WorldWideScience

Sample records for nuclear energy option

  1. Nuclear energy: a necessary option

    International Nuclear Information System (INIS)

    Robles N, A. G.; Ramirez S, J. R.; Esquivel E, J.

    2017-09-01

    With the decree of the Energy Reform and with the creation of the Electricity Industry and Energy Transition Laws; nuclear energy is incorporated into these as a source of clean energy. Currently, the share of electricity generation using conventional technologies is 80% and clean technologies of 20% of which hydroelectric plants represent 50% of these. While the operation of hydroelectric, wind, solar plants, etc. have contributed to reduce greenhouse gas emissions (GGE), the global effort to mitigate climate change has not observed the expected results, according to the meeting of COP 21 in Paris, where 196 countries agreed, unanimously, to limit the increase of the temperature at 2 degrees Celsius or less for before the year 2100. In Paris, Mexico voluntarily submitted its national mitigation and adaptation contribution to climate change by issuing 162 M ton of CO 2eq as a goal to 2030, that is a ΔGGE of -22%. This means that the electricity sector should contribute to the reduction of 139 M ton of CO 2eq and a ΔGGE of -31%. According to some experts, the goal of reducing gases for the sector could be achieved during the period defined in the Agreement, provided that the share of clean energies is added as established in the Energy Reform and the Development Program of the National Electric System 2016-2030, which establishes the addition of 35,532 MW (62%) of installed capacity in clean technologies, where nuclear energy participates with 4,191 MW (7%) that is, 2,651 MW more. Thus, this article aims to show the importance of the use of nuclear energy in the electricity sector to reduce GGE, achieve international commitments and combat climate change. (Author)

  2. National energy planning with nuclear option

    International Nuclear Information System (INIS)

    Soetrisnanto, Arnold Y.; Hastowo, Hudi; Soentono, Soedyartomo

    2002-01-01

    National energy planning with nuclear option. Energy planning development is a part of the sustainable development that supports the attainment of national development goals. The objective of the study is to support the national planning and decision-making process in the energy and electric sector in Indonesia with nuclear option for period of 1998-2027. This study performs the provision of detailed economic sector and regional energy demand projection by MAED simulation model based on the economic and population scenarios. The optimization of the future energy supply such as electricity supply taking all known Indonesian energy sources and all relevant technologies into consideration by MARKAL Model. The results shows that Indonesia's need for final energy is forecasted to increase two times, from 4028,4 PJ at the beginning of study become 8145,6 PJ at the end of study. Performing the sensitivity study, it is predicted that nuclear energy could be introduced in the Java-Bali electricity grid about year 2016

  3. Energy and the environment: 'the nuclear option'

    International Nuclear Information System (INIS)

    Hawley, Robert

    1997-01-01

    The world's consumption of primary energy continues to rise rapidly, mainly because of the developing countries who cannot yet provide the services essential to improving the quality of life. Increasing energy consumption, the effect it will have on the world's finite resources and, more importantly, on the environment, leave the world's population facing serious challenges. This paper will briefly consider the power generation technology options that offer sustainable development including the role that nuclear power plays today, and will need to play in the next century, to preserve and improve the quality of life worldwide. (author)

  4. Nuclear energy - an option for Croatian sustainable development

    International Nuclear Information System (INIS)

    Mikulicic, V.; Skanata, D.; Simic, Z.

    1996-01-01

    The uncertainties of growth in Croatian future energy, particularly electricity demand, together with growing environmental considerations and protection constraints, are such that Croatia needs to have flexibility to respond by having the option of expanding the nuclear sector. The paper deals with nuclear energy as an option for croatian sustainable economic development. The conclusion is that there is a necessity for extended use of nuclear energy in Croatia because most certainly nuclear energy can provide energy necessary to sustain progress. (author)

  5. Nuclear energy - option for the future. Proceedings

    International Nuclear Information System (INIS)

    1996-01-01

    The goal of this conference was to analyse the future national and international problems arising with energy supplies with regard to the large mass flows and CO 2 flows involved in the use of nuclear energy. The following topics are dealt with: - nuclear energy, world-wide energy management and developments in Europe and Asia - disposal and ultimate waste disposal, plutonium management, an assessment of the Chernobyl accident 10 years on - new reactor developments in the energy mix - the costs arising with nuclear energy in the energy mix. In view of the demand made by climate researchers, to reduce CO 2 , and the additional construction work planned in the eastern and Asian areas, it will remain necessary for the Federal Republic of Germany,too, to maintain the know-how and technology for nuclear energy generation. (orig./DG)

  6. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Dixon, B.W.; Piet, S.J.

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected

  7. Nuclear power- the inevitable option for future energy needs

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    1995-01-01

    In the ensuring era development and deployment of electrical power sources will be governed by environmental changes, energy security and economical competitiveness. In the energy-mix scenario nuclear power has the potential and will make significant contributions in the coming decades. It is certain that nuclear power will continue to play a vital role in bridging the widening gap of demand and availability of energy in the years to come. In sum and substance, with the limited energy options available with India, nuclear power must assume greater share to meet the rapidly growing energy demands. Fortunately, country has a sound base for achieving the goal. 14 tabs., 3 figs

  8. Nuclear Energy: A Competitive and Safe Option, The EDF Experience

    International Nuclear Information System (INIS)

    Colas, F.

    1998-01-01

    Today, nuclear energy seems challenged by fossil energies, especially gas. However, the 1997's French government survey over energy options still places nuclear energy at the top of the list. The reasons why and how safe nuclear energy is still competitive are detailed in this paper. Most recent data from EDF's reactor will be discussed in terms of environmental and electricity production issues. The methods and management used to attain these results are explained for the different phases: design, construction, operation, and maintenance. The beneficial aspects over industrial development and local employment will be underlined. The influence of nuclear energy on EDF's financial results are shown, from past programme to today's operation. As most of french reactors are designed to adapt their output to the changes of load in the national grid, results are, as a conclusion, discussed in a small and medium electrical grid perspective. (author)

  9. The nuclear energy option an alternative for the 90s

    CERN Document Server

    Cohen, Bernard L

    1990-01-01

    University of Pittsburgh physicist Cohen provides accessible, scientifically sound risk analyses of the energy options that he believes must be exercised in the next 10 years. This update of his work on public energy policy stands opposed to the stack of recent greenhouse effect-oriented titles by proposing more nuclear power plants (including fuel reprocessing plants) as statistically the safest, most environmentally sound solution. Cohen advances the debate on energy policy for all sides by first quantifying the human health costs of coal- and oil-generated electricity, and by debunking solar technology's deus ex machina role. In this context, Cohen looks at issues surrounding nuclear power since Three Mile Island, such as the "unsolved problem" of nuclear waste disposal and the "China Syndrome." Media people especially are urged to re-examine "nuclear hysteria" (no one ever writes about " deadly natural gas," Cohen notes), and even anti-nuclear activists will find the study's appendices and notes a sourceb...

  10. Nuclear energy: a necessary option; Energia nuclear: una opcion necesaria

    Energy Technology Data Exchange (ETDEWEB)

    Robles N, A. G. [Comision Federal de Electricidad, Periferico Sur No. 4156, Col. Jardines del Pedregal, 01900 Ciudad de Mexico (Mexico); Ramirez S, J. R.; Esquivel E, J., E-mail: ambar.robles@cfe.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    With the decree of the Energy Reform and with the creation of the Electricity Industry and Energy Transition Laws; nuclear energy is incorporated into these as a source of clean energy. Currently, the share of electricity generation using conventional technologies is 80% and clean technologies of 20% of which hydroelectric plants represent 50% of these. While the operation of hydroelectric, wind, solar plants, etc. have contributed to reduce greenhouse gas emissions (GGE), the global effort to mitigate climate change has not observed the expected results, according to the meeting of COP 21 in Paris, where 196 countries agreed, unanimously, to limit the increase of the temperature at 2 degrees Celsius or less for before the year 2100. In Paris, Mexico voluntarily submitted its national mitigation and adaptation contribution to climate change by issuing 162 M ton of CO{sub 2eq} as a goal to 2030, that is a ΔGGE of -22%. This means that the electricity sector should contribute to the reduction of 139 M ton of CO{sub 2eq} and a ΔGGE of -31%. According to some experts, the goal of reducing gases for the sector could be achieved during the period defined in the Agreement, provided that the share of clean energies is added as established in the Energy Reform and the Development Program of the National Electric System 2016-2030, which establishes the addition of 35,532 MW (62%) of installed capacity in clean technologies, where nuclear energy participates with 4,191 MW (7%) that is, 2,651 MW more. Thus, this article aims to show the importance of the use of nuclear energy in the electricity sector to reduce GGE, achieve international commitments and combat climate change. (Author)

  11. U.S. energy policy: The nuclear energy option

    International Nuclear Information System (INIS)

    Erb, K.

    1992-01-01

    Thank you for the opportunity to talk about the role of nuclear energy in the President's National Energy Strategy, particularly as it affects your discussions at this International Aging Research Information Conference. Dr. D. Allan Bromley, the President's Science Advisor, asked me to convey to you his interest in your work - he has had a long association with your field - and to express his determination to work to help assure that nuclear energy realizes its potential as a safe, clean source of a substantial portion of our electricity. Dr. Bromley also asked me to read a message to the Conferees assembled here today, and I will do so at the conclusion of my remarks. The National Energy Strategy, or NES, is now just over one year old, and it is rapidly being translated into action. For example, the President's budget request proposes investing over $1.1 billion in FY 1993 toward implementation of the NES, an increase of 39% over our expenditures in 1991, the year the NES was formulated. This budget will support a broad range of activities, including results-oriented R ampersand D on a broad range of energy technologies. The Senate has passed an energy bill containing many of the elements of the NES, and the House is expected to pass a similar bill. But the aspect of the strategy that I want to discuss today is its conclusion that nuclear energy will become an increasingly important component of our energy supply portfolio. The NES reflects the realization that nuclear power provides an attractive means of generating the electricity that will be needed to support our economic growth and consequent improvements in quality of life as we move into the next century

  12. An Evaluation of Energy Storage Options for Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dufek, Eric J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    examination of energy storage options that could be integrated with nuclear generation. Figure 1 provides an overview of the 2015 energy mix by sector, which shows that NPPs are currently used exclusively for electricity generation that is ultimately consumed in the residential, commercial, and industrial sectors. Some areas for NPP energy growth in the future include power generation for electrified transportation and thermal generation for storage and industrial applications. Currently, most industrial thermal energy users combust fossil resources (i.e., coal or natural gas) to meet the energy needs of the processes, but heat from nuclear operations could also be used in certain specific applications.

  13. An Evaluation of Energy Storage Options for Nuclear Power

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bragg-Sitton, Shannon M.; Dufek, Eric J.

    2017-01-01

    examination of energy storage options that could be integrated with nuclear generation. Figure 1 provides an overview of the 2015 energy mix by sector, which shows that NPPs are currently used exclusively for electricity generation that is ultimately consumed in the residential, commercial, and industrial sectors. Some areas for NPP energy growth in the future include power generation for electrified transportation and thermal generation for storage and industrial applications. Currently, most industrial thermal energy users combust fossil resources (i.e., coal or natural gas) to meet the energy needs of the processes, but heat from nuclear operations could also be used in certain specific applications.

  14. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Brent W. Dixon; Steven J. Piet

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ∼100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation - Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in

  15. Energy options

    International Nuclear Information System (INIS)

    Hampton, Michael

    1999-01-01

    This chapter focuses on energy options as a means of managing exposure to energy prices. An intuitive approach to energy options is presented, and traditional definitions of call and put options are given. The relationship between options and swaps, option value and option exercises, commodity options, and option pricing are described. An end-user's guide to energy option strategy is outlined, and straight options, collars, participating swaps and collars, bull and bear spreads, and swaption are examined. Panels explaining the defining of basis risk, and discussing option pricing and the Greeks, delta hedging, managing oil options using the Black-Scholes model, caps, floors and collars, and guidelines on hedging versus speculation with options are included in the paper

  16. Nuclear energy for seawater desalination - options in future

    International Nuclear Information System (INIS)

    Yadav, M.K.; Murugan, V.; Balasubramaniyan, C.; Nagaraj, R.; Dangore, Y.

    2010-01-01

    Full text: With ever increasing water scarcity, many alternatives are being tried to supplement the existing water resources. There are regions where water is scarce and population is growing and is at the mercy of inadequate supplies. Seawater constitutes a practically unlimited source of saline water. When desalted, it can augment the existing potable water resources for the people in nearby area and also meet the increasing demand. BARC has been engaged in the field of desalination and developed expertise in both thermal and membrane technologies. It has setup 6300 M 3 /D Nuclear Desalination Demonstration Project (NDDP) at Kalpakkam, where both membrane and thermal technologies have been used for sea water desalination. Desalination process needs energy and nuclear energy is strong option in view of limited fossil fuels and environmental concerns. Multi Stage Flash (MSF) plant based on thermal technology has been coupled to MAPS Reactors and Sea Water Reverse Osmosis (SWRO) plant is based on membrane technology. This paper discusses various aspects of coupling of desalination plant with nuclear reactors and also discusses salient features of hybridization of thermal and membrane technologies

  17. Nuclear Option for a Secure and Sustainable Energy Supply

    International Nuclear Information System (INIS)

    Kolundzija, V.; Mesarovic, M.

    2002-01-01

    Present energy policy is required to ensure a balance between security of supply, competitiveness and environmental requirements. Recent changes involved by deregulation and liberalization of electricity and natural gas markets even strengthen such a policy. However, dependency on external energy sources carries risks that have to be managed since a large proportion of both oil and gas reserves are found in politically unstable regions. Electrical energy is a fundamental prerequisite for a civilized life and an essential commodity, but it cannot be stored and this restricts the extent to which there can be a real free market for electricity. Therefore, relying on imports of electricity to a large extent may prove unsecure because this requires a true, completely open market in which the opportunities for cross-border trade are effective and balanced and transport connections are adequate. This is equally applied to the countries in the South-Eastern Europe, despite very good prospects for development of the regional electricity market there. In this regard, the use of nuclear energy has not any risk associated with external dependency because there are abundant quantities of uranium available world-wide from many diverse sources. The inherent mitigation of supply risk associated with the use of uranium should act as an incentive to the further use of nuclear energy. In addition, already very large stocks of fuel assemblies and fuel-making materials available, especially when these are measured in terms of power generating capacity per year at current production rates. It is, therefore, very important for any country to recognize such strategic aspect of nuclear energy when addressing the issue of security of power supply. Nuclear option is in a unique position to restore its original role of the main source of energy with an increased attention paid to the security of electricity supply as well as regulatory changes affecting fossil fuels, particularly with due

  18. Nuclear option

    International Nuclear Information System (INIS)

    Olson, P.S.

    1983-01-01

    The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% from the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed

  19. Sustainablility of nuclear and non-nuclear energy supply options in Europe

    International Nuclear Information System (INIS)

    Kirchsteiger, C.

    2007-01-01

    In the course of the current discussion on promoting the economical competitiveness of sustainable energy systems, especially renewable and non-CO 2 -intensive ones, interest in nuclear energy has re-awakened in Europe (''nuclear renaissance''). This paper starts with presenting the concept of energy sustainability and its main elements. Next, an overview of the main results of sustainability assessments for different energy supply options (nuclear, fossil, renewables) covering full energy chains is given. Nuclear energy's typical strong and weak points are identified from a sustainability point of view. On the basis of these results, it is argued that more emphasis on nuclear energy's (very good) total cost performance, i.e. incl. externalities, rather than on its (very good) contribution to combating climate change would stronger benefit its ''renaissance''. Finally, the development of an overall EU-wide framework is proposed in order to assess the sustainability performance of alternative energy supply options, incl. nuclear, across their lifecycle and thus support decision making on developing sustainable energy mixes. (orig.)

  20. Perspective on long-range nuclear energy options

    International Nuclear Information System (INIS)

    Harms, W.O.

    1977-01-01

    The study group whose effort is presented here concluded that the United States urgently needs to have a breeder option available for possible deployment before the year 2000 primarily because of uncertainties in the availability of fossil fuels and uranium supplies. It was recommended that the U/Pu LMFBR program proceed as planned, including prompt construction of the CRBRP and its associated fuel cycle facilities. Alternative cycle studies should be pursued, but without significantly delaying the current program. There are technological choices which, in suitable political contexts, may somewhat reduce proliferation risks; of these, only those that employ breeders preserve the breeder option (and the nuclear option in the long term. These alternatives must be coupled with political agreements to have any significant effect on proliferation potential internationally. These same political agreements should suffice to control the U/Pu breeder cycle; there is only a difference in degree between the U/Pu and the denatured Th/U-233 cycles

  1. A new option for exploitage of future nuclear energy. Accelerator driven radioactive clean nuclear power system

    International Nuclear Information System (INIS)

    Ding Dazhao

    2000-01-01

    Nuclear energy is an effective, clean and safe energy resource. But some shortages of the nuclear energy system presently commercial available obstruct further development of the nuclear energy by heavy nuclear fission. Those are final disposal of the high level radioactive waste, inefficient use of the uranium resource and safety issue of the system. Innovative technical option is seeking for by the nuclear scientific community in recent ten years in aiming to overcome these obstacles, namely, accelerator driven sub-critical system (ADS). This hybrid system may bridge over the gap between presently commercial available nuclear power system and the full exploitation of the fusion energy. The basic principle of ADS is described and its capability in waste transmutation, conversion of the nuclear fuel are demonstrated by two examples--AD-fast reactor and AD-heavy water thermal reactor. The feasibility of ADS and some projects in US, Japan, etc are briefly discussed. The rationale in promoting the R and D of ADS in China is emphasized as China is at the beginning stage of its ambitious project in construction of the nuclear power

  2. Nuclear option

    Energy Technology Data Exchange (ETDEWEB)

    Kemm, K R

    1978-05-01

    The global outlook is that nuclear reactors are here to stay and South Africa has already entered the nuclear power stakes. This article discusses the rocketing oil prices, and the alternatives that can be used in power generation, the good safety record of the nuclear industry and the effect that South Africa's first nuclear power station should have on the environment.

  3. Meeting world energy needs. The economic and environmental aspects of the nuclear option

    International Nuclear Information System (INIS)

    Ward, D.P.; Chalpin, D.M.

    1994-01-01

    Tabulated capital, operating, and overall production costs for nuclear, coal, and gas-fuelled power show that nuclear power is a viable option for meeting the world's energy needs. The advantage of nuclear, otherwise limited to certain markets, is seen to be much greater when credit is taken for environmental factors, namely emissions of carbon dioxide and acidic gases by fossil-fuelled plants. 5 figs

  4. Innovative Energy Planning and Nuclear Option Using CANDLE Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, H; Nagata, A; Mingyu, Y [Tokyo Institute of Technology, Tokyo (Japan)

    2008-07-01

    A new reactor burn-up strategy CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move upward (or downward) along its core axis. This burn-up strategy can derive many merits. The change of excess reactivity along burn-up is theoretically zero for ideal equilibrium condition, and shim rods will not be required for this reactor. The reactor becomes free from accidents induced by unexpected control rods withdrawal. The core characteristics, such as power feedback coefficients and power peaking factor, are not changed during life of operation. Therefore, the operation of the reactor becomes much easier than the conventional reactors. The infinite-medium neutron multiplication factor of replacing fuel is less than unity. Therefore, the transportation and storage of replacing fuels becomes easy and safe, since they are free from criticality accidents. Small long life fast reactor with CANDLE burn-up concept has investigated with depleted uranium as a replacing fuel. Both core diameter and height are chosen to be 2.0 m, and the thermal power is 200 MW. Lead-bismuth is used as a coolant, and nitride (enriched N-15) fuel are employed. The velocity of burning region along burn-up is less than 1.0 cm/year that enables a long life design easily. The core averaged discharged fuel burn-up is about 40 percent. It is about ten times of light water reactor burn-up. The spent fuel volume becomes one-tenth of light water reactor spent fuel. If a light water reactor with a certain power output has been operated for 40 years, the CANDLE reactor can be operated for 2000 years with the same power output and with only depleted uranium left after fuel production for the light water reactor. The system does not need any reprocessing or enrichment. Therefore, the reactor operation becomes very safe, the waste

  5. Innovative Energy Planning and Nuclear Option Using CANDLE Reactors

    International Nuclear Information System (INIS)

    Sekimoto, H.; Nagata, A.; Mingyu, Y.

    2008-01-01

    A new reactor burn-up strategy CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move upward (or downward) along its core axis. This burn-up strategy can derive many merits. The change of excess reactivity along burn-up is theoretically zero for ideal equilibrium condition, and shim rods will not be required for this reactor. The reactor becomes free from accidents induced by unexpected control rods withdrawal. The core characteristics, such as power feedback coefficients and power peaking factor, are not changed during life of operation. Therefore, the operation of the reactor becomes much easier than the conventional reactors. The infinite-medium neutron multiplication factor of replacing fuel is less than unity. Therefore, the transportation and storage of replacing fuels becomes easy and safe, since they are free from criticality accidents. Small long life fast reactor with CANDLE burn-up concept has investigated with depleted uranium as a replacing fuel. Both core diameter and height are chosen to be 2.0 m, and the thermal power is 200 MW. Lead-bismuth is used as a coolant, and nitride (enriched N-15) fuel are employed. The velocity of burning region along burn-up is less than 1.0 cm/year that enables a long life design easily. The core averaged discharged fuel burn-up is about 40 percent. It is about ten times of light water reactor burn-up. The spent fuel volume becomes one-tenth of light water reactor spent fuel. If a light water reactor with a certain power output has been operated for 40 years, the CANDLE reactor can be operated for 2000 years with the same power output and with only depleted uranium left after fuel production for the light water reactor. The system does not need any reprocessing or enrichment. Therefore, the reactor operation becomes very safe, the waste

  6. Decisioneering in Nuclear Energy Systems : A Real Option View

    NARCIS (Netherlands)

    Lauferts, U.

    2012-01-01

    Financial- and Energy markets have one predominant characteristic in common: A large degree of uncertainty that drives the value of an investment in them. The thesis criticises the poor decision making support for investments into new generation capacity on base of pure cost comparison and NPV

  7. National Options for a Sustainable Nuclear Energy System: MCDM Evaluation Using an Improved Integrated Weighting Approach

    Directory of Open Access Journals (Sweden)

    Ruxing Gao

    2017-12-01

    Full Text Available While the prospects look bright for nuclear energy development in China, no consensus about an optimum transitional path towards sustainability of the nuclear fuel cycle has been achieved. Herein, we present a preliminary study of decision making for China’s future nuclear energy systems, combined with a dynamic analysis model. In terms of sustainability assessment based on environmental, economic, and social considerations, we compared and ranked the four candidate options of nuclear fuel cycles combined with an integrated evaluation analysis using the Multi-Criteria Decision Making (MCDM method. An improved integrated weighting method was first applied in the nuclear fuel cycle evaluation study. This method synthesizes diverse subjective/objective weighting methods to evaluate conflicting criteria among the competing decision makers at different levels of expertise and experience. The results suggest that the fuel cycle option of direct recycling of spent fuel through fast reactors is the most competitive candidate, while the fuel cycle option of direct disposal of all spent fuel without recycling is the least attractive for China, from a sustainability perspective. In summary, this study provided a well-informed decision-making tool to support the development of national nuclear energy strategies.

  8. Considering environmental health risks of energy options. Hydraulic fracturing and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    MacDonell, Margaret; Raymond, Michelle; Burganowski, Rachael; Vetrone, Andrea; Alonzo, Sydney [Argonne National Laboratory, Argonne, IL (United States). Environmental Science Div.

    2014-07-01

    Growing public concerns about climate change and environmental health impacts related to energy production have led to increased consideration of alternate sources. Nuclear power and unconventional oil and shale gas development are among the options least favored by the public, with pollutant releases resulting from routine operations as well as accidents being among the key concerns. Advances in ICT approaches and the increasingly widespread accessibility of information resources and tools have facilitated community-based initiatives and broader data sharing that can directly contribute to more informed evaluations of energy options, toward more sustainable programs from the local to the global scale.

  9. Nuclear energy-an essential option for sustainable development of global economy

    International Nuclear Information System (INIS)

    Tokio Kanoh

    2005-01-01

    Increased use of nuclear energy is an essential option for us to take the sustainable development of the global economy. The reasons are as follows: 1. Energy demand, especially in oil demand; 2. Environmental impact, especially greenhouse effect and carbon dioxide emissions, CO 2 emissions to be reduced 40% by increased use of nuclear power; 3. In the era of hydrogen, nuclear power can contribute in two ways. One is hydrogen production by electrolysis of water in conventional light water reactors powered by less costly late night electricity and the other by paralysis using high temperature gas produced in a high temperature testing reactor, Electric power consumption will increase 50% from 1990 to 2050. What is striking about his projection is types of fuels in use for power generation at that time which will consist of 60% nuclear, 10% hydro and 10% of other renewable energies. In other words, nearly 80% of fuels will be non-fossil sources

  10. New options for developing of nuclear energy using an accelerator-driven reactor

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1997-01-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor. Thus, the necessity of early introduction of the fast reactor can be moderated. High reliability of the proton accelerator, which is essential to implementing an accelerator-driven reactor in the nuclear energy field can be achieved by a slight extension of the accelerator's length, with only a small economical penalty. Subcritical operation provides flexible nuclear energy options including high neutron economy producing the fuel, transmuting high-level wastes, such as minor actinides, and of converting efficiently the excess Pu and military Pu into proliferation-resistant fuel

  11. National Option of China's Nuclear Energy Systems for Spent Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R.X. [University of Science and Technology, Daejeon (Korea, Republic of); Ko, W. I.; Lee, S. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Along with safety concerns, these long standing environmental challenges are the major factors influencing the public acceptance of nuclear power. Although nuclear power plays an important role in reducing carbon emissions from energy generation, this could not fully prove it as a sustainable energy source unless we find a consensus approach to treat the nuclear wastes. There are currently no countries that have completed a whole nuclear fuel cycle, and the relative comparison of the reprocessing spent fuel options versus direct disposal option is always a controversial issue. Without exception, nowadays, China is implementing many R and D projects on spent fuel management to find a long-term solution for nuclear fuel cycle system transition, such as deep geological repositories for High Level Waste (HLW), Pu Reduction by Solvent Extraction (PUREX) technology, and fast reactor recycling Mixed U-Pu Oxide (MOX) fuels, etc. This paper integrates the current nation's projects of back-end fuel cycle, analyzes the consequences of potential successes, failures and delays in the project development to future nuclear fuel cycle transition up to 2100. We compared the dynamic results of four scenarios and then assessed relative impact on spent fuel management. The result revealed that the fuel cycle transition of reprocessing and recycling of spent fuel would bring advantages to overall nuclear systems by reducing high level waste inventory, saving natural uranium resources, and reducing plutonium management risk.

  12. Nuclear Option in Korea

    International Nuclear Information System (INIS)

    Han, K. I.

    2002-01-01

    With sixteen(16) operating nuclear units in Korea, the share of nuclear power generation reached 41% of the total electric power generation as of December 2000. A prediction is that it would further increase to 44.5% by year 2015 according to the national long term power development plan. Four units are currently under construction with 6 more units in order. With little domestic energy resource and increasing energy demand to support national economic growth, Korea has chosen nuclear power as one of the major energy sources to ensure stable power supply and to promote energy self-sufficiency. It has been recognized that nuclear power in Korea is not a selective option but rather a necessity. The Korean nuclear power development started with construction of a 600 MWe size reactor that was designed and constructed by foreign vendors. As the national grid capacity became larger, the size of nuclear units increased to 1000 MWe class. In the mean time, the need for nuclear technology self-reliance grew not only in operation and maintenance but also in construction, manufacturing and design. For this, a nuclear technology self-reliance program has been embarked with the support of the Government and utility, and the 1000 MWe class KSNP(Korean Standard Nuclear Power Plant) has been developed. The KSNPs are currently being designed, manufactured, constructed and operated by relevant Korean entities themselves. To fit into a larger capacity national grid and also to improve nuclear economic competitiveness, the 1400 MWe class KNGR(Korean Next Generation Reactor) design has been developed uprating the 1000 MWe KSNP design. Its construction project is currently under contract negotiation, and is planned to be finished by 2010. In the mean time, to be ready for future electric power market deregulation, the 600 MWe class small KSNP design is being developed downsizing the KSNP. A modular small size reactor, SMART(System Integrated Modular Advanced Reactor) is also being

  13. Nuclear Power Remains Important Energy Option for Many Countries, IAEA Ministerial Conference Concludes

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: Nuclear power remains an important option for many countries to improve energy security, provide energy for development and fight climate change, the International Ministerial Conference on Nuclear Power in the 21st Century concluded today. Participants also emphasised the importance of nuclear safety in the future growth of nuclear power, noting that nuclear safety has been strengthened worldwide following the March 2011 accident at TEPCO's Fukushima Daiichi Nuclear Power Station. The Conference was organised by the International Atomic Energy Agency (IAEA) in cooperation with the Nuclear Energy Agency (NEA) of the Organisation for Economic Co-operation and Development (OECD), and hosted by the Government of the Russian Federation through the State Atomic Energy Corporation ROSATOM. Sergei Kirienko, Director General of the State Atomic Energy Corporation ROSATOM, said: ''The Conference has achieved its main goal: to confirm that nuclear energy is an important part of the world's energy-mix. The innovative character of this type of energy provides us with sustainable development in the future. The closed nuclear fuel cycle and fusion may open for humanity absolutely new horizons. The Conference underlined the leading role of the IAEA in promoting the peaceful use of nuclear power and provision of the non-proliferation regime. Russia as a co-founder of the IAEA will always support its efforts to develop and expand safety and security standards all over the world.'' ''I believe we can look ahead with confidence and optimism to the future of nuclear power in the 21st century,'' said IAEA Director General Yukiya Amano. After the accident at the Fukushima Daiichi Nuclear Power Plant in Japan in March 2011, ''effective steps have been taken to make nuclear power plants safer everywhere,'' he stressed. ''Nuclear power will make a significant and growing contribution to sustainable development in the coming decades. The IAEA is committed to ensuring that the

  14. Nuclear energy option for energy security and sustainable development in India

    International Nuclear Information System (INIS)

    Mallah, Subhash

    2011-01-01

    India is facing great challenges in its economic development due to the impact on climate change. Energy is the important driver of economy. At present Indian energy sector is dominated by fossil fuel. Due to international pressure for green house gas reduction in atmosphere there is a need of clean energy supply for energy security and sustainable development. The nuclear energy is a sustainable solution in this context to overcome the environmental problem due to fossil fuel electricity generation. This paper examines the implications of penetration of nuclear energy in Indian power sector. Four scenarios, including base case scenario, have been developed using MARKAL energy modeling software for Indian power sector. The least-cost solution of energy mix has been measured. The result shows that more than 50% of the electricity market will be captured by nuclear energy in the year 2045. This ambitious goal can be expected to be achieved due to Indo-US nuclear deal. The advanced nuclear energy with conservation potential scenario shows that huge amounts of CO 2 can be reduced in the year 2045 with respect to the business as usual scenario.

  15. The electricity supply options in Cuba and the potential role of nuclear energy

    International Nuclear Information System (INIS)

    Perez Martin, D.; Lopez Lopez, I.

    2000-01-01

    Cuba is poor in primary energy resources. After an economic crisis initiated in 1990, a recuperation process began in 1994, but in the electric sector we could not reach the 1989 generation level. A comparative assessment of different options to cover electricity demand until 2015 performed using DECADES tools shows that the most important options are: hydro, nuclear, biomass, combined cycle and combustion turbines. The nuclear power option in the evaluated electric system expansion cases can play an important economic and environment role. The introduction of one nuclear power plant will save 330 million dollars in the expansion of the national electricity system. Environment emissions calculations during the study period, taking into consideration only the generation step, show that only the introduction of one NPP until 2015 will produce significant environment benefits. With the assumption that in generation step hydro, nuclear and biomass plants do not produce emissions, if the amount of electricity generated by these plants during study period would be generated in conventional Oil Steam Boilers with typical emission factors for Cuban conditions, the CO 2 emissions would increase in 26 millions tonnes, 576 thousand tonnes of SO x and 102 thousand tonnes of NO x . The NPP cover 80% of these reductions. (author)

  16. Energy exotic options

    International Nuclear Information System (INIS)

    Kaminski, V.; Gibner, S.; Pinnamaneni, K.

    1999-01-01

    This chapter with 88 references focuses on the use of exotic options to control exposure to energy prices. Exotic options are defined, and the conversion of a standard option into an exotic option and pricing models are examined. Pricing and hedging exotic options, path-dependent options, multi-commodity options, options on the minimum-or-maximum of two commodities, compound options, digital options, hybrid and complex structures, and natural gas daily options are described. Formulas for option pricing for vanilla, barrier, compound, options on minimum or maximum of two assets, and look back options are given in an appendix

  17. Nuclear technology options

    International Nuclear Information System (INIS)

    Salvatores, Massimo

    2013-01-01

    Different strategies and motivations in different countries have led to diverse options. In Europe the SNETP (Sustainable Nuclear Energy Technology Platform) has the objective of developing R&D supporting GEN-II (present) and GEN-III nuclear systems under development; allowing sustainability and minimisation of waste burden, promoting advanced Gen-IV Fast Reactors; and accounting for a Nuclear Cogeneration Industrial Initiative. A remarkable initiative in the USA has been the promotion of small modular reactors (SMRs) – at less than 300 MWe in capacity, much smaller than typical reactors – which can be an ideal choice for (remote) areas which cannot support a larger reactor. Compact scalable design offers a host of potential safety, construction and economic benefits. More “upbeat” strategies are expected in other areas of the world where significant increase in nuclear energy demand is predicted in the next decades. If this growth materialises, future fuel cycles characteristics, feasibility and acceptability will be crucial. This paper will discuss different scenarios for future fuel cycles, resources optimisation and/or waste minimization, the range from full fast reactor deployment to phase-out, management of spent nuclear fuel and the significant potential benefits of advanced cycles. The next 45 years will be dominated by deployment of standard large or medium size plants operating for 60 years. Available resources do allow it. However, fuel cycle will be a growing and most challenging issue and early assessments will be needed for public acceptance and policy decisions.

  18. Energy options and regional cooperation on nuclear energy in the Asia-Pacific region

    International Nuclear Information System (INIS)

    Shin, Jae In

    1986-10-01

    This paper reviews the extensive forms of Asia-Pacific regional cooperation in nuclear power to develop and provide economical and reliable energy supply for sound economical growths of developing countries in this region, which has seen rapid growth of energy consumption more than anywhere else in recent years. Nuclear power has received keen attention from DCs because it can provide a self-reliable energy supply and promote development of high technology in the associated engineering and manufacturing industries locally. However, due to the particular characteristics in nuclear power technology, a close cooperation is required between the seller(industrialized) and buyer(developing) countries. The Asia-Pacific regional cooperation in nuclear power is a step toward providing mutual benefits to the countries involved in this region, and this paper explores potential ways in formulating basic and systematic approaches and areas of full scope cooperation. (author)

  19. Energy options?; Energie opties?

    Energy Technology Data Exchange (ETDEWEB)

    Van Sark, W. (ed.)

    2006-05-15

    March 2006 the so-called Options Document was published by the Energy research Centre of the Netherlands (ECN) and the Netherlands Environmental Assessment Agency (MNP). The document is an overview of technical options to reduce energy consumption and emission of greenhouse gases up to 2020. Next to a brief summary of the document a few reactions and comments on the contents of the document are given. [Dutch] Maart 2006 publiceerde het Energieonderzoek Centrum Nederland (ECN) en het Milieu- en Natuurplanbureau (MNP) het zogenaamde Optiedocument energie en emissies 2010-2020. Daarin wordt een overzicht gegeven van de technische mogelijkheden voor vermindering van het energieverbruik en de uitstoot van broeikasgassen en luchtverontreinigende stoffen tot 2020. Naast een korte samenvatting van het document worden enkele reacties gegeven op de inhoud.

  20. Assessment of industrial energy options based on coal and nuclear systems

    International Nuclear Information System (INIS)

    Anderson, T.D.; Bowers, H.I.; Bryan, R.H.; Delene, J.G.; Hise, E.C.; Jones, J.E. Jr.; Klepper, O.H.; Reed, S.A.; Spiewak, I.

    1975-07-01

    Industry consumes about 40 percent of the total primary energy used in the United States. Natural gas and oil, the major industrial fuels, are becoming scarce and expensive; therefore, there is a critical national need to develop alternative sources of industrial energy based on the more plentiful domestic fuels--coal and nuclear. This report gives the results of a comparative assessment of nuclear- and coal-based industrial energy systems which includes technical, environmental, economic, and resource aspects of industrial energy supply. The nuclear options examined were large commercial nuclear power plants (light-water reactors or high-temperature gas-cooled reactors) and a small [approximately 300-MW(t)] special-purpose pressurized-water reactor for industrial applications. Coal-based systems selected for study were those that appear capable of meeting environmental standards, especially with respect to sulfur dioxide; these are (1) conventional firing using either low- or high-sulfur coal with stack-gas scrubbing equipment, (2) fluidized-bed combustion using high-sulfur coal, (3) low- and intermediate-Btu gas, (4) high-Btu pipeline-quality gas, (5) solvent-refined coal, (6) liquid boiler fuels, and (7) methanol from coal. Results of the study indicated that both nuclear and coal fuel can alleviate the industrial energy deficit resulting from the decline in availability of natural gas and oil. However, because of its broader range of application and relative ease of implementation, coal is expected to be the more important substitute industrial fuel over the next 15 years. In the longer term, nuclear fuels could assume a major role for supplying industrial steam. (U.S.)

  1. Distributed Energy Implementation Options

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Chandralata N [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-13

    This presentation covers the options for implementing distributed energy projects. It distinguishes between options available for distributed energy that is government owned versus privately owned, with a focus on the privately owned options including Energy Savings Performance Contract Energy Sales Agreements (ESPC ESAs). The presentation covers the new ESPC ESA Toolkit and other Federal Energy Management Program resources.

  2. The nuclear option

    International Nuclear Information System (INIS)

    De Villiers, J.W.L.

    1982-01-01

    Atomic Energy Board President, Dr J.W.L. de Villiers, looks at South Africa's power needs and seeks to justify the country's move into nuclear energy. South Africa's energy requirements, energy resources, future prospects for nuclear energy in South Africa and resource independence are discussed

  3. Contemplating future energy options

    International Nuclear Information System (INIS)

    Pooley, D.

    2005-01-01

    All political parties in the UK accept that we should move away from our reliance on fossil fuels towards a much greater use of alternative energy technologies. Nuclear power is one of these but finds minimal support in the political spectrum. The article reviews the European Commission's Advisory Group on Energy submission to the EC's report entitled 'Key Tasks for European Energy R and D'. The 'strength and weaknesses' of the various 'alternative energy' systems (including nuclear power) are summarised and then the key R and D tasks which, if they are carried out successfully, should make the eight selected technologies significantly more attractive. However, the message here is clear enough: there are no easy options, only a range of very imperfect possibilities, despite what enthusiastic proponents of each may say. Nuclear fission is certainly one of the most attractive options available, but the industry needs to continue to strive to eliminate the possibility of significant off-site releases, whether caused by plant failure or by human error or intention, and to prove beyond reasonable doubt the safety of high-level radioactive waste disposal. (author)

  4. Nuclear fusion as new energy option in a global single-regional energy system model

    International Nuclear Information System (INIS)

    Eherer, C.; Baumann, M.; Dueweke, J.; Hamacher, T.

    2005-01-01

    Is there a window of opportunity for fusion on the electricity market under 'business as usual' conditions, and if not, how do the boundary conditions have to look like to open such a window? This question is addressed within a subtask of the Socio-Economic Research on Fusion (SERF) programme of the European Commission. The most advanced energy-modelling framework, the TIMES model generator developed by the Energy Technology System Analysis Project group of the IEA (ETSAP) has been used to implement a global single-regional partial equilibrium energy model. Within the current activities the potential role of fusion power in various future energy scenarios is studied. The final energy demand projections of the baseline of the investigations are based on IIASA-WEC Scenario B. Under the quite conservative baseline assumptions fusion only enters the model solution with 35 GW in 2100 and it can be observed that coal technologies dominate electricity production in 2100. Scenario variations show that the role of fusion power is strongly affected by the availability of GEN IV fission breeding technologies as energy option and by CO 2 emission caps. The former appear to be a major competitor of fusion power while the latter open a window of opportunity for fusion power on the electricity market. An interesting outcome is furthermore that the possible share of fusion electricity is more sensitive to the potential of primary resources like coal, gas and uranium, than to the share of solar and wind power in the system. This indicates that both kinds of technologies, renewables and fusion power, can coexist in future energy systems in case of CO 2 emission policies and/or resource scarcity scenarios. It is shown that Endogenous Technological Learning (ETL), a more consistent description of technological progress than mere time series, has an impact on the model results. (author)

  5. Energy crisis in Nigeria: The nuclear option and the necessary regulatory framework for its success

    International Nuclear Information System (INIS)

    Faru, T.A.; Abubakar, M.B.; Sulaiman, S.

    2007-01-01

    Limited access or inappropriate planning and utilization of modern energy remain one of the major constrains to socio-economic development of Nigeria. The total installed electricity generation including that from all other sources based on PHCN estimates is about 6,603 MW and total exploitable hydro potential is currently at 12,220 MW. The electricity demand projection for a 10% annual growth of the GDP was given as 16,000 MW, 30,000 MW and 192,000 MW for the years 2010, 2015 and 2030 respectively. The electricity as currently generated is therefore grossly inadequate to meet our Domestic Demands, National Economic Empowerment and Development Strategy (NEEDS) and the Millennium Development Goals. This work is the study in the energy requirements for sustainable development. The study has also looked at the potential contributions of various energy resources for meeting this demand. It has identified the limitations of these sources in satisfying the National Energy Requirement and has highlighted the suitability of Nuclear Energy the option in meeting the projected energy demand and the necessary framework for its success

  6. Recycling and transmutation of spent fuel as a sustainable option for the nuclear energy development

    International Nuclear Information System (INIS)

    Maiorino, Jose R.; Moreira, Joao M.L.

    2013-01-01

    The objective of this paper is to discuss the option of recycling and transmutation of radioactive waste against Once-through Fuel Cycle (OTC) based on uranium feed under the perspective of sustainability. We use a qualitative analysis to compare OTC with closed fuel cycles based on studies already performed such as the Red Impact Project and the comparative study on accelerator driven systems and fast reactors for advanced fuel cycles performed by the Nuclear Energy Agency. The results show that recycling and transmutation fuel cycles are more attractive than the OTC from the point of view of sustainability. The main conclusion is that the decision about the construction of a deep geological repository for spent fuel disposal must be reevaluated. (author)

  7. USP university students social representations and views on nuclear power as energy option

    International Nuclear Information System (INIS)

    Farias, Luciana A.; Favaro, Deborah I.T.

    2011-01-01

    The Nuclear Energy Research Institute (IPEN) is located on the campus of the University of Sao Paulo and has long been publishing nuclear science projects in order to improve public opinion and disseminate nuclear energy issues. However, few studies have investigated the perception of university students concerning nuclear energy. This study questioned whether the location of a nuclear research facility, as well as promotion of scientific projects, can positively influence student opinion when the nuclear research reactor is on campus and used purely for research purposes. This study further investigated the students' understanding of the terms 'nuclear energy' as well as their perception of the social issues involved. Free evocations of words were produced and collected starting from the stimulative inductor 'Nuclear Energy'. In this test, the interviewees are asked to associate five words and answer a questionnaire. A total of 124 students were interviewed for this study: 62 from the Chemistry, Pharmacy, Environmental Chemistry, Chemical Engineering and Nutrition Departments, 29 from the Oceanography Department and 33 from the Economics, Business Administration and Accounting Department. A total of 78% of the interviewed students answered that they had basic or average knowledge of nuclear energy, 46% claimed to have no knowledge of IPEN and the remainder students have answered that IPEN's activities were aimed at research in energy and production of radiopharmaceuticals, which shows little knowledge of the activities of the Institute. However, these students indicated Nuclear Energy as a strong for the diversification of energy sources. It should be noted that this study was undertaken before the nuclear accident caused by the 2011 Japan tsunami and earthquake. (author)

  8. Alternative energy options

    International Nuclear Information System (INIS)

    Bennett, K.F.

    1983-01-01

    It is accepted that coal will continue to play the major role in the supply of energy to the country for the remainder of the century. In this paper, however, emphasis has been directed to those options which could supplement coal in an economic and technically sound manner. The general conclusion is that certain forms of solar energy hold the most promise and it is in this direction that research, development and implementation programmes should be directed. Tidal energy, fusion energy, geothermal energy, hydrogen energy and fuel cells are also discussed as alternative energy options

  9. The nuclear energy like an option in Mexico before the climatic change

    International Nuclear Information System (INIS)

    Hernandez M, B.; Puente E, F.; Ortiz O, H. B.; Avila P, P.; Flores C, J.

    2014-10-01

    The current energy poverty, the future necessities of energy and the climatic change caused by the global warming, are factors that associates each, manifest with more clarity the unsustainable production way and energy consumption that demands the society in the current life. This work analyzes the nuclear energy generation like an alternative from the environmental view point that ties with the sustainable development and the formulation of energy use models that require the countries at global level. With this purpose were collected and reviewed documented data of the energy resources, current and future energy consumption and the international commitments of Mexico regarding to greenhouse gases reduction. For Mexico two implementation scenarios of nuclear reactors type BWR and A BWR were analyzed, in compliance with the goals and policy development established in the National Strategy of Climatic Change and the National Strategy of Energy; the scenarios were analyzed through the emissions to the air of CO 2 , (main gas of greenhouse effect) which avoids when the energy production is obtained by nuclear reactors instead of consumptions of traditional fuels, such as coal, diesel, natural gas and fuel oil. The obtained results reflect that the avoided emissions contribute from 4.2% until 40% to the national goal that Mexico has committed to the international community through the Convention Marco of the United Nations against the Climatic Change (CMNUCC). These results recommends to the nuclear energy like a sustainable energy solution on specific and current conditions for Mexico. (Author)

  10. Nuclear energy option, as seen from the economic point of view

    International Nuclear Information System (INIS)

    Kuehne, K.

