing the impacts of a phase-out of nuclear power capacities to a situation where conventional nuclear power plants achieve a 25% investment cost reduction, both under a rather strong climate pol-icy. Two main conclusions can be drawn. First, the analyses have shown that a nuclear phase-out in Europe is feasible, even in a future with a strong climate policy. However, in this case, renewables, natural gas and advanced coal-fired plants with CCS are key options, and achieving climate goals is more costly. Consequently, the dependency on natural gas imports would increase even further than already expected in a business as usual scenario. Secondly, nuclear energy could be an important component of carbon mitigation strategies, under the condition that the risks related to reactor safety and proliferation are dealt with or accepted, and that long-term solutions for the disposal of radioactive waste are found. With the assumption that carbon prices reach a level of 100 euro/tonne CO2 in 2030, nuclear power plants could somewhat reduce the import dependency of natural gas, and could contribute to up to 50% of Western Europe's power generation mix

  3. Nuclear option

    Energy Technology Data Exchange (ETDEWEB)

    Kemm, K R

    1978-05-01

    The global outlook is that nuclear reactors are here to stay and South Africa has already entered the nuclear power stakes. This article discusses the rocketing oil prices, and the alternatives that can be used in power generation, the good safety record of the nuclear industry and the effect that South Africa's first nuclear power station should have on the environment.

  4. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  5. International group calls for new nuclear 'bargain of confidence'

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A report published by the International Consultative Group on Nuclear Energy on 17 January 1980 concluded that the option of expanding nuclear power supply will not be available for the long term unless its development is carefully sustained during the intervening period. Quotations from the report are given on world energy supplies, establishing nuclear options, nuclear safety and the public interest, and nuclear trade and nuclear proliferation. (UK)

  6. Nuclear energy

    International Nuclear Information System (INIS)

    Hladky, S.

    1985-01-01

    This booklet appeared in a series on technical history. It tries to communicate some of the scientific, technical and social stresses, which have been connected with the application of nuclear energy since its discovery. The individual sections are concerned with the following subjects: the search for the 'smallest particles'; the atomic nucleus; nuclear fission; the 'Manhattan Project'; the time after this - from the euphoria of the 1950's via disillusionment and change of opinion to the state of nuclear energy at the start of the 1980's. The booklet contains many details and is generously illustrated. (HSCH) [de

  7. Advanced ceramics for nuclear heat utilization and energy harvesting

    International Nuclear Information System (INIS)

    Prakash, Deep; Purohit, R.D.; Sinha, P.K.

    2015-01-01

    In recent years concerns related to global warming and green house gas emissions have focused the attention towards lowering the carbon foot print of energy generation. In this scenario, nuclear energy is considered as one of the strongest options to take on the challenges. Further, the nuclear heat, originated from the fission of nuclear fuels may be utilized not only by conversion to electricity using conventional techniques, but also may be used for production of hydrogen by splitting water. In the endeavor of realizing sustainable energy generation technologies, ceramic materials find key role as critical components. This paper covers an overview of various ceramic materials which are potential candidates for energy and hydrogen generation devices. These include solid oxide fuel cells, thermoelectric oxides and sodium conducting beta-alumina for alkali metal thermoelectric converters (AMTEC). The materials, which are generally complex oxides often need to be synthesized using chemical methods for purity and compositional control. Further, ceramic materials offer advantages in terms of doping different cations to engineer defects and maneuver properties. Nonetheless, shaping of ceramics to complex components is a challenging task, due to which various techniques such as isopressing, tape-casting, extrusion, slurry coating, spray deposition etc. are employed. The paper also provides a highlight of fabrication techniques and demonstration of miniature devices which are at various stages of development. (author)

  8. Assessment of nuclear energy cost competitiveness against alternative energy sources in Romania envisaging the long-term national energy sustainability

    International Nuclear Information System (INIS)

    Margeanu, C. A.

