WorldWideScience

Sample records for nuclear education training

  1. Nuclear education, training and support

    International Nuclear Information System (INIS)

    Vityazev, Vsevolod; Ushakov Artem

    2016-01-01

    The structure and key elements of the ROSATOM education and training system are presented. Educational and training services and technical support are provided during the NPP lifetime, including nuclear Infrastructure, nuclear power plant personnel training, equipment and post-warranty spare parts, nuclear power plant operation support, maintenance and repair, modernization and lifetime extension

  2. Nuclear education and training: from concern to capability

    International Nuclear Information System (INIS)

    2012-01-01

    The OECD Nuclear Energy Agency (NEA) first published in 2000 Nuclear Education and Training: Cause for Concern?, which highlighted significant issues in the availability of human resources for the nuclear industry. Ten years on, Nuclear Education and Training: From Concern to Capability considers what has changed in that time and finds that, while some countries have taken positive actions, in a number of others human resources could soon be facing serious challenges in coping with existing and potential new nuclear facilities. This is exacerbated by the increasing rate of retirement as the workforce ages. This report provides a qualitative characterisation of human resource needs and appraises instruments and programmes in nuclear education and training initiated by various stakeholders in different countries. In this context, it also examines the current and future uses of nuclear research facilities for education and training purposes. Regarding the nuclear training component of workforce competence, it outlines a job taxonomy which could be a basis for addressing the needs of workers across this sector. It presents the taxonomy as a way of enhancing mutual recognition and increasing consistency of education and training for both developed and developing countries. Contents: 1 - A decade of change: Background; The evolving environment; A key resource - a competent workforce; 2 - Review of nuclear education and associated facilities: Introduction; Education and training - progress over the last decade; Present use of research infrastructure for education and training in NEA member countries; 3 - Towards a blueprint for workforce development: The benefits of a competent nuclear workforce; Classifying competence; Analysis ; 4 - Ensuring capability - the recommendations: Nuclear human resource features and requirements; Ten years on - the developments; Approach to developing a common job taxonomy; 5 - Appendices: Recommendations from Nuclear Education and Training

  3. Nuclear safety education and training network

    International Nuclear Information System (INIS)

    Bastos, J.; Ulfkjaer, L.

    2004-01-01

    In March 2001, the Secretariat convened an Advisory Group on Education and Training in nuclear safety. The Advisory Group considered structure, scope and means related to the implementation of an IAEA Programme on Education and Training . A strategic plan was agreed and the following outputs were envisaged: 1. A Training Support Programme in nuclear safety, including a standardized and harmonized approach for training developed by the IAEA and in use by Member States. 2. National and regional training centres, established to support sustainable national nuclear safety infrastructures. 3. Training material for use by lecturers and students developed by the IAEA in English and translated to other languages. The implementation of the plan was initiated in 2002 emphasizing the preparation of training materials. In 2003 a pilot project for a network on Education and Training in Asia was initiated

  4. Nuclear education, training and knowledge management in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Beeley, Phil; Slugen, Vladimir; Kyrki-Rajamaeki, Rita [European Nuclear Society ENS, Brussels (Belgium). ENS High Scientific Council

    2010-04-15

    The situation in the nuclear education today is complex as it relates to nuclear technology for both peaceful and security applications. After more than 20 years period of depression in nuclear facility construction (significant mainly in Europe and USA), there is strong renewed interest in nuclear-generated electricity. Many factors have contributed to ''nuclear renaissance'' including concerns about possible climate changes due to carbon emissions. The Nuclear Energy Agency (OECD/NEA) study in 2000, ''Nuclear Education and Training. Cause for Concern'', highlighted the necessity for a renaissance in nuclear education and training with some recommendations. The European Nuclear Energy Forum (ENEF) identified the nuclear education as one of highest risks in nuclear industry. The nuclear renaissance depends on the increased number of engineers properly educated in wide spectrum of nuclear disciplines. The world has responded. Networks have been established to respond to the necessity to maintain and perpetuate nuclear knowledge in order to provide a suitably qualified workforce for the future operation of nuclear power plants. The quality in Education, Training and Knowledge Management (ETKM) is strongly influenced and supported by development of nuclear research, exploitation of experimental and training facilities, existence of proper education and training networks, software tools, distance and e-learning and a variety of knowledge management activities. The projected global annual requirements for new nuclear engineers over the next 10 years will challenge existing academic and training institutions with respect to capacity and load factors on classrooms, laboratories and other facilities such as basic principles simulators. Additionally, the nuclear academic workforce may need to increase to meet the demand for educating/training the new industrial workforce and this will take time. Within the European context many of the

  5. Nuclear education, training and knowledge management in Europe

    International Nuclear Information System (INIS)

    Beeley, Phil; Slugen, Vladimir; Kyrki-Rajamaeki, Rita

    2010-01-01

    The situation in the nuclear education today is complex as it relates to nuclear technology for both peaceful and security applications. After more than 20 years period of depression in nuclear facility construction (significant mainly in Europe and USA), there is strong renewed interest in nuclear-generated electricity. Many factors have contributed to ''nuclear renaissance'' including concerns about possible climate changes due to carbon emissions. The Nuclear Energy Agency (OECD/NEA) study in 2000, ''Nuclear Education and Training. Cause for Concern'', highlighted the necessity for a renaissance in nuclear education and training with some recommendations. The European Nuclear Energy Forum (ENEF) identified the nuclear education as one of highest risks in nuclear industry. The nuclear renaissance depends on the increased number of engineers properly educated in wide spectrum of nuclear disciplines. The world has responded. Networks have been established to respond to the necessity to maintain and perpetuate nuclear knowledge in order to provide a suitably qualified workforce for the future operation of nuclear power plants. The quality in Education, Training and Knowledge Management (ETKM) is strongly influenced and supported by development of nuclear research, exploitation of experimental and training facilities, existence of proper education and training networks, software tools, distance and e-learning and a variety of knowledge management activities. The projected global annual requirements for new nuclear engineers over the next 10 years will challenge existing academic and training institutions with respect to capacity and load factors on classrooms, laboratories and other facilities such as basic principles simulators. Additionally, the nuclear academic workforce may need to increase to meet the demand for educating/training the new industrial workforce and this will take time. Within the European context many of the programmes will continue through

  6. Nuclear energy and education and training

    International Nuclear Information System (INIS)

    Soentono, S.

    1996-01-01

    In the modern society, education and training is a must since without it one is impossible to a part of the society. It is also indispensable since human resource is more important than natural resources to sustain the development. The modern society needs, and is also the product of a very long effort of human race, 'education and training'. Nuclear energy education and trainings, as one of the efforts to enhance the modern society, are currently demanded to assure the quality and reliability of personnel being involved in various kinds, levels, and stages of nuclear industries. These education and trainings are also required to suffice the demand for assurance of the quality and reliability of the products, e.g. nuclear components, systems, installations, other products, techniques, and services. Linking and matching of these education and trainings are also required. In the developing countries, it will be better to start with the non-energy application, e.g. application of isotopes and radiation in various fields. There must be cooperation giving rise to strong links between universities. The mechanism and cooperation should facilitate the character building of nuclear energy man power covering attitudes for pioneering, having scientific tradition and industrial orientated views, considering the safety first toward safety culture, and mastering communication. (J.P.N.)

  7. The role of nuclear education and training in Korea

    International Nuclear Information System (INIS)

    Min, B.J.; Han, K.W.; Lee, E.J.

    2007-01-01

    Since the commercial operation of the first nuclear power plant in April 1978, Korea has achieved a rapid growth in nuclear power. In 2004, 19 nuclear power plants are currently in operation and 8 nuclear power plants are under construction. The installed nuclear capacity is 16,716MW. Also nuclear power generation reached 129,672GWh which are about 40% of the total electricity generation. Nuclear energy has been a backbone for Korea's economic growth over the past decades, and will continue to play role for the prosperity of next generation in this century. In this context, Korean Standard Nuclear Power Plant and Advanced Power Reactor-1400 have been developed, and System-Integrated Modular Advanced Reactor for desalination of seawater, Advanced Liquid Metal Reactor and Direct Use of Spent PWR Fuel in CANDU are being developed. In parallel, a Radiation Technology R and D Center and a High Power Proton Accelerator Center are being established. Along with the progress of the nuclear energy program, the nuclear education and training has been progressed stepwise, i.e. overseas training, basic training, domestic nuclear human resource development, IAEA regional training, and global nuclear human resource development. Nuclear engineering education program started at Universities from 1958. In order to provide training courses for nuclear personnel, the Nuclear Training Center was established at KAERI in 1967. During the construction of the first nuclear power plant, basic training courses were conducted at NTC/KAERI. And specific training courses were conducted by the reactor suppliers in Korea and the supplier's countries. During this period, reactor operation license laws and the national technical qualification system (engineer, technician, craftsman) with a linkage to the national education system were established in 1970, 1975, respectively. When the utility (now the Korea Hydro and Nuclear Company) started operation of the first nuclear power plant in 1978, the

  8. The nuclear technology education consortium: an innovative approach to nuclear education and training

    International Nuclear Information System (INIS)

    Roberts, Dzh.; Klark, Eh.

    2010-01-01

    The authors report on the Nuclear Technology Education Consortium (NTEC) that includes 12 UK universities and Higher Education Institutes. It was established in 2005 to provide nuclear education and training at the Masters, Diploma, Certificate and Continuing Professional Development (CPD) levels. Module and providers of the NTEC are described (all modules are available in industry-friendly short formats). Students are allowed to select from 22 different modules, taught by experts, covering all aspects of nuclear education and training. It is the acknowledgement by each partner that they cannot deliver the range of modules individually but by cooperating. The NTEC program structure is given [ru

  9. Current status nuclear training and education in Indonesia

    International Nuclear Information System (INIS)

    Karsono

    2007-01-01

    Nuclear technology was officially recognized through the setting up Panitia Negara untuk Penyelidikan Radioaktivitet in 1954, and the founding of Dewan Tenaga Atom Nasional and Lembaga Tenaga Atom (National Atomic Energy Board) in 1958 which then further reorganized and named BATAN (National Atomic Energy Agency) in 1964. Since the construction of the first research reactor in 1965, BATAN has been operating 3 research reactors. The application of nuclear technology in research, which was started in 1960's, was followed by application in non energy sectors such as agriculture and industries, and the utilization of radiation and radioisotopes in medical therapy and diagnostic. In 1997, in order to separate the control function and the promotion function of the application of nuclear energy in Indonesia, the Government set up two nuclear administrative agencies, i.e. the National Nuclear Energy Agency (BATAN) and the Nuclear Energy Control Board (BAPETEN). To provide well-educated and well-trained personnel in the fields of research, development, and application of nuclear technology, BATAN implementing its education and training program through the ETC (BATAN Education and Training Center) and STTN (Polytechnic Institute of Nuclear Technology), which were set up in 1981 and 1991, respectively. While STTN, formerly known as PATN, offers formal education at D3-level and D4-level in Technophysics and Techno-chemistry, the ETC is responsible for implementing education and training program, mainly in nuclear science and technology. In conducting education and training, ETC cooperates also with other education and training institutions, domestic as well as overseas institutions. ETC has set up a national network of nuclear education and training which involves some state universities and school, such as University of Indonesia, University of Gadjah Mada, Bandung Institute of Technology, Bogor Agriculture Institute, University of Pajajaran, and School of Medical

  10. Nuclear training and education

    International Nuclear Information System (INIS)

    Sandklef, S.

    2008-01-01

    There is a large need in this period of anticipated growth of the nuclear industry to keep and increase the level of competence beyond that provided by universities, technical institutes and on-the-job training. ANT International has developed several programs to assist the nuclear industry in meeting this need. The programs are based on utilizing the experience and skills of a network of experts who have a wide experience in the relevant technical areas of importance to nuclear power operations. Examples of these programs are given in this report together with an extensive list of ANT International reports in the field of nuclear fuel technology, water chemistry and reactor materials. These reports have been and are used for training and education in Europe, North America and Asia. (author)

  11. Establishment of the International Nuclear Education/Training and its Cooperation Framework for Nuclear Transparency

    International Nuclear Information System (INIS)

    Min, B. J.; Han, K. W.; Lee, E. J.

    2009-02-01

    This project covered development and implementation of international nuclear education/training programs, cooperation for nuclear human resource development and education/training. provision of MS and PhD courses for qualified students from developing countries, and strengthening of infrastructure for the nuclear education/training. The WNU one week summer course was held for domestic future generation in nuclear field. NTC operated the ANENT web portal and cyber platform, supported training on their use, and prepared a KAERI-IAEA Practical Arrangement for the promotion of web-base nuclear education/training. For FNCA, an analysis was conducted on the need of nuclear education/training in South East Asian countries. The bilateral cooperation included cooperation with Vietnam. provision of Korean experience for nuclear power personnel from Egypt, and commencing of cooperation with South Africa. Also, NTC participated in GENEP for sharing Korean experience in the nuclear human resource development project. KAERI-UST MA and PhD courses with 3 foreign students started in spring 2008 and implemented. The courses were advance nuclear reactor system engineering, accelerator and nano-beam engineering, and radiation measurement science. 13 international nuclear education/training courses (IAEA, KOICA, RCARO and bilateral) were implemented for 226 foreign trainees. A reference education/training program was developed, which consisted of 15 courses that can be customized to learner levels and project stages of countries in question (e.g. Middle East. Africa). A textbook entitled 'Research Reactor Design, Management and Utilization' was developed presenting Korean experience with research reactors

  12. Nuclear education and training in OECD member countries

    International Nuclear Information System (INIS)

    Yamagata, Hiroshi

    2001-01-01

    Mankind now enjoys many benefits from nuclear-related technologies. There is, however, growing concern in many OECD countries that nuclear education and training is decreasing, perhaps to problematic levels. This report conveys the results of a pioneering survey on nuclear education and training in almost 200 organizations in 16 countries. In most countries there are now fewer comprehensive, high-quality nuclear technology programs at universities than before. Facilities and faculties for nuclear education are aging, and the number of nuclear programs is declining. The principal reason for the deterioration of nuclear education is the downward spiral of budgetary cut and low enrolment of student whose perception is affected by the educational circumstances, negative public perception, the downsizing of the industry, and reductions in government-funded nuclear programmes, where little strategic planning is occurring. Unless something is done to arrest it, this downward spiral of declining student interest and academic opportunities will continue. Failure to take appropriate steps now will seriously jeopardize the provision of adequate expertise tomorrow. We must act now on the following recommendations: strategic role of governments; the challenges of revitalizing nuclear education by university; vigorous research and maintaining high-quality training; and benefits of collaboration and sharing best practices. (author)

  13. Nuclear science and technology education and training in Indonesia

    International Nuclear Information System (INIS)

    Karsono

    2007-01-01

    Deployment of nuclear technology requires adequate nuclear infrastructure which includes governmental infrastructure, science and technology infrastructure, education and training infrastructure, and industrial infrastructure. Governmental infrastructure in nuclear, i.e. BATAN (the National Nuclear Energy Agency) and BAPETEN (the Nuclear Energy Control Agency), need adequate number of qualified manpower with general and specific knowledge of nuclear. Science and technology infrastructure is mainly contained in the R and D institutes, education and training centers, scientific academies and professional associations, and national industry. The effectiveness of this infrastructure mainly depends on the quality of the manpower, in addition to the funding and available facilities. Development of human resource needed for research, development, and utilization of nuclear technology in the country needs special attention. Since the national industry is still in its infant stage, the strategy for HRD (human resource development) in the nuclear field addresses the needs of the following: BATAN for its research and development, promotion, and training; BAPETEN for its regulatory functions and training; users of nuclear technology in industry, medicine, agriculture, research, and other areas; radiation safety officers in organizations or institutions licensed to use radioactive materials; the education sector, especially lecturers and teachers, in tertiary and secondary education. Nuclear science and technology is a multidisciplinary and a highly specialized subject. It includes areas such as nuclear and reactor physics, thermal hydraulics, chemistry, material science, radiation protection, nuclear safety, health science, and radioactive waste management. Therefore, a broad nuclear education is absolutely essential to master the wide areas of science and technology used in the nuclear domain. The universities and other institutions of higher education are the only

  14. European Nuclear Education Network Association - Support for nuclear education, training and knowledge management

    International Nuclear Information System (INIS)

    Ghitescu, Petre

    2009-01-01

    Developed in 2002-2003 the FP5 EURATOM project 'European Nuclear Engineering Network - ENEN' aimed to establish the basis for conserving nuclear knowledge and expertise, to create an European Higher Education Area for nuclear disciplines and to facilitate the implementation of the Bologna declaration in the nuclear disciplines. In order to ensure the continuity of the achievements and results of the ENEN project, on 22 September 2003, the European Nuclear Higher Education Area was formalized by creating the European Nuclear Education Network Association. ENEN Association goals are oriented towards universities by developing a more harmonized approach for education in the nuclear sciences and engineering in Europe, integrating European education and training in nuclear safety and radiation protection and achieving a better cooperation and sharing of resources and capabilities at the national and international level. At the same time it is oriented towards the end-users (industries, regulatory bodies, research centers, universities) by creating a secure basis of knowledge and skills of value to the EU. It maintains an adequate supply of qualified human resources for design, construction, operation and maintenance of nuclear infrastructures and plants. Also it maintains the necessary competence and expertise for the continued safe use of nuclear energy and applications of radiation in industry and medicine. In 2004-2005, 35 partners continued and expanded the started in FP 5 ENEN Association activities with the FP6 project 'NEPTUNO- Nuclear Education Platform for Training and Universities Organizations'. Thus ENEN established and implemented the European Master of Science in Nuclear Engineering, expanded its activities from education to training, organized and coordinated training sessions and pilot courses and included in its activities the Knowledge Management. At present, the ENEN Association gathers 45 universities, 7 research centers and one multinational company

  15. Harmonization of nuclear education and training in Europe

    International Nuclear Information System (INIS)

    Miglierin, M.

    2005-01-01

    Full text: At the Lisbon 2000 summit, a strategic goal was proposed for the European Union: to become the most competitive knowledge-based economy with more and better employment and social cohesion by 2010. In the particular case of nuclear fission technologies, this EC initiative was widely accepted by the stake holders concerned. In Europe, the main 'end users' of nuclear research or stake holders are actually: the research organisations (with mixed public / private funding), the manufacturing industry, the utilities and waste management organisations, the regulatory bodies (or technical safety organisations) and the academic (e.g. universities). With the aim to better integrate European education and training in nuclear engineering and safety in order to combat the decline in both student numbers and teaching establishments a FP6 EU project entitled NEPTUNO (Nuclear European Platform of Training and University Organizations) has started in 2004. In total 35 partner institutions from 17 countries have formed a network aimed in providing the necessary competence and expertise for the continued safe use of nuclear energy and other uses of radiation in industry and medicine. The project focuses on a harmonised approach for education and training in nuclear engineering in Europe and its implementation, including the better integration of national resources and capabilities. The expected result is an operational network for training and lifelong learning schemes as well as on academic education at the master, doctoral and post-doctoral level, underpinning: Substantiality of Europe's excellence in nuclear technology; Harmonised approaches to safety and best practices, both operational and regulatory, at European level in Member States and Accession Countries; Preservation of competence and expertise for the continued safe use of nuclear energy and other uses of radiation in industry and medicine; Harmonised approach for training and education in nuclear engineering

  16. Guidebook on the education and training of technicians for nuclear power

    International Nuclear Information System (INIS)

    1989-01-01

    The IAEA Guidebook on the Education and Training of Technicians for Nuclear Power aims to assist Member States, especially the developing countries which are in the process of implementing, or intending to implement, a nuclear power programme, to understand and meet their requirements for qualified technicians in the most effective and efficient manner. It specifically seeks to assist policy makers and planners, as well as those designing and implementing education and training programmes. In this Guidebook, technician level occupations include those filled by technicians and higher level technicians (techniciens superieurs or technologists) and also by non-graduate engineers. The Guidebook complements the IAEA Guidebook on Manpower Development for Nuclear Power, as well as the IAEA Guidebook on the Qualification of Nuclear Power Plant Operations Personnel. The key objectives of this Guidebook are to describe: (1) the level and content of conventional education and training which a technician must have before nuclear oriented education and training can begin; (2) the level and content of nuclear oriented education and training; (3) measures to bridge the gap between the education and training acquired by technicians in the national technical schools (i.e. the level attained before upgrading) and the level of education and training qualifications needed for technicians to work in the nuclear power programme (i.e. the level attained after completion of nuclear oriented education and training). Valuable information on the national experiences of IAEA Member States in the education and training of technicians for nuclear power, as well as examples of such education and training from various Member States, are included in IAEA-TECDOC-526, which should be read in conjunction with the present text. 3 refs, 13 figs, 3 tabs

  17. Nuclear-related training and education offered by nonacademic organizations (preliminary)

    International Nuclear Information System (INIS)

    Howard, L.

    1981-11-01

    The results of a survey of nuclear-related training and education provided by nonacademic training organizations are presented in this report. The survey instrument was distributed by the Institute of Nuclear Power Operations to 136 training organizations. The scope of the survey was not intended to be comprehensive, but rather to include the primary sources of nonacademic nuclear-related training and education offered to utility personnel. The survey universe was compiled from training organizations listed in the 1981 Nuclear News Buyer's Guide. Forty-three percent of the survey population (59 organizations) responded to the questionnaire of which 31 percent (42) reported they offered nuclear-related training programs and 12 percent (17) reported they did not offer any nuclear-related training

  18. Nuclear education and training: cause for concern?

    International Nuclear Information System (INIS)

    2000-01-01

    Mankind now enjoys many benefits from nuclear-related technologies. There is, however, growing concern in many OECD countries that nuclear education and training is decreasing, perhaps to problematic levels. This booklet, a summary of the full report, conveys the results of a pioneering survey on nuclear education and training in almost 200 organisations in 16 countries. The current situation is presented and causes for concern are examined. Recommendations are made as to the actions governments, academia and industry must take in order to assure that crucial present requirements are met and future options are not precluded. (authors)

  19. Education and training for nuclear scientists and engineers at NuTEC/JAEA

    International Nuclear Information System (INIS)

    Kushita, Kouhei; Sugimoto, Jun; Sakamoto, Ryuichi; Arai, Nobuyoshi; Hattori, Takamitsu; Matsuda, Kenji; Ikuta, Yuko; Sato, K.

    2009-01-01

    Because of the increasing demand of nuclear engineers in recent years, which is sometimes called as the age of nuclear Renaissance, while nuclear engineers have been decreasing and technical knowledge and expertise have not necessarily been transferred to the younger generations, human resources development (HRD) has been regarded as one of the most important issues in the nuclear field in Japan as well as in the world. Nuclear Technology and Education Center (NuTEC) at Japan Atomic Energy Agency (JAEA) have conducted comprehensive nuclear education and training activities in the past half century, which cover; 1) education and training for domestic nuclear engineers, 2) cooperation with universities, and 3) international cooperation. The main feature of NuTEC's training programs is that emphasis is placed on the laboratory exercise with well-equipped training facilities and expertise of lecturers mostly from JAEA. The wide spectrum of cooperative activities have been pursued with universities, which includes newly developed remote-education system, and also with international organizations, such as with FNCA countries and IAEA. For the nuclear education and trainings, utilization of nuclear reactors is of special importance. Examples of training programs using nuclear reactors are reported. Future plan to use nuclear reactors such as JMTR for the nuclear educations is also introduced. (author)

  20. Principles of education and training of plant engineers for nuclear power stations

    International Nuclear Information System (INIS)

    Ackermann, G.; Meyer, K.; Brune, W.

    1978-01-01

    Experience in education and advanced training of nuclear engineers in the GDR is reviewed. The basic education of engineers is carried out at universities and colleges. Graduate engineers who have been working in non-nuclear industries for a longer time receive their basic education in nuclear engineering through postgraduate studies. Graduate engineers with a basic knowledge of nuclear engineering are trained at the Nuclear Power Plant School of the Rheinsberg nuclear power plant and at the nuclear power plants of the GDR under operational conditions relating to their future job. In addition to basic theoretical knowledge, training at a nuclear power plant simulator plays an important role. This permits training of the staff under normal operating conditions including transient processes and under unusual conditions. Further particular modes of advanced professional training such as courses in radiation protection and further postgraduate studies are described. This system of education has proved successful. It will be developed further to meet the growing demands. (author)

  1. Education and training in nuclear materials

    International Nuclear Information System (INIS)

    Falcon, S.; Marco, M.

    2014-01-01

    CIEMAT participates in the European project Matisse (Materials Innovations for a Safe and Sustainable nuclear in Europe) belonging to FP7, whose main objective is to promote the link between the respective national research programs through networking and integration of activities for innovation in materials for advanced nuclear systems, sharing among partners best practices and implementation of training tools and efficient communication. The draft four years, from 2013 to 2017, includes aspects such as the interaction between infrastructure, R and D programs and postgraduate education and training. (Author)

  2. Education and training of operators and maintenance staff at Hamaoka Nuclear Power Stations

    International Nuclear Information System (INIS)

    Makido, Hideki; Hayashi, Haruhisa

    1999-01-01

    At Hamaoka Nuclear Power Station, in order to ensure higher safety and reliability of plant operation, education and training is provided consistently, on a comprehensive basis, for all operating, maintenance and other technical staff, aimed at developing more capable human resources in the nuclear power division. To this end, Hamaoka Nuclear Power Station has the 'Nuclear Training Center' on its site. The training center provides the technical personnel including operators and maintenance personnel with practical training, utilizing simulators for operation training and the identical facilities with those at the real plant. Thus, it plays a central role in promoting comprehensive education and training concerning nuclear power generation. Our education system covers knowledge and skills necessary for the safe and stable operation of nuclear power plant, targeting new employees to managerial personnel. It is also organized systematically in accordance with experience and job level. We will report the present education and training of operators and maintenance personnel at Hamaoka Nuclear Training Center. (author)

  3. Investigation on Current Status of World Nuclear Education and Training

    International Nuclear Information System (INIS)

    Shin, J. Y.; Min, M. J.; Noh, B. C.

    2010-04-01

    All over the world, the interest of nuclear energy is increasing and the expectations of it are getting more as one of the most practical alternative energy resources. However, since 1990s, as a lot of nuclear specialists are being retired, now the problem of manpower shortage is taken into consideration for all of us and will be continued until 2011. In this point of view, the good quality of the professional nuclear training and education systems and the nuclear education centers are requested in order to breed and supply the next generation nuclear scientists and engineers. Thus, the objective of this study is to explore the current status of world nuclear education for both of nuclear power countries and potential nuclear power utilization countries in the near future. This report introduces the importance of nuclear energy, the current status of world nuclear power plants operation and the contribution of nuclear energy. Besides, it also includes the nuclear energy development plan of potential nuclear developing countries in the near future. In addition, this study also explores the nuclear training and education systems of the nuclear development countries and the current status of nuclear education in various fields such as government, industries, nuclear power plants ect. Especially, as considering the status of nuclear education classified such as Asia, the Americas, East and West Europe, the Middle East and Africa, it shows the different characteristics of nuclear education systems in each regions aimed to identify the good practices on the nuclear education systems. Finally, through observation of international cooperation and networks of the various nuclear organizations, this will be contributed to the development of nuclear education for member states and be suggested the various of the direction of development for nuclear education in Korea. The report presents in the basis of the recent status data of the world nuclear education systems collected

  4. Development of an Integrated Education/Training based Nuclear Outreach Model

    International Nuclear Information System (INIS)

    Han, Kyongwon; Nam, Youngmi; Hwang, Ina; Lee, Jisuk; Ko, Hansuk; Lee, Taejoon

    2013-01-01

    The Korean nuclear community also recognizes the importance of outreach from its experience with rad waste and nuclear power programs. Accordingly, nationwide programs dealing with public information, support for local community development, and HRD are implemented continuously involving a number of organizations concerned. The Nuclear Training and Education Center (NTC) of the Korea Atomic Energy Research Institute (KAERI), with its unique function and capability as a national research organization, has needs for the enhancement of public acceptance for KAERI programs, a better contribution to the national effort, and addressing the emerging needs for international education/training on nuclear outreach. This paper presents an integrated education/training based nuclear outreach model with a set of reference program, which is developed for NTC. An integrated education/training based nuclear outreach model for NTC is developed addressing the increasing needs for public acceptance on the peaceful use of nuclear energy, in terms of supporting KAERI activities, contributing to the national nuclear outreach efforts, and promoting international education and training on nuclear outreach. The model, harmonized with the national nuclear outreach system, consists of objectives, target audiences, a set of reference program supported by infrastructure and networking, and an evaluation system. The program is further specified into sub-programs with detailed design for the respective audiences. The developed model with a reference program is characterized by its integrity in terms of encompassing the whole outreach process cycle, and setting up of a target audience based total program structure with existing and new sub-programs. Also, it intends to be sustainable by addressing future generations' needs as well as innovative in the program delivery. The model will be continuously upgraded and applied addressing respective needs of the audiences

  5. Development of an Integrated Education/Training based Nuclear Outreach Model

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyongwon; Nam, Youngmi; Hwang, Ina; Lee, Jisuk; Ko, Hansuk; Lee, Taejoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The Korean nuclear community also recognizes the importance of outreach from its experience with rad waste and nuclear power programs. Accordingly, nationwide programs dealing with public information, support for local community development, and HRD are implemented continuously involving a number of organizations concerned. The Nuclear Training and Education Center (NTC) of the Korea Atomic Energy Research Institute (KAERI), with its unique function and capability as a national research organization, has needs for the enhancement of public acceptance for KAERI programs, a better contribution to the national effort, and addressing the emerging needs for international education/training on nuclear outreach. This paper presents an integrated education/training based nuclear outreach model with a set of reference program, which is developed for NTC. An integrated education/training based nuclear outreach model for NTC is developed addressing the increasing needs for public acceptance on the peaceful use of nuclear energy, in terms of supporting KAERI activities, contributing to the national nuclear outreach efforts, and promoting international education and training on nuclear outreach. The model, harmonized with the national nuclear outreach system, consists of objectives, target audiences, a set of reference program supported by infrastructure and networking, and an evaluation system. The program is further specified into sub-programs with detailed design for the respective audiences. The developed model with a reference program is characterized by its integrity in terms of encompassing the whole outreach process cycle, and setting up of a target audience based total program structure with existing and new sub-programs. Also, it intends to be sustainable by addressing future generations' needs as well as innovative in the program delivery. The model will be continuously upgraded and applied addressing respective needs of the audiences.

  6. Principles of education and training of industrial engineers for nuclear power plants

    International Nuclear Information System (INIS)

    Ackermann, G.; Meyer, K.; Brune, W.

    1977-01-01

    The report gives a short account of the development and experience of the education and advanced professional training system for engineers for the nuclear power stations of the GDR. The basic education for engineers is carried out at universities and colleges. Graduate engineers who have been working in industrial establishments outside nuclear power stations for a longer time get their basic education in nuclear engineering through postgraduate studies. Graduate engineers with a basic knowledge of nuclear engineering are trained at the Nuclear Power Plant School of the nuclear power station Rheinsberg and at the nuclear power stations of the GDR under practical conditions relating to their future job. In addition to basic theoretical knowledge, training at a nuclear power plant simulator plays an important role. This permits the training of the staff under regular operating conditions including transient processes and under unusual conditions. Further particular modes of advanced professional training such as courses in radiation protection and further postgraduate studies are described. This system of education has proved successful. It will be developed further to meet the growing demands. (author)

  7. Asian network for education in nuclear technology: An initiative to promote education and training in nuclear technology

    International Nuclear Information System (INIS)

    Kosilov, A.

    2006-01-01

    It has become increasingly clear that there is a need to consolidate the efforts of academia and industry in education and training. Partnerships of operating organizations with educational institutions and universities that provide qualified professionals for the nuclear industry should be assessed based upon medium and long term needs and strengthened where needed. In this regard the IAEA is taking the necessary action to initiate this kind of partnership through continuous networking. The paper describes the IAEA approach to promoting education and training through the Asian Network for Education in Nuclear Technology (ANENT). (author)

  8. Nuclear Manpower Training

    International Nuclear Information System (INIS)

    Han, K. W.; Lee, H. Y.; Lee, E. J. and others

    2004-12-01

    Through the project on nuclear human resources development in 2004, the Nuclear Training Center of KAERI has provided various nuclear education and training courses for 1,962 persons from the domestic nuclear related organizations such as Government Agencies, nuclear industries, R and D institutes, universities, and public as well as from IAEA Member States. The NTC has developed education programs for master/doctorial course on advanced nuclear engineering in cooperation with the University of Science and Technology which was established in 2003. Additionally, nuclear education programs such as nuclear technical training courses for the promotion of cooperation with member countries, have developed during the project period. The center has also developed and conducted 7 training courses on nuclear related technology. In parallel, the center has produced 20 training materials including textbooks, 3 multi-media education materials, and 56 Video On Demand (VOD) cyber training materials. In order to promote international cooperation for human resources development, the NTC has implemented a sub-project on the establishment of a web-portal including database for the exchange of information and materials within the framework of ANENT. Also, the center has cooperated with FNCA member countries to establish a model of human resources development, as well as with member countries on bilateral cooperation bases to develop training programs. The International Nuclear Training and Education Center (INTEC), which was opened in 2002, has hosted 318 international and domestic events (training courses, conferences, workshops, etc.) during the project period

  9. Education, training and work experience among nuclear power plant workers

    International Nuclear Information System (INIS)

    Blair, L.M.; Doggette, J.

    1980-01-01

    This paper uses a unique data set to examine the prior work experience, training, and education of skilled and technical workers in United States nuclear power plants. The data were collected in the latter half of 1977 by the International Brotherhood of Electrical Workers (IBEW) in a survey of union locals in nuclear power plants. The survey results provided substantial evidence that workers in United States nuclear power plants have a relatively high level of education, training, and skill development. Analysis of average education by age did not reveal any significant differences in years of schooling between younger and older workers. Very high rates of participation in formal training programmes were reported by all types of workers. The most common type of training programme was held on-site at the power plant and was provided by utility personnel. The majority of workers reported previous work experience related to nuclear power plant activities. Almost one-third of the workers had been directly involved in nuclear energy in a previous job, the majority of these through the United States Navy nuclear programme. However, the newer plants are hiring relatively fewer persons with previous nuclear experience. (author)

  10. ENEN's approaches and initiatives for nuclear education and training

    International Nuclear Information System (INIS)

    Safieh, Joseph; De Regge, Peter; Kusumi, Ryoko

    2011-01-01

    The European Nuclear Education Network (ENEN), established in 2003 through the EU Fifth Framework Programme (FP) project, was given a more permanent character by the foundation of the ENEN Association, a legal nonprofit-making body pursuing an instructive and scientific aim. Its main objective is the preservation and further development of expertise in the nuclear fields by higher education and training. This objective is realized through the cooperation between EU universities involved in education and research in nuclear disciplines, nuclear research centers and the nuclear industry. As of May 2009, the ENEN has 47 members in 17 EU countries. Since 2007 the ENEN Association has concluded a Memorandum of Understanding (MoU) with partners beyond Europe for further cooperation, such as South Africa, Russian Federation and Japan. The ENEN has good collaboration with national networks and international organizations, like Belgian Nuclear Education Network (BNEN) and the International Atomic Energy Agency (IAEA). The ENEN has provided support to its Members for the organization of and participation to selected E and T courses in nuclear fields. Based on the mutual recognition of those courses, the ENEN developed a reference curriculum in nuclear engineering, consisting of a core package of courses and optional substitute courses in nuclear disciplines, to be realized as the European Master of Science in Nuclear Engineering (EMSNE). From the experience gained through the EMSNE, a European Master of Science in Nuclear Disciplines will be delivered in the near future, extending ENEN's certification to other disciplines such as radiation protection and waste management and disposal. The ENEN-II Coordination Action consolidated and expanded the achievements of the ENEN and the NEPTUNO projects attained by the ENEN in respectively the 5th and 6th Framework Programmes. The objective of the ENEN-II project was to develop the ENEN Association in a sustainable way in the areas

  11. The Utilization of Dalat nuclear research reactor for education and training purposes

    International Nuclear Information System (INIS)

    Luong, Ba Vien; Nguyen, Nhi Dien; Le, Vinh Vinh; Nguyen, Xuan Hai

    2017-01-01

    The Dalat Nuclear Research Reactor (DNRR) with the nominal power of 500 kWt is today the unique one in Vietnam. It was designed for the purposes of radioisotope production, neutron activation analysis, basic and applied researches, and nuclear education and training. With the rising demand in development of human resources for utilization of atomic energy in the country, the DNRR has been playing an important role in the nuclear education and training for students from universities and professionals who are interested in reactor engineering. At present, the Dalat Nuclear Research Institute (DNRI) offers two types of training course utilizing the research reactor: an one-week practical training course is applied for undergraduate students and a two-week training course on reactor engineering is applied for the professionals. This paper presents the reactor facility and experiments performed at the DNRR for education and training purposes. In addition, the co-operation between the DNRI with national and international educational organizations for nuclear human resource development for national and regional demands is also mentioned in the paper. (author)

  12. 3D virtual facilities with interactive instructions for nuclear education and training

    International Nuclear Information System (INIS)

    Satoh, Yoshinori; Li, Ye; Zhu, Yuefeng; Rizwan-uddin

    2015-01-01

    Efficient and effective education and training of nuclear engineering students and future operators are critical for the safe operation and maintenance of nuclear power plants. Students and future operators used to receive some of the education and training at university laboratories and research reactors. With many university research reactors now shutdown, both students and future operators are deprived of this valuable training source. With an eye toward this need and to take advantage of recent developments in human machine interface technologies, we have focused on the development of 3D virtual laboratories for nuclear engineering education and training as well as to conduct virtual experiments. These virtual laboratories are expected to supplement currently available resources and education and training experiences. Resent focus is on adding interactivity and physics model to allow trainees to conduct virtual experiments. This paper reports some recent extensions to our virtual nuclear education laboratory and research reactor laboratory. These include head mounted display as well as hand tracking devices for virtual operations. (author)

  13. Present status of nuclear science education and training in Sri Lanka

    International Nuclear Information System (INIS)

    Hewamanna, R.

    2007-01-01

    Like others Sri Lankans too have fear of nuclear radiation, probably because of the weak system of proper radiation education. Some National Institutes and few Universities are involved in nuclear science teaching and research. There are two major levels of obtaining radiation or nuclear education and training in Sri Lanka : the University and training courses in nuclear related technology and radiation protection offered by the Atomic Energy Authority of the Ministry of Science and Technology. This paper summarizes the status, some of the activities and problems of radiation education in Sri Lanka. (author)

  14. Education and training in nuclear science/engineering in Taiwan

    International Nuclear Information System (INIS)

    Chung, C.

    1994-01-01

    The present status of nuclear education and training in Taiwan is reviewed. The nuclear science/engineering program has been established in Taiwan under the College of Nuclear Science at the National Tsing Hua University since 1956; it remains the only program among 123 universities and colleges in Taiwan where education and training in nuclear fields are offered. The program, with 52 faculty members, offers advanced studies leading to BSc, MSc, and PhD degrees. Lectures and lab classes are given to 600 students currently registered in the program. Career placement program geared for the 200 graduate and 400 undergraduate students is to orientate them into the local nuclear power utilities as well as agricultural, medical, industrial, academic and governmental sectors where nuclear scientists and engineers at all levels are needed. 8 refs., 1 fig

  15. Nuclear education and training: cause for concern?

    International Nuclear Information System (INIS)

    Yamagata, Hiroshi

    2000-01-01

    Nuclear power plants have played an important role in electricity generation in the OECD member countries, contributing an average 24% over the past few years. One major criterion for the success of this technology has always been the education and training of competent personnel in all sectors of nuclear development and application. The high level of competence and know-how reached must be maintained in the future. Qualified personnel is required for running existing plants, building new nuclear power plants - at present especially in Japan and Korea - and for all activities associated with supply and waste management, decommissioning, and for all applications of nuclear technology above and beyond energy generation. The number of university graduates in the OECD countries is decreasing alarmingly, among other reasons because of the diminished attractiveness of these courses as a consequence of the reduced number of nuclear engineering courses offered in curricula. A broad-based program of disseminating basic information in nuclear technology in university curricula is urgently required. In industry, internal advanced and in-career training measures and programs are offered to ensure broad-based qualification as well as specialization in nuclear subjects of the staff, as demands are rising and flexibility is required of all staff members. This development implies that governments in particular are called upon to ensure, by long-term planning, that nuclear competence is preserved in science and research, in industry and applications, as part of their areas of responsibility and competence. Note: The full text of the study on which this contribution is based has been published under the title of 'Nuclear Education and Training: Cause for Concern?' by OECD-NEA, Paris, 2000, 124 pages. (orig.) [de

  16. Nuclear Education & Training — Showcasing the Best Practices of the United Kingdom and France

    International Nuclear Information System (INIS)

    Dato Syed Ahmad Idid, S.N. K. A.-I.

    2015-01-01

    Skilled, competent and sufficient human resources is fundamental for the safe and successful implementation and expansion of a nuclear power programme (NPP). As nuclear education and training (E&T) stakeholders deliberate and discuss to identify suitable syllabus and courses to offer for education and training to support NPP, it is critical that the nuclear fuel cycle as well as the nuclear power value-chain is taken into consideration in the selection and introduction of relevant courses by Universities and Institutions to nurture and educate skilled manpower for the nuclear power industry. This paper strives to share with the education and training stakeholders, that the task of educating and training students is not solely to prepare them to work in a nuclear power plant, but importantly also to train human resources to support other organizations that require skilled and competent personnel in nuclear related field including Government agencies and Ministries, Business and Industry, Financial sector, International agencies and media agencies, amongst others. Additionally this paper aims to dovetail that a critical mass of skilled manpower along the entire value-chain or scope of nuclear power sector covering planning, construction, manufacturing, commissioning, operation and maintenance and decommissioning must be trained to implement the related tasks required to support NPP competently. Thus, it is within this context, that this paper will outline best practices in nuclear education and training offered by the United Kingdom and France which trains students, professionals, technicians as well as craftsmen not only for employment in a nuclear power plant but also for supporting the nuclear policy formulation in Government Agencies and for supporting nuclear power industry sectors including engineering, construction, manufacturing and services. This paper will offer recommendations for enhancing cooperation in nuclear education and training aimed at building

  17. Education and training in nuclear engineering and safety

    International Nuclear Information System (INIS)

    Moons, F.; Safieh, J.; Giot, M.; Mavko, B.; Sehgal, Raj B.; Schaefer, A.; Van Goethem, G.; D'haeseleer, W.

    2007-01-01

    The need to preserve, enhance or strengthen nuclear knowledge is worldwide recognized since a couple of years. Within the 5th framework program the European Commission supports the European nuclear higher education network. The ENEN contract started on Jan 1, 2002 and lasts for 24 months. The Commission support for this 'accompanying measure' amounts to EUR 197 716. Based upon a year-long extensive exchange of views between the partners of ENEN, consisting of a representative cross section of nuclear academic institutions and research laboratories of the EU-25, a coherent and practicable concept for a European Master of Science in Nuclear Engineering has emerged. The concept is compatible with the Bologna philosophy of higher education for academic education in Europe. Pursuing the sustainability of the concept, the ENEN partners organized themselves in a non-profit-making association. Within the 6th framework program, the Commission services favourably evaluated the proposal: 'Nuclear European Platform of Training and University Organisations'. The objectives of the NEPTUNO co-ordination action are to establish a fair dialogue and a strong interaction between the academic and the industrial world and to bring all nuclear education and training activities under a common strategy of the ENEN type. The present proposal schedules for 18 months and the Commission earmarked a financial contribution of EUR 830 619. (author)

  18. Nuclear Manpower Training

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. J.; Han, K. W.; Lee, H. Y. and others

    2006-01-15

    Through the project on nuclear human resources development in 2005, the Nuclear Training Center of KAERI has provided 67 nuclear education and training courses for 3,658 persons from the domestic nuclear related organizations such as Government Agencies, nuclear industries, R and D institutes, universities, and public as well as from IAEA Member States. In addition, 6 students (MS and Ph D.) have taken nuclear technology related courses offered by UST-KAERI. The project has developed 8 programs and 12 courses. They includes programs for IAEA training, bilateral education and training, and in-house training as well as courses dealing with maintenance of nuclear power plants and management of electricity generation, thermal-hydraulics nuclear hydrogen, nuclear safeguards, radiation emergency preparedness and etc. National and international cooperation has been promoted. For ANENT, test operation, data loading and revision of the web-portal have been undertaken. Also the web-portal operation system has been established. For FNCA, NTC has cooperated for the establishment of a model of human resource development and the exchange of information/materials. With WNU, the NTC has made an effort for hosting 2007 WNU Summer Institute. The infrastructure for nuclear education and training has been strengthened. Basic directions for providing the customers with better service, This includes showing kindness to the customer, renovation of the interior of training facilities, and upgrading of web-based management system for learning and using facilities of NTC. Other efforts have resulted in the publication of 25 course materials (10 for international courses and 15 for national courses), and the improvement of education and training equipment. The International Nuclear Training and Education Center (INTEC), which was opened in 2002, has hosted 296 international and domestic events in 2005.

  19. Cyber Learning Platform for Nuclear Education and Training

    International Nuclear Information System (INIS)

    Vojtela, Martin

    2014-01-01

    Cyber Learning Platform for Nuclear Education and Training: … support capacity building and knowledge transfer in the nuclear sector by empowering web-based development and dissemination of high-quality learning resources in a way that is cost-effective, scalable and easy to use …

  20. Nuclear Regulatory Authority Personnel Educating and Training within the National Nuclear Program Development

    International Nuclear Information System (INIS)

    Potapov, V.; Goryaeva, T.; Moiseenko, A.; Kapralov, E.; Museridze, A.

    2014-01-01

    International Cooperation for Nuclear Education and Knowledge: Aims: •Creation of system of continuous personnel training for EvrAzES states in the field of nuclear power applications based on the international standards; •Development of educational service export as following of export of Russian nuclear technology; • Development of educational and scientific contacts to IAEA, WNU, ENEN, ANENT, biggest scientific centers and universities of USA, EU and Asia. Directions of activities: • Education. Transfer of knowledge to new generation, to new developing countries and cooperation with the nuclear education of leading powers; • Scientific enlightening activity – students, specialists, decision makers; • Informational and analytical work

  1. Nuclear education and training: assuring a competent workforce

    International Nuclear Information System (INIS)

    Urso, M.E.; Murphy, B.P.; Giot, M.

    2011-01-01

    Over the years the NEA has been instrumental in raising awareness on issues related to education and training (E and T) in nuclear science and technology. Ten years ago the OECD/NEA report 'Nuclear Education and Training: Cause for Concern?' [Ref. 1] highlighted that core competencies in nuclear technology were suffering a significant decline, becoming increasingly difficult to sustain. The study acted as a wake-up call, urging prompt and decisive actions by governments and other stakeholders to avert the risk of irreversible consequences. Combined with more recent studies and activities subsequently undertaken by OECD/NEA [Ref. 2 and 3] and following a policy debate on 'Nuclear Research' [Ref. 4], a statement on the need for qualified human resources in the nuclear field was unanimously adopted by the NEA Steering Committee [Ref. 5], underlying the prime responsibilities of governments. After 10 years, awareness has generally grown on the gravity and urgency of the issue, triggering, in some cases, significant initiatives. However, in a much altered context of growing nuclear reactor fleets, concerns still prevail regarding the availability of sufficient, skilled manpower and the adequacy of infrastructures. Strains in the human resources capacity still remain high and any potential increase in use of nuclear power might be hampered by a dearth of qualified personnel. The current NEA project has thus been undertaken to revise and update the 2000 OECD/NEA publication [Ref. 1]. The study provides a qualitative characterisation of human resource needs, distinguishing among nuclear professionals, technical staff and crafts: categories which require different types and degrees of E and T. Instruments to address such needs, already available, underway or planned are appraised. An assessment on the current and future uses of nuclear research facilities for E and T purposes was also undertaken, based on the factual foundation of data gathered through quantitative surveys

  2. Extensive utilisation of VR-1 reactor for nuclear education and training

    International Nuclear Information System (INIS)

    Rataj, J.

    2010-01-01

    The paper presents utilisation of the VR-1 reactor for nuclear education and training at national and international level. VR-1 reactor has been operating by the Czech Technical University since December 1990. The reactor is a pool-type light water reactor based on enriched uranium (19.7% 235 U) with maximum thermal power 1kW and for short time period up to 5kW. The moderator of neutrons is light water, which is also used as a reflector, a biological shielding and a coolant. Heat is removed from the core by natural convection. The pool disposition of the reactor facilitates access to the core, setting and removing of various experimental samples and detectors, easy and safe handling of fuel assemblies. The reactor core can contain from 17 to 21 fuel assemblies IRT-4M, depending on the geometric arrangement and kind of experiments to be performed in the reactor. The reactor is equipped with several experimental devices; e.g. horizontal, radial and tangential channels used to take out a neutron beam, reactivity oscillator for dynamics study and bubble boiling simulator. The reactor has been used very efficiently especially for education and training of university students and NPP's specialists for more than 18 years. The VR-1 reactor is utilised within various national and international activities such as Czech Nuclear Education Network (CENEN), European Nuclear Education Network and also Eastern European Research Reactor Initiative (EERRI). The reactor is well equipped for education and training not only by the experimental facility itself but also by incessant development of training methods and improvement of education experiments. The education experiments can be combined into training courses attended by students according to their study specialization and knowledge level. The training programme is aimed to the reactor and neutron physics, dosimetry, nuclear safety, and control of nuclear installations. Every year, approximately 250 university students undergo

  3. Establishment of Oversea HRD Network and Operation of International Nuclear Education/Training Program

    International Nuclear Information System (INIS)

    Lee, E. J.; Min, B. J.; Han, K. W.

    2008-02-01

    The project deals with establishment of international network for human resources and the development of international nuclear education and training programs. The primary result is the establishment of KAERI International Nuclear R and D Academy as a new activity on cooperation for human resource development and building network. For this purpose, KAERI concluded the MOU with Vietnamese Universities and selected 3 students to provide Master and Ph. D. Courses in 2008. KAERI also held the 3rd World Nuclear University Summer Institute, in which some 150 international nuclear professionals attended for 6 weeks. Also, as part of regional networking, the Asian Network for Education in Nuclear Technology (ANENT) was promoted through development of a cyber platform and accomplishment the first IAEA e-training course. There were 3 kind of development activities for the international cooperation of human resources development. Firstly, the project provided training courses on nuclear energy development for the Egyptian Nuclear personnel under the bilateral cooperation. Secondly, the project published the English textbook and its lecture materials on introduction to nuclear engineering and fundamentals on OPR 1000 system technology. Lastly, the project developed a new KOICA training course on research reactor and radioisotope application technology to expand the KOICA sponsorship from 2008. The international nuclear education/training program had offered 15 courses to 314 people from 52 countries. In parallel, the project developed 11 kinds of lecturer materials and also developed 29 kinds of cyber lecturer materials. The operation of the International Nuclear Training and Education Center (INTEC) has contributed remarkably not only to the effective implementation of education/training activities of this project, but also to the promotion of other domestic and international activities of KAERI and other organizations

  4. Establishment of Oversea HRD Network and Operation of International Nuclear Education/Training Program

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. J.; Min, B. J.; Han, K. W. (and others)

    2008-02-15

    The project deals with establishment of international network for human resources and the development of international nuclear education and training programs. The primary result is the establishment of KAERI International Nuclear R and D Academy as a new activity on cooperation for human resource development and building network. For this purpose, KAERI concluded the MOU with Vietnamese Universities and selected 3 students to provide Master and Ph. D. Courses in 2008. KAERI also held the 3rd World Nuclear University Summer Institute, in which some 150 international nuclear professionals attended for 6 weeks. Also, as part of regional networking, the Asian Network for Education in Nuclear Technology (ANENT) was promoted through development of a cyber platform and accomplishment the first IAEA e-training course. There were 3 kind of development activities for the international cooperation of human resources development. Firstly, the project provided training courses on nuclear energy development for the Egyptian Nuclear personnel under the bilateral cooperation. Secondly, the project published the English textbook and its lecture materials on introduction to nuclear engineering and fundamentals on OPR 1000 system technology. Lastly, the project developed a new KOICA training course on research reactor and radioisotope application technology to expand the KOICA sponsorship from 2008. The international nuclear education/training program had offered 15 courses to 314 people from 52 countries. In parallel, the project developed 11 kinds of lecturer materials and also developed 29 kinds of cyber lecturer materials. The operation of the International Nuclear Training and Education Center (INTEC) has contributed remarkably not only to the effective implementation of education/training activities of this project, but also to the promotion of other domestic and international activities of KAERI and other organizations.

  5. Present status of nuclear education and training in Japan

    International Nuclear Information System (INIS)

    Kiyose, R.; Sumita, K.; Moriya, F.

    1994-01-01

    In Japan, where about 30% of electricity is supplied by nuclear actives require a good number of able and ambitious young scientists and engineers especially in the future. On the other hand, almost all Japanese electric power companies, which operate nuclear power plants, are striving to keep expertise of reactor operators as high as possible. Present status in Japan of education at universities, research and training reactors, training courses at governmental institutions and nonprofit organizations, and operator training centers of electric power companies, are reviewed. 3 tabs

  6. IAEA education and training programme in nuclear safety

    International Nuclear Information System (INIS)

    Bastos, J.L.F.; Lederman, L.

    2003-01-01

    This paper presents the IAEA education and training (E and T) programme in nuclear safety. A strategic planning for the programme implementation is described in terms of objectives, outputs and activities. A framework based on areas of competency and the level of depth of the training is presented as well as the main achievements to date. (author)

  7. Some thoughts about the relations between education, training and nuclear employment

    International Nuclear Information System (INIS)

    Turpin, L.

    2009-01-01

    This article tackles the question of education and training in nuclear industry. The different sectors of education are considered: I.F.P. school, universities. The question of students exchange as recommended by the European nuclear education network (E.N.E.N.) and as practised by the National Institute for nuclear science and technology (I.N.S.T.N., higher education institution under the joint supervision of the Ministries in charge of education and industry whom vocation is to disseminate the cea knowledge and know how). (N.C.)

  8. Appendices to the guidebook on the education and training of technicians for nuclear power

    International Nuclear Information System (INIS)

    1989-10-01

    The current publication, a supplement to the IAEA Guidebook on the Education and Training of Technicians for Nuclear Power, in conjunction with which it should be read, aims to assist Member States, especially the developing countries which are in the process of implementing, or intending to implement, a nuclear power programme, to understand and meet their requirements for qualified technicians in the most effective and efficient manner. It specifically seeks to assist policy makers and planners, as well as those designing and implementing education and training programmes. The Guidebook and this TECDOC complement the IAEA Guidebook on Manpower Development for Nuclear Power, as well as the IAEA Guidebook on the Qualification of Nuclear Power Plant Operations Personnel. This TECDOC supplements the Guidebook with valuable information on the national experience of IAEA Member States in the education and training of technicians for nuclear power, as well as examples of such education and training from various Member States. Figs and tabs

  9. Nuclear manpower training

    International Nuclear Information System (INIS)

    Suh, In Suk; Lee, H. Y.; Lee, E. J.; Yang, K. N.; Jun, H. R.; Seo, K. W.; Lee, S. H.; Kim, Y. J.; Kim, I. H.; Joe, B. J.; Koh, Y. S.; Yoo, B. H.; Kim, M. Y.; Ju, Y. C.; Hyun, H. U.; Choi, I. K.; Hong, C. S.; Won, J. Y.; Nam, J. Y.; Lee, H. J.

    1997-12-01

    This report describes the annual results of training courses. The scope and contents are as follows: 1. Education program development of nuclear field 2. International training courses for foreigners 3. Training courses for industry personnel 4. Training courses for R and D staff-members 5. Training courses under the law. The nuclear training center executed 65 training courses for 2,700 engineers/ scientists from the regulatory body, nuclear industries, research institutes and other related organizations during the fiscal year 1997. (author). 18 refs., 3 tabs

  10. Nuclear manpower training

    Energy Technology Data Exchange (ETDEWEB)

    Suh, In Suk; Lee, H. Y.; Lee, E. J.; Yang, K. N.; Jun, H. R.; Seo, K. W.; Lee, S. H.; Kim, Y. J.; Kim, I. H.; Joe, B. J.; Koh, Y. S.; Yoo, B. H.; Kim, M. Y.; Ju, Y. C.; Hyun, H. U.; Choi, I. K.; Hong, C. S.; Won, J. Y.; Nam, J. Y.; Lee, H. J

    1997-12-01

    This report describes the annual results of training courses. The scope and contents are as follows: 1. Education program development of nuclear field 2. International training courses for foreigners 3. Training courses for industry personnel 4. Training courses for R and D staff-members 5. Training courses under the law. The nuclear training center executed 65 training courses for 2,700 engineers/ scientists from the regulatory body, nuclear industries, research institutes and other related organizations during the fiscal year 1997. (author). 18 refs., 3 tabs.

  11. Education and Training, and Knowledge Networks for Capacity-Building in Nuclear Security

    International Nuclear Information System (INIS)

    Mrabit, Khammar

    2014-01-01

    Conclusions: • Capacity Building (CB) is critical for States to establish and maintain effective and sustainable nuclear security regime. • IAEA is a worldwide platform promoting international cooperation for CB in nuclear security involving more than 160 countries and over 20 Organizations and Initiatives. • IAEA Division of Nuclear Security is ready to continue supporting States in developing their CB through: – Comprehensive Training Programme: more than 80 training events annually – International Nuclear Security Training and Support Centre Network (NSSC) – Comprehensive Education Programme – International Nuclear Security Network (INSEN)

  12. Training nuclear technicians in two-year, post-secondary educational programs

    International Nuclear Information System (INIS)

    Hull, D.M.; Roney, M.W.

    1975-01-01

    An available and economical supply to future manpower requirements for various types of nuclear technicians can be met by developing and/or restructuring two-year, post-secondary programs at local educational institutions. The Technical Education Research Centers program is under contract from the U.S. Office of Education to delineate the job requirements and develop curricula and instructional materials for two-year, post-secondary training of nuclear technicians. Six job categories have been identified along with corresponding tasks which the technician performs. These categories are: Reactor Operator, Nuclear Instrumentation Technician, Nuclear QA/QC Technician, Radiochemistry Technician, Radiation Protection Technician and Nuclear Medicine Technician. For the first five categories curricula have been established, courses have been described, and instructional materials are being written

  13. Korean efforts for education and training network in nuclear technology

    International Nuclear Information System (INIS)

    Han, Kyong-Won; Lee, Eui-Jin

    2007-01-01

    Nuclear energy has been a backbone for Korea's remarkable economic growth, and will continue its essential role with 18 nuclear power plants in operation, 2 more units under construction, 6 more units in planning. Korea is operating its own designed nuclear power plants, such as KSNP, 1400, as well as self-design and operation of 30 MW Hanaro research reactor. Korea makes strong efforts to develop future nuclear technology. They are the System-Integrated Modular Advanced Reactor, SMART, Korea Advanced Liquid Metal reactor, KALIMER, Hydrogen Production reactor, and Proliferation-resistant Nuclear Fuel Cycle. In parallel, Korea is establishing an Advanced Radiation Technology R and D Center and a High Power Proton Accelerator Center. International, next generation nuclear power technologies are being developed through projects such as the IAEA Innovative Nuclear Reactors and Fuel Cycle, INPRO, Generation IV International Forum, GIF, and International thermonuclear Experimental reactor, ITER. In the new millennium, Korea expects that radiation technology combined with bio, nano, and space technology will sustain our civilization. About 21,000 qualified nuclear human resources are engaged in power and non-power fields such as design and manufacturing of equipment, plant operation and maintenance, safety, RI production, R and D, etc. However, it is recognized that the first generation of nuclear work force is getting older and retired, less of our youth are studying nuclear science and engineering. Korean Government has established a promotion program on nuclear human resources development, which is needed until 2010. For the sustainable development of nuclear science and technology, it calls for more qualified human resources. We ought to encourage our youth to become more interested in nuclear studies and careers. Korea is making strong efforts to support nuclear education and training for young generations. It is believed that internationally accepted advanced

  14. International Nuclear Security Education Network (INSEN) and the Nuclear Security Training and Support Centre (NSSC) Network

    International Nuclear Information System (INIS)

    Nikonov, Dmitriy

    2013-01-01

    International Nuclear Security Education Network established in 2010: A partnership between the IAEA and universities, research institutions and other stakeholders - •Promotion of nuclear security education; • Development of educational materials; • Professional development for faculty members; • Collaborative research and resource sharing. Currently over 90 members from 38 member states. Mission: to enhance global nuclear security by developing, sharing and promoting excellence in nuclear security education. Nuclear Security Support Centre: Primary objectives are: • Develop human resources through the implementation of a tailored training programme; • Develop a network of experts; • Provide technical support for lifecycle equipment management and scientific support for the detection of and the response to nuclear security events

  15. Education and training on nuclear security in Greece

    International Nuclear Information System (INIS)

    Pafilis, C. N.; Kamenopoulou, V.; Maltezos, A.; Seferlis, S.; Dimitriou, P.; Matikas, T. E.