    1980-01-01

    The attempt is made to assess realistically the prospects of utilizing nuclear energy. The emphasis is more on realization probabilities in connection with other energy sources than on strategies and planning. In doing so, safety and environmental issues are left out. The developments of nearly two decades are outlined. The data presented come from quotations of numerous recognized studies. As a result, the author is sceptical vis-a-vis the minimum and maximum values set up for individual energy sources by the year 2000. A few critical remarks are made on the economy of nuclear energy compared to coal and petroleum. (UA) [de

  11. Sustainable nuclear energy dilemma

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2013-01-01

    Full Text Available Sustainable energy development implies the need for the emerging potential energy sources which are not producing adverse effect to the environment. In this respect nuclear energy has gained the complimentary favor to be considered as the potential energy source without degradation of the environment. The sustainability evaluation of the nuclear energy systems has required the special attention to the criteria for the assessment of nuclear energy system before we can make firm justification of the sustainability of nuclear energy systems. In order to demonstrate the sustainability assessment of nuclear energy system this exercise has been devoted to the potential options of nuclear energy development, namely: short term option, medium term option, long term option and classical thermal system option. Criteria with following indicators are introduced in this analysis: nuclear indicator, economic indicator, environment indicator, social indicator... The Sustainability Index is used as the merit for the priority assessment among options under consideration.

  12. The Nuclear Energy Option for the U.S. - How Far Are We from Public Acceptance?

    International Nuclear Information System (INIS)

    Biedscheid, J.A.; Devarakonda, M.

    2004-01-01

    The recent rise of oil and gasoline prices accompanied by reluctant acknowledgement that traditional sources of energy are limited has renewed public interest in renewable energy sources. This perspective on energy is focusing attention on and facilitating acceptance of alternative energy concepts, such as solar, wind, and biomass. The nuclear energy alternative, while clean with potentially abundant fuel supplies and associated with low costs, is burdened with the frequently negative public opinion reserved for things nuclear. Coincident with the heightened examination of alternative energy concepts, 2004 marks the 25-year anniversary of the Three Mile Island accident. Since this pivotal accident in 1979, no new reactor licenses have been granted in the U.S. The resolution of the issues of nuclear waste management and disposition are central to and may advance public discussions of the future use of nuclear energy. The U.S. Department of Energy (DOE) is currently preparing the licensing application for Yucca Mountain, which was designated in 2003 as the site for a high-level waste and spent nuclear fuel repository in the U.S. The DOE also has been operating a deep geologic repository for the permanent disposal of transuranic (TRU) waste since 1999. The operational status of the Waste Isolation Pilot Plant (WIPP) as a repository for TRU waste was successfully realized along with the lesson learned that stakeholder trust and acceptance are as critical to the success of a repository program as the resolution of technical issues and obtaining regulatory approvals. For the five years of its operation and for decades prior, the challenge of attaining public acceptance of the WIPP has persisted for reasons aligned with the opposition to nuclear energy. Due to this commonality, the nuclear waste approach to public acceptance, with its pros and cons, provides a baseline for the examination of an approach for the public acceptance of nuclear energy in the U.S. This paper

  13. Proceedings of the Workshop on Program Options in Intermediate-Energy Physics. Keynote address: New directions in intermediate-energy nuclear physics

    International Nuclear Information System (INIS)

    Brown, G.E.

    1980-05-01

    This report presents the keynote address given by G.E. Brown at a LASL colloquium on August 21, 1979, for the Workshop on Program Options in Intermediate-Energy Physics. Professor Brown reviewed major topics of interest in intermediate-energy nuclear physics and suggested experimental approaches that might be most productive in the near future. 22 figures

  14. Idaho's Energy Options

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Neilson

    2006-03-01

    This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

  15. Fossil fuels, renewable and nuclear options to meet the energy and the environmental challenges

    International Nuclear Information System (INIS)

    Bacher, P.; Moncomble, J.E.

    1995-01-01

    In order to meet the world strongly growing energy demand, and especially electricity demand, there are a number of primary energy sources: hydro and new renewable, oil, natural gas, coal and nuclear. The energy mix adopted in each country will depend on a number of factors, such as geography, security of supply, financing capacity, environment, etc. Shares of the different fuels in electricity output are reviewed. Nuclear energy facts and issues are discussed from safety, environment and economics points of view, with a particular view on long-lived wastes that can be and are strictly controlled; properly managed, a nuclear program can be very cost efficient as demonstrated in France, Belgium or Canada, and it has many advantages: site selection, security of supply, no air pollution. 3 refs., 5 figs

  16. The resurgence of nuclear energy. An option for the climatic change and for the emergent countries?

    International Nuclear Information System (INIS)

    Campos A, L.; Nieva G, R.; Mulas, P.; Velez, C.; Ortiz M, J. R.; Thomas, S.; Finon, D.; Woodman, B.; Mez, L.

    2009-01-01

    The modern society is organized in mistaken form. A tremendous inability of the juridical, political, social and cultural system exists to interrelate the ecosystem (the resources that allow the life and the human activity) with the economic way of production, that is to say with the manner like the human beings appropriate of the nature and they transform it to satisfy the reproduction necessities of the capital and the population. Today we are already paying the consequences of this error. Of continuing with this tendency the next six years, a global increase of five centigrade grades is expected in the temperature, with effects like the increase of the sea level, floods, droughts, among other global problems, for what the gases of greenhouse effect are and they will continue being the main environmental challenge of the X XI century because they not represent alone a threat for the development but also for the humanity survival. The world conscience has wakened up, and in most of the countries where is stopped the construction of new nuclear power plants the plans are reconsidered to return the use of this source, being the two main reasons for reconsideration: the concern for the climatic change and the new world perception about the limits of fossil fuel reserves. The world return of the interest for the nuclear energy, it force to take in consideration the energy politics of Mexico whose structure is too much dependent of hydrocarbons and the import of liquefied natural gas and other energies, subject to the prices volatility and in a frame that lacks long term vision. Here the whole problem of the nuclear industry is exposed, the experiences, the risks, the costs, the future of the energy production for the populations that every time has a bigger consumption, the reader will have, this way, a wide panorama of diverse topics and interests that affect to generation of nuclear energy. (Author)

  17. Thermal control of high energy nuclear waste, space option. [mathematical models

    Science.gov (United States)

    Peoples, J. A.

    1979-01-01

    Problems related to the temperature and packaging of nuclear waste material for disposal in space are explored. An approach is suggested for solving both problems with emphasis on high energy density waste material. A passive cooling concept is presented which utilized conduction rods that penetrate the inner core. Data are presented to illustrate the effectiveness of the rods and the limit of their capability. A computerized thermal model is discussed and developed for the cooling concept.

  18. Shungnak Energy Configuration Options.

    Energy Technology Data Exchange (ETDEWEB)

    Rosewater, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Power systems in rural Alaska villages face a unique combination of challenges that can increase the cost of energy and lowers energy supply reliability. In the case of the remote village of Shungnak, diesel and heating fuel is either shipped in by barge or flown in by aircraft. This report presents a technical analysis of several energy infrastructure upgrade and modification options to reduce the amount of fuel consumed by the community of Shungnak. Reducing fuel usage saves money and makes the village more resilient to disruptions in fuel supply. The analysis considers demand side options, such as energy efficiency, alongside the installation of wind and solar power generation options. Some novel approaches are also considered including battery energy storage and the use of electrical home heating stoves powered by renewable generation that would otherwise be spilled and wasted. This report concludes with specific recommendations for Shungnak based on economic factors, and fuel price sensitivity. General conclusions are also included to support future work analyzing similar energy challenges in remote arctic regions.

  19. Future nuclear systems, Astrid, an option for the fourth generation: preparing the future of nuclear energy, sustainably optimising resources, defining technological options, sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ter Minassian, Vahe

    2016-01-01

    Energy independence and security of supplies, improved safety standards, sustainably optimised material management, minimal waste production - all without greenhouse gas emissions. These are the Generation IV International Forum specifications for nuclear energy of the future. The CEA is responsible for designing Astrid, an integrated technology demonstrator for the 4. generation of sodium-cooled fast reactors, in accordance with the French Sustainable Nuclear Materials and Waste Management Act of June 28, 2006, and funded as part of the Investments for the Future programme enacted by the French parliament in 2010. Energy management - a vital need and a factor of economic growth - is a major challenge for the world of tomorrow. The nuclear industry has significant advantages in this regard, although it faces safety, resource sustainability, and waste management issues that must be met through continuing technological innovation. Fast reactors are also of interest to the nuclear industry because their recycling capability would solve a number of problems related to the stockpiles of uranium and plutonium. After the resumption of R and D work with EDF and AREVA in 2006, the Astrid design studies began in 2010. The CEA, as owner and contracting authority for this programme, is now in a position to define the broad outlines of the demonstrator 4. generation reactor that could be commissioned during the next decade. A sodium-cooled fast reactor (SFR) operates in the same way as a conventional nuclear reactor: fission reactions in the atoms of fuel in the core generate heat, which is conveyed to a turbine generator to produce electricity. In the context of 4. generation technology, SFRs represent an innovative solution for optimising the use of raw materials as well as for enhancing safety. Here are a few ideas advanced by the CEA. (authors)

  20. Report of “the 2013 international forum on peaceful use of nuclear energy, nuclear non-proliferation and nuclear security. Ensuring nuclear non-proliferation and nuclear security of nuclear fuel cycle options in consideration of the accident at TEPCO's Fukushima Daiichi Nuclear Power Station”

    International Nuclear Information System (INIS)

    Yamamura, Tsukasa; Suda, Kazunori; Tomikawa, Hirofumi; Suzuki, Mitsutoshi; Kuno, Yusuke; Mochiji, Toshiro

    2014-03-01

    The Japan Atomic Energy Agency (JAEA) held “International Forum on Peaceful Use of Nuclear Energy, Nuclear Non-proliferation and Nuclear Security – Ensuring Nuclear Non-Proliferation and Nuclear Security of Nuclear Fuel Cycle Options in consideration of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station –” on 3 and 4 December 2013, with the Japan Institute of International Affairs (JIIA) and School of Engineering, The University of Tokyo, as co-hosts. In the Forum, officials from Japan, the United States, France and International Atomic Energy Agency (IAEA) explained their efforts regarding peaceful use of nuclear energy and nuclear non-proliferation. Discussion was made in two panels, entitled “Nuclear non-proliferation and nuclear security measures of nuclear fuel cycle options in consideration of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station” and “Roles of safeguards and technical measures for ensuring nuclear non-proliferation for nuclear fuel cycle options”. In the first panel based on the implications of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station on the domestic and global nuclear energy use and increased interest in the back end of nuclear fuel cycle, discussion was made on nuclear non-proliferation and nuclear security challenges on both fuel cycle options from the policy and institutional viewpoints whereas in the second panel the roles of safeguards and proliferation resistant nuclear technology including plutonium burning technology in ensuring nuclear non-proliferation and nuclear security in the back end of nuclear fuel cycle were discussed. Officials and experts from Japan, IAEA, the United States, France and Republic of Korea participated in the panel and made contributions to active discussion. This report includes abstracts of keynote speeches, summaries of two panel discussions and materials of the presentations in the forum. The editors take full responsibility for the wording

  1. The nuclear option

    International Nuclear Information System (INIS)

    Herken, G.

    1992-01-01

    A development history and current status evaluation are presented for nuclear-thermal rocket propulsion systems applicable to interplanetary flight. While the most advanced current chemical rocket engines, such as the SSMEs of the Space Shuttle, produce specific impulses of the order of 450 secs, a nuclear-thermal rocket engine tested at Los Alamos in 1969 generated 845 secs; such specific impulse improvements could represent weeks or months of interplanetary travel time. Attention is given to the achievements of the historical Nuclear Engine for Rocket Vehicle Application, Helios, and Orion design programs, as well as to the current Vehicle for Interplanetary Space Transportation Applications, which is fusion-based

  2. Energy options in France

    International Nuclear Information System (INIS)

    Carle, R.

    1980-01-01

    The rapid rise of oil price and the future shortage of oil are the problems, to which those in charge of energy must face. The method of maintaining and increasing energy consumption without destroying financial balance must be found. As the common points in Japan and France, domestic energy resources are scarce, coal reserves are small and the cost is high, the room for expanding water power generation hardly remains, and the atomic energy projects of large scale seem to be the only solution, but actually, they encountered many difficulties. In France, Energy Conservation Agency was established in 1974. The energy consumption per man was 4500 kWh in 1979, and it is not high level, accordingly it is difficult to reduce the present consumption further. The growth of electricity consumption in 1979 slowed down remarkably. The present crisis is oil crisis instead of energy crisis. Therefore electric power is the most suitable medium to get rid of the bondage of oil. The breakdown of heat production is as follows: coal 41%, oil 32%, gas 4%, and uranium 23%. Since 1976, 15 power plants of 3.5 million kW were converted to coal burning, but more staffs are required for the operation and maintenance. Water power generation is valuable to supplement nuclear power generation which lacks flexibility. As the nucleus of energy projects in France, PWR development project is in progress. Six 900 MW PWR plants are in operation. (Kako, I.)

  3. Nuclear energy

    International Nuclear Information System (INIS)

    Kuhn, W.

    1986-01-01

    This loose-leaf collection is made up of five didactically prepared units covering the following subjects: basic knowledge on nuclear energy, nuclear energy in relation to energy economy, site issues, environmental compatibility of nuclear energy, and nuclear energy in the focus of political and social action. To this was added a comprehensive collection of material: specific scientific background material, a multitude of tables, diagrams, charts etc. for copying, as well as 44 transparent charts, mostly in four colours. (orig./HP) [de

  4. 77 FR 19278 - Informational Meeting on Nuclear Fuel Cycle Options

    Science.gov (United States)

    2012-03-30

    ... DEPARTMENT OF ENERGY Informational Meeting on Nuclear Fuel Cycle Options AGENCY: Office of Fuel... activities leading to a comprehensive evaluation and screening of nuclear fuel cycle options in 2013. At this... fuel cycle options developed for the evaluation and screening provides a comprehensive representation...

  5. Fuel Options for Vehicles in Korea and Role of Nuclear Energy

    International Nuclear Information System (INIS)

    Jeong, Yong Hoon; Chang, Soon Heung

    2005-01-01

    Nowadays, almost all vehicles in Korea are powered by gasoline or diesel and they are emitting about 25% of nationwide total carbon dioxide emission. With jetting up price of oil and concerns about global warming by use of fossil fuel, transition to the hydrogen economy gains more and more interest. As alternatives to the current fossil powered vehicles, hybrid, hydrogen, electricity powered vehicles are considered. In short term we will reduce dependence upon fossil fuel by using hybrid cars. However, in the long term, we have to escape from the dependence on fossil fuel. In this context, nuclear-driven hydrogen or electricity powered cars are the alternatives. In this study, we estimated the operation cost of cars powered by hydrogen and electricity from nuclear power and studied about the major blocks on the way to independence from fossil fuels. In the analysis, we put the capital cost of car aside

  6. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options

    International Nuclear Information System (INIS)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J.; Parma, Edward J.Jr; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-01-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents

  7. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  8. Nuclear options in Latin America

    International Nuclear Information System (INIS)

    1983-11-01

    An account is given of the Treaty of Tlatelolco, 1967, providing for the designation of Latin America as a Nuclear Weapon-Free Zone (NWFZ); additional protocols attached to the Treaty are available for signature by States outside the region. The Treaty is administered by the Organisation for the Prohibition of Nuclear Weapons in Latin America (OPANAL). Reference is made to its latest meeting, held in May 1983. The present paper also discusses the following: Non-Proliferation Treaty (with references to safeguards agreements concluded between each State and the IAEA); nuclear suppliers' group; peaceful nuclear explosions; nuclear energy programmes in Latin America. (U.K.)

  9. Nuclear fusion as an energy option for the 21st Century

    International Nuclear Information System (INIS)

    Herrera V, J.J.E.

    2007-01-01

    Under the point of view of the engineering, it is even a long road to travel before it is possible to build an economically competitive fusion reactor. In contrast, for each obstacle in the road different forms can be devised of approaching it, and the future is promising, whenever the necessary financing exists to support the investigations. The fusion can contribute to satisfy the energy necessities for the development of the civilization in a sustainable way, to medium term if it is used in symbiosis with the fission reactors, providing fuel and transmuting radioactive waste. In any event, this focus should be developed spreading the safety primarily in mind, and so the processes are economically competitive. Just as it can be appreciate in the sections of this work, the investigation in fusion requires of determination, discipline, and it is not for the weak of spirit. While other energy sources, particularly the renewable ones, they should take advantage in Mexico, the fusion is the more plaintiff, and it requires of scientific and technological resources of forefront. In certain form, together with the fission technology, it determines the crossroad that separates to the developed countries of those that are 'developing'. Brazil, South Korea, China and India, aware of the necessity of enough energy sources to sustain their development, they have already taken the initiative to accept the challenge. It corresponds Mexico to follow the example, or to stay in the status of 'developing country.' (Author)

  10. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  11. Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

  12. Ghana and the nuclear power option

    International Nuclear Information System (INIS)

    Fletcher, J.J.; Ennison, I.

    2000-01-01

    For every country, dependable and continuous supply of electricity is a prerequisite for ensuring sustainable development. In Ghana, Ghanaians have currently known the consequences of disrupted and inadequate supply of electricity. Globally too the call of ''Agenda 21'' of the Rio de Janeiro Conference (Earth Summit) to engage in the development and supply of electricity in a sustainable manner imposes on us certain limitations in our choice of energy option to utilise. Taking into account the high economic and population growths with the subsequent increase in demand for electricity in the 21st century, the fact that Ghana has no coal and imports oil which will be in dwindling supply in the 21st century and that the total hydro supply in Ghana will not be sufficient for our electricity demand in the next century, this paper proposes that Ghana starts now to plan for the introduction of the nuclear option so that in the long term we may have in place an environmentally friendly, dependable and reliable supply of energy. The paper also highlights the economic competitiveness of nuclear power over the other energy options in Ghana and addresses the apprehension and misunderstanding surrounding the nuclear power option. (author)

  13. Nuclear energy in view

    International Nuclear Information System (INIS)

    1982-01-01

    This leaflet advertises the availability of the following from UKAEA: film and video titles (nuclear fuel cycle; energy for all; power from the atom; using radioactivity; fast reactor; energy - the nuclear option; principles of fission; radiation); slide-tape packs (16 titles); other information services. (U.K.)

  14. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  15. Energy options. Preparing for an uncertain future

    International Nuclear Information System (INIS)

    Andrews, H.R.; Harvey, M.

    1988-02-01

    We must begin now to plan to replace fossil fuels as a major energy source. Few energy sources are capable of supplying the vast amount of energy required. The only options that can play a major role are coal, hydro-electricity, and nuclear. The soft energy options are not reliable: we cannot control the blowing of the wind or the shining of the sun; biomass is susceptible to disease. If we were to become too dependent on these we would be surrendering our energy system to the vagaries of nature. A strong electrical system is a cornerstone of energy security. Surplus capacity is often criticized, but a shortfall in supply will cause industrial chaos. Nuclear power is based on a sustainable resource supply, uses a proven technology, is economically competitive, and causes minimal harm to human populations and the environment

  16. Energy options for Africa

    Energy Technology Data Exchange (ETDEWEB)

    Karekezi, S. (ed.) (Botswana Univ., Gaborone (Botswana). African Energy Policy Research Network Foundation for Woodstove Dissemination, Nairobi (Kenya)); Mackenzie, G.A. (ed.) (United Nations Environment Programme, Roskilde (Denmark). Collaborating Centre on Energy and Environment)

    1993-01-01

    While unsustainable energy generation and consumption have always been considered to be key causes of the degradation of the earth's environment, it was often assumed that in the case of Africa, its very low consumption of modern fuels would result in limited energy-related ecological problems. As demonstrated by the country cases contained in this volume, although energy-related environmental problems that afflict the continent are different from those faced in more developed parts of the world, their negative impact on the African populace is equally worrisome. The biomass sector in Africa presents a bewildering array of challenges, opportunities and constraints to the African energy policy maker. The continent is endowed with a rich source of biomass energy in the form of forests, woodlands, grasslands, agricultural residues and urban waste. Most of this abundant biomass energy resource base is either unexploited or utilized in an inefficient manner. (Author)

  17. Nuclear energy

    International Nuclear Information System (INIS)

    Wethe, Per Ivar

    2009-01-01

    Today we know two forms of nuclear energy: fission and fusion. Fission is the decomposition of heavy nuclei, while fusion is the melting together of light nuclei. Both processes create a large surplus of energy. Technologically, we can currently only use fission to produce energy in today's nuclear power plants, but there is intense research worldwide in order to realize a controlled fusion process. In a practical context, today's nuclear energy is a sustained source of energy since the resource base is virtually unlimited. When fusion technology is realized, the resource supply will be a marginal problem. (AG)

  18. Nuclear energy in China

    International Nuclear Information System (INIS)

    Gourievidis, G.

    1984-01-01

    Having first outlined the main problems China must resolve in the field of energy supply, this paper presents the nuclear option trends established by the government, recalls the different stages in the nuclear Chinese development programme, achievements and projects. The organization of nuclear research and industry, as also the fuel cycle situation and uranium resources are then described. Finally, the international nuclear cooperation policy carried out by the chinese government and more particularly the agreement settled with France are presented [fr

  19. The perspectives of nuclear option for Croatia

    International Nuclear Information System (INIS)

    Feretic, D.

    2004-01-01

    In order to satisfy the expected level of electricity consumption in Croatia it will be necessary, as a minimum, until the year 2020 to install about 2000 MW in new power plants. Gas and coal fired plants presently are main competitors to nuclear power plants. In near future it my be different due to expected problems with gas availability and cost increase and also in adverse environmental impact (particularly due to CO 2 emissions) of coal fired plants. Nuclear power plants have advantage not only in economics of produced energy but also in impact to the environment. Preservation of knowledge obtained during construction of NPP Krsko is also an important reason to maintain nuclear option. Pre construction and construction period for new plants (particularly for coal fired and nuclear plants) could be long so that timely start of preparatory activities is indispensable to meet the required schedule.(author)

  20. Public perceptions of nuclear power, climate change and energy options in Britain: summary findings of a survey conducted during October and November 2005

    Energy Technology Data Exchange (ETDEWEB)

    Wouter Poortinga; Nick Pidgeon; Irene Lorenzoni [University of East Anglia, Norwich (United Kingdom). Centre for Environmental Risk, School of Environmental Sciences

    2006-07-01

    This report presents the findings of a large-scale British survey (n=1491) of public opinion towards future energy options for the nation, with a focus on attitudes to nuclear power in the context of climate change. People are generally more interested and concerned about climate change than they are about nuclear power. People tend to favour renewable energy sources over fossil fuels, whilst nuclear power is the least favoured of the three. When asked about the future contribution of energy sources to reliable and secure electricity supplies, a slightly different picture appears: renewables are still most favoured, but nuclear power now gains a ranking above coal and oil and one comparable with gas. People do differentiate various electricity generation sources in terms of their (generally positive and negative) factors. In this respect the general stigma attached to nuclear power remains. Specifically, many people think it creates dangerous waste and is a hazard to human health. On the other hand, most people perceive wind power as clean, safe, good for the economy and cheap. Coal on the other hand is seen as polluting and (correctly) as a cause of climate change. If the costs of supplying the UK's energy needs were the same from either nuclear power or renewable energy sources, 77% of the respondents indicated they would prefer renewable energy sources. Less than 10% would prefer nuclear power over renewables under such circumstances. There was a strong preference for solutions other than nuclear power to mitigate climate change, such as promoting renewable energies (78%), or through lifestyle changes and energy efficiency (76%). 14 refs., 3 tabs.

  1. Option valuation for energy issues

    International Nuclear Information System (INIS)

    Ostertag, K.; Llerena, P.; Richard, A.

    2004-01-01

    In many industrial and economic situations, decision processes, both individual and collective, have to simultaneously face uncertainty and irreversibility of some kind. This is particularly valid for energy choices if they are linked to technological alternatives. The purpose of this book is to highlight specific aspects of these situations. This is done from the particular perspective of option valuation. The contributions to this book grew out of an international workshop on ''Option valuation in energy and environmental issues'' held at the Fraunhofer ISI in February 2003. This workshop brought together reseachers from energy economics, but also researchers working on option valuation in other empirical fields or with a more theoretical perspective. This is reflected in the organisation of the book, which starts with some theory-oriented contributions and subsequently presents more applied contributions in the field of energy economics with an extension to water infrastructure in the annex. (orig.)

  2. Options contracts in the nuclear fuel industry

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1995-01-01

    This article discusses options trading in the nuclear fuels industry. Although there now exists no formal options market in the nuclear industry, flexibilities, or embedded options, are actually quite common in the long-term supply contracts. The value of these flexibilities can be estimated by applying the methods used to evaluate options. The method used is the Black-Scholes Model, and it is applied to a number of examples

  3. Pawnee Nation Energy Option Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-31

    In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Based on the request of Pawnee Nation’s Energy Task Force the research team, consisting Tribal personnel and Summit Blue Consulting, focused on a review of renewable energy resource development potential, funding sources and utility organizational along with energy savings options. Elements of the energy demand forecasting and characterization and demand side options review remained in the scope of work, but were only addressed at a high level. Description of Activities Performed Renewable Energy Resource Development Potential The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Energy Efficiency Options While this was not a major focus of the project, the research team highlighted common strategies for reducing energy use in buildings. The team also discussed the benefits of adopting a building energy code and

  4. Nuclear energy

    International Nuclear Information System (INIS)

    Hesketh, Ross.

    1985-01-01

    The subject is treated under the headings: nuclear energy -what is it; fusion (principles; practice); fission (principles); reactor types and systems (fast (neutron) reactors as breeders; fast reactors; thermal reactors; graphite-moderated thermal reactors; the CANDU reactor; light water reactors - the BWR and the PWR); the nuclear fuel cycle (waste storage; fuel element manufacture; enrichment processes; uranium mining); safety and risk assessment; the nuclear power industry and the economy (regulating authorities; economics; advantages and disadvantages). (U.K.)

  5. Nuclear energy

    International Nuclear Information System (INIS)

    1996-01-01

    Several issues concerning nuclear energy in France during 1996 are presented: permission of a demand for installing underground laboratories in three sites (Marcoule, Bure and Chapelle-Baton); a report assessing the capacity of Superphenix plant to operate as a research tool; the project of merging between Framatome and Gec-Alsthom companies; the revision of a general report on nuclear energy in France; the issue of military plutonium management

  6. Nuclear energy

    International Nuclear Information System (INIS)

    Hladky, S.

    1985-01-01

    This booklet appeared in a series on technical history. It tries to communicate some of the scientific, technical and social stresses, which have been connected with the application of nuclear energy since its discovery. The individual sections are concerned with the following subjects: the search for the 'smallest particles'; the atomic nucleus; nuclear fission; the 'Manhattan Project'; the time after this - from the euphoria of the 1950's via disillusionment and change of opinion to the state of nuclear energy at the start of the 1980's. The booklet contains many details and is generously illustrated. (HSCH) [de

  7. The economics of nuclear energy

    International Nuclear Information System (INIS)

    Wilmer, P.

    2004-01-01

    In common with many of the issues surrounding nuclear energy, there is some truth in the popular claim that nuclear energy is 'not economic', but this is far from being a universal truth. This paper puts forward the view that, overall, nuclear energy can be a competitive source of electricity and a realistic economic option for the future. (author)

  8. Nuclear energy

    International Nuclear Information System (INIS)

    Rippon, S.

    1984-01-01

    Do we need nuclear energy. Is it safe. What are the risks. Will it lead to proliferation. The questions are endless, the answers often confused. In the vigorous debates that surround the siting and operation of nuclear power plants, it is all too easy to lose sight of the central issues amid the mass of arguments and counter-arguments put forward. And there remains the doubt, who do we believe. This book presents the facts, simply, straightforwardly, and comprehensibly. It describes the different types of nuclear reactor, how they work, how energy is produced and transformed into usable power, how nuclear waste is handled, what safeguards are built in to prevent accident, contamination and misuse. More important, it does this in the context of the real world, examining the benefits as well as the dangers of a nuclear power programme, quantifying the risks, and providing an authoritative account of the nuclear industry worldwide. Technically complex and politically controversial, the contribution of nuclear energy to our future energy requirements is a crucial topic of our time. (author)

  9. Nuclear energy

    International Nuclear Information System (INIS)

    Seidel, J.

    1990-01-01

    This set of questions is based on an inquiry from the years 1987 to 1989. About 250 people af all age groups - primarily, however, young people between 16 and 25 years of age - were asked to state the questions they considered particularly important on the subject of nuclear energy. The survey was carried out without handicaps according to the brain-storming principle. Although the results cannot claim to be representative, they certainly reflect the areas of interest of many citizens and also their expectations, hopes and fears in connection with nuclear energy. The greater part of the questions were aimed at three topic areas: The security of nuclear power-stations, the effects of radioactivity on people and the problem of waste disposal. The book centres around these sets of questions. The introduction gives a general survey of the significance of nuclear energy as a whole. After this follow questions to do with the function of nuclear power stations, for the problems of security and waste disposal - which are dealt with in the following chapters - are easier to explain and to understand if a few physical and technical basics are understood. In the final section of the book there are questions on the so-called rejection debate and on the possibility of replacing nuclear energy with other energy forms. (orig./HP) [de

  10. The future of the nuclear option

    International Nuclear Information System (INIS)

    Frost, B.R.T.

    1992-01-01

    This paper reports on the future of the nuclear option. No nuclear power reactors have been ordered in the U.S.A. since 1975, but the number of operating reactors has increased to the 115 operating today. The demand for electric power continues to grow. At this time, concern over the environmental effects of fossil fuels has grown; global warming and acid rain effects are major determinants of energy policy. In these circumstances nuclear power may be the only viable option to meet the growing demand for electricity. In the past decade the nuclear power industry has addressed its major critics by standardizing designs, improving operator training, and developing safe methods of disposing of waste products. Fast breeder reactors have taken a new lease on life through the American Integral Fast Reactor (IFR) design which is inherently safe, proliferation resistant, and helps the waste-disposal problem. It will probably not be commercially available until well into the next century. The extension of reactor life raises questions of long-term thermal and radiation effects

  11. Nuclear energy

    International Nuclear Information System (INIS)

    Panait, A.

    1994-01-01

    This is a general report presenting the section VII entitled Nuclear Power of the National Conference on Energy (CNE '94) held in Neptun, Romania, on 13-16 June 1994. The problems addressed were those relating to electric power produced by nuclear power plant, to heat secondary generation, to quality assurance, to safety, etc. A special attention was paid to the commissioning of the first Romanian nuclear power unit, the Cernavoda-1 reactor of CANDU type. The communications were grouped in four subsections. These were: 1. Quality assurance, nuclear safety, and environmental protection; 2. Nuclear power plant, commissioning, and operation; 3. Nuclear power plant inspection, maintenance, and repairs, heavy water technology; 4. Public opinion education. There were 22 reports, altogether

  12. Nuclear energy

    International Nuclear Information System (INIS)

    Reuss, Paul

    2012-01-01

    With simple and accessible explanations, this book presents the physical principles, the history and industrial developments of nuclear energy. More than 25 years after the Chernobyl accidents and few months only after the Fukushima one, it discusses the pros and cons of this energy source with its assets and its risks. (J.S.)

  13. Reasons for the nuclear power option

    International Nuclear Information System (INIS)

    Rotaru, I.; Glodeanu, F.; Mauna, T.

    1994-01-01

    Technical, economical and social reasons, strongly supporting the nuclear power option are reviewed. The history of Romanian nuclear power program is outlined with a particular focus on the Cernavoda Nuclear Power Plant project. Finally the prospective of nuclear power in Romania are assessed

  14. Evaluation of different fuel cycle options in accordance with nuclear energy production planning in Turkey. Final report for the period 15 December 1995 - 1 July 1998

    International Nuclear Information System (INIS)

    Uzmen, R.

    1998-08-01

    For two decades, Turkey has been considering the implementation of a nuclear power program in order to ensure a secure and ecologically non-pollutant electricity supply, and a site was selected at Akkuyu on the Mediterranean coaast. The energy gap predicted in recent projections could be partly filled by nuclear power. The present plan of the Ministry of Energy schedules the commissioning of at least 2,000 MWe nuclear capacity by 2010. In this report, firstly reference reactors were selected and then requirements of fuel material and services for these reactors were discussed according to Turkey's energy generation scenarios. For this study the reactor selection criteria are: 1) Provenness by operation, 2) Plant power rating, 3) Generic safety, and 4) Licensability. In this study, two types of reactors (PWR and PHWR) that meet the safety and selection criteria were taken into consideration. For Turkey's case, fuel demand and options were discussed according to these reactor types. Status and trends in the world in nuclear electricity generation, nuclear power projection, uranium production, uranium supply and demand relationships, future trends in supply and demand and supply projection were investigated. World uranium market, uranium prices analysis, refining and conversion, enrichment, fuel fabrication, fuel burnup and back-end options were thoroughly discussed. The economics of the nuclear fuel cycle was investigated, fuel costs for PWR and PHWR were calculated. As a result of the obtained reference data a table was prepared for fuel material and services requirements according to reactor type and size. The need for nuclear power in Turkey was discussed in detail, focussing on primary resources in Turkey, demand predictions, usage ratios of domestic and imported resources. Electricity generation scenarios for Turkey were discussed and final conclusions were drawn for Turkey's case. Comparisons of the domestic and imported resources in accordance with the

  15. Nuclear energy

    International Nuclear Information System (INIS)

    Luxo, Armand.

    1977-01-01

    The reasons and conditions of utilizing nuclear power in developing countries are examined jointly with the present status and future uses already evaluated by some organizations. Some consequences are deduced in the human, financial scientific and technological fields, with provisional suggestions for preparing the nuclear industry development in these countries. As a conclusion trends are given to show how the industrialized countries having gained a long scientific and technological experience in nuclear energy can afford their assistance in this field, to developing countries [fr

  16. Energy: nuclear energy

    International Nuclear Information System (INIS)

    Lung, M.

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  17. Pawnee Nation Energy Option Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-21

    Pawnee Nation of Oklahoma Energy Option Analyses In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Description of Activities Performed The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor

  18. Fusion as an energy option

    International Nuclear Information System (INIS)

    Steiner, D.

    1976-01-01

    The environmental issues, alternative fusion fuels, the economic potential, and the time scale of fusion power are assessed. It is common for the advocate of a long-term energy source to claim his source (fission, fusion, solar, etc.) as the ultimate solution to man's energy needs. The author does not believe that such a stance will lead to a rational energy policy. Dr. Steiner encourages a long-term energy policy that has as its goal the development of fission breeders, fusion, and solar energy--not be totally reliant on a single source. He does advocate vigorous funding for fusion, not because it is a guarantee for ''clean, limitless, and cheap power,'' but because it may provide an important energy option for the next century

  19. Energy options for the United Kingdom

    International Nuclear Information System (INIS)

    Warner, P.C.

    1979-03-01

    The purpose of this paper is to put together a picture of the energy policy options of the United Kingdom, drawn mainly from official documents but supplemented by comments and conclusions from the author. For some people the current energy debate is simplified down to nuclear power for and against. Much of this thinking seems to arise from misunderstanding, and the more the technical and social facts behind policy can be sorted out by discussions, the more sensible eventual policy will be. One extreme view, for instance, is that opinion is divided between those who are 'pro-industry, pro-production, and pro-nuclear' and those who are 'interested in ecology and therefore anti-nuclear.' Associations like those are high on the list of myths that need to be dispelled. It is therefore a further purpose of this paper to contribute to the general background of facts for those who are interested in this country's energy policies and who may not have time or the opportunity to work through original sources. Although the theme throughout is energy in the United Kingdom, it will be realised that extension to the world scale simply enhances shortages and problems. The paper is in sections, entitled: overall UK energy consumption; coal; oil; gas; the energy gap; alternative energy sources; the balance of primary resource need; electricity; the nuclear power programme; timing of power plant orders; conclusions. (U.K.)

  20. Nuclear energy and security

    International Nuclear Information System (INIS)

    Blejwas, Thomas E.; Sanders, Thomas L.; Eagan, Robert J.; Baker, Arnold B.

    2000-01-01

    Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadership or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity

  1. A case for reviving the nuclear option

    International Nuclear Information System (INIS)

    Smith, S.H. Jr.

    1991-01-01

    The US simply cannot afford to ignore an energy source that provides the economic, environmental, and strategic benefits that nuclear power has provided over the past three decades. Compared to the mix of coal, oil, and gas that would have been used to generate electricity in its absence, nuclear power has saved American consumers almost $5 billion in electricity charges since 1973; has cut annual SO 2 emissions by 5 million tons, NO x emissions by 2 million tons, and CO 2 emissions by 128 million tons; and has reduced annual oil imports by 270 million barrels. Indications are that the new advanced design reactors presently under development will be able to provide consumers with competitively priced electricity for decades to come. However, political issues, not technical ones, stand in the way. The industry is doing its part to make nuclear energy a viable option. But the industry cannot do it alone. Universities, environmental groups, political organizations, and others also have important roles to play

  2. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  3. Approach to studying the nuclear power option in Malaysia

    International Nuclear Information System (INIS)

    Jamal Khair Ibrahim; Mohamad Zam Zam

    1986-01-01

    As a rapid growth in industrialisation and population policy, energy consumption in Malaysia has increased cosiderably. The nation is pursuing a course of diversification of primary energy sources: gas, hydro, coal and oil. Recently nuclear power programme is assessed and evaluated as another energy option in the fuel strategy. Studies of infrastructure, manpower technological and other related considerations are included. Impacts and policy implications of the introduction of nuclear power in Malaysia are also discussed. (A.J.)

  4. Nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    2 1/2 years ago a consultation group was formed to help the Section for Social Questions of the Council of Churches in the Netherlands, to answer questions in the area of nuclear energy. During this time the character of the questions has changed considerably. In the beginning people spoke of fear and anxiety over the plans for the application of this new technical development but later this fear and anxiety turned to protest and opposition. This brochure has been produced to enlighten people and try and answer their alarm, by exploring the many facets of the problems. Some of these problems are already being deeply discussed by the public, others play no role in the forming of public opinion. The points of view of the churches over nuclear energy are not expressed, the brochure endeavours to express that nuclear energy problems are a concern for the churches. Technical and economic information and the most important social questions are discussed. (C.F.)

  5. The nuclear option in Canada - why it is gaining ground

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Alizadeh, A.; Hedges, K.R.; Tighe, P.

    2005-01-01

    Over the last five years, the nuclear option in Canada has gone from 'off-the-radar' to an essential part of the energy debate. In Ontario, in particular, building new nuclear plants, along with life-extension of existing plants, has been recommended by government commissions as one of the vital energy-supply options to be pursued. Both life-extension and introduction of new nuclear power plants are complicated by uncertainties in the energy market, and by changes in the organizational and policy environment. Public and policy-maker recognition of the nuclear role are steadily growing, but commercial conditions to support nuclear projects are still difficult to define and obtain. In Canada, as in many OECD countries, the need to add to electricity infrastructure is becoming apparent. Life-extension of existing nuclear units, and projects to build new unit, are being planned. The key challenges, once energy policy issues have been addressed, are mainly commercial. Based on its successful experience with overseas projects such as Quinshan, and on its evolutionary approach to design of new, advanced power plants, AECL is well placed to meet these challenges and launch a new round of nuclear projects. Overall, the Canadian perspective is towards increasing support for the nuclear option. Canada is poised to join the vanguard of the broadening nuclear power expansion. (orig.)

  6. Ukraine's non-nuclear option

    International Nuclear Information System (INIS)

    Batiouk, V.

    1992-01-01

    It seems that only yesterday the dilemma confronting our world was not that of war or peace but rather of life or death for mankind, the reason being mainly the prospect of mass annihilation which became increasingly vivid with each and every new explosive nuclear device added to the already existing enormous stockpiles of warheads of mass annihilation. Against this gloomy background of a despairingly reckless arms race, the long-awaited signs began to appear. First the United States and the Soviet Union found it possible to initiate the process by cutting into their immeasurable nuclear arsenals, then Ukraine declared its intention to become non-nuclear by the end of 1994. All the newly independent States, of the former Soviet Union, except Russia, also agreed to renounce possession of nuclear arms. The declarations were put into effect and the most recent specific action was the removal by 6 may 1992 of all short-range nuclear weapons from Ukrainian territory to Russian soil with a view to their ultimate dismantlement. The signature on 23 May 1992 in Lisbon by four ex-Soviet States (Belarus, Kazakhstan, Russia and Ukraine) and the United States of a Protocol to the 1991 Treaty on the Reduction of Strategic Offensive Weapons (START), significantly lowered the risk of nuclear war. By this accord Belarus, Kazakhstan and Ukraine agreed to destroy or turn over to Russia all strategic nuclear warheads and to accede ''in the shortest possible time to the 1968 Nuclear Non-proliferation Treaty''. In early May, Ukraine proposed to remove all nuclear weapons from the Black Sea and make it a zone of peace

  7. Uranium Resource Availability Analysis of Four Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Youn, S. R.; Lee, S. H.; Jeong, M. S.; Kim, S. K.; Ko, W. I.

    2013-01-01

    Making the national policy regarding nuclear fuel cycle option, the policy should be established in ways that nuclear power generation can be maintained through the evaluation on the basis of the following aspects. To establish the national policy regarding nuclear fuel cycle option, that must begin with identification of a fuel cycle option that can be best suited for the country, and the evaluation work for that should be proceeded. Like all the policy decision, however, a certain nuclear fuel cycle option cannot be superior in all aspects of sustain ability, environment-friendliness, proliferation-resistance, economics, technologies, which make the comparison of the fuel cycle options very complicated. For such a purpose, this paper set up four different fuel cycle of nuclear power generation considering 2nd Comprehensive Nuclear Energy Promotion Plan(CNEPP), and analyzed material flow and features in steady state of all four of the fuel cycle options. As a result of an analysis on material flow of each nuclear fuel cycle, it was analyzed that Pyro-SFR recycling is most effective on U resource availability among four fuel cycle option. As shown in Figure 3, OT cycle required the most amount of U and Pyro-SFR recycle consumed the least amount of U. DUPIC recycling, PWR-MOX recycling, and Pyro-SFR recycling fuel cycle appeared to consumed 8.2%, 12.4%, 39.6% decreased amount of uranium respectively compared to OT cycle. Considering spent fuel can be recycled as potential energy resources, U and TRU taken up to be 96% is efficiently used. That is, application period of limited uranium natural resources can be extended, and it brings a great influence on stable use of nuclear energy

  8. An environmental perspective on Lithuania's energy options

    International Nuclear Information System (INIS)

    Banks, A.; Todd, J.

    1995-01-01

    The views of experts on Lithuania's energy options are reviewed. On the one hand, nuclear energy is seen as an island of stability in the power industry in the conditions of economic crisis, and some decision-makers believe that Lithuania cannot survive without nuclear. On the other hand, the Ignalina NPP is the largest Chernobyl-type RBMK plant within the former Soviet Union, posing a dangerous environmental hazard to the Baltic Sea region, and no upgrading seems to be capable of bringing the reactors up to the safety standards of today's Western reactors. Many experts believe that the only solution is to shut the reactors down as soon as possible. (P.A.) 33 refs

  9. Energy priorities and options for the European Community

    International Nuclear Information System (INIS)

    Audland, C.J.

    1984-01-01

    The paper discusses the energy priorities and options for the European Community. Reasons for the recent improvement in the efficiency of energy use are briefly discussed, as well as the outlook for 1990, priorities for the future, solid fuels. natural gas, electricity and nuclear energy. Energy policy considerations in the United Kingdom are also mentioned. (U.K.)

  10. Multi-criteria Evaluation of Nuclear Option

    International Nuclear Information System (INIS)

    Feretic, D.; Tomsic, Z.; Jaksic, D.

    2002-01-01

    When evaluating power system expansion scenarios there is a need to take into consideration a range of measurable and non-measurable impacts. Measurable impacts are fixed and variable production costs and, recently, external costs. Non-measurable impacts include public attitude to certain energy technology and investor's risk in achieving the expected profit (regulatory and political risk). Public attitude has a large and sometimes essential impact on decision-making. It is mostly associated with the expected environmental impact of a potential power plant and can be divided in rational and non-rational part. Rational part, which is in proportion with scientifically approved environmental impact of energy options (inversely proportional to external costs) is relatively small, while the other, non-rational category which is not proportional with the actual environmental impact (especially in the case of nuclear power), is much larger. Investor's risk in achieving the expected profit is mostly associated with possible changes of domestic or foreign regulations or policy that can influence power plant operation and long-term fuel availability and price. Two factors that affect decision-making should be distinguished. The first is the total impact of certain non-measurable factor and the other is the impact of certain technology on that non-measurable factor like public impact, for example. The objective of multi-criteria evaluation, after weighting and quantification of all impacts is to determine the most acceptable power system expansion option. In the article a simplified quantification will be made of measurable (investment costs, annual maintenance costs, fuel price, indirect costs of power plants) and non-measurable (public attitude, investor's risk) elements that affect future investment decision. For that purpose possible relative values of non-measurable impacts of different options will be determined (their weights and impact on relative increase of annual

  11. Nuclear energy in Malaysia

    International Nuclear Information System (INIS)

    Jacob, F.X.

