WorldWideScience

Sample records for nuclear detection applications

  1. CVD diamond for nuclear detection applications

    International Nuclear Information System (INIS)

    Bergonzo, P.; Brambilla, A.; Tromson, D.; Mer, C.; Guizard, B.; Marshall, R.D.; Foulon, F.

    2002-01-01

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-industrial basis, CVD diamond detectors have been fabricated for nuclear industry applications in hostile environments. Such devices can operate in harsh environments and overcome limitations encountered with the standard semiconductor materials. Of these, this paper presents devices for the monitoring of the alpha activity in corrosive nuclear waste solutions, such as those encountered in nuclear fuel assembly reprocessing facilities, as well as diamond-based thermal neutron detectors exhibiting a high neutron to gamma selectivity. All these demonstrate the effectiveness of a demanding industrial need that relies on the remarkable resilience of CVD diamond

  2. CVD diamond for nuclear detection applications

    CERN Document Server

    Bergonzo, P; Tromson, D; Mer, C; Guizard, B; Marshall, R D; Foulon, F

    2002-01-01

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-i...

  3. Solid state nuclear track detection principles, methods and applications

    CERN Document Server

    Durrani, S A; ter Haar, D

    1987-01-01

    Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti

  4. Solid state nuclear track detection : theory and applications

    International Nuclear Information System (INIS)

    Bhagwat, A.M.

    1993-01-01

    Solid state nuclear track detection (SSNTD) technique is simple and inexpensive in nature. The two main steps involved in SSNTD are the formation of latent tracks and their subsequent development (visualisation) by chemical or other means. These are discussed in detail. Applications of SSNTD in the fields of nuclear physics, dosimetry, biology and for determination of contents of an element and its spatial distribution are described. The monograph is intended to serve both beginners and specialists. It also gives a list of simple experiments that can be conveniently introduced at the undergraduate/postgraduate level. (M.G.B.). 20 refs., 8 figs., 3 tabs

  5. New quickest transient detection methodology. Nuclear engineering applications

    International Nuclear Information System (INIS)

    Wang, Xin; Jevremovic, Tatjana; Tsoukalas, Lefteri H.

    2003-01-01

    A new intelligent systems methodology for quickest online transient detection is presented. Based on information that includes, but is not limited to, statistical features, energy of frequency components and wavelet coefficients, the new methodology decides whether a transient has emerged. A fuzzy system makes the final decision, the membership functions of which are obtained by artificial neural networks and adjusted in an online manner. Comparisons are performed with conventional methods for transient detection using simulated and plant data. The proposed methodology could be useful in power plant operations, diagnostic and maintenance activities. It is also considered as a design tool for quick design modifications in a virtual design environment aimed at next generation University Research and Training Reactors (URTRs). (The virtual design environment is pursued as part of the Big-10 Consortium sponsored by the new Innovations in Nuclear Infrastructure and Education (INIE) program sponsored by the US Department of Energy.) (author)

  6. Laser application for nuclear reaction product detecting system alignment

    International Nuclear Information System (INIS)

    Grantsev, V.I.; Dryapachenko, I.P.; Kornilov, V.A.; Nemets, O.F.; Rudenko, B.A.; Sokolov, M.V.; Struzhko, B.G.; Gnatovskij, A.V.; Bojchuk, V.N.

    1982-01-01

    A method for optical alignment of nuclear particle detector system using a laser beam and hologram is described. The method permits to arrange detectors very precisely in accordance with any chosen space coordinate values. The results of modelling the geometry of an experiment based on using the suggested method on cyclotron beams are described. A gas helium-neon laser with wavelength of 0.63 μm radiation power of an order of 2 MW and angular beam divergence less than 10 angular minutes is used for modelling. It is concluded that the laser and hologram application provides large possibilities for the modelling the geometry of experiments on nuclear reaction investigation. When necessary it is possible to obtain small nonius scale of reference beams by means of multiplicating properties of the wave front modulator-hologram system. It is also possible to record holograms shaping the reference beams in two or several planes crossing along the central beam direction. Such holograms can be used for modelling the noncoplanar geometry of correlation experiments [ru

  7. Application of smart transmitter technology in nuclear engineering measurements with level detection algorithm

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Seong, Poong Hyun

    1994-01-01

    In this study a programmable smart transmitter is designed and applied to the nuclear engineering measurements. In order to apply the smart transmitter technology to nuclear engineering measurements, the water level detection function is developed and applied in this work. In the real time system, the application of level detection algorithm can make the operator of the nuclear power plant sense the water level more rapidly. Furthermore this work can simplify the data communication between the level-sensing thermocouples and the main signal processor because the level signal is determined at field. The water level detection function reduces the detection time to about 8.3 seconds by processing the signal which has the time constant 250 seconds and the heavy noise signal

  8. Applications of nuclear physics

    Science.gov (United States)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  9. Applications of nuclear physics

    International Nuclear Information System (INIS)

    Hayes-Sterbenz, Anna Catherine

    2017-01-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  10. Hybrid MWPC gamma ray detecting system for applications in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J E; Connolly, J F [Science Research Council, Chilton (UK). Rutherford Lab.

    1978-10-15

    Results are presented from prototype MWPC gas-solid hybrid imaging detectors designed for applications in nuclear medicine. Using a multi-section chamber with foil converter cathodes and a delay line readout technique, the authors have made a sup(99m)Tc imaging detector with a spatial resolution of 5 mm fwhm and a projected quantum efficiency of 15% for a full scale device. With lead foil cathodes the detector design yields similar spatial resolution and quantum efficiency when positron annihilation gammas are detected. Images of positron emitters (/sup 22/Na and /sup 68/Ga) are presented.

  11. Revolution in nuclear detection affairs

    International Nuclear Information System (INIS)

    Stern, Warren M.

    2014-01-01

    The detection of nuclear or radioactive materials for homeland or national security purposes is inherently difficult. This is one reason detection efforts must be seen as just one part of an overall nuclear defense strategy which includes, inter alia, material security, detection, interdiction, consequence management and recovery. Nevertheless, one could argue that there has been a revolution in detection affairs in the past several decades as the innovative application of new technology has changed the character and conduct of detection operations. This revolution will likely be most effectively reinforced in the coming decades with the networking of detectors and innovative application of anomaly detection algorithms

  12. The application of CPLD in online nuclear detection meter of ore grade

    International Nuclear Information System (INIS)

    Yin Yiqiang; Yin Deyou; Gong Yalin; Shang Qingmin; Xiao Xiandong; Zhou Hongjun; Yu Haiming

    2010-01-01

    The pulse height analysis circuit for nuclear pulse signals is an important function cell of online nuclear detection meter, requiring high speed and credible logic circuit to eliminate the signal pileup rejection, overload detection, instrumentation measurement dead time on the adverse effects of spectrum. In order to improve the performance of nuclear detection meter, some function circuits are used, such as live time offset, overload detection and pileup rejection. The CPLD and multi single-channel spectrum measurement method used in ore grade nuclear instrumentation, eliminating the pileup, overload signal and accurately compensated the measurement of dead time, thus the circuit functions above are carried out credibly and the meter detection accuracy is improved drastically. (authors)

  13. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    International Nuclear Information System (INIS)

    Sorensen, Peter; Dahl, Carl Eric

    2011-01-01

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  14. Study of hydrogenated amorphous silicon devices under intense electric field: application to nuclear detection

    International Nuclear Information System (INIS)

    Ilie, A.

    1996-01-01

    The goal of this work was the study, development and optimization of hydrogenated amorphous silicon (a-Si:H) devices for use in detection of ionizing radiation in applications connected to the nuclear industry. Thick p-i-n devices, capable of withstanding large electric fields (up to 10 6 V/cm) with small currents (nA/cm 2 ), were proposed and developed. In order to decrease fabrication time, films were made using the 'He diluted' PECVD process and compared to standard a-Si:H films. Aspects connected to specific detector applications as well as to the fundamental physics of a-Si:H were considered: the internal electric field technique, in which the depletion charge was measured as a function of the applied bias voltage; study of the leakage current of p-i-n devices permitted us to demonstrate different regimes: depletion, field-enhanced thermal generation and electronic injection across the p layer. The effect of the electric field on the thermal generation of the carriers was studied considering the Poole-Frenkel and tunneling mechanisms. A model was developed taking under consideration the statistics of the correlated states and electron-phonon coupling. The results suggest that mechanisms not included in the 'standard model' of a Si:h need to be considered, such as defect relaxation, a filed-dependent mobility edge etc...; a new metastable phenomenon, called 'forming', induced by prolonged exposure to a strong electric field, was observed and studied. It is characterized by marked decrease of the leakage current and the detector noise, and increase in the breakdown voltage, as well as an improvement of carrier collection efficiency. This forming process appears to be principally due to an activation of the dopants in the p layer; finally, the capacity of thick p-i-n a Si:H devices to detect ionizing radiation has been evaluated. We show that it is possible, with 20-50 micron thick p-i-n devices, to detect the full spectrum of alpha and beta particles. With an

  15. Detecting Illicit Nuclear Materials

    International Nuclear Information System (INIS)

    Kouzes, Richard T.

    2005-01-01

    The threat that weapons of mass destruction might enter the United States has led to a number of efforts for the detection and interdiction of nuclear, radiological, chemical, and biological weapons at our borders. There have been multiple deployments of instrumentation to detect radiation signatures to interdict radiological material, including weapons and weapons material worldwide

  16. Applications of Nuclear Physics

    OpenAIRE

    Hayes, Anna C.

    2017-01-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that und...

  17. The Application of Nuclear Technologies to Detect and Treat Cancer and Other Malignancies

    International Nuclear Information System (INIS)

    Sharpey-Schafer, J.

    2004-01-01

    Tobacco is a Weapon of Mass Destruction. It is arguable that, as smoking is by far the major cause of cancer, the most effective action in the fight against it would be to prosecute the chief executives of the major tobacco companies with charges of genocide, mass extermination and crimes against humanity. But there are also other cancers which are not related to addiction. These deserve our best technical and scientific skills to detect and treat. This talk will detail recent advances in the use of nuclear and radiation technologies to both detect and to treat cancer and other malignancies. The examples given will mostly be from current clinical practice in our iThemba LABS near Cape Town, South Africa and from plans we are currently promoting for new facilities

  18. Nuclear resonance absorption (NRA): method and application to detection of contraband in a baggage, cargo and vehicles

    International Nuclear Information System (INIS)

    Goldenberg, M.B.; Vartsky, D.; Engler, G.

    1996-01-01

    Nuclear Resonance Absorption (NRA) has played a prominent role in nuclear spectroscopy for almost 5 decades, but found only few and marginal applications outside the laboratory before 1985. In that year the situation changed markedly when scientists from this laboratory proposed to the Federal Aviation Administration (FAA) in the U.S. to study its suitability for detecting explosives in passenger baggage via nitrogen-specific radiographic imaging (explosives, as a category, have inordinately high nitrogen densities). Following a basic feasibility study and the first laboratory demonstration of explosives detection in 1989, this project has attained the stage of a pre-industrial prototype that exhibited excellent performance characteristics in a 1993 blind test conducted by the FAA. In terms of NRA operational system concept, data taking methodology, development of dedicated detectors and image analysis algorithms, the Soreq group has made a major, if not exclusive, contribution over the years. (authors)

  19. Detecting nuclear warheads

    International Nuclear Information System (INIS)

    Fetter, S.; Frolov, V.A.; Prilutsky, O.F.; Rodionov, S.N.; Sagdeev, R.Z.; Miller, M.

    1992-01-01

    To the best of our knowledge, all nuclear weapons contain at least several kilograms of fissile material - material that can sustain a chain reaction. Such material provides the energy for fission explosives such as those that destroyed Hiroshima and Nagasaki; it is also used in the fission trigger modern thermonuclear weapons. The two fissile materials used in US and Soviet warheads are weapon grade uranium (WgU) and weapon-grade plutonium (WgPu). Fissile materials are radioactive; they are very dense and absorb certain radiations very well; and they can be fissioned. This paper reports on the two basic ways to detect fissile material: passive detection of the radiation emitted by its radioactive decay, or active detection involving either radiographing (x-raying) an object with neutrons or high-energy photons and detecting particles emitted by the resulting induced fissions. Passive detection is the preferred technique for verification purposes because of its simplicity and safety

  20. Characterization of deep energy levels in mercury iodide. Application to nuclear detection

    International Nuclear Information System (INIS)

    Mohammed Brahim, Tayeb.

    1982-07-01

    The last few years have seen an increasing interest in HgI 2 detectors for room temperature gamma and X-ray spectrometry. Performance and effective thickness of these detectors are presently limited by carrier trapping which results in incomplete charge collection. Characterization of the trapping levels has been performed by several photoelectronic methods (photoconductivity, thermal and optical quenching of the photoconductivity, TSC, lifetime measurement). A model is proposed taking into account the results obtained by these techniques and the polarization phenomena observed in nuclear detection in both vapor phase and solution grown crystals. For the latter, polarization can be eliminated or notably reduced by illumination of the positive electrode or by using a MIS positively biased structure [fr

  1. Nuclear emulsions for the detection of micrometric-scale fringe patterns: an application to positron interferometry

    Science.gov (United States)

    Aghion, S.; Ariga, A.; Bollani, M.; Ereditato, A.; Ferragut, R.; Giammarchi, M.; Lodari, M.; Pistillo, C.; Sala, S.; Scampoli, P.; Vladymyrov, M.

    2018-05-01

    Nuclear emulsions are capable of very high position resolution in the detection of ionizing particles. This feature can be exploited to directly resolve the micrometric-scale fringe pattern produced by a matter-wave interferometer for low energy positrons (in the 10–20 keV range). We have tested the performance of emulsion films in this specific scenario. Exploiting silicon nitride diffraction gratings as absorption masks, we produced periodic patterns with features comparable to the expected interferometer signal. Test samples with periodicities of 6, 7 and 20 μ m were exposed to the positron beam, and the patterns clearly reconstructed. Our results support the feasibility of matter-wave interferometry experiments with positrons.

  2. Using limnological and optical knowledge to detect discharges from nuclear facilities - Potential application of satellite imagery for international safeguards

    International Nuclear Information System (INIS)

    Borstad, G.; Truong, Q.S. Bob; Keeffe, R.; Baines, P.; Staenz, K.; Neville, R.

    2001-01-01

    Previous work carried out under the Canadian Safeguards Support Program, has shown that thermal imagery from the American Landsat satellites could be used to detect the cooling water discharges, and could therefore be used to verify the operational status of nuclear facilities. In some images, thermal plumes could be easily detected in single band imagery with no mathematical manipulation and little image enhancement because there was a very strong thermal contrast between the effluent and the receiving water. However, for certain situations such as discharges into well mixed conditions (cold water and violent tides) the thermal plume may be more subtle. We show here that the visible bands of Landsat and IKONOS images often contain additional information, and that the thermal signature of a discharge from a nuclear facility is not the only signal available to describe its operation. This paper introduces some important hydrological phenomena that govern the biological and physical organization of water bodies, and discusses some basic concepts of marine and aquatic optics that are relevant to the safeguards problem. Using image analysis techniques that have been used widely in ocean optics work and in applications in the mapping and monitoring of water quality, we have re-analyzed data that were obtained under a joint project between various Canadian government departments. We present a preliminary examination of imagery from both satellite multispectral and aircraft hyperspectral sensors, and discuss methods to extract information that could be useful in the detection and verification of declared or undeclared nuclear activities. In one example of an IKONOS image of the Canadian Bruce Nuclear Generating Facility, simple enhancement techniques failed to find any plume other than a small jet visible in the surface wave field. With knowledge of limnology, oceanography and aquatic optics, we have been able to separate and remove the surface reflection, and detect a

  3. Nuclear Technology applications

    International Nuclear Information System (INIS)

    Cibils Machado, W. E- mail: wrcibils@adinet.com.uy

    2002-01-01

    The present work tries on the applications of the nuclear technology in the life daily, such as agriculture and feeding, human health, industry, non destructive essays, isotopic hydrology, and the nuclear power stations for electricity production and radioisotopes production

  4. Applications of Kalman Filtering to nuclear material control. [Kalman filtering and linear smoothing for detecting nuclear material losses

    Energy Technology Data Exchange (ETDEWEB)

    Pike, D.H.; Morrison, G.W.; Westley, G.W.

    1977-10-01

    The feasibility of using modern state estimation techniques (specifically Kalman Filtering and Linear Smoothing) to detect losses of material from material balance areas is evaluated. It is shown that state estimation techniques are not only feasible but in most situations are superior to existing methods of analysis. The various techniques compared include Kalman Filtering, linear smoothing, standard control charts, and average cumulative summation (CUSUM) charts. Analysis results indicated that the standard control chart is the least effective method for detecting regularly occurring losses. An improvement in the detection capability over the standard control chart can be realized by use of the CUSUM chart. Even more sensitivity in the ability to detect losses can be realized by use of the Kalman Filter and the linear smoother. It was found that the error-covariance matrix can be used to establish limits of error for state estimates. It is shown that state estimation techniques represent a feasible and desirable method of theft detection. The technique is usually more sensitive than the CUSUM chart in detecting losses. One kind of loss which is difficult to detect using state estimation techniques is a single isolated loss. State estimation procedures are predicated on dynamic models and are well-suited for detecting losses which occur regularly over several accounting periods. A single isolated loss does not conform to this basic assumption and is more difficult to detect.