    2009-01-01

    The Greek Atomic Energy Commission is the competent authority responsible for designing, implementing and supervising the radiation protection programme in Greece. According to its statutory law one of its main responsibilities is the provision of education and training to people involved in the national emergency response plan against nuclear and radiological threats. Due to the high requirements demanded for the safe conduct of the Athens 2004 Olympic Games, a nuclear security programme was established and the nuclear security infrastructure of the country was upgraded. Under this framework, GAEC provided training on radiation protection, prevention, detection, emergency preparedness and response to the personnel involved in the emergency plan. Since that time, the GAEC continues to organize seminars frequently addressed to the organizations involved in the emergency plan, in order to establish the sustainability of national operational capability on preparedness and response. (authors)

  16. Education and training of operators and maintenance staff at commercial nuclear power stations in Japan

    International Nuclear Information System (INIS)

    Takahashi, M.; Kataoka, H.

    1998-01-01

    Safe and stable operation of a nuclear power station requires personnel fostering. In Japan, with the objectives of systematically securing qualified people for a long period of time, and maintaining and improving their skills and knowledge, the utilities have created strict personnel training plans, for continuous education and training. Concrete examples of education and training for operators and maintenance personnel at commercial nuclear power stations in Japan, such as education systems training, facility and contents of curriculum, are detailed including some related matters. Recent activities to catch up with environment changes surrounding education and training of operators and maintenance staff are also mentioned. (author)

  17. The European Nuclear Education Network: Towards Harmonisation of Education, Training, and Transfer of Knowledge

    International Nuclear Information System (INIS)

    Tuomisto, F.; Cizelj, L.; Dieguez Porras, P.

    2016-01-01

    Full text: The European Nuclear Education Network (ENEN) Association strives to develop a more harmonized approach for education in the nuclear sciences and nuclear engineering in Europe and to integrate European education and training in nuclear safety and radiation protection. Improved co-operation and sharing of academic resources and capabilities at the national and international level is an important long-term objective. With respect to stakeholders, such as nuclear industries, research centers, regulatory bodies and other nuclear infrastructures, the primary objectives of ENEN are to create a secure basis of skills and knowledge of value to the EU, and to maintain a high-quality supply of qualified human resources for design, construction, operation and maintenance of nuclear infrastructures, industries and power plants. ENEN supports activities aimed at maintaining the necessary competence and expertise for the continued safe use of nuclear energy and applications of radiation and nuclear techniques in agriculture, industry and medicine. In this technical brief we describe selected activities pursued to reach these goals. (author

  18. Training and education in nuclear medicine at the Medical Faculty of the University of Zagreb

    International Nuclear Information System (INIS)

    Ivancevic, D.; Popovic, S.; Simonovic, I.; Vlatkovic, M.

    1986-01-01

    Training for specialization in nuclear medicine in Yugoslavia includes 12 months of training in departments of clinical medicine and 24 months of training in departments of nuclear medicine. Since 1974 many physicians have passed the specialist examination in Zagreb. A postgraduate study in nuclear medicine began at the Medical Faculty of the University of Zagreb in 1979. It includes four semesters of courses and research on a selected subject leading to the degree of Magister (Master of Science). Most of the training is conducted by the Institute of Nuclear Medicine at the University Hospital, Rebro, in Zagreb, which has the necessary teaching staff, equipment and space. Forty-four students have completed this postgraduate study. Nuclear medicine in a developing country faces several problems. Scarcity of expensive equipment and radiopharmaceuticals calls for modifications of methods, home made products and instrument maintenance. These, mostly economic, factors are given special emphasis during training. Nuclear power generation may solve some of the country's energy problems; therefore, specialists in nuclear medicine must obtain additional knowledge about the medical care and treatment of persons who might be subject to irradiation and contamination in nuclear power plants. Lower economic resources in developing countries require better trained personnel, stressing the need for organized training and education in nuclear medicine. With some support the Institute of Nuclear Medicine will be able to offer various forms of training and education in nuclear medicine for physicians, chemists, physicists, technologists and other personnel from developing countries. (author)

  19. Nuclear Manpower Training

    International Nuclear Information System (INIS)

    Min, B. J.; Yoo, B. H.; Lee, E. J.

    2007-01-01

    Nuclear Training Center (NTC) has concentrated its efforts on the systemisation and specialization of education and training and has actively carried out diverse activities to create new education courses based on the experience accumulated so far. The systematic and comprehensive education systems have been set up by streamlining the education systems for internal employees conducted sporadically over the past years and expansion and diversification of education and training has been built through a study on Systematic Approach to Training (SAT) methodology for the development of efficient education courses and a survey of manpower development in on-site industry. The 6 education programs have been developed and 15 courses were newly developed and improved. Especially to be noted in relation to education program development is that NTC has compiled and published a book titled 'current status of research ethics of science and technology and cases' and has also conducted a survey targeted at the 30 electric power/electricity industries related to nuclear power. The total number of people who receive education for the year of 2006 was 4,186 and a total of 130 training courses were established and 125 times operated. Among them, the number of collective education was 64 courses, 104 times operated and 3,190 persons participated while as for cyber education(on-line language education), 39 courses in 3 foreign language areas established, 21 times operated and 996 persons participated

  20. Nuclear Manpower Training

    International Nuclear Information System (INIS)

    Min, B. J.; Yoo, B. H.; Lee, E. J.

    2007-12-01

    Nuclear Training Center (NTC) has concentrated its efforts on the systemisation and specialization of education and training and has actively carried out diverse activities to create new education courses based on the experience accumulated so far. The systematic and comprehensive education system(KAERI-ACE) has been set up by streamlining the education systems for internal employees conducted sporadically over the past year and expansion and diversification of education and training has been built through a study on Systematic Approach Training (SAT) methodology for the development of efficient education courses and a survey of manpower development in on-site industry. The 6 education programs have been developed and 18 courses were newly developed and improved. Especially to be noted in relation to education program development is that NTC has compiled and published a book titled 'Practical Research Ethics'. NTC has played a leading role in providing a research ethics education, in helping to promote the importance of research ethics by publishing a research ethics book and distributing them to government, research institutes, universities, etc. The total number of people who receive education for the year of 2007 was 2,998 and a total of 65 training courses were established and 106 times operated. The number of industry courses was 31, 56 times operated, and 1,309 persons participated and that nuclear R and D personnel education areas (internal employees' education) was 34 courses, 50 times operated, 2,689 persons participated

  1. Interactive Virtual Reactor and Control Room for Education and Training at Universities and Nuclear Power Plants

    International Nuclear Information System (INIS)

    Satoh, Yoshinori; Li, Ye; Zhu, Xuefeng; Rizwan, Uddin

    2014-01-01

    Efficient and effective education and training of nuclear engineering students and nuclear workers are critical for the safe operation and maintenance of nuclear power plants. With an eye toward this need, we have focused on the development of 3D models of virtual labs for education, training as well as to conduct virtual experiments. These virtual labs, that are expected to supplement currently available resources, and have the potential to reduce the cost of education and training, are most easily developed on game-engine platforms. We report some recent extensions to the virtual model of the University of Illinois TRIGA reactor

  2. Interactive Virtual Reactor and Control Room for Education and Training at Universities and Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Yoshinori; Li, Ye; Zhu, Xuefeng; Rizwan, Uddin [University of Illinois, Urbana (United States)

    2014-08-15

    Efficient and effective education and training of nuclear engineering students and nuclear workers are critical for the safe operation and maintenance of nuclear power plants. With an eye toward this need, we have focused on the development of 3D models of virtual labs for education, training as well as to conduct virtual experiments. These virtual labs, that are expected to supplement currently available resources, and have the potential to reduce the cost of education and training, are most easily developed on game-engine platforms. We report some recent extensions to the virtual model of the University of Illinois TRIGA reactor.

  3. Development and Operation of International Nuclear Education/Training Program and HRD Cooperation Network

    International Nuclear Information System (INIS)

    Lee, E. J.; Min, B. J.; Han, K. W.

    2006-12-01

    The primary result of the project is the establishment of a concept of International Nuclear R and D Academy that integrates the on-going long term activity for international nuclear education/training and a new activity to establish an international cooperation network for nuclear human resources development. For this, the 2007 WNU Summer Institute was hosted with the establishment of an MOU and subsequent preparations. Also, ANENT was promoted through development of a cyber platform for the ANENT web-portal, hosting the third ANENT Coordination Committee meeting, etc. Then a cooperation with universities in Vietnam was launched resulting in preparation of an MOU for the cooperation. Finally, a relevant system framework was established and required procedures were drafted especially for providing students from developing countries with long term education/training programs (e.g. MS and Ph D. courses). The international nuclear education/training programs have offered 13 courses to 182 people from 43 countries. The overall performance of the courses was evaluated to be outstanding. In parallel, the establishment of an MOU for the cooperation of KOICA-IAEA-KAERI courses to ensure their stable and systematic operation. Also, an effort was made to participate in FNCA. Atopia Hall of the International Nuclear Training and Education Center (INTEC) hosted 477 events (corresponding to 18,521 participants) and Nuri Hall (guesthouse) accommodated 4,616 people in 2006. This shows a steady increase of the use rate since the opening of the center, along with a continuous improvement of the equipment

  4. Development and Operation of International Nuclear Education/Training Program and HRD Cooperation Network

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E J; Min, B J; Han, K W [and others

    2006-12-15

    The primary result of the project is the establishment of a concept of International Nuclear R and D Academy that integrates the on-going long term activity for international nuclear education/training and a new activity to establish an international cooperation network for nuclear human resources development. For this, the 2007 WNU Summer Institute was hosted with the establishment of an MOU and subsequent preparations. Also, ANENT was promoted through development of a cyber platform for the ANENT web-portal, hosting the third ANENT Coordination Committee meeting, etc. Then a cooperation with universities in Vietnam was launched resulting in preparation of an MOU for the cooperation. Finally, a relevant system framework was established and required procedures were drafted especially for providing students from developing countries with long term education/training programs (e.g. MS and Ph D. courses). The international nuclear education/training programs have offered 13 courses to 182 people from 43 countries. The overall performance of the courses was evaluated to be outstanding. In parallel, the establishment of an MOU for the cooperation of KOICA-IAEA-KAERI courses to ensure their stable and systematic operation. Also, an effort was made to participate in FNCA. Atopia Hall of the International Nuclear Training and Education Center (INTEC) hosted 477 events (corresponding to 18,521 participants) and Nuri Hall (guesthouse) accommodated 4,616 people in 2006. This shows a steady increase of the use rate since the opening of the center, along with a continuous improvement of the equipment.

  5. Cooperation in education and training in nuclear- and radiochemistry in Europe

    International Nuclear Information System (INIS)

    Jan John; Jukka Lehto; Teija Koivula; Jon Petter Omtvedt

    2015-01-01

    The motivation, history and status of coordination of education and training in nuclear- and radiochemistry in Europe are reviewed. The achievements of the Euratom FP7 project 'Cooperation In education in Nuclear CHemistry (CINCH)' are described. Attention is paid to the results of the survey of universities teaching nuclear chemistry and their respective curricula evaluation, to the plan to introduce the EuroMaster in nuclear- and radiochemistry quality label recognized and guaranteed by the European Association for Chemical and Molecular Sciences (EuCheMS), and to CINCH NucWik - an interactive database proposed and implemented as an open structure in the form of a 'Wiki'. (author)

  6. Nuclear Education and training: addressing a global need

    International Nuclear Information System (INIS)

    Dunn Lee, Janice

    2008-01-01

    There is growing concern about the difficulties nuclear institutions in many OECD/NEA member countries are experiencing in recruiting qualified specialists. Recent studies have also shown that nuclear education and training have been suffering declines of various degrees. If no action is taken on this issue, the nuclear sector risks facing a shortage of qualified human resources to ensure the appropriate regulation and operation of existing nuclear facilities as well as the construction of new ones in those countries wishing to do so. The NEA Steering Committee for Nuclear Energy issued a statement on this subject in October 2007, the complete text of which is available at: www.nea.fr/html/general/press/2007/2007-05.html. The NEA has for many years been involved in efforts to define and address the need for qualified human resources. In this regard, the Agency: 1- carries out assessments of requirements and availability of qualified human resources in the nuclear field, 2- enhances nuclear education programmes, such as the International School of Nuclear Law, and 3- encourages large, high-profile international research and development programmes. These areas are addressed in the NEA Strategic Plan as well as in the specific NEA programmes discussed below. The presentation will focus on ways to address the issue of qualified human resources, share information about what others are doing, and discuss what we might do collectively. (author)

  7. Nuclear utility education and training becoming too plant specific?

    International Nuclear Information System (INIS)

    Wicks, F.

    1986-01-01

    As the Supervisor of a university nuclear reactor and operations curriculum, the author has also been offering education and training programs for nuclear utility technical support and operations personnel. Similar results have been reported by other universities offering similar programs. These programs also provide very important benefits to university nuclear engineering departments in terms of much needed revenues during this time of declining student enrollment and also by the information flow from the nuclear utility participants to the university personnel, which can yield both improved courses and identify research opportunities. University programs serve an important complementary function to plant-specific programs and should be continued and supported

  8. Nuclear power manpower and training requirements

    International Nuclear Information System (INIS)

    Whan, G.A.

    1984-01-01

    A broad spectrum of technical personnel is required to conduct a national nuclear power program, predominantly electrical, mechanical, and nuclear engineers and health physicists. The need for nuclear education and training, even in the early planning states, is the topic of this paper. Experience gained in the United States can provide useful information to Asia-Pacific countries developing nuclear power programs. Including both on-site and off-site personnel, U.S. plants average about 570 workers for BWRs and 700 for PWRs. The need for an additional 57,000 technical employees over the next decade is projected. The technical backgrounds of the manpower required to operate and support a nuclear power plant are distinctly different from those used by non-nuclear utilities. Manpower cannot be transferred from fossil fuel plants without extensive training. Meeting the demand for nuclear education and training must be a friendly partnership among universities, government, and industry. The long-term supply of nuclear-educated personnel requires strong, government-supported universities. Most specific training, however, must be provided by industry. (author)

  9. Nuclear Education, Training and Outreach in Latin America and the Caribbean Region - LANENT

    International Nuclear Information System (INIS)

    Barrachina, R.O.; François, J.L.; Sbaffoni, M.

    2014-01-01

    The Latin American Network for Education in Nuclear Technology (LANENT) was set up to contribute to preserving, promoting and sharing nuclear knowledge as well as fostering the transfer of nuclear knowledge in the Latin American region. LANENT has been actively pursuing joint activities for networking educational institutions at a regional level, the creation of distance learning initiatives and the use of shared facilities. Let us hope that these initial endeavors in nuclear education and training would ultimately contribute to the common and cooperative development of a technology so essential for the present and the future of our region

  10. The development of nuclear power and nuclear manpower training in China

    International Nuclear Information System (INIS)

    Yang Lin; Xu Xiyue

    2000-01-01

    There are two nuclear power plants (NPP) in operation in China. The Qinshan NPP was the first that was constructed by China's own efforts and went into operation on 1991. The Daya Bay NPP was constructed using foreign funds, technology and went into operation on 1994. Four nuclear power projects with 8 units were initiated during the State Ninth Five-years Plan. The 8 units are expected for commercial operation between 2002 and 2005. China is preparing for the Tenth Five-Year Plan, in which China will develop the nuclear power at a moderate pace. The 13 universities and colleges were offering nuclear science educations. The students from these universities and college can meet the needs of nuclear institutes and enterprises. China National Nuclear Corporation (CNNC) owns the Graduated School of Nuclear Industry and the Nuclear Industry Administrative Cadre College, which will turn into the nuclear training center in future. Besides, CNNC also owns 4 institutions awarding Doctorate and 9 institutes awarding Master Degree. Many programs for education and training carried out by CNNC are presented, such as direct education supported by CNNC's finances, on job training, education for the second bachelor degree, training for senior economic professionals, research course for senior professionals, short time training course and training for license. China trained nuclear personnel by international cooperation with other countries both through multilateral and bilateral cooperation programs. CNNC has established scientific and economic ties with over 40 countries. CNNC has held diversified training for nuclear industry professionals with our own efforts and with the support from the State for many years. Today, the rapid development of nuclear industry needs more professionals. We must make greater efforts to enhance human resources development. Nuclear Safety is very important for nuclear energy development. Nuclear safety is closely related to each person who works in

  11. Nuclear education and international nuclear university

    International Nuclear Information System (INIS)

    Kang, C.S.

    2000-01-01

    In this paper author deals with the concept of establishing the International Nuclear University (INU) would be one of the most viable options. The INU would provide young professionals with not only university-level education but also high-skill training in the fields of nuclear technology. The program will emphasize on global and multi- disciplinary perspectives, which should offer our young generation broader opportunities of advanced education and motivate professional staffs in the enhancement of their knowledge and skills. The 'World Council of Nuclear Education' could be formed to steer the INU for close international cooperation under the auspices of the IAEA. The INU would organize a world network of existing nuclear- related educational organizations and training centers which already exist in Member States. Existing facilities and can be utilized at maximum. Use of cyber-lecturing through Internet, cross-approval of credits among educational organizations in degree work, certification of credits by the authorized body like IAEA, human resources placement services, etc. are some of the activities that the INU could provide in addition to its professional training and higher education. (authors)

  12. Current status of education and training in nuclear technology in Bangladesh

    International Nuclear Information System (INIS)

    Ahmed, F.U.

    2007-01-01

    Bangladesh Atomic Energy Commission (BAEC) is the national authority for the introduction, promotion and safety issues of nuclear science and technology in the country. During the last four decades, a significant development has been achieved in the field of food and agriculture, medicine, industries and environment using nuclear technology. Education and training in science and technology played a vital role to achieve the significant development in these fields. Some local public universities and BAEC training facilities at home and abroad have played mainly a key role to develop the human resource in the field of nuclear science and technology. Over the last four decades, BAEC with its various specialized establishments has played a focused role in the advancement, understanding and usage of nuclear science and technologies in the country. Through years of cumulative efforts, BAEC has developed a pool of research infrastructure, capacity and human resources having been trained extensively at home and abroad in their respective fields. The trained manpower in the different fields of science and technology are working in the country to solve some national problems like arsenic contamination in drinking water, iodine deficiency disease goitre, cancer and many others. BAEC is going to establish a Nuclear Training Institute which will also have residential facilities. Government has already assured to fund to establish the Nuclear Training Centre in the campus of AERE, Savar. BAEC placed a formal proposal for Affiliation with Jahangirnagar University for Awarding Post Graduate Degrees in different specialized fields of nuclear science and technology. As this might take some time for implementation; therefore, BAEC has decided to start the academic program immediately under the present set-up of the organization. With this view, BAEC proposes to affiliate its Nuclear Training Institute with the Jahangirnagar University for pursuing academic degree programmes i.e. post

  13. Cooperation in education and training in nuclear- and radiochemistry in Europe

    International Nuclear Information System (INIS)

    John, J.; Čuba, V.; Němec, M.

    2014-01-01

    In this paper, the motivation, history and status of coordination of education and training in nuclear- and radiochemistry in Europe will be reviewed and correlated to similar activities in other nuclear fields such as the nuclear engineering of radiological protection. The achievements of the Euratom FP7 project 'Cooperation In education in Nuclear CHemistry (CINCH)' will be described in detail. This description will cover both the status review and the development activities of this collaboration. In the status review field, the results of a detailed survey of the universities and curricula in nuclear- and radiochemistry in Europe and Russia will be presented. In the development activities field, the main achievements of the CINCH project will be presented. They are particularly the NukWik - an open platform for collaboration and sharing teaching materials in nuclear- and radiochemistry based on a wiki engine

  14. Nuclear-related training and education offered by academic institutions (less-than-baccalaureate degree)

    International Nuclear Information System (INIS)

    Howard, L.

    1982-01-01

    Current projections indicate that in addition to the 10,100 technician positions and 6100 existing operator positions in the nuclear power industry, another 9100 technicians and 9700 operators will be required over the next decade. With 56 nuclear plants currently in operation and an additional 35 plants under construction, it is essential that trained technical personnel be available for employment in the nuclear utilities. Because of the growing demand for technicians in the nuclear utility industry, this report has been prepared to identify the nuclear-related, less-than-baccalaureate, technical educational programs provided by academic institutions and to ascertain both the current number of students and the maximum number that could be trained, given present staff and facilities. The data serve as a gauge for the proportion of technician training required by the nuclear industry that can be provided by academic institutions

  15. Nuclear energy education and training in France

    International Nuclear Information System (INIS)

    2010-01-01

    In its continuing use of nuclear power, France faces numerous challenges, including the operation and maintenance of its existing array of reactors, waste management, the decommissioning of obsolete reactors, and research and development for future nuclear systems. All of these efforts must recognize and conform to international requirements. These activities mean that all participants in the French nuclear industry must continually update their approaches and skills, with respect to both domestic and worldwide nuclear power development. This requirement calls for the hiring and training of thousands of scientists and engineers each year in France and its partner or customer countries. Over the next ten years, domestic and international nuclear power activities in France will call for the recruitment of about 13,000 engineers with Master of Science or Ph.D. degrees, and 10,000 science technicians and operators with Bachelor of Science degrees. The chief employers will be EDF, AREVA, GDF-Suez, national agencies such as the Agence nationale pour la gestion des dechets radioactifs (ANDRA), sub-contractors, and R and D agencies such as the Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), and the technical safety organization, Institut de Radioprotection et de Surete Nucleaire (IRSN). France has made a commitment to support countries that are ready to create the human, institutional, and technical conditions required to establish a civilian nuclear energy programme that meets all the requirements of safety, security, non-proliferation and environmental protection for present and future generations. These efforts are conducted through the France International Nuclear Agency (AFNI). In response to the need for competence-building in nuclear energy production, France now offers training opportunities in both French and English education programmes. Partnerships created by French nuclear energy participants and by AFNI can provide dedicated programmes

  16. Educational systems - educational qualification of nuclear power plant personnel

    International Nuclear Information System (INIS)

    Boeger, H.

    1986-01-01

    In this lecture the following common features of education and training systems are described: - description of general school education, vocational training and engineering study programs, - allocation of categories of activities to normal school training backgrounds, - recommendations for educational and training programs required for various positions in nuclear power plants (formal and on-the-job training), - examinations and licences for the personnel at nuclear power plants. (orig./GL)

  17. Training and education

    International Nuclear Information System (INIS)

    Bauer, E.; Oria, M.

    1977-01-01

    The paper deals with problems of training and education in a developing country which decided to launch a nuclear propramme. The aims of training and education under such circumstances are described and tecniques for accomplishing these aims are suggested [fr

  18. Contributions of the SCK.CEN Academy to education and training in nuclear science and technology

    International Nuclear Information System (INIS)

    Coeck, Michele

    2015-01-01

    Thanks to its thorough experience in the field of nuclear science and technology, its innovative research and the availability of large and unique nuclear installations, SCK.CEN is not only a renowned nuclear research institution, but also an important partner for nuclear education and training in Belgium as well as at international level. Within the SCK.CEN Academy, more than 60 years of nuclear expertise and experience gained from our different research projects is collected and transferred. In the interest of maintaining a competent workforce in industry, Healthcare, research, and policy, and of transferring nuclear knowledge and skills to the next generations, the SCK.CEN Academy takes it as its mission to: - provide guidance for students and early-stage researchers; - organize academic courses and customized training for professionals; - offer policy support with regard to education and training matters; - care for critical-intellectual capacities for society. Specifically in the domain of nuclear instrumentation the SCK.CEN Academy provides an opportunity to students at Bachelor, Master and PhD level to make use of the SCK.CEN infrastructure to support their thesis research or to perform an internship with the aim to improve and extend their knowledge and skills in a specific research or technical domain. Further, they can contribute to new findings in the field of nuclear instrumentation. The students are guided by our scientists, engineers and technicians who have years of experience in the relevant field. In addition, the SCK.CEN Academy contributes to traditional university education programs and delivers courses in several nuclear topics such as dosimetry. We also coordinate the Belgian Nuclear higher Engineering Network (BNEN), a one year (60 ECTS) master-after-master specialization in nuclear engineering in which 6 Belgian universities and SCK.CEN are involved. Beyond the contributions to academic education, we also provide several customized training

  19. Contributions of the SCK.CEN Academy to education and training in nuclear science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Coeck, Michele [SCK.CEN Academy, Boeretang 200, BE-2400 Mol (Belgium)

    2015-07-01

    Thanks to its thorough experience in the field of nuclear science and technology, its innovative research and the availability of large and unique nuclear installations, SCK.CEN is not only a renowned nuclear research institution, but also an important partner for nuclear education and training in Belgium as well as at international level. Within the SCK.CEN Academy, more than 60 years of nuclear expertise and experience gained from our different research projects is collected and transferred. In the interest of maintaining a competent workforce in industry, Healthcare, research, and policy, and of transferring nuclear knowledge and skills to the next generations, the SCK.CEN Academy takes it as its mission to: - provide guidance for students and early-stage researchers; - organize academic courses and customized training for professionals; - offer policy support with regard to education and training matters; - care for critical-intellectual capacities for society. Specifically in the domain of nuclear instrumentation the SCK.CEN Academy provides an opportunity to students at Bachelor, Master and PhD level to make use of the SCK.CEN infrastructure to support their thesis research or to perform an internship with the aim to improve and extend their knowledge and skills in a specific research or technical domain. Further, they can contribute to new findings in the field of nuclear instrumentation. The students are guided by our scientists, engineers and technicians who have years of experience in the relevant field. In addition, the SCK.CEN Academy contributes to traditional university education programs and delivers courses in several nuclear topics such as dosimetry. We also coordinate the Belgian Nuclear higher Engineering Network (BNEN), a one year (60 ECTS) master-after-master specialization in nuclear engineering in which 6 Belgian universities and SCK.CEN are involved. Beyond the contributions to academic education, we also provide several customized training

  20. Nuclear education and training related issues: Needs and lessons learned in national and international context

    International Nuclear Information System (INIS)

    Lubomir, Sklenka

    2010-01-01

    The paper is focused on nuclear education and training at research reactors and universities. Lack of experts and high educated and skilled professionals in nuclear engineering in the world caused by fast aging of the NPPs and research reactors staff and expected ''nuclear renaissance'' brings a new needs to the universities and research reactors. During the last few years some new trends in nuclear education became visible. Customers expect high quality nuclear education in wide range of knowledge and the complex services, which forces universities and research reactors to bring new challenges in the domain of education and training. State-of-the-art experimental equipment and methodologies specifically developed for the education, networking and dose cooperation between universities and research reactors at national and international levels, and sharing the experimental facilities are the trends which can be noticed today all over the world. Research reactors are suitable for education of students at all academic levels (BSc, MSc and PhD) not only in nuclear engineering, but also in various non-nuclear engineering studies (power engineering, electrical engineering, natural sciences, medical sciences, physical sciences, etc.). An effective way on how to provide the education and training at the research reactor should be started by evaluation of the initial students' background and then adaptation of the educational methodology to that level. Networking and closer co-operation between universities at national and international level in nuclear education started in late nineties in Europe and within a few years several networks were establish. The European Nuclear Education Network (ENEN) as an European regional network with more than 40 European universities was inspiration for creating national networks in Europe (e.g. Belgium, UK, Czech Republic, etc.) and Non-European regional networks (Asia, North America, etc.). Research reactors play an important role in all

  1. Training of nuclear power facility personnel. Part 1

    International Nuclear Information System (INIS)

    1989-06-01

    The proceedings of the conference entitled ''Training of Nuclear Power Facility Personnel'' and held in Tale, Czechoslovakia, on 24 - 27 April 1989, contain full texts of 58 contributions, 57 of which fall in the INIS subject scope. The aim of the conference was to summarize experience gained during the training and education of Czechoslovak nuclear power plants operating personnel, to put forth new suggestions for increasing the safety and reliability of nuclear power plants, and to establish the needs and new trends in the training and education of nuclear power plants personnel. The topics treated at the conference can be divided into three basic groups as follows: 1. professional qualification of nuclear power plant staff members; 2. development of technical means for the nuclear power plants personnel training; and 3. training of maintenance personnel, the system and organization of this training and education. The proceedings are published in two volumes. Part 1 contains the texts of 25 papers falling in the INIS subject scope. (Z.M.)

  2. Nuclear science training in Sri Lanka

    International Nuclear Information System (INIS)

    Hewamanna, R.

    2007-01-01

    There are two major levels of obtaining radiation or nuclear education and training in Sri Lanka : the University and training courses in nuclear related technology and radiation protection offered by the Atomic Energy Authority of the Ministry of Science and Technology . This paper summarizes the status, some of the activities and problems of radiation education in Sri Lanka. (author)

  3. Nuclear training and experience feedback in Sweden

    International Nuclear Information System (INIS)

    Olofsson, B.G.

    1987-01-01

    There are several different ways of educating and training the personnel at the Swedish nuclear power plants: centralized training in full-scale and part-task simulators; centralized education in the form of technical academic courses where computerized teaching is also used; extensive decentralized training out at the nuclear power plants, where compact simulators are also used; and experience feedback forms an important part of the training. Five performance indicators will be identified and the results will be presented. The excellent results are a good indication of the fact that well-executed education and training and smoothly functioning experience feedback give results

  4. The best and brightest. Concern over tomorrow's workforce opens new doors for education and training in nuclear fields

    International Nuclear Information System (INIS)

    Wedekind, Lothar

    2001-01-01

    The article discusses the results of a study by the Nuclear Energy Agency to address concerns about downward trends in nuclear education and training at universities. The implications of a shortage of trained nuclear energy specialists are discussed

  5. European nuclear education network

    International Nuclear Information System (INIS)

    Blomgren, J.; Moons, F.; Safieh, J.

    2005-01-01

    In most countries within the European Union that rely to a significant extent on nuclear power, neither undergraduate nor PhD education is producing a sufficient number of engineers and doctors to fill the needs of the industry. As a result of an EU-supported project, a new education organisation, European Nuclear Education Network (ENEN), has recently been established, with the aim to establish a European master's degree of nuclear engineering. Recently, a new EU project, Nuclear European Platform of Training and University Organisations (NEPTUNO), has been launched, aiming at the practical implementation of ENEN and harmonisation of training activities. (author)

  6. The Nuclear Department, Royal Naval School of Marine Engineering - Provision of nuclear education and training to the naval nuclear propulsion programme and beyond

    International Nuclear Information System (INIS)

    Trethewey, K.R.; Beeley, P.A.; Lockwood, R.S.; Harrop, I.

    2004-01-01

    The Nuclear Department at HMS SULTAN provides education, training and research support to the Royal Navy Nuclear Propulsion Programme, as well as a growing number of civilian programmes within the wider British nuclear industry. As an aspiring centre of excellence in nuclear engineering, the Department will play an important role as a repository of nuclear knowledge for the foreseeable future. (author)

  7. Nuclear and training

    International Nuclear Information System (INIS)

    Xiaofeng, T.; Perotin, J.P.; Gavrilovic, M.; Vermot-Desroches, J.P.; Leflefian, Ch.

    2009-01-01

    The present text presents the characteristics of a project of a nuclear power plant construction and the notion of culture of safety and explains the necessity of the implementation of the management team asked to diffuse the culture of nuclear safety and to insure it the control and analyzes the example of the nuclear power plant construction of Ling Ao in China. To complete the different training in nuclear field are reviewed through National education. (N.C.)

  8. Development of an Educational Network to Strengthen Education, Training and Outreach in Latin America: LANENT-Latin American Network for Education in Nuclear Technology

    International Nuclear Information System (INIS)

    Da Silva, A.

    2016-01-01

    Full text: In the current century, networks have played an important role in the dissemination of experiences, information exchange and training of human resources for different area of expertise. The IAEA has encouraged in regions, through its member states, the creation of educational networks to meet rapidly and efficiently the dissemination and exchange of knowledge between professionals and students in the nuclear area. With this vision, the Latin American Network for Education in Nuclear Technology (LANENT) was established to contribute to preserving, promoting and sharing nuclear knowledge as well as fostering nuclear knowledge transfer in the Latin American region. LANENT seeks to increase technical and scientific cooperation among its members in so far as to promote the benefits of nuclear technology and foster the progress and development of nuclear technology in areas such as education, health, the industry, the government, the environment, the mining industry, among others. By means of LANENT, the participating institutions of this network, devoted to education and training of professionals and technicians in the Latin American region, may have access to major information on nuclear technology so as to make their human resources broaden their nuclear knowledge. Moreover, this network seeks to communicate the benefits of nuclear technology to the public with the aim of arousing interest in nuclear technology of the younger generations. This paper will present and analyze results and initiatives developed by LANENT in Latin America. (author

  9. Safety and health education and training of contract workers in nuclear power plants

    International Nuclear Information System (INIS)

    Matsumoto, Akikuni; Hara, Hisayuki; Nawata, Kazumitsu

    2008-01-01

    Nuclear power plants have used many contract workers. Their safety and health conditions are very important in Japan. Several amendments, which deregulate temporary personnel service and employment agency markets, have been done in recent years. The number of contract and temporary help agency workers have been rapidly increasing especially since the 1990s. As a result, ensuring the level of safety and health education and training of workers becomes a serious problem. This paper examines the possibility that the level of safety training of the contract workers is less than that of the direct-hire employees in nuclear power plants. We show that (1) the use of contract workers could be less efficient for ensuring the level of safety training, and (2) nuclear power plants still use contract workers in some situations in spite of the loss of efficiency. We also study legislations and past cases relating to nuclear power generation. We find that there are some structural problems that might make the contract workers less trained. (author)

  10. Building competence in radiation and nuclear safety through education and training - the approach of a national regulatory authority

    International Nuclear Information System (INIS)

    Karfopoulos, K.L.; Carinou, E.; Kamenopoulou, V.; Dimitriou, P.; Housiadas, Ch.

    2015-01-01

    The Greek Atomic Energy Commission (EEAE) is the national competent authority for radiation and nuclear safety and security as well as for the radiation protection of ionizing and artificially produced non-ionizing radiation. The legal framework determines, inter alia, the responsibilities in education and training issues. The EEAE has a range of activities, in providing postgraduate and continuous education and training on radiation protection, and nuclear safety and security, at the national and international levels. At the national level, and particularly in the medical field, the EEAE is a participant in and a major contributor to the Inter-University Postgraduate Program on Medical Radiation Physics. Since 2003, the EEAE has been the Regional Training Center (RTC) for radiation, transport and waste safety of the International Atomic Energy Agency (IAEA) for the European Region in the English language. Moreover, the EEAE has also been recognized as the IAEA's Regional Training Center (RTC) in nuclear security in the English language since 2013. The EEAE recently proceeded to two significant initiatives: the design of a national program for education and training, and the certification of the Department of Education according to ISO 29990:2010. In this paper, the initiatives taken to enhance the radiation protection system in the country through education and training are presented. (authors)

  11. Nuclear Education in France

    International Nuclear Information System (INIS)

    Guet, C.

    2013-01-01

    This series of slides draws a picture of nuclear engineering training in France. The nuclear sector is very active and developed in France and covers all the aspects of the fuel cycle which implies a strong demand for highly skilled and trained staff. There are both an active involvement of industry in the education process through the design of adequate curricula and a strong support of the State. There are 5 masters dedicated to Science Nuclear Energy (Paris), Nuclear Waste Management (Nantes), Separation Chemistry (Montpellier), Materials for Nuclear Engineering (Grenoble), and 1 engineer degree in nuclear engineering (Saclay). In 2010-2011 there were about 1000 students completing a nuclear energy curriculum (nuclear engineering or specialized nuclear domains) at the master-engineer level throughout France. The detailed curriculum of the Master of Science Nuclear Energy is given. The National Institute of Nuclear Sciences and Techniques (INSTN) plays an important role, it has trained a large fraction of the French leading nuclear practitioners through its 50 years old 'Genie Atomique' curriculum. INSTN proposes also high level courses in nuclear disciplines including training of nuclear physicians, radio-pharmacists and medical physicists and is a major player for continuing education in nuclear sciences. (A.C.)

  12. The criteria of optimization of training specialists for the nuclear power industry and its implementation in the educational process

    Science.gov (United States)

    Lavrinenko, S. V.; Polikarpov, P. I.

    2017-11-01

    The nuclear industry is one of the most important and high-tech spheres of human activity in Russia. The main cause of accidents in the nuclear industry is the human factor. In this connection, the need to constantly analyze the system of training of specialists and its optimization in order to improve safety at nuclear industry enterprises. To do this, you must analyze the international experience in the field of training in the field of nuclear energy leading countries. Based on the analysis criteria have been formulated to optimize the educational process of training specialists for the nuclear power industry and test their effectiveness. The most effective and promising is the introduction of modern information technologies of training of students, such as real-time simulators, electronic educational resources, etc.

  13. Nuclear security education and training at Naif Arab University for Security Sciences

    International Nuclear Information System (INIS)

    Amjad Fataftah

    2009-01-01

    Naif Arab University for Security Sciences (NAUSS) was established in 1978 as an Arab institution specialized in security sciences to fulfill the needs of the Arab law enforcement agencies for an academic institution that promotes research in security sciences, offers graduate education programs and conduct short-term training courses, which should contribute to the prevention and control of crimes in the Arab world. NAUSS and the IAEA organized the first workshop on nuclear security on November, 2006, which aimed to explore and improve the nuclear security culture awareness through the definitions of the nuclear security main pillars, Prevention, Detection and Response. In addition, NAUSS and IAEA organized a very important training course on April, 2008 on combating nuclear terrorism titled P rotection against nuclear terrorism: Protection of radioactive sources . In the past two years, IAEA has put tremendous efforts to develop an education program in nuclear security, which may lead into Master's degree in nuclear security, where NAUSS helped in this project through the participation in the IAEA organized consultancy and technical meetings for the development of this program along with many other academic, security and law enfacement experts and lawyers from many different institution in the world. NAUSS and IAEA drafted a work plan for the next coming two years which should lead into the gradual implementation of these educational programs at NAUSS. NAUSS also continues to participate in several local conferences and symposiums related to the peaceful application of nuclear power in the gulf region, and the need for a human resources development programs to fulfill the scientific and security needs which will arise from building nuclear power plants. NAUSS participated in the International Symposium on the Peaceful Application of Nuclear Technology in the GCC countries, organized by King Abdulaziz University in the city of Jeddah, Saudi Arabia. Also NAUSS

  14. The role of networking for nuclear education

    International Nuclear Information System (INIS)

    Gowin, P.; Yanev, Y.

    2004-01-01

    Nuclear knowledge is the basis for almost all nuclear activities, and education and training are the most fundamental means to transfer knowledge from one generation to the next. Understanding means and trends in knowledge transfer through education and training thus deserves a closer examination. In the past years, a number of trends and questions in nuclear knowledge, education and training have emerged. With declining student enrolment numbers and a general stagnation of the use of nuclear power in some of the IAEA's Member States, the issue of a slow erosion of the knowledge base and the possibility of loosing knowledge has become increasingly important, in particular if seen against the background of a possible renaissance of nuclear power in the future. In other Member States, an expansion of nuclear power is expected, with a corresponding need for human resources. As a result, in many Member States education and training of the next generation and succession planning have become key issues. Several actions are being taken in the nuclear education and training sector, ranging from governmental programs to industry recruitment efforts, but most importantly a trend to increased networking and sharing of resources and facilities has become apparent. This paper starts with a working definition of 'nuclear knowledge' and a review of the history of nuclear knowledge, its accumulation over past decades and trends in its dissemination - either favouring networking and sharing knowledge, e.g. for sustainable development, or restricting such sharing, e.g. in the case of commercially used knowledge. It then examines the present trend to and motivation for increased networking of nuclear education and training as a part of transfer of that knowledge from one generation to the next. After a brief overview about the theory of networking, it can be said that networking can contribute to efficiency, sharing of resources, the effectiveness of programs, the timeliness of

  15. International cooperation experiences of Korea in nuclear education and training

    International Nuclear Information System (INIS)

    Suh, In-Suk

    1996-01-01

    Man power development is an essential key to success in implementing nuclear projects, especially when maximum local participation is an important issue in every sector of nuclear industry. Bearing this in mind, the Korean Atomic Energy Research Institute (KAERI) founded the Nuclear Training Center (NTC). The Center began to train technical personnel in the fields of radioisotope utilization and radiation protection in 1960s. During the first stage of nuclear power project in ROK in 1970s, the main effort was exerted to the training of those in nuclear power and nuclear engineering sectors. During the stage of increased technical self-reliance in 1980s, its training role was extended to the implementation of more specific training courses on nuclear power and safety fields. As of the end of 1995, about 23,000 people received the training courses. In an attempt to upgrade the nuclear technology, the advanced training courses at the NTC by invited foreign experts and by IAEA technical cooperation program have been implemented. Also the training under IAEA Regional Cooperative Agreement in Asia Pacific Region has been offered. The change of the NTC to the International Training Center is recommended. (K.I.)

  16. Education and training of nuclear power plant staff in the GDR - state of the art and trends

    International Nuclear Information System (INIS)

    Lehmann, R.; Schulz, K.D.; Mertins, M.; Rabold, H.

    1989-01-01

    Starting from the regulations applicable in the GDR as to the requirements on both qualification and education and training of NPP staff to ensure nuclear safety and radiation protection, the practice observed in the GDR is described and elucidated. On the example of the reactor operator whose education is considered the basic education for many other activities related to nuclear power plant operation the individual stages of education and training are presented and evaluated from the points of view of time, contents, and method. Central importance in this respect has an NPP simulator developed in the GDR for reactors of the WWER-440/W-213 type. (author)

  17. Expanding Nuclear Power Programmes - Romanian experience: Master - Nuclear Materials and Technologies Educational Plan

    International Nuclear Information System (INIS)

    Valeca, S.; Valeca, M.

    2012-01-01

    The main objectives of the Master Nuclear Materials and Technologies Educational Plan are: 1. To deliver higher education and training in the following specific domains, such as: Powders Technology and Ceramic Materials, Techniques of Structural Analysis, Composite Materials, Semiconductor Materials and Components, Metals and Metallic Alloys, Optoelectronic Materials and Devices, Nuclear Materials, The Engineering of Special Nuclear Materials, 2. To train managers of the Nuclear Waste Products and Nuclear Safety, 3. To qualify in ICT Systems for Nuclear Process Guidance, 4. To qualify in Environmental Protection System at the Level of Nuclear Power Stations, 5. To train managers for Quality Assurance of Nuclear Energetic Processes, 6. To deliver higher education and training regarding the International Treatises, Conventions and Settlements in force in the field of nuclear related activities. (author)

  18. Education and Training of Safety Regulation for Nuclear Safety Infrastructure: Its Necessity and Unique Features

    International Nuclear Information System (INIS)

    Choi, Young Sung; Choi, Young Joon; Lee, Jae Cheon

    2009-01-01

    Faced with global warming and electricity demands, countries over the world recognize the comparative advantages of nuclear energy. It is estimated that about 300 nuclear power plants (NPPs) expect to be constructed until 2030 worldwide. In addition, according to the IAEA, approximately 20 new countries might have their first NPP in operation by 2030 in the high projection compared with bout 5 new countries in the low projection. When introducing nuclear power, the implementation of an appropriate infrastructure to address all of the relevant issues is a central concern of international community. In particular, nuclear power program requires, at an earlier stage than when construction starts, the development of a legal and regulatory framework and training of regulators and safety experts whose combined knowledge adequately covers all areas of nuclear safety and regulation applied at a NPP construction and operation. As an essential component of such human resource development, special attention was paid to the provision of education and training to regulators of which countries plan to introduce NPPs. In term of education theory, safety regulation has some unique features in learning and teaching, which are different from those of nuclear engineering or development. This paper overviews nuclear safety infrastructure, explores the roles of exporting countries, and presents features and components in education of nuclear safety regulation

  19. Operator training and requalification at GPU Nuclear

    International Nuclear Information System (INIS)

    Long, R.L.; Barrett, R.J.; Newton, S.L.

    1982-01-01

    The operator training and requalification programs at GPU Nuclear's Oyster Creek (650 MWe BWR) and Three Mile Island-1 (776 MWe PWR) nuclear plants have undergone significant revisions since the Three Mile Island-2 accident. This paper describes the Training and Education organization, the expanded training facilities, including basic principle trainers and replica simulators, and the present operator training and requalification programs

  20. European nuclear education initiatives

    International Nuclear Information System (INIS)

    Glatz, Jean-Paul

    2011-01-01

    Whatever option regarding their future nuclear energy development is chosen by European Union Member States, the availability of a sufficient number of well trained and experienced staff is key for the responsible use of nuclear energy. This is true in all areas including design, construction, operation, decommissioning, fuel cycle and waste management as well as radiation protection. Given the high average age of existing experts leading to a significant retirement induce a real risk of the loss of nuclear competencies in the coming years. Therefore the demand of hiring skilled employees is rising. The challenge of ensuring a sufficient number of qualified staff in the nuclear sector has been acknowledged widely among the different stakeholders, in particular the nuclear industry, national regulatory authorities and Technical Support Organisations (TSOs). Already the EURATOM Treaty refers explicitly to the obligation for the Commission to carry out training actions. Recently initiatives have been launched at EU level to facilitate and strengthen the efforts of national stakeholders. The European Nuclear Education Network (ENEN) Association aims at preservation and further development of expertise in the nuclear field by higher education and training. The goal of the European Nuclear Energy Leadership Academy (ENELA) is to educate future leaders in the nuclear field to ensure the further development of sustainable European nuclear energy solutions The European Nuclear Energy Forum (ENEF) is a platform operated by the European Commission for a broad discussion on the opportunities and risks of nuclear energy. The nuclear programs under investigation in the Joint Research Center (JRC) are increasingly contributing to Education and Training (E and T) initiatives, promoting a better cooperation between key players and universities as well as operators and regulatory bodies in order to mutually optimise their training programmes. Another objective is to increase

  1. Nuclear education and training in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    1977-03-01

    The purpose of this summary is to give a survey of the facilities for further education and training in the field of nuclear science and nuclear technology within the FRG. The classification of the different facilities presently existing, such as universities, technical colleges, engineering schools, and special institutes, seemed the most appropriate way of making the survey as straight forward as possible. The survey is mainly based on information received from the institutes concerned in reply to questionnaires distributed at the end of 1976. Further references are available in the Personal- und Vorlesungsverzeichnisse of the universities as well as in the Deutscher Fachhochschulfuehrer. (orig./HP) [de

  2. Education and training in nuclear energy: State of art, needs and future strategies

    International Nuclear Information System (INIS)

    Boeck, H.

    2010-01-01

    During the past three decades the interest of students in nuclear energy decreased due to the fact that especially in Europe and the US no new nuclear power plants were ordered and many industrialised countries even voted for a nuclear phase out program such as Germany, Italy, or Sweden. This trend was immediately reflected in the university enrolment and students turned to other areas such informatics, robotics, nano-technology etc. Nuclear education and training possibilities were drastically reduced as research reactors were shut down and university curricula were reduced. Today as a nuclear renaissance is obvious, this lack of students in the nuclear field during the past two decades overlaps with the fact that many senior staff members reach their age of retirement both in research centres, nuclear power plants and academia. Therefore the nuclear industry desperately needs qualified graduates in the nuclear field. To reverse this trend since several years many national and international organisations were established or added new programs to their existing structure to support these efforts such as the IAEA, OECD, ENEN- Association, the World Nuclear University, the German Kompetenzverbund, Asian ANENT, Belgium BNEN, British NTEC to name a few. In addition common academic curricula were established to facilitate mutual recognition and mobility of professors and students (Bologna Agreement). In parallel in many countries new university chairs in the nuclear field were filled with young professors. In addition a few new powerful research reactors were commissioned (FRM-2, OPAL) or are under construction (JHR) and planning (PALLAS). This paper describes the present international state of nuclear education, training and analyse the future needs of industry and research. (author)

  3. The present status of international training and education in nuclear field held in Japan for Asian countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-11-01

    This report summarizes the training and educational courses for Asian countries carried out in Japan by the related institutions. The 2nd Workshop on Human Resources Development in the Nuclear Field was held on 27 and 28 of November 2000, based on FNCA (Forum for Nuclear Cooperation in Asia) organized by the Nuclear Energy Commission, and then the following day ''The Present Status of the International Training and Education in Japan for Asian Countries'' was reported for Asian participants on 29, November. This report is the Japanese edition of the handout distributed at the meeting. I believe it can be helpful for the related institutions in Japan to support the human resources development in the nuclear field efficiently and effectively in future. (author)

  4. Nuclear education and training: marriages that work

    International Nuclear Information System (INIS)

    Hanson, H.D.

    1985-01-01

    Public Service Electric and Gas Company is meeting the education and training needs of its nuclear department operations, support, and services personnel through a variety of activities in association with institutions of higher education. Activities include credit or credit recommendation programs at the associates, undergraduate, and graduate degree level. The paper emphasizes the process of working with a local college in the development of a new degree program for submission through the State Board of Education. The development, review, evaluation, and approval process is detailed as well as lessons learned. Plans for further development of the program toward ABET accreditation are also described. Samples of the surveys conducted to determine employee interest in terms of academic area, academic level, offering strategies, etc. are presented. The process of soliciting program proposals from universities and colleges, the selection process, and implementation of the programs are also discussed. More briefly described is the preparation for credit recommendation process from regionally accredited groups. External degree programs, off-hours course presentations on-site for undergraduate and graduate credit, faculty extern, student intern, and co-op activities are also discussed

  5. Partners in Educating a New Generation of Nuclear Leaders. IAEA Supports Khalifa University in Nuclear Power Training

    International Nuclear Information System (INIS)

    Kidambi, Misha

    2011-01-01

    In their cooperation, the IAEA and KUSTAR promote the ANENT e-Learning system's use. The ANENT was established in 2004 as a regional partnership for cooperation in capacity building and human resource development, including education and training in the peaceful uses of nuclear technology in Asia

  6. AFRA Network for Education in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Hashim, N.; Wanjala, F.

    2017-01-01

    AFRA-NEST was Conceived at the AFRA Ministerial Conference held in Aswan in 2007. The main objective of AFRA-NEST is to facilitate operation and networking in higher education, training and related research in Nuclear Science (NS&T) in the African Region through: • Sharing of information and materials of nuclear education and training. The strategies for implementing the objectives are: the use ICT for web-based education and training,; recognition of Regional Designated Centres (RDCs) for professional nuclear education in nuclear science and technology, and organization of harmonized and accredited programs at tertiary levels for teaching and research in the various nuclear disciplines. The main function of the AFRA-NEST is to; foster sustainable human resource development and nuclear knowledge management; host the Cyber Learning Platform for Nuclear Education and Training for the AFRA region and to integrate all available higher education capabilities in Africa

  7. Nuclear skills and education training in the UK through the Dalton nuclear institute

    International Nuclear Information System (INIS)

    Richard Clegg

    2006-01-01

    -level nuclear training called NTEC (Nuclear Technology Education Consortium). The consortium has received funding from the UK research councils and industry. Its first student intake was in October 2005 and eventually the modules on offer will cover the broad spectrum from reactor systems and fuel cycles through to decommissioning and clean-up, with modules also on offer covering fusion, nuclear medicine and socio-economics. A key aim of NTEC is to forge international teaching collaborations to share material as well as student exchanges. (author)

  8. Euratom research and training in nuclear reactor safety: Towards European research and the higher education area

    International Nuclear Information System (INIS)

    Goethem, G. van

    2004-01-01

    In this invited lecture, research and training in nuclear fission are looked at from a European perspective with emphasis on the three success factors of any European policy, namely: common needs, vision and instruments, that ought to be strongly shared amongst the stakeholders across the Member States concerned. As a result, the following questions are addressed: What is driving the current EU trend towards more research, more education and more training, in general? Regarding nuclear fission, in particular, who are the end-users of Euratom 'research and training' and what are their expectations from EU programmes? Do all stakeholders share the same vision about European research and training in nuclear fission? What are the instruments proposed by the European Commission (EC) to conduct joint research programmes of common interest for the nuclear fission community? In conclusion, amongst the stakeholders in Europe, there seems to be a wide consensus about common needs and instruments, but not about a common vision regarding nuclear. (author)

  9. NKM Perspectives of Nuclear Education in Pakistan

    International Nuclear Information System (INIS)

    Khan, R.; Jaffar, G.; Haq, S. M. Z.; Khosa, S. U.

    2016-01-01

    Full text: Pakistan Institute of Engineering and Applied Sciences (PIEAS), Karachi Institute of Power Engineering (KINPOE) and CHASNUPP Centre for Nuclear Training (CHASCENT) are the main institutes providing for the nuclear skilled man power demands of the country’s nuclear technology program. The PIEAS is a public sector university and offers M.Sc. and Ph.D. programmes in nuclear science and technology. The CHASCENT is the training institute which focuses on the training programmes for nuclear power, while the KINPOE offers Master programme in nuclear power engineering, post graduate training programme (PGTP) and Post Diploma Training Program (PDTP) related to nuclear power engineering and technology. The nuclear education programmes and other relevant NKM activities at PIEAS, KINPOE and CHASCENT play a key role in the information management, human resource and competence management. This paper presents the NKM perspective of nuclear education in Pakistan, its continuation and enhancement for the expanding nuclear power programme to meet the country’s energy demands. (author

  10. Nuclear Education and Training at Tsinghua University to Meet the Need of the Rapidly Developing Industry

    International Nuclear Information System (INIS)

    Sun, Y.; Han, Y.; Liu, F.

    2016-01-01

    Full text: The Chinese nuclear industry has been expanding rapidly since recent years. Education of highly qualified people with various educational background is an important factor for the efficient and healthy operation of the industry. Tsinghua University is offering various degree programmes for a variety of disciplines including nuclear science, nuclear engineering, nuclear safety, nuclear fuel cycle, nuclear waste treatment, energy policy and management. Degree programmes have been designed and implemented for regular school students who do not have working experience and for people who are already in their career development to better meet the requirement of the rapidly developing nuclear industry. Emphasis has also been given to the internationalization of the education programs. In addition, training programmes on a more practical basis are offered to meet specific purposes. These efforts are briefly described in this paper. (author

  11. The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project

    International Nuclear Information System (INIS)

    Hopper, Calvin Mitchell

    2011-01-01

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT and SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT and SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National

  12. Neptuno-nuclear European platform of training and university organizations project

    International Nuclear Information System (INIS)

    Comsa, Olivia; Meglea, Claudia; Banutoiu, Marina; Paraschiva, M. V.; Meglea, S.

    2003-01-01

    The project focuses on a harmonised approach to education and training in nuclear engineering in Europe and its implementation, including better integration of national resources and capabilities. The expected result is an operational network for training and life-long learning schemes as well as for academic education at the master, doctoral and post doctoral degree, underpinning: - sustainability of European's excellence in nuclear technology; - harmonised approaches to safety and best practices, both operational and regulatory at European level in Member States and Accession Countries; - preservation of competence and expertise for the continued safe use of nuclear energy and other uses of irradiations in industry and medicine; - harmonised approach for training and education in nuclear engineering. In the network: - we implement the roadmap for nuclear education in Europe as developed and demonstrated in the ongoing Euratom FP5 project ENEM; - we warrant the end-user relevance of the education at all levels by recruiting (part-time) professors out of industry and by providing (re-)training of nuclear industry personnel; - we teach advanced courses preferably at selected centres of excellence; - bridging leading edge research and new knowledge generation with teaching and education; -creating nuclei of excellence for doctoral schools in nuclear engineering and sciences; - we facilitate transnational access to research infrastructure. The final aim of the NEPTUNO initiative is to guarantee sufficient people, means and knowledge (resources) to make possible the safe and efficient applications of the nuclear technology to the civil and industry in the medium and long term. This will be accomplished by the design, development and testing of a system able to achieve the sustainable integration of education and training in nuclear engineering and safety in Europe. Thus, by responding to the EC objective for call for proposals, a joint approach to be widely applied in

  13. SCK•CEN Academy for Nuclear Science and Technology: Education and training activities

    International Nuclear Information System (INIS)

    Coeck, M.; Govers, K.

    2017-01-01

    1952: cradle of nuclear research, applications and energy development in Belgium > 60 years later: international player in the field of nuclear R&D. Understanding the benefits and risks of radioactivity requires . Scientific and technical insight and training. An insight in the context and a sense for the societal and philosophical aspects of the situation. There has been a Cooperation between technical universities, SCK•CEN and IRE in In Dutch and French. Policy support on E&T matters and international collaborations. EC Framework programs, Horizon 2020, expert groups of IAEA, OECD. IAEA CRP L53003 ''Sustainable education in nuclear science and technology'' (best practices applied by academia to address schools and society)

  14. Subjects and educational objectives of specialized training courses for shift supervisors in nuclear power plants. Vol. 4

    International Nuclear Information System (INIS)

    1983-01-01

    Presentation of subjects taught, curricula, educational objectives of training courses for shift supervisors in nuclear power plants. The curricula for nuclear engineering fundamentals include subjects such as nuclear physics, reactor physics, reactor safety, radiation protection, legal provisions, job safety, reactor technology, applied thermohydraulics and thermodynamics, materials. (HAG) [de

  15. Management of nuclear knowledge and education

    International Nuclear Information System (INIS)

    Murogov, V.M.; Kosilov, A.N.; )

    2010-01-01

    The authors believe that preservation of critical knowledge for transferring to the next generation and formation of competencies that would meet the demands of modern nuclear technology must be the basis of nuclear education and training of professional staff for full-scale development of the nuclear industry. It is also necessary to formulate requirements to new competencies, which will help people that possess them address tasks of innovative development of nuclear technologies, and ensure that managers and engineers of all levels possess them. Cooperation (including international) will be vital between state authorities, industrial companies, science and research institutions and higher education to create favourable conditions for nuclear education and professional training [ru

  16. Education and Training Networks as a Tool for Nuclear Security Human Resource Development and Capacity Building

    International Nuclear Information System (INIS)

    Nikonov, D.

    2014-01-01

    Human Resource Development for Capacity Building for Nuclear Security: • Comprehensive Training Programme Objective: To raise awareness, to fill gaps between the actual performance of personnel and the required competencies and skills and, to build-up qualified instructors/trainers. • Promoting Nuclear Security Education Objective: To support the development of teaching material, faculty expertise and preparedness, and the promotion of nuclear security education in collaboration with the academic and scientific community. Ultimate Goal: To develop capabilities for supporting sustainable implementation of the international legal instruments and IAEA guidelines for nuclear security worldwide, and to foster nuclear security culture. Education priorities for the future: • Incorporate feedback from the first pilot program into future academic activities in nuclear security; • Based on feedback from pilot program: • Revise the NSS12 guidance document; • Update educational materials and textbooks. • Support INSEN members, which consider launching MSc programs at their institutions; • Continue promoting nuclear security education as part of existing degree programs (through certificate or concentration options); • Support the use of new forms of teaching and learning in nuclear security education: • Online e-learning degree programmes and modules; • Learning by experience; • Problem-oriented learning tailored to nuclear security functions

  17. Education and training of experts for the nuclear power sector at the Faculty of Electrical Engineering and Information Technologies, Slovak University of Technology in Bratislava

    International Nuclear Information System (INIS)

    Lipka, J.; Slugen, V.; Miglierini, M.; Necas, V.; Hascik, J.; Pavlovic, M.

    2003-01-01

    The Faculty of Electrical Engineering and Information Technologies, Slovak University of Technology in Bratislava has been training experts for the nuclear sector for over 40 years now. Current status and trends in nuclear education within the faculty's educational system, encompassing BSc, MSc and PhD studies, are highlighted. Dedicated training courses in the safety aspects of operation of the nuclear power installations are also organized for NPP staff. Periodical training is also provided to supervising physicists at the Jaslovske Bohunice and Mochovce nuclear power plants. Major international projects aimed at nuclear knowledge management and preservation are highlighted and the ENEN - European Nuclear Education Network project is described. (P.A.)

  18. The problems and countermeasures of staff training in nuclear power plants

    International Nuclear Information System (INIS)

    Xie Bo

    2013-01-01

    With the rapid development of nuclear energy, China faces a great challenge to meet its increasing demand on a large amount of well-educated and highly-trained nuclear workforce. The above demands make it uniquely important for the nuclear industry in both improving nuclear education and in attracting young talents. Good practices in staff training have been identified and are summarized, through which CNNC's nuclear power plants have developed a systematic approach for new employee training to support the development of strategies. (author)

  19. The World Nuclear University: New partnership in nuclear education

    International Nuclear Information System (INIS)

    2007-07-01

    The important role which the IAEA plays in assisting Member States in the preservation and enhancement of nuclear knowledge and in facilitating international collaboration in this area has been recognized by the General Conference of the International Atomic Energy Agency in resolutions GC(46)/RES/11B, GC(47)/RES/10B, GC(48)/RES/13 and GC(50)/RES/13. A continued focus of IAEA activities in managing nuclear knowledge is to support Member States to secure and sustain human resources for the nuclear sector, comprising both the replacement of retiring staff and building of new capacity. The IAEA assists Member States, particularly developing ones, in their efforts to sustain nuclear education and training in all areas of nuclear technology for peaceful purposes, which is a necessary prerequisite for succession planning, in particular through the networking of nuclear education and training, including activities of the World Nuclear University (WNU) and the Asian Network for Education in Nuclear Technology (ANENT). The report on the attached CD-ROM, The World Nuclear University: New Partnership in Nuclear Education, gives an overview of the history of the development of the World Nuclear University and related IAEA activities and contains an analysis and recommendations from the first WNU Summer Institute, held in 2005 in the USA

  20. Expert training on physical protection of nuclear materials at universities of Russia

    International Nuclear Information System (INIS)

    Pogozhin, N.S.; Bondarev, P.V.; Geraskin, N.I.; Kryuchkov, E.F.; Tolstoy, A.I.