    1996-01-01

    The Malaysian Vision 2020 envisages doubling of the its economy every ten years for the next three decades. The Second Outline Perspective plan 1991-2000 (OPP2), also known as the National Development Policy (NDP) will set the pace to enable Malaysia to become a fully developed nation by the year 2020. The Malaysian economy is targeted to grow at 7 percent per annum in the decade of OPP2. In view of the targets set under Vision 2020, it is important to ensure that energy does not become a constraint to growth, and this sector develops in a least cost basis. Energy is crucial for industrialization and no modern industrial state can function without it. The paper presents a description of the main utilities in the country. Their installed capacities, maximum demand, generation mix and customers served are discussed. The electricity demand forecast till the year 2020 is presented. The paper presents this for 4 scenarios - a low growth, business as usual scenario, a moderate growth, business as usual scenario, a moderate growth, energy efficient scenario and a targeted growth, energy efficient scenario. The energy resources in the country is described together with its energy policy. The country's four-fuel policy is elaborated with the various options discussed. The environmental and pricing policies with regards to energy is also briefly given. Finally the nuclear option is presented in this context of the country's energy policy. The country had undertaken various studies for the nuclear option. These studies are given in the paper. The purpose of these studies and what the government decided is also discussed. Finally the prospects for the nuclear option in the future for the country is discussed. It is concluded that while, for the present, the nuclear option is not considered by the government, this may not be so in the future. The various reasons for this is given and the paper concludes that it may be prudent to keep this option under constant review. (J.P.N.)

  12. BS degree in nuclear engineering or a nuclear option

    International Nuclear Information System (INIS)

    Williams on, T.G.

    1988-01-01

    Many nuclear engineering educators are concerned about the health of nuclear engineering academic departments. As part of a review of the BS nuclear engineering degree program at the University of Virginia, the authors surveyed several local utilities with operating nuclear plants about their needs for nuclear engineering graduates. The perception of many of the utility executives about a nuclear engineering degree and about a nuclear option in another engineering curriculum does not agree with the way the authors view these two degrees. The responses to two of the survey questions were of particular interest: (1) does your company have a preference between nuclear engineering graduates and graduates in other fields with a nuclear option? (2) what do you consider to be a minimum level of education in nuclear engineering for a nuclear option in mechanical engineering? All of the four utilities that were surveyed stated a preference for mechanical or electrical engineers with a nuclear option, although two indicated that there are certain jobs for which a nuclear engineering graduate is desired

  13. The nuclear energy debate

    International Nuclear Information System (INIS)

    Rippon, S.

    1976-01-01

    With reference to the public discussion which is taking place at the moment concerning the future of nuclear energy in the UK, the document from the Advisory Council on Research and Development for Fuel and Power and also the report of the Royal Commission on Environmental Pollution are considered. Although there have been many other projections of UK and world energy requirements prepared by many different organisations, few cover such a wide range of scenarios in such detail as the ACORD report. The Royal Commission report contains many reassuring findings on the more extreme claims of the worldwide anti-nuclear movement, but one cannot read it without gaining the impression that the nuclear option is the energy source they would most like to do without. It is felt that against this background, it would seem to be time for the power industry to stop defending nuclear energy as an acceptable necessity and rather promoting it as the best energy option. (U.K.)

  14. Alternatives to nuclear energy

    International Nuclear Information System (INIS)

    Terrado, E.N.

    1981-01-01

    This article discusses several possibilities as alternatives to nuclear energy and their relevance to the Philippine case. The major present and future fuel alternatives to petroleum and nuclear energy are coal, geothermal heat, solar energy and hydrogen, the first two of which are being used. Different conversion technologies are also discussed for large scale electricity production namely solar thermal electric conversion (STC), photovoltaic electric power system (PEPS) and ocean thermal energy conversion (OTEC). Major environmental considerations affect the choice of energy sources and technologies. We have the problem of long term accumulation of radioactive waste in the case of nuclear energy; in geothermal and fossil-fuels carbon dioxide uranium and accumulation may cause disastrous consequences. With regard to Philippine option, the greatest considerations in selecting alternative energy options would be resources availability - both energy and financial and technology status. For the country's energy plan, coal and geothermal energy are expected to play a significant role. The country's coal resources are 1.4 billion metric tons. For geothermal energy, 25 volcanic centers were identified and has a potential equivalent to 2.5 x 10 6 million barrels of oil. Solar energy if harnessed, being in the sunbelt, averaging some 2000 hours a year could be an energy source. The present dilemma of the policy maker is whether national resources are better spent on large scale urban-based energy projects or whether those should be focused on small scale, rural oriented installations which produced benefits to the more numerous and poorer members of the population. (RTD)

  15. Nuclear power: A competitive option? Annex 3

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2002-01-01

    Because the future development of nuclear power will depend largely on its economic performance compared to alternatives, the OECD Nuclear Energy Agency (NEA) investigates continuously the economic aspects of nuclear power. This paper provides key findings from a series of OECD studies on projected costs of generating electricity and other related NEA activities. It addresses the cost economics necessary for nuclear units to be competitive, and discusses the challenges and opportunities currently faced by nuclear power. (author)

  16. I wonder nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Cheol

    2009-04-15

    This book consists seven chapters, which are powerful nuclear energy, principle of nuclear fission, nuclear energy in our daily life, is nuclear energy safe?, what is radiation?, radiation spread in pur daily life and radiation like a spy. It adds nuclear energy story through quiz. This book with pictures is for kids to explain nuclear energy easily.

  17. Energy policy options for Illinois. Proceedings. [26 papers

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Twenty-six papers presented at the Fifth Annual Oil Illinois Energy Conference are categorized into five sections, namely: An overview of U.S. and Illinois Energy Policy; Energy Policy; Conservation--Solar--Biomass and Solid Wastes; Energy Policy; Petroleum and Natural Gas; Energy Policy; Coal and Electric Utilities; and Economic and Consumer Concerns. One paper, A Perspective on Long-Range Nuclear Energy Options, by William O. Harms has previously appeared in EAPA 4: 1364. (MCW)

  18. Future energy options for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Zaric, Z P

    1982-05-01

    An educated guess is made of the energy demand in developing countries well into the next century in order to estimate the possible role of new and renewable sources in meeting this demand. The world is roughly divided into industrialized (IND) and developing (LDC) countries. A plot of energy demand in both parts shows a possible structure of mixed energy to meet LDC demand, but there is a gap between demand and supply from conventional sources in LDCs that has to be met by new and renewable sources. When the demand for specific energy forms is projected, as much as two thirds of the final energy needed from new sources should be based on centralized-electricity and liquid-fuels technologies. Solar and geothermal energy must compete with nuclear and thermonuclear breeders, while solar prospects for chemical fuel supply in LDCs lacking adequate coal reserves seems promising. There is a large gap in research and development (R and D) spending on new energy between the two parts, which means that LDCs will have inappropriate technology at a high price. An increase in R and D spending on a regional basis should target funds to appropriate options. 6 references, 7 figures.

  19. Nuclear energy and climate change

    International Nuclear Information System (INIS)

    Gonzalez Jimenez, A.

    2002-01-01

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO 2 emissions. (Author)

  20. Pakistan energy consumption scenario and some alternate energy option

    International Nuclear Information System (INIS)

    Maher, M.J.

    1997-01-01

    Pakistan with its energy-deficient resources is highly dependent on import-oriented energy affected the economy because of repeated energy price hike on international horizon. The energy consumption pattern in Pakistan comprises about two-third in commercial energy and one-third in non-commercial forms. Most of the country's energy requirements are met by oil, gas hydro power, coal, nuclear energy and thermal power. Pakistan meets it's commercial energy requirements indigenously up to 64%. The balance of deficit of 35-40% is met through import. The consumption of various agro-residues and wood as fuel also plays a vital role. The analysis shows that emphasis needs to be placed on new and renewable resources of energy besides adopting technologies for energy conservation. Renewable energy depends on energy income and constitutes the development process. The are several renewable energy options such as biogas technology, micro-hydro power generation, direct solar energy and biomass energy conservation etc. By improving the conservation techniques as designs of solar converters, pre treating the biomass fuel, increasing the effectiveness of carbonization and pyrolysis increases the energy production. (A.B.)

  1. Nuclear energy

    International Nuclear Information System (INIS)

    2007-01-01

    This digest document was written by members of the union of associations of ex-members and retired people of the Areva group (UARGA). It gives a comprehensive overview of the nuclear industry world, starting from radioactivity and its applications, and going on with the fuel cycle (front-end, back-end, fuel reprocessing, transports), the nuclear reactors (PWR, BWR, Candu, HTR, generation 4 systems), the effluents from nuclear facilities, the nuclear wastes (processing, disposal), and the management and safety of nuclear activities. (J.S.)

  2. How available is the nuclear option

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1982-01-01

    Energy ministers and heads of government of the major industrialized countries specify that we must make much greater use of nuclear energy by the end of this century. Developing countries give ample warning that their needs are just beginning to be felt. Experts are unanimous that the age of oil is finished and that coal and nuclear must be used to displace oil. Yet the facts today point in a different direction. What is the problem. Is more nuclear really needed. Is it really available. There is no technological factor that would preclude a much-larger role for nuclear energy. The conclusion must be that, despite all the brave pronouncements, decision makers do not want nuclear. This chapter considers some of the bases for this conclusion and deals with the reasons for concluding that there are no current technological impediments to nuclear energy

  3. Nuclear waste disposal: regional options for the Western Pacific

    International Nuclear Information System (INIS)

    Childs, I.

    1985-01-01

    The disposal of nuclear waste is a complex environmental problem involving the technology of containing a radiation hazard and the political problem of finding an acceptable site for a hazardous waste facility. The focus of discussion here is the degree to which Western Pacific countries are committed to nuclear power as an energy source, and the political and economic interdependencies in the region which will influence waste disposal options

  4. Accelerators and alternative nuclear fuel management options

    International Nuclear Information System (INIS)

    Harms, A.A.

    1983-01-01

    The development of special accelerators suggests the po tential for new directions in nuclear energy systems evolution. Such directions point towards a more acceptable form of nuclear energy by reason of the consequent accessibility of enhanced fuel management choices. Essential and specifically directed research and development activity needs to be under taken in order to clarify and resolve a number of technical issues

  5. Nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    This brochure is intended as a contribution to a better and more general understanding of one of the most urgent problems of present society. Emphasis is laid on three issues that are always raised in the nuclear debate: 1) Fuel cycle, 2) environmental effects of nuclear power plants, 3) waste disposal problems. (GL) [de

  6. Glossary of nuclear energy

    International Nuclear Information System (INIS)

    Seo, Du Hwan

    1987-01-01

    This book gives descriptions of explanations of terminologies concerning to nuclear energy such as analysis of financial safety of nuclear energy, radwaste disposal, fast breeder reactor, nuclear reactor and device, nuclear fuel and technique for concentration, using of nuclear energy radiation and measurement, plan for development of nuclear energy and international institution. This book includes 160 terms on nuclear energy and arranges in Korean alphabetical order.

  7. Energy options for residential buildings assessment

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Dincer, Ibrahim; Esmailzadeh, Ebrahim

    2013-01-01

    Highlights: ► Studying various building energy options. ► Assessing these options from various points. ► Comparing these options for better environment and sustainability. ► Proposing renewable energy options as potential solutions. - Abstract: The building sector, as one of the major energy consumers, demands most of the energy research to assess different energy options from various aspects. In this paper, two similar residential buildings, with either low or high energy consumption patterns, are chosen as case studies. For these case studies, three different renewable energy technology and three different hybrid systems are designed for a specified size. Then, the environmental impact indices, renewable energy indices, and the renewable exergy indices have been estimated for every energy options. Results obtained show that the hybrid systems (without considering the economics factors) are superior and having top indices. The importance of the energy consumption patterns in buildings are proven by the indices. By cutting the energy consumption to about 40% the environment index would increase by more than twice (2.1). Utilization of the non-fossil fuels is one part of the solution to environmental problems while energy conservation being the other. It has been shown that the re-design of the energy consumption model is less complex but more achievable for buildings.

  8. Nuclear energy and renewable energies

    International Nuclear Information System (INIS)

    1994-01-01

    The nuclear energy and the renewable energies namely: solar energy, wind energy, geothermal energy and biomass are complementary. They are not polluting and they are expected to develop in the future to replace the fossil fuels

  9. Nuclear spent fuel management. Experience and options

    International Nuclear Information System (INIS)

    1986-01-01

    Spent nuclear fuel can be stored safely for long periods at relatively low cost, but some form of permanent disposal will eventually be necessary. This report examines the options for spent fuel management, explores the future prospects for each stage of the back-end of the fuel cycle and provides a thorough review of past experience and the technical status of the alternatives. Current policies and practices in twelve OECD countries are surveyed

  10. Nuclear energy

    International Nuclear Information System (INIS)

    Lotter, A.C.

    1979-01-01

    The recent, terrifying threat of a major calamity at Pennsylvania's Three Mile Island power plant near Harrisburg reverberated across practically the whole of the civilised world. An almost incredible sequence of human and mechanical failures at this installation had stopped just short of disaster and had brought the unthinkable perilously close to happening. The accident had sprayed radioactive waste into the air and had led to the large scale evacuation of people from the endangered area, disrupted hundreds of thousands of lives and caused a crippling setback to the nuclear industry. In this article the author discusses the impact the Harrisburg incident has had on the nuclear industry

  11. Sustainable uranium energy - an optional future

    International Nuclear Information System (INIS)

    Meneley, D.

    2015-01-01

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more reasonable to expect

  12. Sustainable uranium energy - an optional future

    Energy Technology Data Exchange (ETDEWEB)

    Meneley, D. [Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)

    2015-06-15

    After 50 plus years of working on uranium fission principles and application, it is a bit hard for me to talk about anything else - but I'll give it a try. To start, I solemnly promise not to recommend to you any new reactor design - be it small, medium, modular, or large. The Uranium-fuelled power plant will be discussed ONLY as a finished product. Note that this sketch is an optional future. Ontario will, of course, take it or leave it, in whole or in part. This paper concentrates on future potential achievements of the CANDU nuclear energy systems. In the past, this venture has produced several modular systems, ranging from small (NPD and CANDU 3), medium (CANDU 6 and 6E) and large (Bruce, Darlington, and CANDU 9). All of these projects are more Ol' less finished products, and yet the CANDU concept still has broad scope for refinement and upgrading. This paper is, however, not about nuclear technology per se, but rather it is about what nuclear energy can do, both now and in the future. What does Ontario need to do next, in the line of technology applications that can help deal with the negative aspects of human-induced climate change? What energy systems can be installed to sustain the wealth and prosperity that Ontario's citizens now enjoy? What are the opportunities and the engineering challenges ahead of us? I do wish to apologize in advance for errors and omissions, and can only hope that missed details do not detract nor completely destroy an optimistic vision. Energy engineering is my game. Economics is not my specialty though it is an integral part of every engineering project. It is likely that the topic of economics will dominate the future choice of world energy supply, whatever that choice may be. Some people claim that the decisive factor dominating decisions with respect to uranium energy will be fear. In fact many opponents of the associated technology aim to induce fear as their main guiding theme. On the contrary, it is more

  13. The importance of university research in maintaining the nuclear option

    International Nuclear Information System (INIS)

    Bruschi, H.J.; Hochreiter, L.E.

    1991-01-01

    The role of the university in maintaining and revitalizing the nuclear option should have four goals. First, it must attract highly skilled students who have an interest in math and science and help foster their interest in nuclear science and engineering. Next, it must present a state-of-the-art educational program that contains meaningful research to maintain these students. The third goal of nuclear engineering departments is to provide the nontechnical student a fair assessment of benefits and risks associated with commercial nuclear power relative to other sources of electricity. Lastly, it must effectively communicate to all students a compelling vision of nuclear power as a vital energy resource that will grow. The most difficult role for the university is to successfully convey a future for those in the nuclear science and engineering program

  14. Nuclear Energy

    International Nuclear Information System (INIS)

    1982-11-01

    A brief indication is given of the United Kingdom nuclear power programme including descriptions of the fission process, the Magnox, AGR and PWR type reactors, the recycling process, waste management and decommissioning, safety precautions, the prototype fast reactor at Dounreay, and the JET fusion experiment. (U.K.)

  15. Nuclear energy and energy security

    International Nuclear Information System (INIS)

    Mamasakhlisi, J.

    2010-01-01

    Do Georgia needs nuclear energy? Nuclear energy is high technology and application of such technology needs definite level of industry, science and society development. Nuclear energy is not only source of electricity production - application of nuclear energy increases year-by-year for medical, science and industrial use. As an energy source Georgia has priority to extend hydro-power capacity by reasonable use of all available water resources. In parallel regime the application of energy efficiency and energy conservation measures should be considered but currently this is not prioritized by Government. Meanwhile this should be taken into consideration that attempts to reduce energy consumption by increasing energy efficiency would simply raise demand for energy in the economy as a whole. The Nuclear energy application needs routine calculation and investigation. For this reason Government Commission is already established. But it seems in advance that regional nuclear power plant for South-Caucasus region would be much more attractive for future

  16. Nuclear energy. Selective bibliography

    International Nuclear Information System (INIS)

    2011-07-01

    This bibliography gathers articles and books from the French National Library about civil nuclear energy, its related risks, and its perspectives of evolution: general overview (figures, legal framework, actors and markets, policies); what price for nuclear energy (environmental and health risks, financing, non-proliferation policy); future of nuclear energy in energy policies (nuclear energy versus other energies, nuclear phase-out); web sites selection

  17. Energy and the need for nuclear power

    International Nuclear Information System (INIS)

    1982-11-01

    The subject is discussed under the headings: fuel and mankind (world population estimates); fuel supply and demand (world nuclear and total primary energy demand forecasts); oil dependence; oil, gas and coal (world oil production and consumption; world coal reserves); nuclear option (consumption of nuclear energy in Western Europe; nuclear plant worldwide at December 1981; uranium reserves 1981); renewable resources; price of energy; Britain's need for nuclear power. (U.K.)

  18. Nuclear energy worldwide

    International Nuclear Information System (INIS)

    Fertel, M.

    2000-01-01

    In this short paper the author provides a list of tables and charts concerning the nuclear energy worldwide, the clean air benefits of nuclear energy, the nuclear competitiveness and the public opinion. He shows that the nuclear energy has a vital role to play in satisfying global energy and environmental goals. (A.L.B)

  19. Radiological impacts of spent nuclear fuel management options

    International Nuclear Information System (INIS)

    Riotte, H.; Lazo, T.; Mundigl, S.

    2000-01-01

    An important technical study on radiological impacts of spent nuclear fuel management options, recently completed by the NEA, is intended to facilitate informed international discussions on the nuclear fuel cycle. The study compares the radiological impacts on the public and on nuclear workers resulting from two approaches to handling spent fuel from nuclear power plants: - the reprocessing option, that includes the recycling of spent uranium fuel, the reuse of the separated plutonium in MOX fuel, and the direct disposal of spent MOX fuel; and the once-through option, with no reprocessing of spent fuel, and its direct disposal. Based on the detailed research of a group of 18 internationally recognised experts, under NEA sponsorship, the report concludes that: The radiological impacts of both the reprocessing and the non-reprocessing fuel cycles studied are small, well below any regulatory dose limits for the public and for workers, and insignificantly low as compared with exposures caused by natural radiation. The difference in the radiological impacts of the two fuel cycles studied does not provide a compelling argument in favour of one option or the other. The study also points out that other factors, such as resource utilisation efficiency, energy security, and social and economic considerations would tend to carry more weight than radiological impacts in decision-making processes. (authors)

  20. Department of Energy Nuclear Energy Standards Program

    International Nuclear Information System (INIS)

    Silver, E.G.

    1980-01-01

    The policy with respect to the development and use of standards in the Department of Energy (DOE) programs concerned with maintaining and developing the nuclear option for the civilian sector (both in the form of the currently used light water reactors and for advanced concepts including the Liquid Metal Fast Breeder Reactor), is embodied in a Nuclear Standards Policy, issued in 1978, whose perspectives and philosophy are discussed

  1. The nuclear energy like an option in Mexico before the climatic change; La nucleoelectricidad como una opcion en Mexico ante el cambio climatico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, B.; Puente E, F.; Ortiz O, H. B.; Avila P, P.; Flores C, J., E-mail: beatriz.hernandez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The current energy poverty, the future necessities of energy and the climatic change caused by the global warming, are factors that associates each, manifest with more clarity the unsustainable production way and energy consumption that demands the society in the current life. This work analyzes the nuclear energy generation like an alternative from the environmental view point that ties with the sustainable development and the formulation of energy use models that require the countries at global level. With this purpose were collected and reviewed documented data of the energy resources, current and future energy consumption and the international commitments of Mexico regarding to greenhouse gases reduction. For Mexico two implementation scenarios of nuclear reactors type BWR and A BWR were analyzed, in compliance with the goals and policy development established in the National Strategy of Climatic Change and the National Strategy of Energy; the scenarios were analyzed through the emissions to the air of CO{sub 2}, (main gas of greenhouse effect) which avoids when the energy production is obtained by nuclear reactors instead of consumptions of traditional fuels, such as coal, diesel, natural gas and fuel oil. The obtained results reflect that the avoided emissions contribute from 4.2% until 40% to the national goal that Mexico has committed to the international community through the Convention Marco of the United Nations against the Climatic Change (CMNUCC). These results recommends to the nuclear energy like a sustainable energy solution on specific and current conditions for Mexico. (Author)

  2. Nuclear energy

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The Administrative Court of Braunschweig judges the Ordinance on Advance Funding of Repositories (EndlagervorausleistungsVO) to be void. The Hannover Regional Court passes a basic judgment concerning the Gorleben salt mine (repository) and an action for damages. The Federal Administrative Court dismisses actions against part-permits for the Hanau fuel element fabrication plant. The Koblenz Higher Administrative Court dismisses actions against a part-permit for the Muelheim-Kaerlich reactor. 31st Amendment of the German Criminal Code passed, involving amendments in environmental criminal code, defined in the 2nd amendment to the Act on Unlowful Practices Causing Damage to the Environment (UKG); here: Amendments to the law relating to the criminal code and penal provisions governing unlawful conduct in the operation of nuclear installations. (orig.) [de

  3. Training options for countering nuclear smuggling

    International Nuclear Information System (INIS)

    Ball, D Y; Erickson, S A

    1999-01-01

    The burden of stopping a nuclear smuggling attempt at the border rests most heavily on the front-line customs inspector. He needs to know how to use the technological tools at his disposal, how to discern tell-tale anomalies in export documents and manifests, how to notice psychological signs of a smuggler's tension, and how to search anything that might hide nuclear material. This means that assistance in the counter-nuclear smuggling training of customs officers is one of the most critical areas of help that the United States can provide. This paper discusses the various modes of specialized training, both in the field and in courses, as well as the types of assistance that can be provided. Training for nuclear customs specialists, and supervisors and managers of nuclear smuggling detection systems is also important, and differs from front-line inspector training in several aspects. The limitations of training and technological tools such as expert centers that will overcome these limitations are also discussed. Training assistance planned by DOE/NN-43 to Russia within the Second Line of Defense program is discussed in the light of these options, and future possibilities for such training are projected

  4. New materials options for nuclear systems

    International Nuclear Information System (INIS)

    Jones, R.H.; Garner, F.A.; Bruemmer, S.M.; Gelles, D.S.

    1989-01-01

    Development of new materials for nuclear reactor systems is continuing to produce options for improved reactor designs. Materials with reduced environment-induced crack growth is a key materials issue for the light water reactor (LWR) industry while the development of low activation ferritic, austenitic and vanadium alloys has been an active area for materials development for fusion reactor structural applications. Development of advanced materials such as metal matrix and ceramic matrix composites for reactor systems have received a limited amount of attention. (author)

  5. Outlook for nuclear fission energy

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1978-01-01

    The electric utility industry has made a substantial commitment to nuclear power. The industrial capability to produce nuclear plants is large and well established. Nevertheless, nuclear energy in the United States is at the crossroad, and the direction it will take is not at all assured. The postponements, cancellations, and lack of orders for new plants over the past three years raise some serious questions about the future. The present problems of nuclear energy are primarily nontechnical in nature. If the nontechnical issues can be resolved, the future for nuclear looks bright indeed. The LWR and other converters could provide strong competition for coal and other electric power options for a half century or more. If development goals are met, the nuclear breeder offers the prospect of a very large supply of energy at stabilized prices over a time span of centuries

  6. Nuclear energy and nuclear weapons

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1983-06-01

    We all want to prevent the use of nuclear weapons. The issue before us is how best to achieve this objective; more specifically, whether the peaceful applications of nuclear energy help or hinder, and to what extent. Many of us in the nuclear industry are working on these applications from a conviction that without peaceful nuclear energy the risk of nuclear war would be appreciably greater. Others, however, hold the opposite view. In discussing the subject, a necessary step in allaying fears is understanding some facts, and indeed facing up to some unpalatable facts. When the facts are assessed, and a balance struck, the conclusion is that peaceful nuclear energy is much more part of the solution to preventing nuclear war than it is part of the problem

  7. DMRC studies geothermal energy options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-01

    The Deep Mining Research Consortium (DMRC) is an industry-led research consortium that includes Vale Inco, Xstrata, Rio Tinto, Goldcorp, Agnico-Eagle, Barrick Gold, CANMET and the City of Sudbury. This article reported on the application of geothermal energy technologies to cool deep mine workings and use the heat from underground to produce energy to heat surface buildings. Researchers at the University of British Columbia's Centre for Environmental Research in Minerals, Metals and Materials have proposed the use of heat pumps and water-to-air heat exchangers at depth to chill mine workings. The heat pumps would act as refrigerators, taking heat from one area and moving it elsewhere. The purpose would be to extract heat from naturally occurring ground water and pass the chilled water through a heat exchanger to cool the air. The heated water would then be pumped to surface and used to heat surface facilities. The technology is well suited for using geothermal energy from decommissioned mines for district heating. The technology has been successfully used in Spring Hill, Nova Scotia, where geothermal energy from a decommissioned coal mine is used to heat an industrial park. A feasibility study is also underway for the city of Yellowknife in the Northwest Territories to produce up to 10 megawatts of heat from the Con Gold Mine, enough energy to heat half of Yellowknife. Geothermal energy can also be used to generate electricity, particularly in the Pacific Rim where underground temperatures are higher and closer to surface. In Sudbury Ontario, the enhanced geothermal systems technology would require two holes drilled to a depth of four kilometers. The ground between the two holes should be fractured to create an underground geothermal circuit. Geothermal energy does not produce any greenhouse gases or chemical wastes. 1 fig.

  8. Nuclear energy data

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of basic statistics on electricity generation and nuclear power in OECD countries. The reader will find quick and easy reference to the present status of and projected trends in total electricity generating capacity, nuclear generating capacity, and actual electricity production as well as on supply and demand for nuclear fuel cycle services [fr

  9. Nuclear energy data 2010

    CERN Document Server

    2010-01-01

    This 2010 edition of Nuclear Energy Data , the OECD Nuclear Energy Agency's annual compilation of official statistics and country reports on nuclear energy, provides key information on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035 in OECD member countries. This comprehensive overview provides authoritative information for policy makers, experts and other interested stakeholders.

  10. Review of nuclear energy

    International Nuclear Information System (INIS)

    Mattila, L.; Anttila, M.; Pirilae, P.; Vuori, S.

    1997-05-01

    The report is an overview on the production of the nuclear energy all over the world. The amount of production at present and in future, availability of the nuclear fuel, development of nuclear technology, environmental and safety issues, radioactive waste management and commissioning of the plants and also the competitivity of nuclear energy compared with other energy forms are considered. (91 refs.)

  11. Nuclear energy data

    International Nuclear Information System (INIS)

    2002-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (authors)

  12. Nuclear energy data

    International Nuclear Information System (INIS)

    2003-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  13. An analysis of international nuclear fuel supply options

    Science.gov (United States)

    Taylor, J'tia Patrice

    As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet

  14. Nuclear energy and the nuclear energy industry

    International Nuclear Information System (INIS)

    Bromova, E.; Vargoncik, D.; Sovadina, M.

    2013-01-01

    A popular interactive multimedia publication on nuclear energy in Slovak. 'Nuclear energy and energy' is a modern electronic publication that through engaging interpretation, combined with a number of interactive elements, explains the basic principles and facts of the peaceful uses of nuclear energy. Operation of nuclear power plants, an important part of the energy resources of developed countries, is frequently discussed topic in different social groups. Especially important is truthful knowledgeability of the general public about the benefits of technical solutions, but also on the risks and safety measures throughout the nuclear industry. According to an online survey 'Nuclear energy and energy' is the most comprehensive electronic multimedia publication worldwide, dedicated to the popularization of nuclear energy. With easy to understand texts, interactive and rich collection of accessories stock it belongs to modern educational and informational titles of the present time. The basic explanatory text of the publication is accompanied by history and the present time of all Slovak nuclear installations, including stock photos. For readers are presented the various attractions legible for the interpretation, which help them in a visual way to make a more complete picture of the concerned issue. Each chapter ends with a test pad where the readers can test their knowledge. Whole explanatory text (72 multimedia pages, 81,000 words) is accompanied by a lot of stock of graphic materials. The publication also includes 336 photos in 60 thematic photo galleries, 45 stock charts and drawings, diagrams and interactive 31 videos and 3D models.

  15. Some wind-energy storage options

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, F R; Ljungstroem, O [ed.

    1976-01-01

    Systems capable of storing energy generated from the wind can be categorized in terms of electrochemical energy storage systems, thermal energy storage systems, kinetic energy systems, and potential energy systems. Recent surveys of energy storage systems have evaluated some of these available storage technologies in terms of the minimum economic sizes for utility applications, estimated capital costs of these units, expected life, dispersed storage capabilities, and estimated turn-around efficiencies of the units. These are summarized for various types of energy storage options.

  16. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2008-01-01

    The booklet provides and up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear or energy sector in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. In the booklet nuclear energy is described as part of the Finnish electricity market

  17. Nuclear energy in Japan

    International Nuclear Information System (INIS)

    Guillemard, B.

    1978-01-01

    After having described the nuclear partners in Japan, the author analyzes the main aspects of Japan's nuclear energy: nuclear power plants construction program; developping of light water reactors; fuel cycle politics [fr

  18. Nuclear energy data 2011

    CERN Document Server

    2011-01-01

     . Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of statistics and country reports on nuclear energy, contains official information provided by OECD member country governments on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035. For the first time, it includes data for Chile, Estonia, Israel and Slovenia, which recently became OECD members. Key elements of this edition show a 2% increase in nuclear and total electricity production and a 0.5% increase in nuclear generating ca

  19. Nuclear Fuel Cycle Evaluation and Real Options

    Directory of Open Access Journals (Sweden)

    L. Havlíček

    2008-01-01

    Full Text Available The first part of this paper describes the nuclear fuel cycle. It is divided into three parts. The first part, called Front-End, covers all activities connected with fuel procurement and fabrication. The middle part of the cycle includes fuel reload design activities and the operation of the fuel in the reactor. Back-End comprises all activities ensuring safe separation of spent fuel and radioactive waste from the environment. The individual stages of the fuel cycle are strongly interrelated. Overall economic optimization is very difficult. Generally, NPV is used for an economic evaluation in the nuclear fuel cycle. However the high volatility of uranium prices in the Front-End, and the large uncertainty of both economic and technical parameters in the Back-End, make the use of NPV difficult. The real option method is able to evaluate the value added by flexibility of decision making by a company under conditions of uncertainty. The possibility of applying this method to the nuclear fuel cycle evaluation is studied. 

  20. The attitude to nuclear energy in Georgia

    International Nuclear Information System (INIS)

    Saralidze, Z.

    2000-01-01

    Georgia, as a new independent state, is facing new problems regarding energy sources in the conditions of market economy. Great attention is given by the Government to search for various ways and versions to overcome the energy crisis. While nuclear energy may be an option for some reasons detailed in the paper, a nuclear power plant is not officially considered as an alternative. (author)

  1. Nuclear energy data 2005

    CERN Document Server

    Publishing, OECD

    2005-01-01

    This 2005 edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers a projection horizon lengthened to 2025 for the first time.  It presents the reader with a comprehensive overview on the status and trends in nuclear electricity generation in OECD countries and in the various sectors of the nuclear fuel cycle.

  2. Nuclear energy basic knowledge

    International Nuclear Information System (INIS)

    Volkmer, Martin

    2013-11-01

    The following topics are dealt with: Atoms, nuclear decays and radioactivity, energy, nuclear fission and the chain reaction, controlled nuclear fission, nuclear power plants, safety installations in nuclear power plants, fuel supply and disposal, radiation measurement and radiation exposition of man. (HSI)

  3. Nuclear energy - some aspects

    International Nuclear Information System (INIS)

    Bandeira, Fausto de Paula Menezes

    2005-05-01

    This work presents a brief history of research and development concerning to nuclear technology worldwide and in Brazil, also information about radiations and radioactive elements as well; the nuclear technology applications; nuclear reactor types and functioning of thermonuclear power plants; the number of existing nuclear power plants; the nuclear hazards occurred; the national fiscalization of nuclear sector; the Brazilian legislation in effect and the propositions under proceduring at House of Representatives related to the nuclear energy

  4. Nuclear energy. Economical aspects

    International Nuclear Information System (INIS)

    Legee, F.

    2010-01-01

    This document present 43 slides of a power point presentation containing detailed data on economical and cost data for nuclear energy and nuclear power plants: evolution from 1971 to 2007 of world total primary energy supply, development of nuclear energy in the world, nuclear power plants in the world in 2009, service life of nuclear power plants and its extension; nuclear energy market and perspectives at 2030, the EPR concept (generation III) and its perspectives at 2030 in the world; cost assessment (power generation cost, nuclear power generation cost, costs due to nuclear safety, comparison of investment costs for gas, coal and nuclear power generation, costs for building a nuclear reactor and general cost; cost for the entire fuel cycle, the case of the closed cycle with recycling (MOX); costs for radioactive waste storage; financial costs and other costs such as environmental impacts, strategic stocks, comparative evaluation of the competitiveness of nuclear versus coal and gas

  5. Nuclear power. A cornerstone of energy security

    International Nuclear Information System (INIS)

    Andrews, H.R.; Harvey, M.

    1985-09-01

    Energy options for Canada are examined. Increasing difficulties with oil and gas supplies will induce a growth in electricity demand beyond that presently projected. Nuclear power is the only option that can supply as much energy as needed for as long as needed at predictable costs and with minimal environmental effects

  6. The implications of the nuclear option in Quebec

    International Nuclear Information System (INIS)

    Sauvageau, P.A.; Boivin, M.

    1979-10-01

    Problems concerning the nuclear option as a component of the energy balance of Quebec are presented. The demand for electrical energy for the periods 1977-1985 and 1985-2000, the energy resources of Quebec, and an analysis of nuclear fission energy are considered. In 1978 65.5 percent of Quebec's energy needs were supplied by imported petroleum, 7.1 percent by imported gas, and 1.4 percent by imported coal. Hydroelectricity supplied 21.9 percent of the energy budget in 1976. According to projections electricity's share will be around 41 percent in 1990 after conservation, and approximately 50 percent in 2000, while petroleum and gas will have 44 percent, new energies 5 percent, and coal 1 percent. The acceptability of nuclear power can be broken down into six factors, for each of which a decision criterion can be recognized: technical feasibility, economic feasibility, security of supply, side effects for Quebec, human and ecological risks, and socio-political factors. The first four criteria are acceptable and even in certain cases desirable. The acceptability of risks is subjective and should be a collective decision, and therefore is policitcal. Even if Quebec does not need nuclear at the present or in the next decade, it is still a form of energy which it will be necessary to come to terms with eventually. Thus it is important to maintain the capacity to have recourse to it, and to start a program of public dialogue by setting up a 'Permanent Council for Energy Forecasting'. The democratic participation of a well-informed population in a neutral and objective nuclear debate is thus essential. (LL)

  7. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  8. NANA Strategic Energy Plan & Energy Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson; Brian Yanity

    2008-12-31

    NANA Strategic Energy Plan summary NRC, as an Alaska Native Corporation, has committed to addressing the energy needs for its shareholders. The project framework calls for implicit involvement of the IRA Councils in the Steering Committee. Tribal Members, from the NRC to individual communities, will be involved in development of the NANA Energy Plan. NRC, as the lead tribal entity, will serve as the project director of the proposed effort. The NRC team has communicated with various governmental and policy stakeholders via meetings and discussions, including Denali Commission, Alaska Energy Authority, and other governmental stakeholders. Work sessions have been initiated with the Alaska Village Electric Cooperative, the NW Arctic Borough, and Kotzebue Electric Association. The NRC Strategic Energy Plan (SEP) Steering committee met monthly through April and May and weekly starting in June 2008 in preparation of the energy summit that was held from July 29-31, 2008. During preparations for the energy summit and afterwards, there was follow through and development of project concepts for consideration. The NANA regional energy summit was held from July 29-31, 2008, and brought together people from all communities of the Northwest Arctic Borough. The effort was planned in conjunction with the Alaska Energy Authority’s state-wide energy planning efforts. Over $80,000 in cash contributions was collected from various donors to assist with travel from communities and to develop the summit project. Available funding resources have been identified and requirements reviewed, including the Denali Commission, U.S. Dept. of Agriculture, and the Alaska Energy Authority. A component of the overall plan will be a discussion of energy funding and financing. There are current project concepts submitted, or are ready for submittal, in the region for the following areas: • Wind-diesel in Deering, Buckland, Noorik, and Kiana areas; potential development around Red Dog mine.

  9. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S

    2000-12-01

    This study identified the role of nuclear energy in the following three major aspects. First of all, this study carried out cost effectiveness of nuclear as a CDM technology, which is one of means of GHG emission reduction in UNFCCC. Secondly, environmental externalities caused by air pollutants emitted by power options were estimated. The 'observed market behaviour' method and 'responses to hypothetical market' method were used to estimate objectively the environmental external costs by electric source, respectively. Finally, the role of nuclear power in securing electricity supply in a liberalized electricity market was analyzed. This study made efforts to investigate whether nuclear power generation with high investment cost could be favored in a liberalized market by using 'option value' analysis of investments.

  10. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S.

    2000-12-01

    This study identified the role of nuclear energy in the following three major aspects. First of all, this study carried out cost effectiveness of nuclear as a CDM technology, which is one of means of GHG emission reduction in UNFCCC. Secondly, environmental externalities caused by air pollutants emitted by power options were estimated. The 'observed market behaviour' method and 'responses to hypothetical market' method were used to estimate objectively the environmental external costs by electric source, respectively. Finally, the role of nuclear power in securing electricity supply in a liberalized electricity market was analyzed. This study made efforts to investigate whether nuclear power generation with high investment cost could be favored in a liberalized market by using 'option value' analysis of investments

  11. Electricity and nuclear energy

    International Nuclear Information System (INIS)

    Krafft, P.

    1987-01-01

    Consequences of getting out from nuclear energy are discussed. It is concluded that the Chernobyl accident is no reason to withdraw confidence from Swiss nuclear power plants. There are no sufficient economizing potential and other energies at disposal to substitute nuclear energy. Switching to coal, oil and gas would increase environmental damages. Economic and social cost of getting out would be too high

  12. Inevitability of nuclear energy

    International Nuclear Information System (INIS)

    Ramanna, R.

    1997-01-01

    The Indian atomic energy programme that has been launched in the late 1940s, with the courageous vision of Homi Bhabha, had made remarkable progress during the fifties, sixties and till the mid-seventies, leading to the establishment of a comprehensive base of nuclear science, technology and engineering, and the setting up of nuclear power stations. After the Pokharan experiment in 1974, the programme had to face a hostile attitude from the Western powers, with the stoppage of flow of technology and equipment from the West. The programme had shown the resilience to face the challenge, and march ahead, developing a range of indigenous capabilities both within the Department and in the Indian industry, though with a certain loss in the momentum. The successful design, construction and operation of the 100 Mw(t) research reactor Dhruva in Trombay, and the successful commissioning of the Fast Breeder Test Reactor in Kalpakkam, with a unique plutonium-uranium carbide fuel of Indian design, are significant capability demonstrations in the latter phase. On the power front, the twin-unit power stations at Narora (UP) and Kakrapar (Gujarat) have shown excellent performance, with respect to plant availability and capacity factor. This article presents an assessment of the progress achieved so far, amidst the difficulties encountered. Factors accounting for the apparently slow pace of growth are discussed, and the public concerns regarding nuclear safety and safety regulations are also addressed. In a situation where acute power shortages have become a fact of life, and difficulties can be foreseen in the development of coal and hydel resources (which are also limited in extent), the importance of pursuing the nuclear energy option is re-iterated. The need for unstinted government support to the program at this stage is also emphasized. (author)

  13. Nuclear energy data

    International Nuclear Information System (INIS)

    2004-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional graphical information as compared with previous editions allowing a rapid comparison between capacity and requirements in the various phases of the nuclear fuel cycle. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  14. DPRK energy sector development priorities: Options and preferences

    International Nuclear Information System (INIS)

    Hippel, David von; Hayes, Peter

    2011-01-01

    The goal of international negotiations with the Democratic People's Republic of Korea (DPRK), when they begin again, will be to convince the DPRK to give up its nuclear weapons and the capabilities to produce them. The DPRK's energy sector is a key to resolution of the issue. Thus offering a well-considered, well-structured package of energy sector assistance options will be key to the sustainable success of the negotiations. This article briefly reviews some of the key options for DPRK energy assistance ranging from human capacity-building in fields like energy efficiency, renewable energy, and energy markets, to assistance with rebuilding key electricity and coal mining infrastructure, to integrated pilot energy/electricity grid/economic development projects on the county level, to light-water nuclear reactors. It then reviews preferences for DPRK assistance options as offered by North Koreans, and a summary of the likely points of view of the key DPRK actors that will be involved in negotiations.

  15. Nuclear energy dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-15

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  16. Nuclear energy dictionary

    International Nuclear Information System (INIS)

    1978-03-01

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  17. Nuclear energy in Spain

    International Nuclear Information System (INIS)

    Villota, C. de

    2007-01-01

    Carlos Villota. Director of Nuclear Energy of UNESA gave an overview of the Spanish nuclear industry, the utility companies and the relevant institutions. Companies of the nuclear industry include firms that produce heavy components or equipment (ENSA), manufacturers of nuclear fuel (ENUSA), engineering companies, the National Company for Radioactive Waste Management (ENRESA), and nuclear power plants (nine units at seven sites). Nuclear energy is a significant component of the energy mix in Spain: 11% of all energy produced in Spain is of nuclear origin, whilst the share of nuclear energy in the total electricity generation is approximately 23%. The five main players of the energy sector that provide for the vast majority of electricity production, distribution, and supply have formed the Spanish Electricity Industry Association (UNESA). The latter carries out co-ordination, representation, management and promotion tasks for its members, as well as the protection of their business and professional interests. In the nuclear field, UNESA through its Nuclear Energy Committee co-ordinates aspects related to nuclear safety and radiological protection, regulation, NPP operation and R and D. Regarding the institutional framework of the nuclear industry, ENSA, ENUSA and ENRESA are controlled by the national government through the Ministry of Economy and Finance and the Ministry of Science and Technology. All companies of the nuclear industry are licensed by the Ministry of Industry, Tourism and Trade (MITYC), while the regulatory body is the Nuclear Safety Council (CSN). It is noteworthy that CSN is independent of the government, as it reports directly to Parliament. (author)

  18. Soft energy vs nuclear energy

    International Nuclear Information System (INIS)

    Ando, Yoshio

    1981-01-01

    During the early 1960s, a plentiful, inexpensive supply of petroleum enabled Japanese industry to progress rapidly; however, almost all of this petroleum was imported. Even after the first oil crisis of 1973, the recent annual energy consumption of Japan is calculated to be about 360 million tons in terms of petroleum, and actual petroleum forms 73% of total energy. It is necessary for Japan to reduce reliance on petroleum and to diversify energy resources. The use of other fossil fuels, such as coal, LNG and LPG, and hydraulic energy, is considered as an established alternative. In this presentation, the author deals with new energy, namely soft energy and nuclear energy, and discusses their characteristics and problems. The following kinds of energy are dealt with: a) Solar energy, b) Geothermal energy, c) Ocean energy (tidal, thermal, wave), d) Wind energy, e) Biomass energy, f) Hydrogen, g) Nuclear (thermal, fast, fusion). To solve the energy problem in future, assiduous efforts should be made to develop new energy systems. Among them, the most promising alternative energy is nuclear energy, and various kinds of thermal reactor systems have been developed for practical application. As a solution to the long-term future energy problem, research on and development of fast breeder reactors and fusion reactors are going on. (author)

  19. Wind energy: A renewable energy option

    Science.gov (United States)

    Zimmerman, J. S.

    1977-01-01

    Wind turbine generator research programs administered by the Energy Research and Development Administration are examined. The design and operation of turbine demonstration models are described. Wind assessments were made to determine the feasibility of using wind generated power for various parts of the country.

  20. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of the booklet is to provide an up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear energy or other energy sectors in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. Nuclear energy is described as part of the Finnish electricity market. (orig.)