  5. Application of a model-based fault detection system to nuclear plant signals

    International Nuclear Information System (INIS)

    Gross, K.C.; Singer, R.M.; Wegerich, S.W.; Herzog, J.P.; VanAlstine, R.; Bockhorst, F.

    1997-01-01

    To assure the continued safe and reliable operation of a nuclear power station, it is essential that accurate online information on the current state of the entire system be available to the operators. Such information is needed to determine the operability of safety and control systems, the condition of active components, the necessity of preventative maintenance, and the status of sensory systems. To this end, ANL has developed a new Multivariate State Estimation Technique (MSET) which utilizes advanced pattern recognition methods to enhance sensor and component operational validation for commercial nuclear reactors. Operational data from the Crystal River-3 (CR-3) nuclear power plant are used to illustrate the high sensitivity, accuracy, and the rapid response time of MSET for annunciation of a variety of signal disturbances

  6. Nuclear cratering applications

    International Nuclear Information System (INIS)

    Williamson, M.M.

    1969-01-01

    The development of nuclear excavation technology is based on the promise that the relatively inexpensive energy available from thermonuclear explosives can be used to simultaneously break and move age quantities of rock and earth economically and safety. This paper discusses the economic and other advantages of using nuclear excavation for large engineering projects. A brief description of the phenomenology of nuclear excavation is given. Each of the several proposed general applications of nuclear excavation is discussed to include a few specific example of possible nuclear excavation projects. The discussion includes nuclear excavation for harbors, canals, terrain transits, aggregate production, mining and water resource development and conservation. (author)

  7. Nuclear cratering applications

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, M M [U.S. Atomic Energy Commission, Germantown, MD (United States)

    1969-07-01

    The development of nuclear excavation technology is based on the promise that the relatively inexpensive energy available from thermonuclear explosives can be used to simultaneously break and move age quantities of rock and earth economically and safety. This paper discusses the economic and other advantages of using nuclear excavation for large engineering projects. A brief description of the phenomenology of nuclear excavation is given. Each of the several proposed general applications of nuclear excavation is discussed to include a few specific example of possible nuclear excavation projects. The discussion includes nuclear excavation for harbors, canals, terrain transits, aggregate production, mining and water resource development and conservation. (author)

  8. Detection of nuclear radiations

    International Nuclear Information System (INIS)

    Tanarro Sanz, A.

    1959-01-01

    A summary of the lectures about the ordinary detectors of nuclear radiations given by the author in the Courses of Introduction to Nuclear Engineering held at the JEN up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied electronics to Nuclear Engineering so it has been intent to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author) 8 refs

  9. Detection of nuclear radiations

    International Nuclear Information System (INIS)

    Tanarro Sanz, A.

    1967-01-01

    A summary of the lectures about the ordinary detectors of nuclear radiations explained by the author in the courses of Nuclear Engineering held at the J.E.N. up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied Electronics to Nuclear Engineering so it has been intended to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author)

  10. Application of analytical redundancy methods for early fault detection in nuclear power plant. Final report

    International Nuclear Information System (INIS)

    Seliger, R.

    1993-01-01

    The project activities proceeded along the following lines: Determination of the class of non-linear models to serve as a basis for the development of the residue generators. The models are to describe both the nominal and the faulty dynamic processes as precise and well-structured as possible. An aspect of particular importance was to explicitly simulate also modelling defects, such as parameter uncertainties, in order to be able to generate appropriate robustness against such effects. The class of models had to cover nonlinear space of states models for U-tube steam generators, as the algorithms developed were to be applied to this typical example of steam generators in nuclear power plant. Derivation and implementation of a mathematical model for a U-tube steam generator as required. This model was to serve as a basis for the residue generators. Verification of the mathematical decoupling conditions for the model. Implementation of a reference model on the digital computer. This reference model is not to be confused with the mathematical model for the design of the residue generators. The reference model is exclusively for the generation of test data, i.e. for generating transients and defects for testing the performance of the residue generators [de

  11. Detection of cavitation inception by acoustic technique in centrifugal pumps for nuclear application

    International Nuclear Information System (INIS)

    Prakash, V.; Prabhakar, R.; Rao, A.S.L.K.; Kale, R.D.

    1994-01-01

    The primary centrifugal pumps in a pool type reactor like the proposed Prototype Fast Breeder Reactor (PFBR) are required to operate at low values of available net positive suction head due to the limited submergence available in the pool. Pump hydraulics are designed to ensure that there is no cavitation or only minimum cavitation in the pump impeller in order to minimise long term erosion damage. Rigorous cavitation tests are usually carried out during development and final testing phase and a promising cavitation detection technique lies in acoustic noise measurements on the pump. As part of PFBR pump development programme, cavitation noise measurements were initially carried out on an experimental sodium pump in a water rig to establish detection procedures. Recently cavitation noise measurements were carried out on a 1/3 scale model impeller of PFBR pump along with visual observation of impeller passages to establish a correlation between visual and acoustic technique. Accelerometer responding to structure borne noise seems to give the best result. (author). 4 refs., 6 figs

  12. Development of Sensor Technology and Its Application for Nuclear Radiation Detection

    International Nuclear Information System (INIS)

    Hiskia

    2007-01-01

    Radiation is energy in the form of waves or moving subatomic particles. Radiation can be ionizing or nonionizing radiation, depending on its effect on atomic matter. Because radiation cannot be seen, felt, tasted, heard or smelled, even at lethal levels, radiations detection devices must be used to alert those exposed to radiation. The measurement of radioactivity in the environment is a regulatory requirement around sites where significant amounts of radioactive materials are used or stored. Recently, advent in microelectronics and material technology has enabled to produce small sensor or microsensor, sensitive, accurate, and integrated in a chip or substrate. Development of radiation sensor technology using thin/thick film and micromachining technique was described in this paper. Indonesian capabilities in radiation sensor research and development and opportunities for commercialization also given. (author)

  13. The Development of Sensor Technology and Application to Detect Nuclear Radiation

    International Nuclear Information System (INIS)

    Hiskia

    2007-01-01

    Radiation is energy in the form of waves or moving subatomic particles. Radiation can be ionizing or non-ionizing radiation, depending on its effect on atomic matter. Because radiation cannot be seen, felt, tasted, heard or smelled, even at lethal levels, radiations detection devices must be used to alert those exposed to radiation. The measurement of radioactivity in the environment is a regulatory requirement around sites where significant amounts of radioactive materials are used or stored. Recently, advent in microelectronics and material technology has enabled to produce small sensor or microsensor, sensitive, accurate, and integrated in a chip or substrate. Development of radiation sensor technology using thin/thick film and micromachining technique was described in this paper. Indonesian capabilities in radiation sensor research and development and opportunities for commercialization also given. (author)

  14. Applications of nuclear track detectors

    International Nuclear Information System (INIS)

    Medveczky, L.

    1980-01-01

    The results of a scientific research-work are summarized. Nuclear track detectors were used for new applications or in unusual ways. Photographic films, nuclear emulsions and dielectric track detectors were investigated. The tracks were detected by optical microscopy. Empirical formulation has been derived for the neutron sensitivity of certain dielectric materials. Methods were developed for leak testing of closed alpha emitting sources. New procedures were found for the application and evaluation of track detector materials. The results were applied in the education, personnel dosimetry, radon dosimetry etc. (R.J.)

  15. Preparation of cellulose nitrate films using a spinning disc for solid state nuclear track detection (SSNTD) applications

    International Nuclear Information System (INIS)

    Raghunath, B.; Iyer, M.R.; Samant, S.D.

    1995-01-01

    Solid state nuclear track detectors (SSNTD) are widely used in the detection and measurement of ionizing particles. Cellulose nitrate (CN) films are commonly used as SSNTD for the measurement of radon/thoron gases and their decay products. A simple method for making uniform thin CN films of various thickness has been developed. Performance of these films is compared with commercially available film. (Author)

  16. Preparation of cellulose nitrate films using a spinning disc for solid state nuclear track detection (SSNTD) applications

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, B.; Iyer, M.R. [Bhabha Atomic Research Centre, Bombay (India); Samant, S.D. [Bombay Univ. (India). Dept. of Chemical Technology

    1995-01-01

    Solid state nuclear track detectors (SSNTD) are widely used in the detection and measurement of ionizing particles. Cellulose nitrate (CN) films are commonly used as SSNTD for the measurement of radon/thoron gases and their decay products. A simple method for making uniform thin CN films of various thickness has been developed. Performance of these films is compared with commercially available film. (Author).

  17. System for detecting nuclear explosions

    International Nuclear Information System (INIS)

    Rawls, L.E.

    1978-01-01

    Apparatus for detecting underground nuclear explosions is described that is comprised of an antenna located in the dielectric substance of a deep waveguide in the earth and adapted to detect low frequency electromagnetic waves generated by a nuclear explosion, the deep waveguide comprising the high conductivity upper sedimentary layers of the earth, the dielectric basement rock, and a high conductivity layer of basement rock due to the increased temperature thereof at great depths, and means for receiving the electromagnetic waves detected by said antenna means

  18. Nuclear Forensics and Radiochemistry: Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-08

    Radiation detection is necessary for isotope identification and assay in nuclear forensic applications. The principles of operation of gas proportional counters, scintillation counters, germanium and silicon semiconductor counters will be presented. Methods for calibration and potential pitfalls in isotope quantification will be described.

  19. Nuclear Forensics and Radiochemistry: Radiation Detection

    International Nuclear Information System (INIS)

    Rundberg, Robert S.

    2017-01-01

    Radiation detection is necessary for isotope identification and assay in nuclear forensic applications. The principles of operation of gas proportional counters, scintillation counters, germanium and silicon semiconductor counters will be presented. Methods for calibration and potential pitfalls in isotope quantification will be described.

  20. Nuclear astrophysics: An application of nuclear physics

    International Nuclear Information System (INIS)

    Fueloep, Z.

    2005-01-01

    Nuclear astrophysics, a fruitful combination of nuclear physics and astrophysics can be viewed as a special application of nuclear physics where the study of nuclei and their reactions are motivated by astrophysical problems. Nuclear astrophysics is also a good example for the state of the art interdisciplinary research. The origin of elements studied by geologists is explored by astrophysicists using nuclear reaction rates provided by the nuclear physics community. Due to the high interest in the field two recent Nuclear Physics Divisional Conferences of the European Physical Society were devoted to nuclear astrophysics and a new conference series entitled 'Nuclear Physics in Astrophysics' has been established. Selected problems of nuclear astrophysics will be presented emphasizing the interplay between nuclear physics and astrophysics. As an example the role of 14 N(p,r) 15 O reaction rate in the determination of the age of globular clusters will be discussed in details

  1. Proceedings of 8. national conference on nuclear electronic and nuclear detection technology: Pt.1

    International Nuclear Information System (INIS)

    1996-01-01

    The 8th National Conference on Nuclear Electronics and Nuclear Detection Technology was held during 2-7, 12, 1996 in Zhuhai, Guangdong, China. 184 pieces of papers were collected in the conference proceedings. The contents of the conference proceedings are: nuclear electronics, nuclear detectors, nuclear instruments and its application, nuclear medical electronics, computer applications in nuclear sciences and technology, measurement of nuclear monitoring and nuclear explosion, radiation hardened electronics, liquid scintillation counting techniques and miscellaneous. Reported hereafter is the first part of the proceedings

  2. Materials science for nuclear detection

    OpenAIRE

    Peurrung, Anthony

    2008-01-01

    The increasing importance of nuclear detection technology has led to a variety of research efforts that seek to accelerate the discovery and development of useful new radiation detection materials. These efforts aim to improve our understanding of how these materials perform, develop formalized discovery tools, and enable rapid and effective performance characterization. We provide an overview of these efforts along with an introduction to the history, physics, and taxonomy of radiation detec...

  3. Applications of noise analysis to nuclear safety

    International Nuclear Information System (INIS)

    Aguilar Martinez, Omar

    2000-01-01

    Noise Analysis techniques (analysis of the fluctuation of physical parameters) have been successfully applied to the operational vigilance of the technical equipment that plays a decisive role in the production cycle of a very complex industry. Although fluctuation measurements in nuclear installations started almost at the start of the nuclear era (see works by Feynman and Rossi on the development of neutron methodology), only recently have neutron noise diagnostic applications begun to be a part of the standard procedures for the performance of some modern nuclear installations. Following the relevant technical advances made in information sciences and analogical electronics, measuring the fluctuation of physical parameters has become a very effective tool for detecting, guarding and following up possible defects in a nuclear system. As the processing techniques for the fluctuation of a nuclear reactor's physical-neutron parameters have evolved (temporal and frequency analysis, multi-parameter self -regression analysis, etc.), the applications of the theory of non-lineal dynamics and chaos theory have progressed by focusing on the problem from another perspective. This work reports on those nuclear applications of noise analysis that increase nuclear safety in all types of nuclear facilities and that have been carried out by the author over the last decade, such as: -Void Force Critical Set Applications (Zero Power Reactor Applications, Central Institute of Physical Research, Budapest, Hungary); -Research Reactor Applications (Triga Mark III Reactor, National Institute of Nuclear Research, ININ, Mexico); -Power Reactor Applications in a Nuclear Power Plant (First Circuit of Block II, Paks Nuclear Center, Hungary); -Second Loop applications in a Nuclear Power Plant (Block I Paks Nuclear Center, Hungary; Block II Kalinin Nuclear Center, Russia); -Shield System Applications for the Transport of Radioisotopes (Nuclear Technology Center, Havana, Cuba) New trends in

  4. Nuclear applications for development

    International Nuclear Information System (INIS)

    2007-01-01

    Building capacity for the safe application of nuclear technologies produces tangible socioeconomic benefits to developing countries. Identifying killer infections such as extrapulmonary tuberculosis and drug resistant strains of HIV/AIDS in sub-Saharan Africa; Monitoring malaria drug resistance in Myanmar; - Teaching Jordanian farmers how to produce viable crops on salty soils; - Investigating water resources deep beneath the Nubian Desert; - Fighting acid rain in Poland; - Creating an energy strategy for Latin America; - Strengthening the security of nuclear sources in Kazakhstan. These are just some of examples of the practical ways in which the International Atomic Energy Agency (IAEA) fulfils its mandate to 'accelerate and enlarge the contribution of atomic energy to peace, health, and prosperity throughout the world'. And some of the reasons the IAEA's long history of global action was recognized through the Nobel Peace Prize in 2005. This list of activities reflects the diverse needs of Member States. It also demonstrates the enormous potential of nuclear technology and the breadth of expertise that lie within three IAEA technical programmes: Nuclear Sciences and Applications, Nuclear Energy, and Nuclear Safety and Security. More importantly, it speaks to the success of a determined effort to facilitate knowledge sharing and technology transfer through a cross-cutting mechanism known as the technical cooperation programme. Each year, the technical cooperation programme disburses approximately US $90 million, all of which is acquired through voluntary contributions from Member States. The programme concentrates on building capacity through training and education, expert advice, and equipment delivery. It is currently active in more than 110 countries across four geographic regions: Africa, Asia and the Pacific, Europe and Latin America

  5. Nuclear applications for health

    International Nuclear Information System (INIS)

    Cuaron, A.

    1995-01-01

    Just before the turn of the 20th century, the discoveries of X-rays, in 1895, and of radioactivity, in 1896, opened up whole new worlds of science. For the medical community, the world has been changing ever since, in some countries far more rapidly than in others. Over the past 100 years, the X-ray has become as familiar to most people as the dentist's chair. As we move into the next century, greater attention is being placed upon less known but more far-reaching radiation technologies and nuclear applications that today's physicians are able to use for earlier diagnosis and treatment of serious illness. This article, in question-and-answer format, explains the differences between the various types of nuclear applications for human health and looks at the evolution of the IAEA's related activities. (author)

  6. Acoustic leak detection in nuclear power plants

    International Nuclear Information System (INIS)

    McElroy, J.W.

    1986-01-01

    For several years now, utilities have been utilizing acoustic leak detection methods as an operating tool in their nuclear power stations. The purpose for using the leak detection system at the various stations vary from safety, ALARA, improved operations, preventive maintenance, or increased plant availability. This paper describes the various acoustic techniques and their application. The techniques are divided into three categories: specific component leakage, intersystem leakage, and pipe through-wall crack leakage. The paper addresses each category in terms of motivation to monitor, method of application and operation, and benefits to be gained. Current requirements are reviewed and analyzed with respect to the acoustic techniques. The paper shows how acoustic leak detection is one of the most effective leak detection tools available. 9 figures, 1 table

  7. Radiation, ionization, and detection in nuclear medicine

    International Nuclear Information System (INIS)

    Gupta, Tapan K.

    2013-01-01

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

  8. Radiation, ionization, and detection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tapan K. [Radiation Monitoring Devices Research, Nuclear Medicine, Watertown, MA (United States)

    2013-08-01

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

  9. International survey on solid state nuclear track detection

    International Nuclear Information System (INIS)

    Azimi-Garakani, D.; Wernli, C.