    2002-01-01

    Full text: The expert training on physical protection of nuclear materials in Russia is carry out by the universities on the following directions: 'Physical Protection, Control and Accountability of Nuclear Materials (MPCA)' master educational program. 'Physical and technical problems of atomic engineering' master educational standard. 'Technical Physics' direction. Qualification - master of physics. Duration of training - two years. 'Physical protection of nuclear objects' specialization. 'Nuclear physics and technology' educational standard of a direction for professionally qualified expert training. 'Safety and nonproliferation of nuclear materials' specialty. Qualification - engineer-physician. Duration of training - five years. The Master educational program is intended for the expert training with fundamental knowledge. The masters are assigned to work at the establishments of the Ministry of Atomic Energy of Russia and at the state committee on nuclear supervision (Gosatomnaozor). Many graduates continue their education as post-graduate students. The program is designed for the experts having education of an engineer or a bachelor. The program concept consists in integration in a uniform educational process: profound scientific and technical knowledge; system approach to designing MPCA systems; knowledge of scientific and technical principles, means, devices; MPCA facilities and tools; legal, political and economic aspects of nuclear material management; modern computer and information technologies for MPCA systems; research work and practice of the students. The educational program for 'physical protection of nuclear objects' specialization is intended for the expert training of a practical orientation. Engineer-physicians are assigned as a rule to work at the nuclear objects and are intended for operation and servicing of the certain physical protection systems (PPS). The program concept consists in training not only fundamental aspects of an engineering

  1. Development of Capacity Building Training Programs for Nuclear R and D Personnel

    International Nuclear Information System (INIS)

    Lee, Eui Jin; Nam, Youngmi; Hwang, Hyeseon; Jang, Eunsook; Song, Eun Ju

    2016-01-01

    The Nuclear Training and Education Center of the Korea Atomic Energy Research Institute has been operating technical training courses on nuclear engineering, engineering mathematics, management leadership training, out sourced practical training, legal education, etc. Strengthening nuclear R and D capacity is essential for the long-term mission and goals of the institute. Therefore, it requires a comprehensive training program to strengthen the unique capability of the institute that reflects diversity and differentiation. In this regard, the capacity building training program has developed on a modular basis, and the developed training program should be tailored to operate according to the institute needs. The capacity building training program for nuclear R and D personnel was developed to reflect the technology strengths of the institute. The developed training program will be developed into a leading branded education of the institute in the future

  2. Development of Capacity Building Training Programs for Nuclear R and D Personnel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eui Jin; Nam, Youngmi; Hwang, Hyeseon; Jang, Eunsook; Song, Eun Ju [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The Nuclear Training and Education Center of the Korea Atomic Energy Research Institute has been operating technical training courses on nuclear engineering, engineering mathematics, management leadership training, out sourced practical training, legal education, etc. Strengthening nuclear R and D capacity is essential for the long-term mission and goals of the institute. Therefore, it requires a comprehensive training program to strengthen the unique capability of the institute that reflects diversity and differentiation. In this regard, the capacity building training program has developed on a modular basis, and the developed training program should be tailored to operate according to the institute needs. The capacity building training program for nuclear R and D personnel was developed to reflect the technology strengths of the institute. The developed training program will be developed into a leading branded education of the institute in the future.

  3. Nuclear Regulatory Systems in Africa: Improving Safety and Security Culture Through Education and Training

    International Nuclear Information System (INIS)

    Kazadi Kabuya, F.

    2016-01-01

    The purpose of this paper is to address the important issue of supporting safety and security culture through an educational and training course program designed both for regulatory staff and licensees. Enhancing the safety and security of nuclear facilities may involve assessing the overall effectiveness of the organization's safety culture. Safety Culture implies steps such as identifying and targeting areas requiring attention, putting emphasis on organizational strengths and weaknesses, human attitudes and behaviours that may positively impact an organization's safety culture, resulting in improving workplace safety and developing and maintaining a high level of awareness within these facilities. Following the terrorist attacks of September 11, 2001, international efforts were made towards achieving such goals. This was realized through meetings, summits and training courses events, with main aim to enhance security at facilities whose activities, if attacked, could impact public health and safety. During regulatory oversight inspections undertaken on some licensee's premises, violations of security requirements were identified. They mostly involved inadequate management oversight of security, lack of a questioning attitude, complacency and mostly inadequate training in both security and safety issues. Using training and education approach as a support to raise awareness on safety and security issues in the framework of improving safety and security culture, a tentative training program in nuclear and radiological safety was started in 2002 with the main aim of vulgarizing the regulatory framework. Real first needs for a training course program were identified among radiographers and radiologists with established working experience but with limited knowledge in radiation safety. In the field of industrial uses of radiation the triggering events for introducing and implementing a training program were: the loss of a radioactive source in a mining

  4. Research Reactor Utilization at the University of Utah for Nuclear Education, Training and Services

    International Nuclear Information System (INIS)

    Jevremovic, T.; Choe, D.O.

    2013-01-01

    In the years of nuclear renaissance we all recognize a need for modernizing the approaches in fostering nuclear engineering and science knowledge, in strengthening disciplinary depth in students’ education for their preparation for workforce, and in helping them learn how to extend range of skills, develop habits of mind and subject matter knowledge. The education infrastructure at the University of Utah has been recently revised to incorporate the experiential learning using our research reactor as integral part of curriculum, helping therefore that all of our students build sufficient level of nuclear engineering literacy in order to be able to contribute productively to nuclear engineering work force or continue their education toward doctoral degrees. The University of Utah TRIGA Reactor built 35 years ago represents a university wide facility to promote research, education and training, as well as is used for various applications of nuclear engineering, radiation science and health physics. Our curriculum includes two consecutive classes for preparation of our students for research reactor operating license. Every year the US Nuclear Regulatory Commission’s representatives hold the final exam for our students. Our activities serve the academic community of the University of Utah, commercial and government entities, other universities and national laboratories as well. (author)

  5. ENS and FORATOM Education, Training and Knowledge Management Activities

    International Nuclear Information System (INIS)

    Janisz, E.

    2016-01-01

    Full text: The European Atomic Forum (FORATOM) and the European Nuclear Society (ENS) established in 2013 a joint Task Force dedicated to education, training and knowledge management (ETKM) issues in nuclear. The main purpose of the Task Force is to strengthen the link between the industry, research institutes and education and training stakeholders on the European level. Further to inform the European political institutions about the nuclear education and training activities undertaken by various stakeholders. The role of this paper is to present number of activities done in the framework of FORATOM and ENS Task Force and present the recommendations given by the E&T experts. The TF combines the expertise of Human Resources, Training and Education provided by the industry as well as universities and research institutes. The Task Force aims to play a role of a gateway for collaboration between different key players of the nuclear education, training and knowledge management field. Further TF is aiming as well to inform the European institutions about the actions and roles undertaken by ENS and FORATOM members in the area of education and training. (author

  6. Training of personnel for nuclear power in Ceske Energeticke Zavody Concern

    International Nuclear Information System (INIS)

    Hodny, J.; Krestan, J.

    1983-01-01

    The projects of training of personnel and recruitment of apprentices have to be started 10 years prior to the commissioning of a nuclear power plant. Training starts three years prior to the physical start-up. The education and training of personnel in the nuclear programme including the implementation of their social background is an equivalent component of nuclear safety. The most important aspects are presented of personnel training with regard to organization, recruitment, theoretical and practical education and training, material and technical provisions and social programme. At present personnel training and the education of specialists have reached a high standard but the problem of social care of personnel in future plants is serious and has not been solved. (M.D.)

  7. Present status of the Nuclear Maintenance Training Center

    International Nuclear Information System (INIS)

    Kotani, Fumio

    1995-01-01

    The education and training to keep and improve the knowledge and skills of the maintenance personnel and to hand down the skills undoubtedly play important roles in safe operation and increased reliability to a nuclear power station. The Nuclear Maintenance Training Center (hereafter called the Center) provides a variety of education and training curriculums based on the levels and abilities of the trainees. The Center aims to enhance the personnel's maintenance technique by offering the curriculums on maintenance basic education for operators and supporting education and training for the personnel of contractors. The Center has two main features: first, it has the actual components or the equipment similar to the actual components which will enable the practical training; second, we regard the past troubles as valuable experiences and, therefore, focuses on the education to prevent recurrence of troubles by teaching the trainees the meaning and necessity of the training they take. For eleven years since the establishment of the Center, it has been utilized by the total number of about 60,000 people. As for the tasks in the future, the Center is expected to vitalize itself to give attractive education and training and become more actively involved in development of the maintenance personnel with the adequate knowledge and skills. (author)

  8. Education and training support system

    International Nuclear Information System (INIS)

    Kubota, Rhuji; Iyadomi, Motomi.

    1996-01-01

    In order to train the specialist such as operator or maintenance stuff of large scale plant such as nuclear power plant or thermal power plant, a high grade teaching and training support system is required as well as in training pilot of aeroplane. The specialist in such large scale plant is also a researcher in the field of machinery, electricity and physics at first, and is grown up a expert operator or maintenance stuff through learning of CAI system or OTJ used training material for teaching tool in addition of training used operating or maintenance training device imitating actual plant after acquiring determined knowledges by receiving fundamental education on nuclear and thermal power plants. In this paper, the teaching and training support systems of the nuclear and thermal power plants for a system supporting such teaching and training, respectively, were introduced. (G.K.)

  9. Establishing Sustainable Nuclear Education: Education Capability Assessment and Planning (ECAP) Assist Mission

    International Nuclear Information System (INIS)

    Ugbor, U.; Peddicord, K.; Dies, J.; Philip, B.; Artisyuk, V.

    2016-01-01

    Full text: The development of nuclear education, science and technology programmes is affected by the national context including national needs and capacities. The role and expectations for nuclear education and training might be different in technically matured countries, from countries where the technology is emerging. In this regard, particularly in developing countries, there is a need to balance nuclear education and training between immediate critical issues of radiation safety or human health and longer-term priorities in agriculture or industry. These priorities may or may not include the nuclear energy option. This paper shows how the Education Capability Assessment and Planning (ECAP) Assist Mission can contribute towards establishing sustainable nuclear education, including highlighting the various activities of each phase of the ECAP Process. (author

  10. The role of networking for nuclear education

    International Nuclear Information System (INIS)

    Gowin, P.

    2004-01-01

    Full text: Nuclear knowledge is the basis for almost all nuclear activities. Education and training are the most fundamental means to transfer knowledge from one generation to the next. The paper gives a working definition of 'nuclear knowledge' and reviews the history of nuclear knowledge, it's accumulation over past decades and trends in it's dissemination - either favouring networking and sharing knowledge, e.g. for sustainable development, or restricting such sharing, e.g. in the case of commercially used knowledge. In the past years, a number of trends and questions in nuclear knowledge, education and training have emerged. With declining student enrolment numbers and a general stagnation of the use of nuclear power in some of the IAEA's Member States, the issue of a slow erosion of the knowledge base and the possibility of loosing knowledge has become increasingly important, in particular if seen against the background of a possible renaissance of nuclear power in the future. In other Member States, an expansion of nuclear power is expected, with a corresponding need for human resources. As a result, in many Member States education and training of the next generation and succession planning have become key issues. Several actions are being taken in the nuclear education and training sector, ranging from governmental programs to industry recruitment efforts, but most importantly a trend to increased networking and sharing of resources and facilities has become apparent. After a brief overview about the theory of networking, network types and characteristics, the paper presents selected networks in nuclear education and training as examples, including the IAEA initiative Asian Network for Education in Nuclear Technology (ANENT). Based on a review of the key factors leading to the success of those networks, it can be concluded that networking already is a key element in shaping the nuclear educational sector, and that networking nuclear education and training

  11. Proposed plan for education and training in nonnuclear and nuclear energy technologies

    International Nuclear Information System (INIS)

    Vachon, R.I.; Griffith, D.E.

    1977-02-01

    This report presents the results of a systems approach by an ERDA/ASEE Task Force to a charge from the 94th Congress to the Energy Research and Development Administration to develop a plan for a comprehensive program for education and training in nonnuclear energy technologies. The PLAN as presented is the recommendation of the Task Force and is not to be construed as the ERDA Plan. The interpretation of the charge leads to the following definitive statements. The PLAN should consist of a program and organizational and administrative means within ERDA to develop and manage the program. The program should: (1) include general educational subprograms, vocational skill subprograms to degree and post degree programs; (2) include nuclear as well as nonnuclear education and training; (3) encourage, assist, and utilize all institutions from labor unions to universities to assure educated and trained manpower to meet the nation's energy needs; (4) be catalytic in nature and rely not only on funding as a catalytic agent but also on information and leadership; (5) give equal opportunity to all seeking or needing education and training to become a part of the energy labor market in all regions of the nation; (6) be supplementary to what can be accomplished by the private sector; (7) promote interaction between ERDA and other Federal government agencies and state and local governments; (8) be responsive as well as anticipatory; (9) be applicable from energy resource exploration to energy and use; and (10) provide for input and feedback from the private sector

  12. Education, Training and Communication: Introduction

    International Nuclear Information System (INIS)

    Coeck, M.

    2007-01-01

    Good communication on nuclear science and its applications is a challenging practice. Nuclear topics are generally perceived as being complex from the technical-scientific point of view, and also from the societal point of view, agreement and acceptance is not straightforward. Moreover, the application fields of ionising radiation are numerous and spread over many areas. The nuclear industry and the nuclear research sector, the medical sector, several branches of the non-nuclear industry and several disciplines in the academic world, all appeal on the phenomenon of the nuclear process of reduction of an excess of inner energy, called radioactivity. Besides these sectors who consciously use radioactivity in one or other application, other branches such as aviation and the fossil fuel industry are faced with artificially raised levels of natural radioactivity. Maintaining a high level in nuclear competencies is crucial in order to guarantee the safe use of current nuclear applications and to ensure the protection of workers, the public and the environment. Next to this, an up-to-date nuclear knowledge is vital in research and development related to the optimisation of current and the development of future technologies. An essential component in ensuring a high level of expertise in the future is a sustainable Education and Training infrastructure. Educational systems provide the initial study to young learners. It is knowledge-based and generally provided by the academic world. Complementary to education is the unceasing maintenance of the level of competencies. Training activities need to be provided to young and not-so-young professionals working with ionizing radiation in all disciplines and at all levels. When it comes to the future development and the realization of new great infrastructures, obviously preservation of knowledge through education and training is a necessary but not sufficient element, and also research itself is subject to support by government

  13. 3. national conference on training of personnel for nuclear power

    International Nuclear Information System (INIS)

    Jacko, J.

    1983-01-01

    A national conference with international participation was held in Podbanske to evaluate the results and experiences with the training of personnel for nuclear power in training centres of the sector of fuel and energy, within the educational system and at other workplaces. The rational development of the system of personnel training must contribute towards reducing the hazards of nuclear power caused by the human factor. The results and experiences were evaluated gained in the process of the unified system of training personnel for nuclear power plants, namely training centres of various institutions, institutions of higher education and in-operation training of personnel. In 1984, the first Czechoslovak simulator of a WWER 440 unit will be put into operation. (M.D.)

  14. Education, Training and the Euratom Framework Programme

    International Nuclear Information System (INIS)

    Jouve, A.; Van Goethem, G.; )

    2009-01-01

    The maintaining of knowledge implies education and training programmes that ensure not only the instruction of students and trainees but also the transfer of knowledge across generations. This is especially important for research in the Euratom field in the present context of nuclear renaissance. DG-Research is responsible for the implementation of the Euratom Framework Programme on nuclear research and training. Through these activities, it is striving to promote the integration of national radiation protection research programmes in Europe, including education and training in radiation protection. These education and training activities supported in the Euratom Programme are helping to establish top-quality teaching modules assembled into masters programmes or higher-level training packages jointly qualified and mutually recognised across the EU. This Euratom approach is entirely in line with the Bologna process. This paper presents and discusses the various actions in education and training in radiation protection supported by DG- Research. (authors)

  15. Status and problem for Nuclear Power Plant Maintenance Training Center

    International Nuclear Information System (INIS)

    Nanjoh, Takuo

    1991-01-01

    The Nuclear Power Plant Maintenance Training Center of Kansai Electric Power Co., Inc. was founded in October, 1983, and seven years elapsed since then. The education and training of 37,000 persons were carried out to meet the situation in the plants and to enhance the facilities. Though the main policy of the practical training for preventing the recurrence of troubles does not change, the situation changed from the time of the foundation, and the role has expanded, including PA activities. The see-through plant model installed for technical education in April, 1989 is the about 1/25 scale model of the actual machine with two loops, which actually generates steam and slight electric power, and is useful for promoting the understanding of nuclear power generation theory. It accomplishes the important role that the visitors to the Center (7500 persons in 1989 fiscal year) understand the mechanism of nuclear power generation. In 1990, the education curriculum, the method of education, the time of education and so on are reviewed, aiming at the improvement of education. The execution of education and training, the training of practical techniques, the reflection of the examples of troubles to education, and the expansion of facilities are reported. (K.I.)

  16. Nuclear education and training in the Internet age

    International Nuclear Information System (INIS)

    Bereznai, G.; Garland, W.

    2001-01-01

    Student enrolment in nuclear engineering programs offered by Canadian universities has been declining, and at some universities has fallen below the minimum level needed to sustain the program. At the same time, a significant number of engineers working in the nuclear industry have retired and many more will be reaching retirement age in the next few years. The operation and maintenance of the 14 in-service CANDU units, the refurbishment of the four Pickering 'A' units and of the four Bruce 'A' units will require a significant level of new engineers and scientists. Service support for the CANDU units operating overseas, the construction of two units in China, the completion of Cernavoda 2, and the market for several more CANDU units in Asia, will also require significant numbers of new graduates. The vast amount of information that the future practitioners of the nuclear power industry need to be aware of will be increasingly difficult to disseminate with the traditional classroom-based education and training methods. Almost all of the documents required for the design, analysis, procurement and operation of a nuclear unit are now generated by computer, and increasingly such information is accessible where and when needed via the company lntranet. The authors have developed an lnternet/Intranet compatible self-paced interactive multimedia approach to deliver a course on CANDU Systems and Operations. The course has been offered at ten universities in six countries, including Thailand, China, Indonesia, Vietnam, the Philippines, as well as Canada. (author)

  17. Training of operating personnel for nuclear ships

    International Nuclear Information System (INIS)

    Lakey, J.R.A.; Gibbs, D.C.C.

    1983-01-01

    Training for Nuclear Power Plant Operators is provided by the Royal Navy in support of the Nuclear Submarine Programme which is based on the Pressurised Water Reactor. The Royal naval college has 21 years of experience in this training field in which the core is the preparation of graduate electro-mechanical engineers to assume the duties of marine engineer in command of a team of supporting Engineer Officers of the Watch and Fleet Chief Petty Officers. The paper describes the training programme and shows how it is monitored by academic, professional and naval authorities and indicates the use of feedback from the user. The lynch pin of the programme is a post-graduate diploma course in Nuclear Reactor Technology attended by graduates after gaining some practical experience at sea. The course which is described in detail makes use of simplified simulators and models to develop the principles, these are applied on the JASON Training Reactor with the emphasis on in-core experiments demonstrating reactivity effects and instrumentation interpretation. The training programme provides for interaction between academic education, practical experience, applied education, full plant simulation training and on-the-job training in which boards or examinations have to be successfully passed at each stage. (author)

  18. Education in nuclear engineering in Slovakia

    International Nuclear Information System (INIS)

    Slugen, V.

    2005-01-01

    Slovak University of Technology is the largest and also the oldest university of technology in Slovakia. Surely more than 50% of high-educated technicians who work nowadays in nuclear industry have graduated from this university. The Department of Nuclear Physics and Technology of the Faculty of Electrical Engineering and Information Technology as a one of seven faculties of this University feels responsibility for proper engineering education and training for Slovak NPP operating staff. The education process is realised via undergraduate (Bc.), graduate (MSc.) and postgraduate (PhD..) study as well as via specialised training courses in a frame of continuous education system. (author)

  19. Nuclear education in Russia: Status, peculiarities, problems and perspectives

    International Nuclear Information System (INIS)

    Onykii, B.N.; Kryuchkov, E.F.

    2004-01-01

    Full text: For longer than 50-year period of nuclear industry development in the USSR, the specialists training system has been created to meet completely the industrial branch's demands for the specialists of all possible qualifications for research, engineering and production activities. This educational system does exist in Russia till now. In the presentation the following items will be addressed: Nuclear Engineering education in Russia: status and peculiarities; Demands of nuclear enterprises for the alumni. Role of the Universities in these problems solution; Nuclear engineering education problems in Russia; Master of science education in nuclear aria; Perspectives of nuclear education in Russia; Integration of nuclear education in Europe: perspectives and problems. The educational system in nuclear engineering, like an educational system in any other knowledge area in Russia, includes the training activities limited by Russian legislation only: academic training of the specialists with award of the State certificates (higher education, re-training, qualification upgrade); qualification upgrade of the specialists without award of the State certificates. The system of education represents a multi-level structure oriented at any possible needs of industrial branches. At present, more than 20 Russian higher education institutions train the specialists in nuclear engineering. The specialists training in nuclear engineering is being conducted in all these universities in full accordance with common educational curricula and standards which define some peculiarities of the specialists training in this area: 1) Combination of fundamental knowledge in physics and mathematics with profound engineering skills; 2) Large share of laboratory works; 3) Participation at the research work starting from the 4th year student; 4) Long education time (5-6 years) and period for thesis preparation (1/2 year - pre-diploma internship and 1/2 year of thesis preparation); 5) High

  20. Educational Research Centre of the Joint Institute for Nuclear Research and students training on the 'Medical Physics' speciality

    International Nuclear Information System (INIS)

    Ivanova, S.P.; )

    2005-01-01

    The Educational Research Centre (ERC) of the Joint Institute for Nuclear Research is the place of joint activity of the JINR, Moscow State University (MSU) and Moscow Engineering Physical Institute (MEFI) on students training by a broadened circle of specialities with introduction of new educational forms. Active application of medical accelerator beams of the JINR Laboratory of Nuclear Beams becomes a reason for implementation of a new training chair in the MEFI on the JINR base - the Physical methods in applied studies in the medicine chair. For the 'medical physics' trend development in 2003 the workshop on discussion both curricula and teaching methodic by the speciality was held. One the Educational Research Centre main activities is both organization and conducting an international scientific schools and training courses. The International student School 'Nuclear-Physical Methods and Accelerators is the most popular and traditional. The principal aim of these schools and courses is familiarization of students and postgraduates with last achievement and and contemporary problems of applied medical physics. The school audience is a students and postgraduates of ERC, MSU, MEFI, and an institutes of Poland, Hungary, Slovakia, France, Czech and Bulgaria

  1. Nuclear safety training program (NSTP) for dismantling

    International Nuclear Information System (INIS)

    Cretskens, Pieter; Lenie, Koen; Mulier, Guido

    2014-01-01

    European Control Services (GDF Suez) has developed and is still developing specific training programs for the dismantling and decontamination of nuclear installations. The main topic in these programs is nuclear safety culture. We therefore do not focus on technical training but on developing the right human behavior to work in a 'safety culture' environment. The vision and techniques behind these programs have already been tested in different environments: for example the dismantling of the BN MOX Plant in Dessel (Belgium), Nuclear Safety Culture Training for Electrabel NPP Doel..., but also in the non-nuclear industry. The expertise to do so was found in combining the know-how of the Training and the Nuclear Department of ECS. In training, ECS is one of the main providers of education in risky tasks, like elevation and manipulation of charges, working in confined spaces... but it does also develop training on demand to improve safety in a certain topic. Radiation Protection is the core business in the Nuclear Department with a presence on most of the nuclear sites in Belgium. Combining these two domains in a nuclear safety training program, NSTP, is an important stage in a dismantling project due to specific contamination, technical and other risks. It increases the level of safety and leads to a harmonization of different working cultures. The modular training program makes it possible to evaluate constantly as well as in group or individually. (authors)

  2. Students education and training for Slovak NPP

    International Nuclear Information System (INIS)

    Lipka, J.; Slugen, V.; Hascik, J.; Miglierini, M.

    2004-01-01

    Slovak University of Technology is the largest and also the oldest university of technology in Slovakia. Surely more than 50% of high-educated technicians who work nowadays in nuclear industry have graduated from this university. The Department of Nuclear Physics and Technology of the Faculty of Electrical Engineering and Information Technology as a one of seven faculties of this University feels responsibility for proper engineering education and training for Slovak NPP operating staff. The education process is realised via undergraduate (Bc.), graduate (MSc.) and postgraduate (PhD.) study as well as via specialised training courses in a frame of continuous education system. (author)

  3. Nuclear medicine training and practice in the Czech Republic

    International Nuclear Information System (INIS)

    Kaminek, Milan; Koranda, Pavel

    2014-01-01

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. (orig.)

  4. Nuclear medicine training and practice in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Kaminek, Milan; Koranda, Pavel [University Hospital Olomouc, Department of Nuclear Medicine, Olomouc (Czech Republic)

    2014-08-15

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. (orig.)

  5. International Project on Innovative Nuclear Reactors and Fuel Cycles: Introduction and Education and Training Activity

    International Nuclear Information System (INIS)

    Fesenko, G.; Kuznetsov, V.; Phillips, J.R.; Rho, K.; Grigoriev, A.; Korinny, A.; Ponomarev, A.

    2015-01-01

    The IAEA’s International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was established in 2000 through IAEA General Conference resolution with aim to ensure that sustainable nuclear energy is available to help meet the energy needs of the 21st century. INPRO seeks to bring together technology holders, users and newcomers to consider jointly the international and national actions required for achieving desired innovations in nuclear reactors and fuel cycles, with a particular focus on sustainability and needs of developing countries. It is a mechanism for INPRO Members to collaborate on topics of joint interest. INPRO activities are undertaken in close cooperation with Member States in the following main areas: Global Scenarios, Innovations, Sustainability Assessment and Strategies, Policy and Dialogue. The paper presents short introduction in INPRO and specifically the distant Education and Training INPRO activity on important topics of nuclear energy sustainability to audiences in different Member States. These activities can support capacity building and national human resource development in the nuclear energy sector. The main benefit of such training courses and workshops is that it is not only targeted to students, but also to lecturers of technical and nuclear universities. Moreover, young professionals working at nuclear energy departments, electric utilities, energy ministries and R&D institutions can participate in such training and benefit from it. (authors)

  6. Romanian network of nuclear education RONEN

    Energy Technology Data Exchange (ETDEWEB)

    Ghitescu, P.; Prisecaru, I.; Dupleac, D. [Bucharest Univ. Politehnica (Romania)

    2007-07-01

    RONEN (Romanian Network of Nuclear Education) aims at developing an efficient, flexible and modern training system in the nuclear education area, which answers the requirements of nuclear industry (NPP, regulatory bodies, subcontractors, dismantling, radioprotection, waste management). The first step was the investigation of the actual stage of the training in nuclear field in Romania. The second step was the investigation of the actual stage of training in the field of nuclear physics and engineering in other European countries. The third step was to create the infrastructure for the implementation and development of modern/learning programs and technologies. RONEN developed a data base on the project web-site, and proposed a global strategy in order to harmonize the curricula (by guidelines and self-evaluation reports), to implement pilot modern teaching programs (by handbooks for courses/modules), to introduce advanced learning technologies (like recommendations for Systematic Approach to Training, e-learning and distance-learning platforms), to strengthen and better use the existing research infrastructure for research and development among the network partners.

  7. Romanian network of nuclear education RONEN

    International Nuclear Information System (INIS)

    Ghitescu, P.; Prisecaru, I.; Dupleac, D.

    2007-01-01

    RONEN (Romanian Network of Nuclear Education) aims at developing an efficient, flexible and modern training system in the nuclear education area, which answers the requirements of nuclear industry (NPP, regulatory bodies, subcontractors, dismantling, radioprotection, waste management). The first step was the investigation of the actual stage of the training in nuclear field in Romania. The second step was the investigation of the actual stage of training in the field of nuclear physics and engineering in other European countries. The third step was to create the infrastructure for the implementation and development of modern/learning programs and technologies. RONEN developed a data base on the project web-site, and proposed a global strategy in order to harmonize the curricula (by guidelines and self-evaluation reports), to implement pilot modern teaching programs (by handbooks for courses/modules), to introduce advanced learning technologies (like recommendations for Systematic Approach to Training, e-learning and distance-learning platforms), to strengthen and better use the existing research infrastructure for research and development among the network partners

  8. Managing education/training resources to survive regulatory change

    International Nuclear Information System (INIS)

    Headley-Walker, L.; DeSain, G.

    1985-01-01

    The road to development of nuclear training and education programs that prepare operators to not only competently operate a commercial nuclear power plant under routine conditions but also acquire the knowledge, experience, and confidence necessary to perform under the rigors of a significant off-normal incident has been filled with speculative opinion, recommendations, disagreement, guidelines, and downright confusion. The US Nuclear Regulatory Commission (NRC) had not produced a regulation that specifically addresses the nature of education/training related to off-normal incidents. No one educational process currently offered fully addresses the ideal solution for those employed in the nuclear industry. The only practical solution must be the result of collaborative efforts between utilities and educational resources. The Regents College Degree Collaboration Model provides a worthy vehicle for positive movement toward this solution and survival of the ever-changing regulatory constraints in education

  9. Personnel education and training at Bohunice NPP

    International Nuclear Information System (INIS)

    Malovec, J.

    1998-01-01

    Procedure for education and training of all the personnel employed at Bohunice Nuclear power plant is presented in detail describing the training system structure, kinds of training, staff members qualification development, short term and long term tasks needed to assure attaining the training objectives. The proposed Staff Members Lifetime education implementation project contains basic starting points, measures to be implemented by 1998. It was prepared on the basis of a primary analysis which confirmed the existing need for implementing the lifetime education system

  10. Nuclear manpower training

    International Nuclear Information System (INIS)

    Suh, In Suk; Lee, H. Y.; Joe, B. J.; Lee, S. H.; Lee, E. J.; Yoo, B. H.; Seo, K. W.; Lee, W. K.; Jun, H. I.; Yang, K. N.; Kim, Y. J.; Kim, I. H.; Kim, M. Y.; Ju, Y. C.; Hyun, H. Y.; Choi, I. G.; Hong, C. S.; Won, J. Y.; Nam, J. Y.; Lee, H. J.

    1997-01-01

    This report describes the annual results of training courses. the scope and contents are as follows: 1. Regional and interregional training courses 2. Training courses assisted by foreign experts 3. Training courses for nuclear industry personnel 4. Training courses for internal staff-members 5. Training courses under the law. This Nuclear Training Center executed the open-door training courses for 2,400 engineers/scientists from the regulatory body, nuclear industries, research institutes and other related organizations by means of offering 51 training courses during the fiscal year 1996. (author). 23 refs

  11. Nuclear manpower training

    Energy Technology Data Exchange (ETDEWEB)

    Suh, In Suk; Lee, H. Y.; Joe, B. J.; Lee, S. H.; Lee, E. J.; Yoo, B. H.; Seo, K. W.; Lee, W. K.; Jun, H. I.; Yang, K. N.; Kim, Y. J.; Kim, I. H.; Kim, M. Y.; Ju, Y. C.; Hyun, H. Y.; Choi, I. G.; Hong, C. S.; Won, J. Y.; Nam, J. Y.; Lee, H. J.

    1997-01-01

    This report describes the annual results of training courses. the scope and contents are as follows: 1. Regional and interregional training courses 2. Training courses assisted by foreign experts 3. Training courses for nuclear industry personnel 4. Training courses for internal staff-members 5. Training courses under the law. This Nuclear Training Center executed the open-door training courses for 2,400 engineers/scientists from the regulatory body, nuclear industries, research institutes and other related organizations by means of offering 51 training courses during the fiscal year 1996. (author). 23 refs.

  12. Training and research on the nuclear reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, K.

    1998-01-01

    The VR-1 training reactor is a light water reactor of the pool type using enriched uranium as the fuel. The moderator is demineralized light water, which also serves as the neutron reflector, biological shielding, and coolant. Heat evolved during the fission process is removed by natural convection. The reactor is used in the education of students in the field of reactor and neutron physics, dosimetry, nuclear safety, and instrumentation and control systems for nuclear facilities. Although primarily intended for students in various branches of technology (power engineering, nuclear engineering, physical engineering), this specialized facility is also used by students of faculties educating future natural scientists and teachers. Typical tasks trained at the VR-1 reactor include: measurement of delayed neutrons; examination of the effect of various materials on the reactivity of the reactor; measurement of the neutron flux density by various procedures; measurement of reactivity by various procedures; calibration of reactor control rods by various procedures; approaching the critical state; investigation of nuclear reactor dynamics; start-up, control and operation of a nuclear reactor; and investigation of the effect of a simulated nucleate boil on reactivity. In addition to the education of university-level students, training courses are also organized for specialists in the Czech nuclear programme

  13. Nuclear pharmacy education: international harmonization

    International Nuclear Information System (INIS)

    Shaw, S.M.; Cox, P.H.

    1998-01-01

    Education of nuclear pharmacists exists in many countries around the world. The approach and level of education varies between countries depending upon the expectations of the nuclear pharmacist, the work site and the economic environment. In Australia, training is provided through distance learning. In Europe and Canada, nuclear pharmacists and radiochemists receive postgraduate education in order to engage in the small-scale preparation and quality control of radiopharmaceuticals as well as research and development. In the U.S.A., nuclear pharmacy practitioners obtain basic knowledge primarily through undergraduate programs taken when pursuit the first professional degree in pharmacy. Licensed practitioners in pharmacy enter the practice of nuclear pharmacy through distance learning programs or short courses. While different approaches to education exist, there is a basic core of knowledge and a level of competence required of all nuclear pharmacists and radiochemists providing radiopharmaceutical products and services. It was with this realization that efforts were initiated to develop harmonization concepts and documents pertaining to education in nuclear pharmacy. The benefits of international harmonization in nuclear pharmacy education are numerous. Assurance of the availability of quality professionals to provide optimal products and care to the patient is a principle benefit. Spanning national barriers through the demonstration of self governance and unification in education will enhance the goal of increased freedom of employment between countries. Harmonization endeavors will improve existing education programs through sharing of innovative concepts and knowledge between educators. Documents generated will benefit new educational programs especially in developing nations. A committee on harmonization in nuclear pharmacy education was formed consisting of educators and practitioners from the international community. A working document on education was

  14. Educating personnel for nuclear technology in Czechoslovakia

    International Nuclear Information System (INIS)

    Otcenasek, P.

    1980-01-01

    The basic preconditions are discussed of educating personnel for nuclear power and nuclear technology in Czechoslovakia. In educating specialists, the high societal significance of nuclear power and the need to obtain qualified personnel for safeguarding safety and reliability of nuclear facilities operation should primarily be borne in mind. The system of training applies not only to operating and maintenance personnel of nuclear power plants but also to fuel and power generation, transport, engineering, building industry, health care, education and other personnel. (J.B.)

  15. Supply and demand of nuclear education

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    On June 6, 2011, the Atomexpo-2011 International Forum held a round-table discussion dedicated to Prospects of nuclear education in countries that plan to advance their nuclear power, and in countries that are about to launch their nuclear programmes. More than 80 participants representing many nations and international organizations discussed issues associated with the development of nuclear education and training infrastructure, as well as prospects for international cooperation in this sector [ru

  16. Education and Training Activities of the SCK-CEN Academy for Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Coeck, M.; Kesteloot, N.; Clarijs, T.

    2016-01-01

    Full text: In 2012, The Belgian Nuclear Research Centre SCK-CEN officially launched its “Academy for Nuclear Science and Technology”. Thanks to its thorough experience in the field of nuclear science and technology, its innovative research and the availability of large and unique nuclear facilities, SCK-CEN is not only a renowned nuclear research institution, but also an important partner for nuclear education and training in Belgium as well as at international level. Within the SCK-CEN Academy, more than 60 years of nuclear expertise and experience gained from our different research projects is collected and transferred. In order to maintain and extend a competent workforce in nuclear industry, healthcare, research, and governmental organizations, and to transfer this nuclear knowledge to the next generations, the mission of the SCK-CEN Academy comprises four main tasks: (i) providing guidance to young scientists, (ii) organizing of courses, (iii) providing policy support and (iv) caring for critical-intellectual capacities. (author

  17. Training of nuclear power plant operating personnel

    International Nuclear Information System (INIS)

    Anon.

    1980-04-01

    A collection is presented containing 11 papers submitted at a conference on the selection and education of specialists for operation and maintenance of nuclear power plants. The conference was attended by specialists from universities and colleges, research institutes and production plants. It debated the methods and aims of both general and specialized theoretical and practical personnel education, the proposals for teaching centre equipment, the use of simulators, computers and other aids in the teaching process; training on school reactors was included. A proposal was put forward of the system of education, the teaching process itself, the content of the basic theoretical subjects, and the method of testing pupils' knowledge. The importance was stressed of establishing a national coordination centre to safeguard the syllabus, methodology, teaching aids, and also the training proper. The system of personnel education in the Paks nuclear power plant, Hungary, is presented as an example. (M.S.)

  18. Implementing Physical Protection Education for an Enhanced Nuclear Security Culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, Hyun Chul; Shin, Ick Hyun; Lee, Hyung Kyung; Choe, Kwan Kyoo [KINAC, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, we are going to outline our efforts and experiences at implementing physical protection education. KINAC (as the only designated educational institute) places great effort in delivering an effective and a high-quality education program for physical protection. We have also provided a way for nuclear operators to share the lessons they have gained through their own experiences. We made physical protection education an important communication channel, not only among nuclear operators but also between operators and a regulatory body. There is growing attention given to education and training on the subject of physical protection in order to enhance the nuclear security culture. The IAEA recommends that all personnel in organizations directly involved with the nuclear industry receive regularly education in physical protection according to the recently revised INFCIRC/225/Rev.5. The Korea Institute of Nuclear Nonproliferation and Control (KINAC) and the Nuclear Safety and Security Commission (NSSC), which are mainly responsible for the national nuclear security regime, have already recognized the importance of education and training in physical protection. The NSSC enacted its decree on physical protection education and training in 2010. KINAC was designated as the first educational institute in 2011 and implemented physical protection education as mandatory from 2012.

  19. Implementing Physical Protection Education for an Enhanced Nuclear Security Culture

    International Nuclear Information System (INIS)

    Lee, Jeong Ho; Kim, Hyun Chul; Shin, Ick Hyun; Lee, Hyung Kyung; Choe, Kwan Kyoo

    2013-01-01

    In this paper, we are going to outline our efforts and experiences at implementing physical protection education. KINAC (as the only designated educational institute) places great effort in delivering an effective and a high-quality education program for physical protection. We have also provided a way for nuclear operators to share the lessons they have gained through their own experiences. We made physical protection education an important communication channel, not only among nuclear operators but also between operators and a regulatory body. There is growing attention given to education and training on the subject of physical protection in order to enhance the nuclear security culture. The IAEA recommends that all personnel in organizations directly involved with the nuclear industry receive regularly education in physical protection according to the recently revised INFCIRC/225/Rev.5. The Korea Institute of Nuclear Nonproliferation and Control (KINAC) and the Nuclear Safety and Security Commission (NSSC), which are mainly responsible for the national nuclear security regime, have already recognized the importance of education and training in physical protection. The NSSC enacted its decree on physical protection education and training in 2010. KINAC was designated as the first educational institute in 2011 and implemented physical protection education as mandatory from 2012

  20. Evaluating the effectiveness of operator education/training program of Fugen

    International Nuclear Information System (INIS)

    Maeda, Kouichi; Sakruai, Naoto; Nakamura, Shinji

    2003-01-01

    The ATR Fugen determines 'the Operator Education/Training Program' for plant operators to acquire knowledge, technique and skill from the reactor facility, operation and the other nuclear plant technology. This program consists of the On-the-Job Training (OJT), desk education, ETC training, compact simulator FATRAS training, and lectures in external organization. So it provides education/training according to operators' technical level, knowledge, and experience. Fugen is investigating the most suitable training/education based on past training/education experience. (author)

  1. Evolution of GPU nuclear's training program

    International Nuclear Information System (INIS)

    Long, R.L.; Coe, R.P.

    1987-01-01

    GPU Nuclear Corporation (GPUN) manages the operators of Three Mile Island Unit 1 and Oyster Creek Nuclear Generating Stations and the recovery activities at the Three Mile Island Unit 2 plant. From the time it was formed in January 1980 GPUN emphasized the use of behavioral learning objectives as the basis for all its training programs. This paper describes the evolution to a formalized performance based Training System Development (TSD) Process. The Training and Education Department staff increased from 10 in 1979 to the current 120 dedicated professionals, with a corresponding increase in facilities and acquisition of sophisticated Basic Principles Training Simulators and a Three Mile Island Unit 1 control Room Replica Simulator. The impact of these developments and achievement of full INPO accreditation are discussed and related to plant performance improvements

  2. Students education and training for Slovak NPP

    International Nuclear Information System (INIS)

    Slugen, V.; Lipka, J.; Hascik, J.; Miglierini, M.

    2005-01-01

    Slovak University of Technology is the largest and also the oldest university of technology in Slovakia. It is certain that more than 50% of the highly-educated technicians who are currently working in the nuclear industry have graduated from this university. The Department of Nuclear Physics and Technology of the Faculty of Electrical Engineering and Information Technology as one of the seven faculties of this University feels the responsibility to impart proper engineering education and training for Slovak NPP operating staff. The education process is realised via undergraduate (BSc), graduate (MSc) and postgraduate (PhD) study as well as via specialised training courses within the framework of a continuous education system. (author)

  3. AFRA Network for Education in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Hashim, O.N.; Wanjala, F.

    2017-01-01

    The Africa Regional Cooperative Agreement for Research Development and Training related to Science and Technology (AFRA) established the AFRA Network for Education in Nuclear Science and Technology (AFRA-NEST) in order to implement AFRA strategy on Human Resource Development (HRD) and Nuclear Knowledge Management (NKM). The strategies for implementing the objectives are: to use ICT for web-based education and training; recognition of Regional Designated Centres (RDCs) for professional nuclear education in nuclear science and technology, and organization of harmonized and accredited programs at tertiary levels and awarding of fellowships/scholarships to young and brilliant students for teaching and research in the various nuclear disciplines

  4. Cultivating Safety Culture in Malaysia Nuclear Industries through Education and Training

    International Nuclear Information System (INIS)

    Ibrahim, Sabariah Kader; Choi, Kwang Sik

    2012-01-01

    Malaysian Nuclear Agency (Nuclear Malaysia) is a national R and D organisation under Ministry of Science, Technology and the Innovation Malaysia, focusing on the application and promotion of nuclear and related technologies for national development. The core business of Nuclear Malaysia is R and D, and our approach has been customer focused, and remains in line with the mainstream of national socio-economic agenda. Thus Nuclear Malaysia.s activities support the short and long- terms national developmental programme. As a result of conducting R and D we generate products and services, including marketing of products and providing technical services, consultancy and training. Hence we would be able to move forwards towards achieving self-reliance and sustainability. Training service centre has been entrusted to enhance the application of nuclear technology in various socio-economic sectors i.e. industry, medical, agricultural and the environment. Thus, skill manpower should be developed and able to participate in various activities to support national development agenda. In executing the functions, the Centre has sufficient resources in term of manpower (for coordinating and training), finance and facilities. In addition, the Centre is backed by a pool of experienced and skilled personnel from other divisions in Nuclear Malaysia and also from our associates or partners to ensure smooth implementation of training

  5. Cultivating Safety Culture in Malaysia Nuclear Industries through Education and Training

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Sabariah Kader [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Kwang Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-05-15

    Malaysian Nuclear Agency (Nuclear Malaysia) is a national R and D organisation under Ministry of Science, Technology and the Innovation Malaysia, focusing on the application and promotion of nuclear and related technologies for national development. The core business of Nuclear Malaysia is R and D, and our approach has been customer focused, and remains in line with the mainstream of national socio-economic agenda. Thus Nuclear Malaysia.s activities support the short and long- terms national developmental programme. As a result of conducting R and D we generate products and services, including marketing of products and providing technical services, consultancy and training. Hence we would be able to move forwards towards achieving self-reliance and sustainability. Training service centre has been entrusted to enhance the application of nuclear technology in various socio-economic sectors i.e. industry, medical, agricultural and the environment. Thus, skill manpower should be developed and able to participate in various activities to support national development agenda. In executing the functions, the Centre has sufficient resources in term of manpower (for coordinating and training), finance and facilities. In addition, the Centre is backed by a pool of experienced and skilled personnel from other divisions in Nuclear Malaysia and also from our associates or partners to ensure smooth implementation of training

  6. Romanian nuclear higher education towards a network of excellency

    International Nuclear Information System (INIS)

    Ghitescu, Petre

    2006-01-01

    RONEN - Romanian Nuclear Education Network - aims at becoming the future network of excellency for nuclear higher education in Romania. University Politehnica of Bucharest participated in ENEN and NEPTUNO FP-5 and FP-6 programs, being a founding member of ENEN Association. The experience gained by ENEN as well as the present European trends show that realization of associations and networks endow with more power the educational national capacities and makes easier the European cooperation. The objective of this project is to develop an efficient, flexible and modern system in the nuclear education field, able to comply with the requirements of final users (NPP operators, regulations organisms, subcontractors, decommissioning operators, radiation protection, personnel, radioactive waste disposal managers), complying at the same time with the common European perspectives of education and research (FP-6, FP-7, EUROATOM). This system is the proposed network of excellency, gathering all the Romanian institutions (universities, research-development centers, training centers, etc) implied in the nuclear education field and using the existent experience of BNEN (Belgian Network of Nuclear Education) and ENEN. The participants in RONEN are the Universities of Bucharest, Pitesti, Babes-Bolyai in Cluj-Napoca, the Vocational Training Center of National Institute for R and D in Physics and Nuclear Engineering Bucharest, the Training Center of Cernavoda NPP, and the Institute for Nuclear Research in Pitesti

  7. Moroccan TRIGA nuclear reactor, an important tool for the development of research, education and training

    International Nuclear Information System (INIS)

    Caoui, A.

    2011-01-01

    Full text: The construction of the Nuclear Research Center of Maamora (NRCM) will enable to the National Center for Nuclear Energy, Sciences and Techniques (CNESTEN) to fulfill its missions for promotion of nuclear techniques in socioeconomic fields, act as technical support for the authorities, and contribute to the introduction of nuclear power for electricity generation considered in the new energy strategy as alternative option for the period 2020-2030. The CNESTEN has commisioned its nuclear research reactor Triga Mark II of 2000 KW on 2007 for wich the operating authorization was delivered on 2009. This research reactor is the keystone structure of the NRCM, its existing and planed utilization include: production of radioisotopes for medical use, neutron activation analysis, non-destructive examination techniques, neutron scattering, reactor physics research and training. In term of human ressources development, CNESTEN is more focusing on education and training for wich an international training Center is under development. The TRIGA research reactor will be an important component of this center. In order to promote the utilization of the reserch reactor in socio-economical sectors at national level, CNESTEN organizea meetings, schools and conferences around each of the reactor applications, and offers the opportunity to researchers, students, socio-economic operators to know more about reactor utilization within scientific visits, courses and training programs. At the international level, CNESTEN strengthens its international partenership. The regional and international cooperation with IAEA, AFRA and bilateral parteners (USA, France), constitutes the platform for capacity building in different areas of CNESTEN RIGA research reactor utilization

  8. Achieving excellence in human performance through leadership, education, and training in nuclear power industry

    International Nuclear Information System (INIS)

    Clark, C.R.; Kazennov, A.; Kossilov, A.; Mazour, T.; Yoder, J.

    2004-01-01

    Full text: In order to achieve and maintain high levels of safety and productivity, nuclear power plants are required to be staffed with an adequate number of highly qualified and experienced personnel who are duly aware of the technical and administrative requirements for safety and are motivated to adopt a positive attitude to safety, as an element of safety culture. To establish and maintain a high level of human performance, appropriate education and training programmes should be in place and kept under constant review to ensure their relevance. As the nuclear power industry continues to be challenged by increasing safety requirements, a high level of competition and decreasing budgets, it becomes more important than ever to maintain excellence in human performance and ensure that NPP personnel training provides a value to the organization. Nuclear industry managers and supervisors bear the primary responsibility to assure that people perform their jobs safely and effectively. Training personnel must be responsive to the needs of the organization, working hand-in-hand with line managers and supervisors to ensure that human performance improvement needs are properly analyzed, and that training as well as other appropriate interventions are developed and implemented in the most effective and efficient way possible. The International Atomic Energy Agency together with its Member States has provided for coordinated information exchange and developed guidance on methods and practices to identify and improve the effectiveness NPP personnel training. This has resulted in: plant performance improvements, improved human performance, meeting goals and objectives of the business (quality, safety, productivity), and more effective training programs. This article describes the IAEA activities and achievements in the subject area for systematically understanding and improving human performance in nuclear power industry. The article also describes cooperation programmes

  9. Evaluating residents in the nuclear medicine residency training program: an educational perspective

    International Nuclear Information System (INIS)

    Pascual, T.N.; San Luis, T.O.L.; Leus, M.

    2007-01-01

    Full text: The comprehensive evaluation of medical residents in a residency-training program includes the use of educational tools to measure the attainment of competencies in the cognitive, psychomotor and affective domains as prescribed in the training curriculum. Attention is almost always focused on the testing of cognitive domain of the learners with limited attention given on the psychomotor and affective parameters, which are in fact, together with the cognitive domain, integral to the students' learning behaviour. This paper aims to review the principles of test construction, including the perspectives on the roles, types and purpose of tests in the domains of learning (cognitive, psychomotor and affective) as well as the use of Non-Test materials for measuring affective learning outcomes and the construction of Performance Tests and Portfolio Assessment tools which are all essential for the effective and efficient evaluation of residents in a Nuclear Medicine Training Program. (author)

  10. Development of cyber training system for nuclear fields

    International Nuclear Information System (INIS)

    Kim, Young Taek; Park, Jong Kyun; Lee, Eui Jin; Lee, Han Young; Choi, Nan Young

    2002-02-01

    This report describes on technical contents related cyber training system construct on KAERI Nuclear Training Center, and on using cases of cyber education in domestic and foreign countries. Also realtime training system through the internet and cyber training management system for atomic fields is developed. All users including trainee, course managers and lecturers can use new technical for create new paradigm

  11. Status of Nuclear Science Education and the Needs for Competency Based Education at the Beginning of Nuclear Power Programme in Turkey

    International Nuclear Information System (INIS)

    Yücel, H.

    2016-01-01

    Full text: In Turkey, in recent years, public opinion is mostly positive towards the establishment of NPPs because electricity demand is ever-increasing with a growing population and developing economy. For peaceful nuclear energy use, Turkey ratified the NPT in 1979 and has had a safeguards agreement, and its Additional Protocol since 2001. However, Turkey has not accumulated the essential nuclear knowledge and experience until now. The present nuclear education and training programmes are not focused on nuclear safety and power technology. There is lack of competencies concerned with measuring and monitoring, instrumentation and control for a safe operation of a reactor, and other specific nuclear equipment and facilities on site. The urgent needs should be determined to commence a competency based education in which the younger generations will instill confidence to nuclear technology. In nuclear training and education programs, it should be given a priority to nuclear safety and security culture. This should be a key requirement for newcomers to nuclear technology. In this presentation, the present status of nuclear science education in Turkey is discussed briefly and the fundamental arguments are dealt to focus on competency based nuclear education. Within international community, Turkey can seek collaborations and can consider the new challenges to tackle with the present difficulties in nuclear education programmes as a newcomer country. (author

  12. Education of nuclear energy specialists

    International Nuclear Information System (INIS)

    Paulikas, V.

    1999-01-01

    Preparation system of nuclear energy specialists in Lithuania is presented. Nuclear engineers are being prepared at Kaunas University of Technology. Post-graduates students usually continue studies at Obninsk Nuclear Energy Institute in Russia. Many western countries like Sweden, Finland and US is providing assistance in education of Lithuanian specialists. Many of them were trained in these countries

  13. Setting-up of remote reactor LAB and tapping into CARRN for distance education and training in nuclear field

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eugene [The Nelson Mandeal African Institute of Science and Technology, Arusha (Tanzania, United Republic of)

    2013-07-01

    For a developing country embarking on a research reactor project, building adequate human resource capacity is one of the biggest challenges. Tanzania has been considering a research reactor for some time. The success of future research reactor project impinges on vigorous education and training of necessary personnel to operate and fully utilize the facility. In Africa, underutilization of research reactors is a chronic issue. It is not only misuse of valuable resources but also poses potential safety and security concerns. To mitigate such concerns and to promote education and training, Central African Research Reactor Network (CARRN) was formed in June of 2011. Borrowing from Jordan's success, this paper presents customised curricula to take advantage of CARRN for distance education and training in nuclear field.

  14. Setting-up of remote reactor LAB and tapping into CARRN for distance education and training in nuclear field

    International Nuclear Information System (INIS)

    Park, Eugene

    2013-01-01

    For a developing country embarking on a research reactor project, building adequate human resource capacity is one of the biggest challenges. Tanzania has been considering a research reactor for some time. The success of future research reactor project impinges on vigorous education and training of necessary personnel to operate and fully utilize the facility. In Africa, underutilization of research reactors is a chronic issue. It is not only misuse of valuable resources but also poses potential safety and security concerns. To mitigate such concerns and to promote education and training, Central African Research Reactor Network (CARRN) was formed in June of 2011. Borrowing from Jordan's success, this paper presents customised curricula to take advantage of CARRN for distance education and training in nuclear field

  15. Current status of international training center for nuclear security and security issues in Korea

    International Nuclear Information System (INIS)

    Lee, Jong-UK; Sin, Byung Woo

    2013-01-01

    During the 2010 Nuclear Security Summit (NSS) President Lee declared that Korea will establish an international training center (ITC) for nuclear security near the Korea Institute of Nuclear Nonproliferation and Control (KINAC). It will be open to the world in 2014. The government's long term goal is to make the center a hub for education and training in the nuclear field in Asia. The ITC will accomplish this by establishing facilities for practical and realistic exercises through the use of a test bed and various other experiments. The center will also provide comprehensive educational programs for nuclear newcomers. Its main programs include: a well designed educational program, customized training courses, and on-the-job training. This paper will discuss the current status of the ITC and describe practical plans for solving current security issues in Korea. (authors)

  16. Education and training requirements of nuclear power plant personnel

    International Nuclear Information System (INIS)

    Donato, R.; Perlas, C.A.; Conti, E.

    1978-01-01

    This bibliography was compiled by the Scientific Library staff to help in the intensified training program being undertaken by the Philippine Atomic Energy Commission (PAEC) for the nuclear power plant personnel of the Philippines' first nuclear power reactor. This bibliography covers the period 1955 - 1976 of the Nuclear Science Abstracts and is composed of 281 entries. Arrangement of these entries is by broad subject category

  17. ANNETTE. Advanced networking for nuclear education and training and transfer of expertise; ANNETTE. Fortschrittliche Vernetzung von Aus- und Weiterbildungsinitiativen in Kerntechnik und Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt-Hannig, A.; Bernhard-Stroel, C. [Bundesamt fuer Strahlenschutz (Germany)

    2016-07-01

    The present situation of nuclear energy in Europe asks for a continuing effort in the field of Education and Training aimed to assure a qualified workforce in the next decades. In this scenario, ANNETTE is aimed at enhancing and networking the Europe-wide efforts initiated in the past decades by different organisations belonging to academia, research centres and industry to maintain and develop Education and Training in the nuclear fields. This will allow consolidating, developing and better exploiting the achievements already reached in the past and to tackle the present challenges in preparing the European workforce in the nuclear fields.

  18. Status of radiation education and training in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Bernido, C.C. [Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon (Philippines)

    1999-09-01

    There are three major sources and levels of obtaining radiation or nuclear education and training in the Philippines: the secondary schools or high schools; colleges and universities; and training courses in nuclear science and radiation protection offered by government agencies such as the Philippine Nuclear Research Institute (PNRI) of the Department of Science and Technology and the Radiation Health Service (RHS) of the Department of Health. This paper summarizes the status, some of the activities and some of the problems of radiation education in the Philippines. (author)

  19. Status of radiation education and training in the Philippines

    International Nuclear Information System (INIS)

    Bernido, C.C.

    1999-01-01

    There are three major sources and levels of obtaining radiation or nuclear education and training in the Philippines: the secondary schools or high schools; colleges and universities; and training courses in nuclear science and radiation protection offered by government agencies such as the Philippine Nuclear Research Institute (PNRI) of the Department of Science and Technology and the Radiation Health Service (RHS) of the Department of Health. This paper summarizes the status, some of the activities and some of the problems of radiation education in the Philippines. (author)

  20. CORONA project -contribution to VVER nuclear education and training

    International Nuclear Information System (INIS)

    Ilieva, M.; Miteva, R.; Takov, T.

    2016-01-01

    CORONA Project is established to stimulate the transnational mobility and lifelong learning amongst VVER end users. The project aims to provide a special purpose structure for training of specialists and to maintain the nuclear expertise by gathering the existing and generating new knowledge in the VVER area. CORONA Project consists of two parts: CORONA I (2011-2014) ''Establishment of a regional center of competence for VVER technology and Nuclear Applications'', co-financed by the Framework Program 7 of the European Union (EU) and CORONA II (2015-2018) ''Enhancement of training capabilities in VVER technology through establishment of VVER training academy'', co-financed by HORIZON 2020, EURATOM 2014-2015. The selected form of the CORONA Academy, together with the online availability of the training opportunities will allow trainees from different locations to access the needed knowledge on demand. The project will target also new-comers in VVER community like Vietnam, Turkey, Belarus, etc. (authors)

  1. IAEA Activities supporting education and training at research reactors

    International Nuclear Information System (INIS)

    Peld, N.D.; Ridikas, D.

    2013-01-01

    Full-text: Through the provision of neutrons for experiments and their historical association with universities, research reactors have played a prominent role in nuclear education and training of students, scientists and radiation workers. Today education and training remains the foremost application of research reactors, involving close to 160 facilities out of 246 operational. As part of its mandate to facilitate and expand the contribution of atomic energy to peace, health and prosperity throughout the world, the IAEA administers a number of activities intended to promote nuclear research and enable access to nuclear technology for peaceful purposes, one of which is the support of various education and training measures involving research reactors. In the last 5 years, education and training has formed one pillar for the creation of research reactor coalitions and networks to pool their resources and offer joint programmes, such as the on-going Group Fellowship Training Course. Conducted mainly through the Eastern European Research Reactor Initiative, this programme is a periodic sic week course for young scientists and engineers on nuclear techniques and administration jointly conducted at several member research reactor institutes. Organization of similar courses is under consideration in Latin America and the Asia-Pacific Region, also with support from the IAEA. Additionally, four research reactor institutes have begun offering practical education courses through virtual reactor experiments and operation known as the Internet Reactor Laboratory. Through little more than an internet connection and projection screens, university science departments can be connected regionally or bilaterally with the control room o a research reactor for various training activities. Finally, two publications are being prepared, namely Hands-On Training Courses Using Research Reactors and Accelerators, and Compendium on Education and training Based on Research Reactors. These

  2. ICT based training on nuclear technology applications in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Mdoe, S.L. [Nuclear Technology Applications Directorate, Tanzania Atomic Energy Commission, P.O. Box 743, Arusha (Tanzania)]. E-mail: slcmdoe@yahoo.com; Kimaro, E. [Nuclear Technology Applications Directorate, Tanzania Atomic Energy Commission, P.O. Box 743, Arusha (Tanzania)]. E-mail: taec@habari.co.tz

    2006-07-01

    Peaceful application of nuclear technology has contributed to socio-economic resource development in Tanzania. The Tanzania Atomic Energy Commission has taken some active steps for the incorporation and or adoption of ICT-based training modules in nuclear science and technology and its applications. The overall objective of this programme is to establish a sustainable national capability for using the potential of information communication technologies (ICTs) for training and education in the field of nuclear science and technology. This paper reviews some of the experience which the authors gained in the area of ICT based training in nuclear technology applications, it describes some of the challenges experienced, and some proposals to address the issues involved. (author)

  3. ICT based training on nuclear technology applications in Tanzania

    International Nuclear Information System (INIS)

    Mdoe, S.L.; Kimaro, E.