  1. Long term energy system analysis of Japan based on 'options for energy and environment' by the energy and environmental council

    International Nuclear Information System (INIS)

    Hagiwara, Naoto; Kurosawa, Atsushi

    2013-01-01

    Implications to Japanese energy system are discussed especially in terms of primary energy supply and power generation portfolio, using sensitivity analysis results by an optimization type energy model based on TIMES modeling framework. We updated energy service demand, efficiency in energy conversion and consumption, and power generation costs based on the recent energy policy document called 'Options for Energy and Environment'. The time horizon of the model is 2050. The sensitivity analysis results are presented for 'Three scenarios for 2030' including nuclear phase out scenarios with/without CO 2 emission constraint. The results are compared with 'Options for Energy and Environment'. (author)

  2. Nuclear energy and environment

    International Nuclear Information System (INIS)

    Alves, R.N.

    1987-01-01

    A general view about the use of energy for brazilian development is presented. The international situation of the nuclear field and the pacific utilization of nuclear energy in Brazil are commented. The safety concepts used for reactor and nuclear facilities licensing, the environmental monitoring program and radiation protection program used in Brazil are described. (E.G.) [pt

  3. Nuclear energy data 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers projections lengthened to 2030 for the first time and information on the development of new centrifuge enrichment capacity in member countries. The compilation gives readers a comprehensive and easy-to-access overview of the current situation and expected trends in various sectors of the nuclear fuel cycle, providing authoritative information to policy makers, experts and academics working in the nuclear energy field

  4. Options for new Swiss energy supply strategies

    International Nuclear Information System (INIS)

    Gantner, U.; Hirschberg, S.; Jakob, M.

    1999-01-01

    Ecologically neutral, cost efficient, without supply shortages, independent from foreign countries, risk- and waste-free - that is the image of an ideal future energy supply. But even if considerable ecological and economical improvements of various energy supply options can be achieved, the next generation of heat and power plants with the associated up- and down-stream parts of energy chains, will not comply with all such idealistic requirements. As research in the framework of the GaBE Project on 'Comprehensive Assessment of Energy Systems' has shown, among the reasons for this are the limited medium term potential of renewable energy sources, and the necessity to employ primarily non-renewable energy carriers for the emerging more efficient energy conversion processes. (author)

  5. Energy options and the global environment

    International Nuclear Information System (INIS)

    Colombo, U.

    1986-01-01

    First, a brief historical sketch of the progress of industrialized society and the change in the quantity and quality of energy system accompanying it is made. It is likely to see a very unstable oil market in future, and it is irresponsible to continue the use of oil simply by burning it to obtain heat and electricity. This time is the opportunity to complete a new energy transition, preserving oil for more effective utilization. There is no single energy source which is as versatile, easy to transport and to use, and cheap as oil, therefore, the relative merits and demerits of various available resources must be carefully assessed. Natural gas, the green-house effect caused by burning fossil fuel, hydroelectric power, nuclear fission power, solar, biomass, wind and geothermal energies are discussed. The important alternatives for the future are nuclear fission power, biomass, and by the middle of the next century, nuclear fusion energy. A pluralistic system is the best suitable to the complex society of the next century, having about 8 billion population. A scenario representing the contribution of nuclear energy in 2050 is illustrated, but the clouds on the nuclear horizon must be dispelled. (Kako, I.)

  6. Turbopump options for nuclear thermal rockets

    International Nuclear Information System (INIS)

    Bissell, W.R.; Gunn, S.V.

    1992-07-01

    Several turbopump options for delivering liquid nitrogen to nuclear thermal rocket (NTR) engines were evaluated and compared. Axial and centrifugal flow pumps were optimized, with and without boost pumps, utilizing current design criteria within the latest turbopump technology limits. Two possible NTR design points were used, a modest pump pressure rise of 1,743 psia and a relatively higher pump pressure rise of 4,480 psia. Both engines utilized the expander cycle to maximize engine performance for the long duration mission. Pump suction performance was evaluated. Turbopumps with conventional cavitating inducers were compared with zero NPSH (saturated liquid in the tanks) pumps over a range of tank saturation pressures, with and without boost pumps. Results indicate that zero NSPH pumps at high tank vapor pressures, 60 psia, are very similar to those with the finite NPSHs. At low vapor pressures efficiencies fall and turbine pressure ratios increase leading to decreased engine chamber pressures and or increased pump pressure discharges and attendant high-pressure component weights. It may be concluded that zero tank NSPH capabilities can be obtained with little penalty to the engine systems but boost pumps are needed if tank vapor pressure drops below 30 psia. Axial pumps have slight advantages in weight and chamber pressure capability while centrifugal pumps have a greater operating range. 10 refs

  7. Sweden beyond oil: nuclear commitments and solar options

    International Nuclear Information System (INIS)

    Loennroth, M.; Johansson, T.B.; Steen, P.

    1982-01-01

    The paper argues that both a nuclear and a solar future are technically possible, but that institutional differences are vast. There is a consensus in Sweden to keep long term options open. Approaches are identified that will allow Sweden to postpone as many decisions as possible as to which path to follow. Decentralized systems require emphasis on local planning, and will require substantial expansions of authority of local planners. A nuclear future would require substantial increases in central planning and would also require substantial institutional change if most energy is to be provided by nuclear energy in 2015. The primary near term reform needed to maintain maximum flexibility includes: (1) strengthening of local authority, especially in areas relating to district heating and conservation; (2) regulatory reform to assure adequate financing on the local level, and to assure adequate balancing of conservation and supply financing; (3) increased national control over large energy users; (4) state financed procurement and development of new energy technologies, especially smaller scale technologies; (5) national land use planning; (6) electric utility reform to encourage dispersed electric technologies

  8. Nuclear energy and society

    International Nuclear Information System (INIS)

    Bakacs, Istvan; Czeizel, Endre; Hajdu, Janos; Marx, Gyoergy.

    1984-01-01

    The text of a round-table discussion held on the occasion of the 50th anniversary of the discovery of neutron is given. The participants were the Chief Engineer of the Paks Nuclear Power Plant, the first nuclear power plant in Hungary started in November 1982, a geneticist treating the problems of genetic damages caused by nuclear and chemical effects, a nuclear physicist and a journalist interested in the social aspects of nuclear energy. They discussed the political, economical and social problems of nuclear energy in the context of its establishment in Hungary. (D.Gy.)

  9. Energy options in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S C [ed.

    1975-01-01

    The United Kingdom faces two issues: how can it survive the present massive increases in oil prices and the probability of even more expensive supplies in the future or how can it adjust to the eventual exhaustion of both fossil and nuclear fuels. The theme of the symposium concerned a search for a practical alternative source of energy to fossil and nuclear fuels and which ones would work in the United Kingdom. Papers were presented entitled: Geothermal Energy; Solar Energy in Britain; and Wind and Water Sources of Energy in the United Kingdom. A final paper, High- and Low-Growth Scenarios, examined these two types for the future. Many questions, answeres and comments about energy sources are contained in a final presentation. (MCW)

  10. Nuclear options: is the climate right for nuclear power?

    International Nuclear Information System (INIS)

    Switkowski, Z.E.

    2009-01-01

    An increasing number of countries around the world are turning to nuclear power to meet growing demand for electricity, avoid use of fossil fuels, reduce greenhouse gas emissions and diversify their energy mix away from a dominant supplier. Australia is following a different path. Does this make strategic sense?

  11. Nuclear energy and nuclear technology

    International Nuclear Information System (INIS)

    Luescher, E.

    1982-01-01

    This book originated in the training courses for teachers of grammar- and secondary schools in Dillingen (Bavaria). The aim of these courses is to become informed about the latest state in one field of physics. The lectures are well-known experts in the respective fields. In the latest study (1980) of the National Academy of Sciences the experts came to the conclusion that without further development nuclear power plants the utilization of too much coal would become necessary and involve irreversible environmental damage (see chapter 6). There are two important obstacles impeding the further extension of nuclear energy. The first problem to be solved is the processing and storage of radioactive waste. This is a more technical task and can be treated in a satisfactory way. The second obstacle is less easy to take as the population has to be convinced that a nuclear power plant can be operated with almost unbelievable safety (see chapter 5) and be shut down safely in the case of incidents. The most promising possibility of controlled nuclear fusion as energy source is still many decades- if feasible at all- away from being performed (see chapter. 7). In the Soviet Union 25% of the electric energy production shall be proceed from nuclear power plants by the year 1990. (orig./GL) [de

  12. Nuclear energy questions

    International Nuclear Information System (INIS)

    This work pack contains illustrated booklets entitled: 'Uranium mining'; 'Reactors and radiation'; 'Nuclear waste'; 'Work book on energy'; 'Alternatives now'; 'Future energy choices'; 'Resources handbook'; and 'Tutors' guidelines': a map entitled 'Nuclear power in Britain': and two coloured pictures entitled 'Nuclear prospects' and 'Safe energy'. A cover note states that the material has been prepared for use in schools and study groups. (U.K.)

  13. Germany bars nuclear energy

    International Nuclear Information System (INIS)

    Gaullier, V.

    1999-01-01

    Germany wants a future without nuclear energy, the different steps about the going out of nuclear programs are recalled. The real choice is either fossil energies with their unquestionable safety levels but with an increase of the greenhouse effect or nuclear energy with its safety concerns and waste management problems but without pollutant emission. The debate will have to be set in most European countries. (A.C.)

  14. Role of nuclear energy in Thailand

    International Nuclear Information System (INIS)

    Chongkum, Somporn

    2003-01-01

    Nuclear energy in Thailand can be highlighted when the Office of Atomic Energy for Peace (OAEP) was established since 1961 for taking role of nuclear safety regulation, conducting research and promotion for peaceful uses of nuclear energy. Its main facilities were the 1 megawatt Thai Research Reactor-1 (TRR-1) and the Cobalt-60 Gamma Irradiator. Since then there have been substantial progress made on utilization of nuclear energy in various institutions and in private sectors. Nowaday, there are around 500 units of nuclear energy users in Thailand, i.e. 100 units in medicine, 150 units in education and 250 units in industry. In terms of nuclear power for electricity generation, the Electricity Generating Authority of Thailand (EGAT) has conducted the activities to support the nuclear power plant project since 1972 however, because there is widespread public concerned about nuclear safety, waste disposal and recently economic problems in Thailand, nuclear energy option is not put in immediate plan for alternative energy resource. Within the short future, increased in economical, demand fir electricity and safe operation of nuclear plants will likely be demonstrated and recognized. Nuclear energy should remain as an option in the long-term energy strategies for Thailand. (author)

  15. Nuclear Energy General Objectives

    International Nuclear Information System (INIS)

    2011-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way it achieves this objective is to issue publications in various series. Two of these series are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III, paragraph A.6, of the IAEA Statute, the IAEA safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are primarily written in a regulatory style, and are binding on the IAEA for its own activities. The principal users are Member State regulatory bodies and other national authorities. The IAEA Nuclear Energy Series consists of reports designed to encourage and assist research on, and development and practical application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia and politicians, among others. The information is presented in guides, reports on the status of technology and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The series complements the IAEA's safety standards, and provides detailed guidance, experience, good practices and examples on the five areas covered in the IAEA Nuclear Energy Series. The Nuclear Energy Basic Principles is the highest level publication in the IAEA Nuclear Energy Series and describes the rationale and vision for the peaceful uses of nuclear energy. It presents eight Basic Principles on which nuclear energy systems should be based to fulfil nuclear energy's potential to help meet growing global energy needs. The Nuclear Energy Series Objectives are the second level publications. They describe what needs to be

  16. Nuclear energy and society

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Shimooka, Hiroshi; Tanaka, Yasumasa; Fujii, Yasuhiko; Misima, Tsuyoshi

    2004-01-01

    Nuclear energy has a strong relation to a society. However, due to accidents and scandals having occurred in recent years, people's reliability to nuclear energy has significantly swayed and is becoming existence of a worry. Analyzing such a situation and grasping the problem contained are serious problems for people engaging in nuclear field. In order that nuclear energy is properly used in society, communication with general public and in nuclear power plant site area are increasingly getting important as well as grasping the situation and surveying measures for overcoming the problems. On the basis of such an analysis, various activities for betterment of public acceptance of nuclear energy by nuclear industry workers, researchers and the government are proposed. (J.P.N.)

  17. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S

    1999-12-01

    The objective of this study is to analyze how the economics of nuclear power generation are affected by the change in nuclear environmental factors and then, to suggest desirable policy directions to improve the efficiency of the use of nuclear energy resources in korea. This study focused to analyze the impact of the change in 3 major nuclear environmental factors in Korea on the economics of nuclear power generation. To do this, environmental external cost, nuclear R and fund, and carbon emission control according to UNFCCC were selected as the major factors. First of all, this study evaluated the impacts on the health and the environment of air pollutants emitted from coal power plant and nuclear power plant, two major electric power generating options in Korea. Then, the environmental external costs of those two options were estimated by transforming the health and environmental impact in to monetary values. To do this, AIRPACTS and 'Impacts of atmospheric release' model developed by IAEA were used. Secondly, the impact of nuclear R and D fund raised by the utility on the increment of nuclear power generating cost was evaluated. Then, the desirable size of the fund in Korea was suggested by taking into consideration the case of Japan. This study also analyzed the influences of the fund on the economics of nuclear power generation. Finally, the role of nuclear power under the carbon emission regulation was analyzed. To do this, the econometric model was developed and the impact of the regulation on the national economy was estimated. Further efforts were made to estimate the role by developing CGE model in order to improve the reliability of the results from the econometric model.

  18. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S.

    1999-12-01

    The objective of this study is to analyze how the economics of nuclear power generation are affected by the change in nuclear environmental factors and then, to suggest desirable policy directions to improve the efficiency of the use of nuclear energy resources in korea. This study focused to analyze the impact of the change in 3 major nuclear environmental factors in Korea on the economics of nuclear power generation. To do this, environmental external cost, nuclear R and fund, and carbon emission control according to UNFCCC were selected as the major factors. First of all, this study evaluated the impacts on the health and the environment of air pollutants emitted from coal power plant and nuclear power plant, two major electric power generating options in Korea. Then, the environmental external costs of those two options were estimated by transforming the health and environmental impact in to monetary values. To do this, AIRPACTS and 'Impacts of atmospheric release' model developed by IAEA were used. Secondly, the impact of nuclear R and D fund raised by the utility on the increment of nuclear power generating cost was evaluated. Then, the desirable size of the fund in Korea was suggested by taking into consideration the case of Japan. This study also analyzed the influences of the fund on the economics of nuclear power generation. Finally, the role of nuclear power under the carbon emission regulation was analyzed. To do this, the econometric model was developed and the impact of the regulation on the national economy was estimated. Further efforts were made to estimate the role by developing CGE model in order to improve the reliability of the results from the econometric model

  19. Energy and sustainable development: issues and options

    International Nuclear Information System (INIS)

    Appert, O.

    2001-01-01

    Future development needs to be sustainable in all of its dimensions if it is to continue to fully contribute to human welfare. In the achievement of this objective, the manner in which energy is produced and consumed is of crucial importance. In the wake of these insights, first attempts begin to provide concrete options for steps towards sustainability in the energy sector. Two criteria can be identified for developing sustainable development policies. First, such policies need to strike a balance between the three dimensions of sustainable development - economic, environmental and social - acknowledging that all three are intrinsically linked. Second, policies in the energy sector need to reduce exposure to large-scale risks and improve the resilience of the energy system through active risk management and diversification. (authors)

  20. Social risks and the energy option

    Energy Technology Data Exchange (ETDEWEB)

    Orr, D

    1977-04-01

    A minimax strategy is proposed to deal with the possibility of large-scale disaster while pursuing energy options, none of which is without risks and uncertainties. Readjustments of energy-consumption levels can lower capital demands enough to avoid irreversible commitments to high-risk technologies. The four requirements of a society using the minimax strategy are: (1) commitment to conservation, (2) re-structuring to promote efficiency, (3) new social values and standards, and (4) a gradual replacement of conventional with renewable energy technology. Some proposals, such as that of beaming microwaves to earth from satellites, are not only capital-intensive but introduce new risk potential. A better approach is seen to be a small-scale, decentralized society that minimizes the impact of accidents while maximizing the resilience and democracy of human development. A society operating under sustainable energy offers, by including citizen involvement in public policy, opportunities for creativity in individuals and institutions. (15 references) (DCK)

  1. Introduction to nuclear energy

    International Nuclear Information System (INIS)

    2004-01-01

    After some descriptions about atoms, fission and fusion, explanations are given about the functioning of a nuclear power plant. The safety with the different plans of emergency and factors that lead to a better nuclear safety are exposed, then comes a part for the environmental protection; the fuel cycle is tackled. Some historical aspects of nuclear energy finish this file. (N.C.)

  2. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  3. Greenhouse-Gas Emissions and Abatement Costs of Nuclear, Fossil and Alternative Energy Options from a Life-Circle Perspective. Working paper

    International Nuclear Information System (INIS)

    Fritsche, U.R.

    2007-03-01

    As the issue of nuclear risks in its various forms - from radiation released during uranium mining to severe reactor accidents, and leakage from fuel reprocessing and repositories for spent fuel - is beyond the scope of this paper, we concentrate the following analysis on the more recent issues for which a scientifically reasonable range of data is available. In that respect, two arguments favouring nuclear electricity can be identified: It is allegedly free of CO2, and it is allegedly low cost. In this paper, we address both, presenting results of life-cycle cost and emission analyses of energy systems with respect to current technologies. We discuss the results with respect to other findings in the literature, and also indicate the cost-effectiveness of CO2 abatement in the electricity sector. The scientific work from which this paper draws was sponsored by a variety of sources, including the German Federal Ministry for Environment, Nature Protection, and Nuclear Safety (BMU), German Federal Ministry for Research and Education (BMBF), The Federal Environment Agency of Germany (UBA). (orig./GL)

  4. Nuclear system for problems of environment, economy, and energy. (1) Nuclear energy role and potential for energy system in Asia

    International Nuclear Information System (INIS)

    Ujita, Hiroshi; Matsui, Kazuaki; Sekimoto, Hiroshi

    2005-01-01

    Role and potential of nuclear energy system in the energy options is discussed from the viewpoint of sustainable development with protecting from global warming. It is important for mitigation of global warming that the developing countries will use nuclear power effectively. The policy that nuclear power is considered as Clean Development Mechanism would be the good measure for that. (author)

  5. Radioactivity and nuclear energy

    International Nuclear Information System (INIS)

    Hoffmann, J.; Kuczera, B.

    2001-05-01

    The terms radioactivity and nuclear energy, which have become words causing irritation in the political sphere, actually represent nothing but a large potential for innovative exploitation of natural resources. The contributions to this publication of the Karlsruhe Research Center examine more closely three major aspects of radioactivity and nuclear energy. The first paper highlights steps in the history of the discovery of radioactivity in the natural environment and presents the state of the art in health physics and research into the effects of exposure of the population to natural or artificial radionuclides. Following contributions focus on: Radiochemical methods applied in the medical sciences (diagnostic methods and devices, therapy). Nuclear energy and electricity generation, and the related safety policies, are an important subject. In this context, the approaches and pathways taken in the field of nuclear science and technology are reported and discussed from the angle of nuclear safety science, and current trends are shown in the elaboration of advanced safety standards relating to nuclear power plant operation and ultimate disposal of radioactive wastes. Finally, beneficial aspects of nuclear energy in the context of a sustainable energy policy are emphasized. In particular, the credentials of nuclear energy in the process of building an energy economy based on a balanced energy mix which combines economic and ecologic advantages are shown. (orig./CB) [de

  6. Nuclear energy, economy, ecology

    International Nuclear Information System (INIS)

    Stoffaes, C.

    1995-01-01

    As its operating role, its economic competitiveness and its technological control in the area of nuclear energy, the France has certainly to take initiatives in a nuclear renewal activity. The France is criticized in the world for its exclusive position about nuclear energy, but it is well situated to attract attention on the coal risks and particularly about its combustion for environment. (N.C.)

  7. Nuclear energy inquiries

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1993-02-01

    Our choice of energy sources has important consequences for the economy and the environment. Nuclear energy is a controversial energy source, subject to much public debate. Most individuals find it difficult to decide between conflicting claims and allegations in a variety of technical subjects. Under these circumstances, knowledge of various relevant inquiries can be helpful. This publication summarizes the composition and major findings of more than thirty nuclear energy inquiries. Most of the these are Canadian, but others are included where they have relevance. The survey shows that, contrary to some claims, virtually every aspect of nuclear energy has been subject to detailed scrutiny. The inquiries' reports include many recommendations on how nuclear energy can be exploited safely, but none rejects it as an acceptable energy source when needed. (Author) 38 refs

  8. Nuclear Energy Data 2013

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants declined in 2012 as a result of operational issues at some facilities and suspended operation at all but two reactors in Japan. Nuclear safety was further strengthened in 2012 following safety reviews prompted by the Fukushima Daiichi nuclear power plant accident. Governments committed to maintaining nuclear power in the energy mix pursued initiatives to increase nuclear generating capacity. In Turkey, plans were finalised for the construction of the first four reactors for commercial electricity production. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Statlinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link [fr

  9. Assessment of CO2 free energy options

    International Nuclear Information System (INIS)

    Cavlina, N.; Raseta, D.; Matutinovic, I.

    2014-01-01

    One of the European Union climate and energy targets is to significantly reduce CO 2 emissions, at least 20% by 2020, compared to 1990. In the power industry, most popular solution is use of solar and wind power. Since their production varies significantly during the day, for the purpose of base-load production they can be paired with gas-fired power plant. Other possible CO 2 -free solution is nuclear power plant. This article compared predicted cost of energy production for newly built nuclear power plant and newly built combination of wind or solar and gas-fired power plant. Comparison was done using Levelized Unit of Energy Cost (LUEC). Calculations were performed using the Monte Carlo method. For input parameters that have biggest uncertainty (gas cost, CO 2 emission fee) those uncertainties were addressed not only through probability distribution around predicted value, but also through different scenarios. Power plants were compared based on their economic lifetime. (authors)

  10. Is nuclear energy justifiable?

    International Nuclear Information System (INIS)

    Roth, E.

    1988-01-01

    This is a comment on an article by Prof. Haerle a theologist, published earlier under the same heading, in which the use of nuclear energy is rejected for ethical reasons. The comment contents the claim mode by the first author that theologists, because they have general ethical competency, must needs have competency to decide on the fittest technique (of energy conversion) for satisfying, or potentially satisfying, the criteria of responsible action. Thus, an ethical comment on, for instance, nuclear energy is beyond the scope of the competency of the churches. One is only entitled as a private person to objecting to nuclear energy, not because of one's position in the church. (HSCH) [de

  11. Comparing energy storage options for renewable energy integration

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    -inclusive 100% renewable energy scenario developed for the Danish city Aalborg based on wind power, bio-resources and low-temperature geothermal heat. The paper investigates the system impact of different types of energy storage systems including district heating storage, biogas storage and electricity storage......Increasing penetrations of fluctuating energy sources for electricity generation, heating, cooling and transportation increase the need for flexibility of the energy system to accommodate the fluctuations of these energy sources. Controlling production, controlling demand and utilizing storage...... options are the three general categories of measures that may be applied for ensuring balance between production and demand, however with fluctuating energy sources, options are limited, and flexible demand has also demonstrated limited perspective. This paper takes its point of departure in an all...

  12. Nuclear energy and challenges for India

    International Nuclear Information System (INIS)

    Kamalapur, Gopalkrishna Dhruvaraj

    2017-01-01

    The challenge for the nuclear community is to assure that nuclear power remains a viable option in meeting the energy requirements of the next century. It could be a major provider of electricity for base load as well as for urban transport in megacities. It can play a role in non-electric applications in district heating, process industries, maritime transport. (author)

  13. Nuclear energy today

    International Nuclear Information System (INIS)

    2003-01-01

    Energy is the power of the world's economies, whose appetite for this commodity is increasing as the leading economies expand and developing economies grow. How to provide the energy demanded while protecting our environment and conserving natural resources is a vital question facing us today. Many parts of our society are debating how to power the future and whether nuclear energy should play a role. Nuclear energy is a complex technology with serious issues and a controversial past. Yet it also has the potential to provide considerable benefits. In pondering the future of this imposing technology, people want to know. - How safe is nuclear energy? - Is nuclear energy economically competitive? - What role can nuclear energy play in meeting greenhouse gas reduction targets? - What can be done with the radioactive waste it generates? - Does its use increase the risk of proliferation of nuclear weapons? - Are there sufficient and secure resources to permit its prolonged exploitation? - Can tomorrow's nuclear energy be better than today's? This publication provides authoritative and factual replies to these questions. Written primarily to inform policy makers, it will also serve interested members of the public, academics, journalists and industry leaders. (author)

  14. Perspectives for nuclear energy

    International Nuclear Information System (INIS)

    Baugnet, J.-M.; Abderrahim, H.A.; Dekeyser, J.; Meskens, G.

    1998-09-01

    In Belgium, approximately 60 percent of the produced electricity is generated by nuclear power. At present, nuclear power production tends to stagnate in Europe and North America but is still growing in Asia. The document gives an overview of the present status and the future energy demand with emphasis on electric power. Different evaluation criteria including factors hindering and factors promoting the expansion of nuclear power as well as requirements of new nuclear power plants are discussed. The extension of the lifetime of existing facilities as well as fuel supply are taken into consideration. A comparative assesment of nuclear power with other energy sources is made. The report concludes with estimating the contribution and the role of nuclear power in future energy demand as well as with an overview of future reactors and research and development programmes

  15. Nuclear Energy Data - 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants remained steady in 2013 despite the progressive shutdown of all reactors in Japan leading up to September and the permanent closure of six reactors in the OECD area. Governments committed to maintaining nuclear power in the energy mix advanced plans for increasing nuclear generating capacity, and progress was made in the development of deep geological repositories for spent nuclear fuel, with Finland expected to have the first such facility in operation in the early 2020's. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'StatLinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link. (authors)

  16. Nuclear Energy Data - 2016

    International Nuclear Information System (INIS)

    2016-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projections of nuclear generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants increased slightly in 2015, by 0.2% and 0.1%, respectively. Two new units were connected to the grid in 2015, in Russia and Korea; two reactors returned to operation in Japan under the new regulatory regime; and seven reactors were officially shut down - five in Japan, one in Germany and one in the United Kingdom. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects progressing in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Stat Links'. For each Stat Link, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link. (authors)

  17. International nuclear energy guide

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Separate abstracts are included for each of the papers presented concerning current technical and economical events in the nuclear field. Twelve papers have been abstracted and input to the data base. The ''international nuclear energy guide'' gives a general directory of the name, the address and the telephone number of the companies and bodies quoted in this guide; a chronology of the main events 1982. The administrative and professional organization, the nuclear courses and research centers in France are presented, as also the organization of protection and safety, and of nuclear fuel cycle. The firms concerned by the design and the construction of NSSS and the allied nuclear firms are also presented. The last part of this guide deals with the nuclear energy in the world: descriptive list of international organizations, and, the nuclear activities throughout the world (alphabetical order by countries) [fr

  18. Investments in electricity generation in Croatian liberalized market: energy option

    International Nuclear Information System (INIS)

    Androcec, I.; Viskovic, A.; Slipac, G.

    2004-01-01

    The Republic of Croatia should have enough capacities built on its own territory to cover system's peak load at any time for ensuring a long-term reliability of its operation. According to annual increasing of electricity consumption and progressive shutdown of the oldest generating plants, the security of future electricity supply depends on new investments. The market, i.e. a competitive generation, is the driving force in the construction of new power plants. The main stimulus for the construction is the possibility of definite return of invested capital and enabling potential investors to realize the expected revenues (profit). The construction of generating capacities is subject of authorisation procedure or tendering procedure, by approval of the Energy Regulatory Council. The electricity market opening in Croatia is parallel process with establishment of regional energy market in South East Europe where the decision of investment in new power plant will be defined by regional investment priorities, all in the aspect of European Union enlargement. In those liberalisation conditions it is necessary to realize all possible energy options according to the Strategy of Energy Development of Republic of Croatia and to the regional energy market requirements or European Union Directives. New power plant will be realized, because of objective circumstances, through construction of gas power plant or coal power plant and possible nuclear power plant, and in much smaller size through construction of hydro power plants or power plants on renewable energy sources. The possibility of any energy option will be considered in view of: investment cost, operation and maintenance cost, fuel price, external costs, public influence, and through investor's risk. This paper is aiming to analyse the possibility of nuclear power plant construction in Croatia as well as in other small and medium electricity grids. Nuclear option will be comprehensively considered in technical

  19. Dossier nuclear energy

    International Nuclear Information System (INIS)

    1993-11-01

    The present Dutch government compiled the title document to enable the future Dutch government to declare its opinion on the nuclear energy problemacy. The most important questions which occupy the Dutch society are discussed: safe application and risks of nuclear energy, radioactive wastes and other environmental aspects, and the possible danger of misusing nuclear technology. In chapter two attention is paid to the policy, as formulated by the Dutch government, with regard to risks of nuclear power plants. Next the technical safety regulations that have to be met are dealt with. A brief overview is given of the state of the art of commercially available nuclear reactors, as well as reactors under development. The nuclear waste problem is the subject of chapter three. Attention is paid to the Dutch policy that has been formulated and is executed, the OPLA-program, in which the underground storage of radioactive wastes is studied, the research on the conversion of long-lived radioactive isotopes to short-lived radioactive isotopes, and planned research programs. In chapter four, other environmental effects of the use of nuclear power are taken into consideration, focusing on the nuclear fuel cycle. International obligations and agreements to guarantee the peaceful use of nuclear energy (non-proliferation) are mentioned and discussed in chapter four. In chapter six the necessity to carry out surveys to determine public support for the use of nuclear energy is outlined. In the appendices nuclear energy reports in the period 1986-present are listed. Also the subject of uranium supplies is discussed and a brief overview of the use of nuclear energy in several other countries is given. 2 tabs., 5 annexes, 63 refs

  20. Nuclear Energy Data - 2017

    International Nuclear Information System (INIS)

    2017-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on total electricity produced by all sources and by nuclear power, fuel cycle capacities and requirements, and projections to 2035, where available. Country reports summarise energy policies, updates of the status in nuclear energy programs and fuel cycle developments. In 2016, nuclear power continued to supply significant amounts of low-carbon baseload electricity, despite strong competition from low-cost fossil fuels and subsidised renewable energy sources. Three new units were connected to the grid in 2016, in Korea, Russia and the United States. In Japan, an additional three reactors returned to operation in 2016, bringing the total to five under the new regulatory regime. Three reactors were officially shut down in 2016 - one in Japan, one in Russia and one in the United States. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects making progress in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports

  1. The nuclear energy debate

    International Nuclear Information System (INIS)

    Hardy, D.

    1984-01-01

    We have not been able to obtain closure in the nuclear energy debate because the public perception of nuclear energy is out of sync with reality. The industry has not been about to deal with the concerns of those opposed to nuclear energy because its reaction has been to generate and disseminate more facts rather than dealing with the serious moral and ethical questions that are being asked. Nuclear proponents and opponents appeal to different moral communities, and those outside each community cannot concede that the other might be right. The Interfaith Program for Public Awareness of Nuclear Issues (IPPANI) has been formed, sponsored by members of the Jewish, Baha'i, Roman Catholic, United, and Anglican faiths, to provide for a balanced discussion of the ethical aspects of energy. (L.L.)

  2. Nuclear energy and jobs

    International Nuclear Information System (INIS)

    Goldfinger, N.

    1976-01-01

    Mr. Goldfinger, Research Director of AFL-CIO, examines the problem of energy in general, nuclear in particular, and the employment relationship. The energy shortages in the U.S. and its dependence on oil are cited. Directly connected with this serious problem relating to energy are jobs, income, and living standards. If energy is not available, industries will be unable to expand to meet the needs of the growing population; and prices of goods will rise. From an evaluation of what experts have said, Mr. Goldfinger concludes that increased coal production and better coal technology cannot meet energy demands; so the sharp increase both in volume and as a percentage of total energy needed in the future will have to come from nuclear power. Development of alternative sources is necessary, he feels, and intense research on these is needed now. The employment impact in the nuclear energy scenario is analyzed according to the trades involved. It is estimated that 1.5 million jobs in the nuclear industry would be open by the year 2000 if nuclear is to provide one-fourth of energy supplies. The employment picture, assuming abandonment of nuclear energy, is then discussed

  3. Wind energy options in the Netherlands

    International Nuclear Information System (INIS)

    Arkesteijn, L.A.G.; Havinga, R.J.

    1992-07-01

    Next to a study of the title subject attention is paid to the quantification of the wind energy potential and the conditions under which such potentials can be realized. The options are influenced by technical-economical, planning and socio-political factors, which are summarized in appendix 1 and discussed in chapter three. Results of interviews with experts in the field of wind energy can be found in appendix 2. Based on the impacts on the wind energy potential four wind energy development scenarios are compared in chapter four. The reference scenario is based on the present wind energy policy in the Netherlands. The other three scenarios are the Price-scenario (higher societal appreciation of electricity generated by wind power), the Site-scenario (matters of site selection and planning), and a Combined-scenario (combination of the Price- and the Site-scenario). For each scenario potential estimations were made for the years 2000, 2010, 2015, and restricted estimations for the year 2025. It is concluded that within 25 years 2,500 MW wind power can be realized on land and 6,000 MW on water. The main problems for the location on land and inland waterways are the planning restrictions, and for sea locations the limiting factor is the high cost price. Recommendations to the Dutch government to realize the potentials concern the facts that social advantages of wind energy should be part of the price of the energy, more sites should be made available for the application of wind energy, more research has to be carried out on the possibility of locating wind power generating systems at sea, and the social basis for wind energy should be maintained and even increased. 18 figs., 5 app., 47 refs

  4. Sustaining the nuclear power option in Malaysia

    International Nuclear Information System (INIS)

    Jamal Khaer bin Ibrahim.

    1989-01-01

    This paper describes the approach taken to establish the information base required prior to a decision on a nuclear power programme, and the strategy adopted and the rationale behind the development of the basic core expertise on nuclear reactor technology. The effect of a lack of decision on the question of nuclear power generation on efforts to build this core technical expertise is also described. (author)

  5. Nuclear energy versus other energy sources

    International Nuclear Information System (INIS)

    King, F.K.

    1994-01-01

    This paper deals with nuclear and other sources of energy as they relate to the production of electricity. It first examines the current role of electricity in the world and its means of production and how future economic growth, associated with growing populations striving for better living conditions, will lead to increased demands for new electricity generation. The second part of the paper deals with the health and environmental impacts of the major options for generating electricity likely to be used to meet this need, and how a comparative assessment of these impacts is important to understand the full implications of electricity generation planning decisions. 6 refs, 12 figs

  6. Preliminary study of the nuclear power option in Belarus

    International Nuclear Information System (INIS)

    Grusha, N.M.; Kazazyan, V.T.; Malykhin, A.P.; Mikhalevich, A.A.; Yakushau, A.P.; Yaroshevich, O.I.

    1999-01-01

    The Republic of Belarus possesses an economy with many energy intensive branches. At the same time the share of domestic energy resources is about 15% of total energy demand. The share of the payment for primary energy resources reaches 60% or USD 2 billion of the total energy import. That is comparable with the annual state budget. In addition to that, about half of the installed capacities have reached their operation life and 90% of the units have to be retrofitted or replaced until 2010. Thus, the problem of energy supply is one of the most important ones for Belarus' economy. The nuclear power appears to be one of the possible ways for solving the energy demand problem in Belarus which has, as in case of many countries of Central and South-Eastern Europe, limited energy resources. In 1992 - 1994 the works for studying the possibility of NPP siting were recommenced and six relatively competitive sites have been chosen out from 54 possible locations for NPP siting. Parallely, works on assessment of environmental NPP effect in these sites were carried out. As concerning the reactors to be purchased and installed in the sites selected, the following options were taken into consideration: PWR of American Company WESTINGHOUSE; PWR N4 of France Company FRAMATOME; PWR KONVOI of German Company SIEMENS. Also promising are the new generation of Russian Reactor NPP, namely NPP - 91, NPP - 92 and NPP with NGWWER - 640 reactors. Preliminary assessment having in view the feasibility characteristics, safety, reliability as well as the degree of completion shows the Russian projects NPP - 92 and NGWWER - 640 as more preferably at present. Concerning the radioactive waste management, sites for storing low and medium active waste have been determined as well as regions for high active waste disposal. At present Belarus Republic disposes of a definite production, engineering and scientific potential, which can be used when the nuclear power program will be launched. Construction

  7. Photovoltaic power - An important new energy option

    Science.gov (United States)

    Ferber, R. R.

    1983-01-01

    A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.

  8. Scale and the acceptability of nuclear energy

    International Nuclear Information System (INIS)

    Wilbanks, T.J.

    1984-01-01

    A rather speculative exploration is presented of scale as it may affect the acceptability of nuclear energy. In our utilization of this energy option, how does large vs. small relate to attitudes toward it, and what can we learn from this about technology choices in the United States more generally. In order to address such a question, several stepping-stones are needed. First, scale is defined for the purposes of the paper. Second, recent experience with nuclear energy is reviewed: trends in the scale of use, the current status of nuclear energy as an option, and the social context for its acceptance problems. Third, conventional notions about the importance of scale in electricity generation are summarized. With these preliminaries out of the way, the paper then discusses apparent relationships between scale and the acceptance of nuclear energy and suggests some policy implications of these preliminary findings. Finally, some comments are offered about general relationships between scale and technology choice

  9. Comparative Assessment of Energy Supply Options

    International Nuclear Information System (INIS)

    Rogner, H.-H.; Vladu, I. F.

    2000-01-01

    The complexity facing today's energy planners and decision-makers, particularly in electricity sector, has increased. They must take into account many elements in selecting technologies and strategies that will impact near term energy development and applications in their countries. While costs remain a key factor, tradeoffs between the demands of environmental protection and economic development will have to be made. This fact, together with the needs of many countries to define their energy and electricity programmes in a sustainable manner, has resulted in a growing interest in the application of improved data, tools and techniques for comparative assessment of different electricity generation options, particularly from an environmental and human health viewpoint. Although global emissions of greenhouse gases and other pollutants, e.g. SO 2 , NO x and particulate, must be reduced, the reality today is that these emissions are increasing and are expected to continue increasing. In examining the air pollutants, as well as water effluents and solid waste generated by electricity production, it is necessary to assess the full energy chain from fuel extraction to waste disposal, including the production of construction and auxiliary materials. The paper describes this concept and illustrates its implementation for assessing and comparing electricity generation costs, emissions, wastes and other environmental burdens from different energy sources. (author)

  10. Editorial : Introduction to Energy Strategy Reviews theme issue “Nuclear energy today & strategies for tomorrow”

    NARCIS (Netherlands)

    Rogner, H.H.; Weijermars, R.

    2013-01-01

    Finding the optimum energy supply system is one of the aims of energy strategy research and nuclear energy is a much debated real option. Proponents of nuclear energy argue that there are no technologies without risks and that nuclear power is needed for meeting growing energy demand in the emerging

  11. Axiology of nuclear energy

    International Nuclear Information System (INIS)

    Sawada, Tetsuo

    2003-01-01

    Nuclear energy was born in World War II and it has grown within the regime of Cold War. When the Cold War came to the end around early 1990 s, we who have benefited by the development of nuclear energy must have been challenged with a new tide of civilization change. Although it has not been so much closely questioned since then, such a new movement, that was submerging, abruptly manifested on September 11, 2001. Then, many of us realized that global circumstances, especially concerned with security, must have actually changed with the reordering of the world basic structures. This paper describes on the thoughts to reveal the cause and background of the event on September 11 with the linkage to nuclear energy development, or nuclear civilization in pursuit of the future regime of nuclear in harmonization with the global society in 21st century. (author)

  12. Development of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Wakeham, John [Secretary of State for Energy, London (UK)

    1991-06-01

    The Government's views on the development of nuclear energy are outlined. In this country, we continue to see some important advantages in maintaining nuclear power generation. It increases diversity, and so helps to maintain security of energy supply. It does not produce greenhouse gases or contribute to acid rain. But it is equally clear that nuclear costs must be brought under control whilst at the same time maintaining the high standards of safety and environmental protection which we have come to expect in the UK. The three main elements which the nuclear industry must address in the future are summarized. First the costs of nuclear generation must be reduced. Secondly, once the feasibility and costings of PWRs have been established consideration must be given to the choices for the future energy policy and thirdly new reactor designs should be standardized so the benefits of replication can be realised. (author).

  13. Environmentalists for nuclear energy

    International Nuclear Information System (INIS)

    Comby, B.

    2001-01-01

    Fossil fuels such as coal oil, and gas, massively pollute the Earth atmosphere (CO, CO 2 , SOX, NOX...), provoking acid rains and changing the global climate by increasing the greenhouse effect, while nuclear energy does not participate in these pollutions and presents well-founded environmental benefits. Renewable energies (solar, wind) not being able to deliver the amount of energy required by populations in developing and developed countries, nuclear energy is in fact the only clean and safe energy available to protect the planet during the 21 century. The first half of the book, titled The Atomic Paradox, describes in layman language the risks of nuclear power, its environmental impact, quality and safety standards, waste management, why a power reactor is not a bomb, energy alternatives, nuclear weapons, and other major global and environmental problems. In each case the major conclusions are framed for greater emphasis. Although examples are taken from the French nuclear power program, the conclusions are equally valid elsewhere. The second half of the book is titled Information on Nuclear Energy and the Environment and briefly provides a historical survey, an explanation of the different types of radiation, radioactivity, dose effects of radiation, Chernobyl, medical uses of radiation, accident precautions, as well as a glossary of terms and abbreviations and a bibliography. (author)

  14. Nuclear Energy and the Environment.

    Science.gov (United States)

    International Atomic Energy Agency, Vienna (Austria).

    "Nuclear Energy and the Environment" is a pocket folder of removable leaflets concerned with two major topics: Nuclear energy and Nuclear Techniques. Under Nuclear Energy, leaflets concerning the topics of "Radiation--A Fact of Life,""The Impact of a Fact: 1963 Test Ban Treaty,""Energy Needs and Nuclear Power,""Power Reactor Safety,""Transport,"…

  15. Journalism and nuclear energy

    International Nuclear Information System (INIS)

    Mills, M.P.

    1987-01-01

    The question as to why nuclear energy is a point of friction between journalists and the expert community is discussed. The areas in which the two communities fail to communicate are highlighted and the opportunities that exist for improved nuclear journalism are identified briefly. (author)

  16. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  17. Nuclear energy and medicine

    International Nuclear Information System (INIS)

    1988-01-01

    The applications of nuclear energy on medicine, as well as the basic principles of these applications, are presented. The radiological diagnosis, the radiotherapy, the nuclear medicine, the radiological protection and the production of radioisotopes are studied. (M.A.C.) [pt

  18. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  19. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  20. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  1. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  2. Future of nuclear energy technology in Switzerland

    International Nuclear Information System (INIS)

    Tiberini, A.; Brogli, R.; Jermann, M.; Alder, H.P.; Stratton, R.W.; Troyon, F.

    1988-01-01

    Despite the present gloom surrounding the nuclear option for electricity and heat generation, there are still people in Switzerland in industry, research, banking and even politics willing and capable to think in terms of long-range projections. The basis for these projections is the belief that a well-functioning and prosperous society always needs large and reliable sources of acceptably priced energy, which must be generated with a high respect for the necessity of a clean environment. Being aware of the current low acceptance level of the nuclear option, efforts to keep this option open are directed to achieving the following goals: to maintain and improve the country's capabilities to safely operate the four existing nuclear power plants of Beznau (twin units), Muehleberg, Goesgen and Leibstadt; to keep the capability of extending the applications of nuclear energy technology. In practice, this could be in the fields of district heating, fusion, and advanced power reactors

  3. Nuclear energy: a reassessment

    International Nuclear Information System (INIS)

    McClure, J.A.; Nader, R.; Udall, M.K.; Walske, C.

    1980-01-01

    This edited transcript of a televised American Enterprise Institute Public Poicy Forum explores the role of nuclear technology in energy production in the US today. A panel made up of Senator James A. McClure, Ralph Nader, Representative Morris K. Udall, and Dr. Carl Walske and moderated by John Charles Daly examines the lessons learned from the accident at the Three Mile Island Nuclear Plant and the public attitudes toward nuclear energy, particularly in light of this accident. The experts discuss alternative energy sources, such as coal, gas, biomass, and solar power as well as conservation and more efficient use of present facilities. The issues of nuclear waste disposal and transport and US commitments to countries not self-sufficient in their energy needs are also explored

  4. Nuclear energy in Europe

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A country by country study of nuclear energy in the various European countries: Austria, Belgium, Bulgaria, Czechoslovakia, Denmark, Federal German Republic, Finland, German Democratic Republic, Great Britain, Holland, Hungary, Italy, Poland, Rumania, Spain, Sweden, Switzerland, USSR and Yugoslavia [fr

  5. Desalting and Nuclear Energy

    Science.gov (United States)

    Burwell, Calvin C.

    1971-01-01

    Future use of nuclear energy to produce electricity and desalted water is outlined. Possible desalting processes are analyzed to show economic feasibility and the place in planning in world's economic growth. (DS)

  6. Public communication and nuclear energy

    International Nuclear Information System (INIS)

    Cornado, A.

    2006-01-01

    The article tries to explain why on occasion the public's perception of nuclear is more negative than of any other form of electricity generation or issue related to this field, when in reality public opinion has been gradually losing interest in nuclear in recent years. In fact, we could say that as nuclear loses its interest, its presence in the media grows in relation to the environmental aspects of electricity generation, of which nuclear form a part. Of the accusations directed at the nuclear industry, probably the most frequent one concerns the lack of transparency and lack of information on its activities. This article shows how the nuclear sector is probably one that generates more and better information on its own business. However, the lack of social acceptance of this activity, and of the energy business in general, is recognized. To solve this, mention is made of the example of France and Finland, where a well planned communication policy, implemented on a sustained basis over time, and the invitation to society to take part in these issues have favored a substantial improvement of public acceptance of electric generation sources, and specifically the nuclear option. The article ends with some recommendations that could be applied to Spain. (Author)

  7. Nuclear energy in Armenia

    International Nuclear Information System (INIS)

    Gevorgyan, S.; Kharazyan, V.