    1992-04-01

    The results of the 1990 international survey on solid state nuclear track detection are presented. The survey was performed in collaboration with the International Nuclear Track Society (INTS). These results include the data on principal investigator(s), collaborator(s), institution, field of application(s), material(s), and method(s) of track observation from 28 countries. (author)

  10. Nuclear- and radiochemistry. Vol. 2. Modern applications

    International Nuclear Information System (INIS)

    Roesch, Frank

    2016-01-01

    This work is conceived to meet the demand of state-of-the-art literature to teach the fundamentals as well as the modern applications of nuclear chemistry. The work will consist of two volumes: the first one covering the basics of nuclear chemistry such as the relevant parameters of instable atomic nuclei, the various modi of radioactive transmutations, the corresponding types of radiation including their detection and dosimetry, and finally the mechanisms of nuclear reactions. The second volume addresses relevant fields of nuclear chemistry, such as the chemistry of radioactive elements, application of radioactive nuclei in life sciences, nuclear energy, waste managements and environmental aspects, radiochemical separations, radioanalytical and spectroscopic methods, etc. Here, leading experts will contribute up-to-date knowledge on the most important application of nuclear chemistry.

  11. Fields of nuclear power application

    International Nuclear Information System (INIS)

    Laue, H.J.

    1975-01-01

    The paper deals with nuclear power application in fields different from electricity generation, i.e. district heating, sea water desalination, coal gasification and nuclear splitting of water. (RW) [de

  12. Peaceful applications of nuclear explosions

    International Nuclear Information System (INIS)

    Wallin, L.B.

    1975-12-01

    The intension of this report is to give a survey of the field of peaceful applications of nuclear explosions. As an introduction some examples of possibilities of application are given together with a simple description of nuclear explosions under ground. After a summary of what has been done and will be done in this field nationally and internationally, a short discussion of advantages and problems with peaceful application of nuclear explosions follows. The risks of spreading nuclear weapons due to this applications are also touched before the report is finished with an attempt to judge the future development in this field. (M.S.)

  13. Acoustic valve leak detection in nuclear plants

    International Nuclear Information System (INIS)

    Dimmick, J.G.; Dickey, J.W.

    1983-01-01

    Internal valve leakage is a hidden energy loss and can cause or prolong a forced outage. Recent advances in acoustic detection of internal valve leakage have reduced piping system maintenance costs, unnecessary downtime, and energy waste. Extremely short payback periods have been reported by plants applying this technology to preventive maintenance, troubleshooting, energy conservation and outage planning. Sensors temporarily attached to the outside of valves and connected to the instruments detect ultrasonic acoustic emissions which are characteristic of internal valve leakage. Since the sensors are attached to the outside of the valves, the time and expense of dismantling the valves or removing them from the systems are eliminated. This paper describes the instrumentation and specific applications to nuclear plant valves, including independent verification of initial findings. Guidelines for potential users, including instrumentation selection, training requirements, application planning, and the choice of in-house versus contract services are discussed

  14. US Army Nuclear Burst Detection System (NBDS)

    International Nuclear Information System (INIS)

    Glaser, R.F.

    1980-07-01

    The Nuclear Burst Detection System (NBDS) was developed to meet the Army requirements of an unattended, automatic nuclear burst reporting system. It provides pertinent data for battlefield commanders on a timely basis with high reliability

  15. Nuclear fuel element leak detection system

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1978-01-01

    Disclosed is a leak detection system integral with a wall of a building used to fabricate nuclear fuel elements for detecting radiation leakage from the nuclear fuel elements as the fuel elements exit the building. The leak detecting system comprises a shielded compartment constructed to withstand environmental hazards extending into a similarly constructed building and having sealed doors on both ends along with leak detecting apparatus connected to the compartment. The leak detecting system provides a system for removing a nuclear fuel element from its fabrication building while testing for radiation leaks in the fuel element

  16. Nuclear detection systems in traffic

    International Nuclear Information System (INIS)

    Farkas, T.; Pernicka, L.; Svec, A.

    2005-01-01

    Illicit trafficking in nuclear materials (nuclear criminality) has become a problem, due to the circulation of a high number of radioactive sources caused by the changes of the organisational infrastructures to supervise these material within the successor states of the former Soviet Union. Aim of this paper is to point out the technical requirements and the practicability of an useful monitoring system at preselected traffic check points (railway and highway border crossings, industrial sites entry gates, international airports). The ITRAP lab test was designed to work as strict benchmark to qualify border monitoring systems 67 with very low false alarm rates, in addition the minimum sensitivity to give an alarm has been defined for fix-installed systems, pocket type and hand held instruments. For the neutron tests a special prepared Californium source ( 252 Cf) was used to simulate the weapons plutonium. The source is shielded against gamma radiation, use a moderator and provides the required neutron rate of 20000 n/s at 2 rn distance. To test the false alarm rate (rate of false positive ) the same test facility , under the same background conditions, was used but without a radioactive test source. The ITRAP lab tests for the fix-installed systems started at May 1998 and first results were given in September 1998. Only 2 of 14 fix-installed monitoring systems could fulfil the minimum requirement for neutron detection. 7 of 14 fix-installed monitoring systems (50%) passed the ITRAP lab test. The analytical method developed and used for certification of installed radiation monitors in the Slovak Institute of Metrology consists in measurement of radiation activity of selected radionuclide in defined conditions. (authors)

  17. Nuclear physics principles and applications

    CERN Document Server

    Lilley, J S

    2001-01-01

    This title provides the latest information on nuclear physics. Based on a course entitled Applications of Nuclear Physics. Written from an experimental point of view this text is broadly divided into two parts, firstly a general introduction to Nuclear Physics and secondly its applications.* Includes chapters on practical examples and problems* Contains hints to solving problems which are included in the appendix* Avoids complex and extensive mathematical treatments* A modern approach to nuclear physics, covering the basic theory, but emphasising the many and important applicat

  18. Instrumentation for Nuclear Applications

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this project was to develop and coordinate nuclear instrumentation standards with resulting economies for the nuclear and radiation fields. There was particular emphasis on coordination and management of the Nuclear Instrument Module (NIM) System, U.S. activity involving the CAMAC international standard dataway system, the FASTBUS modular high-speed data acquisition and control system and processing and management of national nuclear instrumentation and detector standards, as well as a modest amount of assistance and consultation services to the Pollutant Characterization and Safety Research Division of the Office of Health and Environmental Research. The principal accomplishments were the development and maintenance of the NIM instrumentation system that is the predominant instrumentation system in the nuclear and radiation fields worldwide, the CAMAC digital interface system in coordination with the ESONE Committee of European Laboratories, the FASTBUS high-speed system and numerous national and international nuclear instrumentation standards

  19. Application of nuclear activation analysis

    International Nuclear Information System (INIS)

    Mamonov, E.I.; Khlystova, A.F.

    1979-01-01

    Consideration is given to the applications of nuclear-activation analysis (NAA) as discussed at the International Conference of 1977. One of the new results in the present-day NAA practices is the growing number of elements detected in samples without using a destructive radiochemical separation. An essential feature in this context is the development of the system automation of control and information NAA operations through the use computers. In biological medicine a multicomponent NAA is employed to determine the concentration of elements in various human organs and objects, in metabolic studies and for diagnostic purposes. In agriculture NAA finds applications in the evaluation of grain protein, analysis of element feed composition, soil and fertilizers. The application of this method to the environmental monitoring is considered with particular reference to the element analysis of water (especially drinking water), air, plant residues. Data are presented for the use of NAA in metallurgy, geology, archaeology and criminal law. Tables are provided to illustrate the uses of NAA in various fields

  20. Application of process monitoring to anomaly detection in nuclear material processing systems via system-centric event interpretation of data from multiple sensors of varying reliability

    International Nuclear Information System (INIS)

    Garcia, Humberto E.; Simpson, Michael F.; Lin, Wen-Chiao; Carlson, Reed B.; Yoo, Tae-Sic

    2017-01-01

    Highlights: • Process monitoring can strengthen nuclear safeguards and material accountancy. • Assessment is conducted at a system-centric level to improve safeguards effectiveness. • Anomaly detection is improved by integrating process and operation relationships. • Decision making is benefited from using sensor and event sequence information. • Formal framework enables optimization of sensor and data processing resources. - Abstract: In this paper, we apply an advanced safeguards approach and associated methods for process monitoring to a hypothetical nuclear material processing system. The assessment regarding the state of the processing facility is conducted at a system-centric level formulated in a hybrid framework. This utilizes architecture for integrating both time- and event-driven data and analysis for decision making. While the time-driven layers of the proposed architecture encompass more traditional process monitoring methods based on time series data and analysis, the event-driven layers encompass operation monitoring methods based on discrete event data and analysis. By integrating process- and operation-related information and methodologies within a unified framework, the task of anomaly detection is greatly improved. This is because decision-making can benefit from not only known time-series relationships among measured signals but also from known event sequence relationships among generated events. This available knowledge at both time series and discrete event layers can then be effectively used to synthesize observation solutions that optimally balance sensor and data processing requirements. The application of the proposed approach is then implemented on an illustrative monitored system based on pyroprocessing and results are discussed.

  1. Forensic and archaeological applications of neutron activation analysis. Part of a coordinated programme on nuclear detection and analysis

    International Nuclear Information System (INIS)

    Sankar Das, M.

    1977-11-01

    The work carried out can be categorized as follows: setting up and standardization of the instrumental multielement analysis facility, for which a system manual is attached; forensic applications which have included the examination of firearm discharge residues around holes suspected to have been caused by the passage of a bullet, and the trace element characterization of biological (hair) and non-biological (transmission wires) materials; archaeological applications involving the study of potsherds from sites along the Stulej river in India; analysis of IAEA intercomparison samples, for which the results are tabulated; and methods for data evaluation

  2. Nuclear applications in life sciences

    International Nuclear Information System (INIS)

    Uenak, P.

    2009-01-01

    Radioactivity has revolutionized life sciences during the last century, and it is still an indispensable tool. Nuclear Medicine, Radiation Biology and Radiotherapy, Dosimetry and Medical Radiation Physics, Nutrition and Environmental Problems Relevant Health are significant application fields of Nuclear Sciences. Nuclear medicine today is a well established branch of medicine. Radionuclides and radiopharmaceuticals play a key role both in diagnostic investigations and therapy-Both cyclotron and reactor produced radionuclides find application, the former more in diagnostic studies and the latter in therapy. New therapy applications such as bor neutron therapy are increasing by time together with the technological improvements in imaging systems such as PET and SPECT. Radionuclides and radiopharmaceuticals play important role in both therapy and imaging. However cyclotron produced radionuclides have been using generally in imaging purposes while reactor produced radionuclides have also therapeutic applications. With the advent of emission tomography, new vistas for probing biochemistry in vivo have been opened. The radio chemist faces an ever-increasing challenge of designing new tracers for diagnostic and therapeutic applications. Rapid, efficient and automated methods of radionuclide and precursor production, labeling of biomolecules, and quality control need to be developed. The purpose of this article is a short interface from Nuclear Medicine, Radiation Biology and Radiotherapy, Dosimetry and Medical Radiation Physics Applications of Nuclear Sciences.

  3. Industrial applications of nuclear technology

    International Nuclear Information System (INIS)

    Vargas, Celso

    2010-01-01

    Industrial applications of nuclear technology have been very diverse worldwide. This type of technology has begun to introduce in Costa Rica to evaluate and improve different industrial processes. These applications have been classified into two or three categories, according to the criteria used. Nucleonic control systems, the gamma logging and radiotracers are determined. (author) [es

  4. Sensitive change detection for remote sensing monitoring of nuclear treaties

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg; Schlittenhardt, Jörg

    2005-01-01

    change is a commonplace application in remote sensing, the detection of anthropogenic changes associated with nuclear activities, whether declared or clandestine, presents a difficult challenge. It is necessary to discriminate subtle, often weak signals of interest on a background of irrelevant...... in multispectral, bitemporal image data: New approaches to change detection studies, Remote Sens. Environ. 64(1), 1998, pp. 1--19. Nielsen, A. A., Iteratively re-weighted multivariate alteration detection in multi- and hyperspectral data, to be published....

  5. Nuclear radiation detection by a variband semiconductor

    International Nuclear Information System (INIS)

    Volkov, A.S.

    1981-01-01

    Possibilities of using a variband semiconductor for detecting nuclear radiations are considered. It is shown that the variaband quasielectric field effectively collects charges induced by a nuclear particle only at a small mean free path in the semiconductor (up to 100 μm), the luminescence spectrum of the variband semiconductor when a nuclear particle gets into it, in principle, permits to determine both the energy and mean free path in the semiconductor (even at large mean free paths) [ru

  6. Thermoset plastics for the nuclear track detection

    International Nuclear Information System (INIS)

    Fujii, M.

    1984-01-01

    Characteristics of thermoset plastics for the nuclear track detection have been studied. Some of the samples show good etching properties and will be useful for observations of super heavy primaries. (author)

  7. Industrial Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides a detailed overview of the potential use of nuclear energy for industrial systems and/or processes which have a strong demand for process heat/steam and power, and on the mapping of nuclear power reactors proposed for various industrial applications. It describes the technical concepts for combined nuclear-industrial complexes that are being pursued in various Member States, and presents the concepts that were developed in the past to be applied in connection with some major industries. It also provides an analysis of the energy demand in various industries and outlines the potential that nuclear energy may have in major industrial applications such as process steam for oil recovery and refineries, hydrogen generation, and steel and aluminium production. The audience for this publication includes academia, industry, and government agencies.

  8. Electronic detection of nuclear radiations

    International Nuclear Information System (INIS)

    Campos, J.

    1972-01-01

    This report is the first draft of one of the chapters of a book being prepared under the title: Topics on Practical Nuclear Physics. It is published as a report because of i ts immediate educational value and in order to include in its final draft the suggestions of the readers. (Author)

  9. Steel for nuclear applications

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.

    1978-01-01

    A steel contains, in percent by weight, the following constituents: carbon from 0.13 to 0.18, silicon from 0.17 to 0.37, manganese from 0.30 to 0.60, chromium from 1.7 to 2.4, nickel from 1.0 to 1.5, molybdenum from 0.5 to 0.7, vanadium from 0.05 to 0.12, aluminium from 0.01 to 0.035, nitrogen from 0.05 to 0.012, copper from 0.11 to 0.20, arsenic from 0.0035 to 0.0055, iron and impurities, the balance. This steel is preferable for use in the manufacture of nuclear reactors. 1 table

  10. Principles of nuclear radiation detection

    International Nuclear Information System (INIS)

    Eichholz, G.G.; Poston, J.W.

    1985-01-01

    This book covers the transistorization of equipment and provides an introduction into practice of semiconductor and thermoluminescent detectors. It discusses the principles of radiation detectors most widely used in nuclear technology, medical practice and radiation protection. It stresses the alternative detectors available and discusses practical considerations in choosing and setting up detector systems for actual use. Traditional materials, including semiconductors, TLD's and modern data handling facilities are covered

  11. Better to detect nuclear explosions

    International Nuclear Information System (INIS)

    North, Bob

    1987-01-01

    In a 150 km 2 reserve just west of Yellowknife in the Northwest Territories, three GSC employees operate one of the most sensitive seismic arrays in existence for locating ground movement around the world. The array station is staffed year round despite the harsh climate. Since 1963 the Yellowknife seismic array has contributed data which will significantly aid international efforts to achieve a nuclear test ban treaty

  12. Technologies for detection of nuclear materials

    International Nuclear Information System (INIS)

    DeVolpi, A.

    1996-01-01

    Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling

  13. Metabonomics for detection of nuclear materials processing.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; Luxon, Bruce A. (University Texas Medical Branch); Neerathilingam, Muniasamy (University Texas Medical Branch); Ansari, S. (University Texas Medical Branch); Volk, David (University Texas Medical Branch); Sarkar, S. (University Texas Medical Branch); Alam, Mary Kathleen

    2010-08-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  14. Metabonomics for detection of nuclear materials processing

    International Nuclear Information System (INIS)

    Alam, Todd Michael; Luxon, Bruce A.; Neerathilingam, Muniasamy; Ansari, S.; Volk, David; Sarkar, S.; Alam, Mary Kathleen

    2010-01-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  15. IAEA nuclear databases for applications

    International Nuclear Information System (INIS)

    Schwerer, Otto

    2003-01-01

    The Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA) provides nuclear data services to scientists on a worldwide scale with particular emphasis on developing countries. More than 100 data libraries are made available cost-free by Internet, CD-ROM and other media. These databases are used for practically all areas of nuclear applications as well as basic research. An overview is given of the most important nuclear reaction and nuclear structure databases, such as EXFOR, CINDA, ENDF, NSR, ENSDF, NUDAT, and of selected special purpose libraries such as FENDL, RIPL, RNAL, the IAEA Photonuclear Data Library, and the IAEA charged-particle cross section database for medical radioisotope production. The NDS also coordinates two international nuclear data centre networks and is involved in data development activities (to create new or improve existing data libraries when the available data are inadequate) and in technology transfer to developing countries, e.g. through the installation and support of the mirror web site of the IAEA Nuclear Data Services at IPEN (operational since March 2000) and by organizing nuclear-data related workshops. By encouraging their participation in IAEA Co-ordinated Research Projects and also by compiling their experimental results in databases such as EXFOR, the NDS helps to make developing countries' contributions to nuclear science visible and conveniently available. The web address of the IAEA Nuclear Data Services is http://www.nds.iaea.org and the NDS mirror service at IPEN (Brasil) can be accessed at http://www.nds.ipen.br/ (author)

  16. Active neutron technique for detecting attempted special nuclear material diversion

    International Nuclear Information System (INIS)

    Smith, G.W.; Rice, L.G. III.