    2006-01-01

    Peaceful application of nuclear technology has contributed to socio-economic resource development in Tanzania. The Tanzania Atomic Energy Commission has taken some active steps for the incorporation and or adoption of ICT-based training modules in nuclear science and technology and its applications. The overall objective of this programme is to establish a sustainable national capability for using the potential of information communication technologies (ICTs) for training and education in the field of nuclear science and technology. This paper reviews some of the experience which the authors gained in the area of ICT based training in nuclear technology applications, it describes some of the challenges experienced, and some proposals to address the issues involved. (author)

  4. Nuclear-related training and education offered by academic institutions (less than baccalaureate degree) (preliminary)

    International Nuclear Information System (INIS)

    Howard, L.

    1981-11-01

    This study presents the results of a survey of academic institutions offering nuclear-related training and education at the less than baccalaureate degree level. The scope of the survey includes only those programs which have a nuclear power industry application, and excludes all programs which are affiliated with nuclear medicine. The survey instrument was distributed by the Institute of Nuclear Power Operations to 262 academic institutions. The survey universe was compiled from a number of publications that listed nuclear-related academic programs. Since the initial mailing in May 1981, ten of the institutions have been determined to no longer exist and eight other listings have been identified as duplications, thus reducing the universe to 244 institutions. Fifty-five percent of the survey population (134 institutions) responded to the questionnaire, of which 45 percent (109) were out of the survey scope and 10 percent (25) indicated they offered less than baccalaureate degree, nuclear-related programs

  5. Development of Educational and Training Simulator for Emergency Response to Chinese Nuclear Accidents

    International Nuclear Information System (INIS)

    Kim, Juyub; Kim, Juyoul; Kim, Sukhoon; Lee, Seunghee; Yoon, Taebin; Cliff, Li-Chi

    2015-01-01

    One of the lessons in the emergency response category is that information on the nuclear power plants of neighboring countries should be organized and the consequence can be assessed. In addition, many reactors have been constructed and are under construction on the eastern coast of China recently. Korea might be directly affected by an accident of Chinese nuclear power plant since Korea is located in the westerly belt. performed with the PCTRAN/CPR-1000 module. The result showed that normal operation and DBA conditions were simulated swiftly with the speed of 16 times faster than real time. Thus, it would be a good source term estimation module for the educational and training simulator

  6. The view at nuclear renaissance via actual European and Slovak approach to nuclear education

    International Nuclear Information System (INIS)

    Slugen, Vladimir

    2010-01-01

    In the last decade, preservation and optimal nuclear knowledge management are becoming a rising challenge worldwide. Many papers and experts talks at different conferences stressed attention on stagnating or decreasing expertise connecting to decreased numbers of graduates, professors or research workers. Several networks were created in the Europe in frame of the 5. and 6. EURATOM Framework Programme accented international collaboration in training and education physics (EUPEN, STEPS) or in nuclear power engineering (ENEN, NEPTUNO). In the Central-European region, there exists a very extensive and also effective international collaboration in nuclear industry and education. Similarly good situation is also among universities and technical high schools in this area. Actually, the Slovak University of Technology in Bratislava has established contacts with many universities abroad in the area of utilization of research and training reactors. One of good examples of international collaboration is ENEN - European Nuclear Education Network Association which resulted in a formation of 'Eugene Wigner Training Courses on Reactor Physics Experiments' running in the last 2 years as a mutual effort of the Budapest University of Technology and Economics (Budapest, Hungary), Czech Technical University (Prague, Czech Republic), University of Technology (Vienna, Austria), and Slovak University of Technology in Bratislava (Bratislava, Slovakia). In total 69 participants from different European countries as Austria, Belgium, Bulgaria, Czech Republic, Finland, Italy, Israel, Romania, Slovakia, Slovenia, Sweden and Switzerland took part at these international training courses so far. In the frame of these courses, students of nuclear engineering vivisited three different experimental facilities located at the course organisers' institutes and carried out experimental laboratory practices. The preservation of nuclear knowledge is possible only via effective use of all tools. The high

  7. The view at nuclear renaissance via actual European and Slovak approach to nuclear education

    Energy Technology Data Exchange (ETDEWEB)

    Slugen, Vladimir [Slovak University of Technology, FEI STU, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2010-07-01

    In the last decade, preservation and optimal nuclear knowledge management are becoming a rising challenge worldwide. Many papers and experts talks at different conferences stressed attention on stagnating or decreasing expertise connecting to decreased numbers of graduates, professors or research workers. Several networks were created in the Europe in frame of the 5. and 6. EURATOM Framework Programme accented international collaboration in training and education physics (EUPEN, STEPS) or in nuclear power engineering (ENEN, NEPTUNO). In the Central-European region, there exists a very extensive and also effective international collaboration in nuclear industry and education. Similarly good situation is also among universities and technical high schools in this area. Actually, the Slovak University of Technology in Bratislava has established contacts with many universities abroad in the area of utilization of research and training reactors. One of good examples of international collaboration is ENEN - European Nuclear Education Network Association which resulted in a formation of 'Eugene Wigner Training Courses on Reactor Physics Experiments' running in the last 2 years as a mutual effort of the Budapest University of Technology and Economics (Budapest, Hungary), Czech Technical University (Prague, Czech Republic), University of Technology (Vienna, Austria), and Slovak University of Technology in Bratislava (Bratislava, Slovakia). In total 69 participants from different European countries as Austria, Belgium, Bulgaria, Czech Republic, Finland, Italy, Israel, Romania, Slovakia, Slovenia, Sweden and Switzerland took part at these international training courses so far. In the frame of these courses, students of nuclear engineering vivisited three different experimental facilities located at the course organisers' institutes and carried out experimental laboratory practices. The preservation of nuclear knowledge is possible only via effective use of all

  8. Nuclear medicine training and practice in Poland

    International Nuclear Information System (INIS)

    Teresinska, Anna; Birkenfeld, Bozena; Krolicki, Leszek; Dziuk, Miroslaw

    2014-01-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular

  9. Nuclear medicine training and practice in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Teresinska, Anna [Institute of Cardiology, Department of Nuclear Medicine, Warsaw (Poland); Birkenfeld, Bozena [Pomeranian Medical University, Department of Nuclear Medicine, Szczecin (Poland); Krolicki, Leszek [Warsaw Medical University, Department of Nuclear Medicine, Warsaw (Poland); Dziuk, Miroslaw [Military Institute of Medicine, Department of Nuclear Medicine, Warsaw (Poland)

    2014-10-15

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes

  10. Training and education

    International Nuclear Information System (INIS)

    Bauer, E.; Oria, M.

    1977-01-01

    The paper deals essentially with problems of training and education in a developing country that has made the decision to launch a nuclear programme. All teaching has a double aim: to transfer knowledge, and to form responsible individuals. In a state each pedagogic action has a relatively definite aim. In the nuclear field this aim can be construction of a research or power reactor (or participation in its construction) or the operation of these reactors. There are no well-defined borders between these various aims and for each aim the overall needs should be defined. The personnel needs can be expressed by a series of desired outlines for each function. The starting point should be the students or the active population (in particular those who have already been employed in a conventional power station). The means to proceed from the original state to the desired situation will be sought. The number of people trained should be at least twice that needed (accidents, holidays, resignations). For technicians and engineers a good basic knowledge of fundamental science is necessary in every case. It should be kept in mind that the government ought to be informed beforehand on the alternate choices by advisers trained in specialized courses, i.e. IAEA courses for decision-makers. First, the local educational means shall be used. For very specialized functions the supplier of the power station will provide an adequate training. Specialized teaching centres abroad will provide additional knowledge to those who already have the required fundamental education. Theoretical learning can be useful only after a long period of training in a reactor department in the country itself or abroad. This training should tend to actual integration in a team. A certain amount of information should be given preferably in situ, in particular in the field of health physics, as each member of the staff must be fully aware of its importance. (author)

  11. Nuclear training as the integral part of managing of human resources

    International Nuclear Information System (INIS)

    Kazennov, A.Yu.; )

    2010-01-01

    The author reports on the personnel training that is one of important measures to achieve and maintain the required competence of various categories of nuclear facility employees, including nuclear power plants, and one of important activities in the framework of overall management system to improve organizational and human performance of a nuclear facility. The role of the IAEA in the assistance in the development of training systems for nuclear power plants is described, in particular the activity of the Technical Working Group on Managing Human Resources in the Field of Nuclear Energy (TWG-MHR) and The Education and Training Support Group (ETSG) [ru

  12. Re-engineering the nuclear medicine residency curriculum in the new era of PET imaging: Perspectives on PET education and training in the Philippine context

    International Nuclear Information System (INIS)

    Pascual, T.N.; Santiago, J.F.; Leus, M.

    2007-01-01

    Full text: There is rapid development in PET Imaging and Molecular Nuclear Medicine. In the context of a residency training program, there is a need to incorporate these technologies in the existing Nuclear Medicine Residency Training Curriculum. This will ensure that trainees are constantly updated with the latest innovations in Nuclear Medicine making them apply this progress in their future practice hence making them achieve the goals and objectives of the curriculum. In residency training programs wherein no PET facilities are existing, these may be remedied by re-engineering the curriculum to include mandatory /electives rotations to other hospitals where the facilities are available. In order to ensure the integrity of the training program in this process of development, a proper sequence of this re-engineering process adhering to educational principles is suggested. These steps reflect the adoption of innovations and developments in the field of Nuclear Medicine essential for nuclear medicine resident learning. Curriculum re-engineering is a scientific and logical method reflecting the processes of addressing changes in the curriculum in order to deliver the desired goals and objectives of the program as dictated by time and innovations. The essential steps in this curriculum re-engineering process, which in this case aim to incorporate and/or update PET Imaging and Molecular Nuclear Imaging education and training, include (1) Curriculum Conceptualization and Legitimatisation, (2) Curriculum Diagnosis, (3) Curriculum Engineering, Designing and Organization, (4) Curriculum Implementation, (5) Curriculum Evaluation, (6) Curriculum Maintenance and (7) Curriculum Re-engineering. All of these sequences consider the participation of the different stakeholders of the training program. They help develop the curriculum, which seeks to promote student learning according to the dictates of the goals and objectives of the program and technology development. Once the

  13. Current status and future directions of nuclear education in elementary and secondary education. Several measures for revitalization

    International Nuclear Information System (INIS)

    Hirose, Masami; Tsuruta, Takao; Shibata, Toshikazu

    1999-01-01

    It has been a long time since a necessity to deepen education concerning energy, in particular, nuclear-related education in the elementary and secondary education curriculums in Japan was pointed out. To attain this objective, the nuclear industry and the education industry should work in close cooperation. As the Ministry of Education's Course of Study substantially regulates the direction of school education in Japan, nuclear energy experts should be involved in its development from an early stage in an appropriate manner. At least, training for the teaching profession for science teachers should include experiments related to nuclear energy and radiation. It is considered quite effective to provide incumbent teachers with various training opportunities by nuclear organizations in order to solve the problem in question. (author)

  14. Education and Training

    International Nuclear Information System (INIS)

    Park, J.K.

    2014-01-01

    Summary: • Many presentations today and during the week about training and the application of SAT in MS. • IAEA can provide support and assistance in these areas. • Several Interactive IAEA presentations today and rest of the week to share our tools and services in this area. • Member States encouraged to continue Education/Industry cooperation to ensure E&T meets Industry’s needs • Such cooperation should also be used to foster Outreach activities to stimulate interest in a career in nuclear for young people, as well as increasing support for nuclear power

  15. European Nuclear Education Network (ENEN) Association Initiative

    International Nuclear Information System (INIS)

    Comsa, Olivia; Meglea, Claudia; Banutoiu, Marina; Paraschiva, M. V.; Meglea, S.

    2003-01-01

    The main objective of the ENEN Association is the preservation and further development of a higher nuclear education and expertise. This objective should be achieved through the co-operation between European universities involved in education and research in the nuclear engineering field, research centers and the nuclear industry. To reach this objective, the ENEN Association has to: Promote and develop the collaboration in nuclear engineering education of engineers and researchers required by the nuclear industry and the regulatory bodies; Ensure the quality of nuclear academic engineering education and training; Increase the attractiveness for engagement in the nuclear field for students and young academics. The basic objectives of the ENEN Association shall be to: Deliver an European Master of Science Degree in Nuclear Engineering and promote PhD studies; Promote exchange of students and teachers participating in the frame of this network; Increase the number of students by providing incentives; Establish a framework for mutual recognition; Foster and strengthen the relationship with research laboratories and networks, industry and regulatory bodies, by involving them in (or association them with) nuclear academic education and by offering continuous training. The aims of the ENEN Association shall be achieved by: Discussion on educational objectives, methods and course contents among the members and with external partners, particularly national European industries; Organization of internal audits on the quality of nuclear engineering curricula; Awarding the label of 'European Master degree of Science in Nuclear Engineering' to the curricula satisfying the criteria set up by the ENEN Association; Cooperation between the members, and with the research centers and the nuclear industry for enhancement of mobility of teachers and students, organization of training and advanced courses, use of large research and teaching facilities or infrastructures; Cooperation

  16. New Initiatives for International Cooperation for Nuclear Education in Russia

    International Nuclear Information System (INIS)

    Strikhanov, M.

    2014-01-01

    Final remarks: Planned activities under the IAEA/MePhI cooperation - Assistance in implementing the IAEA initiative on Virtual Nuclear Management University; • Collecting and preserving information on peaceful use of nuclear science and technology through the Russian International Nuclear Information System (INIS) Center; • Assistance in implementing the educational laboratories of Virtual Nuclear laboratories for CLP4NET and T urbine-installation of NPP with VVER-1000 reactor“ simulator; • Develop and implement the selected courses using the CLP4NET or other suitable platform (3 Master’s degree programs on Nuclear Engineering, Nuclear Reactors and Nuclear Nonproliferation); • Assistance in implementing the IAEA/ICTP School of NKM, August 2014 ; • A set of regional workshops on “The role of computer-based educational laboratories in Nuclear Engineering University Programmes”. New possible activities under the IAEA umbrella - • Cooperation with regional networks; • Establish a new network for Nuclear Education (CIS, EvrAzES, …) and develop together with other countries curricula, training programs and training materials on nuclear power and non-power applications; • Build public awareness of the benefits of nuclear technology and its applications; Support the IAEA in implementation of the selected courses in Member States. • Cooperation with foreign nuclear universities and training organizations for development of master and bachelor programs and postgraduate training

  17. The Asian Network for Education in Nuclear Technology (ANENT)

    International Nuclear Information System (INIS)

    Amin, F.; Grover, R.B.; Han, K.W.

    2004-01-01

    The per capita electricity availability in the Asian region is below the world average. Nuclear energy is considered by several countries in the region as a potential source to meet their growing energy demand. Thus, there is likely to be an expansion of nuclear power programme in the Asian region. Additionally, as the economies in the region expand, there will be an increasing role for isotope and radiation technologies in the health care, agriculture, and industrial sectors. The growing demand for power and non-power applications of nuclear technologies would require a sustainable supply of well-qualified nuclear workforce. The Asian Network for Education in Nuclear Technology, ANENT in short, was established in February 2004 in response to this need. The state of nuclear education in the region is at different levels in different countries. This diversity provides an opportunity for sharing of knowledge and resources. ANENT will facilitate cooperation in education, related research and training through: (i) sharing of information and materials on nuclear education and training; (ii) exchange of students, teachers and researchers; (iii) establishment of reference curricula and facilitating mutual recognition of degrees; and (iv) facilitating communication between ANENT member institutions and other regional and global networks. By focusing on education, ANENT complements existing activities undertaken by the International Atomic Energy Agency (IAEA) and supports IAEA activities for the preservation of nuclear knowledge. ANENT is a comprehensive initiative in education and training in that it will give equal importance to power and non-power technologies, thus meeting the diverse needs of the countries in the Asian region. (author)

  18. Nuclear instrument technician training

    International Nuclear Information System (INIS)

    Wollesen, E.S.

    1991-01-01

    This paper reports on Nuclear Instrument Technician (NIT) training that has developed at an accelerated rate over the past three decades. During the 1960's commercial nuclear power plants were in their infancy. For that reason, there is little wonder that NIT training had little structure and little creditability. NIT training, in many early plants, was little more than On-The Job Training (OJT). The seventies brought changes in Instrumentation and Controls as well as emphasis on the requirements for more in depth training and documentation. As in the seventies, the eighties saw not only changes in technologies but tighter requirements, standardized training and the development of accredited Nuclear Instrument Training; thus the conclusion: Nuclear Instrument Training Isn't What It Used To Be

  19. Role of INPO in improving training in the US nuclear power industry

    International Nuclear Information System (INIS)

    Mangin, A.M.

    1982-01-01

    In response to their newly recognized degree of interdependence, the US nuclear utilities formed the Institute of Nuclear Power Operations (INPO) in late 1979 to enhance nuclear plant safety and reliability nationwide. Because this interdependence extends across national boundaries, in 1981 INPO began accepting participants from outside the United States. To promote excellence in nuclear power plant training, INPO's Training and Education Division has established three objectives: to establish standards of excellence for industry training; to evaluate the quality and effectiveness of industry training programs; and to assist member utilities in providing high quality performance-based training. A variety of activities and projects have been undertaken to accomplish these objectives

  20. Use of multiple on-campus reactors in education and training programs

    International Nuclear Information System (INIS)

    Schlapper, G.A.

    1989-01-01

    In its undergraduate and graduate programs in nuclear engineering and health physics, Texas A ampersand M University utilizes two reactors for the training and education of students. The 5-W AGN-201 nuclear training reactor has been in use since the late 1950s, while the 1-MW TRIGA Nuclear Science Center Reactor (NSCR) was first utilized in late 1961. Both facilities have been upgraded since initial criticality, the AGN power level being increased from the original 200-mW limit to its 5-W current level and the NSCR undergoing conversion from a 100-kW materials test reactor fueled deign to a 1-MW TRIGA-fueled facility. The AGN reactor is operated by the Department of Nuclear Engineering of the College of Engineering and is almost solely utilized in training and education programs. The NSCR facility is administered by the Texas Engineering Experiment Station and support research efforts of faculty and students of departments within and outside the university in addition to contributing to the education and training programs of the nuclear engineering department

  1. Some aspects of increasing the quality of personnel training for nuclear power plants in Czechoslovakia

    International Nuclear Information System (INIS)

    Jacko, J.; Frimmelova, A.

    1989-01-01

    Nuclear power plant personnel in Czechoslovakia is subject to periodical training in accordance with the Unified System of Nuclear Facility Personnel Training. This training is the responsibility of the Educational and Training Centre of the Nuclear Plant Research Institute in Trnava. Nuclear plant personnel is divided into 7 groups as follows: A - supervisory technical-administrative management staff; B - selected operating personnel such as shift supervisors, unit supervisors, reactor operators and secondary circuit operators; C - engineering-technical personnel of technical and maintenance departments; D - managing shift-operating staff; E - workers at technical plant departments; F - operational shift workers and servicemen; and G - maintenance personnel. These groups are respected in the training, which includes basic training, re-training and additional training. The basic training comprises 8 stages: general theoretical education; specialized theoretical education; on-the-job training in a plant designated for training; training on a simulator (group B); preparing for and taking final examinations for the certificate; doubling in the NPP designated for training (groups B, D, F); preparation in the NPP of future employment; preparing for and taking the state examination for obtaining the license (group B). Details of the management of the training process, experience gained during the implementation of the training and challenges for future improvement of the system are outlined. (P.A.)

  2. Education and Training possibilities at the Belgian Nuclear Research Centre SCK-CEN

    International Nuclear Information System (INIS)

    Coeck, M.

    2007-01-01

    Thanks to its thorough experience in the field of peaceful applications of nuclear science and technology SCK-CEN has garnered a reputation as an outstanding centre of not only research, but also education and training (E and T). The E and T activities at SCK-CEN cover a. o. reactor physics, reactor operation, reactor engineering, radiation protection, decommissioning and waste management. Our courses are directed to the nuclear industry, the medical and the non-nuclear industry, national and international policy organizations, the academic world and the general public. E and T programs are also organized in cooperation with universities, technical universities, nuclear power plants and public and private health services. In addition, the SCK-CEN is involved in international E and T research networks and programs such as ENETRAP, EUTERP, EUNDETRAF, CETRAD, BNEN and ENEN. Next to courses, SCK-CEN also offers students the possibility to perform their research work at our laboratories. Final-year students and Ph.D. candidates can enter a programme defined by an SCK-CEN mentor, in close collaboration with a university promotor. Post-docs are mainly recruited in specialised research domains that reflect the priority programmes and R and D topics of our institute

  3. Outcome of the INMM-ESARDA Working Group 4 on Education and Training

    International Nuclear Information System (INIS)

    Janssens, W.; Scholtz, M.

    2013-01-01

    Training and Education are key activities to develop new ideas, underpin capacity building, maintain competencies, skills and allow proper implementation of nuclear safeguards, nonproliferation and nuclear security. The urgent need for dedicated efforts in this field were recognized, also internationally, more than ten years ago, in parallel to the dwindling knowledge in the nuclear field in general. The working group proposes this series of actions: 1) to establish minimum standard for safeguards education and training modules, 2) to make safeguards and non-proliferation a mandatory element of nuclear engineering curricula, 3) to find funding for education and training activities, 4) to foster exchange of students and trainees, 5) to guarantee access to relevant nuclear infrastructures for training purposes, 6) to expand INMM-ESARDA interactions with other networks and stakeholders, 7) to provide sufficient attention to knowledge management, and 8) to deepen integration with non-governmental organisations. The paper is followed by the slides of the presentation. (A.C.)

  4. Survey of Radiation Protection Education and Training in Finland in 2003

    International Nuclear Information System (INIS)

    Havukainen, R.; Korpela, H.; Vaisala, S.; Piri, A.; Kettunen, E.

    2004-01-01

    The current state and need for radiation protection training in Finland have been surveyed by the Radiation and Nuclear Safety Authority STUK. The survey sought to determine whether the current requirements for radiation protection training had been met, and to promote radiation protection training. Details of the scope and quality of present radiation protection training were requested from all educational institutes and organizations providing radiation protection training. The survey covered both basic and further training, special training of radiation safety officers, and supplementary training. The questionnaire was sent to 77 educational organization units, 66 per cent of which responded. Radiation workers and radiation safety officers were asked about radiation protection knowledge and needs for additional training. The questionnaire was sent to 880 radiation users and 170 radiation safety officers, 70 per cent of whom responded. The survey covered all professional groups and fields of the use of ionizing radiation except nuclear energy. The amount of radiation protection training in basic and further (specialization) training in the same vocational or academic degree varied remarkably by educational organization. The average amounts of radiation protection included in most professional degrees met the requirements. 32 per cent of workers considered their radiation protection training inadequate for their duties, and 48 per cent had completed no supplementary training in radiation protection over the last five years. Nurses working in public sector hospitals and physicians working in health centres had the greatest need for radiation protection training. 78 per cent of radiation workers in industry felt that they had sufficient radiation protection training. Co-operation between educational organizations is necessary to harmonize radiation protection training. Guidance of the Ministry of Education (the competent authority for education) is needed in this

  5. Academic training for nuclear power plant operators

    International Nuclear Information System (INIS)

    Jones, D.W.

    1982-01-01

    In view of the increasing emphasis being placed upon academic training of nuclear power plant operators, it is important that institutions of higher education develop and implement programs which will meet the educational needs of operational personnel in the nuclear industry. Two primary objectives must be satisfied by these programs if they are to be effective in meeting the needs of the industry. One objective is for academic quality. The other primary objective is for programs to address the specialized needs of the nuclear plant operator and to be relevant to the operator's job. The Center for Nuclear Studies at Memphis State University, therefore, has developed a total program for these objectives, which delivers the programs, and/or appropriate parts thereto, at ten nuclear plant sites and with other plants in the planning stage. The Center for Nuclear Studies program leads to a Bachelor of Professional Studies degree in nuclear industrial operations, which is offered through the university college of Memphis State University

  6. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  7. Nuclear criticality safety specialist training and qualification programs

    International Nuclear Information System (INIS)

    Hopper, C.M.

    1993-01-01

    Since the beginning of the Nuclear Criticality Safety Division of the American Nuclear Society (ANS) in 1967, the nuclear criticality safety (NCS) community has sought to provide an exchange of information at a national level to facilitate the education and development of NCS specialists. In addition, individual criticality safety organizations within government contractor and licensed commercial nonreactor facilities have developed training and qualification programs for their NCS specialists. However, there has been substantial variability in the content and quality of these program requirements and personnel qualifications, at least as measured within the government contractor community. The purpose of this paper is to provide a brief, general history of staff training and to describe the current direction and focus of US DOE guidance for the content of training and qualification programs designed to develop NCS specialists

  8. Improving practical training ability at Nuclear Research Institute oriented to nuclear human resource development within First Phase

    International Nuclear Information System (INIS)

    Nguyen Xuan Hai; Nguyen Nhi Dien; Pham Dinh Khang; Pham Ngoc Tuan; Tuong Thi Thu Huong

    2016-01-01

    This report presents results of a research project “Improving practical training ability at Nuclear Research Institute oriented to nuclear human resource development within first phase”. In the frameworks of the project, a guiding document on 27 Ortec’s experiments was translated into Vietnamese. Several equipment are used in the experiments such as neutron howitzer, gamma counter, multi-channel analyzer and alpha-gamma coincidence spectroscopy were designed and fabricated. These products contributed to improving the ability of research and training of Training and Education Center, Nuclear Research Institute (NRI). (author)

  9. Proceedings of the seventh symposium on training of nuclear facility personnel

    International Nuclear Information System (INIS)

    1987-04-01

    Separate abstracts were prepared for 45 papers in this conference proceedings. Topics covered include influences on nuclear training, the relationship between human factors and training, factors affecting job performance, current training methods, the relationship between training and education, emerging training techniques, evaluation to improve performance, and measurement of the impact of training

  10. The International Atomic Energy Agency Nuclear Security Education Strategies

    International Nuclear Information System (INIS)

    BRAUNEGGER-GUELICH, A.; RUKHLO, V.; GREGORIC, M.; COLGAN, P.

    2011-01-01

    The threat of nuclear terrorism has not diminished. In response to the concerns of States, an international nuclear security framework has emerged through the establishment of a number of legally binding and non-binding international instruments which obligates or commits States to carry out a number of actions to protect against nuclear terrorism. In this context, the need for human resource development programmes in nuclear security was underscored at several International Atomic Energy Agency (IAEA) General Conferences and Board of Governors' Meetings. In the pursuit of this need, the IAEA provides a comprehensive nuclear security training programme to States on a regular basis, and has developed a concept that seeks to effectively pass ownership of nuclear security knowledge and skills to States through the establishment of a Nuclear Security Support Centre. In addition, the IAEA has developed a technical guidance titled IAEA Nuclear Security Series No. 12 - Educational Programme in Nuclear Security that consists of a model of a Master of Science (M.Sc.) and assists educational institutions to provide nuclear security education. The article sets out IAEA efforts in the area of nuclear security training and education, including the assistance to States for establishing a Nuclear Security Support Centre. It underlines the objective and content of the IAEA Nuclear Security Series No. 12, discusses different concepts on how to establish nuclear security at universities and, emphasizes on the IAEA efforts to assist educational and research institutions, and other stake holders to enhance global nuclear security by developing, sharing and promoting excellence in nuclear security education. (author)

  11. Romanian regulatory requirements on nuclear field specific education needs

    International Nuclear Information System (INIS)

    Biro, L.; Velicu, O.

    2004-01-01

    This work is intended as a general presentation of the educational system and research field, with reference to nuclear sciences, and the legal system, with reference to requirements established by the regulatory body for the professional qualification and periodic training of personnel involved in different activities in the nuclear field. Thus, part 2 and 3 of the work present only public information regarding the education in nuclear sciences and nuclear research in Romania; in part 4 the CNCAN requirements for the personnel training, specific to nuclear activities are slightly detailed; part 5 consists of few words about the public information activities in Romania; and part 6 tries to draw a conclusion. (authors)

  12. Establishment of web-based Asian network for education in nuclear technology

    International Nuclear Information System (INIS)

    Han, K. W.; Lee, E. J.; Kim, Y. T.; Nam, Y. M.; Kim, H. K.

    2004-01-01

    The Korean nuclear community recognizes the importance of nuclear knowledge management and the essential role of nuclear manpower development. International cooperation in the field could be an important vehicle for the promotion of attracting the young generation, facilitating the accessibility of nuclear personnel to the international forum, developing the careers of nuclear personnel, upgrading education and training capabilities, and increasing the mutual benefits. The expected framework of future international cooperation for nuclear education and training may need to focus on the integration and sharing of available resources at national, regional and inter-regional levels. A good example of the IAEA activity set forth echoing the expectation is ANENT (Asian Network for Education in Nuclear Technology) using the web-based network

  13. Operator training simulator for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Watanabe, Tadasu

    1988-01-01

    For the operation management of nuclear power stations with high reliability and safety, the role played by operators is very important. The effort of improving the man-machine interface in the central control rooms of nuclear power stations is energetically advanced, but the importance of the role of operators does not change. For the training of the operators of nuclear power stations, simulators have been used from the early stage. As the simulator facilities for operator training, there are the full scope simulator simulating faithfully the central control room of an actual plant and the small simulator mainly aiming at learning the plant functions. For BWR nuclear power stations, two full scope simulators are installed in the BWR Operator Training Center, and the training has been carried out since 1974. The plant function learning simulators have been installed in respective electric power companies as the education and training facilities in the companies. The role of simulators in operator training, the BTC No.1 simulator of a BWR-4 of 780 MWe and the BTC No.2 simulator of a BWR-5 of 1,100 MWe, plant function learning simulators, and the design of the BTC No.2 simulator and plant function learning simulators are reported. (K.I.)

  14. In-house training, formal education and public outreach

    International Nuclear Information System (INIS)

    Willis, Y.A.

    1992-01-01

    This paper assumes that a stronger national commitment to public education on nuclear energy and, most particularly radioactive waste management, it needed to overcome public resistance to nuclear projects. Effective public education must become the superordinate goal uniting industry, government, professional societies, national laboratories and the educational community. Since instruction is labor intensive, we must search for more cost effective ways of achieving results. Therefore, this paper proposes: Collaborative training and educational strategies involving as many of the stakeholders as possible; and Innovative tools to improve the credibility, quality and cost effectiveness of education. This win-win approach can reduce the collective expenditures through cost-sharing, as well as the sharing of resources and products. It can close gaps in both in-house training and formal education. Finally, in public outreach, the joint approach addresses the politics of sponsorship by providing checks and balances, and thus improving credibility and public acceptance

  15. Education and training - prerequisites for the safe use of nuclear energy

    International Nuclear Information System (INIS)

    Steuer, J.; Rehak, W.

    1988-01-01

    The system of training measures for persons engaged in the application of atomic energy in the German Democratic Republic is described. Sufficient qualification is a precondition for granting the state licence necessary for work with nuclear energy and application of ionizing radiation sources. Training of graduates, technicians and workers in nuclear power plants, hospitals, enterprises and others is described in detail. It includes college and university studies as well as courses on the application of radiation sources. In the fields of atomic safety and radiation protection the National Board for Atomic Safety and Radiation Protection exercises the function of a national training centre. (author)

  16. Reconstruction of nuclear engineering education in universities

    International Nuclear Information System (INIS)

    Kitamura, Masaharu; Tomota, Yo; Tanaka, Shunichi

    2005-01-01

    Nuclear engineering has become the area gradually loosing appeal to the young for these twenty years taking all the circumstances into consideration. However nuclear power is predicted to be primary energy of greatest importance even in the future and this needs highly motivated and excellent personnel in nuclear industry and society so as to develop and maintain nuclear power to a high degree. Under these circumstances discussions on how should be nuclear engineering research and education in the new era were presented from various viewpoints and they led to the direction of reconstruction of nuclear engineering education in universities and relevant organizations to train and ensure personnel. (T. Tanaka)

  17. Education and Training in Decommissioning: Needs, Opportunities and Challenges

    International Nuclear Information System (INIS)

    Kockerols, P.; Schneider, H. G.; Freer, M.

    2016-01-01

    Full text: The decommissioning of nuclear facilities is an industrial activity that is growing worldwide, creating job opportunities and requiring skilled workers. European industry has acquired know-how and today Europe can position itself at the top level in the world decommissioning market. However, in view of the expected expansion of the activities, efforts are necessary to share and enhance the underpinning knowledge, skills and competences. In this perspective, the University of Birmingham in association with the European Commission’s Joint Research Centre have organized a joint seminar to address the following questions in relation to education and training in nuclear decommissioning: • What are the competence needs for the future? • What are the education and training opportunities? • How can we stimulate interest and future talent? In answering these questions a report has been issued giving orientations for stimulating the development, coordination and promotion of adequate education and training programmes at EU level in nuclear decommissioning. Following the conclusions of the report the JRC and interested partners have launched the initiative to consolidate existing training programmes in decommissioning, in order to facilitate their promotion and the opportunities they can offer. (author

  18. Nuclear manpower planning and personnel training

    International Nuclear Information System (INIS)

    Chen, J.H.

    1984-01-01

    Taiwan Power Company has established a nuclear manpower program to identify human resources, selection and recruitment of entry level engineers and technicians of Nuclear Energy Group. The methodology to estimate the future nuclear manpower demand of Taipower has been clearly described in this article. Also, the manpower program is being used as the bases for nuclear training program development. For safe, reliable and efficient operation of nuclear power plants, Taipower has established a systematic training program for nuclear power stations and headquarter personnel. The training program has been implemented in three stages with different patterns of training program. The first stage of nuclear training before 1975 was completed successfully. The second stage of nuclear training currently conducted since 1975 enlarges domestic training capability. The third stage of nuclear training with a long term training program is now under a systematic and compositive development effort

  19. Education for the nuclear power industry: Swedish perspective

    International Nuclear Information System (INIS)

    Blomgren, J.

    2005-01-01

    In the Swedish nuclear power industry staff, very few newly employed have a deep education in reactor technology. To remedy this, a joint education company, Nuclear Training and Safety Center (KSU), has been formed. To ensure that nuclear competence will be available also in a long-term perspective, the Swedish nuclear power industry and the Swedish Nuclear Power Inspectorate (SKI) have formed a joint center for support of universities, the Swedish Nuclear Technology Center (SKC). The activities of these organisations, their links to universities, and their impact on the competence development for the nuclear power industry will be outlined. (author)

  20. Existing Approaches to Chemical, Biological, Radiological, and Nuclear (CBRN) Education and Training for Health Professionals: Findings from an Integrative Literature Review.

    Science.gov (United States)

    Kako, Mayumi; Hammad, Karen; Mitani, Satoko; Arbon, Paul

    2018-04-01

    This review was conducted to explore the literature to determine the availability, content, and evaluation of existing chemical, biological, radiological, and nuclear (CBRN) education programs for health professionals. An integrative review of the international literature describing disaster education for CBRN (2004-2016) was conducted. The following relevant databases were searched: Proquest, Pubmed, Science Direct, Scopus, Journals @ OVID, Google Scholar, Medline, and Ichuschi ver. 5 (Japanese database for health professionals). The search terms used were: "disaster," "chemical," "biological," "radiological," "nuclear," "CBRN," "health professional education," and "method." The following Medical Subject Headings (MeSH) terms, "education," "nursing," "continuing," "disasters," "disaster planning," and "bioterrorism," were used wherever possible and appropriate. The retrieved articles were narratively analyzed according to availability, content, and method. The content was thematically analyzed to provide an overview of the core content of the training. The literature search identified 619 potentially relevant articles for this study. Duplicates (n=104) were removed and 87 articles were identified for title review. In total, 67 articles were discarded, yielding 20 articles for all-text review, following 11 studies were retained for analysis, including one Japanese study. All articles published in English were from the USA, apart from the two studies located in Japan and Sweden. The most typical content in the selected literature was CBRN theory (n=11), followed by studies based on incident command (n=8), decontamination (n=7), disaster management (n=7), triage (n=7), personal protective equipment (PPE) use (n = 5), and post-training briefing (n=3). While the CBRN training course requires the participants to gain specific skills and knowledge, proposed training courses should be effectively constructed to include approaches such as scenario-based simulations

  1. Educational and training needs in radioactive waste management

    International Nuclear Information System (INIS)

    Mele, I.; Mavko, B.; Jencic, I.

    2005-01-01

    For further safe use of nuclear technology it is highly important to maintain the achieved level of knowledge and expertise. The risk of losing nuclear knowledge accumulated in the past is being increasingly discussed in many countries. As part of this debate the knowledge of radioactive waste management is also being closely watched. The current position and future needs of education and training in radioactive waste management were investigated within the coordination action CETRAD as part of the 6 th Framework Programme of the EU. Twenty partners from 17 European countries, including Slovenia, took part in this investigation. The review focused on geological disposal. It has considered the training and education needs of national radioactive waste management organisations, regulatory and government advisory organisations, and other nuclear industry organisations employing staff in this area, and also the provision of education and training by university and non-university organisations to address these needs. The results and conclusions of this research are presented in this paper. Emphasis is given to the national survey results and estimations of our E and T needs in radioactive waste management. (author)

  2. Management of nuclear training center

    International Nuclear Information System (INIS)

    Seo, In Suk; Lee, Han Young; Cho, Boung Jae; Lee, Seung Hee; Lee, Eoi Jin; You, Byung Hoon; Lee, Won Ku; Jeon, Hyung Ryeon; Seo, Kyung Won; Kim, Young Joong; Kim, Ik Hyun; Hyun, Ha Il; Choi, Il Ki; Hong, Choon Sun; Won, Jong Yeul; Joo, Yong Chang; Nam, Jae Yeul; Sin, Eun Jeong

    1996-02-01

    This report describes the annual results of training courses. The scope and contents are as follows : 1. Regional and interregional training courses, 2. Training courses assisted by foreign experts, 3. Training courses for nuclear industry personnel, 4. Training courses for internal staff-members, 5. Training courses under the law. The nuclear training center executed the open-door training courses for 2,699 engineers/scientists from the regulatory body, nuclear industries, research institutes and other related organizations by means of offering 69 training courses during the fiscal year 1995. (Author) .new

  3. Doctoral education in the nuclear sector

    International Nuclear Information System (INIS)

    Minguez, E.

    2013-01-01

    Doctoral education is a major priority for European universities. In the context of the Bologna Process the importance of doctoral education as the third cycle of higher education and the first stage of a young researchers career, and thus in linking the European Higher Education and Research Areas, was first highlighted in the 2003 Berlin Report. The core component of doctoral training is the advancement of knowledge through original research. considering the need for structured doctoral programs and the need for transparent supervision and assessment, we note that the normal workload of the third cycle in most countries would correspond 3-4 years full time. This is spirit of the new Spanish Doctoral Law. Then, universities should ensure that their doctoral programmes promote interdisciplinary training and the development of transferable skills, thus meeting the needs of the wider employment market. We need to achieve and overall increase in the numbers of doctoral candidates taking up research careers as early stage researchers and also increase the employability as a normal way as it is the case of other advance countries. In Spain, universities with doctoral nuclear programmes and the CIEMAT, with the sponsorship of the nuclear sector, a doctoral school in nuclear science and engineering should be created to enhance the research careers of Young students for the future of nuclear activities in Spain. (Author)

  4. Nuclear science and technology in higher education in the Philippines

    International Nuclear Information System (INIS)

    Bernido, C.C.

    2007-01-01

    Education and training in nuclear science and technology in the Philippines are obtained from higher education institutions, and from courses offered by the Philippine Nuclear Research Institute. The Philippine Nuclear Research Institute (PNRI), an institute under the Department of Science and Technology (DOST), is the sole government agency in charge of matters pertaining to nuclear science and technology, and the regulation of nuclear energy. The PNRI was tasked with fast-tracking nuclear education and information, together with the Department of Education, Culture and Sports (DECS), the Commission on Higher Education (CHED), and some other government agencies which constituted the Subcommittee on Nuclear Power Public Education and Information, by virtue of Executive Order 243 enacted by then President Ramos on May 12, 1995. This Executive Order created the Nuclear Power Steering Committee; the Subcommittee on Nuclear Power Public Education and Information was one of the subcommittees under it. The Nuclear Power Steering Committee was created when the government was again considering the feasibility of the nuclear power option; this Committee had since become inactive because the government has not re-embarked on a nuclear power program. The Philippines had a nuclear power program in the 1970's. The first nuclear power plant was nearing completion when Chernobyl and Three Mile Island happened. Due to the change in political climate and strong anti-nuclear sentiment, the first nuclear power plant had been mothballed. However, there is a possibility for the introduction of nuclear power in the country's projected energy sources by the year 2025. The country has one research reactor, a 3 MW Triga reactor, but at the present time it is not operational and is under extended shutdown. In the event that the Philippines will again implement a nuclear power program, there will be a great need for M.S. and Ph.D. holders in nuclear engineering. There are less than five

  5. Academic nuclear engineering education - the Dutch way

    International Nuclear Information System (INIS)

    Wallerbos, E.J.M.; Geemert, R. van

    1997-01-01

    The academic nuclear engineering educational program in the Netherlands aims not only to give students a thorough knowledge of reactor physics but also to train them in practical skills and presentation techniques. These three aspects are important to become a successful nuclear engineer. (author)

  6. Training of nuclear power plant personnel on Czechoslovak WWER-440 simulator

    International Nuclear Information System (INIS)

    Dugovic, M.

    1985-01-01

    The aim of simulator training is to train personnel for control work observing technical and technological regulations of nuclear power plant operation. Training is implemented in two forms: basic training and recurrent training. The daily regime of the training course is divided into theoretical education, simulator training and evaluation. Simulator training is oriented to the preparation of the workplace, presentation, controlled intermittent work and independent control work. (J.C.)

  7. Education and training for workers of nuclear power plants

    International Nuclear Information System (INIS)

    Nishikawa, Motoyuki

    1985-01-01

    On the education concerning radiation control for the workers of nuclear power plants, the notice of the Ministry of Labor is to be observed in nuclear power stations from April-June, 1985, and to make the standard for executing it in unified state, the working group was organized in the Federation of Electric Power Companies. It drew up the ''Standard for education on radiation control''. First, the notice from the director of the Labor Standards Bureau, the Ministry of Labor, issued on June 26, 1984, is explained. The objective is to reduce the radiation exposure of workers by giving them the necessary knowledge and skill regarding the works involving radiation. The kinds of the education is divided into that given at the time of beginning the works involving radiation and that given after having taken up the job. Both studies and practical techniques are given. The ''Standard for education on radiation control'' stipulates its objective, the contents of the education, the object persons of education, the requirement for lecturers, the education curriculum, and records. In this standard, the details of education contents are determined. The time limit of the effectiveness of education is determined, and after it has expired, re-education is carried out. (Kako, I.)

  8. Education and Training in Decommissioning Needs, Opportunities and Challenges

    International Nuclear Information System (INIS)

    Kockerols, Pierre; Schneider, Hans Guenther; ); Freer, Martin

    2016-01-01

    The decommissioning of nuclear facilities is an industrial activity that is growing worldwide, creating job opportunities at all educational levels. Over the last decades, European companies have been involved in decommissioning projects that are targeted at delivering an environmentally friendly end-product, in line with the 'circular economy', as promoted by EU and national policies. European industry has acquired know-how and today Europe can position itself at the top level in the world decommissioning market. However, in view of the preparation of future decommissioning programmes, efforts are necessary to ensure and share the underpinning knowledge, skills and competences. In this perspective, the University of Birmingham in association with the European Commission's Joint Research Centre have organised a joint seminar to address the following questions in relation to education and training in nuclear decommissioning: - What are the competence needs for the future? - What are the education and training opportunities? - How can we stimulate interest and future talent? In answering these questions a report has been published which provides suggestions for helping the development, coordination and promotion of adequate education and training programmes at EU level in nuclear decommissioning. It highlights, in particular, the necessity to improve the long term planning of the resources and competences, addressing the specifics of decommissioning activities, to give more visibility to the career possibilities in the sector, and to enhance the cooperation between the existing education and training programmes, providing also more clarity in the learning outcomes. (authors)

  9. Nuclear Education and Training Courses as a Commercial Product of a Low Power Research Reactor

    International Nuclear Information System (INIS)

    Böck, H.; Villa, M.; Steinhauser, G.

    2013-01-01

    The Vienna University of Technology (VUT) operates a 250 kW TRIGA Mark II research reactor at the Atominstitut (ATI) since March 1962. This reactor is uniquely devoted to nuclear education and training with the aim to offer an instrument to perform academic research and training. During the past decade a number of requests to the Atominstitut asked for the possibility to offer this reactor for external training courses. Over the years, such courses have been developed as regular courses for students during their academic curricula at the VUT/ATI. The courses cover such subjects as “Reactor physics and kinetics”, and “Reactor instrumentation and control”, in total about 20 practical exercises. Textbooks have been developed in English language for both courses. Target groups for commercial courses are other universities without an access to research reactors (i.e., the Technical University of Bratislava, Slovak Republic, or the University of Manchester, UK), international organisations (i.e., IAEA Dept of Safeguards, training section), research centres (ie. Mol, Belgium) for retraining of their reactor staff or nuclear power plants for staff retraining. These courses have been very successful during the past five years in such a manner that the Atominstitut has now to decline new course applications as the reactor is also used for Masters thesis and PhD work which requires full power operation while courses require low power operation. The paper describes typical training programs, target groups and possible transfers of these courses to other reactors. (author)

  10. Establishment of Experimental Equipment for Training of Professionals in the Nuclear Radiation Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. K.; Seo, K. W.; Joo, Y. C.; Kim, I. C.; Woo, C. K.; Yoo, B. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-09-15

    The main purpose of this project is to establish experimental equipment for training of professionals and students in the field of radiation measurement, and settle the foundation for the advanced education system and program. The priority for the experimental equipment had been deduced by reviewing of the Nuclear Training and Education Center of KAERI and other country's training courses. Equipment for training of radiation professionals are High-Purity Germanium spectroscopic systems, alpha analyzers, and hand-held gamma/neutron inspector systems. For the basic experiments, electric personal dosimeters and a reader, radiation survey meters, and various alpha, beta and gamma radiation isotopes have been equipped. Some old or disused equipment and devices were disposed and re-arranged, and a new experiment lab had been settled for gamma spectroscopy. Along with the preparation of equipment, 14 experimental modules have been selected for practical and essential experiments training to professionals from industries, universities and research organizations. Among the modules, 7 important experiment notes had been prepared in Korea and also in English. As a consequence, these advanced radiation experimental setting would be a basis to cooperate with IAEA or other countries for international training courses. These activities would be a foundation for our contribution to the international nuclear society and for improving our nuclear competitiveness. The experimental equipment and application notes developed in this study will be used also by other training institutes and educational organizations through introducing and encouraging to use them to the nuclear society.

  11. Establishment of Experimental Equipment for Training of Professionals in the Nuclear Radiation Measurement

    International Nuclear Information System (INIS)

    Ahn, S. K.; Seo, K. W.; Joo, Y. C.; Kim, I. C.; Woo, C. K.; Yoo, B. H.

    2008-09-01

    The main purpose of this project is to establish experimental equipment for training of professionals and students in the field of radiation measurement, and settle the foundation for the advanced education system and program. The priority for the experimental equipment had been deduced by reviewing of the Nuclear Training and Education Center of KAERI and other country's training courses. Equipment for training of radiation professionals are High-Purity Germanium spectroscopic systems, alpha analyzers, and hand-held gamma/neutron inspector systems. For the basic experiments, electric personal dosimeters and a reader, radiation survey meters, and various alpha, beta and gamma radiation isotopes have been equipped. Some old or disused equipment and devices were disposed and re-arranged, and a new experiment lab had been settled for gamma spectroscopy. Along with the preparation of equipment, 14 experimental modules have been selected for practical and essential experiments training to professionals from industries, universities and research organizations. Among the modules, 7 important experiment notes had been prepared in Korea and also in English. As a consequence, these advanced radiation experimental setting would be a basis to cooperate with IAEA or other countries for international training courses. These activities would be a foundation for our contribution to the international nuclear society and for improving our nuclear competitiveness. The experimental equipment and application notes developed in this study will be used also by other training institutes and educational organizations through introducing and encouraging to use them to the nuclear society

  12. A New Approach for Education and Training of Medical Physicists in Cuba: From University to Clinical Training

    International Nuclear Information System (INIS)

    Alfonso-Laguardia, R.; Rivero Blanco, J.M.

    2016-01-01

    Full text: According to the international recommendations of IAEA and the International Organization for Medical Physics (IOMP), the education and training of clinically qualified medical physicists (CQMP) should include three main academic and professional elements: a university level education, a postgraduate education specific in medical physics (MP) and a supervised clinical training. In Cuba, most of the medical physicists working in radiation oncology (RO) or nuclear medicine (NM) services have graduated from nuclear related programmes of the High Institute on Applied Technologies and Sciences (InSTEC), who further perform a postgraduate study in medical physics (MP), at the level of a so-called Diploma course or a Master in Sciences. Nevertheless, the third level of education, namely the supervised clinical training has not yet been established, due to the lack of official recognition of the profession of MP by the health authorities. A new approach for comprehensive training of CQMP is presented, where, by maintaining the three elements of education, the process is optimized so that a medical physicist is prepared with the highest level of theoretical and clinical training, in agreement with the current demand of the advanced technologies put in service in Cuban hospitals. (author

  13. Effect of trainings on attitude formation towards nuclear science and technology

    International Nuclear Information System (INIS)

    Asuncion, Alvie J.; Loterina, Roel A.; Cansino, Percedita T.

    2011-01-01

    Nuclear energy's critical role in sustainable development has been highlighted in various reports and studies. This role, however, has been hampered by many influences; one of the most notable is public support which has been correlated with public attitudes. Public support drops rapidly in the midst of nuclear crises as in the case of the recent Fukushima accident, and unless interventions are made, this drop can become irreversible. Information dissemination and brief public communication may serve as short-term solutions, but these interventions appeal to opinions which are relatively more volatile than attitudes. Previous studies have shown that there are different pathways to attitude formation which include education and knowledge-building activities. In this study, the effect of training of the attitudes of participants towards nuclear science and technology was investigated. A questionnaire was designed and validated to measure attitudes towards Nuclear Science and Technology (NST) and was administered to participants of training courses conducted by the PNRI Nuclear Training Center. A total of 111 participants from five training courses were included as respondents which is 91% of the target population, of these, 30.6% are Educators, 44.1% are Medical Practitioners, and 25.2% are Licensees. Mean scores obtained from the questionnaire were analyzed and significant difference has been found at 0.05 confidence level, between participants' attitudes before and after attending a training course. There were slight differences observed from each group of respondents but over-all results show that knowledge-building activities like trainings can be utilized to improve public attitudes towards nuclear science and technology in the Philippine context. (author)

  14. Providing nuclear pharmacy education via the internet

    International Nuclear Information System (INIS)

    Hilliard, N.L.; Pickett, M.; Thaxton, P.; Norenberg, J.P.; Wittstrom, K.; Rhodes, B.

    2002-01-01

    Aim: (1) Increase the nuclear pharmacy education opportunities across the United States and the around the world. (2) Establish collaborative educational agreements between colleges of pharmacy and local nuclear pharmacy preceptors. (3) Decrease the shortage of radio pharmacists. 4) Provide nuclear education courses to supplement existing educational programs. Materials and Methods: Nuclear Education Online (www.nuclearonline.org) is an educational consortium between the University of Arkansas for Medical Sciences and the University of New Mexico. The faculty members from each institution have collaborated to design an online didactic curriculum and experiential training materials. The didactic portion is delivered via WebCT (www.webct.com) and involves interactive studies with faculty from UNM and UAMS. The student-centered curriculum is based on the APhA Syllabus for Nuclear Pharmacy Training and includes interactive web-based course materials, discussion groups, preceptor-led activities and problem-based learning (PBL) case studies based upon actual clinical studies and real-life pharmacy situations. Individual units of study include Nuclear Physics, Radiation Biology, Radiation Safety, Instrumentation, and Radiochemistry/Radiopharmacology. Students can begin the program at anytime. Once a cohort of students is established, the students proceed through the PBL cases, working interactively as a group. Results: Since June 2001, over 26 students have completed the 10-week certificate program. These students have been located across the U.S. and in Saudi Arabia. Fifteen students have completed individual courses in nuclear physics and instrumentation through colleges of pharmacy course offerings using the NEO faculty as instructors. Student evaluations revealed that 78% of the students thought that the NEO program was a 'great way to learn' (highest rating). When comparing PBL to a traditional classroom setting, two thirds of students preferred problem

  15. The European Nuclear Education Network Association - ENEN

    International Nuclear Information System (INIS)

    De Regge, P.P.

    2005-01-01

    The temporary network, established through the European 5 th Framework Programme project ENEN, was given a more permanent character by the foundation of the European Nuclear Education Network Association, a non-profit-making association according to the French law of 1901, pursuing a pedagogic and scientific aim. Its main objective is the preservation and the further development of higher nuclear education and expertise. This objective is realized through the co-operation between the European universities, involved in education and research in the nuclear engineering field, the nuclear research centres and the nuclear industry. The membership of the ENEN Association now consists of 35 universities members and 6 research centres. The paper briefly describes the history and structure of the ENEN Association and elaborates on the objectives and activities of its five committees during its first two years of operation. Supported by the 5 th and 6 th Framework Programme of the European Community, the ENEN Association established the delivery of the European Master of Science in Nuclear Engineering certificate. In particular, education and training courses have been developed and offered to materialise the core curricula and optional fields of study in a European exchange structure. Pilot editions of those courses and try-outs of training programmes have been successfully organised with a satisfying interest, attendance and performance by the students and the support of nuclear industries and international organisations. The involvement of ENEN in the 6 th EC Framework project EUROTRANS will further enlarge its field of activities into a realm of nuclear disciplines. The ENEN Association further contributes to the management of nuclear knowledge within the European Union as well as on a world-wide level, through contacts with its sister Network ANENT in Asia, and by its participation to activities of the World Nuclear University. (author)

  16. The European Nuclear Education Network Association - ENEN

    International Nuclear Information System (INIS)

    Gentile, D.

    2006-01-01

    The temporary network, established through the European 5. Framework Programme project ENEN, was given a more permanent character by the foundation of the European Nuclear Education Network Association, a non-profit-making association according to the French law of 1901, pursuing a pedagogic and scientific aim. Its main objective is the preservation and the further development of higher nuclear education and expertise. This objective is realized through the co-operation between the European universities, involved in education and research in the nuclear engineering field, the nuclear research centres and the nuclear industry. The membership of the ENEN Association now consists of 35 universities members and 6 research centres. The paper briefly describes the history and structure of the ENEN Association and elaborates on the objectives and activities of its five committees during its first two years of operation. Supported by the 5. and 6. Framework Programme of the European Community, the ENEN Association established the delivery of the European Master of Science in Nuclear Engineering certificate. In particular, education and training courses have been developed and offered to materialize the core curricula and optional fields of study in a European exchange structure. Pilot editions of those courses and try-outs of training programmes have been successfully organised with a satisfying interest, attendance and performance by the students and the support of nuclear industries and international organisations. The involvement of ENEN in the 6. EC Framework project EUROTRANS will further enlarge its field of activities into a realm of nuclear disciplines. The ENEN Association further contributes to the management of nuclear knowledge within the European Union as well as on a world-wide level, through contacts with its sister Network ANENT in Asia, and by its participation to activities of the World Nuclear University. (author)

  17. The European Nuclear Education Network Association - ENEN

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, D. [Institut des Sciences et Techniques Nucleaires, CEA - Centre de Saclay, Bat. 395, F-91191 Gif-sur-Yvette (France)

    2006-07-01

    The temporary network, established through the European 5. Framework Programme project ENEN, was given a more permanent character by the foundation of the European Nuclear Education Network Association, a non-profit-making association according to the French law of 1901, pursuing a pedagogic and scientific aim. Its main objective is the preservation and the further development of higher nuclear education and expertise. This objective is realized through the co-operation between the European universities, involved in education and research in the nuclear engineering field, the nuclear research centres and the nuclear industry. The membership of the ENEN Association now consists of 35 universities members and 6 research centres. The paper briefly describes the history and structure of the ENEN Association and elaborates on the objectives and activities of its five committees during its first two years of operation. Supported by the 5. and 6. Framework Programme of the European Community, the ENEN Association established the delivery of the European Master of Science in Nuclear Engineering certificate. In particular, education and training courses have been developed and offered to materialize the core curricula and optional fields of study in a European exchange structure. Pilot editions of those courses and try-outs of training programmes have been successfully organised with a satisfying interest, attendance and performance by the students and the support of nuclear industries and international organisations. The involvement of ENEN in the 6. EC Framework project EUROTRANS will further enlarge its field of activities into a realm of nuclear disciplines. The ENEN Association further contributes to the management of nuclear knowledge within the European Union as well as on a world-wide level, through contacts with its sister Network ANENT in Asia, and by its participation to activities of the World Nuclear University. (author)

  18. Status of higher education in nuclear technology in Pakistan

    International Nuclear Information System (INIS)

    Sadiq, A.

    2007-01-01

    Pakistan's nuclear power program was formally launched in 1959 with the establishment of the Pakistan Atomic Energy Commission (PAEC). The first research reactor, the Pakistan Research Reactor (PARR1), went critical in 1965, while the first nuclear power plant, the Karachi Nuclear Power Plant (KANUPP), was connected to the grid in 1972. PARR1, a 5 MW highly enriched uranium swimming pool reactor, has been upgraded to 10 MW low enriched reactor and KANUPP is a 137 MWe CANDU reactor. Later during the mid eighties PAEC added another small research reactor, PARR2, a miniature neutron source, and in 2000 a 325 MW PWR at Chashma, the Chashma Nuclear Power Plant (CHASHNUPP). Thus PAEC currently owns and operates two nuclear power plants and two research reactors. KANUPP has completed its design life of 30 years and is now undergoing the re-licensing process. CHASNUPP has just completed its first refuelling outage. Negotiations for the third nuclear power plant, also a 300 MW PWR from China, are continuing. The training and education programs in nuclear technology were initiated in the early 1960's soon after the establishment of PAEC. Initially the cream of fresh graduates in engineering, medicine and natural sciences, who were inducted in PAEC were given short training before they were sent for higher studies abroad. The availability of a nucleus of highly qualified professionals in nuclear power and allied disciplines, the lack of adequate facilities in the local educational institutions in these fields and the realization that many more professionals will be needed than could be trained abroad led to the establishment of coherent indigenous training and education program in the late sixties. Given below is a brief description of the centers set up by the PAEC for providing manpower for its nuclear power program

  19. Development of Reference Training Courses for the Countries Introducing Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eui-Jin; Han, Kyong-Won; Min, Byung-Joo; Nam, Young-Mi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Human resources development is an important issue for the countries introducing their first nuclear power plant. Countries, which are considering introducing the nuclear power programs, will have to establish their infrastructure required for such programs. Since Korea has successfully achieved her self-reliance in nuclear power technology over the last 3 decades with a rapid expansion of nuclear power program, most of the countries have been interested in the Korean experience on human resources development and also hoped to share the experiences on nuclear training and education. The purpose of this paper is to present reference training courses developed at KAERI which can be shared with countries that need an infrastructure development for nuclear power.

  20. Computerized based training in nuclear safety in the nuclear research center Negev

    International Nuclear Information System (INIS)

    Ben-Shachar, B.; Krubain, H.; Sberlo, E.

    2002-01-01

    The Department of Human Resources and Training in the Nuclear Research Center, Negev, in collaboration with the Department of Radiation Protection and Safety used to organize different kinds of training and refresher courses for different aspects of safety in nuclear centers (radiation safety, biological effects of ionizing radiation, industrial safety, fire fighting, emergency procedures, etc.). All radiation workers received a training program of several days in all these subjects, each year. The administrative employees received a shorter training, each second year. The training included only frontal lectures and no quiz or exams were done. No feedback of the employees was received after the training, as well. Recently, a new training program was developed by the NRC-Negev and the CET (Center for Educational Technology), in order to perform the refresher courses. The training includes CBT-s (Computer Based Training), e.g. tutorials and quiz. The tutorial is an interactive course in one subject, including animations, video films and photo stills. The employee gets a simple and clear explanation (including pictures). After each tutorial there is a quiz which includes 7 American style questions. In the following lecture different parts from two of the tutorials used for the refresher courses, will be presented

  1. Application of Nuclear Power Plant Simulator for High School Student Training

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chi Dong; Choi, Soo Young; Park, Min Young; Lee, Duck Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    In this context, two lectures on nuclear power plant simulator and practical training were provided to high school students in 2014. The education contents were composed of two parts: the micro-physics simulator and the macro-physics simulator. The micro-physics simulator treats only in-core phenomena, whereas the macro-physics simulator describes whole system of a nuclear power plant but it considers a reactor core as a point. The high school students showed strong interests caused by the fact that they operated the simulation by themselves. This abstract reports the training detail and evaluation of the effectiveness of the training. Lectures on nuclear power plant simulator and practical exercises were performed at Ulsan Energy High School and Ulsan Meister High School. Two simulators were used: the macro- and micro-physics simulator. Using the macro-physics simulator, the following five simulations were performed: reactor power increase/decrease, reactor trip, single reactor coolant pump trip, large break loss of coolant accident, and station black-out with D.C. power loss. Using the micro-physics simulator, the following three analyses were performed: the transient analysis, fuel rod performance analysis, and thermal-hydraulics analysis. The students at both high schools showed interest and strong support for the simulator-based training. After the training, the students showed passionate responses that the education was of help for them to get interest in a nuclear power plant.