    2016-01-01

    The paper includes some of the results obtained by RATEN ICN Pitesti experts in the IAEA.s Collaborative Project INPRO-SYNERGIES. The case study proposed to evaluate and analyze the nuclear capacity development and increasing of its share in the national energy sector, envisaging the long term national and regional energy sustainability by keeping collaboration options open for the future while bringing solutions to short/medium-term challenges. The following technologies, considered as future competing technologies for electric energy generation in Romania, were selected: nuclear technology (represented by PHWR CANDU Units 3 and 4 - CANDU new, advanced HWR - Adv. HWR, and advanced PWR - Adv. PWR) and, as alternative energy sources, classical technology (represented by Coal-fired power plant using lignite fossil fuel, with carbon capture - Coal_new, and Gas-fired power plant operating on combined cycle, with carbon capture - Gas_new). The study included assessment of specific economic indicators, sensitivity analyses being performed on Levelised Unit Energy Cost (LUEC) variation due to different perturbations (e.g. discount rate, overnight costs, etc). Robustness indices (RI) of LUEC were also calculated by considering simultaneous variation of input parameters for the considered power plants. The economic analyses have been performed by using the IAEA.s NEST program. The study results confirmed that in Romania, under the national specific conditions defined, electricity produced by nuclear power plants is cost competitive against coal and gas fired power plants electricity. The highest impact of considered perturbations on LUEC has been observed for capital intensive technologies (nuclear technologies) comparatively with the classic power plants, especially for discount rate changes. (authors)

  9. Outlook for world nuclear power generation and long-term energy supply and demand situations

    International Nuclear Information System (INIS)

    Matsuo, Yuhji

    2012-01-01

    In this article, the author presents a long-term outlook for the world's nuclear generating capacity, taking into account the nuclear policy changes after Fukushima Daiichi nuclear power plant accident. World primary energy demand will grow from 11.2 billion tons of oil equivalent (toe) in 2009 to 17.3 billion toe in 2035. Along with this rapid increase in global energy consumption, the world's nuclear generating capacity will grow from 392 GW in 2010 to 484 GW in 2020 and 574 GW in 2035 in the 'Reference scenario'. Even in the 'Low nuclear scenario', where the maximum impact of Fukushima accident to the nuclear policies of each government is assumed, it will continue to grow in the future, exceeding 500 GW in 2035. In particular, Asian countries such as China and India will lead the growth both in the energy demand and in the nuclear power capacity. Therefore, it is essential to better ensure the safety of nuclear power generation. It is important for technologically developed countries, including Japan, to make active contributions to the establishment of a global nuclear safety control system. On the other hand, energy security and global warming will continue to be major issues, which will make it indispensable to make the best effort to save energy and expand renewable energy utilization. Japan is competitive in energy-saving and environmental conservation technologies, thus further development and utilization of there technologies should be a key option of Japan's growth growth strategy in the future. (author)

  10. Analysis of Nuclear Option in Planning on Java Bali Integrated Electricity System By Using Message Program

    International Nuclear Information System (INIS)

    Masdin; Sudi-Ariyanto; Nuryanti

    2004-01-01

    The growth of national energy demand in the future still become a great challenge for energy supply sector in Indonesia. The current energy supply strategy focuses the development and diversification of all energy options including fossil fuel, renewable energy and nuclear energy. Based on the Comprehensive Assessment Of Different Energy Source For Electricity Demand Study (CADES), final energy demand will grow from 4,065 PJ in 2000 to about 8,200 PJ in 2025. In this paper, the analysis of national energy system network will be divided into 2 regions, namely Java Bali region and Outside Java Bali region. Period of time horizon chosen in this study is 25 years (2000 to 2025). Simulation of network system configuration based on minimum objective function criteria was done by using MESSAGE (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts) computer program. The focus of the analysis in this paper is simulation of electricity planning sector for Java Bali region. The result of simulation shows that for scenarios with no limitation on all fuel for power plant, scenario where fuel oil as constant supply for power plant and also configuration with limitation on gas supply, Nuclear Power Plant (NPP) does not appear during the study period using cost parameter set in this study. If there are limitations on gas supply and constrains of emissions (SO 2 and CO 2 ) due to coal combustion, NPP would become competitive and appear at about year 2015. (author)