    2000-01-01

    This summary represents an overview of the energy situation in Armenia and, in particular, the nuclear energy development during the last period of time. the energy sector of Armenia is one of the most developed economy branches of the country. The main sources of energy are oil products, natural gas, nuclear energy, hydropower, and coal. In the period of 1985-1988 the consumption of these energy resources varied between 12-13 million tons per year of oil equivalent. Imported energy sources accounted for 96% of the consumption. During the period 1993-1995 the consumption dropped to 3 million tons per year. Electricity in Armenia is produced by three thermal, one nuclear, and two major hydroelectric cascades together with a number small hydro units. The total installed capacity is 3558 MW. Nuclear energy in Armenia began its development during the late 1960's. Since the republic was not rich in natural reserves of primary energy sources and the only domestic source of energy was hydro resource, it was decided to build a nuclear power plant in Armenia. The Armenian Nuclear Power Plant (ANPP) Unit 1 was commissioned in 1996 and Unit 2 in 1980. The design of the ANPP was developed in 1968-1969 and was based on the project of Units 3 and 4 of the Novovoronezh NPP. Both units of the plant are equipped with reactors WWER-440 (V -270) type, which are also in use in some power stations in Russian Federation, Bulgaria, and Slovakia. Currently in Armenia, 36% of the total electricity production is nuclear power electricity. (authors)

  8. The new economics of nuclear energy

    International Nuclear Information System (INIS)

    Salian, Ramesh; Prasanna Kumar, N.

    2012-01-01

    With 15% of the world's population and an economic growth rate that increases the aspiration of its people to better quality of life, India has a voracious appetite for energy. Nuclear power is one of the options of providing safe, environmentally benign, reliable and economically competitive energy services. Nuclear power world over provides about 16% of electricity through 440 nuclear power plants with a total installed capacity of 361.582 GW (as of January 2004, IAEA PRIS data). Nuclear energy has traditionally played a small role in meeting India's energy requirements. Nuclear power makes up only 4,120 MW, constituting 2.6%, of the total electricity generation capacity. India is a power hungry nation and needs to switch over from its tremendous dependence on fossil fuels to alternative sources of energy like solar energy, bio energy and nuclear energy. Indian nuclear power plants have progressively attained excellent operation performances. However, the changing economic and geopolitical situation in the energy sector has made it imperative to emphasize the significance of nuclear energy in the future energy landscape of the country. The present paper discuss the importance, demand and supply pattern of nuclear energy and its economics. (author)

  9. Nuclear energy. Unmasking the mystery

    International Nuclear Information System (INIS)

    1988-08-01

    The Standing Committee on Energy, Mines and Resources of the House of Commons of Canada undertook a study of the economics of nuclear power in Canada. This is its report on the evidence it heard. It found that maintaining the nuclear power option is vital to Canada's interests. The Committee recommended that: the schedule for establishing a commercial high-level radioactive waste repository be advanced; the basic insurance coverage on nuclear facilities be raised; the federal government increase its financial support of Atomic Energy of Canada Ltd. (AECL); AECL expand its research and development activities, including non-nuclear R and D; AECL be allowed to hold a minority interest in any component of AECL that is privatized; any new entity created by privatization from AECL be required to remain under Canadian control; the Atomic Energy Control Act be altered to allow the Atomic Energy Control Board (AECB) to recover costs through licensing fees and user charges, while the AECB's parliamentary appropriation is increased to offset remaining costs of operations; membership on the AECB be increased from one to five full-time members, retaining the present four part-time members; the AECB hold its hearings in public; the name of the AECB be changed so it is more readily distinguishable from AECL; the AECB establish an office of public information; and that federal and provincial governments cooperate more closely to identify opportunities where more efficient use of electricity could be achieved and to promote those measures that can attain the greatest economic efficiency

  10. Nuclear energy and information

    International Nuclear Information System (INIS)

    Chen Baisong

    1996-01-01

    The information tells us that since the first chain reaction discovery about 50 years ago up to now, there are more than 400 commercial nuclear power plants connected to electricity supply net works. The electricity supplied by nuclear power plants has exceeded 2000 TWH, which represents almost 17% of the total electricity generated in the world and this proportion is still increasing. The accumulated operating experience of nuclear power plants reach more than 6000 reactor-year. Quite high average life time energy availability factors demonstrate the good reliability of nuclear power plants. The present status of the electricity development in the world shows that nuclear power has become an imperative and exclusively realistic alternative energy source. All of these information demonstrate that nuclear power as a safe, clean and less cost power source has already been widely accepted in the world. In Asia and Pacific region, the fast development of economy provides a vast possibility for the development of nuclear power. In China, shortage of electricity has become the 'bottle neck' which retards the economic development nowadays. China has already drawn up the plan for the development of nuclear power. The information is of great significance to promote the development of nuclear power. It could be said that without information, nuclear power could not be smoothly introduced in any country or region. (J.P.N.)

  11. That compromising nuclear energy

    International Nuclear Information System (INIS)

    Mink, E.

    1981-01-01

    This book discusses a wide range of aspects of nuclear energy and its problems. Social and ideological as well as more technical sides of the nuclear controversy are dealt with. The author argues that just more information on the subject cannot solve the problem anyhow, as technologists naively hold. Being a christian, the author believes that the Bible can show us a way out, even as to these energy problems. (G.J.P.)

  12. Risk communication: Nuclear energy

    International Nuclear Information System (INIS)

    Peters, H.P.

    1991-01-01

    The emphasis is put on communication processes, here in particular with regard to nuclear energy. Not so much dealt with are questions concerning political regulation, the constellation of power between those becoming active and risk perception by the population. Presented are individual arguments, political positions and decision-making processes. Dealt with in particular are safety philosophies, risk debates, and attempts to 'channel' all sides to the subject of nuclear energy. (DG) [de

  13. Deliberations about nuclear energy

    International Nuclear Information System (INIS)

    Boskma, P.; Smit, W.A.; Vries, G.H. de; Dijk, G. van; Groenewold, H.J.; Jelsma, J.; Tans, P.P.; Doorn, W. van

    1975-01-01

    This report is a discussion of points raised in three safety studies dealing with nuclear energy. It reviews the problems that must be faced in order to form a safe and practical energy policy with regard to health and the environment (potential hazards, biological effects and radiation dose norms), the proliferation of nuclear weapons, reactor accidents (including their causes, consequences and evacuation problems that arise), the fallout and contamination problems, and security (both reactor security and national security)

  14. Nuclear energy outlook 2008

    International Nuclear Information System (INIS)

    2008-01-01

    With the launch today of its first Nuclear Energy Outlook, the OECD Nuclear Energy Agency (NEA) makes an important contribution to ongoing discussions of nuclear energy's potential role in the energy mixes of its member countries. As world energy demand continues to grow unabated, many countries face serious concerns about the security of energy supplies, rising energy prices and climate change stemming from fossil fuel consumption. In his presentation, the NEA Director-General Luis Echavarri is emphasizing the role that nuclear power could play in delivering cost-competitive and stable supplies of energy, while also helping to reduce greenhouse gas emissions. In one Outlook scenario, existing nuclear power technologies could provide almost four times the current supply of nuclear-generated electricity by 2050. Under this scenario, 1400 reactors of the size commonly in use today would be in operation by 2050. But in order to accomplish such an expansion, securing political and societal support for the choice of nuclear energy is vital. An ongoing relationship between policy makers, the nuclear industry and society to develop knowledge building and public involvement will become increasingly important, the publication notes. Moreover, governments have a clear responsibility to maintain continued effective safety regulation, advance efforts to develop radioactive waste disposal solutions and uphold and reinforce the international non-proliferation regime. The authors find that the security of energy from nuclear power is more reliable than that for oil or gas. Additionally, uranium's high energy density means that transport is less vulnerable to disruption, and storing a large energy reserve is easier than for fossil fuels. One tonne of uranium produces the same energy as 10 000 to 16 000 tonnes of oil using current technology. Ongoing technological developments are likely to improve that performance even more. Until the middle of the century the dominant reactor

  15. Nuclear Energy: Combating Climate Change

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Paillere, Henri; )

    2015-10-01

    Global electricity demand is expected to increase strongly over the coming decades, even assuming much improved end-use efficiency. Meeting this demand while drastically reducing CO 2 emissions from the electricity sector will be a major challenge. Given that the once-significant expectations placed on carbon capture and storage are rapidly diminishing, and given that hydropower resources are in limited supply, there are essentially only two options to de-carbonise an ever increasing electricity sector: nuclear power and renewable energy sources such as wind and solar PV. Of these two options, only nuclear provides firmly dispatchable base-load electricity, since the variability of wind and solar PV requires flexible back-up that is frequently provided by carbon-intensive peak-load plants. The declining marginal value of electricity production and the security of electricity supply are additional issues that must be taken into account. Nuclear power plants do, however, face challenges due to their large up-front capital costs, complex project management requirements and difficulties in siting. As technologies with high fixed costs, both nuclear power and renewables must respond to the challenge of acquiring long-term financing, since investments in capital-intensive low-carbon technologies are unlikely to be forthcoming in liberalised wholesale markets. In order to substantially de-carbonise the electricity systems of OECD countries, policy-makers must understand the similarities, differences and complementarities between nuclear and renewables in the design of future low-carbon electricity systems. The value of dispatchable low-carbon technologies, such as hydro and nuclear, for the safe and reliable functioning of electricity systems must also be recognised. Should the de-carbonisation of electricity sectors in the wake of COP 21 become a reality, nuclear power might well be the single most important source of electricity by 2050, thanks mainly to the

  16. The possible role of nuclear energy in Italy

    International Nuclear Information System (INIS)

    Esposto, Stefano

    2008-01-01

    Italy, after the vote of the referendum in 1987, stopped producing electricity from nuclear fuel for the energy demand. This paper analyses the current Italian energy outlook and clarifies how the choice to abandon the nuclear option damaged our economy. Nowadays, the possible reintroduction of civil nuclear option is hindered by groups claiming that nuclear energy is not convenient and is incredibly dangerous. In this paper it is clarified with international references how this is not correct and why Italy should start thinking seriously and without prejudices at future energy options

  17. The possible role of nuclear energy in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Esposto, Stefano [University of Rome ' La Sapienza' , Via Eudossiana 9, 00187 Rome (Italy)], E-mail: stefanoesposto@gmail.com

    2008-05-15

    Italy, after the vote of the referendum in 1987, stopped producing electricity from nuclear fuel for the energy demand. This paper analyses the current Italian energy outlook and clarifies how the choice to abandon the nuclear option damaged our economy. Nowadays, the possible reintroduction of civil nuclear option is hindered by groups claiming that nuclear energy is not convenient and is incredibly dangerous. In this paper it is clarified with international references how this is not correct and why Italy should start thinking seriously and without prejudices at future energy options.

  18. Environmental and waste disposal options in nuclear engineering curricula

    International Nuclear Information System (INIS)

    Elleman, T.S.; Gilligan, J.G.

    1991-01-01

    The strong national emphasis on waste and environmental issues has prompted increasing interest among nuclear engineering students in study options that will prepare them for careers in these areas. Student interest appears to focus principally on health physics, radioactive waste disposal, and environmental interactions with radionuclides. One motivation for this interest appears to be the growing national programs in environmental restoration and waste remediation that have produced fellowship support for nuclear engineering students as well as employment opportunities. Also, the recent National Academy of sciences study on nuclear engineering education specifically emphasized the importance of expanding nuclear engineering curricula and research programs to include a greater emphasis on radioactive waste and environmental issues. The North Carolina State University (NCSU) Department of Nuclear Engineering is attempting to respond to these needs through the development of course options that will allow students to acquire background in environmental subjects as a complement to the traditional nuclear engineering education

  19. Nuclear energy and the greenhouse problem

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2001-01-01

    Last November - almost in parallel with the Hague Meeting on Climate Change - more than 1,500 of the world's top nuclear scientists and energy technologists met in Washington DC, at the Joint Conference of the American Nuclear Society, the European Nuclear Society, the Nuclear Energy Institute and the International Nuclear Energy Academy. Unlike the United Nations follow up to the Kyoto protocol, which ended in disarray, a note of high optimism and informed realism pervaded the nuclear conference which, among its multiple streams of subject material and papers by international experts, carried the two main themes of Long Term Globally Sustainable Energy Options and Nuclear Energy and the Greenhouse Problem. This paper considers the immense contribution to Greenhouse gas emission minimisation made by nuclear energy in 1999. In that year the global electricity production by the world's 435 nuclear power stations was 2,398 TWh or 16% of total electricity generation or 5% of total primary energy production. The amount of avoided carbon dioxide emission because of the use of nuclear energy in 1999 was 2.4 billion tonnes. This is 10% of total emissions. Japan's 54 nuclear power stations alone save the equivalent of Australia's total Greenhouse emissions. The secret of this success is Australia's uranium fuel

  20. Nuclear energy in Korea

    International Nuclear Information System (INIS)

    Ahn, J.-H.

    2000-01-01

    The total electricity generated in 1998 was 215,300 GWh with 43,261 MWe of total installed capacity of electric power, while in 1978 when the first Nuclear Power Plant began operation it was 31,510 GWh with 6,916 MWe installed capacity. The share of nuclear power generation in 1998 increased up to 41.7%. Currently, 16 units of nuclear power are operating with an additional four units under construction. Nuclear power has contributed to enhancing energy security and supplying stable energy for Korea. The government's strong commitment to the nuclear power program together with a long-term national policy resulted in favorable conditions for KEPCO to manage the program and promote increasing levels of national participation in successive nuclear power projects. The role of nuclear power as a sustainable energy resource can not be emphasized enough with respect to global environmental issues. Increasing the share of nuclear power in the total installed capacity for electricity generation will undoubtedly play a very important role. (author)

  1. The nuclear energy in the frame of the energy sources

    International Nuclear Information System (INIS)

    Bogas, J.

    2008-01-01

    This article analyses the different technological alternatives for addressing the energy challenges of our society (security of supply, competitiveness and sustain ability), emphasizing the need for nuclear energy to achieving those goals. Recently, the view of society about nuclear power has shifted from a position of outright hostility towards an acceptance still not totally defined. That is so, that people of environmentalism as the founders of Green peace James Love lock, Patrick Moore or the writer Gwyneth Cravens have said that nuclear energy is the option to produce energy that less increases CO 2 emissions, and that without it targets for reduction may not meet. (Author) 4 refs

  2. Nuclear primary energy carriers. Short version

    Energy Technology Data Exchange (ETDEWEB)

    Jaeck, W

    1978-04-01

    Basing on our present knowledge the following energy sources for energy supply must be taken into consideration in the long term: regenerative energy sources, fission energy gained by breeder reactors, nuclear fusion. While regenerative energy sources were treated at full length in the study 'Energy Sources for Tomorrow' the present study specifies the other two energy options. The availability and the reliability of nuclear primary energy carrier supply is described in detail and the conversion systems available or still being developed are investigated with regard to their specific consumption of primary energy. Topical questions concerning the proliferation stability of the fuel cycles and techniques are subject to the INFCE program. With reference to the nuclear energy documentation activities of the Federal Government this study is supposed to supply further fundamental material on nuclear primary energy carriers, consumption and readiness for application. Thus it will contribute to the question: 'Is nuclear energy an option which guarantees energy supply in the long term for the Federal Republic of Germany'. (orig.) 891 UA 892 ARA.

  3. Nuclear primary energy carriers. Pt. 1

    International Nuclear Information System (INIS)

    1978-04-01

    Basing on our present knowledge the following energy sources for energy supply must be taken into consideration in the long term: regenerative energy sources, fission energy gained by breeder reactors, nuclear fusion. While regenerative energy sources were treated at full length in the study 'Energy Sources for tomorrow' the present study specifies the other two energy options. The availability and the reliability of nuclear primary energy carrier supply is described in detail and the conversion systems available or still being developed are investigated with regard to their specific consumption of primary energy. Topical questions concerning the proliferation stability of the fuel cycles and techniques are subject to the INFCE programme. With reference to the nuclear energy documentation activities of the Federal Govenment this study is supposed to supply further fundamental material on nuclear primary energy carriers, consumption and readiness for application. Thus it will contribute to the question: 'Is nuclear energy an option which guarantees energy supply in the long term for the Federal Republic of Germany'. (orig.) [de

  4. Standardization's role in revitalizing the nuclear option

    International Nuclear Information System (INIS)

    Ward, J.E.

    1986-01-01

    Considering the moribund status of the nuclear industry, something has to be done in the near-term to reverse the decaying economics of nuclear power. Standardization can turn around nuclear economics in the short term and in the longer term can foster a significant return to nuclear power. In the short term the industry needs to take advantage of those current designs that have proved their worth by excellent operating records. These designs can be replicated taking advantage of the complete status of the design and the construction techniques already in place. In the longer term it needs to develop preapproved designs and sites. Further, it must develop a discipline within the system of regulation as well as within the utility management to accept a power design as is. They cannot afford customized regulation nor customized design. Traditional institutional structures may also be up for grabs as utilities struggle to be more cost-effective. Generating companies may plan a significant role in the future of electric utilities. This kind of emphasis will also provide an impetus for the use of cost-effective, standardized designs that can be the catalyst for nuclear power's resurgence

  5. Nuclear energy at the turning point

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, A.M.

    1977-07-01

    In deciding the future course of nuclear energy, it is necessary to re-examine man's long-term energy options, in particular solar energy and the breeder reactor. Both systems pose difficultiies: energy from the sun is likely to be expensive as well as limited, whereas a massive world-wide deployment of nuclear breeders will create problems of safety and of proliferation. Nuclear energy's long-term success depends on resolving both of these problems. Collocation of nuclear facilities with a system of resident inspectors are measures that ought to help increase the proliferation-resistance as well as the safety of a large-scale, long-term nuclear system based on breeders. In such a long-term system a strengthened International Atomic Energy Agency (IAEA) is viewed as playing a central role.

  6. Global architecture of innovative nuclear energy

    International Nuclear Information System (INIS)

    Andreeva-Andrievskaya, L.N.; Kagramanyan, V.S.; Usanov, V.I.; )

    2011-01-01

    The study Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors including a Closed Fuel Cycle (GAINS), aimed at harmonization of tools used to assess various options for innovative development of nuclear energy, modeling of jointly defined scenarios and analysis of obtained results is presented in the paper. Objectives and methods of the study, issues of spent fuel and fissile materials management are discussed. Investment risks and economic indicators are also described [ru

  7. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  8. Nuclear energy and the environment

    International Nuclear Information System (INIS)

    El-Hinnawi, E.E.

    1980-01-01

    Chapters are presented concerning the environmental impact of mining and milling of radioactive ores, upgrading processes, and fabrication of nuclear fuels; environmental impacts of nuclear power plants; non-radiological environmental implications of nuclear energy; radioactive releases from nuclear power plant accidents; environmental impact of reprocessing; nuclear waste disposal; fuel cycle; and the future of nuclear energy

  9. Nuclear energy terms

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    This is an English-Afrikaans / Afrikaans-English dictionary compiled by the Technical Language Committee of the Atomic Energy Board in collaboration with the Vaktaalburo of the Suid-Afrikaanse Akademie vir Wetenskap en Kuns containing 8515 terms on nuclear energy.

  10. Nuclear energy terms

    International Nuclear Information System (INIS)

    1976-01-01

    This is an English-Afrikaans / Afrikaans-English dictionary compiled by the Technical Language Committee of the Atomic Energy Board in collaboration with the Vaktaalburo of the Suid-Afrikaanse Akademie vir Wetenskap en Kuns containing 8515 terms on nuclear energy

  11. Nuclear energy. Ambiguous lessons from history

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Nuclear power is treated from the historical viewpoint; in particular, the question is discussed whether hopes and expectations from the beginning of the 'nuclear era' have come true. It is suggested that the efforts were driven by political rather than economic considerations. It is demonstrated that the development of nuclear power was no consequence of the oil crisis; actually the situation developed the other way round: the oil crisis was a consequence of the failure of the nuclear option. The fact that the nuclear programme failed to bring the expected results to Western countries is analyzed. The contribution of nuclear to total energy generated will not reach - in the near future at least - the expected proportion: nuclear is actually less competitive because the threat to the environment which some opponents attach to nuclear energy has become mirrored in economic aspects. (M.D.). 33 refs

  12. Nuclear energy versus coal

    International Nuclear Information System (INIS)

    Storm van Leeuwen, J.W.

    1980-01-01

    An analysis is given of the consequences resulting from the Dutch government's decision to use both coal and uranium for electricity production. The energy yields are calculated for the total conversion processes, from the mine to the processing of waste and the demolition of the installations. The ecological aspects considered include the nature and quantity of the waste produced and its effect on the biosphere. The processing of waste is also considered here. Attention is given to the safety aspects of nuclear energy and the certainties and uncertainties attached to nuclear energy provision, including the value of risk-analyses. Employment opportunities, the economy, nuclear serfdom and other social aspects are discussed. The author concludes that both sources have grave disadvantages and that neither can become the energy carrier of the future. (C.F.)

  13. Parliament and nuclear energy

    International Nuclear Information System (INIS)

    Laermann, K.H.

    1993-01-01

    The paper provides a historical review of the behaviour of Parliament in the discussion about utilizing nuclear energy. An analysis of the positions taken and reasons advanced so far is necessary, because it is only from its results that promising strategies appropriate to bring about a consensus can be derived. There is no doubt that it is a genuine task of the democratically legitimated bodies to strive for a consensus in energy policy, in particular nuclear energy, in the interest of the whole State, with the legislative, executive and economic bodies combining their efforts. The reservedness of Parliament is regrettable. At the moment, however, there is the positive effect of the discussion being revived. It should be conducted rationally in the joint interest of reaching a political consensus and, on that basis, a broad acceptance of nuclear energy utilization. (orig./HSCH) [de

  14. Nuclear energy and society

    International Nuclear Information System (INIS)

    Baiquni, A.

    1982-01-01

    A great deal of energy will be needed for industrial development. The risks of energy production can be either individual or social in nature. Individual risk occurs in different places and different times to individuals in a certain period of time. Social risk occurs to several people in a time. People tend to refuse a nuclear power plant because of its social risk. This attitude is based more on feelings than reason. In fact radiation from a nuclear power plant is only 0.15% while radiation from medical instruments and from the environment is 99%. From the safety, pollution effect, price, and uses point of view, it can be concluded that nuclear energy is the most appropriate energy to face the future of the nation. (RUW)

  15. World nuclear energy paths

    International Nuclear Information System (INIS)

    Connolly, T.J.; Hansen, U.; Jaek, W.; Beckurts, K.H.

    1979-01-01

    In examing the world nuclear energy paths, the following assumptions were adopted: the world economy will grow somewhat more slowly than in the past, leading to reductions in electricity demand growth rates; national and international political impediments to the deployment of nuclear power will gradually disappear over the next few years; further development of nuclear power will proceed steadily, without serious interruption but with realistic lead times for the introduction of advanced technologies. Given these assumptions, this paper attempts a study of possible world nuclear energy developments, disaggregated on a regional and national basis. The scenario technique was used and a few alternative fuel-cycle scenarios were developed. Each is an internally consistent model of technically and economically feasible paths to the further development of nuclear power in an aggregate of individual countries and regions of the world. The main purpose of this modeling exercise was to gain some insight into the probable international locations of reactors and other nuclear facilities, the future requirements for uranium and for fuel-cycle services, and the problems of spent-fuel storage and waste management. The study also presents an assessment of the role that nuclear power might actually play in meeting future world energy demand

  16. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    determined effort would be needed to achieve more significant near-term use. The timing and extent of this implementation will of course depend on the rate of escalation of fossil-fuel prices, the local availability of alternative energy sources, and the general level of public confidence in nuclear technology. This paper reviews the prospects for NPH systems. including the nature of the potential market, some of the promising NHP reactor design options of current interest, and Canadian and global experience. (author)

  17. Nuclear energy and process heating

    International Nuclear Information System (INIS)

    Kozier, K.S.

    1999-10-01

    effort would be needed to achieve more significant near-term use. The timing and extent of this implementation will of course depend on the rate of escalation of fossil-fuel prices, the local availability of alternative energy sources, and the general level of public confidence in nuclear technology. This paper reviews the prospects for NPH systems. including the nature of the potential market, some of the promising NHP reactor design options of current interest, and Canadian and global experience. (author)

  18. Freedom from nuclear energy myth

    International Nuclear Information System (INIS)

    Kim, Wonsik

    2001-09-01

    This book generalizes the history of nuclear energy with lots of myths. The contents of this book are a fundamental problem of nuclear power generation, the myth that nuclear energy is infinite energy, the myth that nuclear energy overcomes the crisis of oil, the myth that nuclear energy is cheap, safe and clean, the myth that nuclear fuel can be recycled, the myth that nuclear technology is superior and the future and present of nuclear energy problem related radiation waste and surplus of plutonium.

  19. Nuclear Energy in Romania

    International Nuclear Information System (INIS)

    Biro, L.

    2003-01-01

    The new energy approach towards nuclear, due to the growing political support at the beginning of this century, is the result of a complexity of economical, social, political and technological factors. The history of peaceful use of nuclear energy in Romania goes back 45 years. Considering the strategic importance of the energy sector in developing the national economy on sustainable basis, the sector evolution should be outlined through prognosis and strategies on different horizons of time, so that the development perspectives and the energy supply to be correctly estimated. This necessity is emphasized in the Governmental Program of the present administration, which takes into consideration Romanian Economic Strategy on medium term and also The Government Action Plan on 2000-2004, agreed with the European Commission. In order to implement the Governmental Program, the Ministry of Industries and Resources elaborates the National Energy Strategy. The Government Action Plan draw up the conclusion that Unit 2 from Cernavoda NPP must be finalized. This solution fits the least-cost energy development planning and answers to environment requirements. Romania became a Member State of the Agency in 1957. From the mid-1960s to the mid-1970s its technical co-operation program with the Agency covered mainly research in nuclear physics and some medical and other applications of radiation and isotopes. Since 1976, when the Romanian nuclear power program was embarking to use CANDU-type reactors, the Agency has supported mainly the activities related to the Cernavoda NPP. In the framework of the Romanian accession process to the European structures, CNCAN co-operates with European Commission for transposition of the communautaire acquis in the field of nuclear activities. Romania has had laws in place governing the regulation of nuclear activities since 1974. They were remained in force throughout and subsequent to the national constitutional changes started in 1989 until 1996

  20. Nuclear energy is promising

    International Nuclear Information System (INIS)

    Spitz, H.

    2000-02-01

    This document summarizes the different talks given by the participants to the winter meeting on nuclear energy which took place in Germany on January 27 and 28 2000. Representatives of the following companies and organisations attended the meeting: Deutsches Atomforum e.V., Bayernwerk AG, IG Bergau, Chemie und Energie, Siemens AG - energy production, VEBA AG and one public opinion poll institute. (J.S.)

  1. MHR fuel cycle options for future sustainability of nuclear power

    International Nuclear Information System (INIS)

    Baxter, Alan; Venneri, Francesco; Rodriguez, Carmelo; Fikani, Michael

    2005-01-01

    The future sustainability of the nuclear option is not significantly tied to the level of resources. For example, current high quality uranium reserves (∼3.34x10 6 tons) are enough for more than 55 years at present consumption rates (IAEA estimate). Doubling of the present uranium ore price (∼$26/kg) could create about a tenfold increase in resources, providing more than 550 years of supply at present rates (World Nuclear Association estimate). There are also thorium reserves which are estimated to be about three times those of uranium, and would allow for a significant increase in annual consumption levels. The key to a sustainable nuclear future is really tied to the political and technical problems of long term waste disposal, and the perceived risks of nuclear weapons proliferation. Thus fuel cycle options for a sustainable nuclear future must address and solve these issues. High temperature, Gas-Cooled, Graphite Moderated, reactors (MHRs) have nuclear and operational characteristics to provide multiple fuel cycle options to solve these issues. Three fuel cycles for the MHD are described in this paper, and their capabilities for meeting a sustainable nuclear future in terms of nuclear waste minimization and destruction, and reduction of proliferation risk, are discussed. (author)

  2. Current problems of nuclear arms: some options

    International Nuclear Information System (INIS)

    Bocharov, I.F.

    1992-01-01

    Possible solutions of certain problems of the soviet nuclear weapons resulting from spontaneously changing military-political situation and social-economical living conditions on geostrategical space of the former USSR are discussed. Reliable stabilization of military-political situation on the former USSR territory is required for solving the above problems, which in its turn will possibly require active efforts of the international community. The idea on creation the Committee on non-prolifiration by the UN Security Council is proposed

  3. Nuclear energy and climate change; Energia nuclear y cambio climatico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Jimenez, A.

    2002-07-01

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO{sub 2} emissions. (Author)

  4. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  5. Nuclear energy and insurance

    International Nuclear Information System (INIS)

    Ekener, H.

    1997-01-01

    It examines the technical, scientific and legal issues relating to the peaceful use of atomic energy in Turkey. The first fifteen chapters give a general overview of the atom and radioactivity; the chapters which follow this section are more technical and deal with the causes of nuclear accidents in reactors.A number of chapters cover legal issues, for example the conditions and procedures involved in the insurance market and the risks linked to operation of a nuclear power plant.The following subjects are examined in relation to nuclear insurance: risks during construction; fire during operation of the plants and other causes of accidents; risks due to the transport of radioactive materials and waste etc. The final chapters reproduce the principle legislative texts in force in Turkey in the field of nuclear energy, and also certain regulations which establish competent regulatory bodies

  6. Energy supply and nuclear energy

    International Nuclear Information System (INIS)

    Heitzer, H.

    1977-01-01

    The author emphasizes the necessity and importance of nuclear energy for the energy supply and stresses the point that it is extremely important to return to objective arguments instead of having emotional disputes. In this connection, it would be necessary for the ministries in question to have clear-cut political responsibility from which, under no circumstances, they may escape, and which they cannot pass on to the courts either. Within the framework of listing present problems, the author is concerned with the possibility of improved site planning, the introduction of a plan approval procedure and questions concerning immediately enforceable nuclear licences. He also deals with a proposal, repeatedly made, to improve nuclear licensing procedures on the one hand by introducing a project-free site-appointment procedure, and on the other hand by introducing a simplified licensing procedure for facilities of the same kind. Splitting the procedure into site and facility would make sense solely for the reason that in many cases the objections are, above all, directed against the site. (HP) [de

  7. Identification of the real options in a program of nuclear plants

    International Nuclear Information System (INIS)

    Camacho G, D.; Diaz N, M. J.; Reinking C, A.

    2008-01-01

    The development of our societies and our economies this intimately related to electric power and this as well with the generating sources, due to the projection of world-wide growth should go associate with a strategy of growth of energy generation. Considering to the nuclear power as an option to satisfy the energy needs that a country can provide two main immediate benefits: The stabilization of prices of security of provision of electric power of the nation. The care of the environment, since the gas discharges greenhouse are almost null. At the moment nuclear energy represents economically a viable option for the capital investment, taking into account the development from technology, the policies implemented by the state and the prices of other fuels. Due to the great investment that its require for the nuclear plants are necessary to use financial tools that allow to analyze the future scenes in which ours investment can be seen affected and to value the flexibility of being able to enlarge, to postpone or to stop our project in order to have majors profits or to diminish the lost ones. This valuation of the flexibility can be obtained from the called method Real Options. By analysis of Real Options the process is understood to apply to the methodology of the Financial Options to the valuation of projects or the management of real assets. The Real Options appear in flexible plans, projects, activities or enterprise investments, like for example, to leave or to sell the investment project before concluding it, changing to their use or its technology, to prolong their life, the option to choose, one or the other capacity, among others possibilities. In this work is an example of the application of the method of Real Options in the decision to invest or to defer the investment for the construction of a nuclear plant following the behavior of the tariffs in the market or the costs of generation of other technologies with which a nuclear plant competes. (Author)

  8. Nuclear Power Options Viability Study. Volume 4. Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D B; White, J D; Sims, J W [eds.

    1986-09-01

    Documents in the Nuclear Power Options Viability Study (NPOVS) bibliography are classified under one of four headings or categories as follows: nuclear options; light water reactors; liquid metal reactors; and high temperature reactors. The collection and selection of these documents, beginning early in 1984 and continuing through March of 1986, was carried out in support of the study's objective: to explore the viabilities of several nuclear electric power generation options for commercial deployment in the United States between 2000 and 2010. There are approximately 550 articles, papers, reports, and books in the bibliography that have been selected from some 2000 surveyed. The citations have been made computer accessible to facilitate rapid on-line retrieval by keyword, author, corporate author, title, journal name, or document number.

  9. Nuclear Power Options Viability Study. Volume 4. Bibliography

    International Nuclear Information System (INIS)

    Trauger, D.B.; White, J.D.; Sims, J.W.

    1986-09-01

    Documents in the Nuclear Power Options Viability Study (NPOVS) bibliography are classified under one of four headings or categories as follows: nuclear options; light water reactors; liquid metal reactors; and high temperature reactors. The collection and selection of these documents, beginning early in 1984 and continuing through March of 1986, was carried out in support of the study's objective: to explore the viabilities of several nuclear electric power generation options for commercial deployment in the United States between 2000 and 2010. There are approximately 550 articles, papers, reports, and books in the bibliography that have been selected from some 2000 surveyed. The citations have been made computer accessible to facilitate rapid on-line retrieval by keyword, author, corporate author, title, journal name, or document number

  10. Economical viability of the nuclear option in Mexico

    International Nuclear Information System (INIS)

    Ortiz, R.; Alonso, G.; Sanchez, J.

    2006-01-01

    Due to the high volatility of the gas prices and the concern for CO2 emissions, the nuclear option seems to be an option that needs to consider in a electricity expansion portfolio. In this paper a levelized electricity cost analysis is performed to compared different scenarios of electricity generation using combined cycles by using gas and nuclear power stations. The scenarios comprises different discount rates for the investment that goes from 5% to 12%, gas prices from 4.44 USD/mmBTU to 7 USD/mmBTU and overnight cost for Nuclear Power Plants from 1200 USD/kW to 1600 USD/kW. The overall cash flow including investment is analyzed during the whole life of the power plants to test the convenience of the best option in the long run

  11. Nuclear energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    The film stresses that a drastic reduction in carbon dioxide emissions, mainly from the burning of fossil fuels, must be achieved to limit a dangerous concentration of greenhouse gases in the atmosphere. It compares the environmental costs of different energy sources, in particular the wastes of a coal-fired versus a nuclear plant, and mentions the measures taken to reinforce protection against the risk of nuclear accidents

  12. Teachers and nuclear energy

    International Nuclear Information System (INIS)

    1994-01-01

    The aims of the seminar were: to exchange national experience in informing and assisting teachers in the nuclear field, and to determine the conditions for improving the effectiveness of these programmes; to develop an international understanding on the basic training and information requirements to assist secondary-school teachers in discussing nuclear energy in an appropriately wide and balanced context at school; to study the respective contributions of national authorities, industry and relevant institutes in this endeavour

  13. Britain's nuclear energy policy

    International Nuclear Information System (INIS)

    Duncan, Colin D.

    2000-01-01

    Full text: In the mid 1980s the Labour Party's position and clear intention was to phase out nuclear generated power in the UK. BNFL's reprocessing business was singled out for particular criticism. Many argued that this sounded the death knell for an industry with a legacy of negative public opinion and no commercial future. How against this background then was the Rt. Hon Tony Blair able, on 9 June 1999, to state that 'If we were to question the continued operation of Thorp, I think that would not be right. Thorp is an operation with orders now valued at some 12 billion pounds, it provides 6000 skilled jobs, it indirectly supports many more... I do not support the case of those who would like us to abandon Thorp?' Furthermore, in June 1999 the Royal Society stated that, 'it is vital to keep the nuclear option open' and in October of the same year the House of Commons Trade Industry Select Committee went further and advised, 'a formal presumption be made now for the purposes of long-term planning that new nuclear plant may be required in the course of the next two decades'. On 13 July 1999, the Secretary of State for Trade and Industry, Rt. Hon Stephen Byers, announced a possible sale of up to 49% of BNFL by a Public Private Partnership. Dare we view this as the genesis of a nuclear renaissance for the United Kingdom? This clear change in political attitude towards the nuclear option has come about as a result of a concerted public and government relations effort over the past ten years. That said, many barriers remain if we are to meet the challenge of delivering new nuclear build in the UK. Public opinion may allow new build but only if the industry demonstrates a track record of safety and environmental stewardship. There will always be the 'not in my back yard' argument so we must be a good neighbour and, most importantly of all, a long-term solution must be found for the disposal of nuclear waste. If the stage is set for the nuclear renaissance, the industry

  14. International nuclear energy guide

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The aim of this French-English bilingual Guide is to present a synthesis embracing all the aspects and all the implications of the development of nuclear energy by situating it both within the French administrative and professional framework and in the world context. Special attention has been paid to the protection of man and the environment and to safety and security problems; most of the other questions -technological, economic, industrial- which arise at all points in the nuclear cycle. Teaching and research are outlined and a special appendix is devoted to nuclear information [fr

  15. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    Kilpi, K.; Palmen, B.

    1983-01-01

    Finland currently generates about 40% of its electricity from nuclear power. This achievement of worldwide record magnitude is based on long-lasting efforts to build and maintain the competent infrastructure and close international cooperation required by this demanding technology. This booklet published by the Finnish Atomic Energy Commission gives an overview of nuclear energy and related organizations in Finland. It describes the utility companies and nuclear power production, the manufacturing industry and its export potential, research and educational activities and the legal framework and authorities for nuclear safety and administration. International cooperation has been essential for Finland in developing its nuclear energy capacity and appreciation is espressed to many countries and international organizations which have contributed to this. At the same time Finnish organizations are willing to share the experiences and know-how they have gained in building nuclear power in a small country. This is a road which will be followed by many other countries in the decades to come. It is hoped that this booklet will also help to open new channels of cooperation in such efforts

  16. French nuclear energy policy

    International Nuclear Information System (INIS)

    Ferrari, A.; Bertel, E.

    1980-11-01

    The French energy policy is supported by a lucid view of the situation of our country and the constraints linked to the international context. This statement implies, the definition of a French policy or energy production essentially based on national resources, uranium, and especially for long term, technical know how which allows using plutonium in breeder reactors. This policy implies an effort in R and D, and industrial development of nuclear field, both in reactor construction and at all levels of fuel cycle. This coherent scientific and financial effort has been pursued since the beginning of years 60, and has placed France among the first nuclear countries in the world. Now this effort enables the mastership of a strong nuclear industry capable to assure the energy future of the country [fr

  17. Nuclear energy and development

    International Nuclear Information System (INIS)

    1991-01-01

    Today, about 80 developing countries are using nuclear techniques in various sectors of their national economies. In the sector of industry, the radiation processing using gamma rays of high energy electrons has grown. While in the sector of health care, an estimated 10000 gamma cameras-imaging instruments are used in combination with radioisotopes in medical diagnosis. In the field of agriculture there is, nearly, 1000 crop varieties derived from radiaton-induced mutations which are grown worldwide. Furthermore and concerning the energy sector there is 417 nuclear power plants operating in 26 countries, accounting for just 16% of the world's total electricity production; the nuclear energy helped in developing and supporting a variety of sciences. 2 tabs

  18. Nuclear energy and civilization

    International Nuclear Information System (INIS)

    Soentono, S.

    1996-01-01

    The role of energy is indeed very important since without it there will be no living-things in this world. A country's ability to cultivate energy determines the levels of her civilization and wealth. Sufficient energy supply is needed for economic growth, industrialization, and modernization. In a modern civilization, the prosperity and security of a country depends more on the capability of her people rather than the wealth of her natural resources. Energy supplies the wealth, prosperity and security, and sufficient reliable continuous supply of energy secures the sustainable development. The energy supply to sustain the development has to improve the quality of life covering also the quality of environment to support the ever increasing demand of human race civilization. Energy has a closer relationship with civilization in a modern society and will have to become even closer in the future more civilized and more modern society. The utilization of nuclear energy has, however, some problems and challenges, e.g. misleading information and understanding which need serious efforts for public information, public relation, and public acceptance, and possible deviation of nuclear materials for non-peaceful uses which needs serious efforts for technological and administrative barriers, precaution, prevention, safety, physical protection, safeguard, and transparency. These require cooperation among nuclear community. The cooperation should be more pronounced by heterogeneous growing Asian countries to reach harmony for mutual benefits toward better civilization. (J.P.N.)

  19. The role of nuclear power in the option zero emission technologies for fossil fuels

    International Nuclear Information System (INIS)

    Corak, Z.

    2006-01-01

    The energy sector is one of the main sources of greenhouse gas (GHG) emissions particularly carbon dioxide (CO2) increasing concerns due to their potential risk to induce global warming and climate change. The Parties having signed the Kyoto Protocol in December 1997, committed to decrease their GHG emissions. The Protocol states that countries shall undertake promotion, research, development and increased use of new and renewable forms of energy, of carbon dioxide sequestration technologies and of advanced and innovative environmentally sound technologies. The one significant option that is not specifically mentioned is nuclear energy which is essentially carbon-free. There are a number of technical options that could help reducing, or at least slowing the increase of, GHG emissions from the energy sector. The list of options includes: improving the efficiency of energy conversion and end-use processes; shifting to less carbon intensive energy sources (e.g. shifting from coal to natural gas); developing carbon-free or low-carbon energy sources; and carbon sequestration (e.g. planting forests or capturing and storing carbon dioxide). It must be pointed out that nuclear power is one of the few options that are currently available on the market, competitive in a number of countries, especially if global costs to society of alternative options are considered; practically carbon-free; and sustainable at large-scale deployment. The nuclear power could play significant role in alleviating the risk of global climate change. The main objective of the article is to present sequestration options, their cost evaluation as well as comparation with alternative possibilities of nuclear energy production. (author)

  20. Nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Verfondern, K.

    2007-01-01

    In the long term, H 2 production technologies will be strongly focusing on CO 2 -neutral or CO 2 -free methods. Nuclear with its virtually no air-borne pollutants emissions appears to be an ideal option for large-scale centralized H 2 production. It will be driven by major factors such as production rates of fossil fuels, political decisions on greenhouse gas emissions, energy security and independence of foreign oil uncertainties, or the economics of large-scale hydrogen production and transmission. A nuclear reactor operated in the heat and power cogeneration mode must be located in close vicinity to the consumer's site, i.e., it must have a convincing safety concept of the combined nuclear/ chemical production plant. A near-term option of nuclear hydrogen production which is readily available is conventional low temperature electrolysis using cheap off-peak electricity from present nuclear power plants. This, however, is available only if the share of nuclear in power production is large. But as fossil fuel prices will increase, the use of nuclear outside base-load becomes more attractive. Nuclear steam reforming is another important near-term option for both the industrial and the transportation sector, since principal technologies were developed, with a saving potential of some 35 % of methane feedstock. Competitiveness will benefit from increasing cost level of natural gas. The HTGR heated steam reforming process which was simulated in pilot plants both in Germany and Japan, appears to be feasible for industrial application around 2015. A CO 2 emission free option is high temperature electrolysis which reduces the electricity needs up to about 30 % and could make use of high temperature heat and steam from an HTGR. With respect to thermochemical water splitting cycles, the processes which are receiving presently most attention are the sulfur-iodine, the Westinghouse hybrid, and the calcium-bromine (UT-3) cycles. Efficiencies of the S-I process are in the

  1. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  2. Development of real options model for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Kenji

    2004-01-01

    As the Japanese electricity market is deregulated, it becomes more important for electric utilities to recognize their financial risks and to adopt strategic and scientific decision making methodology. We have developed two models for valuation of Japanese nuclear power plants to support utilities' decision making. One is a net present value (NPV) model using discounted cash flow analysis method. Another is a real options model. This model is based on strict financial technology theory and can calculate value of early retirement, life extension and new unit addition options of nuclear units under electricity price uncertainty. This can also derive an optimal period for retirement, life extension and new unit addition. (author)

  3. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management.

  4. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    International Nuclear Information System (INIS)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo

    2015-01-01

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management

  5. The resurgence of nuclear energy. An option for the climatic change and for the emergent countries?; El resurgimiento de la energia nuclear. Una opcion para el cambio climatico y para los paises emergentes?