  2. Application of Nuclear Power Plant Simulator for High School Student Training

    International Nuclear Information System (INIS)

    Kong, Chi Dong; Choi, Soo Young; Park, Min Young; Lee, Duck Jung

    2014-01-01

    In this context, two lectures on nuclear power plant simulator and practical training were provided to high school students in 2014. The education contents were composed of two parts: the micro-physics simulator and the macro-physics simulator. The micro-physics simulator treats only in-core phenomena, whereas the macro-physics simulator describes whole system of a nuclear power plant but it considers a reactor core as a point. The high school students showed strong interests caused by the fact that they operated the simulation by themselves. This abstract reports the training detail and evaluation of the effectiveness of the training. Lectures on nuclear power plant simulator and practical exercises were performed at Ulsan Energy High School and Ulsan Meister High School. Two simulators were used: the macro- and micro-physics simulator. Using the macro-physics simulator, the following five simulations were performed: reactor power increase/decrease, reactor trip, single reactor coolant pump trip, large break loss of coolant accident, and station black-out with D.C. power loss. Using the micro-physics simulator, the following three analyses were performed: the transient analysis, fuel rod performance analysis, and thermal-hydraulics analysis. The students at both high schools showed interest and strong support for the simulator-based training. After the training, the students showed passionate responses that the education was of help for them to get interest in a nuclear power plant

  3. Exploratory study of the radiation-protection training programs in nuclear power plants

    International Nuclear Information System (INIS)

    Fields, C.D.

    1982-06-01

    The objective of the study was to examine current radiation training programs at a sample of utilities operating nuclear reactors and to evaluate employee information on radiation health. The study addressed three elements: (1) employee perceptions and understanding of ionizing radiation; (2) utility trainers-their background, training, and problems; (3) the content, materials, and conduct of training programs; (4) program uniformity and completeness. These areas were examined through visits to utilities, surveys, and employee interviews. The programs reviewed were developed by utility personnel who have backgrounds, for the most part, in health physics but who may have little formal training in adult education. This orientation, coupled with the inherent nature of the subject, has produced training programs that appear to be too technical to achieve the educational job intended. The average nuclear power plant worker does not have the level of sophistication needed to understand some of the information. It became apparent that nuclear power plant workers have concerns that do not necessarily reflect those of the scientific community. Many of these result from misunderstandings about radiation. Unfortunately, the training programs do not always address these unfounded but very real fears

  4. Development and Enhancement of Web-based Nuclear Education System and It's Enhancement

    International Nuclear Information System (INIS)

    Rho, Sipyo; Lee, K. B.; Nam, Y. M; Kim, H. K.; Hwang, I. A.; Yang, S. W.; Nam, J. S.; Yoo, H. W.

    2012-02-01

    To deliver rapidly changing technologies effectively and economically, E-learning in the field of nuclear technology is being done gradually. In the first year of this project, 'Development and Enhancement of Web-based Nuclear Education System; we had established a server system, fitting-up several home pages in NTC(Nuclear Training and Education Center in KAERI) and newly developed LMS(Learning Management System). We had selected a MOODLE for it is one of popular open source in LMS field, and connected to the ANENT(Asian Nuclear in Education for Nuclear Technology) web portal, which is co-operating with IAEA/NKM. We had produced e-learning content mainly composed of the video clip that was taken by making a film of the lecturing in the course of training and education in NTC. The running time of the content is 100 hours totally. This e-learning content is going to reinforce by adding quiz and Q and A. Another activity is web-conferencing between NWU in South Africa and KAERI, which executed 4 times successfully. We are going to make a pre-course for the foreigners who will take part in our training and education course

  5. Completion of the experimental equipment systems and preparation of practical tutorials on the Dalat Nuclear Research Reactor for nuclear science and technology education

    International Nuclear Information System (INIS)

    Le Vinh Vinh; Huynh Ton Nghiem; Luong Ba Vien; Nguyen Minh Tuan; Nguyen Kien Cuong; Pham Quang Huy; Tran Tri Vien

    2015-01-01

    The project Completion of the experimental equipment systems and preparation of practical tutorials on the Dalat Nuclear Research Reactor for nuclear science and technology education performed by Dalat Nuclear Research Institute and financed by Ministry of Science and Technology aimed at strengthening the training capability of nuclear human resources. The content of this work includes: i) Improvement of experimental equipment; ii) Compilation of training material for experiments with the improved equipment systems on the reactor; iii) Compilation of training material for reactor calculations includes the following areas: neutronics, hydrothermal, safety analysis and accident consequence analysis. Results of the project provide important conditions to support practical educational and training curriculums in nuclear science and technology. (author)

  6. Nuclear power training courses

    International Nuclear Information System (INIS)

    1977-01-01

    The training of technical manpower for nuclear power projects in developing countries is now a significant part of the IAEA Technical Assistance Programme. Two basic courses are the cornerstones of the Agency's training programme for nuclear power: a course in planning and implementation, and a course in construction and operation management. These two courses are independent of each other. They are designed to train personnel for two distinct phases of project implementation. The nuclear power project training programme has proven to be successful. A considerable number of highly qualified professionals from developing countries have been given the opportunity to learn through direct contact with experts who have had first-hand experience. It is recognized that the courses are not a substitute for on-the-job training, but their purpose is achieved if they have resulted in the transfer of practical, reliable information and have helped developing countries to prepare themselves for the planning, construction and operation management of nuclear power stations

  7. Annual report of Nuclear Technology and Education Center. April 1, 2007-March 31, 2008

    International Nuclear Information System (INIS)

    2009-03-01

    This annual report summarizes the activities of Nuclear Technology and Education Center (NuTEC) of Japan Atomic Energy Agency (JAEA) in the fiscal year 2007. This is the third year since the inauguration of JAEA, and NuTEC now flexibly designs and carries out training courses upon request while carrying out the annually scheduled training programs. During this period, the number of trainees completing the domestic training courses was 466, and that for staff technical training was 694. Three prep-examination training courses for '1st class radiation protection supervisor', 'Nuclear fuel protection supervisor' and 'Professional engineer on nuclear and radiation' which were opened only for staff members were newly opened to the public. JAEA continued its cooperative activities with universities; cooperation with graduate school of University of Tokyo, cooperative graduate school program with 14 graduate schools and 1 under-graduate school, and Nuclear HRD Program initiated by MEXT and METI implemented since 2007. Joint course has started networking 3 universities utilizing the Japan Nuclear Education Network, and trial experimental courses for students from newly participating universities were offered. International cooperation was also conducted as scheduled. Joint training course and Instructor training program were carried out bilaterally with Indonesia, Thailand and Vietnam. Human Resources Development Workshop under the Forum for Nuclear Cooperation in Asia was arranged, and Asian Nuclear Training and Education Program to enhance the matching of the needs and available training program of the participating countries were discussed. (author)

  8. Targeted initiatives. Support for nuclear engineering education in the USA

    International Nuclear Information System (INIS)

    Gutteridge, John

    2001-01-01

    Recruitment and education of a new generation of nuclear engineers stands to benefit in the USA from a range of programmes involving governmental bodies, universities, and industry groups. They are part of efforts to attract more students to consider and prepare for careers in the nuclear industry, and to provide financial support for nuclear research and education. Career prospects in the nuclear field are brightening. The demand for nuclear engineers and nuclear trained personnel is on the rise as the new century opens. During the past year several studies were completed in an attempt to ascertain the problems in nuclear engineering education and define initiatives to address these problems

  9. Status of higher education in nuclear technology in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, N.

    2007-01-01

    To harness the benefits of nuclear energy and the applications of radiation and radionuclides in various disciplines, a broad and deeply rooted nuclear education is essential. To cater to its needs, the Pakistan Atomic Energy Commission has established training institutes/centres of higher education. This paper briefly describes the programmes offered by these institutes/centres. (author)

  10. Nuclear Security Education in Morocco

    International Nuclear Information System (INIS)

    Hakam, O.K.

    2015-01-01

    Morocco has made significant progress in the field of nuclear security by supporting the efforts and activities of the International Atomic Energy Agency (IAEA), promoting nuclear security under international initiatives and continues to undertake actions aiming at strengthening capacity building in nuclear security. As well, Morocco has developed a new law on radiological and nuclear safety and security which was promulgated in 2014. Some Moroccan universities in cooperation with the IAEA-International Nuclear Security Education Network (INSEN) and the US-DoS Partnership for Nuclear Security (PNS) are working to develop their nuclear security educational programmes. In this regard, faculties who have been involved in INSEN Professional Development Courses (PDCs) have acquired a high-quality of knowledge and teaching tools in nuclear security topics that led them to be able to develop and teach their nuclear security curriculum as is the case at the University of Ibn Tofail. Furthermore, University of Ibn Tofail has developed in 2014 with collaboration with CRDFGlobal the first Institute of Nuclear Material Management (INMM) Student Chapter in Africa. This Chapter has organized many events to promote best practices among the young generation. Moreover, University of Ibn Tofail and Brandenburg University in Germany are working to develop a PDC on Nuclear IT/Cyber Security to be held in Kenitra, Morocco. This PDC aims at building capacity among the academic communities from Africa and MENA Region in order to further raise awareness, develop and disseminate best practices, increase professional standards and therefore enhance nuclear security culture. So, this paper will present some nuclear security education activities in Morocco and more specifically at the University of Ibn Tofail. These activities involve women as leaders but also contribute in education and training of young generation of women in nuclear field. (author)

  11. Developing a Systematic Education and Training Approach Using Personal Computer Based Simulators for Nuclear Power Programmes. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2018-01-01

    This publication compiles the output and findings of a technical meeting organized by the IAEA. The use of personal computer (PC) based basic principle simulators in education and training is aimed at enhancing understanding of nuclear technologies through “learning by doing”. This hands-on experiential training is highly suitable for operators, maintenance technicians, suppliers, regulators, students and engineers. Experts from 21 Member States, together with IAEA staff, presented the current status of the PC based basic principle simulators, their applications in education and training and identified relevant gaps and needs for improvements and/or new development. The resultant publication includes summaries of the presentations, follow-up discussions as well as conclusions and recommendations for possible future activities.

  12. Manpower development and international cooperation in Nuclear Technology and Education Center, JAERI

    International Nuclear Information System (INIS)

    Shiba, Koreyuki; Tojo, Takao; Takada, Kazuo; Nomura, Masayuki

    1996-01-01

    Nuclear Technology and Education Center was founded in 1958 and now has two branches, Tokyo Education Center at Bunkyo-ku, Tokyo and Tokai Education Center at Tokai, Ibaraki-ken. The objective was to educate and train nuclear engineers and scientists for implementing the nation's program of atomic energy research, development and utilization. A variety of training courses have been prepared and carried out to meet the requirements of the nuclear community. In recent years, activities of getting the public acceptance have become important for nuclear energy deployment in Japan. Many short courses have been implemented at JAERI sites and cities for providing the public including high school teachers with basic knowledge on nuclear energy. International training programs of the center were started with the cooperation of the Japan International Cooperation Agency (JICA) in 1985 and of the International Atomic Energy Agency (IAEA) in 1987. International seminars were implemented for improving nuclear safety by inviting participants from the former Soviet Union, central/east European countries and the neighboring countries of Japan under the direction of the Science and Technology Agency (STA) in 1992. STA and JAERI are starting new programs of helping Asian and Pacific countries to develop nuclear manpower. (author)

  13. Overview of the French offer in nuclear training: 60 years to serve development and knowledge transfer

    International Nuclear Information System (INIS)

    Fanjas, Y.; Navon-Gross, A.; Mougel, B.; Verdier, A.

    2017-01-01

    As early as the beginning of its nuclear program, France has developed a wide range of higher education programs and occupational training in nuclear sciences, nuclear technologies and nuclear engineering. INSTN (Institute for Nuclear Sciences and Nuclear Technologies) was founded in 1956 inside CEA premises at Saclay to issue the diploma of 'ingenieur en genie atomique'. This diploma is still delivered and celebrated its 60. anniversary in 2016. A large course offering has been added to the sole initial INSTN diploma. Throughout France and each year about 2000 students are awarded a diploma opening the gates of nuclear industry or research from vocational baccalaureates (130) to doctoral thesis (200) via engineer/master degrees (1270). Continuous training has also been developed, employees from the nuclear industry benefit from 16 days a year of training in average. French high education systems are open to foreign students and 9 master degrees in nuclear engineering are entirely taught in English. (A.C.)

  14. Curriculum for education and training of Medical Physicists in Nuclear Medicine

    DEFF Research Database (Denmark)

    Del Guerra, Alberto; Bardies, Manuel; Belcari, Nicola

    2013-01-01

    and Competence approach along the lines recommended by the European Qualifications Framework. The minimum level expected in each topic in the theoretical knowledge and practical experience sections is intended to bring trainees up to the requirements expected of a Medical Physicist entering the field of Nuclear...... Medicine. CONCLUSIONS: This new joint EANM/EFOMP European guideline curriculum is a further step to harmonise specialist training of Medical Physicists in Nuclear Medicine within Europe. It provides a common framework for national Medical Physics societies to develop or benchmark their own curricula....... The responsibility for the implementation and accreditation of these standards and guidelines resides within national training and regulatory bodies....

  15. International Education and Training Centre (Nuclear security and Nonproliferation) and Ideas for Educational Test Facilities in the centre

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyung Min [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2010-10-15

    With respect to the nuclear security-related multilateral agreements, many states and international societies recognize the importance of evaluating and improving their physical protection systems to ensure that they are capable of achieving the objectives set out in relevant IAEA Nuclear Security Series documents. Under this circumstance, finally, on April 12-13, 2010, US President Obama hosted a Nuclear Security Summit in Washington, DC, to enhance international cooperation to prevent nuclear terrorism, an issue which he has identified as the most immediate and extreme threat to global security. The goals of the Nuclear Security Summit were to come to a common understanding of the threat posed by nuclear terrorism, to agree to effective measures to secure nuclear material, and to prevent nuclear smuggling and terrorism. The Summit focused on the security of nuclear materials, nonproliferation, disarmament, and peaceful nuclear energy. At the summit, the Republic of Korea was chosen as the host of the next Summit in 2012. After President Barack Obama declared the opening of the Summit and explained the purpose of the meeting, he designated Korea as the host of the Second Nuclear Security Summit, which was unanimously approved by the participating leaders. During the Summit, President Lee introduced Korea's measures for the physical protection of nuclear materials and laid out what contributions Korea would make to the international community. He also stated that the North Korean leader would be welcomed at the next summit only if his country made substantial pledges toward nuclear disarmament during the Six-Party Talks and announced that Seoul would host the general assembly of the Global Initiative to Combat Nuclear Terrorism in 2011 and would share its expertise and support the Summit's mission by setting up an education and training center on nuclear security in 2014

  16. International Education and Training Centre (Nuclear security and Nonproliferation) and Ideas for Educational Test Facilities in the centre

    International Nuclear Information System (INIS)

    Seo, Hyung Min

    2010-01-01

    With respect to the nuclear security-related multilateral agreements, many states and international societies recognize the importance of evaluating and improving their physical protection systems to ensure that they are capable of achieving the objectives set out in relevant IAEA Nuclear Security Series documents. Under this circumstance, finally, on April 12-13, 2010, US President Obama hosted a Nuclear Security Summit in Washington, DC, to enhance international cooperation to prevent nuclear terrorism, an issue which he has identified as the most immediate and extreme threat to global security. The goals of the Nuclear Security Summit were to come to a common understanding of the threat posed by nuclear terrorism, to agree to effective measures to secure nuclear material, and to prevent nuclear smuggling and terrorism. The Summit focused on the security of nuclear materials, nonproliferation, disarmament, and peaceful nuclear energy. At the summit, the Republic of Korea was chosen as the host of the next Summit in 2012. After President Barack Obama declared the opening of the Summit and explained the purpose of the meeting, he designated Korea as the host of the Second Nuclear Security Summit, which was unanimously approved by the participating leaders. During the Summit, President Lee introduced Korea's measures for the physical protection of nuclear materials and laid out what contributions Korea would make to the international community. He also stated that the North Korean leader would be welcomed at the next summit only if his country made substantial pledges toward nuclear disarmament during the Six-Party Talks and announced that Seoul would host the general assembly of the Global Initiative to Combat Nuclear Terrorism in 2011 and would share its expertise and support the Summit's mission by setting up an education and training center on nuclear security in 2014

  17. Nuclear Engineering Education in Support of Thailand’s Nuclear Power Programme

    International Nuclear Information System (INIS)

    Chanyotha, S.; Pengvanich, P.; Nilsuwankosit, S.

    2015-01-01

    This paper aims to introduce the nuclear engineering education at the Department of Nuclear Engineering, Chulalongkon University, Bangkok Thailand. The department has been offering curriculum in nuclear engineering to support the national nuclear power programme since 1970s. It is the oldest established nuclear engineering educational programme in the South East Asia region. Nevertheless, since the nuclear power programme has been postponed several times due to various reasons, the educational programme at the department has been continuously adapted to meet the nation’s needs. Several areas of study have been introduced, including nuclear power engineering, industrial applications of radioisotope, nuclear instrumentation, radioisotope production, radiation processing, environment and safety, nuclear materials, as well as the newly created nuclear security and non-proliferation. With the renewed interest in using nuclear power in Thailand in 2007, the department has been actively assisting both the government and the electric utility in preparing human resources to support the nuclear power programme through various educational and training modules. Realizing the importance of establishing and balancing all 3 aspects of the nuclear 3S (safety, security and safeguard) in Thailand and in the Southeast Asian region. The new curriculum of nuclear security and safeguard programme has been offered since 2013. Since the establishment, the department has produced hundreds of graduates (Diploma, Master’s, and Ph.D. levels) to feed the continuously expanding Thai nuclear industry. The full paper will provide detailed information of the curriculum, the challenges and obstacles that the department has encountered, as well as the national and international linkages which have been established over the years. (author)

  18. Current status of training and informing teachers on nuclear energy education

    International Nuclear Information System (INIS)

    Ondo, T.

    1994-01-01

    In Japan, school education is conducted under a national unified system and the subject of nuclear energy is dealt with at lower and upper secondary level in social studies and science lessons. However, since opposition to nuclear energy is strong in Japan, the Ministry of Education does not provide any education on the subject for teachers. Some organizations, not related to the Ministry of Education, provide information for teachers (experiments, computer-assisted instruction, forums, conferences). A survey of awareness on energy and environment, carried out by JAERO amongst Japanese and European upper secondary school students, is presented

  19. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  20. Current challenges for education of nuclear engineers. Beyond nuclear basics

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, Christian [AREVA GmbH, Offenbach (Germany). Training Center

    2014-07-15

    In past decades, curricula for the education of nuclear engineers (either as a major or minor subject) have been well established all over the world. However, from the point of view of a nuclear supplier, recent experiences in large and complex new build as well as modernization projects have shown that important competences required in these projects were not addressed during the education of young graduates. Consequently, in the past nuclear industry has been obliged to either accept long periods for job familiarization, or to develop and implement various dedicated internal training measures. Although the topics normally addressed in nuclear engineering education (like neutron and reactor physics, nuclear materials or thermohydraulics and the associated calculation methods) build up important competences, this paper shows that the current status of nuclear applications requires adaptations of educational curricula. As a conclusion, when academic nuclear engineering curricula start taking into account current competence needs in nuclear industry, it will be for the benefit of the current and future generation of nuclear engineers. They will be better prepared for their future job positions and career perspectives, especially on an international level. The recommendations presented should not only be of importance for the nuclear fission field, but also for the fusion community. Here, the Horizon 2020 Roadmap to Fusion as published in 2012 now is focusing on ITER and on a longer-term development of fusion technology for a future demonstration reactor DEMO. The very challenging work program is leading to a strong need for exactly those skills that are described in this article.

  1. Current challenges for education of nuclear engineers. Beyond nuclear basics

    International Nuclear Information System (INIS)

    Schoenfelder, Christian

    2014-01-01

    In past decades, curricula for the education of nuclear engineers (either as a major or minor subject) have been well established all over the world. However, from the point of view of a nuclear supplier, recent experiences in large and complex new build as well as modernization projects have shown that important competences required in these projects were not addressed during the education of young graduates. Consequently, in the past nuclear industry has been obliged to either accept long periods for job familiarization, or to develop and implement various dedicated internal training measures. Although the topics normally addressed in nuclear engineering education (like neutron and reactor physics, nuclear materials or thermohydraulics and the associated calculation methods) build up important competences, this paper shows that the current status of nuclear applications requires adaptations of educational curricula. As a conclusion, when academic nuclear engineering curricula start taking into account current competence needs in nuclear industry, it will be for the benefit of the current and future generation of nuclear engineers. They will be better prepared for their future job positions and career perspectives, especially on an international level. The recommendations presented should not only be of importance for the nuclear fission field, but also for the fusion community. Here, the Horizon 2020 Roadmap to Fusion as published in 2012 now is focusing on ITER and on a longer-term development of fusion technology for a future demonstration reactor DEMO. The very challenging work program is leading to a strong need for exactly those skills that are described in this article.

  2. Education and Training for the NPP Workforce

    International Nuclear Information System (INIS)

    Long, R.L.

    2006-01-01

    This paper describes some of the nuclear industry workers skill needed, give some quantitative estimated of the numbers of worker needed, identifies some possible education and training resources and concludes with some suggestion for getting started on this important infrastructure element

  3. Educational and laboratory base for the expert training on physical protection of nuclear materials: the requirements and experience of practical implementation

    International Nuclear Information System (INIS)

    Bondarev, P.V.; Pogozhin, N.S.; Ryzhukhin, D.V.; Tolstoy, A.I.

    2002-01-01

    Full text: In expert training on physical protection of nuclear materials (NMPP) an educational and laboratory base has special importance. In these laboratories the students receive practical skills concerning physical protection systems (PPS). The basic requirements for creating such base are formulated in a certain educational program implemented at an educational institution. Thus it is necessary to take into account the following features of a modern nuclear object PPS: restriction of an object visiting with the purpose of acquaintance with features of a certain object PPS; dynamical change of PPS component nomenclature; increase of use of computer facilities for managing all PPS subsystems; increase of integration degree of separate subsystems in a uniform PPS complex; high cost of PPS components. Taking that into consideration a university, which assumes to begin the expert training on NMPP, is compelled to solve the following tasks: creation of its own laboratory base. The implementation of practical occupations with visiting a nuclear object cannot be executed practically; definition of quantity and structure of educational laboratories. Thus the features of the implemented educational plan should be taken into account in addition; optimization of expenses on laboratory creation. The regular updating of laboratory equipment structure is impossible in a practical manner. Therefore unique correct decision is to supply laboratories with the equipment, which uses the typical technological decisions on performing the basic PPS functions (detection, delay, estimation of a situation, neutralization); development of laboratory work conducting procedures (laboratory practical works); technical support of the created laboratories. The certain experience of solving the listed tasks is accumulated at the Moscow Engineering Physics Institute (State University) (MEPhl) while implementing 'Physical Protection, Control and Accountability of Nuclear Materials' master

  4. CINCH-II project. Next step in the coordination of education in nuclear- and radiochemistry in Europe

    International Nuclear Information System (INIS)

    John, Jan; Cuba, Vaclav; Nemec, Mojmir

    2013-01-01

    Any of the potential options for the nuclear power – both the renaissance, if any, or the phase out – will require significant numbers of the respective specialists, amongst others the nuclear and/or radiochemists. In parallel, a significant demand exists for these specialists in non-energy fields, such as environmental protection, radiopharmacy, nuclear medicine, biology, authorities, etc. Since the numbers of staff in teaching and the number of univerzities with facilities licensed for the work with open sources of ionizing radiation has decreased on or sometimes even below the critical level, coordination and collaboration are required to maintain the necessary teaching and training capabilities. The CINCH-II project, aiming at the Coordination of education and training In Nuclear CHemistry in Europe, will be a direct continuation of the CINCH-I project which, among others, identified the EuroMaster in Nuclear Chemistry quality label recognized and guaranteed by the European Chemistry Thematic Network Association as an optimum common mutual recognition system in the field of education in Nuclear Chemistry in Europe, surveyed the status of Nuclear Chemistry in industry / the needs of the end-users, developed an efficient system of education/training compact modular courses, or developed and tested two electronic tools as a basis of a future efficient distance learning system. In the first part of this paper, the achievements of the CINCH-I project will be described. This description will cover both the status review and the development activities of this Collaboration. In the status review field, the results of a detailed survey of the universities and curricula in nuclear- and radiochemistry in Europe and Russia will be presented. Another survey mapped the nuclear- and radiochemistry in industry – specifically the training and education needs of the end users. In the development activities field, the main achievements of the CINCH-project will be presented

  5. Building trust with the schoolchildren in the nuclear training centre

    International Nuclear Information System (INIS)

    Stritar, Andrej; Istenie, Radko

    1995-01-01

    Although Krsko Nuclear Power Plant has been in operation for more than ten years, comparatively little has been done in the field of systematic education and public information. Deficiencies in this field are causing serious misunderstandings about the role of nuclear power and is having a negative impact on its public acceptance. At The Nuclear Training Centre Milan Copic (NTC) in Ljubljana we have prepared a presentation on nuclear energy encompassing a short description of a PWR nuclear power plant, importance of nuclear power in the world and in Slovenia, basic ideas of nuclear safety and radioactive waste disposal

  6. Promoting excellence in nuclear power plant training in the United States

    International Nuclear Information System (INIS)

    Mangin, A.M.

    1983-01-01

    The Institute of Nuclear Power Operations (INPO) was formed in late 1979 by U.S. nuclear utilities to enhance the operational safety and reliability of their nuclear plants. One of INPO's major functions is to promote excellence in industry training and qualification programs. To accomplish this objective, INPO develops and uses guidelines and evaluation criteria to assist utilities in developing and implementing high quality training and education programs. The training guidelines permit utilities to develop performance-based programs which meet their specific need with minimal duplication of effort. INPO regularly evaluates each utility's training programs and practices in the plant evaluation and accreditation processes using criteria based on the training guidelines. In the accreditation process, INPO examines training programs and training organizations to determine whether they have the potential to produce individuals qualified to perform assigned tasks. During plant evaluations, INPO examines the implementation of the programs and their effectiveness in producing qualified individuals. After each accreditation review and plant evaluation, INPO recommends improvements and follows up to ensure they are made. (author)

  7. Cooperation in regional nuclear training

    International Nuclear Information System (INIS)

    Newstead, C.M.; Lee, D.S.; Spitalnik, J.

    1985-01-01

    This paper presents an overview of the nuclear training currently being undertaken in the countries of the co-authors, and considers the degree to which training problems are amenable to common solutions such as cooperative regional training programs. Different types of cooperation are discussed including the development of regional and international training centers, cooperative bilateral and multilateral training, and the proposed US International Nuclear Safety Training Academy. The paper provides suggestions of ways for enhancing regional cooperation

  8. Coordinating Space Nuclear Research Advancement and Education

    International Nuclear Information System (INIS)

    Bess, John D.; Webb, Jonathon A.; Gross, Brian J.; Craft, Aaron E.

    2009-01-01

    The advancement of space exploration using nuclear science and technology has been a goal sought by many individuals over the years. The quest to enable space nuclear applications has experienced many challenges such as funding restrictions; lack of political, corporate, or public support; and limitations in educational opportunities. The Center for Space Nuclear Research (CSNR) was established at the Idaho National Laboratory (INL) with the mission to address the numerous challenges and opportunities relevant to the promotion of space nuclear research and education.1 The CSNR is operated by the Universities Space Research Association and its activities are overseen by a Science Council comprised of various representatives from academic and professional entities with space nuclear experience. Program participants in the CSNR include academic researchers and students, government representatives, and representatives from industrial and corporate entities. Space nuclear educational opportunities have traditionally been limited to various sponsored research projects through government agencies or industrial partners, and dedicated research centers. Centralized research opportunities are vital to the growth and development of space nuclear advancement. Coordinated and focused research plays a key role in developing the future leaders in the space nuclear field. The CSNR strives to synchronize research efforts and provide means to train and educate students with skills to help them excel as leaders.

  9. Education and training for security personnel

    International Nuclear Information System (INIS)

    Chida, Toshiya

    2015-01-01

    It is said that Physical Protection (PP) has two purposes. One is to prevent from occurring risks of threat and terrorism and the other is to minimize damages which will be happened in case of unusual conditions or emergency situation. To achieve this goal, personnel who perform their duties should have professional knowledge and skills concerning security. However, since newcomers rarely satisfy their knowledge and skill for nuclear security in most cases. Therefore, we have to provide adequate education and training after they joined to our company. To this end, our company, located in Aomori Prefecture focused on security and physical protection for nuclear related facilities. In this paper, personnel training and challenges in order to bring up security personnel at our company will be introduced. (author)

  10. Education and training

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1989-01-01

    The ability of this country to move forward into and have an impact on the nuclear technology of the 21st century will be dependent upon the availability of well-trained scientists in many subfields and an informed public. The number of nuclear-trained faculty is an indicator of the means for producing nuclear scientists. The currently experienced decline in nuclear faculty is resulting in decreases in graduate students in nuclear fields and a decrease at the undergraduate level of nuclear awareness. An apparent shortfall between supply and demand is identified and discussed

  11. Nuclear power training programmes in Spain

    International Nuclear Information System (INIS)

    Tanarro, A.; Izquierdo, L.

    1977-01-01

    The introduction of nuclear power in Spain is developing very rapidly. At present 1.1GW(e) are installed in Spain and this is expected to increase to 8GW(e) in 1980 and to 28GW(e) in 1990. Spanish industry and technology are also rapidly increasing their participation in building nuclear stations, in manufacturing the necessary components and in the activities related to the nuclear fuel cycle. All of this requires properly trained personnel, which is estimated to become approximately 1200 high-level technicians, 1100 medium-level technicians and 1500 technical assistants by 1980. This personnel is trained: (a) in engineering schools; (b) in the Nuclear Studies Institute; (c) in the electric companies with nuclear programmes. The majority of the high-level engineering schools in the country include physics and basic nuclear technology courses in their programmes. Some of them have an experimental low-power nuclear reactor. The Nuclear Studies Institute is an official organism dependent on the Nuclear Energy Commission and responsible, among other subjects, for training personnel for the peaceful use and development of nuclear energy in the country. The electric companies also participate in training personnel for future nuclear stations and they plan to have advanced simulators of PWR and BWR type stations for operator training. The report deals with the personnel requirement forecasts and describes the training programmes. (author)

  12. Nuclear Security Education Program at the Pennsylvania State University

    International Nuclear Information System (INIS)

    Uenlue, Kenan; Jovanovic, Igor

    2015-01-01

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basis of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale

  13. Nuclear Security Education Program at the Pennsylvania State University

    Energy Technology Data Exchange (ETDEWEB)

    Uenlue, Kenan [The Pennsylvania State University, Radiation Science and Engineering Center, University Park, PA 16802-2304 (United States); The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304 (United States); Jovanovic, Igor [The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304 (United States)

    2015-07-01

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basis of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale

  14. Project WANT - Women's Access to Nuclear Technology, a successful industry/education partnership

    International Nuclear Information System (INIS)

    Widen, W.C.; Roth, G.L.; NIU)

    1987-01-01

    In 1984, the U.S. Congress issued the Carl D. Perkins Act, which charges vocational educators to increase their focus on two broad themes: (a) the elimination of sexual bias and sexual stereotyping in vocational education and (b) the provision of marketable skills to the economically deprived of the nation's work force. In response to this charter, an industry/education partnership was established among the Illinois State Board of Education, Norther Illinois University, and the Westinbghouse Nuclear Training Center. In essence, these partners established Project WANT - Women's Access to Nuclear Technology - with two premier goals: (a) to increase women's awareness regarding nuclear career opportunities and (b) to train and place women in technical professions within the nuclear industry. Feedback from the U.S. Department of Energy (DOE), the Atomic Industrial Forum, and the Bureau of Labor Statistics identifies that <2% of all technical positions within the nuclear power industry are held by women. Hence, one may conclude that there is a definite need to promote sexual equity in the nuclear industry and that Illinois represents a unique environment of opportunity to accomplish this

  15. Evaluating training and information to teachers on nuclear energy issues

    International Nuclear Information System (INIS)

    Gunnell, B.J.

    1994-01-01

    In England and Wales, school programs are defined by National Curricula; the method of teaching is left for the teacher to determine. This establishes the framework within which nuclear energy issues are taught. Teachers need a good understanding of what they teach and competence in the appropriate and effective learning strategies. A range of training opportunities is available to teachers (conferences from Local Education Authority, etc.), but the attention given to nuclear energy matters and controversial issues varies significantly between them. Many teaching resources are available but alone they cannot satisfy the training needs of all teachers (practical works, visits). 2 refs

  16. Development of the South African Network for Nuclear Education, Science and Technology

    International Nuclear Information System (INIS)

    Cilliers, A.

    2016-01-01

    Full text: South Africa has long been regarded as an active country in the nuclear industry with two operating power reactors and a research reactor. In recent years’ research and development projects, such as the Pebble Bed Modular Reactor, has established additional expertise in the country situated at various institutions. After the PBMR project was stopped, the expertise became fragmented throughout the country and some experts even left the country. A number of training and research facilities have also completed their research cycle and are in the process of being decommissioned. With the renewed interest in nuclear technology and the states position to complete the procurement of 9600 MW of nuclear power before the end of the year, nuclear knowledge gap has been identified and the need to capture all nuclear education and research in an educational network as well as to establish new nuclear training and research facilities such as small training reactors and research laboratories to support the national new build programme. This expertise and research facilities were combined into SAN-NEST (South African Network for Nuclear Education, Science and Technology) for South Africa and the African continent, with links to AFRA-NEST. The paper reports on the successes and challenges of the establishment and operation of SAN-NEST. (author

  17. Development of a Web-based International Education and Training Course Management System for World Nuclear University Summer Institute

    International Nuclear Information System (INIS)

    Ahn, S. K.; Min, B. J.; Lee, E. J.; Han, K. W.; Hwang, I. A.; Nam, Y. M.; Kwon, S. J.

    2007-12-01

    For the efficient management of the course, web-based management system is needed especially for international education and training course. The analysis on the essential condition for management system is the first step, considering the applicability for the various education and training courses. Especially, efforts were focused on the management system for user's database and schedule, evaluation system, and various contents for foreign participants. The developed management system has been applied to the World Nuclear University(WNU) Summer Institute. The distinctive feature is that participants' database and program schedule are combined and used for course evaluation function automatically. 170 users had used this system for 3 months and the operating result was successful including the performance of the evaluation. The advantages of the system are simple database management and schedule updating, easy sharing of the training materials, effective activation of interaction between participants, systematic evaluation with a high record of response, and publicity of Korea to foreign participants by various contents. As a weak point, some errors were reported by Mackintosh users, and the input process for the evaluation comments has some limitation for the special characters and some formula text by word processor. These drawbacks could be updated for the future application with additional efforts if needed. The system will offer the cost-effective high performance of the management for the international education and training course

  18. Development of a Web-based International Education and Training Course Management System for World Nuclear University Summer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S K; Min, B J; Lee, E J; Han, K W; Hwang, I A; Nam, Y M; Kwon, S J

    2007-12-15

    For the efficient management of the course, web-based management system is needed especially for international education and training course. The analysis on the essential condition for management system is the first step, considering the applicability for the various education and training courses. Especially, efforts were focused on the management system for user's database and schedule, evaluation system, and various contents for foreign participants. The developed management system has been applied to the World Nuclear University(WNU) Summer Institute. The distinctive feature is that participants' database and program schedule are combined and used for course evaluation function automatically. 170 users had used this system for 3 months and the operating result was successful including the performance of the evaluation. The advantages of the system are simple database management and schedule updating, easy sharing of the training materials, effective activation of interaction between participants, systematic evaluation with a high record of response, and publicity of Korea to foreign participants by various contents. As a weak point, some errors were reported by Mackintosh users, and the input process for the evaluation comments has some limitation for the special characters and some formula text by word processor. These drawbacks could be updated for the future application with additional efforts if needed. The system will offer the cost-effective high performance of the management for the international education and training course.

  19. Development of a Web-based International Education and Training Course Management System for World Nuclear University Summer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. K.; Min, B. J.; Lee, E. J.; Han, K. W.; Hwang, I. A.; Nam, Y. M.; Kwon, S. J

    2007-12-15

    For the efficient management of the course, web-based management system is needed especially for international education and training course. The analysis on the essential condition for management system is the first step, considering the applicability for the various education and training courses. Especially, efforts were focused on the management system for user's database and schedule, evaluation system, and various contents for foreign participants. The developed management system has been applied to the World Nuclear University(WNU) Summer Institute. The distinctive feature is that participants' database and program schedule are combined and used for course evaluation function automatically. 170 users had used this system for 3 months and the operating result was successful including the performance of the evaluation. The advantages of the system are simple database management and schedule updating, easy sharing of the training materials, effective activation of interaction between participants, systematic evaluation with a high record of response, and publicity of Korea to foreign participants by various contents. As a weak point, some errors were reported by Mackintosh users, and the input process for the evaluation comments has some limitation for the special characters and some formula text by word processor. These drawbacks could be updated for the future application with additional efforts if needed. The system will offer the cost-effective high performance of the management for the international education and training course.

  20. Manpower training and development for nuclear power

    International Nuclear Information System (INIS)

    Bauer, E.

    1979-01-01

    Determination of the manpower required for implementation of a nuclear programme is a very important factor from the national viewpoint, as it is drawn from many sectors of industry. The author provides a case-study of manpower requirements in France. He is in favour of the establishment of a manpower programme within the educational system, involving schools and universities since technicians and engineers have an important role to play throughout the different stages of a nuclear programme. In this context, he describes the IAEA contribution to acquisition of know-how by means of training courses for developing countries. (NEA) [fr

  1. Training in nuclear and radiation safety in Latin American and Caribbean

    International Nuclear Information System (INIS)

    Papadopulos, S.; Diaz, O.; Larcher, A.; Echenique, L.; Nicolas, R.; Lombardi, R.; Quintana, G.

    2013-01-01

    From thirty-three years, Argentina has taken the commitment to train professionals in the field of nuclear and radiation safety for the care and protection of workers and public in general. Sponsored by the IAEA and supported by the Faculty of Engineering of the University of Buenos Aires (FIUBA), an undertaking was made to encourage the training of scientists and experts in the countries of the region in order to establish a strong safety culture in radiation in individuals and maintaining high standards of safety practices using ionizing radiation. In 2012, the Graduate Course in Radiation Protection and Safety of Radiation Sources has acquired the status of 'Specialization' of the FIUBA, a category that further hierarchies skills training in the subject. This is a highly anticipated achievement by the implications for academic institutions, national and regional level, contributing to the strengthening of the Regional Training Center for Latin America and the Caribbean, acknowledged in a long-term agreement between the IAEA and Argentina in September 2008. Due to increased demand for nuclear activity, it is important to continue and deepen further training in radiological and nuclear areas. In order to satisfy both national and regional needs a process of increase on training offer training is being carried out, under the jurisdiction frame of the Nuclear Regulatory Authority. This paper presents the achievements of the country so far as regards training of human resource in radiation protection and nuclear safety in the region and highlights the challenges ahead for the extension of the offer in education and training. (author)

  2. Training of instructors on nuclear safety in Asian Countries

    International Nuclear Information System (INIS)

    Ikuta, Yuko; Shitomi, Hajimu; Saeki, Masakatsu

    2002-01-01

    Japan Atomic Energy Research Institute (JAERI)is conducting the international cooperation's of training of the foreign instructors and sending the Japanese teacher to the countries of Indonesia, Thailand (both from 1996) and Vietnam (2000). The training is performed in the JAERI for the future instructors of the concerned country for the period of essentially 2 months and is mainly on nuclear safety principles and safety handling of unsealed radioactive sources. Until 2001, 22 instructors from those countries have been trained in 142 courses. The sent Japanese teacher together with the trained instructor conduct the education of mainly radiation protection and measurement for personnel in ETC of BATAN (Education and Training Center, Indonesia atomic energy agency), radiation protection and atomic energy technology/application in OAEP (Office of Atomic Energy for Peace, Thailand) and the same subjects as BATAN in VAEC (Vietnam Atomic Energy Commission). Instruments for radiation measurement are essentially from Japan. This JAERI international cooperation will be open to other Asian countries. (K.H.)

  3. Training of instructors on nuclear safety in Asian Countries

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, Yuko; Shitomi, Hajimu; Saeki, Masakatsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Nuclear Technology and Education Center

    2002-11-01

    Japan Atomic Energy Research Institute (JAERI)is conducting the international cooperation's of training of the foreign instructors and sending the Japanese teacher to the countries of Indonesia, Thailand (both from 1996) and Vietnam (2000). The training is performed in the JAERI for the future instructors of the concerned country for the period of essentially 2 months and is mainly on nuclear safety principles and safety handling of unsealed radioactive sources. Until 2001, 22 instructors from those countries have been trained in 142 courses. The sent Japanese teacher together with the trained instructor conduct the education of mainly radiation protection and measurement for personnel in ETC of BATAN (Education and Training Center, Indonesia atomic energy agency), radiation protection and atomic energy technology/application in OAEP (Office of Atomic Energy for Peace, Thailand) and the same subjects as BATAN in VAEC (Vietnam Atomic Energy Commission). Instruments for radiation measurement are essentially from Japan. This JAERI international cooperation will be open to other Asian countries. (K.H.)

  4. Clinical education - place and part for becoming a practically trained radiographer

    International Nuclear Information System (INIS)

    Shangova, M.; Stavreva, E.; Panamska, K.; Bozhkova, M.

    2015-01-01

    Full text: The aim is to present the crucial role of clinical education for becoming a practically trained radiographer. It's been put on review and analysis the role of the clinic practice and pre-graduate practice into the education of the future specialist. It's presenting in detail every component of the program for study and the contribution of every module in it - image diagnostic, nuclear medicine and radiotherapy. the clinical education lasts six semesters in real working environment. The gradual increase of working hours creates conditions for higher educational quality. Students gradually master techniques, acquire skills and precision at working in an X-ray department, nuclear medicine units and radiotherapy, master communication techniques and acquire teamwork skills. the clinical education provides professional training, quick adaptation to realization and facilitates starting a job

  5. Development and Enhancement of Web-based Nuclear Education System and It's Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Rho, Sipyo; Lee, K. B.; Nam, Y. M; Kim, H. K.; Hwang, I. A.; Yang, S. W.; Nam, J. S.; Yoo, H. W.

    2012-02-15

    To deliver rapidly changing technologies effectively and economically, E-learning in the field of nuclear technology is being done gradually. In the first year of this project, 'Development and Enhancement of Web-based Nuclear Education System; we had established a server system, fitting-up several home pages in NTC(Nuclear Training and Education Center in KAERI) and newly developed LMS(Learning Management System). We had selected a MOODLE for it is one of popular open source in LMS field, and connected to the ANENT(Asian Nuclear in Education for Nuclear Technology) web portal, which is co-operating with IAEA/NKM. We had produced e-learning content mainly composed of the video clip that was taken by making a film of the lecturing in the course of training and education in NTC. The running time of the content is 100 hours totally. This e-learning content is going to reinforce by adding quiz and Q and A. Another activity is web-conferencing between NWU in South Africa and KAERI, which executed 4 times successfully. We are going to make a pre-course for the foreigners who will take part in our training and education course.

  6. Training in nuclear safety and technology at Ciemat (Spain)

    International Nuclear Information System (INIS)

    Galan, M.; Rodriguez, M.; Hernando, E.

    2006-01-01

    Fission nuclear energy acceptance has suffered great change from its discovery. During 50 s and 70 s, was worldwide approved but a high social repulse is experimented nowadays in some societies. This fact has led to a contradictory situation in the world. We can find some countries where the majority of their electric energy is produced in nuclear power plants (NPPs). In Europe, France produces over the 75% of the electric energy consumed, moreover, in Asia, new NPPs are being constructed in China, Japan or India; but on the contrary, other countries, such as Spain, has signed the nuclear moratorium. The result of this situation has conducted to a lower interest in nuclear training at universities and few implementation of superior studies in Nuclear Technology. But nuclear and radioactive installations are still opened and need qualified staff. The training Unit of C.I.E.M.A.T. has been organizing courses on nuclear energy and radiation protection for more than 30 years and develops all the educational program which has been required by Spanish Radiation Protection Education. Within the training courses variety, a course of about 68 E.C.T.S. (following Bologna Process, 1999) to permit young graduated to be specialized in this area, has been organised. E.C.T.S. credits indicate the average student work load to successfully complete a course. 68 E.C.T.S. represents, in terms of workload, near one year of study. The programme contents subjects like Fission, Fusion, NPPs Operation and Control, Nuclear Fuel and Cycle. At a more interdisciplinary level, the programme also provides knowledge in other fields of application such as Nuclear Medicine, Radiation Effects, Radiation Protection, Shielding against Radiation, Material Science, Radiation Measurements and Instruments, Waste Management and Decommissioning, Environmental Impact of NPPs and National and International Regulation. The theoretical schedules are completed by practical sessions on computational codes

  7. Experimental study on acquisition of knowledge through repeated education and training

    International Nuclear Information System (INIS)

    Sasou, Kunihide; Suzuki, Tomohiro; Yoshimura, Seiichi; Kitamura, Masaharu.

    1997-01-01

    Considering the educational methodology to bring up nuclear power plant operators, the experiments are conducted to discuss the relation between the educational backgrounds of subjects and the knowledge acquired through education and training and also to discuss the effects of repeated training on knowledge acquisition. The results show that the knowledge the subjects obtained through the training depends on their educational backgrounds. The subjects with the higher educational backgrounds seem to properly reorganize the knowledge for the operations with using their deep and meta knowledge. Therefore they can create anticipative responses and easily identify causes of events. The results also show that the repeated education and training given to the subjects with weaker backgrounds makes their knowledge reorganized and their ability becomes closer to the subjects' one with higher educational backgrounds. These results indicate that the knowledge acquired in the earlier stage of the education and training depends on the subjects' educational backgrounds. However, the repeated education and training compensates for the difference. It is also suggested that it will be possible to bring up operators more effectively and properly if the existence of people with different educational backgrounds is recognized and the education/training depending on the educational backgrounds are realized. (author)

  8. Personal training and others problems in the nuclear power future development

    International Nuclear Information System (INIS)

    Stefanescu, P.

    2009-01-01

    For satisfaction of international growing demand for electrical energy it is impossible to ignore contribution of nuclear power. With an expected lifespan for nuclear plants estimated to 50-60 years of operation (years for decommissioning added), there is a need for a steady multi-generational stream of competent staff to ensure safe operations of nuclear plants. It is incumbent to governments to invest in education, research, and training for the three to five generations of people who will construct, operate and eventually decommission nuclear plants over the duration of their life cycle. To develop sustained nuclear programs it is necessary to carry out a lot of major problems, but three of them look like as most important: 1. Training a qualified and competent personal to ensure all nuclear activities; 2. Multilateral approach for nuclear fuel cycle, with a guaranteed framework for ensuring the supply of NPP owners with the necessary nuclear fuel; 3. Strengthening the international trust by a sure safeguards and non-proliferation regime. (author)

  9. Education and training in nuclear sciences and technologies: a challenge for the future

    International Nuclear Information System (INIS)

    Giot, Michel

    2006-01-01

    The ENEN Association (European Nuclear Engineering Network) located at the premises of INSTN, a sustainable product generated by an FP5 project, promotes the clustering of educational activities at national level, and the international mobility of students and teachers as the means to fight against the loss of competencies in Europe. After the pioneering initiative of BNEN, the Belgian Nuclear higher Education Network, two other countries created their own pool of education: Italy with CIRTEN (Consorzio InterUniversitario per la Ricerca Tecnologica sull'Energia Nucleare), and the United Kingdom with NTEC (Nuclear Technology Education Consortium). Also in Germany, recently, ILK (Internationale Laenderkommission Kerntechnik) recommended building up regional and supra-regional competence centres under the auspices of the National Alliance for Competence. In Switzerland, increased cooperation is taking place between the two federal polytechnic universities and the Paul Scherrer Institute. In this paper we describe this clustering process and discuss its possible future development. The subject of the paper is confined to nuclear engineering. (authors)

  10. Interactive computer codes for education and training on nuclear safety and radioprotection

    International Nuclear Information System (INIS)

    Leszczynski, Francisco

    2008-01-01

    Two interactive computer codes for education and training on nuclear safety and radioprotection developed at RA6 Reactor Division-Bariloche Atomic Center-CNEA are presented on this paper. The first code named SIMREACT has been developed in order to simulate the control of a research nuclear reactor in real time with a simple but accurate approach. The code solves the equations of neutron punctual kinetics with time variable reactivity. Utilizing the timer of the computer and the controls of a PC keyboard, with an adequate graphic interface, a simulation in real time of the temporal behavior of a research reactor is obtained. The reactivity can be changed by means of the extraction or insertion of control rods. It was implemented also the simulation of automatic pilot and scram. The use of this code is focalized on practices of nuclear reactor control like start-up from the subcritical state with external source up to power to a desired level, change of power level, calibration of a control rod with different methods, and approach to critical condition by interpolation of the answer in function of reactivity. The second code named LICEN has been developed in order to help the studies of all the topics included in examination programs for obtaining licenses for research reactor operators and radioprotection officials. Using the PC mouse, with an adequate graphic interface, the student can gradually learn the topics related with general and special licenses. The general option includes nuclear reactor engineering, radioprotection, nuclear safety, documentation and normative. The specific option includes mandatory documentation, description of the installation and task on normal and emergency situations. For each of these topics there are sub-items with all the relevant information. The objective of this code is to joint in one electronic place a large amount of information which usually it is disseminated on difficult to find separated papers. (author)

  11. CEIDEN F+. First Spanish catalog of competencies in Nuclear Education and Training

    International Nuclear Information System (INIS)

    Marco, M.; Delgado, J. L.

    2012-01-01

    The catalog aims to provide the knowledge sector and the strengths of their companies and organizations contributing to the development of professional skills. The inventory catalog complements the graduate and masters courses, which had been developed in previous stages, with the capabilities and resources available in areas of training and training of nuclear professionals.

  12. Russian center of nuclear science and education is the way of nuclear engineering skilled personnel training

    International Nuclear Information System (INIS)

    Murogov, V.M.; Sal'nikov, N.L.

    2006-01-01

    Nuclear power engineering as the key of nuclear technologies is not only the element of the power market but also the basis of the country's social-economic progress. Obninsk as the first science town in Russia is the ideal place for the creation of integrated Science-Research Center of Nuclear Science and Technologies - The Russian Center of Nuclear Science and Education (Center for conservation and development of nuclear knowledge) [ru

  13. Education and training of future nuclear engineers through the use of an interactive plant simulator

    International Nuclear Information System (INIS)

    Ahnert, C.; Cuervo, D.; Garcia-Herranz, N.; Aragones, J.M.; Cabellos, O.; Gallego, E.; Minguez, E.; Lorente, A.; Piedra, D.; Rebollo, L.; Blanco, J.

    2010-01-01

    The International Atomic Energy Agency (IAEA) sponsors the development of nuclear reactor simulators for education, or arranges the supply of such simulation programs. Aware of this, the Department of Nuclear Engineering of the Universidad Politecnica de Madrid was provided in 2008 with the Interactive Graphical Simulator of the Spanish nuclear power plant Jose Cabrera, whose operation ceased definitively in 2006. According with the IAEA-TECDOC- 1411, the simulator is a Graphical Simulator, used for training of main control room personnel, technical support engineers, and operations management. This paper presents all the work performed at the Department to turn the simulator into a teaching/learning tool, to be use in the nuclear engineering studies following guidance found in: Shtub, A. Parush, T.T. Hewett 'The use of simulation in learning and teaching' (Int. J. Eng. Educ., 25(2), 2009, pp. 206-208). The experience obtained so far with the use of the simulator has been very successful. The graduate students involved in the development of the projects, practices and documents related with the simulator show a great interest for the work that they are doing making that the laboratory where the simulator is installed to be busy place. Regarding the undergraduate students, the practices in the simulator encourage them to follow the Nuclear Energy studies in the Engineering Schools, what is very rewarding for the Department professors. The simulator has proved to be an optimal tool to transfer the knowledge of the physical phenomena that are involved in the nuclear power plants, from the nuclear reactor to the whole set of systems and equipments on a nuclear power plant. It is also a relevant tool for motivation of the students, and to complete the theoretical lessons. This use of the simulator in the learning-teaching process meats also the criteria recommended for the Bologna adapted studies, as it helps to increase the private hands-on work of the student, and

  14. Finnish solution to increased basic professional training needs in nuclear safety

    International Nuclear Information System (INIS)

    Kyrki-Ramaeki, R.; Koskinen, K.

    2008-01-01

    The Finnish nuclear energy organizations have in cooperation arranged basic professional training courses on nuclear safety due to fast increased education needs. Especially the new nuclear power plant construction project turned the situation acute, but there was also a need to preserve the tacit knowledge of many nuclear experts retiring within the next ten years. From 2003, the YK courses have been arranged five times with altogether 270 participants. The need of this kind of complementary education is still seen high in Finland, and the YK6 course is to be arranged during the next winter. There has not been seen to be legal incompetence due to the likelihood of bias in the education even that the participating organizations have differing and/or opposing roles. It is seen that a real safety culture presumes that nuclear safety is a common goal, and even the competition for market shares is no obstacle for cooperation. (authors)

  15. Training the staff of the regulatory body for nuclear facilities: A competency framework

    International Nuclear Information System (INIS)

    2001-11-01

    The uncertainties about the future of nuclear power in many countries, the ageing of the existing work force, and the consequential lack of interest of new professionals to engage in the nuclear field represent developments of major current international concern. The situation is compounded by the great reduction in higher education opportunities in the field of nuclear engineering and the elimination of nuclear engineering departments and research reactors in many universities and the loss of nuclear research facilities generally. Competence of regulatory staff is one of the prerequisites for the safety of nuclear facilities in the IAEA Member States. Recruitment of competent regulatory staff is difficult in many countries. Also, replacement of retiring staff members requires active efforts from the management of regulatory bodies for establishing staff qualification and training programmes. International support is needed in this domain. In 2000, the General Conference resolution GC(44)IRES/13 on education and training in radiation protection, nuclear safety and waste management urged the secretariat to 'strengthen, within available financial resources, its current efforts in this area' Several elements required for the implementation of the above resolution are already in place. A strategy paper on training in nuclear, radiation and waste safety, including specialized training courses for specific target groups, has been developed at the IAEA. The international working group on training and qualification recommended in its March meeting in 2000 that a technical document be produced on good training practices of regulatory bodies with advanced training programmes. Such a technical document would be of considerable value to many bodies. The technical document would address how training programmes for regulatory staff have been developed and implemented and include examples of training currently available. Of particular interest to regulatory agencies that have

  16. Training the staff of the regulatory body for nuclear facilities: A competency framework

    International Nuclear Information System (INIS)

    2002-11-01

    The uncertainties about the future of nuclear power in many countries, the ageing of the existing work force, and the consequential lack of interest of new professionals to engage in the nuclear field represent developments of major current international concern. The situation is compounded by the great reduction in higher education opportunities in the field of nuclear engineering and the elimination of nuclear engineering departments and research reactors in many universities and the loss of nuclear research facilities generally. Competence of regulatory staff is one of the prerequisites for the safety of nuclear facilities in the IAEA Member States. Recruitment of competent regulatory staff is difficult in many countries. Also, replacement of retiring staff members requires active efforts from the management of regulatory bodies for establishing staff qualification and training programmes. International support is needed in this domain. In 2000, the General Conference resolution GC(44)IRES/13 on education and training in radiation protection, nuclear safety and waste management urged the secretariat to 'strengthen, within available financial resources, its current efforts in this area' Several elements required for the implementation of the above resolution are already in place. A strategy paper on training in nuclear, radiation and waste safety, including specialized training courses for specific target groups, has been developed at the IAEA. The international working group on training and qualification recommended in its March meeting in 2000 that a technical document be produced on good training practices of regulatory bodies with advanced training programmes. Such a technical document would be of considerable value to many bodies. The technical document would address how training programmes for regulatory staff have been developed and implemented and include examples of training currently available. Of particular interest to regulatory agencies that have

  17. Managerial challenges in nuclear training

    International Nuclear Information System (INIS)

    Scholand, G.W.

    1985-01-01

    Nuclear personnel training programs have existed since the infancy of the commercial nuclear power industry. The scope and complexity of these programs have increased dramatically, especially since the Three Mile Island mishap in 1979. Whether voluntary or regulated, the changes of the past several years have greatly increased the responsibilities and roles of the nuclear training managers. Events and our own diligence have compounded two problems (or challenges) that have been with us all along. First, training managers have frequently been excluded from the change-making process, leaving them to react as best they can to new regulatory mandates and new utility innovations in a de facto fashion. Second, the additional resources needed to meet new requirements (personnel, equipment, facilities, and funds) have not been made available, or have been insufficient to accomplish new tasks. This paper discusses these challenges and considers several responses (including a national nuclear trainers association) that can go a long way to place nuclear training managers and their employees more in control of their own fate

  18. Training options for countering nuclear smuggling

    International Nuclear Information System (INIS)

    Ball, D Y; Erickson, S A

    1999-01-01

    The burden of stopping a nuclear smuggling attempt at the border rests most heavily on the front-line customs inspector. He needs to know how to use the technological tools at his disposal, how to discern tell-tale anomalies in export documents and manifests, how to notice psychological signs of a smuggler's tension, and how to search anything that might hide nuclear material. This means that assistance in the counter-nuclear smuggling training of customs officers is one of the most critical areas of help that the United States can provide. This paper discusses the various modes of specialized training, both in the field and in courses, as well as the types of assistance that can be provided. Training for nuclear customs specialists, and supervisors and managers of nuclear smuggling detection systems is also important, and differs from front-line inspector training in several aspects. The limitations of training and technological tools such as expert centers that will overcome these limitations are also discussed. Training assistance planned by DOE/NN-43 to Russia within the Second Line of Defense program is discussed in the light of these options, and future possibilities for such training are projected

  19. Educating nuclear engineers by nuclear science and technology master at UPM

    Energy Technology Data Exchange (ETDEWEB)

    Ahnert, C.; Minguez, E.; Perlado, M. [Universidad Politecnica de Madrid (Spain). Dept. de Ingenieria Nuclear; and others

    2014-05-15

    One of the main objectives of the Master on Nuclear Science and Technology implemented in the Universidad Politecnica de Madrid, is the training for the development of methodologies of simulation and advanced analysis necessary in research and in professional work in the nuclear field, for Fission Reactors and Nuclear Fusion, including fuel cycle and safety aspects. The students are able to use the current computational methodologies/codes for nuclear engineering that covers a difficult gap between nuclear reactor theory and simulations. Also they are able to use some facilities, as the Interactive Graphical Simulator of PWR power plant that is an optimal tool to transfer the knowledge of the physical phenomena that are involved in the nuclear power plants, from the nuclear reactor to the whole set of systems and equipment on a nuclear power plant. The new Internet reactor laboratory to be implemented will help to understand the Reactor Physics concepts. The experimental set-ups for neutron research and for coating fabrication offer new opportunities for training and research activities. All of them are relevant tools for motivation of the students, and to complete the theoretical lessons. They also follow the tendency recommended for the European Space for higher Education (Bologna) adapted studies. (orig.)

  20. Educating nuclear engineers by nuclear science and technology master at UPM

    International Nuclear Information System (INIS)

    Ahnert, C.; Minguez, E.; Perlado, M.

    2014-01-01

    One of the main objectives of the Master on Nuclear Science and Technology implemented in the Universidad Politecnica de Madrid, is the training for the development of methodologies of simulation and advanced analysis necessary in research and in professional work in the nuclear field, for Fission Reactors and Nuclear Fusion, including fuel cycle and safety aspects. The students are able to use the current computational methodologies/codes for nuclear engineering that covers a difficult gap between nuclear reactor theory and simulations. Also they are able to use some facilities, as the Interactive Graphical Simulator of PWR power plant that is an optimal tool to transfer the knowledge of the physical phenomena that are involved in the nuclear power plants, from the nuclear reactor to the whole set of systems and equipment on a nuclear power plant. The new Internet reactor laboratory to be implemented will help to understand the Reactor Physics concepts. The experimental set-ups for neutron research and for coating fabrication offer new opportunities for training and research activities. All of them are relevant tools for motivation of the students, and to complete the theoretical lessons. They also follow the tendency recommended for the European Space for higher Education (Bologna) adapted studies. (orig.)