  11. The challenges and directions for nuclear energy policy in Japan. Japan's nuclear energy national plan

    International Nuclear Information System (INIS)

    Yanase, Tadao

    2007-01-01

    According to the 'framework for nuclear energy policy' (October, 2005 adopted by cabinet), basic goals of nuclear policy are (1) for nuclear energy to continue to meet more than around 30-40% of electricity supply, and also (2) to further promote a fuel cycle steadily aiming at commercial introduction of a fast breeder by 2050. In order to realize an aim of this framework for nuclear energy policy', the nuclear energy subcommittee of the METI advisory committee deliberated concrete actions and the subcommittee recommendations were drawn up as 'Japan's nuclear energy national plan' in August, 2006 and incorporated as main part of the revised 'basic plan on energy' adopted by the cabinet in March 2007. Backgrounds and directions of future actions for nuclear energy policy were described. (T. Tanaka)

  12. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  13. Nuclear energy outlook 2008

    International Nuclear Information System (INIS)

    2008-01-01

    With the launch today of its first Nuclear Energy Outlook, the OECD Nuclear Energy Agency (NEA) makes an important contribution to ongoing discussions of nuclear energy's potential role in the energy mixes of its member countries. As world energy demand continues to grow unabated, many countries face serious concerns about the security of energy supplies, rising energy prices and climate change stemming from fossil fuel consumption. In his presentation, the NEA Director-General Luis Echavarri is emphasizing the role that nuclear power could play in delivering cost-competitive and stable supplies of energy, while also helping to reduce greenhouse gas emissions. In one Outlook scenario, existing nuclear power technologies could provide almost four times the current supply of nuclear-generated electricity by 2050. Under this scenario, 1400 reactors of the size commonly in use today would be in operation by 2050. But in order to accomplish such an expansion, securing political and societal support for the choice of nuclear energy is vital. An ongoing relationship between policy makers, the nuclear industry and society to develop knowledge building and public involvement will become increasingly important, the publication notes. Moreover, governments have a clear responsibility to maintain continued effective safety regulation, advance efforts to develop radioactive waste disposal solutions and uphold and reinforce the international non-proliferation regime. The authors find that the security of energy from nuclear power is more reliable than that for oil or gas. Additionally, uranium's high energy density means that transport is less vulnerable to disruption, and storing a large energy reserve is easier than for fossil fuels. One tonne of uranium produces the same energy as 10 000 to 16 000 tonnes of oil using current technology. Ongoing technological developments are likely to improve that performance even more. Until the middle of the century the dominant reactor

  14. Nuclear energy and renewable energies

    International Nuclear Information System (INIS)

    1994-01-01

    The nuclear energy and the renewable energies namely: solar energy, wind energy, geothermal energy and biomass are complementary. They are not polluting and they are expected to develop in the future to replace the fossil fuels

  15. Nuclear energy

    International Nuclear Information System (INIS)

    1996-01-01

    Several issues concerning nuclear energy in France during 1996 are presented: permission of a demand for installing underground laboratories in three sites (Marcoule, Bure and Chapelle-Baton); a report assessing the capacity of Superphenix plant to operate as a research tool; the project of merging between Framatome and Gec-Alsthom companies; the revision of a general report on nuclear energy in France; the issue of military plutonium management

  16. Nuclear energy in Armenia

    International Nuclear Information System (INIS)

    Gevorgyan, S.; Kharazyan, V.

    2000-01-01

    This summary represents an overview of the energy situation in Armenia and, in particular, the nuclear energy development during the last period of time. the energy sector of Armenia is one of the most developed economy branches of the country. The main sources of energy are oil products, natural gas, nuclear energy, hydropower, and coal. In the period of 1985-1988 the consumption of these energy resources varied between 12-13 million tons per year of oil equivalent. Imported energy sources accounted for 96% of the consumption. During the period 1993-1995 the consumption dropped to 3 million tons per year. Electricity in Armenia is produced by three thermal, one nuclear, and two major hydroelectric cascades together with a number small hydro units. The total installed capacity is 3558 MW. Nuclear energy in Armenia began its development during the late 1960's. Since the republic was not rich in natural reserves of primary energy sources and the only domestic source of energy was hydro resource, it was decided to build a nuclear power plant in Armenia. The Armenian Nuclear Power Plant (ANPP) Unit 1 was commissioned in 1996 and Unit 2 in 1980. The design of the ANPP was developed in 1968-1969 and was based on the project of Units 3 and 4 of the Novovoronezh NPP. Both units of the plant are equipped with reactors WWER-440 (V -270) type, which are also in use in some power stations in Russian Federation, Bulgaria, and Slovakia. Currently in Armenia, 36% of the total electricity production is nuclear power electricity. (authors)