    1979-01-01

    The identification of special nuclear material (SNM) diversion is necessary if SNM inventory control is to be maintained at nuclear facilities. (Special nuclear materials are defined for this purpose as either 235 U of 239 Pu.) Direct SNM identification by the detection of natural decay or fission radiation is inadequate if the SNM is concealed by appropriate shielding. The active neutron interrogation technique described combines direct SNM identification by delayed fission neutron (DFN) detection with implied SNM detection by the identification of materials capable of shielding SNM from direct detection. This technique is being developed for application in an unattended material/equipment portal through which items such as electronic instruments, packages, tool boxes, etc., will pass. The volume of this portal will be 41-cm wide, 53-cm high and 76-cm deep. The objective of this technique is to identify an attempted diversion of at least 20 grams of SNM with a measurement time of 30 seconds

  17. Passive nuclear material detection in a personnel portal

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Eaton, M.J.

    1979-01-01

    The concepts employed in the development of gamma-ray and neutron detection systems for a special nuclear materials booth portal monitor are described. The portal is designed for unattended use in detecting diversion by a technically sophisticated adversary and has possible application to International Atomic Energy Agency safeguards of a fast critical assembly facility. Preliminary evaluation results are given and plans for further parameter studies are noted

  18. Proceedings of the national conference on nuclear applications, hazards and safety measures

    International Nuclear Information System (INIS)

    2012-01-01

    The conference focuses on nuclear power plants in India, particle accelerators, environmental radiation and detection, nuclear accidents, nuclear disaster management, nuclear energy applications, nuclear medicine, social and economic impact of nuclear energy, bioleaching of radioactive ores, high energy particles physics etc. Papers relevant to INIS are indexed separately

  19. Passive detection of nuclear-armed SLCMs

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Prilutsky, O.F.; Frolov, V.A.

    1992-01-01

    Effective procedures have been developed, using national technical measures (photoreconnaissance satellites, radiointercept stations, etc.), for verification of reductions in land-based intercontinental ballistic missiles, such as marine-based ballistic missiles, and strategic bombers. However, there is agreement on procedures for verifying limitations of numbers of long-range nuclear-armed cruise missiles. The difficulties in developing such procedures are sometimes regarded (by opponents of nuclear disarmament) as a reason why cruise missiles based on ships and submarines ought not to be limited by future arms-reduction treaties. This paper considers the detectability of nuclear-armed cruise missiles through the penetrating radiation emitted spontaneously from their warheads

  20. Force detection of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Rugar, D.; Zueger, O.; Hoen, S.; Yannoni, C.S.; Vieth, H.M.; Kendrick, R.D.

    1994-01-01

    Micromechanical sensing of magnetic force was used to detect nuclear magnetic resonance with exceptional sensitivity and spatial resolution. With a 900 angstrom thick silicon nitride cantilever capable of detecting subfemtonewton forces, a single shot sensitivity of 1.6 x 10 13 protons was achieved for an ammonium nitrate sample mounted on the cantilever. A nearby millimeter-size iron particle produced a 600 tesla per meter magnetic field gradient, resulting in a spatial resolution of 2.6 micrometers in one dimension. These results suggest that magnetic force sensing is a viable approach for enhancing the sensitivity and spatial resolution of nuclear magnetic resonance microimaging

  1. Landmine detection by nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, R M [Reactor Physics Department, Nuclear Research Centre, Atomic Energy Authority, Cairo (Egypt)

    2000-11-15

    According to the information given by recent published data , more than 150 million land mines are buried in more than 70 countries, among them is Egypt . In Egypt, more than 23 million land mines lie buried in the northern parts of the western desert and western parts of Sinai . These mines are triggered accidentally by civilian activities, ravaging the land and killing or maiming a lot of innocent civilian people . For humanitarian demining , the removal of land mines already in the ground is very difficult and quite costly. In addition, detecting minimum metal antipersonnel mines and distinguishing them from the metallic debris of a minefields is difficult with current available detectors.

  2. Landmine detection by nuclear techniques

    International Nuclear Information System (INIS)

    Megahid, R.M.

    2000-01-01

    According to the information given by recent published data , more than 150 million land mines are buried in more than 70 countries, among them is Egypt . In Egypt, more than 23 million land mines lie buried in the northern parts of the western desert and western parts of Sinai . These mines are triggered accidentally by civilian activities, ravaging the land and killing or maiming a lot of innocent civilian people . For humanitarian demining , the removal of land mines already in the ground is very difficult and quite costly. In addition, detecting minimum metal antipersonnel mines and distinguishing them from the metallic debris of a minefields is difficult with current available detectors

  3. Applications of nuclear energy in future

    International Nuclear Information System (INIS)

    Sitek, J.; Necas, V.

    2012-01-01

    Concepts and international frames of generation IV nuclear reactors. A review of use of nuclear energy for non electric applications especially in areas such as seawater desalination, hydrogen production, district heating and other industrial applications. (Author)

  4. Nuclear detectors: principles and applications

    International Nuclear Information System (INIS)

    Belhadj, Marouane

    1999-01-01

    Nuclear technology is a vast domain. It has several applications, for instance in hydrology, it is used in the analysis of underground water, dating by carbon 14, Our study consists on representing the nuclear detectors based on their principle of functioning and their electronic constitution. However, because of some technical problems, we have not made a deepen study on their applications that could certainly have a big support on our subject. In spite of the existence of an equipment of high performance and technology in the centre, it remains to resolve the problem of control of instruments. Therefore, the calibration of these equipment remains the best guaranteed of a good quality of the counting. Besides, it allows us to approach the influence of the external and internal parameters on the equipment and the reasons of errors of measurements, to introduce equivalent corrections. (author). 22 refs

  5. New challenges in nuclear material detection

    International Nuclear Information System (INIS)

    Dunlop, W.; Sale, K.; Dougan, A.; Luke, J.; Suski, N.

    2002-01-01

    Full text: Even before the attacks of September 11, 2001 the International Safeguards community recognized the magnitude of the threat posed by illicit trafficking of nuclear materials and the need for enhanced physical protection. For the first time, separate sessions on illicit trafficking and physical protection of nuclear materials were included in the IAEA Safeguards Symposium. In the aftermath of September 11, it is clear that the magnitude of the problem and the urgency with which it must be addressed will be a significant driver for advanced nuclear materials detection technologies for years to come. Trafficking in nuclear material and other radioactive sources is a global concern. According to the IAEA Illicit Trafficking Database Program, there have been confirmed cases in more than 40 countries and the number of cases per year have nearly doubled since 1996. The challenge of combating nuclear terrorism also brings with it many opportunities for the development of new tools and new approaches. In addition to the traditional gamma-ray imaging, spectrometry and neutron interrogation, there is a need for smaller, smarter, more energy-efficient sensors and sensor systems for detecting and tracking threats. These systems go by many names - correlated sensor networks, wide-area tracking systems, sensor or network fabrics - but the concept behind them is the same. Take a number of wireless sensors and tie them together with a communications network, develop a scheme for fusing the data and make the system easy to deploy. This paper will present a brief survey of nuclear materials detection capability, and discuss some advances in research and development that are particularly suited for illicit trafficking, detection of shielded highly enriched uranium, and border security. (author)

  6. Nuclear radiation application to nanotechnology

    International Nuclear Information System (INIS)

    Chakarvarti, S.K.

    2012-01-01

    Out of the numerous uses and applications of nuclear radiation, in particular heavy ions, the interaction of radiation with materials have culminated into a gamut of fine tools and technologies for taming the synergetic potential of the interaction. One such field of the immense importance is nanotechnology through nuclear radiation via use of ion-crafted polymeric membranes- so called 'Template Synthesis'. This talk will be addressed to the users of membranes - organic (polymeric) in general, formed through irradiation of polymeric foils with heavy and energetic ions followed by chemical processing leading finally to what is known as 'Track Etch Membranes (TEMs)', and present the review of the innovative uses of these membranes from filtration to electro-kinetic based applications and nano-/micro fabrication of devices- the potent aspect of emerging technologies. The emphasis would be on the dependence of useful and novel usages including applications in nano devices' fabrication. A membrane, with its most comprehensive and clear definition, is an intervening phase separating two phases and/or acting as an active or passive barrier to the transport of matter between phases. The very existence of a membrane relies upon the functionality domain of the pores contained therein. The geometrical traits and morphology of the pore ensembles dictate the applications, which any membrane can serve to. There are variety of membranes being developed and used in myriad of applications in diverse fields of science and technology. The range of commercially available membrane materials is quiet diverse and varies widely in terms of composition, and physical structure. The creation of pores, whether through natural self-assembling phenomenon or man-made processes, might itself be an issue of interest but these are the pore-traits which are fundamentally more important, whether the membrane is being used for sieving-one of the ever most important applications the mankind has been

  7. Computer applications in nuclear medicine

    International Nuclear Information System (INIS)

    Lancaster, J.L.; Lasher, J.C.; Blumhardt, R.

    1987-01-01

    Digital computers were introduced to nuclear medicine research as an imaging modality in the mid-1960s. Widespread use of imaging computers (scintigraphic computers) was not seen in nuclear medicine clinics until the mid-1970s. For the user, the ability to acquire scintigraphic images into the computer for quantitative purposes, with accurate selection of regions of interest (ROIs), promised almost endless computational capabilities. Investigators quickly developed many new methods for quantitating the distribution patterns of radiopharmaceuticals within the body both spatially and temporally. The computer was used to acquire data on practically every organ that could be imaged by means of gamma cameras or rectilinear scanners. Methods of image processing borrowed from other disciplines were applied to scintigraphic computer images in an attempt to improve image quality. Image processing in nuclear medicine has evolved into a relatively extensive set of tasks that can be called on by the user to provide additional clinical information rather than to improve image quality. Digital computers are utilized in nuclear medicine departments for nonimaging applications also, Patient scheduling, archiving, radiopharmaceutical inventory, radioimmunoassay (RIA), and health physics are just a few of the areas in which the digital computer has proven helpful. The computer is useful in any area in which a large quantity of data needs to be accurately managed, especially over a long period of time

  8. Nuclear data for medical applications

    International Nuclear Information System (INIS)

    Capote, Roberto

    2011-01-01

    Nuclear science plays an increasingly important role in medical applications, in particular the need for radioisotopes in both cancer therapy and diagnostic techniques is very well established. Over the previous thirty years, many laboratories have reported a significant body of experimental data relevant to medical radionuclide production, and international data centres have compiled most of these data. However, till late 90s no systematic effort had been devoted to their standardization and assembly. These needs are being addressed through three IAEA Coordinated Research Projects on Nuclear Data for the Production of Radionuclides that started in 1999. Monitor cross sections to be used in charged particle measurements have been also evaluated (see http://www-nds.iaea.org/medical/monitor reactions.html). A review of IAEA recommended cross sections for the production of medical radioisotopes will be presented. Theoretical modelling of nuclear reactions will be discussed both for nuclear data evaluation and validation. The role of the Recommended Input Parameter Library (RIPL) in defining the input for production codes like EMPIRE and TALYS will be highlighted. (author)

  9. Origin, characteristics and detection of nuclear radiation

    International Nuclear Information System (INIS)

    Goettel, K.

    1975-06-01

    The report is an introduction into the physical principles of radiation protection. After a brief summary of the most significant experimental results and data on the atomic structure of the matter and after explaining the principles of atomic and nuclear structure, radioactive decay and its laws are dealt with. This is followed by a representation of the characteristics of nuclear radiation, its interaction with the matter as well as the biological effects. After a description of the measurement units for radioactivity and doses the most inportant methods for radiation detection and the principles of how detectors function are explained. (ORU/LN) [de

  10. Detection of stable isotopes with a (n,. cap alpha. ) nuclear reaction: application to the measurement of unidirectional fluxes of borate in a plant

    Energy Technology Data Exchange (ETDEWEB)

    Duval, Y; Thellier, M; Heurteaux, C; Wissocq, J C [Centre National de la Recherche Scientifique, Mont-Saint-Aignan (France). Lab. ' ' Echanges cellulaires' '

    1980-01-01

    The unidirectional influx of borate has been studied in Lemna minor plants with the aid of purified boron isotopes, /sup 10/B and /sup 11/B. Isotope /sup 10/B was detected specifically by nuclear reaction /sup 10/B(n, ..cap alpha..)/sup 7/Li in the presence of ''homogeneous'' detectors. Despite technical difficulties in performing the /sup 10/B-estimations in the plant samples themselves, the results obtained here were consistent with those of efflux experiments, published previously, where the /sup 10/B-measurements were performed in the external solution. Kinetic parameters of borate transports in Lemna minor have been calculated.

  11. Detection of stable isotopes with a (n, α) nuclear reaction: application to the measurement of unidirectional fluxes of borate in a plant

    International Nuclear Information System (INIS)

    Duval, Y.; Thellier, M.; Heurteaux, C.; Wissocq, J.C.

    1980-01-01

    The unidirectional influx of borate has been studied in Lemna minor plants with the aid of purified boron isotopes, 10 B and 11 B. Isotope 10 B was detected specifically by nuclear reaction 10 B(n, α) 7 Li in the presence of ''homogeneous'' detectors. Despite technical difficulties in performing the 10 B-estimations in the plant samples themselves, the results obtained here were consistent with those of efflux experiments, published previously, where the 10 B-measurements were performed in the external solution. Kinetic parameters of borate transports in Lemna minor have been calculated. (author)

  12. Results of solid state nuclear track detector technique application in radon detection, by alpha particles tracks, for uranium prospecting in Caetite (BA-Brazil)

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Khouri, M.T.F.C.

    1988-11-01

    The solid state nuclear track detector technique has been used in radon detection, by alpha particles tracks for uranium prospecting on the ground in Caetite city (Bahia-Brazil). The sensitive film to alpha particles used were CA 8015 exposed during 15 days and the results of three anomalies of this region are showed in a form of maps, made with the density of tracks obtained, and were compared with scintillation counter measurements. The technique showed to be simple and an effective auxiliary for the prospection of uranium ore bodies. The initial uranium exploration costs can be reduced by using this technique. (author) [pt

  13. Laser applications in nuclear physics

    International Nuclear Information System (INIS)

    Murnick, D.E.

    1985-01-01

    A large fraction of the International Workshop on Hyperfine Interactions was devoted to various aspects of 'laser applications in nuclear physics'. This panel discussion took place before all of the relevant formal presentations on the subject were complete. Nevertheless, there had been sufficient discussions for the significance of this emerging area of hyperfine interaction research to be made clear. An attempt was made to identify critical and controversial aspects of the subject in order to critically evaluate past successes and indicate important future directions of research. Each of the panelists made a short statement on one phase of laser-nuclear physics research, which was followed by general discussions with the other panelists and the audience. In this report, a few areas which were not covered in the formal presentations are summarized: extensions of laser spectroscopy to shorter lifetimes; extension of laser techniques to nuclei far off stability; interpretation of laser spectroscopic data; sensitivity and spectral resolution; polarized beams and targets. (Auth.)

  14. Nuclear data applications in developing countries

    International Nuclear Information System (INIS)

    Mehta, M.K.; Schmidt, J.J.

    1985-01-01

    The peaceful applications of nuclear science and technology currently receive an increasing attention in many developing countries. More than 15 developing countries operate, construct or plan nuclear power reactors, 70 developing countries are using or planning to use nuclear techniques in medicine, agriculture, industry, and for other vital purposes. The generation, application and computer processing of nuclear data constitute important elements of the nuclear infrastructure needed for the successful implementation of nuclear science and technology. Developing countries become increasingly aware of this need, and, with the help and cooperation of the IAEA Nuclear Data Section, are steadily gaining in experience in this field. The paper illustrates this development in typical examples. (orig.)

  15. Robust techniques for polarization and detection of nuclear spin ensembles

    Science.gov (United States)

    Scheuer, Jochen; Schwartz, Ilai; Müller, Samuel; Chen, Qiong; Dhand, Ish; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2017-11-01

    Highly sensitive nuclear spin detection is crucial in many scientific areas including nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), and quantum computing. The tiny thermal nuclear spin polarization represents a major obstacle towards this goal which may be overcome by dynamic nuclear spin polarization (DNP) methods. The latter often rely on the transfer of the thermally polarized electron spins to nearby nuclear spins, which is limited by the Boltzmann distribution of the former. Here we utilize microwave dressed states to transfer the high (>92 % ) nonequilibrium electron spin polarization of a single nitrogen-vacancy center (NV) induced by short laser pulses to the surrounding 13C carbon nuclear spins. The NV is repeatedly repolarized optically, thus providing an effectively infinite polarization reservoir. A saturation of the polarization of the nearby nuclear spins is achieved, which is confirmed by the decay of the polarization transfer signal and shows an excellent agreement with theoretical simulations. Hereby we introduce the polarization readout by polarization inversion method as a quantitative magnetization measure of the nuclear spin bath, which allows us to observe by ensemble averaging macroscopically hidden polarization dynamics like Landau-Zener-Stückelberg oscillations. Moreover, we show that using the integrated solid effect both for single- and double-quantum transitions nuclear spin polarization can be achieved even when the static magnetic field is not aligned along the NV's crystal axis. This opens a path for the application of our DNP technique to spins in and outside of nanodiamonds, enabling their application as MRI tracers. Furthermore, the methods reported here can be applied to other solid state systems where a central electron spin is coupled to a nuclear spin bath, e.g., phosphor donors in silicon and color centers in silicon carbide.