  1. Study on the establishment of the IAEA Asian Network for Education in Nuclear Technology

    International Nuclear Information System (INIS)

    Lee, E. J.; Han, K. W.; Lee, H. Y.

    2005-05-01

    The purpose of this project is to establish a web-portal including a database for the exchange of information and materials for nuclear education and training among ANENT members, and eventually contribute to the sustainable development of nuclear technology for peaceful uses in the Asian IAEA member countries. The project has resulted in the development of a web-portal for ANENT (www.anent-iaea.org). The portal primarily includes a Database for Nuclear Education and Training (NET DB). and functions to deal with group activities which were identified in the first ANENT Coordination Committee meeting. NET DB contains information about relevant education and training institutions/universities in terms of their faculty members or researchers, curricula, education and training materials, etc. While, the group activities are exchange of information and materials for education and training, e-learning, establishment of a reference curricula and a system for a mutual recognition of credits, and cooperation with other networks. Finally, an IAEA regional workshop was held to review the developed web-portal and an agreement was reached on the use of the web-portal with some revisions. Furthermore, the IAEA has requested the NTC/KAERI to develop ANENT Cyber-Platform for the continued upgrading of ANENT Web-portal

  2. Study on the establishment of the IAEA Asian Network for Education in Nuclear Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. J.; Han, K. W.; Lee, H. Y. [and others

    2005-05-01

    The purpose of this project is to establish a web-portal including a database for the exchange of information and materials for nuclear education and training among ANENT members, and eventually contribute to the sustainable development of nuclear technology for peaceful uses in the Asian IAEA member countries. The project has resulted in the development of a web-portal for ANENT (www.anent-iaea.org). The portal primarily includes a Database for Nuclear Education and Training (NET DB). and functions to deal with group activities which were identified in the first ANENT Coordination Committee meeting. NET DB contains information about relevant education and training institutions/universities in terms of their faculty members or researchers, curricula, education and training materials, etc. While, the group activities are exchange of information and materials for education and training, e-learning, establishment of a reference curricula and a system for a mutual recognition of credits, and cooperation with other networks. Finally, an IAEA regional workshop was held to review the developed web-portal and an agreement was reached on the use of the web-portal with some revisions. Furthermore, the IAEA has requested the NTC/KAERI to develop ANENT Cyber-Platform for the continued upgrading of ANENT Web-portal.

  3. Deregulation and Nuclear Training: Cost Effective Alternatives

    International Nuclear Information System (INIS)

    Richard P. Coe; Patricia A. Lake

    2000-01-01

    Training is crucial to the success of any organization. It is also expensive, with some estimates exceeding $50 billion annually spent on training by U.S. corporations. Nuclear training, like that of many other highly technical organizations, is both crucial and costly. It is unlikely that the amount of training can be significantly reduced. If anything, current trends indicate that training needs will probably increase as the industry and workforce ages and changes. With the advent of energy deregulation in the United States, greater pressures will surface to make the costs of energy more cost-competitive. This in turn will drive businesses to more closely examine existing costs and find ways to do things in a more cost-effective way. The commercial nuclear industry will be no exception, and nuclear training will be equally affected. It is time for nuclear training and indeed the entire nuclear industry to begin using more aggressive techniques to reduce costs. This includes the need for nuclear training to find alternatives to traditional methods for the delivery of cost-effective high-quality training that meets regulatory requirements and produces well-qualified personnel capable of working in an efficient and safe manner. Computer-based and/or Web-based training are leading emerging technologies

  4. Approaches to Education and Training for Kenya's Nuclear Power Program

    International Nuclear Information System (INIS)

    Kalambuka, H.A.

    2014-01-01

    1. Review of status and development of E and T for the nuclear power program in Kenya; 2. Review of challenges in nuclear E and T, and the initiatives being undertaken to mitigate them: • Recommendations for strategic action; 3. State of nuclear skills in the context of key drivers of the global revival in nuclear energy; 4. Point of view: Education in Applied Nuclear and Radiation physics at Nairobi: • Its growth has helped identify the gaps, and relevant practical approaches for realizing the broad spectrum of technical capacity to conduct a national NPP; 5. Proposed approach to support the E and T infrastructure necessary to allow the country to plan, construct, operate, regulate, and safely and securely handle nuclear facilities sustainably; 6. Specified E and T initiatives in the context of the national industrial development strategy and nuclear energy policy and funding for the complete life cycle and technology localization. (author)

  5. Attracting students to nuclear careers: INPO educational assistance program

    International Nuclear Information System (INIS)

    Dunkle, M.

    1981-01-01

    The utility industry is responding to a manpower shortage of 2000 at nuclear plants with a concerted analysis of regional training centers and educational assistance programs through the Institute of Nuclear Power Operations (INPO). University support and cooperation are generally strong. The INPO program includes undergraduate- and graduate-level scholarships and fellowships

  6. Development of plant status display system for on-site educational training system

    International Nuclear Information System (INIS)

    Yoshimura, Seiichi; Fujimoto, Junzo; Okamoto, Hisatake; Tsunoda, Ryohei; Watanabe, Takao; Masuko, Jiro.

    1986-01-01

    The purpose of this system is to make easy the comprehension of the facility and dynamics of nuclear power plants. This report describes the tendency and future position of how the educational training system should be, and furthermore describes the experiment. Main results are as follows. 1. The present status and the future tendency of educational training system for nuclear power plant operators. CAI (Computer Assisted Instruction) system has following characteristics. (1) It is easy to introduce plant specific characteristics to the educational training. (2) It is easy to execute the detailed training for the compensation of the full-scale simulator. 2. Plant status display system for on-site educational training system. The fundamental function of the system is as follows. (1) It has 2 CRT displays and voice output devices. (2) It has easy manupulation type of man-machine interface. (3) It has the function for the evaluation of the training results. 3. The effectiveness of this system. The effectiveness evaluation test has been carried out by using this system actually. (1) This system has been proved to be essentially effective and some improvements for the future utilization has been pointed out. (2) It should be faster when the CRT displayes are changed, and it should have the explanation function when the plant transients are displayed. (author)

  7. Doctoral education in the nuclear sector; La formacion de doctores en el sector nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Minguez, E.

    2013-03-01

    Doctoral aducation is a major priority for European universities. In the context of the Bologna Process the importance of doctoral education as the third cycle of higher education and the first stage of a young researchers career, and thus in linking the European Higher Education and Research Areas, was first highlighted in the 2003 Berlin Report. The core component of doctoral training is the advancement of knowledge through original research. considering the need for structured doctoral programs and the need for transparent supervision and assessment, we note that the normal workload of the third cycle in most countries would correspond 3-4 years full time. This is spirit of the new Spanish Doctoral Law. Then, universities should ensure that their doctoral programmes promote interdisciplinary training and the development of transferable skills, thus meeting the needs of the wider employment market. We need to achieve and overall increase in the numbers of doctoral candidates taking up research careers as early stage researchers and also increase the employability as a normal way as it is the case of other advance countries. In Spain, universities with doctoral nuclear programmes and the CIEMAT, with the sponsorship of the nuclear sector, a doctoral school in nuclear science and engineering should be created to enhance the research careers of Young students for the future of nuclear activities in Spain. (Author)

  8. Nuclear energy education scenario around the world

    International Nuclear Information System (INIS)

    Barabas, Roberta de Carvalho; Sabundjian, Gaiane

    2013-01-01

    Nuclear energy has been used as a source of clean energy with many benefits. Nevertheless, it is still addressed with prejudice. The atomic bombing of Hiroshima and Nagasaki during World War II (1945), the Three Mile Island accident (1979), Chernobyl accident (1986), the crash of the cesium-137 in Goiana, Brazil (1987), and the recent accident in Fukushima (2011) may have been responsible for the negative image of nuclear energy. Researches on education have been conducted with students concerning the conceptual and practical issues of nuclear energy. This work aims to review the literature about nuclear energy education around the world in both, elementary school and high school. Since most educational researches on nuclear energy were published after 1980, this literature review covered the researches that have been published since 1980. The data were presented in chronological order. The results from the literature review provided a clear visualization of the global nuclear energy educational scenario, showing that the theme is still addressed with prejudice due to an incorrect view of nuclear energy and a limited view of its benefits. Concerning the science textbooks, the literature reports that the theme should be better addressed, encouraging students to research more about it. The data from this literature review will serve as a reference for a future proposal for a teaching training program for Brazilian science/physics high school teachers using a new teaching approach. (author)

  9. Nuclear energy education scenario around the world

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, Roberta de Carvalho; Sabundjian, Gaiane, E-mail: praroberta@uol.com.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Nuclear energy has been used as a source of clean energy with many benefits. Nevertheless, it is still addressed with prejudice. The atomic bombing of Hiroshima and Nagasaki during World War II (1945), the Three Mile Island accident (1979), Chernobyl accident (1986), the crash of the cesium-137 in Goiana, Brazil (1987), and the recent accident in Fukushima (2011) may have been responsible for the negative image of nuclear energy. Researches on education have been conducted with students concerning the conceptual and practical issues of nuclear energy. This work aims to review the literature about nuclear energy education around the world in both, elementary school and high school. Since most educational researches on nuclear energy were published after 1980, this literature review covered the researches that have been published since 1980. The data were presented in chronological order. The results from the literature review provided a clear visualization of the global nuclear energy educational scenario, showing that the theme is still addressed with prejudice due to an incorrect view of nuclear energy and a limited view of its benefits. Concerning the science textbooks, the literature reports that the theme should be better addressed, encouraging students to research more about it. The data from this literature review will serve as a reference for a future proposal for a teaching training program for Brazilian science/physics high school teachers using a new teaching approach. (author)

  10. Study on Nuclear Facility Cyber Security Awareness and Training Programs

    International Nuclear Information System (INIS)

    Lee, Jung-Woon; Song, Jae-Gu; Lee, Cheol-Kwon

    2016-01-01

    Cyber security awareness and training, which is a part of operational security controls, is defined to be implemented later in the CSP implementation schedule. However, cyber security awareness and training is a prerequisite for the appropriate implementation of a cyber security program. When considering the current situation in which it is just started to define cyber security activities and to assign personnel who has responsibilities for performing those activities, a cyber security awareness program is necessary to enhance cyber security culture for the facility personnel to participate positively in cyber security activities. Also before the implementation of stepwise CSP, suitable education and training should be provided to both cyber security teams (CST) and facility personnel who should participate in the implementation. Since such importance and urgency of cyber security awareness and training is underestimated at present, the types, trainees, contents, and development strategies of cyber security awareness and training programs are studied to help Korean nuclear facilities to perform cyber security activities more effectively. Cyber security awareness and training programs should be developed ahead of the implementation of CSP. In this study, through the analysis of requirements in the regulatory standard RS-015, the types and trainees of overall cyber security training programs in nuclear facilities are identified. Contents suitable for a cyber security awareness program and a technical training program are derived. It is suggested to develop stepwise the program contents in accordance with the development of policies, guides, and procedures as parts of the facility cyber security program. Since any training programs are not available for the specialized cyber security training in nuclear facilities, a long-term development plan is necessary. As alternatives for the time being, several cyber security training courses for industrial control systems by

  11. Study on Nuclear Facility Cyber Security Awareness and Training Programs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Woon; Song, Jae-Gu; Lee, Cheol-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Cyber security awareness and training, which is a part of operational security controls, is defined to be implemented later in the CSP implementation schedule. However, cyber security awareness and training is a prerequisite for the appropriate implementation of a cyber security program. When considering the current situation in which it is just started to define cyber security activities and to assign personnel who has responsibilities for performing those activities, a cyber security awareness program is necessary to enhance cyber security culture for the facility personnel to participate positively in cyber security activities. Also before the implementation of stepwise CSP, suitable education and training should be provided to both cyber security teams (CST) and facility personnel who should participate in the implementation. Since such importance and urgency of cyber security awareness and training is underestimated at present, the types, trainees, contents, and development strategies of cyber security awareness and training programs are studied to help Korean nuclear facilities to perform cyber security activities more effectively. Cyber security awareness and training programs should be developed ahead of the implementation of CSP. In this study, through the analysis of requirements in the regulatory standard RS-015, the types and trainees of overall cyber security training programs in nuclear facilities are identified. Contents suitable for a cyber security awareness program and a technical training program are derived. It is suggested to develop stepwise the program contents in accordance with the development of policies, guides, and procedures as parts of the facility cyber security program. Since any training programs are not available for the specialized cyber security training in nuclear facilities, a long-term development plan is necessary. As alternatives for the time being, several cyber security training courses for industrial control systems by

  12. Education and training of physicians for radiation emergency management

    International Nuclear Information System (INIS)

    Reiners, Christoph; Schneider, Rita

    2012-01-01

    The project orders implied the development, testing, and evaluation of a curriculum for educating and training physicians in prehospital radiation accident management and the development of a master curriculum. Objectives were to develop, preserve, and enlarge medical competence concerning prehospital care of radiation accident patients. The project is expected to contribute to qualify emergency physicians challenged by scenarios related to radiological and nuclear hazards. The development and the content of the curriculum for educating and training physicians in prehospital radiation accident management are being described. The conduction and evaluation of two pilot training courses with a total of 40 participating physicians are being presented. Successful testing of the pilot courses proves the value of the curriculum developed. Self-contained courses can be performed according to the master curriculum and the respective master presentations. Moreover, single modules can be integrated in existing education and training programmes. Suggestions for the implementation and accreditation of the curriculum are being made. (orig.)

  13. Virtual-Reality training system for nuclear security

    International Nuclear Information System (INIS)

    Nonaka, Nobuyuki

    2012-01-01

    At the Integrated Support Center for Nuclear Nonproliferation and Nuclear Security (ISCN) of the Japan Atomic Energy Agency, the virtual reality (VR) training system is under development for providing a practical training environment to implement experience-oriented and interactive lessons on nuclear security for wide range of participants in human resource development assistance program mainly to Asian emerging nuclear-power countries. This system electrically recreates and visualizes nuclear facilities and training conditions in stereoscopic (3D) view on a large-scale display (CAVE system) as virtual reality training facility (VR facility) and it provides training participants with effective environments to learn installation and layout of security equipment in the facility testing and verifying visually the protection performances under various situations such as changes in day-night lighting and weather conditions, which may lead to practical exercise in the design and evaluation of the physical protection system. This paper introduces basic concept of the system and outline of training programs as well as featured aspects in using the VR technology for the nuclear security. (author)

  14. Upgrade the website of Nuclear Training Center for online training

    International Nuclear Information System (INIS)

    Nguyen Minh Duc; Nguyen Thuy Hang; Nguyen Thi Lien; Luu Thi Thu Hoa; Pham Thi Thu Trang

    2017-01-01

    In 2016, Nuclear Training Center (NTC) proposed the task of improving and upgrading NTC website’s technology for better performance, more attractive interface and more accessible information to site visitors. This website will be designed to meet the demand for integrated online training site, integrated training management page later. For this task, it is expected to build a website with full modules, English interface of website and especially, the professional website to apply online training technology and tightly integrated close to the present site of a nuclear training center. (author)

  15. Recruitment, qualification and training of personnel for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of this Safety Guide is to outline the various factors that should to be considered in order to ensure that the operating organization has a sufficient number of qualified personnel for safe operation of a nuclear power plant. In particular, the objective of this publication is to provide general recommendations on the recruitment and selection of plant personnel and on the training and qualification practices that have been adopted in the nuclear industry since the predecessor Safety Guide was published in 1991. In addition, this Safety Guide seeks to establish a framework for ensuring that all managers and staff employed at a nuclear power plant demonstrate their commitment to the management of safety to high professional standards. This Safety Guide deals specifically with those aspects of qualification and training that are important to the safe operation of nuclear power plants. It provides recommendations on the recruitment, selection, qualification, training and authorization of plant personnel. That is, of all personnel in all safety related functions and at all levels of the plant. Some parts or all of this Safety Guide may also be used, with due adaptation, as a guide to the recruitment, selection, training and qualification of staff for other nuclear installations (such as research reactors or nuclear fuel cycle facilities). Section 2 gives guidance on the recruitment and selection of suitable personnel for a nuclear power plant. Section 3 gives guidance on the establishment of personnel qualification, explains the relationship between qualification and competence, and identifies how competence may be developed through education, experience and training. Section 4 deals with general aspects of the training policy for nuclear power plant personnel: the systematic approach, training settings and methods, initial and continuing training, and the keeping of training records. Section 5 provides guidance on the main aspects of training programmes

  16. Recruitment, qualification and training of personnel for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The objective of this Safety Guide is to outline the various factors that should to be considered in order to ensure that the operating organization has a sufficient number of qualified personnel for safe operation of a nuclear power plant. In particular, the objective of this publication is to provide general recommendations on the recruitment and selection of plant personnel and on the training and qualification practices that have been adopted in the nuclear industry since the predecessor Safety Guide was published in 1991. In addition, this Safety Guide seeks to establish a framework for ensuring that all managers and staff employed at a nuclear power plant demonstrate their commitment to the management of safety to high professional standards. This Safety Guide deals specifically with those aspects of qualification and training that are important to the safe operation of nuclear power plants. It provides recommendations on the recruitment, selection, qualification, training and authorization of plant personnel; that is, of all personnel in all safety related functions and at all levels of the plant. Some parts or all of this Safety Guide may also be used, with due adaptation, as a guide to the recruitment, selection, training and qualification of staff for other nuclear installations (such as research reactors or nuclear fuel cycle facilities). Section 2 gives guidance on the recruitment and selection of suitable personnel for a nuclear power plant. Section 3 gives guidance on the establishment of personnel qualification, explains the relationship between qualification and competence, and identifies how competence may be developed through education, experience and training. Section 4 deals with general aspects of the training policy for nuclear power plant personnel: the systematic approach, training settings and methods, initial and continuing training, and the keeping of training records. Section 5 provides guidance on the main aspects of training programmes

  17. Annual report of Nuclear Technology and Education Center. April 1, 2008 - March 31, 2009

    International Nuclear Information System (INIS)

    2010-03-01

    This annual report summarizes the activities of Nuclear Technology and Education Center (NuTEC) of Japan Atomic Energy Agency (JAEA) in the fiscal year 2008. This year is the 50th anniversary of NuTEC since the starting of the first training course in January, 1958 at the Radioisotope-School in Tokyo. On this occasion, a commemorative symposium was held and attended by around 150 participants. NuTEC flexibly designed and conducted out new training courses upon requests while conducting the annually scheduled training programs. In spite of some cancellations in an economic downturn, the number of trainees who completed the domestic training courses was 404, and that of those who completed the staff technical training courses was 862. As a result, the total number of trainees during this period grew over the previous fiscal year. 'Nuclear Training for METI Inspectors' was newly offered and also 'Qualification Course for the 3rd class radiation protection supervisor' was held at Tsuruga Technical High School. JAEA continued its cooperative activities with universities; cooperation with graduate school of University of Tokyo, cooperative graduate school program with 14 graduate schools and one under-graduate school, and newly began to cooperate with Tsuyama National College of Technology. JAEA also continued cooperative activities with Nuclear HRD Program initiated by MEXT and METI implemented in 2007. The joint course has continued networking with five universities including newly two universities utilizing the Japan Nuclear Education Network (JNEN). International cooperation was also conducted as scheduled. The joint training course and the instructor training program were conducted bilaterally with Indonesia, Thailand and Vietnam. JAEA exchanged a memorandum with CEA/INSTN and initiated preparatory work for on internship student from INSTN. Moreover, JAEA newly joined European Nuclear Education Network (ENEN) and began to prepare for new international training

  18. International Cooperation in Nuclear E&T: On the Way to Nuclear Training Harmonization

    International Nuclear Information System (INIS)

    Filipev, I.; Karmanov, F.; Artisyuk, V.; Karezin, V.; Sushkov, P.

    2016-01-01

    Full text: Global use of nuclear power is likely to continue to grow in the coming decades. Some countries have chosen to invite multiple vendors for NPP technology supply. The worldwide expansion of nuclear power use and the multi-vendor paradigm inevitably lead to the need of harmonized approaches towards safety and the initial step here is harmonization of education and training (E&T) efforts between recipient and vendor countries and between vendors as well. Establishing international and regional E&T networks is the vital mechanism of the harmonization. The present paper gives an example of collaboration between Russia and the EU through achievements of ENEN-RU projects aimed at harmonization of E&T efforts in nuclear field. One of the goals of this activity is to introduce double-degree programmes in nuclear engineering in Russian and EU universities. To support this initiative ROSATOM-CICE&T is currently developing multimedia-based fundamental educational courses in Russian and English languages. The courses will be also used as the backbone for new nuclear engineering programmes in the universities of newcomer states. To provide a harmonized development of operating personnel career trajectories in these countries an applied bachelor programme for operating personnel has been developed. (author

  19. Training Nuclear Power Specialists

    International Nuclear Information System (INIS)

    Paulikas, V.

    2003-01-01

    Situation of preparation of nuclear energy specialists in Lithuania is presented. Nuclear engineers are being prepared at Kaunas University of Technology. In view with decision to decommission Unit 1, the Ignalina NPP is limiting the number of new personnel to fill in vacancies. The main attention is given to the training courses for improvement skills of existing Ignalina NPP, VATESI personnel. Main topics of the training courses are listed. Comparison with previous years on personnel hired and dismissed in Ignalina NPP is made

  20. Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program

    International Nuclear Information System (INIS)

    Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.; Montgomery, V. Trent; James, Ralph B.; Blackburn, Noel D.; Glenn, Chance M.

    2015-01-01

    Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrative curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and

  1. Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program

    Energy Technology Data Exchange (ETDEWEB)

    Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.; Montgomery, V. Trent [Nuclear Engineering and Radiological Science Center, Alabama A and M University, Huntsville, AL (United States); James, Ralph B.; Blackburn, Noel D. [Nonproliferation and National Security Department, Brookhaven National Laboratory, Upton, NY (United States); Glenn, Chance M. [College of Engineering, Technology and Physical Sciences, Alabama A and M University, Huntsville, AL (United States)

    2015-07-01

    Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrative curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and

  2. Educational Approach to Maintain a Suitable Knowledge and Expertise in Nuclear Field: Case of Morocco

    International Nuclear Information System (INIS)

    Choukri, A.; Hakam, O.K.

    2016-01-01

    Full text: Nuclear knowledge management has become an increasingly important element of the nuclear sector in recent years, resulting from a number of challenges and trends. The development of any national nuclear energy programme is dependent on the successful development of the workforce, through a sustainable nuclear educational and training programme supported by government and industry. Morocco has continuously provided educational programmes in nuclear field at its universities since 1967. These academic programmes focused on nuclear sciences, nuclear engineering, radiation protection, etc., and were intended to undergraduate and postgraduate students. Nuclear techniques have known also an increased contribution to medicine, agriculture, industry and research in Morocco. Some educational and training programmes have been elaborated to develop human resources needed in different domains. University of Ibn Tofail, has launched, since september 2010, a national master’s programme in the field of nuclear sciences which aims to provide knowledge directly used in the various sectors using nuclear techniques and requiring radiation protection, nuclear safety and security including notions on nuclear knowledge management. For an effective management of nuclear knowledge, the educational didactic has been improved increasingly. Some new techniques, materiel and styles have been employed such as demonstrations, group exercises, e-learning, visio-conferences. (author

  3. Ensuring the expert resources and education in nuclear energy field

    International Nuclear Information System (INIS)

    Pirilae, P.

    1987-01-01

    The Finnish Atomic Energy Commission has published a report ''The Situation and the Needs for Development of Education in the Nuclear Energy Field''. According to it, the needs concerning the volume of education are small and no problem for Finland. But, the problem is how to maintain the present high level of training and education within this small volume

  4. Contribution of Nuclear Training Centre in Ljubljana to Training and Information in the Area of Nuclear Technology

    International Nuclear Information System (INIS)

    Stritar, A.

    1998-01-01

    Nuclear Training Centre in Ljubljana ia a part of the Jozef Stefan Institute. The paper presents its main activities, which consist of training for NPP Krsko staff, training in the area of radiation protection, organization of international training courses and public information. NPP Krsko personnel obtains initial technical training at our training centre. We are also offering training courses and licensing for people working with radioactive substances in medicine, industry and science. We are internationally recognized training centre for organization of regional and interregional courses and meeting. Our fourth activity is public information. We are visited by around 7000 students per year and answer to every question about nuclear energy. (author)

  5. Training and Public Information Activities of the Milan Copic Nuclear Training Centre

    International Nuclear Information System (INIS)

    Jencic, I.

    2006-01-01

    The mission of the Milan Copic Nuclear Training Centre is training in the field of nuclear technologies and radioactivity. In addition we are actively informing general public about those technologies. Activities can be divided into four areas: training in the area of nuclear technologies, radiological protection training, organization of international training courses and public information. Training in the area of nuclear technologies is the primary mission. Two types of courses are regularly offered: The Theory of nuclear technology is the initial training of future control room operators, and the Basics of nuclear technology is intended for non-control room personnel of Krsko NPP and for staff of some other organizations. Each year there are also some specific courses in this area, mainly for the regulatory body and for the NPP. Jozef Stefan Institute is one of the two institutions in Slovenia, authorized for radiological protection training and the training centre is the actual performer. About 15 courses yearly are organized for people from medicine, industry and science courses about open, closed and industrial sources of ionizing radiation. We are also responsible for the training of NPP Krsko personnel in that area. Organization of international courses is a usually a collaboration with the International Atomic Energy Agency (IAEA), but we have worked also with other international organizations, such as European Commission, US Department of Energy etc. The topics of international courses and workshops cover a wide range from nuclear safety to radiological protection or illegal trafficking of nuclear materials etc. Depending on the subject, part of lectures on these courses is given by domestic experts. 6 - 10 international courses are organized yearly. Very important is the area of public information. Groups of school children and other visitors are coming regularly to listen to a lecture and to visit the exhibition. In 2005, both the lecture and the

  6. Experiments for training in nuclear and radiochemistry

    International Nuclear Information System (INIS)

    Moebius, S.

    1985-03-01

    An experimental training program for education in Nuclear and Radiochemistry is outlined. Didactical aspects are discussed, the installation of a suitable radiochemical laboratory is described and the precautions for radiation protection summarized. Experiments including theoretical introduction, survey of apparatus and materials involved and experimental procedures are given for the topics of Radiation and Their Measurement, Radiochemical Methods and Application of Radioisotopes. Technical Terms most often used during the course are explained and a comprehensive literature survey is finally compiled. (orig.) [de

  7. Experiments for training in nuclear and radiochemistry

    International Nuclear Information System (INIS)

    Moebius, S.

    1988-01-01

    An experimental training program for education in Nuclear and Radiochemistry is outlined. Didactical aspects are discussed, the installation of a suitable radiochemical laboratory is described and the precautions for radiation protection summarized. Experiments including theoretical introduction, survey of apparatus and materials involved and experimental procedures are given for the topics of radiation and their measurement, radiochemical methods and application of radioisotopes. Technical terms most often used during the course are explained and a comprehensive literature survey is finally compiled. (orig.) [de

  8. The coming crisis in nuclear skills and education

    International Nuclear Information System (INIS)

    Magwood, William D. IV; )

    2017-01-01

    In the early 1990's, nuclear engineering programs in universities across the United States began to collapse. Whereas at the beginning of the decade, there were nearly 2000 nuclear engineering students studying in US colleges and universities, the perception that there was no future career in nuclear technology led to a drop in enrolments to less than 800 by 1998. At the same time, entire programs were closing and university research reactors were being shut down at a rate of almost one each year. A governmental decision was made to reverse this trend. Impactful investments in university research, scholarships and fellowships, and infrastructure - along with vocal support for this field of study from senior government officials and members of Congress - had an immediate impact. Enrolments grew quickly and later accelerated as industry began hiring aggressively. Today, there are around 5000 nuclear engineering students in US schools, many focused on medical applications, non-proliferation, fusion and other areas - including, of course, advanced nuclear energy technologies. The nuclear specialists emerging from these education programs arrived at just the right time, as governmental agencies, industry and scientific organisations rushed to prepare for retirements in the ranks of experienced nuclear engineers. The foresight to support nuclear education in the late 1990's averted what might have been a crisis in human resources by 2010. However today, as we review the situation globally, the potential for a crisis over the next decade in the availability of trained nuclear specialists seems extraordinarily high. In many NEA countries, training of nuclear engineers and scientists is on a steadily declining path. Once highly lauded programs have been significantly diminished or already eliminated. In some fields, such as nuclear chemistry - which is essential in the application of radioactive materials to support advanced medical applications and explore advanced

  9. CITON involvement in CETRAD project on 'Education and training in radiation protection and radioactive waste'

    International Nuclear Information System (INIS)

    Comsa, Olivia; Meglea, Claudia; Banutoiu, Marina; Paraschiva, M. V.; Meglea, S.

    2003-01-01

    Within the European Community and world-wide there is extensive experience in the principles and practice of radiation protection and radioactive waste management. Nuclear skills and capabilities have grown and evolved since the inception of nuclear technology in the 1940s. However, with the current stagnation of the nuclear industry it is increasingly acknowledged that the skills and expertise held by the generation who grew up with nuclear technology are being passed on to new generations of experts. This poses a significant risk to the community who will need to manage nuclear liabilities for long times into the future in order to protect future society from radiological hazards. Notwithstanding that the state of the art in nuclear waste management is undoubtedly high in many organizations, it is very clear that there is continuous need for the provision of education and training in this area. The various training and education programmes throughout Europe are at different stages of development. There is undoubtedly a need for harmonization of the numerous programmes and there would be great benefit to countries at early stages of development due to the learning experiences from the more developed organizations. The objective of CETRAD is to develop proposals for structuring and delivering both education and training in the management of the geological disposal of long-lived radioactive waste and radiation protection across Europe. This proposal is seen as a forerunner of a more comprehensive pan-European Network in this area, which it is planned, will emerge from this work. The project activities will be carried out in two phases. Phase 1 will involve national evaluations of both the needs for education and training and the existing infrastructure and resources in the field of radiation protection and radioactive waste management. Phase 2 will involve development of specific proposals for education and training based on the needs identified in Phase 1. (authors)

  10. Quality education and training in the Paks Nuclear Power Plant, Hungary

    International Nuclear Information System (INIS)

    Sipos, L.

    2000-01-01

    The following theses of quality issues are highlighted during basic education and training courses: product quality, safety of personnel and environment, direct relationships between these issues and the total quality management. The excellent job quality and reliability are pointed out. The overall role of education in quality assurance is discussed. (R.P.)

  11. Staffing of nuclear power plants and the recruitment, training and authorization of operating personnel

    International Nuclear Information System (INIS)

    1979-01-01

    The Guide is a part of the International Atomic Energy Agency's programme, referred to as the NUSS (Nuclear Safety Standards) programme, for establishing Codes of Practice and Safety Guides relating to nuclear power plants. It outlines the various factors to be considered in order to ensure that the Operating Organization has a sufficient number of qualified site personnel who are clearly aware of their duties and responsibilities. The Guide covers the organization for a nuclear power plant, the educational qualifications and experience of the persons who are recruited for plant operation, the recruitment and training schedule, the training of operating personnel, the authorizations for persons whose duties have an immediate bearing on safety, and re-training of personnel. The provisional list of NUSS programme titles is attached

  12. Training in nuclear engineering companies

    International Nuclear Information System (INIS)

    Perezagua, R. L.

    2013-01-01

    The importance of training is growing in all business areas and fields and especially in hi-tech companies like engineering firms. Nuclear projects are highly multidisciplinary and, even in the initial awarding and pre-construction phases, need to be staffed with personnel that is well-prepared and highly-qualified in areas that, in most cases, are not covered by university studies. This article examines the variables that influence the design of specific training for nuclear projects in engineering firms, along with new training technologies (e-learning) and new regulatory aspects (IS-12). (Author)

  13. Nuclear training: we just keep learning!

    International Nuclear Information System (INIS)

    Long, R.L.

    1996-01-01

    Years ago GPU Nuclear made a commitment to behavioral based training and to the development of high quality training for the personnel running their nuclear plants. The paper shares some of our latest developments and techniques being used to achieve outstanding results. (author)

  14. The nuclear power public education and information program in the Philippines

    International Nuclear Information System (INIS)

    Garcia, E.A.; Natera, E.S.

    1996-01-01

    The nuclear power public education and information program aims to present the beneficial uses of radiation and nuclear energy. Considering that there are pros and cons to the use of nuclear energy, the program aims to give the public an objective and balanced view of this source of energy. A decision to use or not to use nuclear energy, to be sound,must be based on an adequate and objective knowledge of the atom and nuclear energy. Executive Order 243 created the Nuclear Power Steering committee including subcommittee on Nuclear Power Public Education and Information. This subcommittee is tasked to formulate an effective nuclear power public education and information program. Said program must include training component for science teachers in the high school and college levels and shall also work for the inclusion of nuclear related subjects in all engineering curriculum. It shall coordinate with the University of the Philippines for the revival of the M.S. in Nuclear Engineering Program of the university. This paper will discuss a brief history of nuclear power public education and awareness programs and the present and projected activities of this subcommittee. (author)

  15. A study on the development of curriculum of nuclear technology development for training engineering technicians in nuclear plants

    International Nuclear Information System (INIS)

    Lee, Y.S.; Yoon, S.K.; Lee, C.Y.

    1982-01-01

    In this paper, the development of curriculum was studied for Department of Nuclear Technology. In order to make the students suitable for the job as engineering technicians with both theory and practical technique, the basic education in the field related to nuclear energy was emphasized in designing the curriculum. In addition taking the special situation of our department into consideration, we made it a principle to provide them with practical experiences with on-the-job training for 16 weeks. A model curriculum with syllabuses for major subjects, contents of experiments with lists of equipments, and program of on-the-job-training were suggested. (author)

  16. The Nuclear Safeguards and Security Activities under Euratom Research and Training Programme

    International Nuclear Information System (INIS)

    Abousahl, S.; Palajova, Z.; Janssens, W.A.M.; Luetzenkirchen, K.; Goncalves, J.G.M.; Aregbe, Y.; )

    2015-01-01

    Nuclear safeguards and security are absolute priorities for the EU. At technical level, the Joint Research Centre (JRC) as the European Commission's in-house science service plays an important role in the field of nuclear research, training and education that include nuclear safety, safeguards and security. The JRC's nuclear research activities are defined in a Council Regulation on the research and training programme of the European Atomic Energy Community. The JRC works closely with EC safeguards authority, whose mission is to ensure that nuclear material within the EU is not diverted from its intended use according to Euratom treaty. Technologies, methodologies and trainings are developed according to the Euratom Safeguards inspectorate's needs. In the area of nuclear security, the JRC contributes to the development of specific expertise in the field of nuclear forensics and border security detection as well as related training efforts for first front-line responders and national experts. The JRC provides its expert support for the implementation of internal EU action plans mainly in the field of radiological and nuclear security. At an international level, the JRC cooperates with the IAEA mainly through the EC support programme on the control of nuclear materials and facilities in order to avoid proliferation or diversion. Close cooperation with IAEA nuclear security is developed through the recent signature of a dedicated practical arrangement. Key partnerships have also been developed in the field of safeguards and security with the US-DoE, Russia, Japan and China. In addition, JRC contributes significantly to the EU nuclear safeguards and security outreach activities implemented under the Instrument for Nuclear Safety Cooperation and Instrument contributing to Stability and Peace. In this paper we will highlight some of the JRC contributions to the enhancement of nuclear safeguards and security at EU and international levels. (author)

  17. Training of troubleshooting skills in nuclear power plants

    International Nuclear Information System (INIS)

    Rhodes, W.; Szlapetis, I.J.; Casselman, K.

    1995-12-01

    This report details the study of training of troubleshooting skills for Canadian nuclear power plant operators and maintainers. The study was conducted in three distinct stages: 1) literature review and production of annotated bibliographies; 2) survey of experts in training for troubleshooting skills in North America; 3) survey of Canadian nuclear power plant training centres. Within this report are 12 annotated bibliographies of significant documents and an extensive bibliographic listing of relevant literature. The review of the literature and the survey of training experts identified the state-of-art in troubleshooting training with respect to training approaches and training tools. Trainers in the military, pharmaceutical, petro-chemical, and nuclear industries were surveyed and/or interviewed to determine the current approaches and technologies used in training for troubleshooting. Training personnel responsible for Canada's major nuclear generating stations (Bruce, Darlington, Pickering, and Point Lepreau) were interviewed and surveyed to determine the status of troubleshooting training in the Canadian nuclear industry. This information has been integrated and presented in this report. Conclusions and recommendations regarding the nature of the troubleshooting tasks performed by operators and maintainers and the related training were submitted. (author). 152 refs., 7 tabs., 1 fig

  18. Training of troubleshooting skills in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, W; Szlapetis, I J; Casselman, K [Rhodes and Associates, Inc., Willowdale, ON (Canada)

    1995-12-01

    This report details the study of training of troubleshooting skills for Canadian nuclear power plant operators and maintainers. The study was conducted in three distinct stages: (1) literature review and production of annotated bibliographies; (2) survey of experts in training for troubleshooting skills in North America; (3) survey of Canadian nuclear power plant training centres. Within this report are 12 annotated bibliographies of significant documents and an extensive bibliographic listing of relevant literature. The review of the literature and the survey of training experts identified the state-of-art in troubleshooting training with respect to training approaches and training tools. Trainers in the military, pharmaceutical, petro-chemical, and nuclear industries were surveyed and/or interviewed to determine the current approaches and technologies used in training for troubleshooting. Training personnel responsible for Canada`s major nuclear generating stations (Bruce, Darlington, Pickering, and Point Lepreau) were interviewed and surveyed to determine the status of troubleshooting training in the Canadian nuclear industry. This information has been integrated and presented in this report. Conclusions and recommendations regarding the nature of the troubleshooting tasks performed by operators and maintainers and the related training were submitted. (author). 152 refs., 7 tabs., 1 fig.

  19. Matching grant program for university nuclear engineering education

    International Nuclear Information System (INIS)

    Bajorek, Stephen M.

    2002-01-01

    The grant augmented funds from Westinghouse Electric Co. to enhance the Nuclear Engineering program at KSU. The program was designed to provide educational opportunities and to train engineers for careers in the nuclear industry. It provided funding and access to Westinghouse proprietary design codes for graduate and undergraduate studies on topics of current industrial importance. Students had the opportunity to use some of the most advanced nuclear design tools in the industry and to work on actual design problems. The WCOBRA/TRAC code was used to simulate loss of coolant accidents (LOCAs)

  20. International Nuclear Security Education Network (INSEN): Promoting nuclear security education

    International Nuclear Information System (INIS)

    Muhamad Samudi Yasir

    2013-01-01

    Full-text: The need for human resource development programmes in nuclear security was underlined at several International Atomic Energy Agency (IAEA) General Conferences and Board of Governors Meetings. Successive IAEA Nuclear Security Plans, the most recent of which was agreed by the Board of Governors in September 2009, give high priority to assisting States in establishing educational programmes in nuclear security in order to ensure the sustainability of nuclear security improvements. The current Nuclear Security Plan 1 covering 2010-2013 emphasizes on the importance of considering existing capacities at international, regional and national levels while designing nuclear security academic programmes. In the course of implementing the Plan, the IAEA developed a guide entitled Educational Programme in Nuclear Security (IAEA Nuclear Security Series No. 12) that consists of a model of a MAster of Science (M.Sc.) and a Certificate Programme in Nuclear Security. This guide was aims at assisting universities or other educational institutes to developed academic programmes in nuclear security. Independently, some universities already offered academic programmes covering some areas of nuclear security, while other universities have asked the IAEA to support the implementation of these programmes. In order to better address current and future request for assistance in this area, the IAEA establish a collaboration network-International Nuclear Security Education Network (INSEN), among universities who are providing nuclear security education or who are interested in starting an academic programme/ course(s) in nuclear security. Universiti Kebangsaan Malaysia (UKM) is a first local university became a member of INSEN since the beginning of the establishment. (author)

  1. Strategies of training as a part of radiation protection and nuclear safety in the 21st century

    International Nuclear Information System (INIS)

    Tafuni, O.

    2009-01-01

    Elaboration of national strategies and national training system is one of the main direction in the field of radio protection and nuclear safety in the Republic of Moldova. Necessary seminars and advanced training courses are held in the country and abroad, as well as the educational and informational materials are published to obtain these objectives. Scientific personnel of high educational institutions and specialists in the field of nuclear safety take part in accomplishment of the strategy. The demands of International and European organizations in this field are taken into consideration

  2. Basic training of nuclear power reactor personnel

    International Nuclear Information System (INIS)

    Palabrica, R.J.

    1981-01-01

    The basic training of nuclear power reactor personnel should be given very close attention since it constitutes the foundation of their knowledge of nuclear technology. Emphasis should be given on the thorough understanding of basic nuclear concepts in order to have reasonable assurance of successful assimilation by those personnel of more specialized and advanced concepts to which they will be later exposed. Basic training will also provide a means for screening to ensure that those will be sent for further spezialized training will perform well. Finally, it is during the basic training phase when nuclear reactor operators will start to acquire and develop attitudes regarding reactor operation and it is important that these be properly founded. (orig.)

  3. Nuclear criticality safety department training implementation

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. The NCSD Qualification Program is described in Y/DD-694, Qualification Program, Nuclear Criticality Safety Department This document provides a listing of the roles and responsibilities of NCSD personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This document supersedes Y/DD-696, Revision 2, dated 3/27/96, Training Implementation, Nuclear Criticality Safety Department. There are no backfit requirements associated with revisions to this document

  4. Clinical Training of Medical Physicists Specializing in Nuclear Medicine

    International Nuclear Information System (INIS)

    2011-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  5. The manpower training and development programs of NUCLEBRAS for the Brazilian nuclear program

    International Nuclear Information System (INIS)

    Spitalnik, J.; Lerner Neto, C.; Stilben, V.; Botelho, O.

    1984-01-01

    As technology transfer is one of the main objectives of the Brazilian Nuclear Program, the principal aim of manpower training has been to provide the conditions for absorbing this technology. The strategy used for such a program required a quantitative and qualitative planning of manpower needs, through medium-range and long-term forecasts, with the condition of maximum utilization of the existing educational infra-structure. On-the-job training which is considered one of the most important means for technology transfer, was given highest priority. Also, management development was considered very important for the implementation of the Nuclear Program. This paper shows the results achieved from 1973 up to now by the manpower training and development programs. (Author) [pt

  6. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  7. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Bess, J.D.; Briggs, J.B.; Garcia, A.S.

    2011-01-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  8. Post TMI-2 view on the responsibilities of nuclear engineering educators

    International Nuclear Information System (INIS)

    Long, R.L.

    1980-01-01

    The Three Mile Island (TMI) accident of March 28, 1979 was the result of a complex set of interactions involving design deficiencies, equipment failure and human error. Nuclear engineering educators may need to accept responsibility for some of the underlying, industry-wide causes leading to the event. The many detailed investigations and recommendations following the accident are certain to have a significant impact on nuclear engineering education. Areas of impact include changes in curricula, increased demand for graduates, heavier involvement in utility staff training and education, and new approaches to university, industry, and societal interactions

  9. Development of training courses in the field of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Young; Soe, In Seok; Lee, Ui Jin; Park, Jae Chang; Kim, Ik Hyeon; Won, Jong Yeol; Nam, Jae Yeol

    1993-12-01

    The nuclear training center provides various training courses in such areas of nuclear energy as nuclear power technology, radioisotope applications technology, non-destructive technology, nuclear safety, etc. The center also provides in-house staff training courses in project management, computer applications, and other research areas. The objective of the project is to develop new specialized training courses not only nuclear energy areas but also in management, so that localization of nuclear project can be accomplished as early as possible. The scope and contents of the project envision the following aims; 1. to develop specialized nuclear training programs; 2. to develop project management training courses for KAERI staff; 3. to collect and analyze foreign training programs and materials; 4. to develop foreign-assisted training courses; and 5. to develop international training courses for developing country trainese

  10. The computer aided education and training system for accident management

    International Nuclear Information System (INIS)

    Yoneyama, Mitsuru; Masuda, Takahiro; Kubota, Ryuji; Fujiwara, Tadashi; Sakuma, Hitoshi

    2000-01-01

    Under severe accident conditions of a nuclear power plant, plant operators and technical support center (TSC) staffs will be under a amount of stress. Therefore, those individuals responsible for managing the plant should promote their understanding about the accident management and operations. Moreover, it is also important to train in ordinary times, so that they can carry out accident management operations effectively on severe accidents. Therefore, the education and training system which works on personal computers was developed by Japanese BWR group (Tokyo Electric Power Co.,Inc., Tohoku Electric Power Co. ,Inc., Chubu Electric Power Co. ,Inc., Hokuriku Electric Power Co.,Inc., Chugoku Electric Power Co.,Inc., Japan Atomic Power Co.,Inc.), and Hitachi, Ltd. The education and training system is composed of two systems. One is computer aided instruction (CAI) education system and the other is education and training system with a computer simulation. Both systems are designed to execute on MS-Windows(R) platform of personal computers. These systems provide plant operators and technical support center staffs with an effective education and training tool for accident management. TEPCO used the simulation system for the emergency exercise assuming the occurrence of hypothetical severe accident, and have performed an effective exercise in March, 2000. (author)

  11. Nuclear engineering education initiative at Ibaraki University

    International Nuclear Information System (INIS)

    Matsumura, Kunihito; Kanto, Yasuhiro; Tanaka, Nobuatsu; Saigusa, Mikio; Kurumada, Akira; Kikuchi, Kenji

    2015-01-01

    With the help of a grant from the Ministry of Education, Culture, Sports, Science and Technology, Ibaraki University has been engaging for six years in the development and preparation of educational environment on nuclear engineering for each of graduate and undergraduate. Core faculty conducts general services including the design and implementation of curriculum, operational improvement, and implementation of lectures. 'Beginner-friendly introduction for nuclear power education' is provided at the Faculty of Engineering, and 'nuclear engineering education program' at the Graduate School of Science and Engineering. All the students who have interest or concern in the accidents at nuclear power plants or the future of nuclear power engineering have opportunities to learn actively. This university participates in the alliance or association with other universities, builds industry - government - academia cooperation with neighboring institutions such as the Japan Atomic Energy Agency, and makes efforts to promote the learning and development of applied skills related to nuclear engineering through training and study tours at each facility. For example, it established the Frontier Applied Atomic Science Center to analyze the structure and function of materials using the strong neutron source of J-PARC. As the efforts after the earthquake accident, it carried out a radiation survey work in Fukushima Prefecture. In addition, it proposed and practiced the projects such as 'development of methods for the evaluation of transfer/fixation properties and decontamination of radioactive substances,' and 'structure analysis of radioactive substances remaining in soil, litter, and polluted water and its application to the decontamination.' (A.O.)

  12. Nuclear criticality safety training: guidelines for DOE contractors

    International Nuclear Information System (INIS)

    Crowell, M.R.

    1983-09-01

    The DOE Order 5480.1A, Chapter V, Safety of Nuclear Facilities, establishes safety procedures and requirements for DOE nuclear facilities. This guide has been developed as an aid to implementing the Chapter V requirements pertaining to nuclear criticality safety training. The guide outlines relevant conceptual knowledge and demonstrated good practices in job performance. It addresses training program operations requirements in the areas of employee evaluations, employee training records, training program evaluations, and training program records. It also suggests appropriate feedback mechanisms for criticality safety training program improvement. The emphasis is on academic rather than hands-on training. This allows a decoupling of these guidelines from specific facilities. It would be unrealistic to dictate a universal program of training because of the wide variation of operations, levels of experience, and work environments among DOE contractors and facilities. Hence, these guidelines do not address the actual implementation of a nuclear criticality safety training program, but rather they outline the general characteristics that should be included

  13. On-the-job training and qualification of nuclear power plant personnel. OJT at the Loviisa NPP

    International Nuclear Information System (INIS)

    1996-01-01

    On-the-job training and qualification process of nuclear power plant personnel is described, including the following issues: educational system of technical studies in Finland; training methods at the Loviisa NPP; on-the-job training of control room operators,field operators, maintenance personnel, other groups of the plant; qualifying examinations for different jobs

  14. Nuclear Training Excellence Project in Slovenské elektrárne

    International Nuclear Information System (INIS)

    Kvočková, Alena; Tonkovičová, Martina; Baláž, Martin

    2014-01-01

    Goals 2013-2015: • Set and implement nuclear training in accordance with the best nuclear practice: → Change understanding of nuclear training by line management – nuclear training is part of core business; → Apply Systematic Approach to Training methodology thoroughly; → Develop and start implementing new training programs. • Prepare practical training centers in EBO and EMO for real operation

  15. Activities to foster training in nuclear and radiochemistry from IACS, IAEA-Vienna

    International Nuclear Information System (INIS)

    Rossbach, M.; Narasimhan, D.V.S.; Chmielewski, A.; Einav, I.; Thereska, J.; Haji-Saeid, M.

    2005-01-01

    Uses of radioisotopes and radiation in medicine, industry, agriculture are amongst the most beneficial applications of atomic energy for peaceful purposes. The International Atomic Energy Agency aims - in accordance with its statute - to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world. The various Technical Divisions of the Agency carry out this mandate and enhance, particularly through 'manpower development activities' the nuclear applications of radiation and isotopes. Staff members of the 'Industrial Applications and Chemistry Section' in the Department of Nuclear Sciences and Applications of the IAEA have supported more than 600 trainees per year for education in nuclear and radiochemistry through fellowships, training courses and workshops. Provision of printed material in various disciplines is supporting our educational efforts. (author)

  16. Education and training in transport of radioactive material

    International Nuclear Information System (INIS)

    Carvalho, Bruno Natanael; Pastura, Valeria da Fonseca e Silva; Mattar, Patricia; Dias, Carlos R.

    2013-01-01

    This paper presents the approach adopted by the Department of Transportation of the Brazilian National Nuclear Energy Commission - CNEN, in the creation of the course of education and training distance for transport companies, as well as for national institutions directly involved with the theme transportation of radioactive materials. The course will consist of 20 modules containing exercises and further assessment of learning, and enable participants to understand the regulatory terminology, assimilating the philosophy of nuclear and radiation safety, prepare the shipment and identify and fill the complete documents required in an operation transport

  17. Enhancing international radiation/nuclear detection training opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Thomas L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bersell, Bridget M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Booker, Paul M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Gerald E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leitch, Rosalyn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meagher, John B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Siefken, Rob R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spracklen, James L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-23

    The United States has worked domestically to develop and provide radiological and nuclear detection training and education initiatives aimed at interior law enforcement, but the international community has predominantly focused efforts at border and customs officials. The interior law enforcement officials of a State play a critical role in maintaining an effective national-level nuclear detection architecture. To meet this vital need, DNDO was funded by the U.S. Department of State (DOS) to create and deliver a 1-week course at the International Law Enforcement Academy (ILEA) in Budapest, Hungary to inform interior law enforcement personnel of the overall mission, and to provide an understanding of how the participants can combat the threats of radiological and nuclear terrorism through detection efforts. Two courses, with approximately 20 students in each course, were delivered in fiscal year (FY) 2013, two were delivered in FY 2014 and FY 2015, and as of this report’s writing more are planned in FY 2016. However, while the ILEA courses produced measurable success, DNDO requested Pacific Northwest National Laboratory (PNNL) research potential avenues to further increase the course impact.In a multi-phased approach, PNNL researched and analyzed several possible global training locations and venues, and other possible ways to increase the impact of the course using an agreed-to data-gathering format.

  18. Development of assessment procedures at the CEGB's nuclear power training centre

    International Nuclear Information System (INIS)

    Chapman, C.R.; Harris, N.D.C.

    1986-01-01

    The work of a power station engineer can be considered under four aspects: technology, diagnosis action and communication. The development, validation and use of assessment procedures can successfully incorporate the same aspects. The purposes of assessment are reporting training achievement and giving feedback to course members and tutorial staff. The development of standardized procedures to produce, evaluate and mark assessments and to optimize feedback ensures objectivity and uniformity. This has been achieved at the Central Electricity Generating Board's Nuclear Power Training Centre by enlisting an educational consultant to provide guidance and assist in training the resident tutors in assessment procedures. (author)

  19. Proceedings of NUCLEAR 2016 the 9th annual international conference on sustainable development through nuclear research and education. Part 3/3

    International Nuclear Information System (INIS)

    Paraschiv, Irina Maria

    2016-01-01

    The proceedings of the NUCLEAR 2016 the 9th annual international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 18-20, contain 81 communications presented in two plenary sessions and three sections addressing the themes of Nuclear energy, Environmental protection and Sustainable development. This section (Part 3/3) is addressing the following items: Section 3.1 Education, training and knowledge management (22 papers); Section 3.2 International cooperation (5 papers); These papers are presented as abstracts in 'Nuclear 2016 - Book of Abstracts', separately processed

  20. Status of nuclear technology education in Mongolia

    International Nuclear Information System (INIS)

    Davaa, S.; Khuukhenkhuu, G.

    2007-01-01

    industry, scientific institutions that use nuclear technology and also will become secondary schools' and colleges' physics teachers. Requirement for Educational Institution: An institution that conducts training in Nuclear Technology major should meet requirements for providing training, sanitary and safe environment and possess sufficient physical space, technology and equipment to conduct courses included in curriculum. For each course included in the curriculum of Nuclear Technology bachelor major there should be sufficient information database and books in line with the content of courses to be taught. Nuclear physics related journals are to be regularly subscribed

  1. Annual report of Nuclear Technology and Education Center. April 1, 2009 - March 31, 2010

    International Nuclear Information System (INIS)

    2011-03-01

    This annual report summarizes the activities of Nuclear Technology and Education Center (NuTEC) of Japan Atomic Energy Agency (JAEA) in the fiscal year 2009. In this fiscal year, NuTEC flexibly designed and conducted new training courses upon requests while conducting the annually scheduled training programs, and actively enhanced the collaboration with academia and cooperation with international organizations. Probably due to the economic depression, the number of trainees who completed the national training courses in 2009 was 322, which is 20 percent less than the previous year. The number of those who completed the staff technical training courses was slightly increased to 787 in 2009. As a result, the total number of trainees during this period is about 6 percent less than the previous year. In order to correspond with the needs from outside of JAEA, five temporary courses were held upon the request from Nuclear and Industrial Safety Agency, Ministry of Economy, Trade and Industry. 'Risk communication course' was newly offered upon the request from Nuclear Safety Commission. Furthermore, we addressed the longstanding issue to take countermeasure against the aging accommodation facility. The web site was also improved so that users can directly send the application for enrollment in the training courses through internet. These new services actually started in fiscal year 2010. JAEA continued its cooperative activities with universities; cooperation with graduate school of University of Tokyo, and the cooperative graduate school program was enlarged to cooperate with totally 17 graduate schools (18 universities), one faculty of undergraduate school, and one technical college, including the newly joined 3 graduate schools (4 universities) in 2009. JAEA also continued cooperative activities with Nuclear HRD Program initiated by MEXT and METI in 2007. The joint course has continued networking with six universities including newly joined Osaka University through

  2. Operator training simulator for nuclear power plant

    International Nuclear Information System (INIS)

    Shiozuka, Hiromi

    1977-01-01

    In nuclear power plants, training of the operators is important. In Japan, presently there are two training centers, one is BWR operation training center at Okuma-cho, Fukushima Prefecture, and another the nuclear power generation training center in Tsuruga City, Fukui Prefecture, where the operators of PWR nuclear power plants are trained. This report describes the BWR operation training center briefly. Operation of a nuclear power plant is divided into three stages of start-up, steady state operation, and shut down. Start-up is divided into the cold-state start-up after the shut down for prolonged period due to periodical inspection or others and the hot-state start-up from stand-by condition after the shut down for a short time. In the cold-state start-up, the correction of reactivity change and the heating-up control to avoid excessive thermal stress to the primary system components are important. The BWR operation training center offers the next three courses, namely beginner's course, retraining course and specific training course. The training period is 12 weeks and the number of trainees is eight/course in the beginner's course. The simulator was manufactured by modeling No. 3 plant of Fukushima First Nuclear Power Station, Tokyo Electric Power Co. The simulator is composed of the mimic central control panel and the digital computer. The software system comprises the monitor to supervise the whole program execution, the logic model simulating the plant interlock system and the dynamic model simulating the plant physical phenomena. (Wakatsuki, Y.)

  3. Small Community Training & Education

    Science.gov (United States)

    Operators Small Systems Small Community Training & Education education, training and professional implement the 1996 Amendments to the Safe Drinking Water Act (SDWA). • EPA Environmental Education Center

  4. Training in radiological protection for nuclear programmes

    International Nuclear Information System (INIS)

    1975-01-01

    Many Member States are developing or already have developed their own national training programmes. The IAEA is actively involved in promoting training in radiological protection for nuclear programmes. The various types of training are fully discussed, with suggested curricula. An earlier report was published as Technical Reports Series No.31 in 1964. In 1973, new and additional information was received from Member States which is reflected in the present report. Training programmes are classified, according to those requiring training: specialists; persons whose work is closely related to radiological protection (administrators, public health officers and industrial health personnel, safety inspectors and engineers in nuclear installations, public service personnel); persons working with radiation; and the general public. Forms, scope and duration of training are discussed. Different types of training programmes are currently required for training of medical doctors (those providing medical surveillance for radiation workers and others dealing with public health aspects of radiation hazards), for technical supervisors, radiologists, and qualified workers in nuclear medicine, technological staff, administrators, persons working with radiation, and public service personnel. Standard curricula and desirable experiments and exercises are discussed. The organization of training together with the facilities, equipment and teaching staff required are considered, as is follow-up training. Annexes 1 to 4 give examples of training curricula and training courses available in various countries, a suggested syllabus for training of technical supervisors, and a bibliography consisting of 210 references dealing with general topics, nuclear radiation physics, radiochemistry and radiation chemistry, radiation biology and biophysics, dosimetry and health physics and radiation protection, medical aspects and toxicology, and environmental aspects

  5. Training and qualification of nuclear power plant operators

    International Nuclear Information System (INIS)

    Ohsuga, Y.

    2008-01-01

    Based on training experiences of the nuclear power plant operators of pressurized water reactors (PWR) at the Nuclear Power Training Center Ltd. (NTC) in Japan, training programs were reviewed referring to US training programs. A systematic approach is deployed to them, which mainly consist of on-the-job training and the NTC training courses to meet the needs of all operators from beginners to experienced veterans according to their experiences and objectives. The NTC training is conducted using the simulators that simulate the nuclear power plant dynamics through the use of computers. The operators trained at the NTC work in the central control room of every PWR power plant. The NTC also carries out the qualification examinations for the shift managers. (T. Tanaka)

  6. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training

    Science.gov (United States)

    Allison, Jerry D.; Clements, Jessica B.; Coffey, Charles W.; Fahey, Frederic H.; Gress, Dustin A.; Kinahan, Paul E.; Nickoloff, Edward L.; Mawlawi, Osama R.; MacDougall, Robert D.; Pizzuitello, Robert J.

    2015-01-01

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics Training. The mission of this task force was to assemble a representative group of stakeholders to: Estimate the demand for board‐certified nuclear medicine physicists in the next 5–10 years,Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, andIdentify approaches that may be considered to facilitate the training of nuclear medicine physicists. As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face‐to‐face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission. PACS number: 01.40.G‐ PMID:26699325

  7. Data management strategies for nuclear training

    International Nuclear Information System (INIS)

    Zerbo, J.N.; Gwinn, A.E.

    1993-01-01

    Use of systematic training development technologies has become a standard for the commercial nuclear power industry and for many Department of Energy facilities. Such systems involve detailed analysis of job functions, tasks and skill requirements and correlation of that information to the courses, curricula and testing instruments used in the training process. Nuclear training programs are subject to audit and evaluation by a number of government and industry organizations. The ability to establish an audit trail, from initial task analysis to final examination is crucial to demonstrating the completeness and validity of a systematic training program. This paper provides perspective on aspects of the training data management problem, status of technological solutions, and characteristics of data base management systems that are best suited for application to training programs

  8. The Belgian Nuclear Higher Education Network

    International Nuclear Information System (INIS)

    Moons, F.; D'Haeseleer, W.; Giot, M.

    2004-01-01

    Full text: BNEN, the Belgian Nuclear Higher Education Network has been created in 2001 by five Belgian universities and the Belgian Nuclear Research Centre (SCK-CEN) as a joint effort to maintain and further develop a high quality programme in nuclear engineering in Belgium. In a country where a substantial part of electricity generation will remain of nuclear origin for a number of years, there is a need for well educated and well trained engineers in this area. Public authorities, regulators and industry brought their support to this initiative. In the framework of the new architecture of higher education in Europe, the English name for this 60 ECTS programme is 'Master of Science in Nuclear Engineering'. To be admitted to this programme, students must already hold a university degree in engineering or equivalent. Linked with university research, benefiting from the human resources and infrastructure of SCK-CEN, encouraged and supported by the partners of the nuclear sector, this programme should be offered not only to Belgian students, but also more widely throughout Europe and the world. The master programme is a demanding programme where students with different high level backgrounds in engineering have to go through highly theoretical subjects like neutron physics, fluid flow and heat transfer modelling, and apply them to reactor design, nuclear safety and plant operation and control. At a more interdisciplinary level, the programme includes some important chapters of material science, with a particular interest for the fuel cycle. Radiation protection belongs also to the backbone of the programme. All the subjects are taught by academics appointed by the partner universities, whereas the practical exercises and laboratory sessions are supervised by researchers of SCK-CEN. The final thesis offers an opportunity for internship in industry or in a research laboratory. More information: http://www.sckcen.be/BNEN. (author)

  9. Experience with quality of training of personnel in start-up, operation and maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Ziman, V.; Alaxin, E.