  17. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    In this presentation author deals with production a consumption of electricity in the Finland. New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  18. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  19. Key role for nuclear energy in global biodiversity conservation.

    Science.gov (United States)

    Brook, Barry W; Bradshaw, Corey J A

    2015-06-01

    Modern society uses massive amounts of energy. Usage rises as population and affluence increase, and energy production and use often have an impact on biodiversity or natural areas. To avoid a business-as-usual dependence on coal, oil, and gas over the coming decades, society must map out a future energy mix that incorporates alternative sources. This exercise can lead to radically different opinions on what a sustainable energy portfolio might entail, so an objective assessment of the relative costs and benefits of different energy sources is required. We evaluated the land use, emissions, climate, and cost implications of 3 published but divergent storylines for future energy production, none of which was optimal for all environmental and economic indicators. Using multicriteria decision-making analysis, we ranked 7 major electricity-generation sources (coal, gas, nuclear, biomass, hydro, wind, and solar) based on costs and benefits and tested the sensitivity of the rankings to biases stemming from contrasting philosophical ideals. Irrespective of weightings, nuclear and wind energy had the highest benefit-to-cost ratio. Although the environmental movement has historically rejected the nuclear energy option, new-generation reactor technologies that fully recycle waste and incorporate passive safety systems might resolve their concerns and ought to be more widely understood. Because there is no perfect energy source however, conservation professionals ultimately need to take an evidence-based approach to consider carefully the integrated effects of energy mixes on biodiversity conservation. Trade-offs and compromises are inevitable and require advocating energy mixes that minimize net environmental damage. Society cannot afford to risk wholesale failure to address energy-related biodiversity impacts because of preconceived notions and ideals. © 2014 The Authors Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  20. The implications of the nuclear option in Quebec

    International Nuclear Information System (INIS)

    1979-01-01

    Quebec depends on fossil fuels which come from outside Quebec for its energy supply. It has available significant hydraulic resources, but they should be totally harnessed within 30 years; therefore, other energy sources must be found. The nuclear route can provide a way for Quebec to meet its future needs. From the technical, economic, security of supply, and side benefit points of view, the recourse to nuclear seems reasonable and even advantageous. From a socio-political point of view, however, the risks inherent in the use of nuclear energy are extremely important and need well-informed public discussion. In the meantime Quebec ought to stress the other sources that are available (hydroelectricity) or likely to be available (Canadian gas) while these sources can still be used at a reasonable price [fr

  1. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E. II; Rochau, Gary Eugene

    2009-01-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink(reg s ign), an extension of MATLAB(reg s ign), is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  2. Neutron excess generation by fusion neutron source for self-consistency of nuclear energy system

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, V.; Chmelev, A.

    1999-01-01

    The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based on the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities. (author)

  3. The nuclear option: The case for using nuclear power to combat climate change

    International Nuclear Information System (INIS)