  16. Study of hydrogenated amorphous silicon devices under intense electric field: application to nuclear detection; Etude de dispositifs electroniques en silicium amorphe hydrogene sous fort champ electrique: application a la detection nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Ilie, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Technologies Avancees]|[Paris-11 Univ., 91 - Orsay (France)

    1996-12-31

    The goal of this work was the study, development and optimization of hydrogenated amorphous silicon (a-Si:H) devices for use in detection of ionizing radiation. Thick p-i-n devices, capable of withstanding large electric fields (up to 10{sup 6} V/cm) with small currents (nA/cm{sup 2}), were developed. To decrease fabrication time, films were made using the `He diluted` PECVD process and compared to standard a-Si:H films. Aspects connected to specific detector applications as well as to the fundamental physics of a-Si:H were considered: the internal electric field technique, in which the depletion charge was measured as a function of the applied bias voltage; study of the leakage current of p-i-n devices permitted us to demonstrate different regimes: depletion, field-enhanced thermal generation and electronic injection across the p layer. The effect of the electric field on the thermal generation of the carriers was studied considering the Poole-Frenkel and tunneling mechanisms. A model was developed taking under consideration the statistics of the correlated states and electron-phonon coupling. The results suggest that mechanisms not included in the `standard model` of a Si:h need to be considered, such as defect relaxation, a filed-dependent mobility edge etc...; a new metastable phenomenon, induced by prolonged exposure to a strong electric field, was observed and studied. It is characterized by marked decrease of the leakage current and the detector noise, and increase in the breakdown voltage, as well as an improvement of carrier collection efficiency. This forming process appears to be principally due to an activation of the dopants in the p layer; finally, the capacity of thick p-i-n a Si:H devices to detect ionizing radiation has been evaluated. We show that it is possible, with 20-50 micron thick p-i-n devices, to detect the full spectrum of alpha and beta particles. With an appropriate converter, neutron detection then becomes possible. (author). 137 refs.

  17. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    Science.gov (United States)

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Application of accelerator mass spectrometry in nuclear science

    International Nuclear Information System (INIS)

    Wang Xiaobo; Hu Jinjun; Wang Huijuan; Guan Yongjing; Wang Wei

    2013-01-01

    Accelerator mass spectrometry (AMS) is a promising method to provide extreme sensitivity measurements of the production yields of long-lived radioisotopes, which cannot be detected by other methods. AMS technique plays an important role in the research of nuclear physics, as well as the application field of AMS covered nuclear science and technology, life science, earth science, environmental science, archaeology etc. The newest AMS field is that of actinide, particularly U and Pu, isotopic assay with expanding applications in nuclear safeguards and monitoring, and as a modern bomb-fallout tracer for atmospheric transport and surface sediment movement. This paper reviews the applications of AMS in the research of nuclear energy and nuclear security including the research of half life of radionuclides, cross section of nuclear reaction. (authors)

  19. Application of robotics in nuclear facilities

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.

    1986-01-01

    Industrial robots and other robotic systems have been successfully applied at the Savannah River nuclear site. These applications, new robotic systems presently under development, general techniques for the employment of robots in nuclear facilities, and future systems are discussed

  20. Parallel processing in nuclear applications

    International Nuclear Information System (INIS)

    Muniz, Francisco Junqueira

    1995-01-01

    This paper summarizes some investigations on effective and scalable dynamic load-balancing mechanisms suitable for distributed-memory (loosely-coupled) MIMD systems. The selected implementation environment is composed of T800 transputers programed in the occam and C languages and an automatic routing package communication software mechanism (the virtual channel router). Tasks were generated, at execution time, using a multiple-spawning mechanism based on a set of remote procedure calls primitives. The objective is to improve maximum resource utilization. In particular, the investigation described here facilitate portability of the user application, since it concentrates on system-level load balancing mechanisms. The load-balancing mechanisms studies are also suitable for systems that can vary in size, concentrating on methods with potential for scalability. Two possible application examples, chosen from the nuclear area, where distributed-memory MIMD machines can be utilized, are mentioned. (author). 24 refs., 1 fig

  1. Mapping air pollution. Application of nuclear techniques

    International Nuclear Information System (INIS)

    Parr, R.M.; Stone, S.F.; Zeisler, R.

    1996-01-01

    Nuclear techniques have important applications in the study of air pollution and many of its components. However, it is in the study of airborne particulate matter (APM) that nuclear analytical techniques find many of their most important applications. This article focuses on those applications, and on the work of the IAEA in this important field of study. 2 figs

  2. Experience and Prospects of Nuclear Heat Application

    International Nuclear Information System (INIS)

    Woite, G.; Konishi, T.; Kupitz, J.

    1998-01-01

    Relevant technical characteristics of nuclear reactors and heat application facilities for district heating, process heat and seawater desalination are presented and discussed. The necessity of matching the characteristics of reactors and heat applications has consequences for their technical and economic viability. The world-wide operating experience with nuclear district heating, process heating, process heat and seawater desalination is summarised and the prospects for these nuclear heat applications are discussed. (author)

  3. Some applications of radioactivity and of nuclear reactions

    International Nuclear Information System (INIS)

    2007-01-01

    This document presents various applications of radioactivity. It first addresses the medical field with applications in imagery (principles, used compounds, positron emission tomography, tumour detection, study of brain operation), applications in therapy (biological effects of radiations, principles of radiotherapy, struggle against cancer, notably by proton therapy), and applications in sterilisation and microbiological decontamination of instruments and medical products. It evokes applications in agriculture (irradiation of fruits and vegetables, vegetable conservation), in industry (production of new and stronger materials by irradiation, analysis by activation, thickness, density or homogeneity gauges), in arts (analysis of statues, use of gamma-graphy on dense objects, decontamination by irradiation), and in science (carbon 14 dating). It presents nuclear fission and ways to control it, recalls the main scientific discoveries and their consequences. It describes energy production based on nuclear fission (description of nuclear reactor core, of waste processing), and on nuclear fusion (principle, Tokamak examples with JET and ITER, brief presentation of laser fusion)

  4. Applications of nuclear data science

    International Nuclear Information System (INIS)

    Jyrwa, B.

    2015-01-01

    The field of nuclear data has always been at the cutting edge technology since the beginning of nuclear era. Therefore it is a thrust area in the department of atomic energy in our country. It had been observed that even after 60 years of nuclear energy, nuclear data have not been well defined. The reason is not far to seek, it is mainly because nuclear energy has been introduced to mankind without adequate knowledge of nuclear data. Historically, reactor physics designer never used uncertainty information in basic data directly in algorithms in the calculations. Therefore nuclear data covariances is one of the challenges in Basic Nuclear Data Physics, reactor design and plant optimization for Indian Nuclear Industry. The importance of nuclear data for sustainable nuclear energy should be given the top priority

  5. Industrial application of nuclear techniques in Australia

    International Nuclear Information System (INIS)

    Easey, J.F.

    1981-01-01

    The applications of nuclear techniques in Australia was reviewed - the work has been to aid: mining and mineral sector, the manufacturing, chemical and petroleum industries, hydrology and sedimentology

  6. Radiation Detection for Homeland Security Applications

    Science.gov (United States)

    Ely, James

    2008-05-01

    In the past twenty years or so, there have been significant changes in the strategy and applications for homeland security. Recently there have been significant at deterring and interdicting terrorists and associated organizations. This is a shift in the normal paradigm of deterrence and surveillance of a nation and the `conventional' methods of warfare to the `unconventional' means that terrorist organizations resort to. With that shift comes the responsibility to monitor international borders for weapons of mass destruction, including radiological weapons. As a result, countries around the world are deploying radiation detection instrumentation to interdict the illegal shipment of radioactive material crossing international borders. These efforts include deployments at land, rail, air, and sea ports of entry in the US and in European and Asian countries. Radioactive signatures of concern include radiation dispersal devices (RDD), nuclear warheads, and special nuclear material (SNM). Radiation portal monitors (RPMs) are used as the main screening tool for vehicles and cargo at borders, supplemented by handheld detectors, personal radiation detectors, and x-ray imaging systems. This talk will present an overview of radiation detection equipment with emphasis on radiation portal monitors. In the US, the deployment of radiation detection equipment is being coordinated by the Domestic Nuclear Detection Office within the Department of Homeland Security, and a brief summary of the program will be covered. Challenges with current generation systems will be discussed as well as areas of investigation and opportunities for improvements. The next generation of radiation portal monitors is being produced under the Advanced Spectroscopic Portal program and will be available for deployment in the near future. Additional technologies, from commercially available to experimental, that provide additional information for radiation screening, such as density imaging equipment, will

  7. Nuclear battery materials and application of nuclear batteries

    International Nuclear Information System (INIS)

    Hao Shaochang; Lu Zhenming; Fu Xiaoming; Liang Tongxiang

    2006-01-01

    Nuclear battery has lots of advantages such as small volume, longevity, environal stability and so on, therefore, it was widely used in aerospace, deep-sea, polar region, heart pacemaker, micro-electromotor and other fields etc. The application of nuclear battery and the development of its materials promote each other. In this paper the development and the latest research progress of nuclear battery materials has been introduced from the view of radioisotope, electric energy conversion and encapsulation. And the current and potential applications of the nuclear battery are also summarized. (authors)

  8. Nuclear Medicine and Application of Nuclear Techniques in Medicine

    International Nuclear Information System (INIS)

    Wiharto, Kunto

    1996-01-01

    The use of nuclear techniques medicine covers not only nuclear medicine and radiology in strict sense but also determination of body mineral content by neutron activation analysis and x-ray fluorescence technique either in vitro or in vivo, application of radioisotopes as tracers in pharmacology and biochemistry, etc. This paper describes the ideal tracer in nuclear medicine, functional and morphological imaging, clinical aspect and radiation protection in nuclear medicine. Nuclear technique offers facilities and chances related to research activities and services in medicine. The development of diagnostic as well as therapeutic methods using monoclonal antibodies labeled with radioisotope will undoubtedly play an important role in the disease control

  9. Wide-area monitoring to detect undeclared nuclear facilities

    International Nuclear Information System (INIS)

    Wogman, N.

    1994-09-01

    The International Atomic Energy Agency (IAEA) is committed to strengthening and streamlining the overall effectiveness of the IAEA safeguards system. The IAEA is investigating the use of environmental monitoring techniques to strengthen its capability to detect undeclared nuclear activities. The IAEA's Program 93+2 Initiative has been established to develop, test, and assess strengthening techniques and measures. Some of the techniques have been validated and are being implemented during routine safeguards inspections. The effectiveness of other techniques is being studied as a part of extensive field trials conducted at nuclear facilities of various Member States during 1993 and 1994. Proposals based on the results of these investigations and recommendations for new safeguards activities are expected to be presented to the March 1995 Board of Governors Meeting. The techniques in use or under study during IAEA field trials address various types of environmental monitoring applications as outlined under Program 93+2's Task 3, Environmental Monitoring Techniques for Safeguards Applications, namely, the use of short-range monitoring during inspections and visits to investigate sites of possible undeclared activities. With the exception of wide-area water sampling in Iraq, the use of long-range monitoring, in the absence of any indication of undeclared nuclear activities, remains largely unexamined by the IAEA. The efficacy of long-range monitoring depends on the availability of mobile signature isotopes or compounds and on the ability to distinguish the nuclear signatures from background signals and attributing them to a source. The scope of this paper is to provide technical information to the International Atomic Energy Agency (IAEA) on possible wide-area survey techniques for the detection of undeclared nuclear activities. The primary focus is the detection of effluents from reprocessing activities

  10. Applications of computational intelligence in nuclear reactors

    International Nuclear Information System (INIS)

    Jayalal, M.L.; Jehadeesan, R.

    2016-01-01

    Computational intelligence techniques have been successfully employed in a wide range of applications which include the domains of medical, bioinformatics, electronics, communications and business. There has been progress in applying of computational intelligence in the nuclear reactor domain during the last two decades. The stringent nuclear safety regulations pertaining to reactor environment present challenges in the application of computational intelligence in various nuclear sub-systems. The applications of various methods of computational intelligence in the domain of nuclear reactors are discussed in this paper. (author)

  11. Nuclear Reactions for Astrophysics and Other Applications

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  12. Principal component directed partial least squares analysis for combining nuclear magnetic resonance and mass spectrometry data in metabolomics: Application to the detection of breast cancer

    International Nuclear Information System (INIS)

    Gu Haiwei; Pan Zhengzheng; Xi Bowei; Asiago, Vincent; Musselman, Brian; Raftery, Daniel

    2011-01-01

    Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the two most commonly used analytical tools in metabolomics, and their complementary nature makes the combination particularly attractive. A combined analytical approach can improve the potential for providing reliable methods to detect metabolic profile alterations in biofluids or tissues caused by disease, toxicity, etc. In this paper, 1 H NMR spectroscopy and direct analysis in real time (DART)-MS were used for the metabolomics analysis of serum samples from breast cancer patients and healthy controls. Principal component analysis (PCA) of the NMR data showed that the first principal component (PC1) scores could be used to separate cancer from normal samples. However, no such obvious clustering could be observed in the PCA score plot of DART-MS data, even though DART-MS can provide a rich and informative metabolic profile. Using a modified multivariate statistical approach, the DART-MS data were then reevaluated by orthogonal signal correction (OSC) pretreated partial least squares (PLS), in which the Y matrix in the regression was set to the PC1 score values from the NMR data analysis. This approach, and a similar one using the first latent variable from PLS-DA of the NMR data resulted in a significant improvement of the separation between the disease samples and normals, and a metabolic profile related to breast cancer could be extracted from DART-MS. The new approach allows the disease classification to be expressed on a continuum as opposed to a binary scale and thus better represents the disease and healthy classifications. An improved metabolic profile obtained by combining MS and NMR by this approach may be useful to achieve more accurate disease detection and gain more insight regarding disease mechanisms and biology.

  13. Principal component directed partial least squares analysis for combining nuclear magnetic resonance and mass spectrometry data in metabolomics: application to the detection of breast cancer.

    Science.gov (United States)

    Gu, Haiwei; Pan, Zhengzheng; Xi, Bowei; Asiago, Vincent; Musselman, Brian; Raftery, Daniel

    2011-02-07

    Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the two most commonly used analytical tools in metabolomics, and their complementary nature makes the combination particularly attractive. A combined analytical approach can improve the potential for providing reliable methods to detect metabolic profile alterations in biofluids or tissues caused by disease, toxicity, etc. In this paper, (1)H NMR spectroscopy and direct analysis in real time (DART)-MS were used for the metabolomics analysis of serum samples from breast cancer patients and healthy controls. Principal component analysis (PCA) of the NMR data showed that the first principal component (PC1) scores could be used to separate cancer from normal samples. However, no such obvious clustering could be observed in the PCA score plot of DART-MS data, even though DART-MS can provide a rich and informative metabolic profile. Using a modified multivariate statistical approach, the DART-MS data were then reevaluated by orthogonal signal correction (OSC) pretreated partial least squares (PLS), in which the Y matrix in the regression was set to the PC1 score values from the NMR data analysis. This approach, and a similar one using the first latent variable from PLS-DA of the NMR data resulted in a significant improvement of the separation between the disease samples and normals, and a metabolic profile related to breast cancer could be extracted from DART-MS. The new approach allows the disease classification to be expressed on a continuum as opposed to a binary scale and thus better represents the disease and healthy classifications. An improved metabolic profile obtained by combining MS and NMR by this approach may be useful to achieve more accurate disease detection and gain more insight regarding disease mechanisms and biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Non-nuclear power application of nuclear technology in Nigeria

    International Nuclear Information System (INIS)

    Funtua, I.I.

    2008-01-01

    Nuclear Technology applications are found in Food and Agriculture, Human Health, Water Resources, Industry, Environment, Education and Research.There are more potentials for the deployment of nuclear technology in more aspects of our life with needed economic development in Nigeria.Nuclear Technology plays and would continue to play vital role in Agriculture, Human health, Water resources and industry in Nigeria.Nuclear technologies have been useful in developmental efforts worldwide and for these to take hold, capacity building programmes must be expanded and the general public must have informed opinions about the benefits and risk associated with the technologies.This presentation gives an overview of nuclear technology applications in Nigeria in the following areas: Food and Agriculture, Human Health, Water Resources, Industry, Education and Research

  15. Nuclear Resonance Fluorescence for Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, Bernhard A; Quiter, Brian J; Ambers, Scott D

    2011-02-04

    In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external photon beam leading to the emission of {gamma} rays with specific energies that are characteristic of the emitting isotope. The promise of NRF as a non-destructive analysis technique (NDA) in safeguards applications lies in its potential to directly quantify a specific isotope in an assay target without the need for unfolding the combined responses of several fissile isotopes as often required by other NDA methods. The use of NRF for detection of sensitive nuclear materials and other contraband has been researched in the past. In the safeguards applications considered here one has to go beyond mere detection and precisely quantify the isotopic content, a challenge that is discussed throughout this report. Basic NRF measurement methods, instrumentation, and the analytical calculation of NRF signal strengths are described in Section 2. Well understood modeling and simulation tools are needed for assessing the potential of NRF for safeguards and for designing measurement systems. All our simulations were performed with the radiation transport code MCNPX, a code that is widely used in the safeguards community. Our initial studies showed that MCNPX grossly underestimated the elastically scattered background at backwards angles due to an incorrect treatment of Rayleigh scattering. While new, corrected calculations based on ENDF form factors showed much better agreement with experimental data for the elastic scattering of photons on an uranium target, the elastic backscatter is still not rigorously treated. Photonuclear scattering processes (nuclear Thomson, Delbruck and Giant Dipole Resonance scattering), which are expected to play an important role at higher energies, are not yet included. These missing elastic scattering contributions were studied and their importance evaluated evaluated against data found in the literature as discussed in Section 3. A transmission experiment

  16. Detecting Cyber Attacks On Nuclear Power Plants

    Science.gov (United States)

    Rrushi, Julian; Campbell, Roy

    This paper proposes an unconventional anomaly detection approach that provides digital instrumentation and control (I&C) systems in a nuclear power plant (NPP) with the capability to probabilistically discern between legitimate protocol frames and attack frames. The stochastic activity network (SAN) formalism is used to model the fusion of protocol activity in each digital I&C system and the operation of physical components of an NPP. SAN models are employed to analyze links between protocol frames as streams of bytes, their semantics in terms of NPP operations, control data as stored in the memory of I&C systems, the operations of I&C systems on NPP components, and NPP processes. Reward rates and impulse rewards are defined in the SAN models based on the activity-marking reward structure to estimate NPP operation profiles. These profiles are then used to probabilistically estimate the legitimacy of the semantics and payloads of protocol frames received by I&C systems.