    1983-01-01

    The theoretical education of personnel takes place in the branch training centre in Jaslovske Bohunice and in the concern training centre of the Slovak Power Plants. Practical training takes place in the Bohunice V-1 power plant. Selected specialists are trained in the training centre of the Novo Voronezh nuclear power plant, at the Paks nuclear plant and in the training centre of the Tusimice power plant. The recruitment, selection, schooling, practical training and placement of personnel and their assignment to posts is done in such a manner as to make sure that the complexly trained personnel is available 6 months to 3 years prior to the physical start-up of the nuclear power plant. The training of university graduates for the post of reactor operator takes 18 months or more. Trained personnel attend in-service training courses in form of complementary courses whose content includes such problems as the elimination of typified possible accidents, on the basis of the analysis of all failures which occurred in the previous period. The rising quality of personnel training at the Bohunice V-1 nuclear power plant is reflected in the decreasing number of failures caused by the human factor and in the increased availability of the power units. (M.D.)

  10. Education and Training on ISIS Research Reactor

    International Nuclear Information System (INIS)

    Foulon, F.; Badeau, G.; Lescop, B.; Wohleber, X.

    2013-01-01

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions

  11. Education and Training on ISIS Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Foulon, F.; Badeau, G.; Lescop, B.; Wohleber, X. [French Atomic Energy and Alternative Energies Commission, Paris (France)

    2013-07-01

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions.

  12. Nuclear manpower development

    International Nuclear Information System (INIS)

    Hwang, I. A.; Lee, K. B.; Shin, B. C.

    2011-12-01

    The nuclear manpower development project has concentrated on the systemisation and specialization of education and training programs and has actively carried out diverse activities to create new nuclear courses based on the experience of the Nuclear Training and Education Center (NTC) accumulated over the past years. As the demand of education program for training nuclear manpower is increasing due to the remarkable growth of nuclear industry, NTC developed customized education programs making the most use of nuclear experiment equipment and providing practical exercise with research reactor. For improving organizational performance and the development of skilled manpower, KAERI-ACE 2.0 system offered diverse programs addressing the type of occupation and position based on individual competency. Also education on IT was carried out to improve public relations on nuclear and field trips were arranged to encourage local residents' better understanding of the nuclear industry. As a continuous effort, In 2011, NTC specially conducted a survey of employees who are attached to small and medium sized business, and analyzed the present business situations and education requirements for the development of a Pre/under job education program. Prior to this, a briefing session took place for mutual exchange of opinions of industry and academia, based on which a test operation on 'Basic Radiation Education' was carried out. This program has a significance that it was first step toward connection between the nuclear industry and academia as well as an opportunity to educate the employee involved in nuclear engineering field. In 2012, this program is planned to be expanded. With reference to the in-house training, NTC established an 'e-HRD system' providing available resources concerned with education program for cultivating talented personnel. All the education programs are based on individual competency. The e-HRD system will be test operated in 2012 and applied to the

  13. Description of the Nuclear Training Centre

    International Nuclear Information System (INIS)

    Wagadarikar, V.K.

    1974-01-01

    The Department of Atomic Energy, Government of India has developed an on-going programme for constructing and operating heavy water moderated, natural uranium fuelled power stations of the CANDU-type. With the view to train personnel required for operation and maintenance of these stations, a Nuclear Training Centre has been set up at the site of the Rajasthan Atomic Power Station. A description of the nuclear training centre with its facilities is given. The training programme for engineers, operators, mechanical, electrical and control maintainers etc. is given in detail, along with the actual syllabi for respective courses. Examples of the typical field check list are provided. (K.B.)

  14. Training in nuclear and radiation safety in Latin American and Caribbean; Capacitacion en seguridad nuclear y radiologica en America Latina y el Caribe

    Energy Technology Data Exchange (ETDEWEB)

    Papadopulos, S.; Diaz, O.; Larcher, A.; Echenique, L.; Nicolas, R., E-mail: spapadopulos@arn.gob.ar, E-mail: odiaz@arn.gob.ar, E-mail: alarcher@arn.gob.ar, E-mail: lechenique@arn.gob.ar, E-mail: rnicolas@arn.gob.ar [Autoridad Regulatoria Nuclear (ARN), Buenos Aires (Argentina); Lombardi, R.; Quintana, G., E-mail: alombar@fi.uba, E-mail: quinta@fi.uba.ar [Universidad de Buenos Aires (FI/UBA), (Argentina). Facultad de Ingenieria

    2013-07-01

    From thirty-three years, Argentina has taken the commitment to train professionals in the field of nuclear and radiation safety for the care and protection of workers and public in general. Sponsored by the IAEA and supported by the Faculty of Engineering of the University of Buenos Aires (FIUBA), an undertaking was made to encourage the training of scientists and experts in the countries of the region in order to establish a strong safety culture in radiation in individuals and maintaining high standards of safety practices using ionizing radiation. In 2012, the Graduate Course in Radiation Protection and Safety of Radiation Sources has acquired the status of 'Specialization' of the FIUBA, a category that further hierarchies skills training in the subject. This is a highly anticipated achievement by the implications for academic institutions, national and regional level, contributing to the strengthening of the Regional Training Center for Latin America and the Caribbean, acknowledged in a long-term agreement between the IAEA and Argentina in September 2008. Due to increased demand for nuclear activity, it is important to continue and deepen further training in radiological and nuclear areas. In order to satisfy both national and regional needs a process of increase on training offer training is being carried out, under the jurisdiction frame of the Nuclear Regulatory Authority. This paper presents the achievements of the country so far as regards training of human resource in radiation protection and nuclear safety in the region and highlights the challenges ahead for the extension of the offer in education and training. (author)

  15. Training of engineers for Czechoslovak nuclear programme at Czech Technical University in Prague

    International Nuclear Information System (INIS)

    Klik, F.; Stoll, I.

    1983-01-01

    Between the year 1959 and the 1970's specialists for the Czechoslovak nuclear programme were only educated at the Faculty of Nuclar and Physics Engineering. In the early 1970's instruction and research related to nuclear power generation was introduced at the mechanical engineering and electrical engineering faculties. The specialization ''Nuclear power facilities'' was introduced within the study field ''Thermal and nuclear machines and equipment'' at the mechanical engineering faculty, and the electrical engineering faculty opened the study course ''Nuclear power plants'' in the study year 1975/1976. Most specialists for the nuclear programme are educated at the Faculty of Nuclear and Physics Engineering in the field ''Nuclear chemical engineering'' and in specializations ''Theory and technology of nuclear reactors'', ''Dosimetry and application of ionizing radiation'' in the study field ''Nuclear engineering''. The Faculty of Nuclear and Physics Engineering also trains specialists in the field ''Structure and materials properties'', the study courses ''Measuring technology'' and ''Control technology'' are run at the electrical engineering faculty and at the mechanical engineering faculty were introduced study courses of ''Applied mechanics'' and ''Mechanical engineering technology''. Graduates of all said study courses may be employed in the nuclear programme. (E.S.)

  16. A distance assisted training programme for nuclear medicine technologists methodology and international experience

    International Nuclear Information System (INIS)

    Patterson, Heather

    2002-01-01

    The Distance Assisted Training Programme for Nuclear Medicine Technologists (DAT) has been developed and coordinated through West mead Hospital, Sydney and directed under the auspices of the International Atomic Energy Agency (IAEA). The objective of the program is to provide primarily developing countries with teaching resources for development of technologist education and a framework for the delivery of training courses that can be adapted to best suit local need. Careful planning and development of learning materials, translation to several languages and program implementation have resulted in >400 technologists in 24 countries currently participating in the course of study within Asia, Latin America and Africa. The development and implementation of suitable assessment techniques has provided a structure for technologists to attain a common basic standard in competencies across the regions. Graduates have better opportunities to further their education as well as contribute to improved use of advancing technologies in nuclear medicine (Au)

  17. Specialists training on nuclear materials control, accounting and physical protection in the Moscow Engineering Physics Institute

    International Nuclear Information System (INIS)

    Khromov, V.V.; Pogozhin, N.S.; Kryuchkov, E.F.; Glebov, V.B.; Geraskin, N.I.

    1998-01-01

    Educational program to train specialists on non-proliferation problems and nuclear materials control, accounting and physical protection systems (NMCA and PP) at the Science Master's level was developed and is being realized in Moscow Sate Institute of Engineering and Physics at the support of the USA Ministry of Energy. The program is intended to train students who already got the Bachelor's degree on physical and technical subjects. The United methodological base of the program comprises lecture courses, practice in laboratories and computer programs. The educational program contains the following parts for training the students. 1) Deep scientific and technical knowledge. 2) System approach to designing and analysis of the NMCA and PP systems. 3) Knowledge of scientific and technical principles, means, devices and procedures used in the NMCA and PP systems. 4) Judicial, international and economical aspects of nuclear materials management. 5) Application of computer and information technologies for nuclear materials control and accounting. 6) Extensive practice in laboratories, using the most up-to-date equipment and devices used in the worldwide practice of NM control

  18. Training of nuclear facility personnel: boon or boondoggle

    International Nuclear Information System (INIS)

    Remick, F.J.

    1975-01-01

    The training of nuclear facility personnel has been a requirement of the reactor licensing process for over two decades. However, the training of nuclear facility personnel remains a combination of boon and boondoggle. The opportunity to develop elite, well trained, professionally aggressive reactor operation staffs is not being realized to its full potential. Improvements in the selection of personnel, training programs, operational tools and professional pride can result in improved plant operation and contribute to improved plant capacity factors. Industry, regulatory agencies, professional societies and universities can do much to improve standards and quality of the training of nuclear facility personnel and to improve the professional level of plant operation

  19. Nuclear Power Engineering Education Program, University of Illinois

    International Nuclear Information System (INIS)

    Jones, B.G.

    1993-01-01

    The DOE/CECo Nuclear Power Engineering Education Program at the University of Illinois in its first year has significantly impacted the quality of the power education which our students receive. It has contributed to: the recently completed upgrade of the console of our Advanced TRIGA reactor which increases the reactor's utility for training, the procurement of new equipment to upgrade and refurbish several of the undergraduate laboratory set-ups, and the procurement of computational workstations in support of the instructional computing laboratory. In addition, smaller amounts of funds were used for the recruitment and retention of top quality graduate students, the support of faculty to visit other institutions to attract top students into the discipline, and to provide funds for faculty to participate in short courses to improve their skills and background in the power area. These items and activities have helped elevate in the student's perspective the role of nuclear power in the discipline. We feel this is having a favorable impact on student career selection and on ensuring the continued supply of well educated nuclear engineering graduates

  20. Education and training for industry: share initiatives and best practices. Challenges for EURATOM research and training in the frame of the European 'Higher Education' and 'Research' areas

    Energy Technology Data Exchange (ETDEWEB)

    Van Goethem, Georges [European Commission, DG RTD, Energy - Euratom, Brussels (Belgium)

    2008-07-01

    For the sake of clarification, education and training (E and T) are defined as follows: - Education is a basic or life-long learning process: education is broader than training and encompasses the need to maintain completeness and continuity of competences across generations (it is essentially a knowledge-driven process, involving academic institutions as suppliers, and students as customers). - Training is learning a particular skill required to deliver a particular outcome: training is about schooling activities other than regular academic education schemes (it is essentially an application-driven process, involving industrial/regulatory training organisations as suppliers, and professionals as customers). The goal of the EURATOM education programmes is, in collaboration with academia, to offer instruments that help produce top-quality teaching modules that can be assembled into higher level training packages or Masters programmes that are jointly qualified and mutually recognised across the EU. This is done naturally in line with the Bologna process (ERASMUS). The following four objectives have been agreed upon (ENEN): - Modular courses and common qualification approach (offer a coherent E and T framework and ensure top-quality for each module); - One mutual recognition system across the European Union (e.g. European Credit Transfer and accumulation System of ERASMUS /ECTS/); - Mobility for teachers and students across the EU (prepare the 'internal market' for free circulation of nuclear experts); - Feedback from 'stakeholders' (Both scientific and financial). (involve the 'future employers' in the process, thereby getting additional funding). The goal of the EURATOM training programmes is, in collaboration with 'future employers', to identify commonalties amongst CPD actions ('Continuous Professional Development'). The following four objectives have been agreed upon ('EURATOM Fission Training Scheme

  1. European pathways for Slovak research and education in the nuclear power domain

    International Nuclear Information System (INIS)

    Slugen, Vladimir

    2010-01-01

    New approaches of the European Commission (DG RTD Energy) to the development of nuclear power engineering (focussed on fission and reactor systems) through various support programmes, which can be of use also in Slovak conditions, are discussed. The following topics are described in detail: Globalization of European research and education; Competency in the nuclear power domain; EU platforms for directing EURATOM research activities (SET, SNE-TP, ENEF, ENSREG); ENEN, EHRO-N, ENELA and their position in European education; Objectives of EURATOM research and professional training programmes; Focus on the creation of competencies serving the nuclear sector at the EU level (ECVET); and Towards mutual recognition of nuclear competencies new EURATOM educational programmes in the domain of fission (examples of EFTS: TRASNUSAFE, ENEN III, ENETRAP II, PETRUS II). (orig.)

  2. Program for educating nuclear engineers in Japan. Partnership with industry, government and academe begins

    International Nuclear Information System (INIS)

    Meshii, Toshiyuki

    2007-01-01

    Since the beginning of the 21st century, educating the next generation of nuclear engineers has been of interest to groups who are concerned with the recent decline in the number of nuclear engineers in universities and industries. Discussions and proposals have been summarized in independent reports by industry (JAIF; Japan Atomic Industrial Forum), government (Science Council of Japan) and the academe (AESJ; Atomic Energy Society of Japan). In June 2005 a Committee on Education (CE) was established within AESJ with the intention of coordinating the groups interested in nuclear education in Japan. The birth of CE was timely, because the importance of nuclear education was emphasized in 'Framework for Nuclear Energy Policy (Oct., 2005)' which was adopted by the Atomic Energy Commission. The Nuclear Energy Subcommittee of the METI (Ministry of Economy, Trade and Industry) Advisory Committee deliberated concrete actions for achieving the basic goals of the Framework for Nuclear Energy Policy and their recommendations were drawn up as a 'Nuclear Energy National Plan'. This was the MEXT (Ministry of Education, Culture, Sports, Science and Technology) and METI action plan to create nuclear energy training programs for universities, etc. A task group, consisting of members from industry, government and academe was organized within JAIF to give advice to these training programs. The author of this paper (and chairman of CE) participated in and made proposals to the task group as a representative of the academe. In this paper, the proposal made by CE and the outline of the final program will be reported. Furthermore, the importance of the partnership between industry, government and academe will be emphasized. (author)

  3. Training and qualification of nuclear power plant operators (4)

    International Nuclear Information System (INIS)

    Ohsuga, Y.

    2009-01-01

    Training center using the simulators, instructor training, training upgrade, deployment of digital control panel and review of training were described with overseas practice. Recently, nuclear power plant on-site simulators were also used for respective operator training. Operator teamwork training, training team performance upgrade, reflection of operating experiences in nuclear power plant accidents, development of training support equipments and management of training records were needed to review and upgrade training and qualification programs. (T. Tanaka)

  4. The study for the high qualification of international nuclear training

    International Nuclear Information System (INIS)

    Noh, Byong Chull; Kim, Hyun Jin

    2012-12-01

    It is suggested how to reach high qualification of KAERI international nuclear training and how to play a leading role for new paradigm on the international training on the world. 1. The formulation of the core nuclear training framework- The systematic formulation of nuclear training framework based on the existing turning course design 2. Planning and operation of KAERI- Excellent Technology Series training course- The advertisement for KAERI Excellent Technology through the continuous international training and the future market development on the world for the nuclear technology 3. e-Learning training contents development- e-Learning training contents development to play a leading role for new training paradigm on the world and to overcome the limit of time/spacy

  5. The study for the high qualification of international nuclear training

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Byong Chull; Kim, Hyun Jin

    2012-12-15

    It is suggested how to reach high qualification of KAERI international nuclear training and how to play a leading role for new paradigm on the international training on the world. 1. The formulation of the core nuclear training framework- The systematic formulation of nuclear training framework based on the existing turning course design 2. Planning and operation of KAERI- Excellent Technology Series training course- The advertisement for KAERI Excellent Technology through the continuous international training and the future market development on the world for the nuclear technology 3. e-Learning training contents development- e-Learning training contents development to play a leading role for new training paradigm on the world and to overcome the limit of time/spacy.

  6. Interfacing Nuclear Security and Safeguards through Education and Support Centre Networks

    International Nuclear Information System (INIS)

    Nikonov, D.

    2015-01-01

    This paper presents the work of the International Nuclear Security Education Network (INSEN) and the International Nuclear Security Training and Support Centre Network (NSSC) as the means to achieve sustainable human resource development in member states. The paper also examines how both security and safeguards can benefit from collaborative and coordinated activities when such networks focus on practical achievements. (author)

  7. The activities execution in education support in the nuclear power field

    International Nuclear Information System (INIS)

    Yamada, Yutaka; Maruoka, Hisamu.

    1997-01-01

    The knowledge of machinery structure, system composition and plant behavior, and operational technique related to them are necessary for operation and maintenance of nuclear power plant. From these matters, the education and training against the technicians being engaged in the nuclear power are important themes, which have conventionally been tackled with positively. On the other hand, hardwares of PC (personal computer) and multimedia technologies have been rapidly advanced, which make it possible to do effective learning by using such technologies. Our company is making activities in education support using the nuclear power plant technology which has been built up as a company of TOSHIBA group. In this paper, we introduce Multimedia CAI (Computer Assisted Instruction) and PLEVIS (Plant Engineering Visual and Interactive Simulator) which have been developed by us, and their application to education support systems in the nuclear power plant, and make some description on the future prospects. (author)

  8. The European Nuclear Safety Training and Tutoring Institute

    International Nuclear Information System (INIS)

    2012-01-01

    The European Nuclear Safety Training and Tutoring Institute, ENSTTI, is an initiative of European Technical Safety Organizations (TSO) in order to provide vocational training and tutoring in the methods and practices required to perform assessment in nuclear safety, nuclear security and radiation protection. ENSTTI calls on TSOs' expertise to maximize the transmission of safety and security knowledge, practical experience and culture. Training, tutoring and courses for specialists are achieved through practical lectures, working group and technical visits and lead to a certificate after knowledge testing. ENSTTI contributes to the harmonization of nuclear safety and security practices and to the networking of today and future nuclear safety experts in Europe and beyond. (A.C.)

  9. Functions important to nuclear power plant safety, and training and qualification of personnel

    International Nuclear Information System (INIS)

    1996-01-01

    The requirements for the safe operation of the organisation attending to direct operational, the maintenance and the technical support functions of a nuclear power plant are defined in the guide. The basic education, work experience and medical fitness for the job required during recruitment, the requirements relating to the initial training of a person for his job and certain job-specific approvals granted separately are presented. General requirements for the training function and for the refresher and continuing training arranged by the licence-holder are also set out. (1 ref.)

  10. The Korean nuclear ODA policy development

    International Nuclear Information System (INIS)

    Lee, Seung Hyun; Min, Kim Yoo; Park, Young Il

    2012-01-01

    Korean nuclear Official Development Assistance (ODA) is established with support from institutes such as the Korea International Cooperation Agency (KOICA) and the Korea Atomic Energy Research Institute (KAERI). KOICA's grant aid mainly made through the activities including IAEA's training program, and KAERI currently runs the inter-regional education and training cooperation called Asian Network for Education in Nuclear Technology(ANENT) which aimed to achieve the goal of encouraging web based education training network via cooperation with IAEA. Yet now these programs are focusing more on assisting nuclear infrastructure rather than highlighting nuclear education and training. This paper aims to, first, do a self-evaluation about the Korean ODA policy; second, to study the transition of the international nuclear atmosphere; and third, by apprehending the trend of the subjects of Korean nuclear ODA policy, to discuss the overall appropriate trajectory of Korean nuclear ODA

  11. IAEA activities in nuclear reactor simulation for educational purposes

    International Nuclear Information System (INIS)

    Badulescu, A.; Lyon, R.

    2001-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. Currently, the IAEA has simulation programs available for distribution that simulate the behaviour of BWR, PWR and HWR reactor types. (authors)

  12. Nuclear education in Japanese universities

    International Nuclear Information System (INIS)

    Yamamuro, Nobuhiro

    1981-01-01

    In 1957, the graduate courses for nuclear engineering were established in Kyoto University, Osaka University and the Tokyo Institute of Technology. Since then, the expansion of nuclear education has kept pace with the growth of the nuclear industry in Japan. The nuclear education in universities in more than 20 years can be roughly divided into three periods. In the first period from 1955 to 1965, nuclear education began at undergraduate level, and the facilities required for the research and education were set up. The imported reactor began the commercial operation in 1966 for the first time, and during the period of high economic growth, the request by the nuclear industry was met by providing special studies in addition to the regular curriculum studies. The research committee on nuclear engineering education was formed, and in 1973, Japan-U.S. cooperative seminar on education program for nuclear engineering was held. The first ''oil crisis'' occurred in 1973, and the significance of nuclear power as an alternative to oil increased. But as nuclear power plants became bigger and increased, the safety and the effect on environment have been discussed. Also the research and development of nuclear fusion have been promoted. All these factors were reflected to the nuclear education in universities. The carricula in universities and the tasks and prospects in nuclear engineering education are described. (Kako, I.)

  13. Nuclear technology education in Mongolia: Issues of quality assurance

    International Nuclear Information System (INIS)

    Davaa, S.; Khuukhenkhuu, G.

    2007-01-01

    The Nuclear Research Centre (NRC) at the National University of Mongolia, founded in 1965, is the only educational and research institution in Mongolia that carries out fundamental and applied low energy nuclear physics research. The main activities of the NRC are described in the Mission, Strategic Goals, and Objectives Statement of the NRC (http://www.num.edu.mn/nrc). The mission of the Nuclear Research Center is to be the leading national institution that conducts both training and research/development to obtain new information and results, to develop new methodology and technology in fundamental and applied nuclear physics, and also to develop equipment and devices. In order to implement quality management in nuclear technology training activities and conduct quality assurance, the Bachelor's education program has been required to create a self evaluation and the first copy of the report had been produced. It is a common perception that the main mechanism of higher education quality assurance is the internal quality management, and quality external monitoring. Therefore a general model used in most countries for higher education quality assurance. This model's main device is internal and external evaluation. The external evaluation has responsibility to improve accreditation, responsibility/commitment. Based on its self evaluation, the organization will develop its quality plan and, combined with external evaluation conclusions, will be lead toward quality improvement. The most important part of quality assessment is the use of external experts' assessment. Our nuclear research center is the only educational and research institution in the country, and, thus, it is impossible to find respectable independent experts (who do not get involved in our operations). In order to hire reputable foreign expert there are several obstacles: It is not easy to find a person who would know not only nuclear technology training but also do the benchmarking based on our

  14. Education and training in radiological protection in the Argentine region- IAEA, toward a long term commitment

    International Nuclear Information System (INIS)

    Terrado, C.; Arbor G, A.; Bozzo, R.; Larcher, A.; Menossi, C.; Sajaroff, P.

    2006-01-01

    The Argentine Republic has extensive antecedents in education and training in radiological protection. From the beginning of the nuclear activity in the country was given preponderance to the aspects related with the radiological protection and the personnel's training involved in the employment of ionizing radiations. At the present time these educational activities already overcome the 50 years, there being accumulated a rich and important experience in the matter. In the country the organisms that have assigned by law the responsibility of the regulation and the control of practice them with ionizing radiations are the Nuclear Regulatory Authority and the Ministry of Health and Atmosphere of the Nation. The first one has the mission of protecting people of the noxious effects of the ionizing radiations derived of nuclear activities, the second is in charge of the control of the equipment dedicated specifically to generate X-rays. This includes the responsibility of elaborating, to emit and to make complete the regulations, standards and other corresponding requirements, in particular - in the mark of the present work - regarding to establish demands and to promote education activities and training in radiological protection. The sure use of the benefits that offers the nuclear development in its diverse applications implies to overturn resources, experience and dedication for the personnel's training. In that sense the Argentina has committed recently to undertake the necessary actions to constitute a Regional Center of Education and Training for Latin America and the Caribbean, taking advantage of the important experience obtained in more of 25 years of imparting graduate degree courses in radiological protection and nuclear safety with inter regional and regional character. With that purpose a process of self evaluation has begun (self appraisal), following the limits settled down by the International Atomic Energy Agency in the document 'Education and

  15. Development of the system for academic training of personnel engaged in nuclear material protection, control and accounting in Russia

    International Nuclear Information System (INIS)

    Kryuchkov, E.F.

    2004-01-01

    educational problems in area of nuclear materials physical protection, control and accountability (MPC and A) in Russia. General scheme of Russian educational system is considered with main emphasis on the directions under implementation now, namely academic training system, re-training system and specialists qualification upgrade system in MPC and A area. Russian academic training system consists of the educational programs at various levels: Bachelor of Sciences, Master of Sciences, Specialist (also referred to as an Engineer Degree), and professional re-training of the personnel already working in the nuclear field. Currently, only the Master of Sciences Graduate Program is completely developed for the students training. This is taking place at Moscow Engineering Physics Institute (State University, MEPhI), where the fourth generation of Masters has graduated from in May 2003. The graduates are now working at nuclear-related governmental agencies, non-governmental organizations, universities, and nuclear facilities. Development of the system to produce academically trained Russian MPC and A personnel is therefore well underway. MEPhI's MPC and A Engineering Degree Program which currently under development is considered in the paper. Analysis of MPC and A needs at Russian nuclear facilities has demonstrated the Engineering Degree Program is the best way to satisfy these needs and the resulting demands for MPC and A specialists at Russian nuclear enterprises. This paper discusses specific features of the Engineering Degree training required by Russian education legislation and the Russian system of quality control as applied to the training process. The paper summarizes the main joint actions undertaken during the past three years by MEPhI in collaboration with the US Department of Energy and US national laboratories to develop the MPC and A Engineering Degree Program in Russia. These actions include opening a new Engineering Degree specialty, Safeguards and Nonproliferation

  16. Systematic evaluation of nuclear operator team skills training

    International Nuclear Information System (INIS)

    Harrington, D.K.; Kello, J.E.

    1991-01-01

    In recent years, the nuclear industry has increasingly recognized with the technical training given its control room operators. As yet, however, little has been done to determine the actual effectiveness of such nontechnical training. Thus, the questions of how team training should be carried out for maximum impact on the safety and efficiency of control room operation and just what the benefits of such training might be remain open. We are in the early stages of establishing a systematic evaluation process that will help nuclear utilities assess the effectiveness of their existing team skills training programs for control room operators. Research focuses on defining the specific behavioral and attitudinal objectives of team skills training. Simply put, what does good practice look like and sound like in the control room environment? What specific behaviors and attitudes should the training be directed toward? Obviously, the answers to the questions have clear implications for the design of nuclear team skills training programs

  17. Nuclear security officer training

    International Nuclear Information System (INIS)

    Harrington, W.F.

    1981-01-01

    Training has become complex and precise in today's world of critical review and responsibility. Entrusted to a security officer is the success or demise of large business. In more critical environments the security officer is entrusted with the monitoring and protection of life sensitive systems and devices. The awareness of this high visibility training requirement has been addressed by a limited few. Those involved in the nuclear power industry through dedication and commitment to the American public have without a doubt become leading pioneers in demanding training excellence

  18. Hungarian-Vietnamese Nuclear Energy Train the Trainers Course

    International Nuclear Information System (INIS)

    Aszódi, Attila; Boros, Ildikó; Czifrus, Szabolcs; Kiss, István

    2014-01-01

    HUVINETT 2012-2013: Hungarian-Vietnamese Nuclear Energy „Train the Trainers” Course: HUVINETT Courses at Paks NPP - • 3 weeks of practice oriented training; • Practical application of nuclear theory and knowledge; • Plant technology; • Importance of nuclear safety; • Behavioral standards and required attitude in a nuclear power plant; • Practice in real working environment: – Maintenance Performance Improvement Center; – Simulator; – Labs and workshops of the plant

  19. World's trends in nuclear education

    International Nuclear Information System (INIS)

    Lartigue, J.; Martinez, T.

    2005-01-01

    determination and industrial quality control. As well, the use of tracers in Industry, Medicine, Biochemistry, etc., has long been established requiring, at its turn, an increasingly fine radiochemical preparation. Finally, the use of radiation sources in industrial and research activities calls too for highly qualified personnel. Even more, the growing regulations of nuclear energy demand a higher number of specialists in Health Physics. Unlike Basic Science, Applied Science must necessarily follow present and future market needs. This is of course valid for the applied branch of Nuclear Science, who has two components: the applications of radioisotopes and radiations and the power generation; the first one shows a very foreseeable development but the power one not yet. Therefore, educational systems need cover, in general, both aspects with an emphasis in that one considered the more relevant to every country. This work analyses the development and present situation of nuclear education in several countries (USA, Canada, Mexico, France, Spain, China, etc.) as well as the collective efforts promoted by the IAEA and other organisations such as the WNA. Statistical data of matriculation are presented. Some particular curricula are discussed and the main experimental facilities are mentioned. Conclusions are obtained regarding present lacks in training programs and some fore sights are made about probable trends derived from foreseeable scenarios.

  20. Annual report of nuclear technology and education center. April 1, 2003 - March 31, 2004

    International Nuclear Information System (INIS)

    2004-10-01

    This report summarizes the activities of Nuclear Technology and Education Center (NuTEC) is Japan Atomic Energy Research Institute in FY 2003. It includes the domestic educational activities and the international training activities mainly for Asia-Pacific region as well as the activities of the research and the development for training courses and administrative aspects. The courses yet carried out in Tokyo Education Center were begun to operate in the facilities of the Tokai Research Establishment. Aiming at carrying out training activities more effectively and efficiently, the training division system related to the training fields have started together with that. Most of the scheduled training courses for the FY2003 have been carried out as planned and the total number of the trainees completing the courses was 1,311. The building of the Tokyo Education Center was demolished and removed after the decontamination, decommissioning procedures. The land was returned to the land owner by the end of FY 2003. In addition to these activities, research and development for the improvement of education and training were carried out. (author)

  1. Staffing of nuclear power plants and the recruitment, training and authorization of operating personnel

    International Nuclear Information System (INIS)

    1991-01-01

    This Safety Guide was prepared as part of Nuclear Safety Standards programme for establishing Codes and Safety Guides relating to nuclear power plants (NPP). It supplements Safety Series No. 50-C-O(Rev.1) ''Code on the Safety of Nuclear Power Plants: Operation''. The present version of this Guide is a revision which takes into account the developments, particularly in training practices, which have taken place since the first edition appeared in 1979. The objective of this Safety Guide is to outline various factors to be considered in order to ensure that the operating organization has a sufficient number of qualified and motivated personnel for the operation of NPP. The Guide covers the organization for a NPP, the requirements in terms of education and experience for the various members of the operating personnel to be recruited, the recruitment, the training and continuing training programmes, as well as the authorizations for persons whose duties have an immediate bearing on safety

  2. Virtual reality for training of occupationally exposed individuals in nuclear medicine

    International Nuclear Information System (INIS)

    Carvalho, J.S.; Carvalho, J.B.; Silveira, J.L.; Nascimento, A.C.H.; Mol, A.C.A.; Suita, J.C.; Marins, E.R.

    2017-01-01

    Applications in virtual environments have been an important tool for education and training of skills in several areas. In Nuclear Medicine Services (NMS), whose environment is susceptible to exposure to ionizing radiation, virtual simulation is a complementary tool to the traditional way of training, able to have the required content by norm, good laboratory practices and radioprotection, interactive form without the exposure of the user. The study consists of the research and unification of recommendations, norms and procedures, collected in the scientific literature and in loco, on the activities of professionals of NMS's radiopharmacy, to define the minimum content for training in order to guide the simulations of a virtual environment.

  3. Education and Training in Peace Research in Hamburg

    International Nuclear Information System (INIS)

    Goettsche, M.; Kalinowski, M.; Neuneck, G.

    2013-01-01

    In Hamburg, peace and security education is mainly offered by the Carl Friedrich von Weizsaecker Centre for Science and Peace Research at the University of Hamburg and the Institute for Peace Research and Security Policy. The former institute offers interdisciplinary lectures and seminars open for students from all faculties; the latter institute offers the Master of Peace and Security Studies programme. This paper introduces these education and training opportunities in Hamburg. Special emphasis is put on simulation conferences that are offered each semester, the summer school 'Young Scientists Cooperate for Peace' (SCooP) and the workshop 'Teaching Ethics and Peace to Science and Engineering Students'. Specific lectures from the 'Scientific contributions to peace research' series include disarmament, the non-proliferation regime and nuclear verification. Specific lectures from the 'Physical basics of peace research' series include neutron and gamma detectors for nuclear verification, satellite imagery, detection of signatures from banned nuclear activities from long distances, and material accounting of plutonium, HEU and tritium. The paper is followed by the slides of the presentation. (authors)

  4. Certification of the instructional competence of nuclear training specialists

    International Nuclear Information System (INIS)

    Wollert, T.N.

    1990-01-01

    This study was designed to identify the qualification requirements and the means to assess the unique knowledge and skills necessary to perform the instructional activities needed by nuclear training specialist at Fort Saint Vrain Nuclear Generating Station. A survey questionnaire with 233 task statements categorized into eleven duty areas was distributed to twenty-three nuclear training specialists at Fort Saint Vrain Nuclear Generating Station. On the basis of the data accumulated for this study, the researcher identified the following findings. A list of 158 task statements were identified as being relevant; this list was considered a core knowledge, skills, and abilities needed as a nuclear training specialist. The list consisted of ten duty areas which were relevant to the effective performance of a nuclear training specialist. Thirty-three task statements were identified as being relevant for the duty area Conductive Training. These were considered the core of knowledge, skills, and abilities needed in the development of the initial test instrument and the instructor classroom skills observation checklist. The significant correlation between the results of these two instruments, using a rank-order correlation coefficient, was interpreted by the researcher as indicating that the initial test instrument possessed concurrent validity. The researcher interpreted the reliability value as a positive indicator that the initial test instrument demonstrated internal consistency. It was concluded that it could be determined whether personnel possessed the level of competence needed to perform the instructional duties of a nuclear training specialist by using a written test. Data from this research supported the use of the initial test developed for this study as a valid means to certify nuclear training specialists for the duty area Conducting Training

  5. Nuclear criticality safety: 2-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course

  6. Nuclear criticality safety: 2-day training course

    Energy Technology Data Exchange (ETDEWEB)

    Schlesser, J.A. [ed.] [comp.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course.

  7. Training within the French nuclear power program

    International Nuclear Information System (INIS)

    Jusselin, F.

    1987-01-01

    Training dispensed by the EDF Nuclear and Fossil Generation Division has contributed significantly toward successful startup and operation of French nuclear power plants. In 1986, the time-based availability of 900 MW PWRs totaled 85 %. This is just one example of how EDF training programs have benefited from 150 reactor-years of operating experience and the ensuing opportunities for perfecting and testing of training tool effectiveness. These programs have been adopted by utilities in other countries where suitable local facilities are making advantageous use of EDF training experience and methods. EDF expertise is also transferred to these countries indirectly through the simulator manufacturer

  8. Training organisation

    International Nuclear Information System (INIS)

    Andrlova, Z.

    2012-01-01

    Slovenske elektrarne considers a specific training and education of experienced experts to be a key issue. The company gradually undergoes quite demanding change in the field of education and training of the nuclear power plants staff. We have an ambitious vision - to create one of the best training organisations in Europe by the means of systematic approach to the training. (author)

  9. Nuclear Business Acumen Training for Executives

    International Nuclear Information System (INIS)

    Blomgren, Jan

    2014-01-01

    The presentation is structured as follows: Failure in large technology projects; Simulations in industry; Training in reactor simulators; Business simulation; NPP business simulation Nuclear Inc.; Knowledge retention; Boosting the effect of training; Contact

  10. Developing Competent Workers through Education and Training: Case Study of the Lebanese Atomic Energy Commission (LAEC)

    International Nuclear Information System (INIS)

    Shbaro, M.

    2016-01-01

    Full text: Education and Training is at the center of interest of the Lebanese Atomic Energy Commission (LAEC) to spread safety and security culture and to enhance and help facilities to use nuclear and related analytical techniques in key socioeconomic development areas. It is an essential component to combat the decline in expertise and to ensure the continuation of the high level of radiation protection knowledge in Lebanon. Education is a key component of knowledge management. Education and training with experience is used to develop competence. This paper will present the educational programmes launched by LAEC in collaboration with scientific universities, training programmes provided to staff and users, tools of training at LAEC, EduTA mission conducted by IAEA experts and the recommendations. (author

  11. From education to employment - Inspiring and strengthening the pathways to secure our nuclear future

    International Nuclear Information System (INIS)

    Matthews, L.

    2014-01-01

    Investing in Education, Skills and Training: • Develop demand based education and skills pipelines for both short term construction and long term nuclear needs; • Links between Education and employment need vision and courage; • Major clients and employees have to lead and collaborate with supply chain,skills bodies, and education providers to create a legacy of sustainable skills

  12. Clinical Training of Medical Physicists Specializing in Nuclear Medicine (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  13. Clinical Training of Medical Physicists Specializing in Nuclear Medicine (French Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  14. Nuclear training in international perspective. SCK-CEN has a prominent presence in major European collaborative projects

    International Nuclear Information System (INIS)

    Coeck, M.

    2011-01-01

    In all radioactivity applications, nuclear, but also in medicine for example, the knowledge and skills of the people is one of the main pillars. It should be possible to continue to develop their expertise for future generations. The European Union pursues an active policy in the field of nuclear education and training. SCK-CEN also participates in the same.

  15. Training device for nuclear power plant operators

    International Nuclear Information System (INIS)

    Schoessow, G. J.

    1985-01-01

    A simulated nuclear energy power plant system with visible internal working components comprising a reactor adapted to contain a liquid with heating elements submerged in the liquid and capable of heating the liquid to an elevated temperature, a steam generator containing water and a heat exchanger means to receive the liquid at an elevated temperature, transform the water to steam, and return the spent liquid to the reactor; a steam turbine receiving high energy steam to drive the turbine and discharging low energy steam to a condenser where the low energy steam is condensed to water which is returned to the steam generator; an electric generator driven by the turbine; indicating means to identify the physical status of the reactor and its contents; and manual and automatic controls to selectively establish normal or abnormal operating conditions in the reactor, steam generator, pressurizer, turbine, electric generator, condenser, and pumps; and to be selectively adjusted to bring the reactor to acceptable operating condition after being placed in an abnormal operation. This device is particularly useful as an education device in demonstrating nuclear reactor operations and in training operating personnel for nuclear reactor systems and also as a device for conducting research on various safety systems to improve the safety of nuclear power plants

  16. Partners in Educating a New Generation of Nuclear Leaders. IAEA Supports Khalifa University in Nuclear Power Trainin

    International Nuclear Information System (INIS)

    Kidambi, Misha

    2011-01-01

    In their cooperation, the IAEA and KUSTAR promote the ANENT e-Learning system's use. The ANENT was established in 2004 as a regional partnership for cooperation in capacity building and human resource development, including education and training in the peaceful uses of nuclear technology in Asia

  17. Background and future activities of PBNCC's nuclear training working group

    International Nuclear Information System (INIS)

    Rieh, C.H.; Chung, K.; Hamlin, K.W.

    1988-01-01

    This paper presents a review of the background and activities of the nuclear training working group of the Pacific Basin Nuclear Cooperation Committee. The working group has examined various mechanisms for regional cooperation including the development of a regional catalog of training programs and the conceptualization of sharing training facilities among nuclear operators in the region. The working group has focused its attention on the exchange of information on the on-going training programs, operator training facilities, available resources for training assistance and proposed cooperative schemes. These activities are expected to continue and will provide invaluable information for nuclear power programs in the Pacific Basin region. The group also reviewed problems and issues associated with developing regional cooperation

  18. Background and future activities of PBNCC's nuclear training working group

    International Nuclear Information System (INIS)

    Chong Hun Rieh; Kunmo Chung; Hamlin, K.W.

    1987-01-01

    This paper presents a review of the background and activities of the nuclear training working group of the Pacific Basin Nuclear Cooperation Committee. The working group has examined various mechanisms for regional cooperation including the development of aregional catalog of training programs and the conceptualization of sharing training facilities among nuclear operators in the region. The working group has focused its attention on the exchange of information on the on-going training programs, operator training facilities, available resources for training assistance and proposed cooperative schemes. These activities are expected to continue and will provide invaluable information for nuclear power programs in the Pacific Basin region. The group also reviewed problems and issues associated with developing regional cooperation. (author)

  19. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  20. The intellectual background of nuclear energy in Hungary

    International Nuclear Information System (INIS)

    Vajda, Gy.

    1998-01-01

    The education and training of nuclear specialists in Hungary has a long history, since several Hungarian nuclear scientists emigrated to the West before the second war. Some became Nobel-prize winners. In domestic universities, the education of nuclear science and technology has been also preferred. When the first Hungarian nuclear power plant in Paks started operation, well-trained specialists were available to operate it. The present opportunities for nuclear training and education are highlighted. (R.P.)

  1. Education and public relations in nuclear power toward the next generation in Korea

    International Nuclear Information System (INIS)

    I, Han-Joo; Seo, Doo-Han.

    1989-01-01

    The report outlines the education in nuclear engineering in colleges and universities in Korea, experiments and training in nuclear reactor operation, research project for education in peaceful utilization of nuclear power, and public relations activities and special plans intended for the new generation in the nation. Programs covering the education of students in nuclear engineering in colleges and universities in Korea, and public relations toward some selected groups and brackets have been conducted successfully, producing good results. On the other hand, some improvements in educational activities, including the revision of textbooks, are required in such a field of education of pupils in primary, middle and high schools. Specially-designed introductory courses and advanced courses in the peaceful utilization of nuclear power should be established to ensure that students in scientific or technological fields other than nuclear engineering will gain deeper understanding of the issue. For this, the preparation of textbooks are currently under way. It is hoped that public relations activities will be expanded on a more continuous and consistent basis, instead of the current intermittent basis, by making good use of the mass media to distribute information among the general public. (Nogami. K.)

  2. Education and public relations in nuclear power toward the next generation in Korea

    Energy Technology Data Exchange (ETDEWEB)

    I, Han-Joo; Seo, Doo-Han.

    1989-02-01

    The report outlines the education in nuclear engineering in colleges and universities in Korea, experiments and training in nuclear reactor operation, research project for education in peaceful utilization of nuclear power, and public relations activities and special plans intended for the new generation in the nation. Programs covering the education of students in nuclear engineering in colleges and universities in Korea, and public relations toward some selected groups and brackets have been conducted successfully, producing good results. On the other hand, some improvements in educational activities, including the revision of textbooks, are required in such a field of education of pupils in primary, middle and high schools. Specially-designed introductory courses and advanced courses in the peaceful utilization of nuclear power should be established to ensure that students in scientific or technological fields other than nuclear engineering will gain deeper understanding of the issue. For this, the preparation of textbooks are currently under way. It is hoped that public relations activities will be expanded on a more continuous and consistent basis, instead of the current intermittent basis, by making good use of the mass media to distribute information among the general public. (Nogami. K.).

  3. Training and manpower development for nuclear energy programme

    International Nuclear Information System (INIS)

    Ajakaiye, D.E.; Elegba, S.B.

    1990-01-01

    The purpose is to train and develop the adequately qualified manpower in the areas of nuclear science and technology. Various options were introduced by the science departments, based on the existing facilities within the university. Twenty final year students were selected annually to attend a summer school in reactor physics and technology at the Karlsruhe Institute for Nuclear Research in West Germany. Also, there was approval for an annual recruitment quota of twelve graduate assistants for the nuclear project. Fifty qualified students were trained for various courses in nuclear science and technology both in the country and abroad. There had been graduates in nuclear science and technology courses up to the doctorate degree level. Part of efforts in the manpower has been directed towards the acquisition of adequate equipment for the teaching laboratories. The establishment of a training center in nuclear technology at Ahmadu Bello University and at University of Ife can only be considered as the zero phase in the nuclear programme of Nigeria. Funding of the nuclear programme must be guaranteed. It is also suggested that the nuclear project be allocated sufficient foreign exchange to meet all its commitments. (A.S.)

  4. Status, problems and perspectives of the education on nuclear energetics and nuclear safety within the Technical University of Sofia

    International Nuclear Information System (INIS)

    Lakov, M.; Bonev, B.; Stoyanov, S.; Velev, V.

    2004-01-01

    Education on nuclear energetic within the Technical University of Sofia is conducted since 1966 within the framework of the specialty 'Thermal energetic' at that time, and since 1973, within the specialty 'Thermal and nuclear energetic'. In 1986 is opened a college on nuclear energetic teaching on specialty 'Nuclear Energetic' and 'Automation in Energetic'. Since 1998 the department 'Thermal and nuclear energetic' is the only one within the Republic of Bulgaria having the legal rights to train 'engineers-bachelors' and 'engineers-master of science' on 'Thermal and nuclear energetic', as well as doctors - engineers of the same specialty. The bachelor course is graduated from between 40 and 60 students annually. The training within the bachelor level is 4 years and finishes by defending diploma thesis. Part of the graduated bachelors (between 20 and 30 students) are closely specialized in the area of Nuclear Energetic. The specialization is trained through preparation of diploma thesis within the nuclear area. The master course has 3 semesters including preparation of diploma thesis. Within the master level are prepared 25 students annually. Within the sub-division 'Nuclear Energetic' are promulgated between 2 and 4 competitions for preparation of doctoral thesis annually. At the moment 7 students are preparing doctoral thesis. Graduated engineers on 'Nuclear Energetic' are engaged as operative personnel mainly in Kozloduy NPP. The rest of them are engaged within the engineering and scientific organizations, connected to nuclear energetic

  5. Training of nuclear disasters at Fukui prefecture in 2002

    International Nuclear Information System (INIS)

    Takayama, Hiromi; Yoshioka, Mitsuo; Hayakawa, Hironobu

    2004-01-01

    A large scale of training of nuclear disasters was carried out by Fukui prefecture, reference cities, towns, organizations and residents in Japan on November 7, 2003. Its abstract, the nuclear disaster measures system of Fukui and the emergency monitoring system, the principle and characteristics of nuclear disaster measure plans and emergency monitoring, abstract of training of the emergency monitoring from fiscal 2000 to 2002 are described. On the training of emergency monitoring in fiscal 2003, abstract, assumption of accident, training contents and evaluation are stated. Table of training schedule of emergency monitoring, measurement results of the fixed points, Ohi nuclear power plant accident scenario, the conditions of the plant at accident, forecast and simulation of effective dose by external exposure, change of space dose rate at the fixed observation points, measurement values of monitoring cars are illustrated. (S.Y.)

  6. Westinghouse Nuclear Core Design Training Center - a design simulator

    International Nuclear Information System (INIS)

    Altomare, S.; Pritchett, J.; Altman, D.

    1992-01-01

    The emergence of more powerful computing technology enables nuclear design calculations to be done on workstations. This shift to workstation usage has already had a profound effect in the training area. In 1991, the Westinghouse Electric Corporation's Commercial Nuclear Fuel Division (CNFD) developed and implemented a Nuclear Core Design Training Center (CDTC), a new concept in on-the-job training. The CDTC provides controlled on-the-job training in a structured classroom environment. It alllows one trainer, with the use of a specially prepared training facility, to provide full-scope, hands-on training to many trainees at one time. Also, the CDTC system reduces the overall cycle time required to complete the total training experience while also providing the flexibility of individual training in selected modules of interest. This paper provides descriptions of the CDTC and the respective experience gained in the application of this new concept

  7. Instructor training at the Swedish Nuclear Power Training and Safety Centre

    International Nuclear Information System (INIS)

    Persson, P.-E.

    1988-01-01

    In spite of the fact that full-scope simulators are very powerful training tools, the transfer of knowledge and skills to the trainees during simulator training is completely dependent on the instructors' technical competence and their ability to transfer it to the trainees by efficient use of these training tools. Accordingly, the instructor candidates must pass a technical training programme equivalent to that for shift supervisors and have at least a few months of experience in each operator position at a nuclear power plant. To be authorized, the instructors must also pass a teacher training programme consisting of four 2 week instructor courses. To stay authorized the instructors must pass an annual retraining programme consisting of at least two weeks of technical refresher and one week teacher retraining. The retraining programme also includes at least three weeks of operational practice at a nuclear power plant. (author)

  8. Experience with training of operating and maintenance personnel of nuclear power plants

    International Nuclear Information System (INIS)

    Pospisil, M.; Cencinger, F.

    1988-01-01

    The system is described of the specialist training of personnel for Czechoslovak nuclear power plants. Training consists of basic training, vocational training and training for the respective job. Responsible for the training is the Research Institute for Nuclear Power Plants; actual training takes place at three training centres. Personnel are divided into seven categories for training purposes: senior technical and economic staff, shift leaders, whose work has immediate effect on nuclear safety, engineering and technical personnel of technical units, shift leaders of technical units, personnel in technical units, shift service personnel and operating personnel, maintenance workers. Experience with training courses run at the training centre is summed up. Since 1980 the Centre has been training personnel mainly for the Dukovany nuclear power plant. Recommendations are presented for training personnel for the Temelin nuclear power plant. (Z.M.)

  9. IAEA world survey on nuclear power plant personnel training

    International Nuclear Information System (INIS)

    1999-01-01

    Training of personnel is acknowledged to be essential for safe and reliable operation of nuclear power plants. The preparation of this TECDOC was recommended by the IAEA International Working group on Nuclear Power Plant Personnel Training and Qualification and represents a unique compilation of information including all aspects of NPP personnel training from 23 Member States and 129 training organizations. The basic aims of this survey are: to provide a worldwide overview of all aspects of NPP personnel training; to foster both national and international cooperation between organizations involved in nuclear training; to provide the means of exchange of experiences and practices in systematic approach to training (SAT). The survey provides information for each corresponding country on the: national system and organization of training; job positions for which SAT is used; training programmes for key operations, maintenance, instructor and other jobs; role of management and the regulatory body; training facilities; recommended training practices; availability of training personnel from organizations outside the country; and contact points. The three main parts of the publication are the summary, the analysis of training programmes for each job position and the analysis of training resources, and the country reports

  10. An overview of training and technical communication of Chinese representative nuclear power engineering company of EPC mode

    International Nuclear Information System (INIS)

    Qi Ting; Zhang Xiangyu

    2015-01-01

    After the Fukushima severe accident, nuclear power development has been in stagnation in all over the world. The Chinese nuclear industry has a slowdown on new NPP construction. As a result, high level technique on safety and effective communication are required. For nuclear power engineering company with EPC mode, high quality on training and technical communication is the principal investment in order to achieve better service on engineering design, environmental impact assessment, environmental engineering design, and equipment supervision and so on. EPC mode requires wide range knowledge on almost every field related to nuclear on nuclear power engineering. In this paper, the author investigated the case of the only nuclear power engineering EPC company (CNPE) in China and present an overview on its training and technical communication both domestic and abroad. Basically, there are 4 main branches of training. The internal training focuses on specifically task (both management and technique), such as HSE training, QC training and quality and safety training. Long term education in the university is organized by cooperated mechanism. Code and platform training is partly carried out by international organization or company, and the experienced engineers coach makes up the other part. The communication is a large part since the EPC mode needs the information and requirements from the NPP entity, authority, and the other institutes, international organizations (like IAEA, NINE, IRSN, OECD, NRC and CEA etc.) and sometimes the public. The overview of the training and communication of the EPC company prevails the outline of its advantage on domestic communication and disadvantage on international technical communication. The paper can be a tool on the soft strength construction of company under EPC mode to broaden its business like consultation and training. Some advice is given by the author on the consultation and global communication in the future. (author)

  11. Impact evaluation of the nuclear training program of the Philippine Nuclear Research Institute

    International Nuclear Information System (INIS)

    Relunia, Estrella Duran

    1999-10-01

    This study attempted to determine the factors that influenced the impact of the PNRI training program in nuclear science and technology. The population of the study consisted of all graduate trainees who successfully completed the training courses conducted at the PNRI Training Center for the period 1989 to 1994. A stratified random sampling of 600 or 50% of the population were chosen from the 4 sectors of the population namely industry/service, medicine, education and research sector. Of the 600 samples only 395 or 66% of the samples responded to the mailed questionnaires. The following hypotheses were tested: 1) trainee - organization- related factors and overall satisfaction of the participants on the training program determine the impact of training; 2) there are significant differences among the perceptions of the participants on impact. Frequency counts and percentages were used to determine the number of trainees by sector and the description of the sample. T-test was used to measure whether or not the relationship between the ''Before'' and ''After'' training scores of the trainees is significant and whether the perceptions of the trainee respondents by sector on impact differed significantly. Multiple regression was used to determine whether the independent variables are significantly associated with the measures of program impact. The t-test was used to measure the significance of regression coefficient. (Author)

  12. Impact evaluation of the nuclear training program of the Philippine Nuclear Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Relunia, Estrella Duran

    1999-10-01

    This study attempted to determine the factors that influenced the impact of the PNRI training program in nuclear science and technology. The population of the study consisted of all graduate trainees who successfully completed the training courses conducted at the PNRI Training Center for the period 1989 to 1994. A stratified random sampling of 600 or 50% of the population were chosen from the 4 sectors of the population namely industry/service, medicine, education and research sector. Of the 600 samples only 395 or 66% of the samples responded to the mailed questionnaires. The following hypotheses were tested: (1) trainee - organization- related factors and overall satisfaction of the participants on the training program determine the impact of training; (2) there are significant differences among the perceptions of the participants on impact. Frequency counts and percentages were used to determine the number of trainees by sector and the description of the sample. T-test was used to measure whether or not the relationship between the ''Before'' and ''After'' training scores of the trainees is significant and whether the perceptions of the trainee respondents by sector on impact differed significantly. Multiple regression was used to determine whether the independent variables are significantly associated with the measures of program impact. The t-test was used to measure the significance of regression coefficient. (Author)

  13. Nuclear training facilities at the Royal Naval College, Greenwich

    International Nuclear Information System (INIS)

    Head, J.L.; Lowther, C.A.; Marsh, J.R.W.

    1986-01-01

    The paper describes some of the nuclear training facilities at the Royal Naval College and the way the facilities are used in the training of personnel for the Naval nuclear propulsion programme. (author)

  14. The role of the IPR-R1 TRIGA Mark I research reactor in nuclear education and training in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Andrea V.; Mesquita, Amir Z.; Maretti Junior, Fausto; Souza, Rose Mary G.P.; Dalle, Hugo M.; Paiano, Silvestre, E-mail: avf@cdtn.br, E-mail: amir@cdtn.br, E-mail: fmj@cdtn.br, E-mail: souzarm@cdtn.br, E-mail: dallehm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The revival of the Brazilian nuclear program has anticipated a large demand for training in nuclear technology. The Nuclear Technology Development Center (CDTN), a research institute of the Brazilian Nuclear Energy Commission (CNEN), offers the Operator Training Course on Research Reactors (CTORP). This course has existed since 1974 and about 258 workers were certificated by CTORP. This article describes the activities of CTORP and presents a proposal for its activities expansion in order to provide the current demand in the nuclear technology. Experimental research projects programs would be created in the postgraduate course at CDTN. In addition to the normal reactor physics topics addressed by CTORP, new subjects such as thermal hydraulic and instrumentation should be added and discussed too. (author)

  15. The role of the IPR-R1 TRIGA Mark I research reactor in nuclear education and training in Brazil

    International Nuclear Information System (INIS)

    Ferreira, Andrea V.; Mesquita, Amir Z.; Maretti Junior, Fausto; Souza, Rose Mary G.P.; Dalle, Hugo M.; Paiano, Silvestre

    2011-01-01

    The revival of the Brazilian nuclear program has anticipated a large demand for training in nuclear technology. The Nuclear Technology Development Center (CDTN), a research institute of the Brazilian Nuclear Energy Commission (CNEN), offers the Operator Training Course on Research Reactors (CTORP). This course has existed since 1974 and about 258 workers were certificated by CTORP. This article describes the activities of CTORP and presents a proposal for its activities expansion in order to provide the current demand in the nuclear technology. Experimental research projects programs would be created in the postgraduate course at CDTN. In addition to the normal reactor physics topics addressed by CTORP, new subjects such as thermal hydraulic and instrumentation should be added and discussed too. (author)

  16. Nuclear power plant personnel training process management system

    International Nuclear Information System (INIS)

    Arjona Vazquez, Orison; Venegas Bernal, Maria del Carmen; Armeteros Lopez, Ana L.

    1996-01-01

    The system in charge the management of the training process personnel from a nuclear power plant was designed taking into account all the requirements stated in the training guide for nuclear power plant personnel and their evaluation, which were prepared by the IAEA in 1995 in order to implement the SAT in the training programs for nuclear plant personnel. In the preparations of formats and elements that shape the system, account has been taken of the views expressed in such a guide, in some other bibliography that was consulted, and in the authors own opinion mainly with regard to those issues which the guide does not go deeper into

  17. Development of Computer-Aided Learning Programs on Nuclear Nonproliferation and Control

    International Nuclear Information System (INIS)

    Kim, Hyun Chul

    2011-01-01

    The fulfillment of international norms for nuclear nonproliferation is indispensable to the promotion of nuclear energy. The education and training for personnel and mangers related to the nuclear material are one of crucial factors to avoid unintended non-compliance to international norms. Korea Institute of Nuclear Nonproliferation and Control (KINAC) has been providing education and training on nuclear control as its legal duty. One of the legally mandatory educations is 'nuclear control education' performed since 2006 for the observation of the international norms on nuclear nonproliferation and the spread of the nuclear control culture. The other is 'physical protection education' performed since 2010 for maintaining the national physical protection regime effectively and the spread of the nuclear security culture. The 2010 Nuclear Security Summit was held in Washington, DC to enhance international cooperation to prevent nuclear terrorism. During the Summit, the South Korea was chosen to host the second Nuclear Summit in 2012. South Korean President announced that South Korea would share its expertise and support the Summit's mission by setting up an international education and training center on nuclear security in 2014. KINAC is making a full effort to set up the center successfully. An important function of the center is education and training in the subjects of nuclear nonproliferation, nuclear safeguards, nuclear security, and nuclear export/import control. With increasing importance of education and training education on nuclear nonproliferation and control, KINAC has been developing computer-aided learning programs on nuclear nonproliferation and control to overcome the weaknesses in classroom educations. This paper shows two learning programs. One is an e-learning system on the nuclear nonproliferation and control and the other is a virtual reality program for training nuclear material accountancy inspection of light water reactor power plants

  18. Development of Computer-Aided Learning Programs on Nuclear Nonproliferation and Control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Chul [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2011-10-15

    The fulfillment of international norms for nuclear nonproliferation is indispensable to the promotion of nuclear energy. The education and training for personnel and mangers related to the nuclear material are one of crucial factors to avoid unintended non-compliance to international norms. Korea Institute of Nuclear Nonproliferation and Control (KINAC) has been providing education and training on nuclear control as its legal duty. One of the legally mandatory educations is 'nuclear control education' performed since 2006 for the observation of the international norms on nuclear nonproliferation and the spread of the nuclear control culture. The other is 'physical protection education' performed since 2010 for maintaining the national physical protection regime effectively and the spread of the nuclear security culture. The 2010 Nuclear Security Summit was held in Washington, DC to enhance international cooperation to prevent nuclear terrorism. During the Summit, the South Korea was chosen to host the second Nuclear Summit in 2012. South Korean President announced that South Korea would share its expertise and support the Summit's mission by setting up an international education and training center on nuclear security in 2014. KINAC is making a full effort to set up the center successfully. An important function of the center is education and training in the subjects of nuclear nonproliferation, nuclear safeguards, nuclear security, and nuclear export/import control. With increasing importance of education and training education on nuclear nonproliferation and control, KINAC has been developing computer-aided learning programs on nuclear nonproliferation and control to overcome the weaknesses in classroom educations. This paper shows two learning programs. One is an e-learning system on the nuclear nonproliferation and control and the other is a virtual reality program for training nuclear material accountancy inspection of light water

  19. Inr training programme in nuclear research

    International Nuclear Information System (INIS)

    Cretu, I.; Ionila, M.; Gyongyosi, E.; Dragan, E.; Petra, M.