    Stone, Robert

    2015-01-01

    In December 2015, world leaders will gather in Paris to hammer out a global treaty designed to ratchet back emissions of CO_2 into the atmosphere caused by the burning of fossil fuels. I would urge each delegate, upon checking into his or her hotel room, to step out on to the balcony, take a deep breath, look out at the lights of nuclear-powered Paris and draw inspiration for what a clean energy future might look like. Thanks to France’s decision to deploy nuclear power in a big way some 30 years ago, the country’s electric grid is now almost entirely carbon free. What’s even more remarkable is that the vast majority of that transition was carried out in just 11 years (1969–1980), using the technology of the time. France today enjoys almost zero air pollution from the production of electricity and the cheapest electricity rates in western Europe. Will the climate activists and delegates take heed of what France has accomplished and look to it as a precursor of what might be possible globally? Preliminary negotiations in Lima in late 2014 have taken nuclear energy off the agenda of the climate talks. The world’s leading environmental groups, which are largely driving the agenda, posit that nuclear energy is an unnecessary distraction on the road to a renewable energy future. In making their case they argue that humanity can reduce overall energy demand while simultaneously providing adequate energy to the 3 billion people who currently live with little or no electricity at all, and take care of the additional 3 billion people to be born between now and 2050. They argue that we are on track to being able to replace the entire existing fossil fuel infrastructure, abandon nuclear energy altogether, and meet all the world’s energy needs by using renewable energy alone. And we’ve barely begun to talk about the additional energy that will be required to electrify the world’s transportation sector and meet the growing demand for energy-intensive water

  4. The nuclear option: The case for using nuclear power to combat climate change

    International Nuclear Information System (INIS)

    Stone, Robert

    2015-01-01

    In December 2015, world leaders will gather in Paris to hammer out a global treaty designed to ratchet back emissions of CO 2 into the atmosphere caused by the burning of fossil fuels. I would urge each delegate, upon checking into his or her hotel room, to step out on to the balcony, take a deep breath, look out at the lights of nuclear-powered Paris and draw inspiration for what a clean energy future might look like. Thanks to France’s decision to deploy nuclear power in a big way some 30 years ago, the country’s electric grid is now almost entirely carbon free. What’s even more remarkable is that the vast majority of that transition was carried out in just 11 years (1969–1980), using the technology of the time. France today enjoys almost zero air pollution from the production of electricity and the cheapest electricity rates in western Europe. Will the climate activists and delegates take heed of what France has accomplished and look to it as a precursor of what might be possible globally? Preliminary negotiations in Lima in late 2014 have taken nuclear energy off the agenda of the climate talks. The world’s leading environmental groups, which are largely driving the agenda, posit that nuclear energy is an unnecessary distraction on the road to a renewable energy future. In making their case they argue that humanity can reduce overall energy demand while simultaneously providing adequate energy to the 3 billion people who currently live with little or no electricity at all, and take care of the additional 3 billion people to be born between now and 2050. They argue that we are on track to being able to replace the entire existing fossil fuel infrastructure, abandon nuclear energy altogether, and meet all the world’s energy needs by using renewable energy alone. And we’ve barely begun to talk about the additional energy that will be required to electrify the world’s transportation sector and meet the growing demand for energy-intensive water

  5. Quantum nuclear pasta and nuclear symmetry energy

    Science.gov (United States)

    Fattoyev, F. J.; Horowitz, C. J.; Schuetrumpf, B.

    2017-05-01

    Complex and exotic nuclear geometries, collectively referred to as "nuclear pasta," are expected to appear naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta geometries depend on the average baryon density, proton fraction, and temperature and are critically important in the determination of many transport properties of matter in supernovae and the crusts of neutron stars. Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of large scale quantum simulations of pasta phases at baryon densities 0.03 ≤ρ ≤0.10 fm-3 , proton fractions 0.05 ≤Yp≤0.40 , and zero temperature. The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated by tuning two purely isovector observables that are insensitive to the current available experimental data. We find that a minimum total number of nucleons A =2000 is necessary to prevent the results from containing spurious shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at T =0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable solutions are discussed.

  6. Nuclear energy and its synergies with renewable energies

    International Nuclear Information System (INIS)

    Carre, F.; Mermilliod, N.; Devezeaux De Lavergne, J.G.; Durand, S.

    2011-01-01

    France has the ambition to become a world leader in both nuclear industry and in renewable energies. 3 types of synergies between nuclear power and renewable energies are highlighted. First, nuclear power can be used as a low-carbon energy to produce the equipment required to renewable energy production for instance photovoltaic cells. Secondly, to benefit from the complementary features of both energies: continuous/intermittency of the production, centralized/local production. The future development of smart grids will help to do that. Thirdly, to use nuclear energy to produce massively hydrogen from water and synthetic fuels from biomass. (A.C.)