  17. Nuclear toxicology. To detect, to clean

    International Nuclear Information System (INIS)

    Garcia, D.; Lecomte-Pradines, C.; Quemeneur, E.; Petitot, F.; Souidi, M.; Bertho, J.M.; Junot, Ch.; Malard, V.; Berthomieu, C.; Chapon, V.; Gilbin, R.; Misson-Pons, J.; Vavasseur, A.; Richaud, P.; Ansoborlo, E.; Taran, F.; Benech, H.; Fattal, E.; Tsapis, N.; Menetrier, F.; Deverre, J.R.; Burgada, R.

    2009-01-01

    This file shows two complementary parts: one aiming to a better detection of exposure for man and environment and and other one relative to the treatments to be used when there is a contamination. The development of biological captors is a research axis that could be very useful for nuclear toxicologists that wish to dispose of perceptible measurement tools. In the same idea biological markers could be an important help to determine the toxic quantity in organism in case of internal radioactive contamination. About remedial actions, bacteria are able to reduce, to oxide, to capture pollutants and then it is not insane to use them in efficient and low cost remediation for waters or contaminated lands, especially by trace metals or radioactive compounds. Next to them, plants can offer the same service it is the case for sunflower able to treat water loaded in uranium. This file ends with a review of the different treatments known nowadays as therapies for contamination by radioisotopes used in nuclear industry. (N.C.)

  18. Radon detection in soils by solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Khouri, M.T.F.C.

    1986-01-01

    The solid state nuclear track detectors technique was developed to be used in radon detection, by alpha particles tracks, and its application in uranium prospecting on the ground. The sensitive films to alpha particles used are the cellulose nitrate films LR 115 and CA 8015. Several simulations experiments and field measurements were carried out to verify the method possibilities. Maps of some anomalies in Caetite City (Bahia, Brazil) were made with the densities of tracks obtained. The results were compared with scintillation counter measurements. (Author) [pt

  19. Economical scale of nuclear energy application

    International Nuclear Information System (INIS)

    2001-01-01

    The nuclear energy industry is supported by two wheels of radiation and energy applications. When comparing both, they have some different sides, such as numbers of employees and researchers, numbers and scales of works, effect on society, affecting effects and regions of industrial actions, problems on safety, viewpoint on nuclear proliferation protection and safety guarantee, energy security, relationship to environmental problem, efforts on wastes disposal, and so on. Here described on economical scale of radiation application in fields of industry, agriculture, and medicine and medical treatment, and on economical scale of energy application in nuclear power generation and its instruments and apparatus. (G.K.)

  20. Nuclear energy applications - ethical considerations

    International Nuclear Information System (INIS)

    Hoermann, K.

    1980-01-01

    Following an Austrian referendum in 1978 which showed a small majority against operation of nuclear power stations, the economic penalties involved by this decision are qualitatively discussed, with emphasis on reduced standards of living. Religious considerations are examined and the difficulty of obtaining informed public opinion is stressed. Alternative sources of energy, including nuclear fusion, are briefly referred to. (G.M.E.)

  1. Medical applications in a nuclear research centre

    International Nuclear Information System (INIS)

    Vanhavere, F.; Eggermont, G.

    2001-01-01

    In these days of public aversion to nuclear power, it can be important to point at the medical applications of ionising radiation. Not only the general public, but also the authorities and research centres have to be aware of these medical applications, which are not without risk for public health. Now that funding for nuclear research is declining, an opening to the medical world can give new opportunities to a nuclear research centre. A lot of research could be done where the tools developed for the nuclear power world are very useful. Even new applications for the research reactors like BNCT (boron neutron capture therapy) can be envisaged for the near future. In this contribution an overview will be given of the different techniques used in the medical world with ionising radiation. The specific example of the Belgian Nuclear Research Centre will be given where the mission statement was changed to include a certain number of medical research topics. (authors)

  2. Gamma-ray imaging. Applications in nuclear non-proliferation and homeland security

    International Nuclear Information System (INIS)

    Vetter, Kai; Mihailescu, Lucian

    2010-01-01

    This paper provides the motivation and describes implementations of gamma-ray imaging for homeland security applications and more general for national and international nuclear security. As in nuclear medicine and astrophysics, the goal of gamma-ray imaging is the detection and localization of nuclear materials, however, here in a terrestrial environment with distances between nuclear medicine and astrophysics, i.e. in the range of 1-100 meters. Due to the recently increased threat of nuclear terrorism, the detection of illicit nuclear materials and the prevention of nuclear proliferation through the development of advanced gamma-ray imaging concepts and technologies has become and active research field. (author)

  3. The INS nuclear microprobe and its application

    International Nuclear Information System (INIS)

    Coote, G.E.

    1986-01-01

    The nuclear microprobe directs a well-focused beam of high-energy protons or deuterons at a solid specimen inside a vacuum chamber. Atomic and nuclear reactions are induced in those elements in a layer about 20 micro m thick, leading to the emission of characteristic x-rays, gamma rays, and charged particles as well as Rutherford scattering of the incident beam. These radiations impinge on several detectors near the specimen (NaI, Ge(Li), Si(Li) and Si surface barrier). Using proton-excited x-rays all elements above Na may be detected with sensitivities 10 or 100 times that of the electron probe, while elements which can be estimated from their gamma rays include C, N, O, F, Na and Al. In most of our projects the distribution of a trace or minor element (e.g. F, N) is compared to that of a major element (e.g. Ca or Fe). Recent areas of application include archaeometry (diffusion profiles of F in bones and teeth; depth profiles of sodium in obsidian), geology (F concentrations in mineral grains; studies of the Cretaceous-Tertiary boundary), metallurgy (C, O, N in steel and in welds; S, O, C in corrosion layers), fisheries management (Zn, Sr in otoliths; F in dogfish fin spines and vertebrae), biology (Fe, Sr, N in egg shells; trace elements in human hair), and dental research

  4. Fiber optic applications in nuclear power plants

    International Nuclear Information System (INIS)

    Collette, P.; Kwapien, D.

    1984-01-01

    Fiber optic technology possesses many desirable attributes for applications in commercial nuclear power plants. The non-electrical nature of fiber optics is an important factor in an industry governed by federal safety regulations such as Class 1E isolation and separation criteria. Immunity from Electromagnetic Interference (EMI), an increasing industry problem area, is another significant characteristic. Because of the extremely wide bandwidth offered, fiber optics better addresses the data acquistion and communication requirements of the complex processes of a nuclear power plant. Potential for fiber optic sensor applications exists within the nuclear industry because their small size and physical flexibility allows access into normally inaccessible areas. They possess high accuracy and allow environmentally sensitive electronics to be remotely located. The purpose of this paper is to explore current applications for fiber optic technology in modern nuclear plants, document examples of present day usage in C-E plants and suggest possible future application areas

  5. Application of radionuclides in nuclear technology

    International Nuclear Information System (INIS)

    Boeck, H.

    1983-07-01

    Four main applications of radionuclides in nuclear technology are presented which are level-, density- and thickness gauging and moisture determination. Each method is surveyed for its general principle, various designs, accuracy, errors and practical designs. (Author)

  6. Chiral unitary theory: Application to nuclear problems

    Indian Academy of Sciences (India)

    Chiral unitary theory: Application to nuclear problems ... Physics Department, Nara Women University, Nara, Japan. 5 ... RCNP, Osaka University, Osaka, Japan ...... We acknowledge partial financial support from the DGICYT under contract ...

  7. Photonuclear-based Detection of Nuclear Smuggling in Cargo Containers

    Science.gov (United States)

    Jones, J. L.; Haskell, K. J.; Hoggan, J. M.; Norman, D. R.; Yoon, W. Y.

    2003-08-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and the Los Alamos National Laboratory (LANL) have performed experiments in La Honda, California and at the Idaho Accelerator Center in Pocatello, Idaho to assess and develop a photonuclear-based detection system for shielded nuclear materials in cargo containers. The detection system, measuring photonuclear-related neutron emissions, is planned for integration with the ARACOR Eagle Cargo Container Inspection System (Sunnyvale, CA). The Eagle Inspection system uses a nominal 6-MeV electron accelerator and operates with safe radiation exposure limits to both container stowaways and to its operators. The INEEL has fabricated custom-built, helium-3-based, neutron detectors for this inspection application and is performing an experimental application assessment. Because the Eagle Inspection system could not be moved to LANL where special nuclear material was available, the response of the Eagle had to be determined indirectly so as to support the development and testing of the detection system. Experiments in California have successfully matched the delayed neutron emission performance of the ARACOR Eagle with that of the transportable INEEL electron accelerator (i.e., the Varitron) and are reported here. A demonstration test is planned at LANL using the Varitron and shielded special nuclear materials within a cargo container. Detector results are providing very useful information regarding the challenges of delayed neutron counting near the photofission threshold energy of 5.5 - 6.0 MeV, are identifying the possible utilization of prompt neutron emissions to allow enhanced signal-to-noise measurements, and are showing the overall benefits of using higher electron beam energies.

  8. The applications of nanomaterials in nuclear medicine

    International Nuclear Information System (INIS)

    Liu Jinjian; Liu Jianfeng

    2010-01-01

    Over the last decade, nanotechnology and nanomaterials have gained rapid development in medical application, especially in targeted drug delivery and gene transfer vector domain, and nano-materials are also beginning to applied in nuclear medicine. This paper is to make a view of the application research of several types of nanomaterials in nuclear medicine, and discuss some problems and the main direction of future development. (authors)

  9. Analysis on the status of the application of satellite remote sensing technology to nuclear safeguards

    International Nuclear Information System (INIS)

    Tao Zhangsheng; Zhao Yingjun

    2008-01-01

    Based on the application status of satellite remote sensing technology to nuclear safeguards, advantage of satellite remote sensing technology is analyzed, main types of satellite image used in nuclear safeguards are elaborated and the main application of satellite images is regarded to detect, verify and monitor nuclear activities; verify additional protocol declaration and design information, support performing complementary access inspections; investigate alleged undeclared activities based on open source or the third party information. Application examples of satellite image in nuclear safeguards to analyze nuclear facilities by other countries, the ability of remote sensing technology in nuclear safeguards is discussed. (authors)

  10. Nuclear magnetic resonance spectroscopy in food applications: a critical appraisal

    International Nuclear Information System (INIS)

    Divakar, S.

    1998-01-01

    Usefulness of Nuclear Magnetic Resonance (NMR) spectroscopy in food applications is presented in this review. Some of the basic concepts of NMR pertaining to one-dimensional and two-dimensional techniques, solid-state NMR and Magnetic Resonance Imaging (MRI) are discussed. Food applications dealt with encompass such diverse areas like nature and state of water in foods, detection and quantitation of important constituents of foods, intact food systems and NMR related to food biology. (author)

  11. The CEA nuclear microprobe. Description, possibilities, application examples

    International Nuclear Information System (INIS)

    Engelmann, C.; Bardy, J.

    1986-05-01

    The nuclear microprobe installed on one of the beam lines of a 4 MV Van de Graaff located in the Research Center of Bruyeres-le-Chatel is described. The various possibilities, particularly the imaging system, and the performances of the instrument are exposed. Two typical application examples concerning, the first, the determination of the deuterium and tritium in glass microballons, the second, the detection and the localization of carbon and oxygen in the superficial layer of lithium hydride pellets, are given. Preliminary results of some other application examples are also presented. The advantages of the nuclear microprobe over the other ponctual analysis techniques are emphasized. 7 refs, 19 figs [fr

  12. Nuclear Data Needs and Capabilities for Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-27

    In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several recommendations, including that the USNDP should “devise effective and transparent mechanisms to solicit input and feedback from all stakeholders on nuclear data needs and priorities.” The review also recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014 Mission Statement accordingly states that the USNDP uses “targeted experimental studies” to address gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel organize a Workshop on Nuclear Data Needs and Capabilities for Applications (NDNCA). This Workshop was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for the required measurements. The first two days of the workshop consisted of 25 plenary talks by speakers from 16 different institutions, on nuclear energy (NE), national security (NS), isotope production (IP), and industrial applications (IA). There were also shorter “capabilities” talks that described the experimental facilities and instrumentation available for the measurement of nuclear data. This was followed by a third day of topic-specific “breakout” sessions and a final closeout session. The agenda and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda. The importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization funded by the National Nuclear Security Administration (NNSA).

  13. Nuclear Data Needs and Capabilities for Applications

    International Nuclear Information System (INIS)

    Brown, D.

    2015-01-01

    In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several recommendations, including that the USNDP should 'devise effective and transparent mechanisms to solicit input and feedback from all stakeholders on nuclear data needs and priorities. The review also recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014 Mission Statement accordingly states that the USNDP uses 'targeted experimental studies' to address gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel organize a Workshop on Nuclear Data Needs and Capabilities for Applications (NDNCA). This Workshop was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for the required measurements. The first two days of the workshop consisted of 25 plenary talks by speakers from 16 different institutions, on Nuclear Energy, national security (NS), isotope production (IP), and industrial applications (IA). There were also shorter 'capabilities' talks that described the experimental facilities and instrumentation available for the measurement of nuclear data. This was followed by a third day of topic-specific 'breakout' sessions and a final closeout session. The agenda and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda. The importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization funded by the National Nuclear Security Administration (NNSA).

  14. Virtual reality. Fundamentals and nuclear related applications

    International Nuclear Information System (INIS)

    Ishii, Hirotake

    2010-01-01

    Since the first virtual reality (VR) system was developed by Dr. Ivan Sutherland in the 1960s, various research and development have been conducted to apply VR to many fields. One promising applications is a nuclear-related one. VR is useful for control room design support, operation training, maintenance training, decommissioning planning support, nuclear education, work image sharing, telecollaboration, and even providing an experimental test-bed. In this lecture note, fundamental knowledge of VR is presented first, and various VR applications to nuclear fields are stated along with their advantages. Then appropriate cases for introducing VR are summarized and future prospects are given. (author)

  15. Catastrophe theory with application in nuclear technology

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin

    2002-01-01

    The monograph is structured on the following seven chapters: 1. Correlation of risk, catastrophe and chaos at the level of polyfunctional systems with nuclear injection; 1.1 Approaching the risk at the level of power systems; 1.2 Modelling the chaos-catastrophe-risk correlation in the structure of integrated classical and nuclear processes; 2. Catastrophe theory applied in ecosystems models and applications; 2.1 Posing the problems in catastrophe theory; 2.2 Application of catastrophe theory in the engineering of the power ecosystems with nuclear injection; 4.. Decision of abatement of the catastrophic risk based on minimal costs; 4.1 The nuclear power systems sensitive to risk-catastrophe-chaos in the structure of minimal costs; 4.2 Evaluating the market structure on the basis of power minimal costs; 4.3 Decisions in power systems built on minimal costs; 5. Models of computing the minimal costs in classical and nuclear power systems; 5.1 Calculation methodologies of power minimal cost; 5.2 Calculation methods of minimal costs in nuclear power sector; 6. Expert and neuro expert systems for supervising the risk-catastrophe-chaos correlation; 6.1 The structure of expert systems; 6.2 Application of the neuro expert program; 7. Conclusions and operational proposals; 7.1 A synthesis of the problems presented in this work; 7.2 Highlighting the novel aspects applicable in the power systems with nuclear injection

  16. Wireless Technology Application to Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jeong Kweon; Jeong, See Chae; Jeong, Ki Hoon; Oh, Do Young; Kim, Jae Hack

    2009-01-01

    Wireless technologies are getting widely used in various industrial processes for equipment condition monitoring, process measurement and other applications. In case of Nuclear Power Plant (NPP), it is required to review applicability of the wireless technologies for maintaining plant reliability, preventing equipment failure, and reducing operation and maintenance costs. Remote sensors, mobile technology and two-way radio communication may satisfy these needs. The application of the state of the art wireless technologies in NPPs has been restricted because of the vulnerability for the Electromagnetic Interference and Radio Frequency Interference (EMI/RFI) and cyber security. It is expected that the wireless technologies can be applied to the nuclear industry after resolving these issues which most of the developers and vendors are aware of. This paper presents an overview and information on general wireless deployment in nuclear facilities for future application. It also introduces typical wireless plant monitoring system application in the existing NPPs

  17. Nuclear properties for astrophysical applications

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, P.; Nix, J.R. [Los Alamos National Lab., NM (United States); Kratz, K.L. [Mainz Univ. (Germany). Inst. fuer Kernchemie

    1994-09-23

    We tabulate the ground-state odd-proton and odd-neutron spins, proton and neutron pairing gaps, binding energies, neuton separation energies, quantities related to {beta}-delayed one, two and three neutron emission probabilities, {beta}-decay Q values and half-lives with respect to Gamow-Teller decay, proton separation energies, and {alpha}-decay Q values and half-lives. The starting point of the calculations is a calculation of nuclear ground-states and (information based on the finite-range droplet model and the folded-Yukawa single-particle model published in a previous issue of ATOMIC DATA AND NUCLEAR DATA TABLES. The {beta}-delayed neutron-emission probabilities and Gamow-Teller {beta}-decay rates are obtained from a QRPA model that uses single-particle levels and wave-functions at the calculated nuclear ground-state shape as the starting point.