    Energy Technology Data Exchange (ETDEWEB)

    Campos A, L. [UNAM, Instituto de Investigaciones Economicas, Circuito Mario de la Cueva, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Nieva G, R.; Mulas, P. [Instituto de Investigaciones Electricas, Av. Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico); Velez, C. [Electricite de France, Comite Cientifico Asesor, 22-30 avenue de Wagram, 75382 Paris (France); Ortiz M, J. R. [ININ, Carretera Mexico-Toluca s/n, 52759 Ocoyoacac, Estado de Mexico (Mexico); Thomas, S. [University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom); Finon, D. [Centre International de Recherche sur l' Environment et le Developpement, CNRS, Campus du Jardin Tropical 45 bis, avenue de la Belle Gabrielle 94736, Nogent-sur-Marne Cedex (France); Woodman, B. [University of Warwick, Coventry CV4 8UW (United Kingdom); Mez, L. [Freie Universitat Berlin, Environmental Policy Research Centre, Thielallee 47, 14195 Berlin (Germany)

    2009-07-01

    The modern society is organized in mistaken form. A tremendous inability of the juridical, political, social and cultural system exists to interrelate the ecosystem (the resources that allow the life and the human activity) with the economic way of production, that is to say with the manner like the human beings appropriate of the nature and they transform it to satisfy the reproduction necessities of the capital and the population. Today we are already paying the consequences of this error. Of continuing with this tendency the next six years, a global increase of five centigrade grades is expected in the temperature, with effects like the increase of the sea level, floods, droughts, among other global problems, for what the gases of greenhouse effect are and they will continue being the main environmental challenge of the X XI century because they not represent alone a threat for the development but also for the humanity survival. The world conscience has wakened up, and in most of the countries where is stopped the construction of new nuclear power plants the plans are reconsidered to return the use of this source, being the two main reasons for reconsideration: the concern for the climatic change and the new world perception about the limits of fossil fuel reserves. The world return of the interest for the nuclear energy, it force to take in consideration the energy politics of Mexico whose structure is too much dependent of hydrocarbons and the import of liquefied natural gas and other energies, subject to the prices volatility and in a frame that lacks long term vision. Here the whole problem of the nuclear industry is exposed, the experiences, the risks, the costs, the future of the energy production for the populations that every time has a bigger consumption, the reader will have, this way, a wide panorama of diverse topics and interests that affect to generation of nuclear energy. (Author)

  6. Nuclear energy and the greenhouse effect

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1990-01-01

    The extent and nature of the greenhouse effect are examined and placed in an environmental and historical context. The effect of energy policies on the greenhouse effect are discussed and the offending countries are identified. What energy policies would mitigate the greenhouse effect, and yet make good sense whether or not the effect proves to be real? Conservation is a desirable though not completely understood strategy. Conservation may not be a better bet in every instance than is increase in supply. If the greenhouse effect turns out to be real, nuclear energy can be one of the supply options that we turn to. If the greenhouse effect turns out to be false, and acceptable, economic nuclear option is surely better than one that does nothing but create strife and dissension. Let us remember that nuclear energy is the only large-scale non-fossil source other than hydropower that has been demonstrated to be practical. (author)

  7. [Intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report summarizes work in experimental Intermediate Energy Nuclear Physics carried out between October 1, 1988 and October 1, 1989 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under grant DE-FG02-86ER-40269 with the United States Department of Energy. The experimental program is very broadly based, including pion-nucleon studies at TRIUMF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/WNR. In addition, a number of other topics related to accelerator physics are described in this report

  8. Nuclear energy and natural environment. Information seminar

    International Nuclear Information System (INIS)

    1994-01-01

    The material of the Jadwisin 93' seminar is the collection 20 of 19 articles discussing aspects of the subject of nuclear energy and natural environment. The lectures were presented at six sessions: 1) Nuclear energy applications in medicine, agriculture, industry, food preservation and protection of the environment; 2) Nuclear power in the world; 3) Public attitudes towards different energy options, the example of Sweden; 4) Nuclear power in neighbouring countries; 5) Radiation and human health; 6) Radioactive waste management and potential serious radiological hazards. The general conclusion of the seminar can be as follows. In some cases the nuclear power is a source of environment pollution but very often nuclear techniques are now used and certainly more often in the future will be used for environment and human health protection

  9. The geometry of nuclear energy

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1992-01-01

    In a personal assessment of the ethics of nuclear energy, the author challenges some of the conventional wisdom surrounding the subject, and concludes that for many applications nuclear energy is the energy source of ethical choice

  10. Integrating energy and environmental goals. Investment needs and technology options

    International Nuclear Information System (INIS)

    2004-04-01

    Economic and population growth will continue to drive an expansion of the global energy market. The Earth's energy resources are undoubtedly adequate to meet rising demand for at least the next three decades. But the projected increases in energy consumption and market developments raise serious concerns about the security of energy supplies, investment in energy infrastructure, the threat of environmental damage caused by energy use and the uneven access of the world's population to modern energy. The first two sections of this background paper provide an outlook for energy demand and emissions over the next thirty years, based on findings in the IEA's World Energy Outlook 2002. Section four presents projections for global investment needs from the latest WEO publication, the World Energy Investment Outlook 2003. For both the energy and investment outlooks, an alternative scenario for OECD countries is examined. The scenarios describe a world in which environmental and energy supply security concerns will continue to plague policy makers. Clearly, changes in power generation, automotive engines and fuel technologies will be required to change trends in energy demand and emissions over the next thirty years and beyond. Improvements in energy efficiency will also play a fundamental role. A number of technologies offer the long term potential to diversify the energy sector away from its present heavy reliance on fossil fuels. Based on various IEA studies, section five evaluates those technologies that offer the potential to reduce emissions, including renewable energy, fossil-fuel use with CO2 capture and storage, nuclear, hydrogen, biofuels and efficient energy end use. No single technology can meet the challenge by itself. Different regions and countries will require different combinations of technologies to best serve their needs and best exploit their indigenous resources. Developing countries, in particular, will face far greater challenges in the years ahead

  11. Nuclear Energy Principles, Practices, and Prospects

    CERN Document Server

    Bodansky, David

    2008-01-01

    The world faces serious difficulties in obtaining the energy that will be needed in coming decades for a growing population, especially given the problem of climate change caused by fossil fuel use. This book presents a view of nuclear energy as an important carbon-free energy option. It discusses the nuclear fuel cycle, the types of reactors used today and proposed for the future, nuclear waste disposal, reactor accidents and reactor safety, nuclear weapon proliferation, and the cost of electric power. To provide background for these discussions, the book begins with chapters on the history of the development and use of nuclear energy, the health effects of ionizing radiation, and the basic physics principles of reactor operation. The text has been rewritten and substantially expanded for this edition, to reflect changes that have taken place in the eight years since the publication of the first edition and to provide greater coverage of key topics. These include the Yucca Mountain repository plans, designs ...

  12. Nuclear energy: exit or revival? International aspects

    International Nuclear Information System (INIS)

    2001-11-01

    This colloquium took place less than 1 year after the decision of the US of revival of their nuclear program. Thus the international context has changed, even if nuclear contestation remains as strong as in the past. Among governments, some positions preach the banishment of nuclear energy while others consider the nuclear option as the only solution to meet the growing up energy demand and the future environmental and economical stakes. This report makes a synthesis of the different talks given by the participants during the 3 round tables of the colloquium on the future of nuclear energy: the ecological stake, the democratic stake, and the energy policy stake. Four talks of French government representatives open and conclude the debates of the different round tables. (J.S.)

  13. Nuclear energy and nuclear technology in Switzerland

    International Nuclear Information System (INIS)

    Graf, P.

    1975-01-01

    The energy crisis, high fuel costs and slow progress in the development of alternative energy sources, e.g. solar energy have given further impetus to nuclear power generation. The Swiss nuclear energy programme is discussed and details are given of nuclear station in operation, under construction, in the project stage and of Swiss participation in foreign nuclear stations. Reference is made to the difficulties, delays and resulting cost increases caused by local and regional opposition to nuclear power stations. The significant contributions made by Swiss industry and Swiss consulting engineers are discussed. (P.G.R.)

  14. Nuclear energy and communication

    International Nuclear Information System (INIS)

    1998-01-01

    This article contains information related to the support that the Latin-American countries have counted, from the International Atomic Energy Agency, for the development and application of the nuclear energy in different fields. In the particular case of Costa Rica, it mentions some projects included in the program ARCAL. The achievements reached in the year 1998 and the goals proposed for 1999-2000. (S. Grainger) [es

  15. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  16. Vision of nuclear energy

    International Nuclear Information System (INIS)

    1987-01-01

    A study about the perspectives of nuclear energy, in Japan, for the next 40 years is shown. The present tendencies are analyzed as well as the importance that the subject adquires for the economy and the industry. At the same time, the parameters of the governmental, private and foreign participation are established in the frame of the technological development. The aim fixed for the year 2030 can be divided into; 1: from 1986 to 2010-development of the technology of nuclear fuel cycle already stablished and in process of maturity. The LWR technology will reach a very advanced stage. The fast breeder reactors (FBRs) will become commercially available, and the nuclear fuel cycle will reach its maturity in Japan; 2: from 2011 to 2030-commercial use of the FBRS and further advance in the nuclear fuel cycle. (M.E.L.) [es

  17. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  18. Nuclear energy in the 21st century. Address at Joint IAEA/CNNC seminar on 21st century nuclear energy development in China, 23 May 1997 Beijing

    International Nuclear Information System (INIS)

    Blix, H.

    1997-05-01

    The address discusses the following issues: the increasing demand for energy; the energy efficiency factor; the role of oil and gas; fossil fuels and environment; share of renewable in the future; evolution toward higher density energy sources; factors influencing the choice of the nuclear option; new generations of nuclear power plants; waste management; nuclear safety; strengthening safeguards; nuclear power and nuclear weapons

  19. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  20. The church and nuclear energy

    International Nuclear Information System (INIS)

    Phillips, G.O.

    1978-03-01

    The subject is covered in sections, entitled: foreword (explaining that report is a synopsis of the Hearing on Nuclear Energy arranged by the World Council of Churches, held in Sigtune, Sweden, June 24 to 29, 1975); humanity's energy needs); alternative sources of energy (nuclear fission, nuclear fusion, non-nuclear processes; some generalisations (concerning the advantages and disadvantages of nuclear energy to various sections of the world); what risks are acceptable (radiation hazards, reactor safety, radioactive wastes, misuse of Pu, safeguarding); nuclear weapons; nuclear energy - a challenge to the Churches; social and ethical issues; certain conclusions; postscript -the American move. (U.K.)

  1. Options identification programme for demonstration of nuclear desalination

    International Nuclear Information System (INIS)

    1996-08-01

    This report responds to Resolutions GC(XXXVIII)/RES/7 in 1994 and GC(XXXIX)/RES/15 in 1995 at the IAEA General Conference, which requested the Director General to initiate a two year Options Identification Programme to identify and define practical options for demonstration of nuclear desalination and to submit a report on this programme to the General Conference of 1996. This programme was implemented by a Working Group, consisting of experts from interested Member States and IAEA staff, through a combination of periodic meetings and individual work assignments. It resulted in identification of a few practical options, based on reactor and desalination technologies which are themselves readily available without further development being required at the time of demonstration. The report thus provides a perspective how to proceed with demonstration of nuclear desalination, which is expected to help solving the potable water supply problem in the next century. Refs, figs, tabs

  2. Spallator: a new option for nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.; Grand, P.; Takahashi, H.; Powell, J.R.; Kouts, H.J.

    1983-06-01

    The principles of the spallator reactor are reviewed. Advances in linear accelerator technology allow the design and construction of high current (hundreds of mA) continuous wave high energy (thousands of MeV) proton machines in the near term. Spallation neutronic calculations building on existing experimental results, indicate substantial neutron yields on uranium targets. Spallator target assembly designs based on water cooled reactor technology indicate operable efficient systems. Fuel cycles are presented which supply fissile material to thermal power reactors and reduce fission product waste. Preliminary comparative analysis indicates an economically competitive system in which a single purpose self-sufficient spallator supplies fuel to a number of LWRs. The spallator assures a long-term LWR power reactor economy. International interest in advancing the technology is indicated.

  3. Spallator: a new option for nuclear power

    International Nuclear Information System (INIS)

    Steinberg, M.; Grand, P.; Takahashi, H.; Powell, J.R.; Kouts, H.J.

    1983-06-01

    The principles of the spallator reactor are reviewed. Advances in linear accelerator technology allow the design and construction of high current (hundreds of mA) continuous wave high energy (thousands of MeV) proton machines in the near term. Spallation neutronic calculations building on existing experimental results, indicate substantial neutron yields on uranium targets. Spallator target assembly designs based on water cooled reactor technology indicate operable efficient systems. Fuel cycles are presented which supply fissile material to thermal power reactors and reduce fission product waste. Preliminary comparative analysis indicates an economically competitive system in which a single purpose self-sufficient spallator supplies fuel to a number of LWRs. The spallator assures a long-term LWR power reactor economy. International interest in advancing the technology is indicated

  4. Department of Nuclear Energy

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: The activities of Department was engaged in the selected topics in nuclear fission reactor science and engineering. Present and future industry competitiveness, economic prosperity and living standards within the world are strongly dependent on maintaining the availability of energy at reasonable prices and with security of supply. Also, protection of man and the environment from the harmful effects of all uses of energy is an important element of the quality of life especially in Europe. It is unrealistic to assume that the technology for renewable (hydro, wind, solar and biomass) available within a 20-30 year perspective could provide the production capacity to replace present use of nuclear power and at the same time substantially reduce the use of fossil fuels, especially when considering that energy demand in industrialized countries can be expected to continue to increase even within a framework of overall energy conservation and continued improvement of efficiency in energy usage. In the area of nuclear fission, we continue support to maintain and develop the competence needed to ensure the safety of existing and future reactors and other nuclear installations. In addition support is given to explore the potential for improving present fission technology from a sustainable development point of view. The focus on advanced modelling of improved reactor and fuel cycle concepts, including supporting experimental research, with a view to improving the utilisation of the inherent energy content of uranium and other nuclear fuels, whilst at the same time reducing the amount of long-lived radioactive waste produced. A common scientific understanding of the frequently used concept of ''reasonable assurance of safety'' for the long-term, post-closure phase of repositories for spent fuel and high-level waste developed in order to ensure reasonably equivalent legal interpretations in environmental impact assessment and licensing procedures. Also, research is

  5. Is nuclear energy acceptable

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1977-01-01

    Nuclear hazards are assessed as being unique only in the sense of their unfamiliarity, with future development of nuclear energy dependent on overcoming public fears. Economics is clearly in favor of properly operated nuclear energy facilities for long-term power generation. Risks arise over the potential for human error to permit improper operation and for an industry shutdown because of a reactor accident. Attempts to ascertain accident probabilities have revealed that emergency core cooling systems and containment are not simply parallel, but operate in series and provide more safety than was thought. Insurance liability, resting on the small probability of very costly damage, is felt to be best placed on the utility with the government providing ultimate protection in the event of a potentially bankrupting accident. Problems of nuclear waste handling and low-level release are felt to be solvable with present technology. Proliferation is felt to be a political problem that is incidental to power plants. Public concern is blamed on possible diversion of materials for weapons, unfamiliarity with radiation, and the demand for meticulous handling of materials and operations. Burner reactors are projected to phase out and be replaced by breeder reactors that are operated in physical isolation under strict security by a professional cadre aware of its responsibility. A restructuring of the nuclear industry is called for so that the generation of power can be insulated from the distribution and marketing functions. (13 references)

  6. Impact of the Nuclear Option on the Environment and the Economy

    International Nuclear Information System (INIS)

    Rohatgi, Upendra S.; Jo, Jae H.; Lee, John C.; Bari, Robert A.

    2002-01-01

    The impact of the nuclear option in the national energy outlook on the environment and the U.S. economy is analyzed with the MARKAL-MACRO energy systems computer code. The base case projection by the U.S. Energy Information Administration is the starting point for this study. The possibility of license renewal of the current fleet of U.S. nuclear power plants is considered as well as the introduction of cost-competitive advanced light water reactors. Electricity energy sector projections for fossil fuel plants, renewable energy sources, and nuclear power plants are analyzed on a least cost basis. The impact of constraints on the emissions of greenhouse gases is included in the analysis. It is found that it would be economically favorable to introduce as many as 300 additional nuclear power plants in the United States by the year 2025 to meet emission constraints of limiting emission to the 1990 level in the years beyond 2010

  7. West Europe without Nuclear Energy

    International Nuclear Information System (INIS)

    1999-01-01

    This document contains basic conclusions of discussion if West Europe can exist without nuclear energy: 1. Presumptions for the nuclear energy removal 2. Regional and international consulting 3. Economic competition 4. Role of the nuclear energy 5. Situation in the energetic industry 6. Costs, safety and public relations 7. Energy policy

  8. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Lee, H. M.; Oh, K. B.

    2003-12-01

    This study consists of various issues as follows; electricity price regulation in the liberalized electricity market, establishment of carbon emission limit in national electricity sector, the role of nuclear power as an future energy supply option, the future prospect of CO2 capture and sequestration and current research status of that area in Korea, and Preliminary economic feasibility study of MIP(Medical Isotopes Producer). In the price regulation in the liberalized electricity market, the characteristic of liberalized electricity market in terms of regulation was discussed. The current status and future projection of GHG emission in Korean electricity sector was also investigated. After that, how to set the GHG emission limit in the national electricity sector was discussed. The characteristic of nuclear technology and the research in progress were summarized with the suggestion of the possible new application of nuclear power. The current status and future prospect of the CO2 capture and sequestration research was introduced and current research status of that area in Korea was investigated. Preliminary economic feasibility study of MIP(Medical Isotopes Producer), using liquid nuclear fuel to produce medical isotopes of Mo-99 and Sr-89, was performed

  9. Nuclear energy and radiation

    International Nuclear Information System (INIS)

    Myers, D.K.; Johnson, J.R.

    1980-01-01

    Both the light water reactor and the Canadian heavy water reactor systems produce electricity cheaply and efficiently. They produce some fissionable byproducts, which can be recycled to extend energy sources many-fold. Besides the production of electrical power, the nuclear industry produces various radioistopes used for treatment of cancer, in diagnostic procedures in nuclear medicine, in ionization smoke detectors, and as radioactive tracers with various technological applications including the study of the mechanisms of life. The increment in environmental radiation levels resulting from operation of nuclear power reactors represents a very small fraction of the radiation levels to which we are all exposed from natural sources, and of the average radiation exposures resulting from diagnostic procedures in the healing arts. The total health hazard of the complete nuclear power cycle is generally agreed to be smaller than the hazards associated with the generation of an equal amount of electricity from most other currently available sources of energy. The hazards from energy production in terms of shortened life expectancy are much smaller in all cases than the resulting increase in health and life expectancy. (auth)

  10. Law, science and technology. The nuclear option, ethics and law

    International Nuclear Information System (INIS)

    1996-01-01

    Technological innovations in the field of nuclear energy, as well as the diversity of applications using ionizing radiations contribute to the necessity of implementation of legislation and laws. This conference will give some ideas on political, ethical and legal aspects as far as nuclear energy development is concerned. Separate abstract were prepared for all the papers in this volume. (TEC)

  11. Non-nuclear energies

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2007-01-01

    The different meanings of the word 'energy', as understood by economists, are reviewed and explained. Present rates of consumption of fossil and nuclear fuels are given as well as corresponding reserves and resources. The time left before exhaustion of these reserves is calculated for different energy consumption scenarios. On finds that coal and nuclear only allow to reach the end of this century. Without specific dispositions, the predicted massive use of coal is not compatible with any admissible value of global heating. Thus, we discuss the clean coal techniques, including carbon dioxide capture and storage. One proceeds with the discussion of availability and feasibility of renewable energies, with special attention to electricity production. One distinguishes controllable renewable energies from those which are intermittent. Among the first we find hydroelectricity, biomass, and geothermal and among the second, wind and solar. At world level, hydroelectricity will, most probably, remain the main renewable contributor to electricity production. Photovoltaic is extremely promising for providing villages remote deprived from access to a centralized network. Biomass should be an important source of bio-fuels. Geothermal energy should be an interesting source of low temperature heat. Development of wind energy will be inhibited by the lack of cheap and massive electricity storage; its contribution should not exceed 10% of electricity production. Its present development is totally dependent upon massive public support. A large part of this paper follows chapters of the monograph 'L'energie de demain: technique, environnement, economie', EDP Sciences, 2005. (author)

  12. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  13. Nuclear energy, the climate and nuclear disarmament

    International Nuclear Information System (INIS)

    Knapp, V.

    1998-01-01

    The main concern of Pugwash, with very good reason, is nuclear disarmament, but a negative attitude towards nuclear energy is not only futile, but counterproductive as it misses opportunities to appropriately influence its development. Since nuclear energy cannot be abandoned for ecological (decrease in greenhouse gases emission) and economic reasons as a long term energy source, then efforts should be devoted to make it safe from proliferation, which is possible from scientific and technological point of view

  14. Nuclear energy and nuclear weapons proliferation

    International Nuclear Information System (INIS)

    1989-01-01

    A summary of the report dispatched in the middle of 1978 by the Atlantic Council of United States, organized by North American citizens, is presented. The report considers the relation between the production of nucleoelectric energy and the capacity of proliferation of nuclear weapons. The factors which affect the grade of proliferation risk represented by the use of nuclear energy in the world comparing this risk with the proliferation risks independently of nuclear energy, are examined. (M.C.K.) [pt

  15. Completion of Population of and Quality Assurance on the Nuclear Fuel Cycle Options Catalog.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arnold, Matthew Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    An Evaluation and Screening team supporting the Fuel Cycle Technologies Program Office of the United States Department of Energy, Office of Nuclear Energy is conducting an evaluation and screening of a comprehensive set of fuel cycle options. These options have been assigned to one of 40 evaluation groups, each of which has a representative fuel cycle option [Todosow 2013]. A Fuel Cycle Data Package System Datasheet has been prepared for each representative fuel cycle option to ensure that the technical information used in the evaluation is high-quality and traceable [Kim, et al., 2013]. The information contained in the Fuel Cycle Data Packages has been entered into the Nuclear Fuel Cycle Options Catalog at Sandia National Laboratories so that it is accessible by the evaluation and screening team and other interested parties. In addition, an independent team at Savannah River National Laboratory has verified that the information has been entered into the catalog correctly. This report documents that the 40 representative fuel cycle options have been entered into the Catalog, and that the data entered into the catalog for the 40 representative options has been entered correctly.

  16. Public acceptance of nuclear energy

    International Nuclear Information System (INIS)

    Reis, J.S.B.

    1984-01-01

    Man, being unacquainted with the advantages of Nuclear Energy associates it with the manufacture of weaponry. However, the benefits of Nuclear Energy is received daily. In Brazil the public has not taken an anti-nuclear position; it is recognized that the Nuclear Plan exists exclusively for peaceful purposes and the authorities keep the community well informed. The Comision Nacional de Energia Nuclear along with the Instituto de Radioproteccion y Dosimetria, Instituto de Ingenieria Nuclear and the Instituto de Investigaciones Energeticas y Nucleares has developed in 27 years of existence, a gradual, accute and effective long term programme for the formation of potentially receptive opinion of Nuclear Energy. (Author)

  17. Radiation effects, nuclear energy and comparative risks

    International Nuclear Information System (INIS)

    Gopinath, D.V.

    2007-01-01

    Nuclear energy had a promising start as an unlimited, inexpensive and environmentally benign source of energy for electricity generation. However, over the decades its growth was severely retarded due to concerns about its possible detrimental effects on the well-being of mankind and the environment. Since such concerns are essentially due to the gigantic magnitude of radioactivity and ionizing radiations associated with nuclear energy, this article starts with a comprehensive account of effects of the ionizing radiation on living systems. Quantitative description of types of radiation exposure and their varied effects is given. The origin, type and magnitude of mutagenic effects of radiation are described. The concept of radiation risk factors, basis for their evaluation and their currently accepted values are presented. With this background, origin and magnitude of radioactivity and associated ionizing radiations in nuclear reactors are presented and the elaborate measures to contain them are described. It is recognized that notwithstanding all the measures taken in the nuclear industry, certain amount of radiation exposure, however small, is inevitable and the values, based on the experience world over, are presented. Estimated health risk due to such exposures is evaluated. For a comparative analysis, risks in other options of electricity generation such as hydel and fossil-fuelled plants are described. It is seen that on an overall basis, the nuclear option is no more risky than the other commonly employed options, and is in fact, significantly less. Lastly, since every option of electricity generation entails some risk, the case of 'no addition of electricity, and its impact on the society are considered. Based on the analysis of extensive data provided by UNDP on the human development parameters for different countries in the world, it is shown that at least for developing countries, any option of addition of electricity would be far more desirable than the

  18. The French experience in nuclear energy: Reasons for success

    International Nuclear Information System (INIS)

    Plante, J.

    2000-01-01

    Nuclear energy for France represents a viable option in meeting energy demands in the near and medium terms due to few energy resources and dependency on imported oil. Basic decisions to launch the French nuclear program, successive series of PWRs installed and standardization due to technical progress are highlighted in this paper. (author)

  19. Non-nuclear energies

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2006-01-01

    The different meanings of the word 'energy', as understood by economists, are reviewed and explained. Present rates of consumption of fossil and nuclear fuels are given as well as corresponding reserves and resources. The time left before exhaustion of these reserves is calculated for different energy consumption scenarios. On finds that coal and nuclear only allow to reach the end of this century. Without specific dispositions, the predicted massive use of coal is not compatible with any admissible value of global heating. Thus, we discuss the clean coal techniques, including carbon dioxide capture and storage. On proceeds with the discussion of availability and feasibility of renewable energies, with special attention to electricity production. One distinguishes controllable renewable energies from those which are intermittent. Among the first we find hydroelectricity, biomass, and geothermal and among the second, wind and solar. At world level, hydroelectricity will, most probably, remain the main renewable contributor to electricity production. Photovoltaic is extremely promising for providing villages remote deprived from access to a centralized network. Biomass should be an important source of biofuels. Geothermal energy should be an interesting source of low temperature heat. Development of wind energy will be inhibited by the lack of cheap and massive electricity storage; its contribution should not exceed 10% of electricity production. Its present development is totally dependent upon massive public support. (author)

  20. Advanced nuclear plant design options to cope with external events

    International Nuclear Information System (INIS)

    2006-02-01

    With the stagnation period of nuclear power apparently coming to an end, there is a renewed interest in many Member States in the development and application of nuclear power plants (NPPs) with advanced reactors. Decisions on the construction of several NPPs with evolutionary light water reactors have been made (e.g. EPR Finland for Finland and France) and more are under consideration. There is a noticeable progress in the development and demonstration of innovative high temperature gas cooled reactors, for example, in China, South Africa and Japan. The Generation IV International Forum has defined the International Near Term Deployment programme and, for a more distant perspective, six innovative nuclear energy systems have been selected and certain R and D started by several participating countries. National efforts on design and technology development for NPPs with advanced reactors, both evolutionary and innovative, are ongoing in many Member States. Advanced NPPs have an opportunity to be built at many sites around the world, with very broad siting conditions. There are special concerns that safety of these advanced reactors may be challenged by external events following new scenarios and failure modes, different from those well known for the currently operated reactors. Therefore, the engineering community identified the need to assess the proposed design configurations in relation to external scenarios at the earliest stages of the design development. It appears that an early design optimization in relation to external events is a necessary requirement to achieve safe and economical advanced nuclear power plants. Reflecting on these developments, the IAEA has planned the preparation of a report to define design options for protection from external event impacts in NPPs with evolutionary and innovative reactors. The objective of this publication is to present the state-of-the-art in design approaches for the protection of NPPs with evolutionary and innovative

  1. Nuclear energy outlook: a GE perspective

    International Nuclear Information System (INIS)

    Fuller, J.

    2006-01-01

    Full text: Full text: As one of the world's leading suppliers of power generation and energy delivery technologies, GE Energy provides comprehensive solutions for coal, oil, natural gas and nuclear energy; renewable resources such as wind, solar and biogas, along with other alternative fuels. With the ever increasing demand for energy and pressures to decrease greenhouse gas emissions, global trends indicate a move towards building more base line nuclear generation capacity. As a reliable, cost-competitive option for commercial power generation, nuclear energy also addresses many of the issues the world faces when it comes to the environment. Since developing nuclear reactor technology in the 1950s, GE's Boiling Water Reactor (BWR) technology accounts for more than 90 operating plants in the world today. Building on that success, GE's ABWR design is now the first and only Generation 111 nuclear reactor in operation today. This advanced reactor technology, coupled with current construction experience and a qualified global supply chain, make ESBWR, GE's Generation III+ reactor design, an attractive option for owners considering adding nuclear generation capacity. In pursuit of new technologies, GE has teamed with Silex to develop, commercialize and license third generation laser enrichment technology. By acquiring the exclusive rights to develop and commercialize this technology, GE is positioned to support the anticipated global demands for enriched uranium. At GE, we are continuing to develop imaginative ideas and investing in products that are cost effective, increase productivity, limit greenhouse gas emissions, and improve safety and security for our customers

  2. Future nuclear energy scenarios for Europe

    International Nuclear Information System (INIS)

    Roelofs, F.; Van Heek, A.

    2010-01-01

    Nuclear energy is back on the agenda worldwide. In order to prepare for the next decades and to set priorities in nuclear R and D and investment, market share scenarios are evaluated. This allows to identify the triggers which influence the market penetration of future nuclear reactor technologies. To this purpose, scenarios for a future nuclear reactor park in Europe have been analysed applying an integrated dynamic process modelling technique. Various market share scenarios for nuclear energy are derived including sub-variants with regard to the intra-nuclear options taken, e.g. introduction date of Gen-III (i.e. EPR) and Gen-IV (i.e. SCWR, HTR, FR) reactors, level of reprocessing, and so forth. The assessment was undertaken using the DANESS code which allows to provide a complete picture of mass-flow and economics of the various nuclear energy system scenarios. The analyses show that the future European nuclear park will exist of combinations of Gen-III and Gen-IV reactors. This mix will always consist of a set of reactor types each having its specific strengths. Furthermore, the analyses highlight the triggers influencing the choice between different nuclear energy deployment scenarios. In addition, a dynamic assessment is made with regard to manpower requirements for the construction of a future nuclear fleet in the different scenarios. (authors)

  3. A century of nuclear energy

    International Nuclear Information System (INIS)

    Hug, M.

    2009-01-01

    The author proposes a history of the French nuclear industry and nuclear energy since the Nobel prizes of 1903 and 1911. He describes and comments the context of the energy production sector before the development of the nuclear energy, the development of the institutional context, the successive and different nuclear technologies, the main characteristics of the French program at its beginning, the relationship between the nuclear energy and the public, the main accidents and lessons learned from them, the perspectives of evolution of nuclear energy

  4. The Brazilian Nuclear Energy Program

    International Nuclear Information System (INIS)

    Carvalho, H.G. de

    1980-01-01

    A survey is initially of the international-and national situation regarding energetic resources. The Brazilian Nuclear Energy Policy and the Brazilian Nuclear Program are dealt with, as well as the Nuclear Cooperation agreement signed with the Federal Republic of Germany. The situation of Brazil regarding Uranium and the main activities of the Brazilian Nuclear Energy Commission are also discussed [pt

  5. Energy: nuclear energy; Energies: l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Lung, M. [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France)

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  6. Going nuclear. Some implications of the introduction of nuclear energy as the basic primary energy supply of a developped society

    International Nuclear Information System (INIS)

    Haefele, W.; Sassin, W.

    1975-01-01

    On the basis of nuclear energy as primary energy source, the future development potentialities of secondary energies are considered; these energy forms are coal gaseification, process heat for industrial uses and district heating, and mainly hydrogen production which represents 60% of the future secondary energy demands. By using decision tree method, the eventuality of using nuclear energy as unique energy source is examined, and the successive options implied in this approach are analyzed [fr

  7. Nuclear energy and insurance

    International Nuclear Information System (INIS)

    Dow, J.C.

    1989-01-01

    It was the risk of contamination of ships from the Pacific atmospheric atomic bomb tests in the 1940's that seems first to have set insurers thinking that a limited amount of cover would be a practical possibility if not a commercially-attractive proposition. One Chapter of this book traces the early, hesitant steps towards the evolution of ''nuclear insurance'', as it is usually called; a term of convenience rather than exactitude because it seems to suggest an entirely new branch of insurance with a status of its own like that of Marine, Life or Motor insurance. Insurance in the field of nuclear energy is more correctly regarded as the application of the usual, well-established forms of cover to unusual kinds of industrial plant, materials and liabilities, characterised by the peculiar dangers of radioactivity which have no parallel among the common hazards of industry and commerce. It had, and still has, the feature that individual insurance underwriters are none too keen to look upon nuclear risks as a potential source of good business and profit. Only by joining together in Syndicates or Pools have the members of the national insurance markets been able to make proper provision for nuclear risks; only by close international collaboration among the national Pools have the insurers of the world been able to assemble adequate capacity - though still, even after thirty years, not sufficient to provide complete coverage for a large nuclear installation. (author)

  8. Glossary of nuclear energy

    International Nuclear Information System (INIS)

    1990-01-01

    TNC 90 focuses on nuclear energy technology. Some more basic or less central terms which were included in the previous glossary, TNC 55, have not been included in this version. About 1200 definitions in swedish included together with translations to english, german and french. The terms have been listed in alphabetical order. To make it easier to look up a certain term or terms that stand for related concepts the terms have been systematically arranged in a special index. (L.E.)

  9. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  10. Nuclear energy achievements and prospects

    International Nuclear Information System (INIS)

    Lewiner, Colette

    1992-01-01

    Within half a century nuclear energy achieved very successful results. Only for European Community, nuclear energy represents 30% in electricity generation. At this stage, one state that the nuclear energy winning cards are competitiveness and Gentleness to the environment. Those winning cards will still be master cards for the 21st century, provided nuclear energy handles rigorously: Safety in concept and operation of power plants; radioactive waste management, and communication

  11. Dictionary of nuclear energy termination

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-04-15

    This book lists termination of nuclear energy such as abbreviation, symbol, unit of nuclear energy, radiological unit, the symbol for element, isotope chart and the periodic table. This book contains about 5500 words involving to nuclear energy with index in Korean and English. It arranges alphabetically. So, with this book, it is easy and fast to find out the glossary, unit and symbol on nuclear energy.

  12. Dictionary of nuclear energy termination

    International Nuclear Information System (INIS)

    1983-04-01

    This book lists termination of nuclear energy such as abbreviation, symbol, unit of nuclear energy, radiological unit, the symbol for element, isotope chart and the periodic table. This book contains about 5500 words involving to nuclear energy with index in Korean and English. It arranges alphabetically. So, with this book, it is easy and fast to find out the glossary, unit and symbol on nuclear energy.

  13. Nuclear desalination option for the international reactor innovative and secure (IRIS) design

    International Nuclear Information System (INIS)

    Ingersoll, D. T.; Binder, J. L.; Conti, D.; Ricotti, M. E.

    2004-01-01

    The worldwide demand for potable water is on the rise. A recent market survey by the World Resources Institute shows a doubling in desalinated water production every ten years from both seawater and brackish water sources. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh per cubic meter of produced desalted water. At current U.S. water use rates, 1 kW of energy capacity per capita (or 1000 MW for every one million people) would be required to meet water needs with desalted water. The choice of the desalination technology determines the form of energy required: electrical energy for reverse osmosis systems, relatively low quality thermal energy for distillation systems, and both electrical and thermal energy for hybrid systems such as pre-heat RO systems. Nuclear energy plants are attractive for large scale desalination application. Nuclear plants can provide both electrical and thermal energy in an integrated, co-generated fashion to produce a spectrum of energy products including electricity, desalted water, process heat, district heating, and potentially hydrogen generation. A particularly attractive option for nuclear desalination is to couple it with an advanced, modular, passively safe reactor design such as the International Reactor Innovative and Secure (IRIS) plant. This allows for countries with smaller electrical grid needs and infrastructure to add new electrical and desalination capacity in smaller increments and at distributed sites. The safety by design nature of the IRIS reactor will ensure a safe and reliable source of energy even for countries with limited nuclear power experience and infrastructure. Two options for the application of the IRIS nuclear power plant to the cogeneration of electricity and desalted water are presented, including a coupling to a reverse osmosis plant and a multistage flash distillation plant. The results from an economic assessment of the two options are also presented.(author)

  14. Nuclear energy prospects to 2000

    International Nuclear Information System (INIS)

    1982-01-01

    This report describes the potential and trends of electricity use in OECD-countries as the main parameter of nuclear power development, including oil displacement and future generation mix, gives a most recent assessment of nuclear power growth to the year 2000, deals with supply and demand considerations covering the whole fuel cycle, assesses the impact of the nuclear contribution on the overall energy situation according to three energy scenarios and the consequences of a possible nuclear shortfall, and finally reviews other factors influencing nuclear energy growth such as security of supply, economics of nuclear power production as wells as public and utility confidence in nuclear power

  15. Nuclear Waste Vitrification in the U.S.: Recent Developments and Future Options

    International Nuclear Information System (INIS)

    Vienna, John D.

    2010-01-01

    Nuclear power plays a key role in maintaining current world wide energy growth while minimizing the greenhouse gas emissions. A disposition path for used nuclear fuel (UNF) must be found for this technology to achieve its promise. One likely option is the recycling of UNF and immobilization of the high-level waste (HLW) by vitrification. Vitrification is the technology of choice for immobilizing HLW from defense and commercial fuel reprocessing around the world. Recent advances in both recycling technology and vitrification show great promise in closing the nuclear fuel cycle in an efficient and economical fashion. This article summarizes the recent trends developments and future options in waste vitrification for both defense waste cleanup and closing the nuclear fuel cycle in the U.S.

  16. French opinion on Nuclear Energy

    International Nuclear Information System (INIS)

    Bucaille, A.

    2003-01-01

    Contrary to what many think or say, most French people do not have a clear-cut opinion about nuclear power. And until public opinion can be accurately assessed, we should be worried of speaking on its behalf. More than half the population of France believes that nuclear power is the cheapest option, but 40% of them have no idea what the situation really is. The French are keenly aware of the what is at stake at the international level, and the fact that energy is becoming a worldwide issue. What they are most concerned about is nuclear waste and the possibility of a catastrophe of the Chernobyl type occurring. Disquiet about the first is now dissipating, after having increased. But attitudes about the second are ambivalent. A quarter of the French are very ignorant about radioactivity. 20% of the population complain that not enough information is forthcoming, particularly as concerns advances in technology. As can be anticipated, awareness of the question of climate change is growing year by year, with increased reporting of storms, floods and heat waves

  17. Radiological impacts of spent nuclear fuel management options. A comparative study

    International Nuclear Information System (INIS)

    2000-01-01

    Given its potential significance for public health and the environment, the impact of radioactive releases during important steps of nuclear energy production must be considered when selecting among different fuel cycles. With this in mind, the OECD Nuclear Energy Agency (NEA) has undertaken a comparative study to the radiological impacts of two main fuel cycle options : one with and one without reprocessing of spent nuclear fuel. The study compares the respective impacts of the two options based on generic models and assumptions as well as actual data. It concludes that the difference between them is not significant. A wealth of recent data assembled and evaluated by an international expert team is provided in annex. (authors)

  18. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B.

    2006-12-01

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics

  19. Economic Analysis of Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B

    2006-12-15

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics.

  20. Nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    2000-01-01

    The concept of sustainable development, which emerged from the report of the 1987 World Commission on Environment and Development (the Brundtland report), is of increasing interest to policy makers and the public. In the energy sector, sustainable development policies need to rely on a comparative assessment of alternative options, taking into account their economic, health, environmental and social aspects, at local, regional and global levels. This publication by the OECD Nuclear Energy Agency investigates nuclear energy from a sustainable development perspective, and highlights the opportunities and challenges that lie ahead in this respect. It provides data and analyses that may help in making trades-off and choices in the energy and electricity sectors at the national level, taking into account country-specific circumstances and priorities. It will be of special interest to policy makers in the nuclear and energy fields

  1. Use of nuclear energy and land warming

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Jose Alberto Maia; Sordi, Gian Maria Agostino Angelo; Frazao, Selma Violato; Zago, Franco Raphael do Carmo [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], E-mail: blosspriester@gmail.com, E-mail: gmsordi@ipen.br, E-mail: selma.violato@terra.com.br, E-mail: fzago@ipen.br

    2007-07-01

    The world is facing an energy requirement that hardly will be covered by renewable sources actually researched. Though there is almost unanimity in the scientific community about the fact that nuclear energy is still a better option to replace oil and coal, environmental restrictions go on vigorous. And consequently, this non-consensus on nuclear energy benefits, greenhouse effect and weakening of ozone layer go on causing the land warming. In Brazil, nuclear plants are competitive and are capable to produce energy in a safe way, thus contributing to the stabilization of the national electric system and to the expansion of installed capacity and as alternative source of energy and applications for peaceful purposes, preserving the environment and planet inhabitants. (author)

  2. The Study on Policy Options for Siting Hazardous Energy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Oh [Korea Energy Economics Institute, Euiwang (Korea)

    2000-10-01

    The problem of site allocation on locally unwanted land uses related to energy utilities that extended most recently is becoming a new energy policy issue due to the improvement of national standard of living and livelihood quality. Residents do not generally agree on establishing the construction of public energy utilities in their village due to NIMBY syndrome while they basically agree to have them. These circumstances made a big problem against mass production of industry society and the improvement of the national welfare. Locally unwanted land use related to energy utilities includes waste incineration system, nuclear power plant, coal fired power plant, oil and Gas storage tank, briquette manufacturing plant and etc. Opportunity for SOC projects carried out by central and local government is lost because of the regional egoism. The site dispute between government and residents obstructs optimal energy supply to be necessary for industry growth and the national welfare. The main objective of this study is to propose the policy option for finding a solution after surveying theory and background of site troubles and dispute factors. Final results of this study propose a solution on structural and institutional dispute. The former introduces three kinds of approaches such as tradition, compensation and negotiation. The transition of an environmentally sound energy consumption pattern and the improvement of energy efficiency could be carried out by traditional approaches. To claim the damage and offer the accommodation facilities could be settled by compensational approaches. The establishment of regional decentralization on NIMBY facilities could be settled by negotiatory approaches through fair share criteria. The latter proposes 1) 'polluter pays principle', 2) internalization of social cost and benefit on air or water pollution, 3) the behind - the - scene negotiation in a bid to settle a site dispute, 4) and supporting system for peripheral areas

  3. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    Chester, K.

    1982-01-01

    In order to make a real contribution to the nuclear energy debate (is nuclear energy the limitless solution to man's energy problems or the path to man's destruction) people must be aware of the facts. The Science Reference Library (SRL) has a collection of the primary sources of information on nuclear energy - especially journals. This guideline aims to draw attention to the up-to-date literature on nuclear energy and its technology, freely available for consultation in the main Holborn reading room. After explanations of where to look for particular types of information and the SRL classification, the booklet gives lists and brief notes on the sources held. These are abstracting and indexing periodicals and periodicals. Reports, conference proceedings, patents, bibliographies, directories, year-books and buyer's guides are covered very briefly but not listed. Nuclear reactor data and organisations are also listed with brief details of each. (U.K.)

  4. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  5. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  6. Symposium on Nuclear Energy. Proceedings

    International Nuclear Information System (INIS)

    1981-01-01

    The energy problem poses a big challenge to a developing country like the Philippines. The development of renewable energy sources is not enough. Aware then of the limitations of these energy sources, in spite of arguments against nuclear energy we have no other recourse but to go nuclear. This symposium emphasizes the importance of energy development to attain the country's progress and discusses the pros and economics of nuclear power. (RTD)

  7. Choosing the nuclear power option: Factors to be considered

    International Nuclear Information System (INIS)

    Gueorguiev, B.; Mahadeva Rao, K.V.

    2000-01-01

    To plan and develop a nuclear power program, policies must be formulated and decided at different stages and at different levels by the government and its organizations, by the utility and by other organizations in industry and research and education, each within its sphere of interest and influence. The purpose of this paper is to highlight areas where policy decisions are needed, the options available, what they mean and the contexts in which they should be considered. (author)

  8. Representing value judgements in the evaluation options for nuclear waste

    International Nuclear Information System (INIS)

    Watson, S.R.

    1985-08-01

    In this report we show how the concept of Best Practical Environmental Option for nuclear waste management may be articulated using the methods of Multi-attribute Value Analysis. The concept of characteristic weights is introduced to represent differences of opinion on the relative importance of different factors that may reasonably be held, and show how these may be used to summarise information for decision-makers in a concise way. (author)

  9. Nuclear energy supports sustainable development

    International Nuclear Information System (INIS)

    Koprda, V.

    2005-01-01

    The article is aimed at acceptability, compatibility and sustainability of nuclear energy as non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy , radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously abjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  10. Federal Nuclear Energy Program: a synopsis

    International Nuclear Information System (INIS)

    1983-01-01

    This document provides an overview of the new nuclear policy objectives and initiatives and summarizes the Department of Energy programmatic strategy to realize the full nuclear potential. Analyses have been made within the context of prevailing and potential economic conditions, alternative energy options and prior nuclear performance and growth patterns. The Department's organizational structure, which was realigned in June 1982 to conform with the activities mandated by the Administration's policy, is also discussed. The individual program elements for nuclear research and development are described as they contribute to a fully integrated fuel cycle and power generation system. Federal and commercial responsibilities for developmental activity are delinated, and relationship of the programs to broad national energy objectives is specified

  11. Nuclear hydrogen production: re-examining the fusion option

    International Nuclear Information System (INIS)

    Baindur, S.

    2007-01-01

    This paper describes a scheme for nuclear hydrogen production by fusion. The basic idea is to use nuclear energy of the fuel (hydrogen plasma) to produce molecular hydrogen fro carbon-free hydrogen compounds. The hydrogen is then stored and utilized electrochemically in fuel cells or chemically as molecular hydrogen in internal combustion engines

  12. Costs and advantages of nuclear energy

    International Nuclear Information System (INIS)

    Almoguera, R.

    2006-01-01

    Recent studies on nuclear energy competitiveness show that considering only the economics this option is the most economic one to generate the base load electricity in most of the countries which do not have plenty of alternative fuels, being this advantage both for the actual prices formation and for their stability on the long term. Should we add the strategic and environmental benefits linked to: Kioto emissions limits, short and long term supply security, national wealth increase due to quality and price of the supply and enhancement of related enterprises, the goodness of nuclear energy to supply a significant share of the electricity demand in most of the countries is evident. For the investors to make decisions for this option, some conditions have to be assured: regulatory stability, favourable national energy policy and expectation for the future, predictable and proven licensing process and expectation for moderate interest rates in the long term. (Author)

  13. Nuclear energy in the European energy mix operation

    International Nuclear Information System (INIS)

    Gueldner, R.