  7. Fuel alternatives for oil sands development - the nuclear option

    Energy Technology Data Exchange (ETDEWEB)

    Bock, D [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Donnelly, J K

    1996-12-31

    Currently natural gas is the fuel of choice in all oil sand developments. Alberta sources of hydrocarbon based fuels are large but limited. Canadian nuclear technology was studied as a possible alternative for providing steam for the deep commercial in situ oil sand projects which were initiated over ten years ago. Because the in situ technology of that time required steam at pressures in excess of 10 MPa, the nuclear option required the development of new reactor technology, or the use of steam compressors, which was not economical. The current SAGD (steam assisted gravity drainage) technology requires steam at pressures of less than 5 MPa, which is in the reach of existing Canadian nuclear technology. The cost of supplying steam for a SAGD in situ project using a CANDU 3 nuclear reactor was developed. The study indicates that for gas prices in excess of $2.50 per gigajoule, replacing natural gas fuel with a nuclear reactor is economically feasible for in situ projects in excess of 123 thousand barrels per day. (author). 9 refs., 3 tabs., 12 figs.

  8. Fuel alternatives for oil sands development - the nuclear option

    International Nuclear Information System (INIS)

    Bock, D.; Donnelly, J.K.

    1995-01-01

    Currently natural gas is the fuel of choice in all oil sand developments. Alberta sources of hydrocarbon based fuels are large but limited. Canadian nuclear technology was studied as a possible alternative for providing steam for the deep commercial in situ oil sand projects which were initiated over ten years ago. Because the in situ technology of that time required steam at pressures in excess of 10 MPa, the nuclear option required the development of new reactor technology, or the use of steam compressors, which was not economical. The current SAGD (steam assisted gravity drainage) technology requires steam at pressures of less than 5 MPa, which is in the reach of existing Canadian nuclear technology. The cost of supplying steam for a SAGD in situ project using a CANDU 3 nuclear reactor was developed. The study indicates that for gas prices in excess of $2.50 per gigajoule, replacing natural gas fuel with a nuclear reactor is economically feasible for in situ projects in excess of 123 thousand barrels per day. (author). 9 refs., 3 tabs., 12 figs

  9. Dare nuclear energy with the Australian Nuclear Association

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    Australian authorities have been traditionally opposed to nuclear energy. The interdiction to build nuclear power plants in the Australian states without the approval of the federal authority was even officially written in the environment code in 1999. Today coal provides 75% of the electricity needs of Australia. Because of climate warming, things are changing, the Australian government is now considering the possibility of using nuclear energy and a site located in southern Australian has been selected for the disposal of low and intermediate level radioactive wastes. In this context the Australian Nuclear Association (ANA) is developing an ambitious program for the promotion of all the applications of nuclear energy through the organisation of conferences and meetings with various experts of nuclear industry. The aim is to make the public aware of the assets of nuclear energy. (A.C.)

  10. Nuclear Energy Data - 2017

    International Nuclear Information System (INIS)

    2017-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on total electricity produced by all sources and by nuclear power, fuel cycle capacities and requirements, and projections to 2035, where available. Country reports summarise energy policies, updates of the status in nuclear energy programs and fuel cycle developments. In 2016, nuclear power continued to supply significant amounts of low-carbon baseload electricity, despite strong competition from low-cost fossil fuels and subsidised renewable energy sources. Three new units were connected to the grid in 2016, in Korea, Russia and the United States. In Japan, an additional three reactors returned to operation in 2016, bringing the total to five under the new regulatory regime. Three reactors were officially shut down in 2016 - one in Japan, one in Russia and one in the United States. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects making progress in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports

  11. Nuclear energy supports sustainable development

    International Nuclear Information System (INIS)

    Koprda, V.