  18. Change Detection with Polarimetric SAR Imagery for Nuclear Verification

    International Nuclear Information System (INIS)

    Canty, M.

    2015-01-01

    This paper investigates the application of multivariate statistical change detection with high-resolution polarimetric SAR imagery acquired from commercial satellite platforms for observation and verification of nuclear activities. A prototype software tool comprising a processing chain starting from single look complex (SLC) multitemporal data through to change detection maps is presented. Multivariate change detection algorithms applied to polarimetric SAR data are not common. This is because, up until recently, not many researchers or practitioners have had access to polarimetric data. However with the advent of several spaceborne polarimetric SAR instruments such as the Japanese ALOS, the Canadian Radarsat-2, the German TerraSAR-X, the Italian COSMO-SkyMed missions and the European Sentinal SAR platform, the situation has greatly improved. There is now a rich source of weather-independent satellite radar data which can be exploited for Nuclear Safeguards purposes. The method will also work for univariate data, that is, it is also applicable to scalar or single polarimetric SAR data. The change detection procedure investigated here exploits the complex Wishart distribution of dual and quad polarimetric imagery in look-averaged covariance matrix format in order to define a per-pixel change/no-change hypothesis test. It includes approximations for the probability distribution of the test statistic, and so permits quantitative significance levels to be quoted for change pixels. The method has been demonstrated previously with polarimetric images from the airborne EMISAR sensor, but is applied here for the first time to satellite platforms. In addition, an improved multivariate method is used to estimate the so-called equivalent number of looks (ENL), which is a critical parameter of the hypothesis test. (author)

  19. Contraband Detection with Nuclear Resonance Fluorescence: Feasibility and Impact

    International Nuclear Information System (INIS)

    Pruet, J; Lange, D

    2007-01-01

    In this report they show that cargo interrogation systems developed to thwart trafficking of illicit nuclear materials could also be powerful tools in the larger fight against contraband smuggling. In particular, in addition to detecting special nuclear materials, cargo scanning systems that exploit nuclear resonance fluorescence to detect specific isotopes can be used to help find: chemical weapons; some drugs as well as some chemicals regulated under the controlled substances act; precious metals; materials regulated under export control laws; and commonly trafficked fluorocarbons

  20. Detection of nuclear radiations; Deteccion de Radiaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Tanarro Sanz, A

    1967-07-01

    A summary of the lectures about the ordinary detectors of nuclear radiations explained by the author in the courses of Nuclear Engineering held at the J.E.N. up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied Electronics to Nuclear Engineering so it has been intended to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author)

  1. Detection of nuclear radiations; Detectores de radiaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Tanarro Sanz, A

    1959-07-01

    A summary of the lectures about the ordinary detectors of nuclear radiations given by the author in the Courses of Introduction to Nuclear Engineering held at the JEN up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied electronics to Nuclear Engineering so it has been intent to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author) 8 refs.

  2. Supercomputer applications in nuclear research

    International Nuclear Information System (INIS)

    Ishiguro, Misako

    1992-01-01

    The utilization of supercomputers in Japan Atomic Energy Research Institute is mainly reported. The fields of atomic energy research which use supercomputers frequently and the contents of their computation are outlined. What is vectorizing is simply explained, and nuclear fusion, nuclear reactor physics, the hydrothermal safety of nuclear reactors, the parallel property that the atomic energy computations of fluids and others have, the algorithm for vector treatment and the effect of speed increase by vectorizing are discussed. At present Japan Atomic Energy Research Institute uses two systems of FACOM VP 2600/10 and three systems of M-780. The contents of computation changed from criticality computation around 1970, through the analysis of LOCA after the TMI accident, to nuclear fusion research, the design of new type reactors and reactor safety assessment at present. Also the method of using computers advanced from batch processing to time sharing processing, from one-dimensional to three dimensional computation, from steady, linear to unsteady nonlinear computation, from experimental analysis to numerical simulation and so on. (K.I.)

  3. Nuclear spinner for SATCOM applications

    International Nuclear Information System (INIS)

    Karlin, J.J.; Raab, B.

    1976-01-01

    In order to avoid the power limitations of the solar-powered spinner satellites, operators of commercial communications spacecraft have turned to three-axis-stabilized designs. Nuclear-powered spacecraft can avoid this limitation, while retaining the desirable weight, stability, and cost advantages of the spinner approach. A nuclear spinner satellite launched on a Delta-3914 can provide enough weight and volume capacity for both C- and Ku-band operation, with a total capacity exceeding 40,000 one-way circuits, almost twice the capacity of present-day solar-three-axis designs. It is shown that, based on the criterion of cost-per-satellite-circuit in orbit, a nuclear spinner Satcom is superior to any present day solar-powered satellite in the Delta-launched class. However, in order to retain this superiority in the face of anticipated advances in solar power technology, a nuclear power system of at least 4 watts (e)/lb specific power is required

  4. Developments in acoustic emission for application to nuclear reactor systems

    International Nuclear Information System (INIS)

    Bentley, P.G.

    1982-01-01

    Developments in acoustic emission are summarised as they relate to the principal applications to nuclear reactors, and light water reactor pressure vessels in particular. Improvement in the understanding of acoustic emission has come from materials tests and these confirm the problems in applying the technique for in-service or periodic proof test monitoring of growing fatique cracks. Applications in LMFBR have confirmed that acoustic emission can be applied in the nuclear environment and the detection of stress corrosion cracking in both BWR and LMFBR seems possible. Some information is included on the developing interest in applying the techniques of acoustic emission for leak detection during shop hydro and in-service monitoring. Acoustic emission is also being developed for weld fabrication monitoring and recently introduced pattern recognition techniques are having a significant impact in this application. (author)

  5. Medical application of nuclear science: nuclear medicine and production of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Cornet, L.

    1997-01-01

    Nuclear science in attendance on medicine or from Radium to Radiopharmaceuticals. By a brief historical reminder of the evolution of the radioactivity and development of nuclear science, we could see a very early interest and application of the radioactivity in the medical field. Main steps: Detection of natural radioactivity/Discovery of artificial radioactivity/First treatment of leukaemia and thyroid/First nuclear reactor/First radioisotope laboratory in hospital/First scintigraphy/First radiopharmaceutical/First cyclotron and cyclotron products/First immunoscintigraphy/Biotechnology and radioisotope/Evolution of technics [equipment for diagnosis (imaging, scintigraphy) and therapy]/Evolution of production technics and concept of products (generators of Technetium) and machines, reactor, cyclotron/Evolution of importance and interest of nuclear medicine/Creation of international association of nuclear medicine and producers (example ARPR)/Evolution of safety and pharmaceuticals regulation. After the sixties, period extremely rich in invention of products, characterized by a high fertility specially due to a non-restrictive regulation in terms of safety and pharmaceutical consideration, the evolution of technics, the importance of costs (investment, research, healthcare and the evolution of the regulations) have smoothly but continuously transformed the contexts and different actors. Consequences and facts: Rationalization and standardization of the catalogues, total integration of radiopharmaceuticals into the pharmaceutical laws, stop of nuclear research reactors, increase of number of cyclotrons, transformation of size and role of the producers and nuclear centers, risk in supply of some raw materials like Molybdenum, medical nuclear application as a worldwide business

  6. Development of pressure boundaries leak detection technology for nuclear reactor

    International Nuclear Information System (INIS)

    Zhang Yao; Zhang Dafa; Chen Dengke; Zhang Liming

    2008-01-01

    The leak detection for the pressure boundaries is an important safeguard in nuclear reactor operation. In the paper, the status and the characters on the development of the pressure boundaries leak detection technology for the nuclear reactor were reviewed, especially, and the advance of the radiation leak detection technology and the acoustic emission leak detection technology were analyzed. The new advance trend of the leak detection technology was primarily explored. According to the analysis results, it is point out that the advancing target of the leak detection technology is to enhance its response speed, sensitivity, and reliability, and to provide effective information for operator and decision-maker. The realization of the global leak detection and the whole life cycle health monitoring for the nuclear boundaries is a significant advancing tendency of the leak detection technology. (authors)

  7. Review of the study and application on nuclear forensic analysis

    International Nuclear Information System (INIS)

    Liu Cheng'an; Song Jiashu; Wu Jun

    2009-01-01

    For the interests of national security, many scientists who work in the field of nuclear forensic analysis have carried out extensive work in the past on the detection of radioactive material and attributions study, developed a series of scientific and technical means to trace and detect illicit circulation of nuclear materials used to weapons and other radioactive materials which impair public security. All these questions relate to physical, chemical, biological attribution of materials. The nuclear forensic analysis has already become a special, up-to-date sphere of learning. The goal of the study of nuclear forensics is to prevent terrorists from acquiring not only nuclear weapons but also mate- rials that can be used to make such weapons, including radioactive materials for nuclear power plants, and medical radioisotope to and provide us as many clues of environmental links as possible that could help us trace the smuggling path, to answer the following questions: What is the material? Where did it come from? How did it pass from legitimate to illicit use? How did it get to where it was interdicted? Who did it? This paper outlines the contents, analysis means and application of nuclear forensics. (authors)

  8. Mobile robotics application in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.L.; White, J.R. [REMOTEC, Inc., Oak Ridge, TN (United States)

    1995-03-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980`s, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Some of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities.

  9. Mobile robotics application in the nuclear industry

    International Nuclear Information System (INIS)

    Jones, S.L.; White, J.R.

    1995-01-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980's, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Some of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities

  10. Applications of nuclear techniques and research 1990

    International Nuclear Information System (INIS)

    1990-01-01

    The application of nuclear techniques, i.e. those techniques where use is made of isotopes and radiation, continues to contribute to progress in science, technology, agriculture, industry and medicine. Nuclear applications found their way into the IAEA's activities from the very beginning, and their promotion constitutes today a substantial fraction of the IAEA's Technical Co-operation and Research Contract Programmes. The 1990 selection is opened by a review of the role and function of the IAEA's Research Contract Programme, which is one of the Agency's most effective tools for promoting and developing nuclear applications. Applications in agriculture are covered in two articles dealing respectively with issues affecting the acceptance of food irradiation by governments, the food industry and consumers and with the use of radiation to induce plant mutation, a practical tool available to plant breeders in their effort to develop better quality crops. The following article deals with a typical nuclear application in medicine, i.e. the use of radionuclides in the diagnosis of lung diseases and in investigations related to the respiratory function. The use of environmental isotopes to assess the energy potential of geothermal fields is the next subject, a good example of nuclear methods applied to the evaluation of natural resources. The 1990 review concludes with a presentation prepared by the Third World Academy of Sciences on magnetic fusion research activity in the developing countries and its connection with the IAEA's own fusion programme

  11. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    International Nuclear Information System (INIS)

    Casey, Leslie A.

    2014-01-01

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  12. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  13. Summary Report for the Radiation Detection for Nuclear Security Summer School 2012

    Energy Technology Data Exchange (ETDEWEB)

    Runkle, Robert C.; Baciak, James E.; Stave, Jean A.

    2012-08-22

    The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the inaugural Radiation Detection for Nuclear Security Summer School from June 11 – 22, 2012. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. The first week of the summer school focused on the foundational knowledge required by technology practitioners; the second week focused on contemporary applications. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectives of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security.

  14. Nuclear data for medical applications: an overview

    International Nuclear Information System (INIS)

    Qaim, S.M.

    2002-01-01

    A brief introduction to nuclear data in medicine is given. The choice of a radioisotope for medical application demands an accurate knowledge of radioactive decay data. Short-lived single photon and beta sup + -emitters are preferred for diagnostic investigations, and longer-lived corpuscular radiation emitting radioisotopes for endo radiotherapy. The nuclear reaction cross section data, on the other hand, are needed for optimising the production routes. Besides radioactive isotopes, the use of ionising radiation in therapy is discussed. External radiation therapy has achieved an important place in medicine. The role of nuclear data is briefly discussed; they are needed for radiation dose calculations. The hitherto rather neglected activation products in proton therapy are considered. The methodology of development of a nuclear data file for medical applications is outlined. (author)

  15. Nuclear data for medical applications: an overview

    International Nuclear Information System (INIS)

    Qaim, S.M.

    2001-01-01

    A brief introduction to nuclear data in medicine is given. The choice of a radioisotope for medical application demands an accurate knowledge of radioactive decay data. Short-lived single photon and β + -emitters are preferred for diagnostic investigations, and longer-lived corpuscular radiation emitting radioisotopes for endoradiotherapy. The nuclear reaction cross section data, on the other hand, are needed for optimising the production routes. Besides radioactive isotopes, the use of ionising radiation in therapy is discussed. External radiation therapy has achieved an important place in medicine. The role of nuclear data is briefly discussed; they are needed for radiation dose calculations. The hitherto rather neglected activation products in proton therapy are considered. The methodology of development of a nuclear data file for medical applications is outlined. (orig.)

  16. Microprocessors applications in the nuclear industry

    International Nuclear Information System (INIS)

    Ethridge, C.D.

    1980-01-01

    Microprocessors in the nuclear industry, particularly at the Los Alamos Scientific Laboratory, have been and are being utilized in a wide variety of applications ranging from data acquisition and control for basic physics research to monitoring special nuclear material in long-term storage. Microprocessor systems have been developed to support weapons diagnostics measurements during underground weapons testing at the Nevada Test Site. Multiple single-component microcomputers are now controlling the measurement and recording of nuclear reactor operating power levels. The CMOS microprocessor data-acquisition instrumentation has operated on balloon flights to monitor power plant emissions. Target chamber mirror-positioning equipment for laser fusion facilities employs microprocessors

  17. Unconventional applications of conventional intrusion detection sensors

    International Nuclear Information System (INIS)

    Williams, J.D.; Matter, J.C.

    1983-01-01

    A number of conventional intrusion detection sensors exists for the detection of persons entering buildings, moving within a given volume, and crossing a perimeter isolation zone. Unconventional applications of some of these sensors have recently been investigated. Some of the applications which are discussed include detection on the edges and tops of buildings, detection in storm sewers, detection on steam and other types of large pipes, and detection of unauthorized movement within secure enclosures. The enclosures can be used around complicated control valves, electrical control panels, emergency generators, etc

  18. Ion thermometers - nuclear reactor applications

    International Nuclear Information System (INIS)

    Rosenkranz, J.; Jakes, D.

    The principle is briefly described of ion thermometers and the effects are reported of radiation on the ion crystal properties. The results show that ion thermometers are applicable for in-core measurements. (J.P.)

  19. Pulmonary applications of nuclear medicine

    International Nuclear Information System (INIS)

    Kramer, E.L.; Divgi, C.R.

    1991-01-01

    Nuclear medicine techniques have a long history in pulmonary medicine, one that has been continually changing and growing. Even longstanding methods, such as perfusion scanning for embolic disease or for pretherapy pulmonary function evaluation, have largely withstood the test of recent careful scrutiny. Not only have these techniques remained an important part of the diagnostic armamentarium, but we have learned how to use them more effectively. Furthermore, because of technical advances, we are in a phase of expanding roles for nuclear imaging. Gallium citrate scanning for the mediastinal staging and follow-up of lymphoma has been recognized as a valuable adjunct to the anatomic information provided by CT and MRI. With the growth of PET technology in areas that have been explored in a limited fashion until now, such as noncardiogenic pulmonary edema and lung carcinoma, evaluation and management of these patients may substantially improve. Finally, in the field of radiolabeled monoclonal antibodies, attention is now being turned to both the diagnostic and the therapeutic problems presented by lung carcinoma. As radiolabeling methods are refined and as new and better antibodies are developed, radioimmunodetection and therapy in lung carcinoma may begin to make inroads on this common and hard to control disease.157 references

  20. Nuclear medicine applications in AIDS

    International Nuclear Information System (INIS)

    Abdel-Dayem, H.M.