    2013-01-01

    The field of scientific research goes through rapid changes to which organizations must dinamically and efficiently adapt, which leads to the need to develop a continuous learning process that should be the basis for a long-term operational performance. Thus, human resource management systems and continuous learning should be perfectly correlated/alligned with the organizational strategy and knowledge. The research institutes through the nature of their activity are constantly undergoing a transformation process by exploring new research areas which presumes ensuring competent human resources who have to continuously learn and improve. The «learning organization » concept represents a metaphor rooted in the search of a strategy for promoting the personal development of the individual within an organization through a continuous transformation. Learning is associated with the idea of continuous transformation based on the individual and organizational development. Within « learning organizations » the human development strategy occupies a central role in management strategies. It was learned that organizations which perform excellently depend on the employees committment, especially in the budget constraints environment. For this, the human resources have to be used at maximum capacity but this is possible only with an increased committment of the employee towards the organization. The purpose of this paper is to present the basic training programme for the new employees which is part of the training strategy which carry out activities in the nuclear field of SCN Pitesti. With the majority of the research personnel aged between 45 and 60 years old there is the risk of loosing the knowledge gained in this domain. The expertise gained by experienced experts in the institute nationally and internationally can be exploited through the knowledge transfer to the new employees by organizing training programmes. The knowledge transfer between generations is one of the

  20. Training Tomorrow's Nuclear Workforce

    International Nuclear Information System (INIS)

    2013-01-01

    Training tomorrow's Nuclear Workforce Start with the children. That is the message Brian Molloy, a human resources expert in the IAEA's Nuclear Power Engineering Section, wants to convey to any country considering launching or expanding a nuclear power programme. Mathematics and science curricular and extra-curricular activities at secondary and even primary schools are of crucial importance to future recruiting efforts at nuclear power plants, he says:''You need to interest children in science and physics and engineering. The teaching needs to be robust enough to teach them, but it must also gain their interest.'' Recruiting high-calibre engineers needed for the operation of nuclear power plants is a growing challenge, even for existing nuclear power programmes, because of a wave of retirements combined with increasing global demand. But essential as engineers are, they are only a component of the staff at any nuclear power plant. In fact, most employees at nuclear power plants are not university graduates - they are skilled technicians, electricians, welders, fitters, riggers and people in similar trades. Molloy argues that this part of the workforce needs more focus. ''It's about getting a balance between focusing on the academic and the skilled vocational'', he says, adding that countries considering nuclear power programmes often initially place undue focus on nuclear engineers.

  1. Russian University Education in Nuclear Safeguards and Security

    International Nuclear Information System (INIS)

    Duncan, Cristen L.; Kryuchkov, Eduard F.; Geraskin, Nikolay I.; Boiko, Vladimir I.; Silaev, Maxim E.; Demyanyuk, Dmitry G.; Killinger, Mark H.; Heinberg, Cynthia L.

    2009-01-01

    As safeguards and security (S and S) systems are installed and upgraded in nuclear facilities throughout Russia, it becomes increasingly important to develop mechanisms for educating future Russian nuclear scientists and engineers in the technologies and methodologies of physical protection (PP) and nuclear material control and accounting (MC and A). As part of the U.S. Department of Energy's (DOE) program to secure nuclear materials in Russia, the Education Project supports technical S and S degree programs at key Russian universities and nonproliferation education initiatives throughout the Russian Federation that are necessary to achieve the overall objective of fostering qualified and vigilant Russian S and S personnel. The Education Project supports major educational degree programs at the Moscow Engineering Physics Institute (MEPhI) and Tomsk Polytechnic University (TPU). The S and S Graduate Program is available only at MEPhI and is the world's first S and S degree program. Ten classes of students have graduated with a total of 79 Masters Degrees as of early 2009. At least 84% of the graduates over the ten years are still working in the S and S field. Most work at government agencies or research organizations, and some are pursuing their PhD. A 5 and 1/2 year Engineering Degree Program (EDP) in S and S is currently under development at MEPhI and TPU. The EDP is more tailored to the needs of nuclear facilities. The program's first students (14) graduated from MEPhI in February 2007. Similar-sized classes are graduating from MEPhI each February. All of the EDP graduates are working in the S and S field, many at nuclear facilities. TPU also established an EDP and graduated its first class of approximately 18 students in February 2009. For each of these degree programs, the American project team works with MEPhI and TPU to develop appropriate curriculum, identify and acquire various training aids, develop and publish textbooks, and strengthen instructor skills

  2. Cuba: Expectations from the EduTA [Education and Training Appraisal

    International Nuclear Information System (INIS)

    2016-01-01

    Cuba has developed a good infrastructure to ensure radiation protection and safety and to build competence in this area. The regulatory body (CNSN: Centro Nacional de Seguridad Nuclear), with the collaboration of training providers (CPHR: Centre for Radiation Protection and Hygiene) played an important role in this process. However, there is an increasing need for education and training (E&T) in some professional categories, particularly in the medical field. In the previous years, great effort has been made to design and implement a national policy and strategy for E&T in radiation protection in order to adopt a sustainable and systematic approach, based on the analysis of training needs and the optimization of existing capabilities and resources

  3. A Study on the Promotion of Networking for International Training and Education in Nuclear Technology

    International Nuclear Information System (INIS)

    Min, B. J.; Lee, E. J.; Han, K. W.

    2007-04-01

    For the diversification of Korea's participation in the ANENT, the country contributed to the establishment of a new project (2007-2009) for the promotion of ANENT activities. Along the same, KAERI contributed to the development of cyber platform. Also, available course contents from IAEA were surveyed. In particular an approval course entitled as 'Energy Planning' was planned to be implemented in 2007. Finally, the ANENT web-portal including the cyber platform was operated and improved by upgrading and adding information and data. In order to promote the domestic cultivation of young scientists, Korea hosted 2007 WNU SI for the first time in Asia. KAERI staff was attached to the head quarter office of WNU to develop the curricula of WNU SI jointly. Keeping the basic structure of the original curricula, the developed curricula included Korean experience of self reliance in nuclear power technology and development of advanced technology. Methodology for the cooperation between ANENT and WNU was studied resulting in 2 ways. Primarily, it was suggested and prepared to produce cyber contents from 2007 WNU SI so that they can be up-loaded both on WNU web site and ANENT cyber platform. Secondly, cooperation in education and training activities was suggested to conduct exchange of students, joint development of cyber contents, operation of ANENT-WNU joint courses, development of reference curricula, and mutual recognition of credits and degrees. The methodology for the cooperation between ANENT and WNU will be implemented as follows: cooperation in the use of cyber contents from 2007 WNU SI will be produced during the event and they will be up-loaded both on WNU web site and ANENT cyber platform for common use; cooperation in education and training activities will be implemented by way of exchanging students, jointly developing cyber contents, operating ANENT-WNU joint courses, developing reference curricula, and realizing mutual recognition of credits and degrees

  4. A Study on the Promotion of Networking for International Training and Education in Nuclear Technology

    Energy Technology Data Exchange (ETDEWEB)

    Min, B J; Lee, E J; Han, K W [and others

    2007-04-15

    For the diversification of Korea's participation in the ANENT, the country contributed to the establishment of a new project (2007-2009) for the promotion of ANENT activities. Along the same, KAERI contributed to the development of cyber platform. Also, available course contents from IAEA were surveyed. In particular an approval course entitled as 'Energy Planning' was planned to be implemented in 2007. Finally, the ANENT web-portal including the cyber platform was operated and improved by upgrading and adding information and data. In order to promote the domestic cultivation of young scientists, Korea hosted 2007 WNU SI for the first time in Asia. KAERI staff was attached to the head quarter office of WNU to develop the curricula of WNU SI jointly. Keeping the basic structure of the original curricula, the developed curricula included Korean experience of self reliance in nuclear power technology and development of advanced technology. Methodology for the cooperation between ANENT and WNU was studied resulting in 2 ways. Primarily, it was suggested and prepared to produce cyber contents from 2007 WNU SI so that they can be up-loaded both on WNU web site and ANENT cyber platform. Secondly, cooperation in education and training activities was suggested to conduct exchange of students, joint development of cyber contents, operation of ANENT-WNU joint courses, development of reference curricula, and mutual recognition of credits and degrees. The methodology for the cooperation between ANENT and WNU will be implemented as follows: cooperation in the use of cyber contents from 2007 WNU SI will be produced during the event and they will be up-loaded both on WNU web site and ANENT cyber platform for common use; cooperation in education and training activities will be implemented by way of exchanging students, jointly developing cyber contents, operating ANENT-WNU joint courses, developing reference curricula, and realizing mutual recognition of credits and degrees.

  5. Assessment of field training for nuclear operations personnel

    International Nuclear Information System (INIS)

    White, M.

    1995-08-01

    Training of station personnel is an important component of the safe operation of the nuclear generating station. On-the-job training (OJT) is an important component of training. The AECB initiated this project to develop a process to assess the effectiveness of OJT for field operators, and perform an initial trial of the developed process. This report describes the recommended process to assess the effectiveness of OJT for field operators, as well as the results of the initial assessment at Pickering Nuclear Generating Station. The assessment's conclusions included: (1) Ontario Hydro policies and procedures are generally consistent with industry guidelines requiring a systematic approach to training; (2) Pickering NGS field operator performance is not always consistent with documented station requirements and standards, nor industry guidelines and practices; and (3) The Pickering NGS field operator on-the-job training is not consistent with a systematic approach to training, a requirement recognized in Ontario Hydro's Policy NGD 113, and does not contribute to a high level of performance in field operator tasks. Recommendations are made regarding the use of the developed process for future assessments of on-the-job training at nuclear power plants. (author). 36 refs., 4 tabs., 3 figs

  6. Proceedings of NUCLEAR 2015 the 8th annual international conference on sustainable development through nuclear research and education. Part 1/3

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2015-01-01

    The proceedings of the NUCLEAR 2015 the 8"t"h annual international conference on sustainable development through nuclear research and education. Part 1/3 held at INR-Pitesti on May, 27-29 contain 62 communications presented in two plenary sessions and three sections addressing the themes of Nuclear energy, Environmental protection and Sustainable development. In turn these sections are addressing the following items: Section 1.1 Nuclear safety and severe accidents (7 papers); Section 1.2 Nuclear reactors and gen. IV (5 papers); Section 1.3 Nuclear technology and materials (19 papers); Section 2.1 Radioprotection & air, water and soil protection (1 paper); Section 2.2 Radioactive waste management (9 papers); Section 3.1 policies and strategies in nuclear research (1 paper); Section 3.2 Education, training and knowledge management (16 papers); Section 3.3 International partnership for a sustainable development (4 papers). These papers are presented as abstracts in 'Nuclear 2015 - Book of Abstracts', separately processed

  7. ENEN - European Nuclear Educational Network Association

    International Nuclear Information System (INIS)

    De Regge, P.

    2006-01-01

    After the pioneering initiative of BNEN, the Belgian Nuclear higher Education Network, other countries, e.g. Italy, United Kingdom, Germany, Switzerland, etc., created their own pool of education. At the European level the ENEN Association (European Nuclear Education Network) is a sustainable product generated by an FP5 project. The main objective of the ENEN Association is the preservation and the further development of higher nuclear education and expertise. This objective is realized through the co-operation between European universities, involved in education and research in the nuclear engineering field, nuclear research centres and nuclear industry

  8. Assessment of specialized educational programs for licensed nuclear reactor operators

    International Nuclear Information System (INIS)

    Melber, B.D.; Saari, L.M.; White, A.S.; Geisendorfer, C.L.; Huenefeld, J.C.

    1986-02-01

    This report assesses the job-relatedness of specialized educational programs for licensed nuclear reactor operators. The approach used involved systematically comparing the curriculum of specialized educational programs for college credit, to academic knowledge identified as necessary for carrying out the jobs of licenses reactor operators. A sample of eight programs, including A.S. degree, B.S. degree, and coursework programs were studied. Subject matter experts in the field of nuclear operations curriculum and training determined the extent to which individual program curricula covered the identified job-related academic knowledge. The major conclusions of the report are: There is a great deal of variation among individual programs, ranging from coverage of 15% to 65% of the job-related academic knowledge. Four schools cover at least half, and four schools cover less than one-third of this knowledge content; There is no systematic difference in the job-relatedness of the different types of specialized educational programs, A.S. degree, B.S. degree, and coursework; and Traditional B.S. degree programs in nuclear engineering cover as much job-related knowledge (about one-half of this knowledge content) as most of the specialized educational programs

  9. IAEA activities in nuclear power plant personnel training and qualification

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1993-01-01

    Training to achieve and maintain the qualification and competence of nuclear power personnel is essential for safe and economic nuclear power. Technical Cooperation Meeting on Training-Related Activities for Nuclear Power Plant (NPP) Personnel in the countries of Central and Eastern Europe (CEEC) and of the former Soviet Union (FSU) has as its main objective the identification, through information exchange and discussion, of possible Technical Cooperation (TC) projects to assist Member States in meeting NPP personnel training needs and priorities, including the enhancing of training capabilities

  10. Development of Training Aids for Nuclear Forensics Exercises

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangjun; Lee, Seungmin; Lim, Hobin; Hyung, Sangcheol; Kim, Jaekwang [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-05-15

    Current radioactive-related training has focused on the prevention of a radiation disaster. Procedures to recover nuclear and radiological materials have been simplified due to the lack of training tools to reproduce real conditions for security and staff at nuclear facilities. The process of recovering materials is crucial in order to collect evidence and secure the safety of response forces. Moreover, exercises for recovering lost or missing a low dose radiation sources, does not well match with explosive like RDD blast situations. Therefore KINAC has been developing training aids in order to closely reproduce conditions of an actual terrorist attack and enhance effectiveness of exercises. These tools will be applied to Nuclear Forensics Exercises in which evidence collection is important at the time of an incident. KINAC has been developing training aids to enhance the effectiveness of such exercises by providing simulated conditions of actual terrorist incidents. Simulated training aids, based on the beacon system, operate with electromagnetic waves. These tools are able to simulate environments close to actual conditions by supplying similar properties of radioactivity. Training aids will be helpful in giving experience to security personnel and staff in the event of a terrorist incident. This experience includes collecting evidence for nuclear forensics. KINAC also has a plan to hold drills using these tools this year with The Armed Force CBR Defense Command.

  11. Development of Training Aids for Nuclear Forensics Exercises

    International Nuclear Information System (INIS)

    Lee, Sangjun; Lee, Seungmin; Lim, Hobin; Hyung, Sangcheol; Kim, Jaekwang

    2015-01-01

    Current radioactive-related training has focused on the prevention of a radiation disaster. Procedures to recover nuclear and radiological materials have been simplified due to the lack of training tools to reproduce real conditions for security and staff at nuclear facilities. The process of recovering materials is crucial in order to collect evidence and secure the safety of response forces. Moreover, exercises for recovering lost or missing a low dose radiation sources, does not well match with explosive like RDD blast situations. Therefore KINAC has been developing training aids in order to closely reproduce conditions of an actual terrorist attack and enhance effectiveness of exercises. These tools will be applied to Nuclear Forensics Exercises in which evidence collection is important at the time of an incident. KINAC has been developing training aids to enhance the effectiveness of such exercises by providing simulated conditions of actual terrorist incidents. Simulated training aids, based on the beacon system, operate with electromagnetic waves. These tools are able to simulate environments close to actual conditions by supplying similar properties of radioactivity. Training aids will be helpful in giving experience to security personnel and staff in the event of a terrorist incident. This experience includes collecting evidence for nuclear forensics. KINAC also has a plan to hold drills using these tools this year with The Armed Force CBR Defense Command

  12. Study on the survey and analysis of education in the nuclear field

    International Nuclear Information System (INIS)

    Minguez, E.

    1998-01-01

    It has been identified on many occasions that human resources is one of the most important elements for nuclear energy deployment. Major activities include attracting sufficient number of bright and interested students to the field, and maintaining research activities for both current and future nuclear power utilisation, associated with the successful transfer of knowledge and know-how to the next generation. Even if some countries are not now developing additional nuclear power, there is a need for expertise in operating and then decommissioning existing plants and in radioactive waste management. Universities and in-house training which is provided by nuclear research institutes and companies, have both played significant roles in the history of nuclear development by educating and training young qualified people. It has been observed, however, that universities, nuclear programmes and courses are being merged with other subjects, or in the worst cases, simply closed down. The main reasons for this trend are that universities cannot maintain nuclear-related courses because of lack of students and budget cuts. Research institutes as well as private companies are facing similar budgetary constraints and they are also considerably diversifying into non-nuclear research fields. This loss of educational possibilities needs to be quantified so that governments can take a considered view as to need to remedy the situation. It would also be helpful to review actions already undertaken by governments, universities and research institutes to improve this situation. It should be noted that qualified manpower is a resource available for use on the global scale, even if supply tends to be matter for national decisions. An Expert Group has been created under the auspices of the Committee for Technical and Economic Studies on Nuclear Energy Development and Fuel Cycle (NDC) of the Nuclear Energy Agency (NEA) of the OECD. The Group consists of 24 experts from 17 Member countries

  13. Challenges and Opportunities in Nuclear Science and Radiochemistry Education at the University of Missouri

    International Nuclear Information System (INIS)

    Robertson, J. David; Etter, Randy L.; Neumeyer, Gayla M.; Miller, William H.

    2009-01-01

    Over the last thirty years, numerous reports and workshops have documented the decline in nuclear and radiochemistry education programs in the United States. Practitioners and stakeholders are keenly aware of the impact this decline will have on emerging technologies and critical research and are fully committed to rebuilding programs in nuclear and radiochemistry. The challenge is, however, to persuade our academic peers and administrations to invest in nuclear and radiochemistry education and training programs in view of multiple competing priorities. This paper provides an overview of the expansion of the radiochemistry program and the creation of the Nuclear Energy Technology Workforce (NETWork) Center at the University of Missouri, Columbia and the lessons learned along the way.

  14. Development of training courses in the field of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Young; Seo, In Seok; Lee, Eui Jin; Seo, Kyung Won; Won, Jong Yeol; Nam, Jae Yeol

    1996-02-01

    This report describes the final results of D evelopment of training courses in the field of nuclear energy . The scope and contents are as follows : 1. to develop specialized nuclear training programs. 2. to collect and analyze foreign training programs and materials. 3. to develop foreign assisted training courses. 4. to develop interregional training courses for developing country trainees. and 5. to develop text materials for the implementation of training courses. 16 refs. (Author)

  15. Role of the Vinca Institute in nuclear engineering and radiation protection education

    International Nuclear Information System (INIS)

    Pesic, M.

    2002-01-01

    Education programmes in nuclear engineering and radiation protection in former Yugoslavia have been supported by comprehensive research and development and pertinent training of experts and students in the Vinca (former B oris Kidric ) Institute of nuclear sciences and abroad. Two research reactors were constructed and operated in the Vinca Institute since 1958. Adopted law on ban for NPP construction, isolation of the country due to the UN sanctions and weak economical situation deteriorated considerably the nuclear expertise in Serbia after 1989. Nuclear courses at the University were revoked, major research programmes were cancelled, RA research reactor in the Vinca Institute was shut down and many experts left the country. A novel nuclear programme related to remedial of nuclear and radiation safety in the Vinca Institute has been launched in 2003. This paper emphasizes the need for nuclear expertise, the lack of nuclear professionals to carry out the new programme, the experience gained so far and point out a possible future creative role of the Vinca Institute in education of new experts in the country and abroad. (author)

  16. Development of a Virtual Reality (VR) system for nuclear security training

    International Nuclear Information System (INIS)

    Yamaguchi, Yasuo; Hanai, Tasuku

    2014-01-01

    The Integrated Support Center for Nuclear nonproliferation and Nuclear Security (ISCN) under the Japan Atomic Energy Agency (JAEA) began the development of Virtual Reality (VR) training system for the purpose of teaching trainees nuclear security. ISCN set up two VR training courses by 2013. One is for teaching a nuclear security system of nuclear plants. The VR training system allows trainees to have virtual experiences visiting a nuclear plant. Through these experiences, trainees are able to learn how physical protection systems work in the plant. The course focuses on learning fundamental knowledge and is suitable for trainees having little experiences in the field of nuclear security. The other is for teaching fundamental skills corresponding to a contingency plan in a Central Alarm Station (CAS) of nuclear power plant. Computers of the VR training system deploy an intrusion scenario in a virtual space. Trainees in a group sit in front of 3-D screens and play a role play game in a virtual CAS. Through the exercise, trainees are able to learn skills necessary to the contingency case of nuclear plants. In my presentation, I will introduce the two training courses, advantages and disadvantages of the VR training system, reactions of trainees and future plans. (author)

  17. Computer training aids for nuclear operator training

    International Nuclear Information System (INIS)

    Phillips, J.G.P.; Binns, J.B.H.

    1983-01-01

    The Royal Navy's Nuclear Propulsion School at HMS SULTAN which is responsible for training all ratings and officers who operate Submarine Pressurised Water Reactor plants, has available a varied selection of classroom simulator training aids as well as purpose built Submarine Manoeuvring Room simulators. The use of these classroom training aids in the twelve months prior to Autumn 1981 is discussed. The advantages and disadvantages of using relatively expensive computer based aids to support classroom instruction for students who do not investigate mathematically the dynamics of the Reactor Plant are identified. The conclusions drawn indicate that for students of limited academic ability the classroom simulators are disproportionately expensive in cost, maintenance load, and instructional time. Secondly, the experience gained in the use of the Manoeuvring Room Simulators to train future operators who have just finished the academic phase of their training is outlined. The possible pitfalls for the instructor are discussed and the lessons learnt, concluding that these simulators provide a valuable substitute for the live plant enabling trainees to be brought up to a common standard and reducing their on job training time to an acceptable level. (author)

  18. Training programs for the systems approach to nuclear security

    International Nuclear Information System (INIS)

    Ellis, D.

    2005-01-01

    Full text: In support of United States Government (USG) and International Atomic Energy Agency (IAEA) nuclear security programs, Sandia National Laboratories (SNL) has advocated and practiced a risk-based, systematic approach to nuclear security. The risk equation has been developed and implemented as the basis for a performance-based methodology for the design and evaluation of physical protection systems against a design basis threat (DBT) for theft and sabotage of nuclear and/or radiological materials. Integrated systems must include technology, people, and the man-machine interface. A critical aspect of the human element is training on the systems-approach for all the stakeholders in nuclear security. Current training courses and workshops have been very beneficial but are still rather limited in scope. SNL has developed two primary international classes - the international training course on the physical protection of nuclear facilities and materials, and the design basis threat methodology workshop. SNL is also completing the development of three new courses that will be offered and presented in the near term. They are vital area identification methodology focused on nuclear power plants to aid in their protection against radiological sabotage, insider threat analysis methodology and protection schemes, and security foundations for competent authority and facility operator stakeholders who are not security professionals. In the long term, we envision a comprehensive nuclear security curriculum that spans policy and technology, regulators and operators, introductory and expert levels, classroom and laboratory/field, and local and offsite training options. This training curriculum will be developed in concert with a nuclear security series of guidance documents that is expected to be forthcoming from the IAEA. It is important to note that while appropriate implementation of systems based on such training and documentation can improve the risk reduction, such a

  19. Impact evaluation of the nuclear training program of the Philippine Nuclear Research Institute

    International Nuclear Information System (INIS)

    Relunia, Estrella D.

    2000-01-01

    This study attempted to determine the factors that influenced the impact of the institute's training program in nuclear science and technology to the institution where the trainee works and to the trainee himself and this study involved engineers, scientists, teachers, medical doctor, technologist and professionals who have successfully completed the PNRI nuclear science and technology training courses

  20. Training of selected categories of personnel in VUJE branch training centre

    International Nuclear Information System (INIS)

    Jacko, J. et al.

    1983-01-01

    The educational and research activity is described of the training centre which trains personnel for nuclear power plants in Czechoslovakia. Educational work includes training of personnel, the development of instructional and training aids, the assignment of tutors, curriculum development and the organization of final examinations. The results of the centre's educational work for the years 1979 to 1982 are tabulated. The research work of the centre is aimed at improving and increasing the effectiveness of the educational and training process. The spaces and equipment of the centre are described as are personnel conditions, the approach of trainees to education and the attitude of managerial staff to the centre's activities. (J.P.)

  1. Activities of nuclear training centre in Ljubljana for nuclear community in Slovenia and internationally

    International Nuclear Information System (INIS)

    Stritar, Andrej

    1998-01-01

    It is the vision of the Nuclear Training Centre to be a respected source of knowledge about nuclear technologies in the country and internationally. Our main mission is training of NPP Krsko personnel. For that purpose the training centre was established ten years ago. In addition we are spreading our activities also to other users. We are organizing international training courses, mainly under the sponsorship of the International Atomic Energy Agency. We are also authorized to train professionals, dealing with ionizing radiation in medicine, industry and science. Growing importance is given to our public information activity in our information centre. (author)

  2. Simulators for training nuclear power plant personnel

    International Nuclear Information System (INIS)

    1993-01-01

    Simulator training and retraining of operations personnel is essential for their acquiring the necessary knowledge, skills and qualification for operating a nuclear power plant, and for effective feedback of experience including human based operating errors. Simulator training is the most effective way by far of training operations personnel in co-operation and communication in a team, which also involves instilling attitudes and approaches for achieving excellence and individual responsibility and alertness. This technical document provides guidance to Member States on the procurement, setting up and utilization of a simulator training centre; it will also be useful for organizations with previous experience in the use of simulators for training. The document is the result of a series of advisory and consultants meetings held in the framework of the International Working Group on Nuclear Power Plant Control and Instrumentation in 1989-1992. 17 refs, 2 tabs

  3. Annual report of Nuclear Technology and Education Center (April 1, 2005 - March 31, 2006)

    International Nuclear Information System (INIS)

    2006-12-01

    This report summarizes the activities of the Nuclear Technology and Education Center (NuTEC) of the Japan Atomic Energy Agency (JAEA) in the fiscal year 2005. On unification of JAERI and JNC on October, 2005, the former NuTEC of JAERI and the Human Resources Development Section of JNC were reorganized as the new NuTEC. Concomitantly, the training courses on nuclear emergency preparedness, held at the former NuTEC, was transferred to NEAT, JAEA, and the management related to university cooperation was assigned as one of the tasks of the new NuTEC. In total, the number of trainees for the general domestic training courses was 652, while that for the staff technical training courses was 616. The international training courses have also been carried out as planned. In addition, supportive activities for the Nuclear Professional School of Tokyo University, commenced in April, 2005, have been made mainly concerning the experimental exercises for the students. (author)

  4. Coordination of nuclear developments in the Asia-Pacific region

    International Nuclear Information System (INIS)

    Wakabayashi, H.; An, S.

    1984-01-01

    Healthy, coordinated development of nuclear energy in the Asia-Pacific region requires the securing of human resources. This is an important component of development and should be well designed in advance, notwithstanding the fact that each country and area has its own unique system for nuclear research, education, and training. Differences are even more pronounced where preparedness for nuclear abnormal occurrences are concerned, despite the international impact of such incidents. From this point of view, we examine the current situation in international education and training of nuclear specialists, encompassing nuclear education and training systems, IAEA efforts, bilateral and multilateral transregional cooperation, and matters relating to national and transnational preparedness for nuclear abnormal occurrences. We present a proposal to create a regional center that would establish cooperation in nuclear research, education, training, and preparedness for abnormal occurrences. (author)

  5. Nuclear Power Reactor simulator - based training program

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.S.

    2009-01-01

    nuclear power stations will continue playing a major role as an energy source for electric generation and heat production in the world. in this paper, a nuclear power reactor simulator- based training program will be presented . this program is designed to aid in training of the reactor operators about the principles of operation of the plant. also it could help the researchers and the designers to analyze and to estimate the performance of the nuclear reactors and facilitate further studies for selection of the proper controller and its optimization process as it is difficult and time consuming to do all experiments in the real nuclear environment.this program is written in MATLAB code as MATLAB software provides sophisticated tools comparable to those in other software such as visual basic for the creation of graphical user interface (GUI). moreover MATLAB is available for all major operating systems. the used SIMULINK reactor model for the nuclear reactor can be used to model different types by adopting appropriate parameters. the model of each component of the reactor is based on physical laws rather than the use of look up tables or curve fitting.this simulation based training program will improve acquisition and retention knowledge also trainee will learn faster and will have better attitude

  6. Training Solutions to the Global Challenges of a Nuclear Renaissance

    International Nuclear Information System (INIS)

    Garces, M.; Chan, S.; Leo, C.; Garcia, S.; Vidal, B.

    2010-01-01

    From East Asia to the United States and all over Europe, the nuclear re-birth is generating demands the training simulation vendors had not faced before. Companies involved in the planning, design, construction and operation of new plants increasingly require simulation tools to satisfy very different needs, all of them on a large scale: education and support of inexperienced newcomer staff, human factors analysis and control room design, e-learning, verification and validation of I and C systems or training and licensing of crews before the actual installations are complete. There is a full set of applications already available to the whole industry to satisfy these needs. End-user friendly Thunder Real-Time Executive (T-REX), poised to become the standard simulation platform for U.S. plants, makes it possible to provide full-scope simulator and simulator exercises to students and others on a memory stick or over the internet. AREVA EPR full-scope training simulator, based on the ALICES integrated object-oriented simulation environment, becomes an engineering simulator for the Flamanville 3 plant under construction in Normandy; the same will happen to the Taishan 1 and 2 simulators in Guangdong (China) while UniStar plans to apply this approach to the future EPR's to be built in the United States. SIREP PWR Basic Principle Simulator, with simplified models which can run on an ordinary PC, is used at GDF SUEZ offices in Brussels to implement their Nuclear Trainees Program. EDF Training Department chooses On-line Micro Simulation (MicroSel), which can be managed with Learning Management Systems, for classroom and stand-alone learning of the basic characteristics of French reactors. All these are examples of how extensive R and D and innovation programs implemented by the simulator providers, some of them under way here in Spain, will help to overcome some of the challenges of the current nuclear expansion.

  7. Situation of the education in the nuclear field: networks of training and paper of the universities

    International Nuclear Information System (INIS)

    Minguez, E.

    2008-01-01

    In this work the education networks in nuclear engineering around Europe American and Asia are presented, focusing in the main role of universities in collaboration with the nuclear industry. (Author) 5 refs

  8. Human resource development, National Nuclear Energy Agency, Indonesia

    International Nuclear Information System (INIS)

    Karsono

    2007-01-01

    The development of an adequate national education and training infrastructure is the solution to solve the demand for qualified manpower to meet the national requirements of any nuclear program. Education and training activities were initiated in the year of 1981 with the forming of the Education and Training Center (ETC). The aging of manpower and the government policy on zero growth results in the discontinuity of knowledge transfer within the organization, and may be in the future of nuclear technology implementation. Since 1981 ETC has contributed to the training of its employees and industrial personnel through 800 training and involving around eleven thousand participants. Education and Training Center of BATAN accredited by BAPETEN as the nuclear training institutes for Radiation Protection Officer Certification, and in process of accreditation by National Accreditation Board as training institute for Non Destructive Test Personnel Certification. Annually ETC conduct 5 RPO training and 5 NDT Level I and 3 NDT Level II training. As shown in attached Table, there are at least 2999 RPO in Indonesia responsible for the safe operation of 4843 radioactive sources and 3741 radiation sources. Among the approximately 3700 employees of BATAN, national infrastructure has contributed to the education of 911 S1-graduates program, 24 master degree and 21 doctoral degree programs, while 46 bachelors degree, 201 master degree and 98 doctoral degree were taken overseas. Human resources have been identified on many occasions as being one of the most important elements for engaging in various types of nuclear applications. Major efforts must be directed towards attracting sufficient number of bright and interested students to the nuclear field for both current and future nuclear technology utilization. Therefore, it is necessary to transfer knowledge and know-how to the young generation for the sustainable development of nuclear science and technology. Courses in nuclear

  9. Simulators in the training program for nuclear power plants

    International Nuclear Information System (INIS)

    Grimm, E.

    1988-01-01

    The principle simulator of the reactor school of the Paul Scherrer Institute is described. A compact simulator at the nuclear power plant Beznau is used for beginners as well as for refresher courses. Full simulator training cannot be taken in Switzerland. The Swiss nuclear power plants take advantage of the services of foreign nuclear power plants or training centers. The role of the instructor is discussed

  10. Australian Vocational Education and Training Statistics: Young People in Education and Training, 2011

    Science.gov (United States)

    National Centre for Vocational Education Research (NCVER), 2012

    2012-01-01

    The Australian education and training system offers a range of options for young people. This publication provides a summary of the statistics relating to young people aged 15 to 19 years who participated in an education and training activity during 2011. Information on participation is presented for VET in Schools students, school students,…

  11. Good practices in provision of nuclear safeguards and security training courses at the Integrated Support Center for Nuclear Nonproliferation and Nuclear Security

    Directory of Open Access Journals (Sweden)

    Kobayashi Naoki

    2017-01-01

    Full Text Available More than five years have passed since the Integrated Support Center for Nuclear Nonproliferation and Nuclear Security (ISCN was established under the Japan Atomic Energy Agency (JAEA in December 2010 and started its activities, in response to the commitment of Japan at the Nuclear Security Summit in Washington D.C.. The ISCN has been vigorously involved in capacity building assistance on nuclear nonproliferation (safeguards and nuclear security, mainly in the Asian region. It has provided 105 training courses to 2901 participants in total as of August 2016. The ISCN plays a major role in strengthening nuclear nonproliferation and nuclear security in the region, and this can be considered one of the great results of the Nuclear Security Summit process. The ISCN has cooperated with the US Department of Energy/National Nuclear Security Administration (DOE/NNSA and Sandia National Laboratories (SNL to establish a base of instructors, particularly for the Center's flagship two-week courses, the Regional Training Course on Physical Protection of Nuclear Material and Facilities (RTC on PP and the Regional Training Course on State Systems of Accounting for and Control of Nuclear Material (RTC on SSAC. Furthermore, the ISCN has provided training courses for experts in Japan, making the best use of the Center's knowledge and experience of organizing international courses. The ISCN has also started joint synchronized training with the Joint Research Centre of the European Commission (EC JRC on nuclear safeguards. This paper describes the good practices at the ISCN through its five years of activities, focusing on its progress in nuclear safeguards and nuclear security training.

  12. The Conceptual Model of Future Teachers Training to Dual Education in VET (Vocational Education & Training)

    Science.gov (United States)

    Zholdasbekova, Saule; Nurzhanbayeva, Zhanat; Karatayev, Galymzhan; Akhmet, Laura Smatullaevna; Anarmetov, Bahitzhan

    2016-01-01

    In the article the author presents the theoretical understanding of research problems of training of the future teachers-organizers of the dual training system in vocational education & training (VET) in the conditions of the credit technology of education. The author's vision of way to solve the problem is discussed in the description of the…

  13. Assessment of field training for nuclear operations personnel

    Energy Technology Data Exchange (ETDEWEB)

    White, M [Safety Management Services, Inc. (Canada)

    1995-08-01

    Training of station personnel is an important component of the safe operation of the nuclear generating station. On-the-job training (OJT) is an important component of training. The AECB initiated this project to develop a process to assess the effectiveness of OJT for field operators, and perform an initial trial of the developed process. This report describes the recommended process to assess the effectiveness of OJT for field operators, as well as the results of the initial assessment at Pickering Nuclear Generating Station. The assessment`s conclusions included: (1) Ontario Hydro policies and procedures are generally consistent with industry guidelines requiring a systematic approach to training; (2) Pickering NGS field operator performance is not always consistent with documented station requirements and standards, nor industry guidelines and practices; and (3) The Pickering NGS field operator on-the-job training is not consistent with a systematic approach to training, a requirement recognized in Ontario Hydro`s Policy NGD 113, and does not contribute to a high level of performance in field operator tasks. Recommendations are made regarding the use of the developed process for future assessments of on-the-job training at nuclear power plants. (author). 36 refs., 4 tabs., 3 figs.

  14. Nuclear Manpower Development

    International Nuclear Information System (INIS)

    Hwang, I. A.; Lee, K. B.; Shin, B. C.

    2010-12-01

    The industry-university-research collaborative education is aiming at developing national nuclear human resources to satisfy with the increasing needs from the industry. For this efforts are being made to develop curricula customized to respective industry needs by improving existing ones. As the demand for training programs for the university students and domestic nuclear personnel was increasing owing to revitalization of nuclear industry, Nuclear Training Center (NTC) improved previous education programs to meet the needs. NTC has operated 2 education programs on research reactor experiments for the university students, and 18 programs on nuclear technology related experiment courses in 2010. Furthermore, the NTC developed new education programs related to 'standardized research reactor system design'. Also the request from universities for internship programs was increased by about three times in 2010 compared to those of the previous year, and this required to develop relevant curricula. In 2005, NTC developed KAERI-ACE, as a unique competency-based staff education system of Korea Atomic Energy Research Institute (KAERI). Based on the system, the NTC has performed 'systematic education'. In 2008, NTC was awarded Best HRD(Human Resource Development) in Public sector for the first time as a government-supported research institute. In 2009, the system was improved to become KAERI-ACE 2.0, based on which, in 2010, NTC improved and diversified education programs including various cyber training programs

  15. Role of higher education in training of university and college graduates for Czechoslovak nuclear programme

    International Nuclear Information System (INIS)

    Urbanek, J.; Nemec, J.

    1983-01-01

    The mechanical engineering faculty of the College of Mechanical and Electrical Engineering in Plzen trains students in the field ''Thermal and nuclear power machines and equipment''. The study field is subdivided into two specializations: ''Nuclear power facilities'' and ''Thermal power facilities''. The former specialization provides students with knowledge in the foundations of calculations and design of nuclear reactors and accessories, of heat transfer with application to nuclear reactors, the foundations of nuclear physics, reactor physics, calculations of shielding and reactor control. The specialization ''Thermal power facilities'' acquaints the students with the foundations of computations and the design of steam and gas turbines and turbocompressors, production technology, assembly and operation, defects and their removal, the foundations of nuclear power facilities and the design of thermal power plants. At the electrical engineering faculty of the College the study field ''Electrical power engineering'' includes the specialization ''Nuclear power plants''. New study fields have been suggested following consultations with the SKODA production enterprise. It has been found that the immediate increased demand for nuclear power specialists, namely for the assembly, commissioning and operation of nuclear power plants, will have to be met by the redeployment of engineers inside the respective enterprises. (E.S.)

  16. Multimedia Course on Nuclear Reactors Physics, Application to a Tailored On the Job Training Course

    International Nuclear Information System (INIS)

    Dies, Javier

    2014-01-01

    In order to improve education and training quality, a Multimedia on Nuclear Reactor Physics has been developed. In some institutions, this course is called Fundamentals of Nuclear Reactor Operation. Nowadays, this multimedia has about 800 slides and the text is in Spanish, English, French and Russian. Until now about 126 institutions from 53 countries have applied for the multimedia. The teacher uses the multimedia during his lectures. Students use it at home to study this course

  17. Training implementation matrix. Spent Nuclear Fuel Project (SNFP)

    International Nuclear Information System (INIS)

    EATON, G.L.

    2000-01-01

    This Training Implementation Matrix (TIM) describes how the Spent Nuclear Fuel Project (SNFP) implements the requirements of DOE Order 5480.20A, Personnel Selection, Qualification, and Training Requirements for Reactor and Non-Reactor Nuclear Facilities. The TIM defines the application of the selection, qualification, and training requirements in DOE Order 5480.20A at the SNFP. The TIM also describes the organization, planning, and administration of the SNFP training and qualification program(s) for which DOE Order 5480.20A applies. Also included is suitable justification for exceptions taken to any requirements contained in DOE Order 5480.20A. The goal of the SNFP training and qualification program is to ensure employees are capable of performing their jobs safely and efficiently

  18. Trends in nuclear education

    International Nuclear Information System (INIS)

    Lartigue, J.; Martinez, T.

    2008-01-01

    Today's nuclear curricula have the purpose to fulfil labor requirements of the nuclear market, both power and applications, as well as keeping up the academic level required for research and development in nuclear sciences. This work analyses the power and applications markets and the situation of nuclear education in several countries, including Mexico, as well as collective efforts promoted by the International Atomic Energy Agency (IAEA) and other organizations. Conclusions are obtained about the status and trends in nuclear education, emphasizing the role of the academic and users sectors to fit the future demand and the availability of skilled personnel. (author)

  19. A hazy nuclear renaissance [Global initiatives call for developing advanced reactors and promoting nuclear education. The future is far from clear

    International Nuclear Information System (INIS)

    Murogov, V.M.

    2007-01-01

    As energy issues rise on the global agenda, what role is foreseen for nuclear power over the coming decades? Is enough being done to bring new reactors - and the knowledge to run them safely - on line when they are needed, especially in developing countries where energy demand is growing fastest? There are no easy answers, though some directions are emerging. Important developments are influencing the changing nuclear workforce, nuclear power technology, and the education of the next generation of leaders. A prime challenge is to preserve the knowledge and experience already acquired in nuclear fields so as to have a solid foundation from which to achieve safe and secure solutions. Fortunately, some global initiatives can help to pave the road to nuclear power's future and its contributions to sustainable development. They include steps taken by the IAEA, such as the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) and the World Nuclear University (WNU). Both initiatives are helping to raise awareness about education and knowledge management and the need for advanced nuclear technologies. Regrettably in Russia, as in the USA, Western Europe and developing nuclear countries, more attention and support is needed for nuclear education and training - and in preserving decades of nuclear experience that has fed such international initiatives. According to this author, opportunities are being lost in his view, leading to a hazy nuclear future

  20. Measures for human resources assure in nuclear energy sector in Bulgaria

    International Nuclear Information System (INIS)

    Parvanov, B.; Kostadinova, K.; Marinov, L.

    2009-01-01

    The planned and undertaken measures like: Council of Ministers Decree on the provision and training of personnel for nuclear energy; development of regional nuclear technology and training center for development and deployment of nuclear technology and education and training; establishment of a national system for providing and maintaining of nuclear education quality; creation of a national nuclear research program within framework of Scientific Research Fund ect. The assessment of the future human resources needs in nuclear energy sector for period 2009-2013, as well as the opportunities for training, education and qualification of the personnel are presented

  1. The INSTN trains the future professionals of nuclear industry

    International Nuclear Information System (INIS)

    Correa, P.

    2017-01-01

    The INSTN (Institute for Nuclear Sciences and Nuclear Technologies) is the applied school in nuclear technologies that has been present for 60 years for specialized training and vocational training. The integration of numerical technologies has allowed INSTN to adapt its way of teaching and to overcome difficulties like distances and to propose for instance practical exercises on the ISIS experimental reactor through the web for foreign graduate schools. The INSTN has realized its first SPOC (Small Private Online Course) and is preparing 2 MOOC (Massive Open Online Course). Since 2016, the INSTN has become 1 of the 2 training centers appointed as 'collaborating center' by the IAEA in the field of nuclear technologies and their industrial and radio-pharmaceutical applications. (A.C.)

  2. Education and vocational training

    International Nuclear Information System (INIS)

    Fair, M.F.; Turner, J.E.

    1976-01-01

    The Faculty Institute in Applied Health Physics started in the summer of 1974 in response to the nation's needs for persons trained at the bachelor's level in health physics technology. Surveys indicate that between 3300 and 6000 new trained technologists will be needed by 1985. They will be required for nuclear power reactors, fuel-cycle operations, nuclear medicine, regulatory activities, and as replacements for currently employed workers. The Faculty Institute program provides support for contacting college officials to make them aware of these forecasts and interest them in instituting undergraduate health physics course work at their institutions. In addition, the program provides support for ten faculty participants from different universities to spend ten weeks during the summer in the Health Physics Division. These participants have access to the staff and the diverse research and field facilities of the Division. They also utilize the facilities of the Special Training Division at ORAU

  3. Digital innovations for teaching and nuclear training

    International Nuclear Information System (INIS)

    Fanjas, Y.; Schoevaerts, D.; Beliazi, L.

    2017-01-01

    The article reviews various digital tools that have been developed for nuclear training. The 'internet virtual laboratory' has been developed by the IAEA, it allows the live broadcasting through the web of experiments and practical exercises performed on the ISIS reactor located in France at Saclay. Virtual reality is booming and allows professionals to move in a nuclear facility virtually. For instance the SecureVI tool is based on 360 degrees photographs of the facility that are associated with goggles to get the immersive effect. The last generation of full-scale reactor simulators are based on 3-dimensional calculations made by the latest version of neutron transport codes and thermal-hydraulic codes. The EPR-FA3 simulator represents the control room of the Flamanville EPR, it is used for the training of reactor operators. The X1300 simulator replicates PWR operations and the SOFIA tool allows the trainees to understand how a nuclear reactor works. The CAVE tool was first developed to be used as an help to engineers and now it has been adapted to training purposes: CAVE allows a complete immersion in a nuclear facility. (A.C.)

  4. Manpower development in the US nuclear power industry

    International Nuclear Information System (INIS)

    Todreas, N.E.; Foulke, L.R.

    1985-01-01

    This paper reviews the history and current status of the university nuclear education sector and the utility training sector of the United States (US) nuclear power industry. Recently, the number of programs in the university nuclear education sector has declined, and the remaining programs are in need of both strong governmental and industrial assistance if they are to remain a stable source for educating nuclear engineers and health physicists to staff the resurgence of the nuclear power industry. The utility training sector has undergone remarkable development since the TMI-2 accident. Programs to recruit, train, and qualify the variety of personnel needed, as well as the steps to accredit these programs, are being developed on a systematic, industry-wide basis. A number of new technologies for educating and training personnel are emerging which may be used to create or improve learning environments. Manpower development for the US nuclear power industry is a shared responsibility among the universities, the nuclear utilities, and the nuclear suppliers. This shared responsibility can continue to be best discharged by enhancement of the interaction among all parties with respect to evaluating the proper level of cognitive development within the utility training program

  5. UNENE: an update on nuclear education and research

    International Nuclear Information System (INIS)

    Shalaby, B.A.; Snell, V.G.; Rouben, B.

    2011-01-01

    University Network for Excellence in Nuclear Engineering (known as UNENE) was created in 2002 as a partnership between Industry and universities with the objectives of establishing a nuclear R and D program in universities to train and develop Highly Qualified Personnel (HQP) to address the demographic gap and to create a sustainable source of expertise for independent industry and public consultation. Seven years into its creation, UNENE is now a well established and fully functional framework with programs mainly focussing on education and research serving the industry at large. The educational component is in the form of an M. Eng program mainly catering for working profession's by being offered on weekends and using distance learning tools. It is intended to enhance competencies and build knowledge for students. The R and D programs are lead by Industrial Research chairs (IRCs) and other prominent researchers in areas of importance to the industry. This paper examines the above topics and its outcomes as of March 2010. (author)

  6. UNENE: an update on nuclear education and research

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, B.A.; Snell, V.G.; Rouben, B., E-mail: basma.shalaby@rogers.com, E-mail: vgsolutions@rogers.com, E-mail: rouben@alum.mit.edu [University Network for Excellence in Nuclear Engineering (UNENE), Hamilton, Ontario (Canada)

    2011-09-15

    University Network for Excellence in Nuclear Engineering (known as UNENE) was created in 2002 as a partnership between Industry and universities with the objectives of establishing a nuclear R and D program in universities to train and develop Highly Qualified Personnel (HQP) to address the demographic gap and to create a sustainable source of expertise for independent industry and public consultation. Seven years into its creation, UNENE is now a well established and fully functional framework with programs mainly focussing on education and research serving the industry at large. The educational component is in the form of an M. Eng program mainly catering for working profession's by being offered on weekends and using distance learning tools. It is intended to enhance competencies and build knowledge for students. The R and D programs are lead by Industrial Research chairs (IRCs) and other prominent researchers in areas of importance to the industry. This paper examines the above topics and its outcomes as of March 2010. (author)

  7. UNENE: an update on nuclear education and research

    International Nuclear Information System (INIS)

    Shalaby, B.A.; Snell, V.G.; Rouben, B.

    2010-01-01

    University Network of Excellence in Nuclear Engineering (known as UNENE) was created in 2002 as a partnership between Industry and universities with the objectives of establishing a nuclear R and D program in universities, train and develop Highly Qualified Personnel (HQP) to address the demographic gap, and to create a sustainable source of expertise for independent industry and public consultation. Seven years into its creation, UNENE is now a well established and fully functional framework with programs mainly focussing on education and research serving the industry at large. The educational component is in the form of an M. Eng. program mainly catering for working professionals by being offered on weekends and using distance-learning tools. It is intended to enhance competencies and build knowledge for students. The R and D programs are led by Industrial Research chairs (IRCs) and other prominent researchers in areas of importance to the industry. This paper examines the above topics and its outcomes as of March 2010. (author)

  8. Status of nuclear engineering education in the United States

    International Nuclear Information System (INIS)

    Brown, G.J.

    2000-01-01

    Nuclear engineering education in the United States is reflective of the perceived health of the nuclear electric power industry within the country. Just as new commercial reactor orders have vanished and some power plants have shut down, so too have university enrollments shrunk and research reactors closed. This decline in nuclear trained specialists and the disappearance of the nuclear infrastructure is a trend that must be arrested and reversed if the United States is to have a workforce capable of caring for a nuclear power industry to not only meet future electric demand but to ensure that the over 100 existing plants, their supporting facilities and their legacy in the form of high level waste and facility clean-up are addressed. Additionally, the United States has an obligation to support and maintain its nuclear navy and other defence needs. And, lastly, if the United States is to have a meaningful role in the international use of nuclear power with regard to safety, non-proliferation and the environment, then it is imperative that the country continues to produce world-class nuclear engineers and scientists by supporting nuclear engineering education at its universities. The continued support of the federal government. and industry for university nuclear engineering and nuclear energy research and development is essential to sustain the nuclear infrastructure in the United States. Even with this support, and the continued excellent operation of the existing fleet of nuclear electric power plants, it is conceivable that nuclear engineering as an academic discipline may fall victim to poor communications and a tarnished public image. What is needed is a combination of federal and industrial support along with the creativity of the universities to expand their offerings to include more than power production. The objective is a positive message on careers in nuclear related fields, and recognition of the important role of nuclear energy in meeting the country

  9. Clinical Training of Medical Physicists Specializing in Nuclear Medicine (Spanish Edition); Capacitacion clinica de fisicos medicos especialistas en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  10. Nuclear engineering training and advanced training at universities and in manufacturing industries

    International Nuclear Information System (INIS)

    Sauer, A.

    1984-01-01

    The lecture describes: the qualification of the staff of one nuclear power plant building company, the structure of university studies in the Federal Republic of Germany, in the USA and in the GDR, technical colleges, continuation studies, in-service training in the manufacturing industry, training programmes for short-term benefits, training of German and foreign operating personnel by the manufacturers, training within the framework of technology transfer. (HSCH) [de

  11. Training, education and qualification of NPP operating personnel in the Netherlands

    International Nuclear Information System (INIS)

    de Vrey, G.A.

    1987-01-01

    This paper outlines the organization and the requirements of the training, education and qualification of NPP operating personnel in the Netherlands. It describes the implementation of a formally required scheme of personnel qualification after TMI, and the current practice as developed by the training staff of both Dutch nuclear power plants. Attention is given to the specific circumstances and problems in the Netherlands, and the resulting program. The licensing criteria for control room operating personnel are discussed, including the level of government involvement. Measures are described to improve the approach to training of NPP personnel involved in safety relevant activities. Finally, some ideas are given for strategies to cope with adverse stress situations

  12. Cook's Carteaux: Trends in nuclear training

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The following Nuclear News interview, conducted by associate editor Gregg M. Taylor, is with Paul F. Carteaux, training superintendent at Indiana/Michigan Power Company's Cook nuclear power plant. The site has two Westinghouse pressurized water reactors. Cook-1, rated 1020-MWe (net), started commercial operation in August 1975, and the 1060-MWe Cook-2 began operation in July 1978

  13. 'Nuclear emergency preparedness' for local residents. Support of on-site training of many kinds of places and people

    International Nuclear Information System (INIS)

    Kameda, Kazuhisa

    2005-01-01

    In order to support and ensure the nuclear emergency preparedness system and safety of residents in cities, towns and villages, NPO Nuclear Emergency Preparedness Support Center was established in May, 2003. 130 on-site training and education classes were held and above 2,000 participants attended to them for two years. Objects of the countermeasure of nuclear emergency preparedness in local area and residents, what is nuclear emergency for inhabitants, what is use of Table of International Nuclear Event Scale (INES)?, a use of INES, relation between INES level and the nuclear emergency preparedness system are discussed. (S.Y.)

  14. Training in radioprotection in INB - Brazilian Nuclear Industries

    International Nuclear Information System (INIS)

    Pereira, Wagner de S.; Py Junior, Delcy de A.; Taddei, Jose F.C.; Dias, Pedro L. dos S.; Iatesta, Antonio

    2005-01-01

    This work describes the ideas that guided the training in radiation protection and the first results obtained in the first half of 2004. The training took place in the Uranium Concentrate Unit URA, in Caetite, BA, in the Ore Treatment Unit - UTM, in Caldas, MG, and in the Heavy Mineral Unit - UMP, in San Francisco de Itabapuana, RJ, Brazil. In URA it was spent 9 days. 79 students were trained in 6 classes (average 13 pupils per class). Each group spent 9 hour of training, for a total of 54 hours of training given. There was no disapproval, and the grade average of the students was 9.2, with the lowest grade 7.5 and the highest 10.0. In UTM, it was spent 9 days. 200 students were trained in 9 classes (an average of 22 students per class). Each class spent 9h of training, totaling 81 hours. There were 18 deprecations, due to the the lack of education of the students. The overall average of the grades was 8.8, with lower note zero and higher 10.0. In UTM 158 people were trained in 5 classes, with an average of 31 students per class.It is concluded that in classes with few students (7 to 12) there were few parallel discussions. In classes with many students (over thirty) there was a scattering of ideas, which interfered in the progress of training. As proposal for upcoming classes can be suggested an average 20 people per class. The division of classes in groups working together was beneficial, giving a unit, which allowed greater freedom in questions, increasing parallel content taught. The classes have evaluated positively the initiative of the work done, which will be extended to other units of DRM, and subsequently all of the INB - Brazilian Nuclear Industries

  15. KINGS Model: Achieving Sustainable Change in Nuclear Engineering Education for the Post-COP21 Era

    International Nuclear Information System (INIS)

    Oh, S.-K.

    2016-01-01

    Full text: In spite of the world nuclear community’s systematic and multilateral efforts during the COP21, most of the conference participants were reluctant to acknowledge the value of nuclear as a low-carbon energy source. In fact, the on-going aftermath of the Fukushima nuclear disaster has been overwhelming despite the evidence that there was neither any critical technical flaw nor fatal radiation casualties. This shows that advanced nuclear knowledge failed to resonate with public perception on nuclear energy. In this respect, it is now time to focus on achieving sustainable change in nuclear engineering education for the future. The KEPCO International Nuclear Graduate School (KINGS) was established to nurture leadership-level nuclear power professionals in the global standard. It affiliates with Korean nuclear industry to achieve three major goals that are also a universal prerequisite for higher education of engineering in the 21st century as follows: “a balance between education and training,” “harmony between engineering and managerial skills,” and “the application of systems engineering to nuclear power projects.” KINGS curriculum requires transdisciplinary coordination among engineering disciplines, engineering specialties, and socioeconomic methods. (author

  16. Training programs for the systems approach to nuclear security

    International Nuclear Information System (INIS)

    Ellis, Doris E.

    2005-01-01

    In support of the US Government and the International Atomic Energy Agency (IAEA) Nuclear Security Programmes, Sandia National Laboratories (SNL) has advocated and practiced a risk-based, systematic approach to nuclear security. The risk equation has been implemented as the basis for a performance methodology for the design and evaluation of Physical Protection Systems against a Design Basis Threat (DBT) for theft or sabotage of nuclear and/or radiological materials. Since integrated systems must include people as well as technology and the man-machine interface, a critical aspect of the human element is to train all stakeholders in nuclear security on the systems approach. Current training courses have been beneficial but are still limited in scope. SNL has developed two primary international courses and is completing development of three new courses that will be offered and presented in the near term. In the long-term, SNL envisions establishing a comprehensive nuclear security training curriculum that will be developed along with a series of forthcoming IAEA Nuclear Security Series guidance documents.

  17. Training courses at VR-1 reactor

    International Nuclear Information System (INIS)

    Sklenka, L.; Kropik, M.

    2006-01-01

    This paper describes one of the main purposes of the VR-1 training reactor utilization - i.e. extensive educational program. The educational program is intended for the training of university students and selected nuclear power plant personnel. The training courses provide them experience in reactor and neutron physics, dosimetry, nuclear safety and operation of nuclear facilities. At present, the training course participants can go through more than 20 standard experimental exercises; particular exercises for special training can be prepared. Approximately 200 university students become familiar with the reactor (lectures, experiments, experimental and diploma works, etc.) every year. About 12 different faculties from Czech universities use the reactor. International co-operation with European universities in Germany, Hungary, Austria, Slovakia, Holland and UK is frequent. The VR-1 reactor takes also part in Eugene Wigner Course on Reactor Physics Experiments in the framework of European Nuclear Educational Network (ENEN) association. Recently, training courses for Bulgarian research reactor specialists supported by IAEA were carried out. An attractive program including demonstration of reactor operation is prepared also for high school students. Every year, more than 1500 high school students come to visit the reactor, as do many foreigner visitors. (author)

  18. Improving operator quality at Genkai Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kuwano, Takeshi.

    1989-01-01

    Improvement in operator quality, or improvement in an operator's skill and professional knowledge, is of prime importance because of its great influence on safe and steady plant operation. This paper describes the education and training of reactor operators at the Genkai pressurized water reactor nuclear power plant with respect to the following topics: organization of Genkai power plant; education and training program management; training at the Nuclear Training Center; training and education on-site including emergency procedures training, normal operating procedures training, informational study of emergency conditions in existing plants, and all-around training of operators; qualifying tests for supervisors; and operator motivation

  19. Blended-mode pedagogical model fosters nuclear engineering education in Southern Africa

    International Nuclear Information System (INIS)

    Kruger, J.H.; Fick, J.I.J.

    2010-01-01

    Social upliftment requires access to energy. Especially in the Southern Africa region, affordable energy gives communities access to improved living conditions, potable water and life-changing educational opportunities. Distributed nuclear power generation can make a significant difference in a continent where communities are geographically widely dispersed and where technology centres are few and far between. Unfortunately, for a country to obtain a nuclear capability and be part of the renaissance, it needs a skilled and educated workforce - a workforce that must be trained through an educational system facing the same challenges of dispersed human resources and lack of infrastructure as the community it serves. The blended-mode pedagogical model developed by the Postgraduate School for Nuclear Science and Engineering at the North-West University (NWU) in South Africa represents one manner in which the problem of dispersed resources can be addressed. As a matter of national policy, South Africa has embarked on a drive to not only innovate in terms of reactor technology, but to also develop and sustain a skilled workforce in the nuclear engineering field. Due to a severe shortage of personnel in the local nuclear community, the NWU devised a blended-mode teaching system to link overseas lecturers with local students to expand the local workforce through training and human capital development. The blended-mode delivery takes place through the online Sakai system that uses powerful learning management tools to achieve the learning outcomes. Students are guided in distance self-study for the larger part of the course and a contact session is then used to contextualize and integrate the knowledge. In this manner, a virtual collaborative environment between geographically dispersed faculty members and students is created which provides essential flexibility in terms of time and human resource management. The blended-mode teaching model has already achieved great

  20. Managing Nuclear Knowledge: IAEA Activities and International Coordination. Asian Network for Education in Nuclear Technology (ANENT)

    International Nuclear Information System (INIS)

    2007-07-01

    The important role which the International Atomic Energy Agency (IAEA) plays in assisting Member States in the preservation and enhancement of nuclear knowledge and in facilitating international collaboration in this area has been recognized by the General Conference of the International Atomic Energy Agency in resolutions GC(46)/RES/11B, GC(47)/RES/10B, GC(48)/RES/13 and GC(50)/RES/13. The IAEA continues to support the enhancement and stabilization of nuclear education and training with the objective of securing the availability of qualified human resources for the nuclear sector. Its most important approaches are networking regional educational institutions and fostering cooperation to develop harmonized curricula, prepare and disseminate teaching materials. The Asian Network for Education in Nuclear Technology (ANENT), established by the IAEA in 2004, became operational in 2005. An ANENT website has been set up and is being expanded, such as developing a long-distance learning platform. Also, a reference curriculum for nuclear engineering is being developed with the cooperation of external partners.This booklet summarizes the main activities being carried out by the IAEA with regard to the Asian Network for Education in Nuclear Technology (ANENT) and other related activities including those completed during the period 2002–2005. It briefly describes the background information on the events leading to the formation of the ANENT; the terms of reference formulated at the second Coordination Committee meeting held in Vietnam, October 2005; and objectives, strategy and other institutional and managerial policies reaffirmed by the members. CD-ROM attached to the printed booklet containing nearly all of the background material in full text, including policy level papers, reports, presentations made by Member States, and meeting summaries