    2005-01-01

    The article is aimed at acceptability, compatibility and sustainability of nuclear energy as non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy , radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously abjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  12. Nuclear Energy Data 2013

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants declined in 2012 as a result of operational issues at some facilities and suspended operation at all but two reactors in Japan. Nuclear safety was further strengthened in 2012 following safety reviews prompted by the Fukushima Daiichi nuclear power plant accident. Governments committed to maintaining nuclear power in the energy mix pursued initiatives to increase nuclear generating capacity. In Turkey, plans were finalised for the construction of the first four reactors for commercial electricity production. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Statlinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link [fr

  13. Strategies for implementation of CO2-mitigation options in Nigeria's energy sector

    International Nuclear Information System (INIS)

    Ibitoye, F.I.; Akinbami, J.-F.K.

    1999-01-01

    Recent studies indicate that Nigeria's CO 2 budget was about 164 million tonnes (MTons) in 1990, of which the energy sector contributed close to 55%. It is expected that CO 2 emissions emanating from the energy sector will increase from 90 MTons in 1990 to about 3 times this value in another 30 years, assuming a least-cost moderate development scenario. A number of viable CO 2 -mitigation options have already been identified in the energy sector, some of them the so-called 'win-win' options. As attractive as some of these options might appear, their implementation will depend on the removal of certain barriers. These barriers include a lack of legislative framework, a lack of awareness, a lack of access to appropriate technology, as well as inappropriate energy-pricing policies, among others. The paper presents an overview of Nigeria's energy-sector, the CO 2 mitigation-options, the factors militating against implementation of the options, and some policy recommendations for removal of the barriers. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Ultimate Choice for Energy: The Nuclear Energy

    Directory of Open Access Journals (Sweden)

    Metin Yıldırım*

    2007-06-01

    Full Text Available Increases in the prices of oil, hard coal and natural gas, emergence of Russia as a not reliable resource for the natural and the developments in the security of the energy supply again have been started the nuclear energy as a hotly debated issue in the world. This is also a sensitive topic among the opponents and proponents of the nuclear energy in Turkey. Nuclear energy is very important since it provides about 17 % of the electric energy in the world and is used in industry and medical area. However, Turkey has not declared any policy about this yet, because of the worries about the environmental reasons and has not gained any progress about nuclear energy. First of all, Turkey must use her geothermal, hydropower, hard coal, solar and wind energies. Otherwise, Turkey may find herself in a competition with her neighboring countries

  15. Feasibility analysis in the expansion proposal of the nuclear power plant Laguna Verde: application of real options, binomial model

    International Nuclear Information System (INIS)

    Hernandez I, S.; Ortiz C, E.; Chavez M, C.

    2011-11-01

    At the present time, is an unquestionable fact that the nuclear electrical energy is a topic of vital importance, no more because eliminates the dependence of the hydrocarbons and is friendly with the environment, but because is also a sure and reliable energy source, and represents a viable alternative before the claims in the growing demand of electricity in Mexico. Before this panorama, was intended several scenarios to elevate the capacity of electric generation of nuclear origin with a variable participation. One of the contemplated scenarios is represented by the expansion project of the nuclear power plant Laguna Verde through the addition of a third reactor that serves as detonator of an integral program that proposes the installation of more nuclear reactors in the country. Before this possible scenario, the Federal Commission of Electricity like responsible organism of supplying energy to the population should have tools that offer it the flexibility to be adapted to the possible changes that will be presented along the project and also gives a value to the risk to future. The methodology denominated Real Options, Binomial model was proposed as an evaluation tool that allows to quantify the value of the expansion proposal, demonstrating the feasibility of the project through a periodic visualization of their evolution, all with the objective of supplying a financial analysis that serves as base and justification before the evident apogee of the nuclear energy that will be presented in future years. (Author)

  16. Electricity and nuclear energy

    International Nuclear Information System (INIS)

    Krafft, P.

    1987-01-01

    Consequences of getting out from nuclear energy are discussed. It is concluded that the Chernobyl accident is no reason to withdraw confidence from Swiss nuclear power plants. There are no sufficient economizing potential and other energies at disposal to substitute nuclear energy. Switching to coal, oil and gas would increase environmental damages. Economic and social cost of getting out would be too high

  17. Disposition of plutonium from dismantled nuclear weapons: Fission options and comparisons

    International Nuclear Information System (INIS)

    Omberg, R.P.; Walter, C.E.