    2009-01-01

    The world nuclear energy is on the upswing. This is shown by lifetime extensions up to 60 years and the construction of new nuclear power plants. Especially, the progressive climate change requires new, definitive, fast and decisive solutions. Europe has to find the right energy mix for the future having the magic triangle of environmental sustainability, security of supply and economic affordability in mind. At the centre of all the efforts made by many countries all over the world, nuclear is one vital key technology to face and combat global warming. Nuclear has a positive eco-balance, nuclear gives security of supply and nuclear power generation is competitive. Beside this the most important fact is and will be the high safety to run a nuclear power plant. The energy mix in the EU of the next decades will be defined today. It is vital to consider every option, which can contribute to a sustainable energy mix. Nuclear alone is not the solution for all problems but there will be no sustainable solution without nuclear. (author)

  14. Nuclear energy and independence

    International Nuclear Information System (INIS)

    Rotblat, J.

    1978-01-01

    The pro-nuclear lobby in the United Kingdom won its battle. The Report on the Windscale Inquiry strongly endorsed the application by British Nuclear Fuels (a company owned by the government) to set up a plant to reprocess spent oxide fuels from thermal reactors; a motion in Parliament to postpone a decision was heavily defeated. The Windscale Inquiry was an attempt to settle in a civilized manner what has been tried in other countries by demonstrations and violence. In this exercise, a High Court Judge was given the task of assessing an enormous mass of highly complex technical and medical material, as well as economic, social, and political arguments. The outcome is bitterly disappointing to the objectors, all of whose arguments were rejected. Although the question of whether Britain should embark on a fast breeder reactor program was specifically excluded from the Inquiry, it clearly had a bearing on it. A decision not to proceed with the reprocessing plant would have made a fast breeder program impossible; indeed, the Report argues that such a decision would involve throwing away large indigenous energy resources, a manifest advocacy of the fast breeder. Other arguments for the decision to go ahead with the reprocessing plant included the need to keep the nuclear industry alive, and the profit which Britain will make in processing fuels from other countries, particularly Japan. The author comments further on present UK policy, taking a dissenting view, and then comments on the paper, Nuclear Energy and the Freedom of the West, by A.D. Sakharov

  15. The economics of nuclear energy

    International Nuclear Information System (INIS)

    Brooks, L.G.; Motamen, H.

    1984-01-01

    Attitudes towards nuclear power in one country have always been more influenced by developments elsewhere than is the case with any other industry, with the possible exception of the defence industries. This book is a series of essays on different aspects of nuclear power as seen from different countries. The conclusion that they all arrive at, with one possibly neutral exception, is that nuclear power is the most attractive option on offer for future growth in electricity generation

  16. Christianity and nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Spaemann, R.

    1980-01-01

    The author is of the opinion that the ethical aspect suffers no rival points of view. From that he concludes the necessity of a fair public discussion about the rank and urgency of the goods, values, and interests in hand. He calls for a moratorium: before the final option on the future way of energy supply, the scientific and economic competitional advantage of the strict course of large-scale technologies must be balanced. In order to render medium-scale technologies comparable at all from the economic and technical point of view, alternative technology research ought to be promoted for a couple of years under the same financial conditions and with the same expenditure of personnel.

  17. Christianity and nuclear energy

    International Nuclear Information System (INIS)

    Spaemann, R.

    1980-01-01

    The author is of the opinion that the ethical aspect suffers no rival points of view. From that he concludes the necessity of a fair public discussion about the rank and urgency of the goods, values, and interests in hand. He calls for a moratory: before the final option on the future way of energy supply the scientific and economic competitional advantage of the strict course of large-scale technologies must be balanced. In order to render medium-scale technologies comparable at all from the economic and technical point of view alternative technology research ought to be promoted for a couple of years under the same financial conditions and with the same expenditure of personnel. (HSCH) [de

  18. Options to improve energy efficiency for educational building

    Science.gov (United States)

    Jahan, Mafruha

    The cost of energy is a major factor that must be considered for educational facility budget planning purpose. The analysis of energy related issues and options can be complex and requires significant time and detailed effort. One way to facilitate the inclusion of energy option planning in facility planning efforts is to utilize a tool that allows for quick appraisal of the facility energy profile. Once such an appraisal is accomplished, it is then possible to rank energy improvement options consistently with other facility needs and requirements. After an energy efficiency option has been determined to have meaningful value in comparison with other facility planning options, it is then possible to utilize the initial appraisal as the basis for an expanded consideration of additional facility and energy use detail using the same analytic system used for the initial appraisal. This thesis has developed a methodology and an associated analytic model to assist in these tasks and thereby improve the energy efficiency of educational facilities. A detailed energy efficiency and analysis tool is described that utilizes specific university building characteristics such as size, architecture, envelop, lighting, occupancy, thermal design which allows reducing the annual energy consumption. Improving the energy efficiency of various aspects of an educational building's energy performance can be complex and can require significant time and experience to make decisions. The approach developed in this thesis initially assesses the energy design for a university building. This initial appraisal is intended to assist administrators in assessing the potential value of energy efficiency options for their particular facility. Subsequently this scoping design can then be extended as another stage of the model by local facility or planning personnel to add more details and engineering aspects to the initial screening model. This approach can assist university planning efforts to

  19. Recommendations for a Department of Energy Nuclear Energy R and D Agenda Volume 2 Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The current US nuclear energy policy is primarily formulated as part of the nation`s overall energy policy. In addition, nuclear energy policy is impacted by other US policies, such as those for defense and environment, and by international obligations through their effects on nuclear weapons dismantlement and stewardship, continued reliance on space and naval nuclear power sources, defense waste cleanup, and on nuclear nonproliferation. This volume is composed of the following appendices: Appendix 1--Objectives of the Federal Government Nuclear Energy Related Policies and Research and Development Programs; Appendix 2--Nuclear Energy and Related R and D in the US; Appendix 3--Summary of Issues That Drive Nuclear Energy Research and Development; Appendix 4: Options for Policy and Research and Development; Appendix 5--Pros and Cons of Objectives and Options; and Appendices 6--Recommendations.

  20. Recommendations for a Department of Energy Nuclear Energy R and D Agenda Volume 2 Appendices

    International Nuclear Information System (INIS)

    1997-01-01

    The current US nuclear energy policy is primarily formulated as part of the nation's overall energy policy. In addition, nuclear energy policy is impacted by other US policies, such as those for defense and environment, and by international obligations through their effects on nuclear weapons dismantlement and stewardship, continued reliance on space and naval nuclear power sources, defense waste cleanup, and on nuclear nonproliferation. This volume is composed of the following appendices: Appendix 1--Objectives of the Federal Government Nuclear Energy Related Policies and Research and Development Programs; Appendix 2--Nuclear Energy and Related R and D in the US; Appendix 3--Summary of Issues That Drive Nuclear Energy Research and Development; Appendix 4: Options for Policy and Research and Development; Appendix 5--Pros and Cons of Objectives and Options; and Appendices 6--Recommendations

  1. Low Energy Nuclear Reactions?

    CERN Multimedia

    CERN. Geneva; Faccini, R.

    2014-01-01

    After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

  2. Desalination and nuclear energy

    International Nuclear Information System (INIS)

    Romeijn, A.A.

    1992-01-01

    The techniques for fresh water production from seawater have matured and capacities have increased considerably over the past decades. It is feasible to combine seawater desalination with the generation of electricity since power stations can provide energy and low grade heat during off peak periods for the purpose of fresh water production. A dual purpose installation, combining a seawater desalination facility with a light water reactor power generation station promises interesting possibilities. The case in South Africa, where nuclear power stations are most economically sited far from the inland coal fields, is discussed. 1 ill

  3. Ethics and Nuclear Energy

    International Nuclear Information System (INIS)

    Nezic, N.; Dodig, D.

    2000-01-01

    Should the scientist be a morally unbiased person? This is the eternal question asked by many great thinkers interested in science. The answer is hard to find. Scientists are expected to take into consideration the consequences of their actions before they actually start ot act. Sometimes they have to make certain sacrifices in order to help mankind. Unfortunately, we are witnesses of some intelligent, but inhuman and selfish people carrying out their even most destructive ideas. In this paper the relation between scientists and experts in the field of nuclear energy and the public will be discussed. (author)

  4. Nuclear Energy Literature Review

    International Nuclear Information System (INIS)

    Simic, Z.; Wastin, F.

    2016-01-01

    In the light of five years after a major accident at the Fukushima Daiichi nuclear power plant it is interesting to make nuclear energy related literature review. There is a number of accidents related reports from all major international institutions (like the IAEA and OECD NEA) and research organizations have drawn conclusions and lessons to learn from this terrible accident. These reports are the result of expert and scientific analyses carried out during these five years and they present ideal sources for both understanding what has happened and what can be learned in order to avoid and mitigate effects of such events in the future. From a wider perspective it is also interesting to analyze the impact on research and development (R and D) activities. This literature review is performed with hope to gain some useful insights from the analysis of the volume and topics in all research activities related to the Fukushima accident and nuclear energy (NE) altogether. This kind of review should at least provide an overview of trends and provide base for better planning of future activities. This paper analyzes the published NE related research of over more than 50 years with focus on three major nuclear accidents (TMI, Chernobyl and Fukushima). It has been performed using Scopus tools and database, and mainly focuses on statistics related to the subjects, countries, keywords and type of publishing. It also analyses how responsive is nuclear energy related R and D regarding the volume and subjects, and how is that research spread among most active countries. Nuclear power accidents influence increase and change of research. Both accidents, Chernobyl and Fukushima had maximum share in all nuclear power related papers at similar yearly level (9 percent in 1991 and 12 percent in 2015 respectively). TMI peaked at the 2.5 percent share in 1982. Engineering is the most frequent subjects for TMI and cumulative NE related publishing. Medicine and environmental science subjects

  5. Nuclear energy - a professional assessment

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The report falls under the headings: the role of the Watt Committee in nuclear energy; supply and demand, and economics of nuclear power; technical means (types of reactor; fuel cycle; nuclear energy for applications other than large-scale electricity generation); availability of resources (nuclear fuel; British industrial capacity; manpower requirements for a British nuclear power programme); environment (environmental issues; disposal of radioactive wastes); balance of risk and advantage in the peaceful use of nuclear energy (proliferation; safety and risk; benefits; public acceptability, awareness, education); summary and general comments.

  6. Nuclear energy - a professional assessment

    International Nuclear Information System (INIS)

    1984-01-01

    The report falls under the headings: the role of the Watt Committee in nuclear energy; supply and demand, and economics of nuclear power; technical means (types of reactor; fuel cycle; nuclear energy for applications other than large-scale electricity generation); availability of resources (nuclear fuel; British industrial capacity; manpower requirements for a British nuclear power programme); environment (environmental issues; disposal of radioactive wastes); balance of risk and advantage in the peaceful use of nuclear energy (proliferation; safety and risk; benefits; public acceptability, awareness, education); summary and general comments. (U.K.)

  7. Nuclear energy. Choice for GHG emission reduction and sustainable energy development in China

    International Nuclear Information System (INIS)

    Zhang Rui; Zou Lin; Wang Yongping

    2007-01-01

    In this paper, the sustainability of China's energy development and the major challenges in four energy priorities are discussed by establishing and applying of Indicators of Sustainable Energy Development (ISED) with consideration of nuclear power as one viable option. On this basis, China's Energy Strategy to 2020 is discussed in detail. On the other hand, the crucial role that nuclear energy will play in the fields of emission reduction and climate change is discussed by analyzing illustrative models under different energy development scenarios. An assessment on what could look like in a fast developing country like China when an equivalent fund was invested in five different energy options of hydro-power, coal-fired power, nuclear power, wind power and gas-fired power would be presented with a discussion about possible future international climate protection regimes and the methodologies to evaluate the potential roles of those energy options, especially, the nuclear energy. (author)

  8. Public acceptance of nuclear energy in Mexico

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon; Palacios, Javier; Gomez, Armando

    2008-01-01

    One of the main constraints to adopt a nuclear program is the public acceptance. In Mexico, at least, it lacks of an adequate promotion of its benefits and challenges. A big stigma for nuclear electricity production is the association with nuclear weapons, along with myths and misconceptions and bad information about nuclear energy. Mexico has adopted an energy policy to diversify the electricity sources and nuclear energy is among the alternatives to achieve this goal because current studies show that is a safe and a competitive option from an economical point of view. Public opinion plays a very important role in the policy decision making to adopt the deployment of new reactor units; therefore it is necessary to define communication strategies to promote nuclear energy. The current study is an investigation to learn what is the perception and positioning about nuclear energy as a starting point to define the way to improve public acceptance. The national assessment carry on here is divided in two parts, the first one is a qualitative study to know knowledge level, associations and nuclear perception, identifying controversy items and expectations about advantages and disadvantages to define the adequate question to be used in the second part, which is a quantitative study that shows the acceptance of nuclear energy at national level and in particular in two sites that are suitable to deploy new nuclear reactors. From the results of this study some communication and persuasion strategies to improve public perception are defined and they could be used as part of a nuclear program. (author)

  9. Soviet energy: current problems and future options

    Energy Technology Data Exchange (ETDEWEB)

    Stein, J B

    1981-12-01

    The connection between Soviet oil and energy resources, their efficient and timely utilization, and politico-military opportunities in the Persian Gulf region offer an inescapable link for analysis. Worsening trends in economic growth, factor productivity, social unrest, and energy production/distribution offset optimistic trends in Soviet military procurement and deployment. A conjunction of geologic, geographic, and systemic factors all point to a mid-1980s energy imbalance which in turn will pose hard questions for the Moscow leadership. 28 references.

  10. Evaluating nuclear power as the next baseload generation option

    International Nuclear Information System (INIS)

    Jackson, K.J.; Sanford, M.O.

    1992-01-01

    Numerous factors must be taken into account when planning to meet baseload generating needs of the next century. Examining nuclear power as an option to meet these needs offers significant challenges with respect to evaluating and managing the business risks. This paper describes one mechanism to accomplish this while continuing to participate in industry activities targeted at advancing the nuclear option. One possible model of pursuing high-risk, long-term projects, like nuclear power, is to spread these risks among the project participants and for each organization to commit slowly. With this model of progressive engagement, participants may invest in early information gathering with the objective of uncertainty reduction at preliminary stages in the project, before large investments must be made. For nuclear power, a partnership between a utility (or utility group) and a supplier team may well be the best means of implementing such a model. A partnership also provides opportunity to develop the long-term relationships within the industry which are imperative

  11. Solar energy options: Technical economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Visentin, R

    1982-01-01

    A general system approach on the earth suggests the conversion and distribution of solar energy as electricity, gas, solid and liquid fuels; the historical trend in energy management techniques is in favour of this hard technical proposal, because experience there exists on methods of transmission or transportation of previous kinds of energy vectors mentioned, and small changes in lifestyles toward energy conservation have to be considered in the final uses of the energy. Less hard system technologies will permit direct heat and electricity production close to the channels of energy consumptions; these systems will function as energy savers and their full exploitation implies greater impacts on energy use and lifestyles. As a general trend for government policies as well as for public decision impact on the social decision process, the proliferation of solar systems would permit to produce energy for the 'flowing energetic consumptions' (civil, transportation, agriculture, telecommunications, lighting, etc.) while the not renewable fuels could be properly invested in the production of strategic or durable materials; in this scheme the role of renewable resources is well defined to stabilize the whole civil system in which we are at present organized.

  12. Applying real options analysis to assess cleaner energy development strategies

    International Nuclear Information System (INIS)

    Cheng, Ching-Tsung; Lo, Shang-Lien; Lin, Tyrone T.

    2011-01-01

    The energy industry, accounts for the largest portion of CO 2 emissions, is facing the issue of compliance with the national clean energy policy. The methodology for evaluating the energy mix policy is crucial because of the characteristics of lead time embedded with the power generation facilities investment and the uncertainty of future electricity demand. In this paper, a modified binomial model based on sequential compound options, which may account for the lead time and uncertainty as a whole is established, and a numerical example on evaluating the optional strategies and the strategic value of the cleaner energy policy is also presented. It is found that the optimal decision at some nodes in the binomial tree is path dependent, which is different from the standard sequential compound option model with lead time or time lag concept. The proposed modified binomial sequential compound real options model can be generalized and extensively applied to solve the general decision problems that deal with the long lead time of many government policies as well as capital intensive investments. - Highlights: → Introducing a flexible strategic management approach for government policy making. → Developing a modified binomial real options model based on sequential compound options. → Proposing an innovative model for managing the long term policy with lead time. → Applying to evaluate the options of various scenarios of cleaner energy strategies.

  13. Present Status of Nuclear Energy

    Czech Academy of Sciences Publication Activity Database

    Wagner, Vladimír

    2013-01-01

    Roč. 2013, SI (2013), s. 89-94 ISSN 0375-8842. [European Nuclear Forum. Praha, 12.05.2013-13.05.2013] Institutional support: RVO:61389005 Keywords : nuclear energy * nuclear reactors * electricity production Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  14. High energy nuclear physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  15. Solar nuclear energy

    International Nuclear Information System (INIS)

    Tlalka, R.

    1977-01-01

    Brief characteristics are given of solar radiation and of its spectral range. The relation is derived for the gas pressure in the centre of the Sun and the mechanism is described of particle interactions in the Sun. Using the Eddington model the basic nuclear reactions in the Sun are described, namely the proton-proton chain and the C-N cycle. The energy transfer is discussed from the Sun to the boundaries of the Earth atmosphere and inside the atmosphere. The measurement of solar energy is conducted with actinometers, i.e., pyrheliometers, pyranometers and combinations thereof. The results of solar radiation measurement in different weather conditions are graphically represented. (J.B.)

  16. Speaking of nuclear energy

    International Nuclear Information System (INIS)

    Gillen, V.A.

    1992-01-01

    At the 1989 International Atomic Energy Agency (IAEA) General Conference, the Japanese Government pledged an extra-budgetary contribution for a three-year enhanced public information programme. On this basis the programme was developed centering on a series of two-day regional media seminars. It was determined that these seminars were to be informative and educational, and provide balanced, honest background material on the subject of nuclear energy. The speakers chosen were a mix of IAEA and outside experts from around the world. About 500 participants from 20 countries took part over the initial three years of the programme. This document contains a selection of speeches and topics that, is believed, captured the essence of the information presented during the regional seminars

  17. Topical subjects of nuclear energy

    International Nuclear Information System (INIS)

    Baumgaertel, G.; Borsch, P.; Halaszovich, S.; Laser, M.; Paschke, M.; Richter, B.; Stein, G.; Stippler, R.; Wagner, H.J.

    1990-01-01

    The report supplements and extends basic information contained in the seminar report 'Use and risk of nuclear energy' (Juel-Conf-17). The contributions deal with nuclear waste management, measures to avoid the misuse of nuclear fuels, and the properties and use of plutonium. As against the last edition, the subject 'Energy and environment' has been added. (orig.) [de

  18. Communication techniques and nuclear energy

    International Nuclear Information System (INIS)

    Carpintero Santamaria, N.

    2005-01-01

    The paper presents some thoughts on several factors related to nuclear energy and the way they are presented by the mass media, usually provoking controversy to the Spanish society and thus, undermining public acceptance. Some possibilities for boosting nuclear energy among public opinion are suggested, emphasizing the fact that nuclear power is essential because it is both ecologically and economically sound. (Author)

  19. Education of nuclear energy specialists

    International Nuclear Information System (INIS)

    Paulikas, V.

    1999-01-01

    Preparation system of nuclear energy specialists in Lithuania is presented. Nuclear engineers are being prepared at Kaunas University of Technology. Post-graduates students usually continue studies at Obninsk Nuclear Energy Institute in Russia. Many western countries like Sweden, Finland and US is providing assistance in education of Lithuanian specialists. Many of them were trained in these countries

  20. Nuclear energy and the public

    International Nuclear Information System (INIS)

    Kyd, D.R.

    1994-01-01

    This paper is the opening speech from a national seminar on the uses for nuclear energy in everyday life. The speaker, the public information director for the International Atomic Energy Agency (IAEA), stresses the peaceful uses of nuclear energy. He points out that used for peaceful purposes, and prudently, nuclear energy applications have, tremendous benefits to offer mankind in both the industrial world and developing nations

  1. Quantum nuclear pasta and nuclear symmetry energy

    Science.gov (United States)

    Fattoyev, F. J.; Horowitz, C. J.; Schuetrumpf, B.

    2017-05-01

    Complex and exotic nuclear geometries, collectively referred to as "nuclear pasta," are expected to appear naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta geometries depend on the average baryon density, proton fraction, and temperature and are critically important in the determination of many transport properties of matter in supernovae and the crusts of neutron stars. Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of large scale quantum simulations of pasta phases at baryon densities 0.03 ≤ρ ≤0.10 fm-3 , proton fractions 0.05 ≤Yp≤0.40 , and zero temperature. The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated by tuning two purely isovector observables that are insensitive to the current available experimental data. We find that a minimum total number of nucleons A =2000 is necessary to prevent the results from containing spurious shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at T =0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable solutions are discussed.

  2. Is nuclear energy ethically justifiable?

    International Nuclear Information System (INIS)

    Zuend, H.

    1988-01-01

    Nuclear technology brings the chance to provide an essential long term contribution to the energy supply of the world population and to use the raw materials uranium and thorium which have no other use. The use of nuclear energy is ethically justifiable providing certain simple fundamental rules for the design of nuclear facilities are observed. Such rules were clearly violated before the reactor accident at Chernobyl. They are, however, observed in our existing nuclear power plants. Compared with other energy systems nuclear energy has, with the exception of natural gas, the lowest risk. The consideration of the ethical justification of nuclear energy must also include the question of withdrawal. A withdrawal would have considerable social consequences for the industrial nations as well as for the developing countries. The problem of spreading alarm (and concern) by the opponents of nuclear energy should also be included in the ethical justification. 8 refs., 2 figs

  3. Nuclear energy: a sensible alternative

    International Nuclear Information System (INIS)

    Ott, K.O.; Spinrad, B.I.

    1985-01-01

    This book presents information on energy futures; energy demand, energy supplies; exclusive paths and difficult choices--hard, soft, and moderate energy paths; an energy-deficient society; energy shortages; economics of light-water reactors; fast breeder reactor economics; international cooperation in the nuclear field; nuclear recycling; alternative fuels, fuel cycles, and reactors; the nuclear weapons proliferation issue; paths to a world with more reliable nuclear safeguards; the homemade bomb issue; LWR risk assessment; accident analysis and risk assessment; the waste disposal risk; radon problems; risks in our society; health effects of low-level radiation; routine releases of radioactivity from the nuclear industry; low-level radioactivity and infant mortality; the myth of plutonium toxicity; myths about high-level radioactive waste; the aging reactor myth; the police state myth; insurance and nuclear power--the Price-Anderson Act; and solar and nuclear power as partners

  4. Nuclear energy in the world

    International Nuclear Information System (INIS)

    Grippi, Sidney

    2006-01-01

    The chapter reports the nuclear energy beginning in the world including a chronology of the atomic bomb birth, the annual growth rate of electronuclear energy in the world, a comparison of energy production in thermoelectric bases

  5. Pricing and Hedging Quanto Options in Energy Markets

    DEFF Research Database (Denmark)

    Benth, Fred Espen; Lange, Nina; Myklebust, Tor Åge

    2015-01-01

    –Jarrow–Morton approach, we derive a closed-form option pricing formula for energy quanto options under the assumption that the underlying assets are lognormally distributed. Our approach encompasses several interesting cases, such as geometric Brownian motions and multifactor spot models. We also derive Delta and Gamma......In energy markets, the use of quanto options has increased significantly in recent years. The payoff from such options are typically written on an underlying energy index and a measure of temperature. They are suited to managing the joint price and volume risk in energy markets. Using a Heath...... expressions for hedging. Further, we illustrate the use of our model by an empirical pricing exercise using NewYork Mercantile Exchange-traded natural gas futures and Chicago Mercantile Exchange-traded heating degree days futures for NewYork....

  6. Pricing and Hedging Quanto Options in Energy Markets

    DEFF Research Database (Denmark)

    Benth, Fred Espen; Lange, Nina; Myklebust, Tor Åge

    approach we derive a closed form option pricing formula for energy quanto options, under the assumption that the underlying assets are log-normally distributed. Our approach encompasses several interesting cases, such as geometric Brownian motions and multifactor spot models. We also derive delta and gamma......In energy markets, the use of quanto options have increased significantly in the recent years. The payoff from such options are typically written on an underlying energy index and a measure of temperature and are suited for managing the joint price and volume risk in energy markets. Using an HJM...... expressions for hedging. Furthermore, we illustrate the use of our model by an empirical pricing exercise using NYMEX traded natural gas futures and CME traded Heating Degree Days futures for New York....

  7. A feasibility study on nuclear power options in Mongolia

    International Nuclear Information System (INIS)

    Minato, A.; Sekimoto, H.; Amartaivan, T.

    2010-10-01

    There is a growing interest among utilities in the United States in small and medium reactors due primarily to the smaller investment and perhaps shorter construction time involved as compared to those large reactors. The potential market for small reactors (those below 300 M We) exists, specially with sizes of 50 and 100 M We. A feasibility study was conducted on nuclear power options for Ulaanbaatar, Mongolia, a country which has a potential market for small reactors. The study was focused on an optimization of a combination of coal-fired and nuclear power plants taking into account Mongolia's future nuclear program plan, future population and economic growth, and the increased electricity and district heating demands. (Author)

  8. Is nuclear energy ethically justifiable?

    International Nuclear Information System (INIS)

    Zuend, H.

    1987-01-01

    Nuclear technology offers the chance to make an extremely long term contribution to the energy supply of the earth. The use of nuclear energy is ethically justifiable, provided that several fundamental rules are obeyed during the technical design of nuclear installations. Such fundamental rules were unequivocally violated in the nuclear power plant Chernobyl. They are, however, fulfilled in the existing Swiss nuclear power plants. Improvements are possible in new nuclear power plants. Compared to other usable energy systems nuclear energy is second only to natural gas in minimal risk per generated energy unit. The question of ethical justification also may rightly be asked of the non-use of nuclear energy. The socially weakest members of the Swiss population would suffer most under a renunciation of nuclear energy. Future prospects for the developing countries would deteriorate considerably with a renunciation by industrial nations of nuclear energy. The widely spread fear concerning the nuclear energy in the population is a consequence of non-objective discussion. 8 refs., 2 figs

  9. Nuclear Power Options Viability Study. Volume 3. Nuclear discipline topics

    International Nuclear Information System (INIS)

    Trauger, D.B.; White, J.D.; Bowers, H.I.

    1986-09-01

    Innovative reactor concepts are described and evaluated in accordance with criteria established in the study. The reactors to be studied were chosen on the basis of three ground rules: (1) the potential for commercialization between 2000-2010, (2) economic competiveness with coal-fired plants, and (3) the degree of passive safety in the design. The concepts, classified by coolants, were light water reactors, liquid metal reactors, and high temperature reactors, and most were of modular design. All the concepts appear to be potentially viable in the time frame selected, but the information available is not adequate for a definitive evaluation of their economic competitiveness. This volume primarily reports in greater detail on several topics from the study. These are: Construction, Economics, Regulation, Safety and Economic Risk, Nuclear Waste Transportation and Disposal, and Market Acceptance. Although treated generically, the topics are presented in the context of the reactor concepts of the study

  10. Nuclear Power Options Viability Study. Volume 3. Nuclear discipline topics

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D B; White, J D; Bowers, H I; Braid, R B; Cantor, R A; Daniels, L; Davis, R M; Delene, J G; Gat, U; Hood, T C

    1986-09-01

    Innovative reactor concepts are described and evaluated in accordance with criteria established in the study. The reactors to be studied were chosen on the basis of three ground rules: (1) the potential for commercialization between 2000-2010, (2) economic competiveness with coal-fired plants, and (3) the degree of passive safety in the design. The concepts, classified by coolants, were light water reactors, liquid metal reactors, and high temperature reactors, and most were of modular design. All the concepts appear to be potentially viable in the time frame selected, but the information available is not adequate for a definitive evaluation of their economic competitiveness. This volume primarily reports in greater detail on several topics from the study. These are: Construction, Economics, Regulation, Safety and Economic Risk, Nuclear Waste Transportation and Disposal, and Market Acceptance. Although treated generically, the topics are presented in the context of the reactor concepts of the study.

  11. Hydrogen and nuclear energy

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Hancox, W.T.; Pendergast, D.R.

    1999-01-01

    The current world-wide emphasis on reducing greenhouse gas (GHG) emissions provides an opportunity to revisit how energy is produced and used, consistent with the need for human and economic growth. Both the scale of the problem and the efforts needed for its resolution are extremely large. We argue that GHG reduction strategies must include a greater penetration of electricity into areas, such as transportation, that have been the almost exclusive domain of fossil fuels. An opportunity for electricity to displace fossil fuel use is through electrolytic production of hydrogen. Nuclear power is the only large-scale commercially proven non-carbon electricity generation source, and it must play a key role. As a non-carbon power source, it can also provide the high-capacity base needed to stabilize electricity grids so that they can accommodate other non-carbon sources, namely low-capacity factor renewables such as wind and solar. Electricity can be used directly to power standalone hydrogen production facilities. In the special case of CANDU reactors, the hydrogen streams can be preprocessed to recover the trace concentrations of deuterium that can be re-oxidized to heavy water. World-wide experience shows that nuclear power can achieve high standards of public safety, environmental protection and commercially competitive economics, and must . be an integral part of future energy systems. (author)

  12. A Real Options Approach to Nuclear Waste Disposal in Sweden

    International Nuclear Information System (INIS)

    Soederkvist, Jonas; Joensson, Kristian

    2004-04-01

    This report is concerned with an investigation of how the real options approach can be useful for managerial decisions regarding the phase-out of nuclear power generation in Sweden. The problem of interest is the optimal time-schedule for phase-out activities, where the optimal time-schedule is defined in purely economical terms. The approach taken is actual construction and application of three real options models, which capture different aspects of managerial decisions. The first model concerns when investments in deep disposal facilities should optimally be made. Although the model is a rough simplification of reality, the result is clear. It is economically advantageous to postpone deep disposal forever. The second model focuses on how the uncertainty of future costs relates to managerial investment decisions. Construction of this model required some creativity, as the nuclear phase-out turns out to be quite a special project. The result from the second model is that there can be a value associated with deferral of investments due to the uncertainty of future costs, but the result is less clear-cut compared to the first model. In the third model, we extend an approach suggested by Louberge, Villeneuve and Chesney. The risk of a nuclear accident is introduced through this model and we develop its application to investigate the Swedish phase-out in particular, which implies that waste continuously disposed. In the third model, focus is shifted from investment timing to implementation timing. The results from the third model are merely qualitative, as it is considered beyond the scope of this work to quantitatively determine all relevant inputs. It is concluded that the phase-out of nuclear power generation in Sweden is not just another area of application for standard real options techniques. A main reason is that although there are a lot of uncertain issues regarding the phase-out, those uncertainties do not leave a lot of room for managerial flexibility if

  13. Real options and asset valuation in competitive energy markets

    Science.gov (United States)

    Oduntan, Adekunle Richard

    The focus of this work is to develop a robust valuation framework for physical power assets operating in competitive markets such as peaking or mid-merit thermal power plants and baseload power plants. The goal is to develop a modeling framework that can be adapted to different energy assets with different types of operating flexibilities and technical constraints and which can be employed for various purposes such as capital budgeting, business planning, risk management and strategic bidding planning among others. The valuation framework must also be able to capture the reality of power market rules and opportunities, as well as technical constraints of different assets. The modeling framework developed conceptualizes operating flexibilities of power assets as "switching options' whereby the asset operator decides at every decision point whether to switch from one operating mode to another mutually exclusive mode, within the limits of the equipment constraints of the asset. As a current decision to switch operating modes may affect future operating flexibilities of the asset and hence cash flows, a dynamic optimization framework is employed. The developed framework accounts for the uncertain nature of key value drivers by representing them with appropriate stochastic processes. Specifically, the framework developed conceptualizes the operation of a power asset as a multi-stage decision making problem where the operator has to make a decision at every stage to alter operating mode given currently available information about key value drivers. The problem is then solved dynamically by decomposing it into a series of two-stage sub-problems according to Bellman's optimality principle. The solution algorithm employed is the Least Squares Monte Carlo (LSM) method. The developed valuation framework was adapted for a gas-fired thermal power plant, a peaking hydroelectric power plant and a baseload power plant. This work built on previously published real options valuation

  14. The nuclear energy in France

    International Nuclear Information System (INIS)

    Pedroso, L.J.

    1983-01-01

    An overview of the nuclear energy in France is done. The great centers and the great research lines of the French nuclear program, as well as its present status and prospects for the future are presented. (EG) [pt

  15. Nuclear energy and greenhouse effect

    International Nuclear Information System (INIS)

    Strub, R.A.

    1991-01-01

    The contribution of nuclear power plants against the greenhouse effects is evaluated, not only nuclear energy is unable to fight greenhouse effect increase but long life wastes endanger environment. 8 refs

  16. Nuclear energy and public acceptance

    International Nuclear Information System (INIS)

    El Osery, I.A.

    1988-01-01

    The soundness of use of nuclear energy in electric energy generation has received public concern due to the public highly exaggerated fear of nuclear power. It is the purpose of this paper to clear up some issues of public misunderstanding of nuclear power. Those of most importance are the unjustified fears about safety of nuclear power plants and the misunderstanding of nuclear risks and fears of nuclear power plants environmental impact. The paper is addressed to the public and aims at clarifying these issues in simple, correct, and convincing terms in such a way that links the gap between the scientists of nuclear energy and the general public; this gap which the media has failed to cover and failed to convey honestly and correctly the scientific facts about nuclear energy from the scientists standards to the public

  17. Present market for nuclear energy

    International Nuclear Information System (INIS)

    Marzo, M.A.S.

    1987-01-01

    The present market for nuclear energy is present since nuclear production and electric power generation to the utilization of radioisotopes in medicine and biology. Some data about the main world suppliers to this market are shown. (E.G.) [pt

  18. Energy paper II: Nuclear energy revival

    International Nuclear Information System (INIS)

    Anonymous

    2008-01-01

    ESI Energy paper is called 'Issue Paper' awarded by think-tank Energy Security Institute. The second issue focuses on the energy security of countries from the perspective of Renaissance of construction of nuclear power plants. Topicality is documented by fluctuations in fossil fuel prices on the world commodity markets and by extortionate potential, disposed by their main producers. The Slovak Republic is actively engaged into international dialogue on the need for the development of nuclear energy.

  19. Free energy option and its relevance to improve domestic energy demands in southern Nigeria

    Directory of Open Access Journals (Sweden)

    Moses Eterigho Emetere

    2016-11-01

    Full Text Available The aim of this paper is to seek an energy option that would benefit the growing energy demands. Domestic energy demands in southern Nigeria had increased greatly due to failing power programs and seasonal migrations. The fossil fuel option is gradually fading away due to environmental pollution and recent dynamic cost. The renewable energy option had been celebrated with little success in the coastal area of southern Nigeria. At the moment, the renewable energy option is very expensive with little guarantee on its efficiency with time. The data set used for this study was obtained from the Davis weather installation in Covenant University. The free energy option was considered. The cost and its environmental implication for domestic use were comparatively discussed alongside other energy options — using the Life cycle cost analysis. It was found out that free energy option is more affordable and efficient for domestic use.

  20. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  1. Kalaeloa Energy System Redevelopment Options Including Advanced Microgrids.

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, Marion Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Baca, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); VanderMey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    In June 2016, the Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) in collaboration with the Renewable Energy Branch for the Hawaii State Energy Office (HSEO), the Hawaii Community Development Authority (HCDA), the United States Navy (Navy), and Sandia National Laboratories (Sandia) established a project to 1) assess the current functionality of the energy infrastructure at the Kalaeloa Community Development District, and 2) evaluate options to use both existing and new distributed and renewable energy generation and storage resources within advanced microgrid frameworks to cost-effectively enhance energy security and reliability for critical stakeholder needs during both short-term and extended electric power outages. This report discusses the results of a stakeholder workshop and associated site visits conducted by Sandia in October 2016 to identify major Kalaeloa stakeholder and tenant energy issues, concerns, and priorities. The report also documents information on the performance and cost benefits of a range of possible energy system improvement options including traditional electric grid upgrade approaches, advanced microgrid upgrades, and combined grid/microgrid improvements. The costs and benefits of the different improvement options are presented, comparing options to see how well they address the energy system reliability, sustainability, and resiliency priorities identified by the Kalaeloa stakeholders.

  2. World Energy Outlook - 2050: Policy Options

    Energy Technology Data Exchange (ETDEWEB)

    Ghouri, Salman Saif

    2007-07-01

    The paper analyzes the historical trends, resource distribution and forecasts the regional total primary energy consumption (TPEC) to 2050. The purpose is to provide a most probable path so that appropriate policies can be made to enhance/slowdown the energy consumption without hampering economic growth. Global TPEC is most likely to reach 763-1259 Quadrillion Btu (QBtu) to 2050 with reference case trending between and stood at 978 QBtu. By 2050 the equation of TPEC is expected to be tilted in favor of developing countries when their share is increased from 47 percent in 2003 to 59 percent. Asia developing region becomes the largest consumer of TPEC; however on per capita basis it remains the lowest after Africa. The forecast gives some guidance to policy makers. Which policy measures should be taken to ensure availability of predicted level of energy resources? How should we mobilize sizeable investment to increase the expected production/capacity/logistic both in the producing and consuming countries? Simultaneously, what strategic measures should be taken: to improve energy efficiency/conservation, development/promotion of renewable sources of energies and check population growth to downward shift the probable TPEC path without compromising economic growth, productivity and quality of life? (auth)

  3. Nuclear fusion an energetic option to the future

    International Nuclear Information System (INIS)

    Medialdea Utande, A.; Sanchez Sanz, J.

    2007-01-01

    Nuclear fusion is the energy source of the Sun and the rest of starts. The great availability of deuterium on Earth, the inherent safety of the reactions involved and the intrinsic environmental respect make fusion an attractive energy source for the future of making of man king. International promising contributions are making Fusion Science and Technology progress by leaps and bounds to achieve its long term goal of cost-effective energy-producing plasmas. (Author)

  4. Ultimate Choice for Energy: The Nuclear Energy

    Directory of Open Access Journals (Sweden)

    Metin Yıldırım*

    2007-06-01

    Full Text Available Increases in the prices of oil, hard coal and natural gas, emergence of Russia as a not reliable resource for the natural and the developments in the security of the energy supply again have been started the nuclear energy as a hotly debated issue in the world. This is also a sensitive topic among the opponents and proponents of the nuclear energy in Turkey. Nuclear energy is very important since it provides about 17 % of the electric energy in the world and is used in industry and medical area. However, Turkey has not declared any policy about this yet, because of the worries about the environmental reasons and has not gained any progress about nuclear energy. First of all, Turkey must use her geothermal, hydropower, hard coal, solar and wind energies. Otherwise, Turkey may find herself in a competition with her neighboring countries

  5. Nuclear Energy - a Part of a Solution to Generate Electric Power in Croatia?

    International Nuclear Information System (INIS)

    Mikulicic, V.; Simic, Z.

    1998-01-01

    The growth in Croatian energy, particularly electricity, demand together with growing environmental considerations is such that Croatia needs to have flexibility to respond, by having the option of expanding the nuclear sector. This paper deals with nuclear energy as an option for sustainable Croatian economic development, and with the nuclear power controversy. The conclusion is that there is a necessity for extended use of nuclear energy in Croatia. Most certainly the nuclear technology can provide the energy necessary to sustain progress and, as a country without coal, Croatia should favour nuclear power utilisation as the lowest cost option for base-load electricity generation. (author)

  6. Nuclear energy. Risk or advantage

    International Nuclear Information System (INIS)

    Boettiger, Helmut

    2011-01-01

    Nuclear energy is controversial. But what's all about really in the controversy? It's about more than safty or electricity prices. Nuclear energy is not only a technical or political question, but also a moral, a human. The discussion enter various rational and irrational arguments, beside straightforward arguments various misleading and mendacious exist. The present publication is comprehensively dedicated to the thema of nuclear energy - its pro and contra - and considers its risks and advantages. Thereby the sources of energy, the processes in the nuclear reactor, and the risk potentials (Harrisburg, Chernobyl, Fukushima) are illustratively and reproducibly presented. Extensively the text explains the forms of the radiation, its doses, and the tolerance of it. Also to the theme waste and final disposal an explaining chapter is dedicated and the question for the exit from nuclear energy elucidated. Finally the author appoints with the question ''How considers mankind nuclear energy world-wide'' the international comparison.

  7. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation.

  8. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H.

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation

  9. Should we embrace nuclear energy?

    International Nuclear Information System (INIS)

    Nolch, Guy

    2006-01-01

    During his recent tour of North America, Australian Prime Minister John Howard called for a 'full-blooded debate' about the place of nuclear power in the nation's energy mix. 'I have a very open mind on the development of nuclear energy in my own country,' he said. Treasurer Peter Costello said that only economic arguments precluded Australia's move to nuclear energy. 'If it becomes commercial, we should have it,' he said on 23 May. But in reality the 'debate' had already been adjudicated. Three days later the Australian Nuclear Science and Technology Organisation (ANSTO) presented Science Minister Julie Bishop with a report that delivered Costello's economic justification for nuclear power

  10. Role of nuclear option in sustainable power system planning in Croatia

    International Nuclear Information System (INIS)

    Tomsic, Z.; Kovacevic, T.; Feretic, D.

    1998-01-01

    To support the projected economic growth, electricity consumption in Croatia should rise by an average annual rate of at least 2.3% till the year 2030. After examining the potentials of new renewable energy sources (wind and solar energy and biomass) for large-scale electricity generation, projections of the required new generating capacities are made and possible developing scenarios of Croatian power system created. Nuclear and non-nuclear expansion options are analyzed, and optimal capacity and generation mixes are found on the basis of annual production costs and the assumption that the natural gas availability is limited. Emissions of SO 2 , NO x , particulates and CO 2 to the atmosphere in both options are calculated. Apart from that, it is analyzed how the hypothetical introduction of a CO 2 emission charge would affect the optimal capacity mix. (author)

  11. Fuel alternatives for oil sands development - the nuclear option

    Energy Technology Data Exchange (ETDEWEB)

    Bock, D [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Donnelly, J K

    1996-12-31

    Currently natural gas is the fuel of choice in all oil sand developments. Alberta sources of hydrocarbon based fuels are large but limited. Canadian nuclear technology was studied as a possible alternative for providing steam for the deep commercial in situ oil sand projects which were initiated over ten years ago. Because the in situ technology of that time required steam at pressures in excess of 10 MPa, the nuclear option required the development of new reactor technology, or the use of steam compressors, which was not economical. The current SAGD (steam assisted gravity drainage) technology requires steam at pressures of less than 5 MPa, which is in the reach of existing Canadian nuclear technology. The cost of supplying steam for a SAGD in situ project using a CANDU 3 nuclear reactor was developed. The study indicates that for gas prices in excess of $2.50 per gigajoule, replacing natural gas fuel with a nuclear reactor is economically feasible for in situ projects in excess of 123 thousand barrels per day. (author). 9 refs., 3 tabs., 12 figs.

  12. Fuel alternatives for oil sands development - the nuclear option

    International Nuclear Information System (INIS)

    Bock, D.; Donnelly, J.K.

    1995-01-01

    Currently natural gas is the fuel of choice in all oil sand developments. Alberta sources of hydrocarbon based fuels are large but limited. Canadian nuclear technology was studied as a possible alternative for providing steam for the deep commercial in situ oil sand projects which were initiated over ten years ago. Because the in situ technology of that time required steam at pressures in excess of 10 MPa, the nuclear option required the development of new reactor technology, or the use of steam compressors, which was not economical. The current SAGD (steam assisted gravity drainage) technology requires steam at pressures of less than 5 MPa, which is in the reach of existing Canadian nuclear technology. The cost of supplying steam for a SAGD in situ project using a CANDU 3 nuclear reactor was developed. The study indicates that for gas prices in excess of $2.50 per gigajoule, replacing natural gas fuel with a nuclear reactor is economically feasible for in situ projects in excess of 123 thousand barrels per day. (author). 9 refs., 3 tabs., 12 figs

  13. Energy situation and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, M R [Reactor and Neutron physics Department Nuclear Research Center A.E., Cairo (Egypt)

    1997-12-31

    A brief general review is given concerning the requirements of power throughout history with an indication to the world capital reserves of energy. The energy released from the conversion of mass in chemical and nuclear processes is also discussed with comparative analysis between conventional fuel fired plant and nuclear power plant having the same energy output. The advantages and disadvantages arising from having a nuclear power programme are also discussed. 1 fig.

  14. Nuclear energy, understand the future

    International Nuclear Information System (INIS)

    Bauquis, P.R.; Barre, B.

    2006-01-01

    In spite of its first use for military needs, the nuclear became a substitution energy, especially for the electric power production. For many scientist the nuclear seems to be the main part to the world energy supply in an economic growth context, provided the radioactive wastes problems is solved. From the military origins to the electric power generation, this book explains the technical economical and political aspects of the nuclear energy. (A.L.B.)

  15. Nuclear energy in the future

    International Nuclear Information System (INIS)

    Chaussade, J.P.

    1994-01-01

    Nuclear energy plays a major role in the French economy because of the lack of fossil fuels on the French territory. About 75% of the French electric power is of nuclear origin. This paper gives an analysis of the French public attitude about nuclear energy and the methods used by the nuclear industrialists to better the electro-nuclear image. Communication, advertising and transparency are the best attitudes for a suitable public information and are necessary to reduce the public anxiety after the Chernobyl accident. Television advertising, magazines and organized visits of nuclear installations have allowed to explain the interest of nuclear energy in the environmental reduction of pollutants. However, public information must include the topic about nuclear wastes to remain credible. (J.S.)