    1993-01-01

    Over the next decade, the United States expects to recover about 50 Mg of excess weapon plutonium and the Republic of Russia expects to recover a similar amount. Ensuring that these large quantities of high-grade material are not reused in nuclear weapons has drawn considerable attention. In response to this problem, the US Department of Energy (DOE) chartered the Plutonium Disposition Task Force (PDTF), in the summer of 1992, to assess a range of practical means for disposition of excess US plutonium. This report summarizes and compares the ''Fission Options'' provided to the Fission Working Group Review Committee (the committee) of the PDTF. The review by the committee was based on preliminary information received as of December 4, 1992, and as such the results summarized in this report should also be considered preliminary. The committee concluded that irradiation of excess weapon plutonium in fission reactors in conjunction with the generation of electricity and storing the spent fuel is a fast, cost-effective, and environmentally acceptable method of addressing the safeguards (diversion) issue. When applied appropriately, this method is consistent with current nonproliferation policy. The principal effect of implementing the fission options is at most a moderate addition of plutonium to that existing in commercial spent fuel. The amount of plutonium in commercial spent fuel by the year 2000 is estimated to be 300 Mg. The addition of 50 Mg of excess weapon plutonium, in this context, is not a determining factor, moreover, several of the fission options achieve substantial annihilation of plutonium

  18. Nuclear energy: a sensible alternative

    International Nuclear Information System (INIS)

    Ott, K.O.; Spinrad, B.I.

    1985-01-01

    This book presents information on energy futures; energy demand, energy supplies; exclusive paths and difficult choices--hard, soft, and moderate energy paths; an energy-deficient society; energy shortages; economics of light-water reactors; fast breeder reactor economics; international cooperation in the nuclear field; nuclear recycling; alternative fuels, fuel cycles, and reactors; the nuclear weapons proliferation issue; paths to a world with more reliable nuclear safeguards; the homemade bomb issue; LWR risk assessment; accident analysis and risk assessment; the waste disposal risk; radon problems; risks in our society; health effects of low-level radiation; routine releases of radioactivity from the nuclear industry; low-level radioactivity and infant mortality; the myth of plutonium toxicity; myths about high-level radioactive waste; the aging reactor myth; the police state myth; insurance and nuclear power--the Price-Anderson Act; and solar and nuclear power as partners

  19. The sustainable development of nuclear energy

    International Nuclear Information System (INIS)

    Guo Huifang

    2012-01-01

    The wide use of nuclear energy has promoted the development of China's economy and the improvement of people's living standards. To some extent, the exploitation of nuclear power plants will solve the energy crisis faced with human society. Before the utilization of nuclear fusion energy, nuclear fission energy will be greatly needed for the purpose of alleviating energy crisis for a long period of time. Compared with fossil fuel, on the one hand, nuclear fission energy is more cost-efficient and cleaner, but on the other hand it will bring about many problems hard to deal with, such as the reprocessing and disposal of nuclear spent fuel, the contradiction between nuclear deficiency and nuclear development. This paper will illustrate the future and prospect of nuclear energy from the perspective of the difficulty of nuclear development, the present reprocessing way of spent fuel, and the measures taken to ensure the sustainable development of nuclear energy. By the means of data quoting and comparison, the feasibility of sustainable development of nuclear energy will be analyzed and the conclusion that as long as the nuclear fuel cycling system is established the sustainable development of nuclear energy could be a reality will be drawn. (author)

  20. Options for Management of Spent Fuel and Radioactive Waste for Countries Developing New Nuclear Power Programmes

    International Nuclear Information System (INIS)

    2013-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. Today, numerous countries are considering construction of their first nuclear power plant or the expansion of a small nuclear power programme, and many of these countries have limited experience in managing radioactive waste and spent nuclear fuel. They often have limited information about available technologies and approaches for safe and long term management of radioactive waste and spent nuclear fuel arising from power reactors. The lack of basic know-how and of a credible waste management strategy could present a major challenge or even an obstruction for countries wishing to