  16. Promising design options for the encapsulated nuclear heat source reactor

    Energy Technology Data Exchange (ETDEWEB)

    Conway, L.; Carelli, M.D.; Dzodzo, M. [Westinghouse Science and Technology, Pittsburgh, PA (United States); Hossain, Q.; Brown, N.W. [Lawrence Livermore National Lab., CA (United States); Wade, D.C.; Sienick, J.J. [Argonne National Lab., IL (United States); Greenspan, E.; Kastenberg, W.E.; Saphier, D. [University of California Dept of Nuclear Engineering, Berkeley, CA (United States)

    2001-07-01

    Promising design options for the Encapsulated Nuclear Heat Source (ENHS) liquid-metal cooled fast reactor were identified during the first year of the DOE NERI program sponsored feasibility study. Many opportunities for incorporation of innovations in design and fabrication were identified. Three of the innovations are hereby described: a novel IHX (intermediate heat exchanger) made of a relatively small number of rectangular channels, an ENHS module design featuring 100% natural circulation, and a novel conceptual design of core support and fuelling. As a result of the first year study the ENHS concept appears more practical and more promising than perceived at the outset of this study. (authors)

  17. Promising design options for the encapsulated nuclear heat source reactor

    International Nuclear Information System (INIS)

    Conway, L.; Carelli, M.D.; Dzodzo, M.; Hossain, Q.; Brown, N.W.; Wade, D.C.; Sienick, J.J.; Greenspan, E.; Kastenberg, W.E.; Saphier, D.

    2001-01-01

    Promising design options for the Encapsulated Nuclear Heat Source (ENHS) liquid-metal cooled fast reactor were identified during the first year of the DOE NERI program sponsored feasibility study. Many opportunities for incorporation of innovations in design and fabrication were identified. Three of the innovations are hereby described: a novel IHX (intermediate heat exchanger) made of a relatively small number of rectangular channels, an ENHS module design featuring 100% natural circulation, and a novel conceptual design of core support and fuelling. As a result of the first year study the ENHS concept appears more practical and more promising than perceived at the outset of this study. (authors)

  18. Climatic change and nuclear energy

    International Nuclear Information System (INIS)

    Schneider, M.

    2000-08-01

    The data presented in the different chapters lead to show that nuclear energy ids not a sustainable energy sources for the following reasons: investments in nuclear energy account financing that lacks to energy efficiency programmes. The nuclear programmes have negative effects such the need of great electric network, the need of highly qualified personnel, the freezing of innovation in the fields of supply and demand, development of small performing units. The countries resort to nuclear energy are among the biggest carbon dioxide emitters, because big size nuclear power plants lead to stimulate electric power consumption instead of inducing its rational use. Nuclear energy produces only electric power then a part of needs concerns heat (or cold) and when it is taken into account nuclear energy loses its advantages to the profit of cogeneration installations. Finally nuclear energy is a dangerous energy source, difficult to control as the accident occurring at Tokai MURA showed it in 1998. The problem of radioactive wastes is not still solved and the nuclear proliferation constitutes one of the most important threat at the international level. (N.C.)

  19. Comparison and evaluation of nuclear power plant options for geosynchronous power stations

    International Nuclear Information System (INIS)

    Williams, J.R.

    1975-01-01

    A solution to the safety, safeguards, and radwaste disposal problems of nuclear power is to locate the breeder reactor power plants far out in geosynchronous orbit and beam the power to earth with microwaves. The generation of nuclear power in space is technologically feasible and has already been demonstrated on a small scale. It has also been shown that high efficiency microwave transmission of power from synchronous orbit to earth is feasible and is not hazardous. The reactor safety problem would be virtually eliminated because of the remoteness of the satellite power station in geosynchronous orbit. The worst possible accident at such a plant would have negligible effect on the earth, certainly less than the high altitude nuclear explosions which have been conducted in the past. Accidental re-entry from geosynchronous orbit could not occur because of the very large velocity change required. The safeguards problem can be virtually eliminated by adopting the following procedures: 1) The plant is initially started up using U-235 fuel or bred plutonium or U-233 from another geosynchronous power plant, 2) Once the plant is operating, only nonhazardous fertile materials (thorium or depleted uranium) are shipped up from earth, 3) The fissile fuel is bred and used in space, and none of this highly toxic fissile material is ever returned to earth. The radioactive waste could be concentrated and ejected in canisters into deep space away from the earth. The geosynchronous nuclear power plant offers unlimited nuclear power without nuclear hazards or nuclear pollution, but at somewhat higher cost. Whether or not society will be willing to pay these higher costs of nuclear power from space, or whether new energy resources such as nuclear fusion or solar power become feasible, remains to be seen. A prudent course to follow would be to give careful consideration to all future options for large scale energy generation, including the option of nuclear power from space

  20. Net energy analysis - powerful tool for selecting elective power options

    Energy Technology Data Exchange (ETDEWEB)

    Baron, S. [Brookhaven National Laboratory, Upton, NY (United States)

    1995-12-01

    A number of net energy analysis studies have been conducted in recent years for electric power production from coal, oil and uranium fuels; synthetic fuels from coal and oil shale; and heat and electric power from solar energy. This technique is an excellent indicator of investment costs, environmental impact and potential economic competitiveness of alternative electric power systems for energy planners from the Eastern European countries considering future options. Energy conservation is also important to energy planners and the net energy analysis technique is an excellent accounting system on the extent of energy resource conservation. The author proposes to discuss the technique and to present the results of his studies and others in the field. The information supplied to the attendees will serve as a powerful tool to the energy planners considering their electric power options in the future.

  1. The implications of the nuclear option in Quebec

    International Nuclear Information System (INIS)

    1979-01-01

    Quebec depends on fossil fuels which come from outside Quebec for its energy supply. It has available significant hydraulic resources, but they should be totally harnessed within 30 years; therefore, other energy sources must be found. The nuclear route can provide a way for Quebec to meet its future needs. From the technical, economic, security of supply, and side benefit points of view, the recourse to nuclear seems reasonable and even advantageous. From a socio-political point of view, however, the risks inherent in the use of nuclear energy are extremely important and need well-informed public discussion. In the meantime Quebec ought to stress the other sources that are available (hydroelectricity) or likely to be available (Canadian gas) while these sources can still be used at a reasonable price [fr

  2. Enabling optimal energy options under the Clean Development Mechanism

    International Nuclear Information System (INIS)

    Gilau, Asmerom M.; Van Buskirk, Robert; Small, Mitchell J.

    2007-01-01

    This paper addresses the cost effectiveness of renewable energy technologies in achieving low abatement costs and promoting sustainable developments under the Clean Development Mechanism (CDM). According to the results of our optimal energy option's analysis, at project scale, compared with a diesel-only energy option, photovoltaic (PV)-diesel (PVDB), wind-diesel (WDB) and PV-wind-diesel (PVWDB) hybrids are very cost-effective energy options. Moreover, energy options with high levels of renewable energy, including 100% renewables, have the lowest net present cost and they are already cost effective without CDM. On the other hand, while the removal of about 87% carbon dioxide emissions could be achieved at negative cost, initial investment could increase by a factor of 40, which is one of the primary barriers hindering wider renewable energy applications in developing countries, among others. Thus, in order to increase developing countries' participation in the carbon market, CDM policy should shift from a purely market-oriented approach to investigating how to facilitate renewable energy projects through barrier removal. Thus, we recommend that further research should focus on how to efficiently remove renewable energy implementation barriers as a means to improve developing countries' participation in meaningful emission reduction while at the same time meeting the needs of sustainable economic development

  3. Energy from nuclear fission()

    Science.gov (United States)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  4. Nuclear energy: a vital energy choice

    International Nuclear Information System (INIS)

    Pecqueur, Michel

    1980-01-01

    Speaking from the platform of the XIIIth annual session of the International Atomic Energy Agency, at New Delhi, AEC managing director Michel Pecqueur made a solemn appeal to the world community for the decisions which are needed on energy. The present energy crisis can lead the world to a recession and be a factor in grave troubles for peace and balance in the world. The crisis cannot be resolved without accrued recourse to the use of nuclear energy. Two essential themes were outlined: the development of nuclear energy in the world, and the increased reduction of proliferation risks. In concluding, he expressed the hop that with a greater effort in information media, the nuclear fact-of-life would be better accepted by the general public in future, for it is there that lies a brake which may hinder nuclear energy development [fr

  5. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    In this presentation author deals with production a consumption of electricity in the Finland. New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  6. A study on the alternative option for nuclear policy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. W.; Choi, H. J.; Lee, J. Y.; Cho, D. K.; Jeon, K. S.; Park, S. W.; Hahn, D. H.; Yoon, J. S.; Lee, K. S. [KAERI, Daejeon (Korea, Republic of)

    2008-02-15

    Since a decision-making by intuitive judgement under uncertain future conditions can not select an optimum alternative, reaching an agreement for alternatives between experts requires a development of several scientific opinion collection methodologies and performing these methodologies. Therefore, opinion collection for all points related to the nuclear energy, public hearing induction related researches and the acts, procedure, etc. performed in developed countries such as U.S, U.K, France, etc. are reviewed and analyzed in this research. And after the analysis of domestic spent nuclear fuel management plan, Task Force Team composed of experts in several related areas is organized to suggest strategies and directions which are necessary for making a national policy. Beside, Task Force Team selects an optimum technical alternative by the analysis and comparison in depth between these technical alternatives to establish the policy direction. They also established the procedures such as opinion collecting, etc. through policy conference and forum and suggested the technical data related nuclear policy which supports the nuclear policy conference. Results from this research are expected to decrease the trial and error that has been occurred in the present policy-making procedure such as radioactive waste repository related procedure and contribute for socio-cultural stability. Moreover, opinion collection plan for developing a nuclear policy alternative is expected to contribute for making a nuclear policy in the nuclear policy conference so that the nuclear technology will be enhanced more.

  7. A study on the alternative option for nuclear policy

    International Nuclear Information System (INIS)

    Choi, J. W.; Choi, H. J.; Lee, J. Y.; Cho, D. K.; Jeon, K. S.; Park, S. W.; Hahn, D. H.; Yoon, J. S.; Lee, K. S.

    2008-02-01

    Since a decision-making by intuitive judgement under uncertain future conditions can not select an optimum alternative, reaching an agreement for alternatives between experts requires a development of several scientific opinion collection methodologies and performing these methodologies. Therefore, opinion collection for all points related to the nuclear energy, public hearing induction related researches and the acts, procedure, etc. performed in developed countries such as U.S, U.K, France, etc. are reviewed and analyzed in this research. And after the analysis of domestic spent nuclear fuel management plan, Task Force Team composed of experts in several related areas is organized to suggest strategies and directions which are necessary for making a national policy. Beside, Task Force Team selects an optimum technical alternative by the analysis and comparison in depth between these technical alternatives to establish the policy direction. They also established the procedures such as opinion collecting, etc. through policy conference and forum and suggested the technical data related nuclear policy which supports the nuclear policy conference. Results from this research are expected to decrease the trial and error that has been occurred in the present policy-making procedure such as radioactive waste repository related procedure and contribute for socio-cultural stability. Moreover, opinion collection plan for developing a nuclear policy alternative is expected to contribute for making a nuclear policy in the nuclear policy conference so that the nuclear technology will be enhanced more

  8. The role of nuclear energy system for Korean long-term energy supply strategy

    International Nuclear Information System (INIS)

    Chae, K.N.; Lee, D.G.; Lim, C.Y.; Lee, B.W.

    1995-01-01

    The energy supply optimization model MESSAGE-III is improved to evaluate the role of nuclear energy system in Korean long-term energy supply strategy. Emphasis is placed on the potential contribution of nuclear energy in case of environmental constraints and energy resource limitation. The time horizon is 1993-2040. A program to forecast useful energy demand is developed, and optimization is performed from the overall energy system to the nuclear energy system. Reactor and fuel cycle strategy and the expanded utilization options for nuclear energy system are suggested. FBRs, HTGRs and thorium fuel cycle would play key roles in the long run. The most important factors for nuclear energy in Korean energy supply strategy would be the availability of fossil fuels, CO 2 reduction regulation, and the supply capability of nuclear energy. (author)

  9. Energy Options in an HJM Framework

    DEFF Research Database (Denmark)

    Lyse Hansen, Thomas; Astrup Jensen, Bjarne

    2004-01-01

    It is a delicate matter to trade spot products and financial derivatives in energy markets. Op-posite to bond and stock markets, the underlying assets are real products and a significant partof the demand for them represents a real need for the products, which can only be substitutedaway with some...... difficulties or, in some cases, only in a prohibitively costly manner. This isparticularly true in the spot market, where the demand is almost always met, but where thespot price processes can be quite different from the spot price processes conventionally used inthe pricing of derivatives. This pattern...

  10. Nuclear Power, Energy Economics and Energy Security

    International Nuclear Information System (INIS)

    2013-01-01

    Economic development requires reliable, affordable electricity that is provided in sufficient quantities to satisfy the minimum energy requirements at a local, regional or national level. As simple as this recipe for economic development appears, technological, infrastructural, financial and developmental considerations must be analysed and balanced to produce a national energy strategy. Complicating that task is the historic fact that energy at the desired price and in the desired quantities can be neither taken for granted nor guaranteed. Energy economics and energy security determine the options available to nations working to establish a sustainable energy strategy for the future.

  11. Review of Nuclear Thermal Propulsion Ground Test Options

    Science.gov (United States)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  12. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  13. Development perspectives of nuclear energy in Morocco

    International Nuclear Information System (INIS)

    Mekki-Berrada, A.

    1987-01-01

    Morocco is on the way to developing and gaining access to advanced technologies which will allow it to take good advantage of its natural resources. Most of the fuels necessary for electricity production have to be imported. Nuclear energy appears a better alternative to imported oil or coal, mainly due to kWh price competitivness, great potential of uranium in phosphates and to the limitations placed on the coal option by harbour and transport infrastructure. The first nuclear power plant is planned to go into operation in the year 2000

  14. Real options valuation of fusion energy R and D programme

    International Nuclear Information System (INIS)

    Bednyagin, Denis; Gnansounou, Edgard

    2011-01-01

    This paper aims to perform a real options valuation of fusion energy R and D programme. Strategic value of thermonuclear fusion technology is estimated here based on the expected cash flows from construction and operation of fusion power plants and the real options value arising due to managerial flexibility and the underlying uncertainty. First, a basic investment option model of Black-Scholes type is being considered. Then, a fuzzy compound real R and D option model is elaborated, which reflects in a better way the multi-stage nature of the programme and takes into account the imprecision of information as one of the components of the overall programme uncertainty. Two different strategies are compared: 'Baseline' corresponding to a relatively moderate pace of fusion research, development, demonstration and deployment activities vs. 'Accelerated' strategy, which assumes a rapid demonstration and massive deployment of fusion. The conclusions are drawn from the model calculations regarding the strategic value of fusion energy R and D and the advantages of accelerated development path. - Research highlights: → Real options analysis of fusion R and D, demonstration and deployment (RDDD) programme. → ENPV of fusion RDDD programme is calculated using stochastic probabilistic simulation. → Fusion RDDD programme exhibits substantial positive real options value: Euro 245 billion. → Fuzzy compound real option valuation method provides more robust results.

  15. Nuclear and intermittent renewables: Two compatible supply options? The case of the French power mix

    International Nuclear Information System (INIS)

    Cany, Camille; Mansilla, Christine; Costa, Pascal da; Mathonnière, Gilles; Duquesnoy, Thierry; Baschwitz, Anne

    2016-01-01

    The complementary features of low-carbon power sources are a central issue in designing energy transition policies. The French current electricity mix is characterised by a high share of nuclear power which equalled 76% of the total electric production in 2015. With the increase in intermittent renewable sources, nuclear flexibility is examined as part of the solution to balance electricity supply and demand. Our proposed methodology involves designing scenarios with nuclear and intermittent renewable penetration levels, and developing residual load duration curves in each case. The load modulation impact on the nuclear production cost is estimated. This article shows to which extent the nuclear annual energy production will decrease with high shares of intermittent renewables (down to load factors of 40% for proactive assumptions). However, the production cost increase could be compensated by progressively replacing the plants. Moreover, incentives are necessary if nuclear is to compete with combined-cycle gas turbines as its alternative back-up option. In order to reconcile the social planner with plant operator goals, the solution could be to find new outlets rather than reducing nuclear load factors. Nuclear flexibility could then be considered in terms of using its power to produce heat or hydrogen. - Highlights: •Nuclear flexibility is examined to balance the system with high renewables share. •Impacts of wind and solar shares on the nuclear load factor and LCOE are assessed. •Nuclear fleet replacement must be progressive to ensure competitive load-following. •Incentives are needed for nuclear to compete with CCGT gas back-up. •We recommend considering nuclear flexibility through the power use.

  16. Options for Energy Upgrade of the Hall B Tagger

    International Nuclear Information System (INIS)

    H. Crannell; D. Sober

    1998-01-01

    Four options for an energy upgrade of the present Hall-B Tagger have been considered. These are: (1) Boost the magnetic field in the present Tagger; (2) Replace the Tagger with a new Tagger system; (3) Install a pre-Tagger magnetic chacain, and (4) Use the present Tagger as part of the beam dump. In this document each of these options is described briefly, the advantages and disadvantages of each are presented, and a very rough cost of implementation is suggested

  17. Carbon finance options in renewable energy

    International Nuclear Information System (INIS)

    Nahar, P.

    2010-01-01

    The Kyoto Protocol splits the world into two categories, notably Annex 1 with binding targets; and non-Annex 1 without any binding targets. This presentation discussed the Kyoto Protocol, with particular reference to the flexibility mechanisms which allow countries to achieve their emission targets in a cost effective way through emission trading, joint implementation, or clean development mechanisms (CDM). The CDM was outlined in detail in terms of how it works. The CDM key concepts include baseline use, additionality, and monitoring. Reasons for risk and CDM renewable energy projects were also outlined. Other topics that were presented included the impact of carbon finance; United States federal climate policy; European Union policy; EVO structured carbon; portfolio management; and EVO structured carbon. tabs., figs.

  18. 76 FR 67717 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2011-11-02

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear...: [email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory...

  19. 77 FR 26274 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2012-05-03

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear[email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory Committee...

  20. 78 FR 70932 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2013-11-27

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear[email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory Committee (NEAC...

  1. 75 FR 67351 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2010-11-02

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear... [email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory...

  2. 75 FR 13269 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear[email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory Committee...

  3. Assessment of Used Nuclear Fuel Inventory Relative to Disposition Options

    International Nuclear Information System (INIS)

    Wagner, John C.; Peterson, Joshua L.; Mueller, Don; Gehin, Jess C.; Worrall, Andrew; Taiwo, Temitope; Nutt, Mark; Williamson, Mark A.; Todosow, Mike; Wigeland, Roald; Halsey, William; Omberg, Ronald; Swift, Peter; Carter, Joe

    2013-01-01

    This paper presents a technical assessment of the current inventory [∼70,150 metric tons of heavy metal (MTHM) as of 2011] of U.S.-discharged used nuclear fuel (UNF) to support decisions regarding fuel cycle strategies and research, development and demonstration (RD and D) needs. The assessment considered discharged UNF from commercial nuclear electricity generation and defense and research programs and determined that the current UNF inventory can be divided into the following three categories: 1. Disposal - excess material that is not needed for other purposes; 2. Research - material needed for RD and D purposes to support waste management (e.g., UNF storage, transportation, and disposal) and development of alternative fuel cycles (e.g., separations and advanced fuels/reactors); and 3. Recycle/Recovery - material with inherent and/or strategic value. A set of key assumptions and attributes relative to the disposition options was used to categorize the current UNF inventory. Based on consideration of RD and D needs, time frames and material needs for deployment of alternative fuel cycles, characteristics of the current UNF inventory, and possible uses to support national security interests, it was determined that the vast majority of the category, without the need for retrieval for reuse or research purposes. Access to the material in the Research and Recycle/Recovery categories should be retained to support RD and D needs and national security interests. This assessment does not assume any decision about future fuel cycle options or preclude any potential options, including those with potential recycling of commercial UNF, since the ∼2,000 MTHM that is generated annually could provide the feedstock needed for deployment of alternative fuel cycles.

  4. Nuclear energy in question

    International Nuclear Information System (INIS)

    Simon, D.N.; Carvalho, J.F. de; Goldemberg, J.; Menezes, L.C.; Rosa, L.P.; Oliveira, R.G. de.

    1981-01-01

    The basic requirements demanded for the physical protection of nuclear operational units, is established. These units can be, production, utilization, processing, reprocessing, handling, transport or storage of materials of interesting to Brazilian Nuclear Program. (E.G.) [pt

  5. Expert judgment for nuclear energy

    International Nuclear Information System (INIS)

    Choi, Young Sung; Lee, Sun Ho; Lee, Byong Whi

    2000-01-01

    Public perception on nuclear energy is much influenced by subjective impressions mostly formed through sensational and dramatic news of mass media or anti-nuclear groups. However, nuclear experts, those who have more relevant knowledge and information about nuclear energy, may have reasonable opinion based on scientific facts or inferences. Thus their opinion and consensus should be examined and taken into account during the process of nuclear energy policy formulation. For the purpose of eliciting experts' opinion, the web-based on-line survey system (eBOSS) was developed. Using the survey system, experts' views on nuclear energy were tallied, analyzed and compared with the public's. Based on the survey results, the paper suggests some recommendations about the future direction of the public information program in Korea

  6. Nuclear energy promise or peril?

    International Nuclear Information System (INIS)

    Van der Zwaan, B.C.C.; Hill, C.R.; Ripka, G.

    1999-01-01

    Nuclear energy will inevitably become an important worldwide issue in the 21. century. The authors are authorities in their own fields and their contributions have been read, discussed and criticized by a wide, international group of experts. The today status of nuclear power is exposed, the authors weigh the pros and cons of nuclear energy. In a near future nuclear energy could play a major role in preventing climate change and atmospheric pollution. The main challenges that put at risk nuclear energy are: nuclear safety, radiation protection, the management of radioactive wastes, the problem of plutonium stocks and the risk of proliferation. For each of these open questions, a specialist makes a precise survey of the situation

  7. Nuclear: an energy in territories

    International Nuclear Information System (INIS)

    Le Ngoc, Boris

    2016-01-01

    After having briefly outlined that introducing a relationship between geography and nuclear energy is a quite recent approach, and by often quoting a researcher (Teva Meyer) specialised in Swedish energy issues, the author briefly discusses how nuclear energy structures territories through meshing and 'polarisation' effects, and economic and social impacts. He also discusses whether territories then become dependent on nuclear activity, what happens when a nuclear plant stops, how the existence of a nuclear plant becomes an identity market for a territory, and how material flows also deal with geography. In the last part, the author notices that in Germany, nuclear industry is considered as an industry like any other one. He finally outlines that geography could be useful to achieve energy transition

  8. Nuclear energy, energy for the present and the future

    International Nuclear Information System (INIS)

    Arredondo S, C.

    2008-01-01

    In this work we will try to show that nuclear energy can contribute to the generation energy in the present and the future, considering that its effect on the climatic change is relatively low and that the fuels that uses are available a large scale. At the moment it is had already commercial thermal fission reactors , there are also them of fast fission that allow the fuel rearing, although these last ones in much smaller number, with both types of fission nuclear reactors can be obtained a very important contribution to the generation of energy at world-wide level during the time that is necessary so that it is developed, constructs and operates the first commercial fusion reactor. The energy that is generated in the present and future must come from different sources, which require to be reliable, to have little effect on the environment, to have wide reserves of fuels and to be viable from an economic and social point of view, they must be viable and safe. Between possible alternative energies it is counted on the lot, the wind one, the geothermal one, originating of the tides and some others. An energy that must be considered so that it has arrived at his maturity and he is already able to contribute widely to cover the present needs and future it is nuclear energy, as much the originating one of the fission of a heavy centre like obtained when fusing two light centers. On base in the nuclear fuel reserves at world-wide level a simple calculation takes control of the lapse in which energy by means of the nuclear fission in rearing can be generated reactors expresses demonstrating that the time sufficient to finish to the investigation and development of fusion reactors which they generate energy in economic, safe and reliable form. Combining these two options the nuclear energy can be considered the future like for the present and the future with practically null effects in the climatic change. (Author)

  9. Nuclear energy facing the future

    International Nuclear Information System (INIS)

    Laue, H.J.

    1982-01-01

    In conjunction with the 25th anniversary of the establishment of the IAEA, the contribution that nuclear energy can make to future world energy requirements is discussed and nuclear power generation statistics examined with especial reference to data on capacity and outages. (U.K.)

  10. Nuclear energy: basics, present, future

    Directory of Open Access Journals (Sweden)

    Ricotti M. E

    2013-06-01

    Full Text Available The contribution is conceived for non-nuclear experts, intended as a synthetic and simplified overview of the technology related to energy by nuclear fission. At the end of the paper, the Reader will find a minimal set of references, several of them on internet, useful to start deepening the knowledge on this challenging, complex, debated albeit engaging energy source.

  11. Social Institutions and Nuclear Energy

    Science.gov (United States)

    Weinberg, Alvin M.

    1972-01-01

    Nuclear technologists can offer an all but infinite source of relatively cheap and clean energy" but society must decide whether the price of eternal vigilance needed to ensure proper and safe operation of its nuclear energy system" is worth the benefits. (Author/AL)

  12. Symmetry energy in nuclear surface

    International Nuclear Information System (INIS)

    Danielewicz, P.; Lee, Jenny

    2009-01-01

    Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry. (author)

  13. Development of nuclear energy and nuclear policy in China

    International Nuclear Information System (INIS)

    You Deliang

    1993-11-01

    Status of nuclear power development in China, nuclear policy and nuclear power programme are described. Issues regarding nuclear fuel cycle system, radioactive waste management and international cooperation in the field of peaceful use of nuclear energy are discussed

  14. Nuclear Energy in Perspective

    International Nuclear Information System (INIS)

    1989-01-01

    This report provides the interested non-specialist reader with insights on five major issues associated with nuclear power generation: nuclear development and economics, protection of man and the environment, power plant safety, radioactive waste management and compensation for damage from a nuclear accident

  15. Nuclear energy - myth and reality

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Michael C. [Illinois Dept. of Nuclear Safety, IL (United States). Emergency Planning Section

    1997-12-31

    Socio-political aspects of the use of nuclear energy and radiation are presented. The behaviour of the general population, and many of the world`s political organizations who still resist or reject nuclear energy as a viable resource is discussed. The benefits from the production of electricity, medical diagnostics and treatment, engineering accomplishments, and scientific research applications involving the use of nuclear technology and radioactive materials are emphasized

  16. Nuclear energy - myth and reality

    International Nuclear Information System (INIS)

    Sinclair, Michael C.

    1997-01-01

    Socio-political aspects of the use of nuclear energy and radiation are presented. The behaviour of the general population, and many of the world's political organizations who still resist or reject nuclear energy as a viable resource is discussed. The benefits from the production of electricity, medical diagnostics and treatment, engineering accomplishments, and scientific research applications involving the use of nuclear technology and radioactive materials are emphasized

  17. Nuclear energy: considerations about nuclear trade

    International Nuclear Information System (INIS)

    Goes Fischer, M.D. de.

    1988-01-01

    A general view of historical aspects of nuclear energy and the arrangements to assure its use for peaceful purposes are presented. Then the internal character of nuclear energy in a juride context is demonstrated; some consideration about the international organizations and conventions and the Brazilian Legislation in the nuclear area are examined. It also deals with the political aspects of nuclear trade and the function of IAEA in this are. Furthermore the restrictions imposed by Non-Proliferation Treaty-NPT, the objectures of the Tlatelolco Treaty and ''London Club'' guidelines. Afterwards the bilateral cooperation under taken by countries and its agreements are discussed. Besides some aspects of agreements made between United States, France Germany and Brazil are discussed [pt

  18. Open discussions on nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    In the first part, economic prospects in the world and in the European Community and their repercussions on energy demand are examined. Supply structure and growth scenari are outlined. Present and potential contribution of nuclear energy to energy supply is developed. The pros and cons are given. In the second part is examined how the production and use of various form of energy including nuclear energy, can affect health and the environment, with special reference to waste of all kinds. Safety problems and risk of accidents are examined in both non nuclear and nuclear sectors. Prospects for a low energy society and economic and social implications of the use of new forms of energy are also discussed

  19. Energy conservation options for cooking with biomass in Ghana

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Næraa, Rikke; Karlsson, Kenneth

    1996-01-01

    Cooking is the main energy consuming activity in Ghana. This is mainly due to a generally low material standard of living, but also because the cooking process itself is energy inefficient. The fuel for cooking in Ghana is mainly biomass either in the form of wood, agricultural residues or charcoal....... An energy chain for the cooking process is established and the possible conservation options are surveyed in kitchen performance tests in Abodom in the tropical zone of Ghana. The energy consumption for the food preparation has been measured and energy saving options have been determined for some parts...... point has been reached. Most cooks tend to continue using a high heat supply even though it is not necessary. This process is often carried out without lid on the pot even though the use of lid will reduce the energy loss considerably. It is also concluded that the average fuelwood consumption in Abodom...

  20. Nuclear energy and international cooperation

    International Nuclear Information System (INIS)

    Oshima, Keiichi

    1981-01-01

    There is no need to emphasize that nuclear energy cannot be developed without international cooperation at either the industrial or the academic level. In the meanwhile, there have been some marked political, economic and social changes in recent years which are posing constraints to the international cooperation in nuclear energy. The problems and constraints impeding nuclear power programs cannot be overcome by only one nation; international cooperation with common efforts to solve the problems is essential. Nuclear energy is different from fossil energy resources in that it is highly technology-intensive while others are resource-intensive. International cooperation in technology has an entirely different importance in the field of nuclear energy. Educational institutions will play a role in a new era of the international cooperation. (Mori, K.)

  1. Nuclear energy; Le nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This digest document was written by members of the union of associations of ex-members and retired people of the Areva group (UARGA). It gives a comprehensive overview of the nuclear industry world, starting from radioactivity and its applications, and going on with the fuel cycle (front-end, back-end, fuel reprocessing, transports), the nuclear reactors (PWR, BWR, Candu, HTR, generation 4 systems), the effluents from nuclear facilities, the nuclear wastes (processing, disposal), and the management and safety of nuclear activities. (J.S.)

  2. Nuclear power as a necessary option, albeit in insufficient one

    International Nuclear Information System (INIS)

    Altin, V.

    2007-01-01

    In this presentation a comparative assessment of known energy resources are made with respect to their energy densities. Fossil fuels have formed the foundation of a worldwide economic development realized throughout the 20th century. Their comparatively high energy densities have made faster energy flows and thereby higher power levels and speedy development possible. However, renewable sources that are already feasible have much lower levels of energy densities. Their large scale utilization in lieu of fossil fuels would necessitate either reduction of economic growth rates to 'sustainable' levels or speedy development of feasible large scale storage technologies. Nuclear energy appears to impose itself as a necessity to alleviate this transition period, albeit within the constraint of known uranium reserves an insufficient one

  3. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Arts, F.; De Ruiter, W.; Turkenburg, W.C.

    1994-01-01

    The purposes of the title workshop were to exchange ideas on the possible impact of nuclear energy on the sustainable development of the society, to outline the marginal conditions that have to be fulfilled by nuclear energy technology to fit in into sustainable development, to asses and determine the differences or agreements of the workshop participants and their argumentations, and to determine the part that the Netherlands could or should play with respect to a further development and application of nuclear energy. 35 Dutch experts in the field of energy and environment attended the workshop which is considered to be a success. It is recommended to organize a follow-up workshop

  4. Nuclear energy and its future

    International Nuclear Information System (INIS)

    Cook, D.J.

    1990-01-01

    The status of nuclear power in the world and its future are briefly discussed. It is shown that nuclear power capacity is increasing in the Asian and Pacific rim region and that new reactor designs, with the increased emphasis on safety and standardisation, could make nuclear power a more acceptable option in the future. The author also outlines the Australian Nuclear Science and Technology Organization wide range of skills and facilities which are bringing the benefits of nuclear science and technology to Australia. These include: the development of Synroc as an advanced second generation waste management; production of radiotracers for biomedical researches and environmental problems; application of gamma irradiation in industry and of ion beam analysis in biology, archaeology, semi-conductor and environmental science. 2 tabs

  5. Prospective of the nuclear energy, technological tendency

    International Nuclear Information System (INIS)

    Cruz F, G. De la; Salaices A, M.

    2004-01-01

    The world's concern about the energy supply in the near future, has had as an answer diverse proposals in which two multinational initiatives are highlighted, that of the International Project on Nuclear Innovative Reactors and Fuel Cycles (INPRO) and that of the Generation-l V International Forum (GIF). Both initiatives direct their efforts to the development of new technologies in nuclear energy that would satisfy the energy requirements of the future. In this article, an analysis based on a) the available information on these technologies, b) a joint study (IEA/OECD/IAEA) on the new technologies regarding its capacity to confront the current challenges of the nuclear energy, and c) the authors' experience and knowledge about the phenomenology, design and security of nuclear facilities, is presented. Moreover, the technologies that, in the authors' opinion, will have the better possibilities to compete successfully in the energy markets and could be one of the viable options to satisfy the energy demands of the future, are described. (Author)

  6. Towards more financing options for energy efficient buildings and houses

    International Nuclear Information System (INIS)

    Vethman, P.; Menkveld, M.

    2012-02-01

    This article offers an impression of the problems related to the limited financial options for energy efficient buildings and dwellings and possible solutions. It is based on a recent ECN study (RE-BIZZ) and several interviews about this topic with financers. There is a need for a more business appreciation of market parties such as financers for energy efficiency in buildings to increase financing options. The market needs the help of the government, which can help to remove barriers and hence make financing more appealing. [nl

  7. Nuclear fuel cycle. Which way forward for multilateral approaches? An international expert group examines options

    International Nuclear Information System (INIS)

    Pellaud, Bruno

    2005-01-01

    For several years now, the debate on the proliferation of nuclear weapons has been dominated by individuals and countries that violate rules of good behaviour - as sellers or acquirers of clandestine nuclear technology. As a result, the 1968 Treaty on the Non-Proliferation of Nuclear Weapons (NPT) has been declared to be 'inadequate' by some, 'full of loopholes' by others. Two basic approaches have been put forward to tighten up the NPT; both seek to ensure that the nuclear non-proliferation regime maintains its authority and credibility in the face of these very real challenges. One calls for non-nuclear weapon States to accept a partial denial of technology through a reinterpretation of the NPT's provisions governing the rights of access to nuclear technologies. The unwillingness of most non-nuclear-weapon States to accept additional restrictions under the NPT makes this approach difficult. The other approach would apply multinational alternatives to the national operation of uranium-enrichment and plutonium-separation technologies, and to the disposal of spent nuclear fuel. In this perspective, IAEA Director General Mohamed ElBaradei proposed in 2003 to revisit the concept of multilateral nuclear approaches (MNA) that was intensively discussed several decades ago. Several such approaches were adopted at that time in Europe, which became the true homeland of MNAs. Nonetheless, MNAs have failed so far to materialise outside Europe due to different political and economic perceptions. In June 2004, the Director General appointed an international group of experts to consider possible multilateral approaches to the nuclear fuel cycle. The overall purpose was to assess MNAs in the framework of a double objective: strengthening the international nuclear non-proliferation regime and making the peaceful uses of nuclear energy more economical and attractive. In the report submitted to the Director General in February 2005, the Group identified a number of options - options

  8. Nuclear energy and sustainable development: recent trends

    International Nuclear Information System (INIS)

    Singh, B.P.

    2012-01-01

    During the last 50 years or so there is enormous development in various fields like agriculture, industry, medicine, etc. Further, the population on this globe has increased many folds. In order to cater to the needs of the present population there is an increasing demand of electricity in the society. Per capita electricity consumption also is an index of development in the country. Considering the facts like green house effect and global warming, nuclear energy is the better option. But at the same time there are some critical issues like nuclear waste management globally and availability of fissile material in the context of our country. Research and development are going on to take care of these issues where scientists and engineers are working on alternative fuel cycle and new reactor types, for example Accelerator Driven Subcritical (ADS) System is one of them. Since, ADS reactor is a subcritical system, safety related issues are in fact of low concern relative to existing critical reactors. As a matter of fact, the ADS system is the combination of a particle accelerator and a nuclear reactor. In this talk, a detailed description of the need of energy in our country, which can only be met if nuclear energy contributes a substantial energy requirement, will be presented. Further, how the nuclear waste management issues may be addressed, with the new ADS system will also be presented. (author)

  9. World's energy appetite may crave nuclear power

    International Nuclear Information System (INIS)

    Fulkerson, W.; Anderson, T.D.

    1996-01-01

    As scientists come to agree that global warming is a real phenomenon, it may be time to jumpstart the stalled nuclear industry. World population is expected to double by the end of the 21st century, and the lion's share of growth will be in developing nations. open-quotes More people and more economic activity will require more energy,close quotes say William Fulkerson, a senior fellow at the Joint Institute for Energy and the Environment in Knoxville, Tennessee, and Truman D. Anderson, formerly director of planning at Oak Ridge National Laboratory. There are only three viable options to fossil fuel plants, the authors say: nuclear fission, nuclear fusion, and such renewable energy sources as solar and wind. The advantages of nuclear energy are well known, the authors say. open-quotes It emits no greenhouse gases, and potentially it can be expanded almost without limit anywhere in the world, providing the controversies that surround it can be resolved.close quotes However, to garner public acceptance, a new generation of supersafe nuclear reactors, invulnerable to terrorism and conversion to weapons, will need to be developed, the authors say

  10. The future of nuclear energy

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.

    2000-01-01

    Europe is one of the world leaders in nuclear technology advancement. The development of spent fuel reprocessing is but one example of this. This process continues today with the development by France and Germany of the European Pressurised-Water Reactor. Nuclear research and development work is continuing in Europe, and must be continued in the future, if Europe is to retain its world leadership position in the technological field and on the commercial front. If we look at the benefits, which nuclear energy has to offer, in economic and environmental terms, 1 support the view that nuclear is an energy source whose time has come again. This is not some fanciful notion or wishful thinking. There is clear evidence of greater long-term reliance on nuclear energy. Perhaps we do not see new nuclear plants springing up in Europe, but we do see ambitious nuclear power development programmes underway in places like China, Japan and Korea. Closer to home, Finland is seriously considering the construction of a new nuclear unit. Elsewhere, in Europe and the US, we see a growing trend towards nuclear plant life extension and plant upgrades geared towards higher production capacity. These are all signs that nuclear will be around for a long time to come and that nuclear will indeed have a future

  11. Nuclear Versus Coal plus CCS. A Comparison of Two Competitive Base-Load Climate Control Options

    International Nuclear Information System (INIS)

    Tavoni, F.; Van der Zwaan, B.C.C.

    2011-01-01

    In this paper, we analyze the relative importance and mutual behavior of two competing base-load electricity generation options that each are capable of contributing significantly to the abatement of global CO2 emissions: nuclear energy and coal-based power production complemented with CO2 capture and storage (CCS). We also investigate how, in scenarios developed with an integrated assessment model that simulates the economics of a climate-constrained world, the prospects for nuclear energy would change if exogenous limitations on the spread of nuclear technology were relaxed. Using the climate change economics model World Induced Technical Change Hybrid, we find that until 2050 the growth rates of nuclear electricity generation capacity would become comparable to historical rates observed during the 1980s. Given that nuclear energy continues to face serious challenges and contention, we inspect how extensive the improvements of coal-based power equipped with CCS technology would need to be if our economic optimization model is to significantly scale down the construction of new nuclear power plants.

  12. Nuclear Versus Coal plus CCS. A Comparison of Two Competitive Base-Load Climate Control Options

    Energy Technology Data Exchange (ETDEWEB)

    Tavoni, F. [Fondazione Eni Enrico Mattei, Sustainable Development, Milan (Italy); Van der Zwaan, B.C.C. [ECN Policy Studies, Petten (Netherlands)

    2011-10-15

    In this paper, we analyze the relative importance and mutual behavior of two competing base-load electricity generation options that each are capable of contributing significantly to the abatement of global CO2 emissions: nuclear energy and coal-based power production complemented with CO2 capture and storage (CCS). We also investigate how, in scenarios developed with an integrated assessment model that simulates the economics of a climate-constrained world, the prospects for nuclear energy would change if exogenous limitations on the spread of nuclear technology were relaxed. Using the climate change economics model World Induced Technical Change Hybrid, we find that until 2050 the growth rates of nuclear electricity generation capacity would become comparable to historical rates observed during the 1980s. Given that nuclear energy continues to face serious challenges and contention, we inspect how extensive the improvements of coal-based power equipped with CCS technology would need to be if our economic optimization model is to significantly scale down the construction of new nuclear power plants.

  13. Nuclear Energy and European Union

    International Nuclear Information System (INIS)

    Picamal, B.

    2010-01-01

    The interest shown by the European Institutions in the energy debates, in which the nuclear energy is included as a key component within the energy mix, is obvious. Climate change and energy supply have pushed some countries to publicly express their interest for developing the nuclear energy. These positions are however in contradiction with some others within the European Union which are a lot more critical towards this type of energy and where face-out policies still prevail. Despite the fact that the use of the nuclear energy will remain within the competence of each Member State, the European Union will continue to play a prominent role in the development of an energy strategy based on a low carbon economy. (Author)

  14. Nuclear Energy Research in Europe

    International Nuclear Information System (INIS)

    Schenkel, Roland; Haas, Didier

    2008-01-01

    The energy situation in Europe is mainly characterized by a growth in consumption, together with increasing import dependence in all energy resources. Assuring security of energy supply is a major goal at European Union level, and this can best be achieved by an adequate energy mix, including nuclear energy, producing now 32 % of our electricity. An increase of this proportion would not only improve our independence, but also reduce greenhouse gases emissions in Europe. Another major incentive in favor of nuclear is its competitiveness, as compared to other energy sources, and above all the low dependence of the electricity price on variation of the price of the raw material. The European Commission has launched a series of initiatives aiming at better coordinating energy policies and research. Particular emphasis in future European research will be given on the long-term sustainability of nuclear energy through the development of fast reactors, and to potential industrial heat applications. (authors)

  15. Book of Abstracts of 9th International Conference: Nuclear Option in Countries with Small and Medium Electricity Grids

    International Nuclear Information System (INIS)

    2012-01-01

    The conference is organized with intention to focus on specific aspects of usage of nuclear energy for electricity production in small and medium countries. Importance of international cooperation for the assessment of the nuclear option has been recognised by the International Atomic Energy Agency (IAEA). As a result of this recognition, the Conference is organized in co-operation with IAEA. Croatian State Office for Radiological and Nuclear Safety and University of Zagreb, Faculty of Electrical Engineering and Computing have also participated in Conference organization. Session topics reflect some current emphasis, such as country energy needs, operation and safety of the operating nuclear power plants. The conference also focuses on the exchange of experience and co-operation in the fields of fuel cycle, radioactive waste management, regulatory practices and liability and insurance for nuclear damage. All contributed papers are grouped in 10 sessions: Energy planning and nuclear option; Power reactors and technologies; Nuclear energy and environment; Operation and maintenance experience; Safety culture; Nuclear safety analyses; Reactor physics and nuclear fuel cycle; Radioactive waste management and decommissioning; Public relations; Regulatory practice and general papers.

  16. Nuclear energy - the future climate

    International Nuclear Information System (INIS)

    Ash, Eric Sir

    2000-01-01

    In June 1999, a report entitled Nuclear Energy-The Future Climate was published and was the result of a collaboration between the Royal Society and the Royal Academy of Engineering. The report was the work of a group of nine people, made up of scientists, engineers and an economist, whose purpose was to attempt a new and objective look at the total energy scene and specifically the future role of nuclear energy. This paper discusses the findings of that report. (author)

  17. Nuclear energy: potentiality and implications

    International Nuclear Information System (INIS)

    Bahgat, Gawdat

    2008-01-01

    After a discussion about a broad definition of energy security and about the main challenges facing a potential nuclear renaissance, the article analyses how the European Union and the United States have addressed these challenges. There is no doubt that nuclear power will remain an important component of global energy mix, but it should not be seen as a panacea to the flows in the global energy markets [it

  18. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  19. Nuclear energy: a reasonable choice?

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2011-01-01

    While nuclear energy appears today as a powerful and carbon-free energy, it generates at the same time doubts and apprehension in the general public. Are these fears justified? Is France the most advanced country in the nuclear domain? Should we fear a Chernobyl-like accident in France? Is any irradiation dangerous? What would be the consequences of a terror attack against a reactor? Will nuclear energy be powerful enough to take up the energy reserves challenge? Will the waste management and the nuclear facilities dismantlement be extremely expensive in comparison with the electricity production costs? Do we know how to manage nuclear wastes on the long-term? This book tries to supply some relevant arguments in order to let the reader answering these questions himself and making his own opinion on this topic. (J.S.)

  20. Nuclear power: an essential energy

    International Nuclear Information System (INIS)

    Agnew, H.M.

    1980-01-01

    Dr. Agnew notes that the public fails to remember that the electric utilities and equipment manufacturers did not invent nuclear energy; they only choose whether or not to use it to generate power. The effort to regain world leadership in nuclear energy will require recognizing that the rest of the world needs it too. Opposition to the use of nuclear power has been politically effective, in spite of the need to move to a non-petroleum fuel base and without coming up with a viable alternative. The nuclear industry responded to the Three Mile Island accident by taking steps to improve reactor safety, but the industry continues to be threatened because of the suspended reprocessing and breeder programs. The industry must make a compelling case for energy independence to persuade the public that all energy sources, including nuclear, must be developed