    2004-01-01

    Full text: Aids patients are liable to more than one medical problem at anyone time as the number of CD4 cells decrease and the viral load increases. Problems are related to multiple causes of opportunistic Infections, malignant lymphoma and Kaposi sarcoma. Laboratory tests, sputum analysis and bronchial lavage have problems of decreased sensitivity. morphologic Imaging modalities such as chest X-ray, CT or MRI has problems of specificity. Nuclear medicine techniques has the advantage of total body functional imaging that can visualize more than one organ. The use nuclear medicine imaging is recommended when the diagnosis is uncertain and for initiation of proper treatment. Gallium-67 citrate total body scans acquired at 4 hours following the IV injection and at 24-48 hours has been very useful for the early diagnosis of opportunistic infections such as PCP, TB, Disseminated Mycobacterium avii complex; MAI, malignant lymphoma and various forms of AIDS related colitis. Sequential thallium and gallium scan help to differentiate Kaposi sarcoma (thallium positive, gallium negative) from opportunistic infections (gallium positive, thallium negative) and malignant lymphoma (thallium and gallium positive). Gallium is the most convenient radiopharmaceutical for the diagnosis of malignant lymphoma of the heart. Thallium and Tc-99m Sestamibi are useful for the differentiation of intracranial toxoplasmosis from malignant lymphoma. The presentation will illustrate different examples and will explain the limitations of all these tests. (author)

  1. Research on optical applications in nuclear industry

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Shin, Jang Soo; Lee, Sang Mock; Baik, Sung Hoon; Kwon, Seong Ouk; Hong, Suc Kyoung; Kim, Duk Hyeon

    1988-12-01

    The laser fluorometer developed in 1987 has been modified to compensate the inner filter and quenching effects. The signal processing electronic circuit was redesigned and a computer interface was introduced for data processing. It has been already used in routine chemical analysis in the chemical analysis division. Its application to uranium monitoring in conversion plant is being investigated. Also, we found that it can be used in trace analysis of samarium and europium with detection limit of 1 ppb and 0.1 ppb, respectively. The IRMPA/D process of CDF 3 and CHF 3 have been studied. The pressure effects of CDF 3 ,CHF 3 and added buffer gas were investigated. Mainly, the change in reaction rate was examined while varying the pressure of CDF 3 , CHF 3 and buffer gas. The IRMPD reaction ratio of CDF 3 and CHF 3 from below 0.1 torr up to a few torr was studied and the buffer gas pressure effect was investigated at constant pressure of CDF 3 or CHF 3 of 1 torr. Several kinds of buffer gas, Ar, N 2 , and SF 6 , were used to investigate the buffer gas pressure effect. We applied double exposure holographic interferometry, and analyzed qualitatively the distortion due to thermal heat and vibration. The research on holographic remote inspection will be achieved to apply this technique to the nuclear fuel cycle facilities. (Author)

  2. Integrating virtual reality applications in nuclear safeguards

    International Nuclear Information System (INIS)

    Barletta, Michael; Crete, Jean-Maurice; Pickett, Susan

    2011-01-01

    Virtual reality (VR) tools have already been developed and deployed in the nuclear industry, including in nuclear power plant construction, project management, equipment and system design, and training. Recognized as powerful tools for, inter alia, integration of data, simulation of activities, design of facilities, validation of concepts and mission planning, their application in nuclear safeguards is still very limited. However, VR tools may eventually offer transformative potential for evolving the future safeguards system to be more fully information-driven. The paper focuses especially on applications in the area of training that have been underway in the Department of Safeguards of the International Atomic Energy Agency. It also outlines future applications envisioned for safeguards information and knowledge management, and information-analytic collaboration. The paper identifies some technical and programmatic pre-requisites for realizing the integrative potential of VR technologies. If developed with an orientation to integrating applications through compatible platforms, software, and models, virtual reality tools offer the long-term potential of becoming a real 'game changer,' enabling a qualitative leap in the efficiency and effectiveness of nuclear safeguards. The IAEA invites Member States, industry, and academia to make proposals as to how such integrating potential in the use of virtual reality technology for nuclear safeguards could be realized. (author)

  3. Nuclear and Radiochemistry Fundamentals and Applications

    CERN Document Server

    Lieser, Karl Heinrich

    2001-01-01

    This handbook gives a complete and concise description of the up-to-date knowledge of nuclear and radiochemsitry and applications in the various fields of science. I is based on teaching courses and on research for over 40 years. The book is addressed to any researcher whishing sound knowledge about the properties of matter, be it a chemist, a physicist, a medical doctor, a mineralogist or a biologist. They will all find it a valuable source of information about the principles and applications of nuclear and radiochemistry. Research in radiochemistry includes: Study of radioactice matter in na

  4. Economics on nuclear techniques application in industry

    International Nuclear Information System (INIS)

    Kato, Masao

    1979-01-01

    The economics of the application of nuclear techniques to industry is discussed. Nuclear techniques were applied to gauging (physical measurement), analysis, a radioactive tracer method, electrolytic dissociation, and radiography and were found to be very economical. They can be applied to manufacturing, mining, oceano-engineering, environmental engineering, and construction, all of which have a great influence on economics. However, because the application of a radioactive tracer technique does not have a direct influence on economics, it is difficult to estimate how beneficial it is. The cost-benefit ratio method recommended by IAEA was used for economical calculations. Examples of calculations made in gauging and analysis are given. (Ueda, J.)

  5. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    Science.gov (United States)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  6. Neural networks and their application to nuclear power plant diagnosis

    International Nuclear Information System (INIS)

    Reifman, J.

    1997-01-01

    The authors present a survey of artificial neural network-based computer systems that have been proposed over the last decade for the detection and identification of component faults in thermal-hydraulic systems of nuclear power plants. The capabilities and advantages of applying neural networks as decision support systems for nuclear power plant operators and their inherent characteristics are discussed along with their limitations and drawbacks. The types of neural network structures used and their applications are described and the issues of process diagnosis and neural network-based diagnostic systems are identified. A total of thirty-four publications are reviewed

  7. Advanced teleoperation in nuclear applications

    International Nuclear Information System (INIS)

    Hamel, W.R.; Feldman, M.J.; Martin, H.L.

    1984-01-01

    A new generation of integrated remote maintenance systems is being developed to meet the needs of future nuclear fuel reprocessing at the Oak Ridge National Laboratory. Development activities cover all aspects of an advanced teleoperated maintenance system with particular emphasis on a new force-reflecting servomanipulator concept. The new manipulator, called the advanced servomanipulator, is microprocessor controlled and is designed to achieve force-reflection performance near that of mechanical master/slave manipulators. The advanced servomanipulator uses a gear-drive transmission which permits modularization for remote maintainability (by other advanced servomanipulators) and increases reliability. Human factors analysis has been used to develop an improved man/machine interface concept based upon colorgraphic displays and menu-driven tough screens. Initial test and evaluation of two advanced servomanipulator slave arms and several other development components have begun. 9 references, 5 figures

  8. Fast neutron detection using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Vilela, E.C.

    1990-01-01

    CR-39 and Makrofol-E solid state nuclear track detectors were studied aiming their application to fast neutron detection. Optimum etching conditions of those two kinds of materials were determined the followings - the Makrofol-E detector is electrochemically etched in a PEW solution (15% KOH, 40% ethilic alcohol and 45% water) for 2 h., with an applied electric field strength of 30 kV/cm (r/m/s/) and frequency of 2 kHz, at room temperature; - the CR-39 detector is chemically pre-etched during 1 h in a 20% (w/v) NaOH solution at 70 sup(0)C, followed by 13 h electrochemical etch using the same solution at room temperature and an electric field strength of 30 kV/cm (r.m.s.) and frequency of 2 kHz.(E.G.)

  9. Application of smart transmitter technology in nuclear engineering measurements

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Seong, Poong Hyun

    1993-01-01

    By making use of the microprocessor technology, instrumentation system becomes intelligent. In this study a programmable smart transmitter is designed and applied to the nuclear engineering measurements. In order to apply the smart transmitter technology to nuclear engineering measurements, the digital time delay compensation function and water level change detection function are developed and applied in this work. The time compensation function compensates effectively the time delay of the measured signal, but it is found that the characteristics of the compensation function should be considered through its application. It is also found that the water level change detection function reduces the detection time to about 7 seconds by the signal processing which has the time constant of over 250 seconds and which has the heavy noise. (Author)

  10. Electronic detection of nuclear radiations; Deteccion Electronica de radiaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Campos, J

    1972-07-01

    This report is the first draft of one of the chapters of a book being prepared under the title: Topics on Practical Nuclear Physics. It is published as a report because of i ts immediate educational value and in order to include in its final draft the suggestions of the readers. (Author)

  11. Nuclear reaction analysis (NRA) for trace element detection

    Energy Technology Data Exchange (ETDEWEB)

    Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Noll, K. [Bern Univ. (Switzerland)

    1997-09-01

    Ion beam induced nuclear reactions can be used to analyse trace element concentrations in materials. The method is especially suited for the detection of light contaminants in heavy matrices. (author) 3 figs., 2 refs.

  12. Applications of Nuclear Science for Stewardship Science

    International Nuclear Information System (INIS)

    Cizewski, Jolie A

    2013-01-01

    Stewardship science is research important to national security interests that include stockpile stewardship science, homeland security, nuclear forensics, and non-proliferation. To help address challenges in stewardship science and workforce development, the Stewardship Science Academic Alliances (SSAA) was inaugurated ten years ago by the National Nuclear Security Administration of the U. S. Department of Energy. The goal was to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper presents an overview of recent research in low-energy nuclear science supported by the Stewardship Science Academic Alliances and the applications of this research to stewardship science.

  13. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    Science.gov (United States)

    2006-06-01

    . Role of Nuclear Techniques in Environment Problems. Applications of Nuclear Techniques relevant for Civil Security (contraband and explosive detection, search for Weapons of Mass Destruction, Nuclear Safeguards). Nuclear Applications in Space Research. Material and Structure Testing in Research and Industry. New contributions of Nuclear Techniques to the solution of the Energy Production problems and Nuclear Waste Transmutation. Emerging experimental techniques, new detectors and new modeling tools. During the Monday morning Session of the Conference, the 2005 IBA-EUROPHYSICS PRIZE for Applied Nuclear Science and Nuclear Methods in Medicine, sponsored by the Belgian company IBA, was awarded to the two laureates Werner Heil (Mainz) and Pierre Jean Nacher (Paris) for the development of spin polarized 3He targets by optical pumping and their applications in nuclear science and medicine. The meeting was a real success, with 18 invited talks, 66 contributed talks and 31 posters and an overall participation, during five full days, of around 150 scientists from different European and non-European countries. It also hosted a three day industrial exhibition of a selection of Companies that sponsored the event. The Organisers take thos opportunity to thank the University of Pavia, the Amministrazione Comunale di Pavia and the Provincia di Pavia, as well as all exhibitors (Ametek, Ansaldo Superconduttori, Caen, Else, Hamamatsu, IBA, Micos, Micron Semiconductor), for their support of the Conference. The Organisers finally wish to thank the Scientific Secretary of the Conference, Dr Andrea Fontana of INFN Pavia, for the huge amount of work done in preparing the Conference, Mr Claudio Casella of the Department of Nuclear and Theoretical Physics of the University of Pavia for technical support and the Conference staff, Dr Gaia Boghen and the graduate students Federica Devecchi and Silvia Franchino, for their invaluable help. The very effective and professional work of the staff of

  14. Liquid decontaminants for nuclear applications

    International Nuclear Information System (INIS)

    Henning, Klaus; Gojowczyk, Peter

    2011-01-01

    Decontaminants used in the nuclear field must meet a variety of requirements. On the one hand, the washing process must remove radioactive contamination and conventional dirt from the items washed. On the other hand, subsequent disposal of the washing water arisings must be feasible by the usual waste disposal pathway. One aspect of particular importance is unproblematic treatment of the radioactively contaminated waste water, as a rule low to medium active, whose final storage must be ensured. Decontaminants must not impair waste treatment processes, such as evaporation, filtration, and centrifuging, as well as further treatment of the concentrates and residues arising which are worked into matrix materials (cementation, bituminization), in drum drying or roller mill drying. For reasons of safety at work and environmental quality, also aspects of human toxicology and ecotoxicology must be taken into account. In this way, handling decontaminants will not jeopardize the health of personnel or cause potential long-term environmental damage. Liquid decontaminants, compared to powders, offer the advantage of automatic dosage. The liquid product is dosed accurately as a function of the washing program used. Liquid decontaminants can be handled safely in hot laundries without causing skin and eye contacts. (orig.)

  15. Space nuclear tug mission applications

    International Nuclear Information System (INIS)

    Hodge, J.R.; Rauen, L.A.

    1996-01-01

    An initial assessment indicates that the NEBA-1 and NEBA-3 bimodal reactor designs can be integrated into a reusable tug which is capable of supporting many missions including GSO delivery, GSO retrieval, lunar trajectory deliveries, interplanetary deliveries, and a variety of satellite servicing. The tug close-quote s nuclear thermal propulsion provides timely transport and payload delivery, with GSO deliveries on the order of 3 endash 7 days. In general, the tug may provide a number of potential benefits to users. The tug may, for example, extend the life of an existing on-orbit spacecraft, boost spacecraft which were not delivered to their operational orbit, offer increased payload capability, or possibly allow payloads to launch on smaller less expensive launch vehicles. Reusing the tug for 5 or 10 missions requires total reactor burn times of 50 and 100 hours, respectively. Shielding, boom structure, and radiator requirements were identified as key factors in the configuration layout. Economic feasibility is still under evaluation, but preliminary estimates indicate that average flight costs may range from $32 M to $34 M for a 10-mission vehicle and from $39 M to $42 M for a 5-mission vehicle. copyright 1996 American Institute of Physics

  16. Radiation Detection System for Prevention of Radiological and Nuclear Terrorism

    International Nuclear Information System (INIS)

    Kwak, Sung-Woo; Yoo, Ho-Sik; Jang, Sung-Sun; Kim, Jae-Kwang; Kim, Jung-Soo

    2007-01-01

    After the September 11 terrorist attack, the threat of a potential for a radiological or nuclear terrorist attack became more apparent. The threats relating to radiological or nuclear materials include a Radiological Dispersion Device (RDD), an Improved Nuclear Device (IND) or a State Nuclear Device (such as a Soviet manufactured suitcase nuclear weapon). For more effective countermeasures against the disaster, multilayer protection concept - prevention of smuggling of radioactive or nuclear material into our country through seaports or airports, detection and prevention of the threat materials in transit on a road, and prevention of their entry into a target building - is recommended. Due to different surrounding circumstances of where detection system is deployed, different types of radiation detection systems are required. There have been no studies on characteristics of detection equipment required under Korean specific conditions. This paper provides information on technical requirements of radiation detection system to achieve multi-layer countermeasures for the purpose of protecting the public and environment against radiological and nuclear terrorism

  17. Helium leak testing methods in nuclear applications

    International Nuclear Information System (INIS)

    Ahmad, Anis

    2004-01-01

    Helium mass-spectrometer leak test is the most sensitive leak test method. It gives very reliable and sensitive test results. In last few years application of helium leak testing has gained more importance due to increased public awareness of safety and environment pollution caused by number of growing chemical and other such industries. Helium leak testing is carried out and specified in most of the critical area applications like nuclear, space, chemical and petrochemical industries

  18. Biomedical application of the nuclear microprobe

    International Nuclear Information System (INIS)

    Lindh, U.

    1987-01-01

    The Studsvik Nuclear Microprobe (SMP) has mainly been devoted to applications in the biomedical field. Its ultimate resolution is reached at 2.9x2.9 μm 2 with a proton current of 100 pA. With this performance the SMP has been used in a wide range of disciplines covering environmental hygiene, toxicology, various aspects of internal medicine and trace element physiology. Examples of recent applications in these fields are described. (orig.)

  19. Advances in Nuclear Power Process Heat Applications

    International Nuclear Information System (INIS)

    2012-05-01

    Following an IAEA coordinated research project, this publication compiles the findings of research and development activities related to practical nuclear process heat applications. An overview of current progress on high temperature gas cooled reactors coupling schemes for different process heat applications, such as hydrogen production and desalination is included. The associated safety aspects are also highlighted. The summary report documents the results and conclusions of the project.

  20. Nuclear radiation applications in hydrological investigations

    International Nuclear Information System (INIS)

    Rao, S.M.

    1978-01-01

    The applications of radiation sources for the determination of water and soil properties in hydrological investigations are many and varied. These include snow gauging, soil moisture and density determinations, measurement of suspended sediment concentrations in natural streams and nuclear well logging for groundwater exploitation. Besides the above, many radiation physics aspects play an important role in the development of radiotracer techniques, particularly in sediment transport studies. The article reviews the above applications with reference to their limitations and advantages. (author)

  1. Nuclear plant analyzer development and analysis applications

    International Nuclear Information System (INIS)

    Laats, E.T.

    1984-10-01

    The Nuclear Plant Analyzer (NPA) is being developed as the US Nuclear Regulatory Commission's (NRC's) state of the art safety analysis and engineering tool to address key nuclear plant safety issues. This paper describes four applications of the NPA in assisting reactor safety analyses. Two analyses evaluated reactor operating procedures, during off-normal operation, for a pressurized water reactor (PWR) and a boiling water reactor (BWR), respectively. The third analysis was performed in support of a reactor safety experiment conducted in the Semiscale facility. The final application demonstrated the usefulness of atmospheric dispersion computer codes for site emergency planning purposes. An overview of the NPA and how it supported these analyses are the topics of this paper

  2. Nuclear energy I, Non-energetic applications

    International Nuclear Information System (INIS)

    Lartigue G, J.; Navarrete T, M.; Cabrera M, L.; Arandia, P.A.; Arriola S, H.

    1986-01-01

    The nuclear energy is defined as the energy produced or absorbed in the nuclear reactions, therefore, these are divided in endothermic and exothermic. The exothermic nuclear reactions present more interest from the point of view of its applications and they can show in four main forms: radioactivity (from 0 to 4 MeV/reaction; light nucleus fusion ( ∼ 20 MeV/reaction), heavy nucleus fusion (∼ 200 MeV/reaction) and nucleons annihilation ( ∼ 2000 MeV/reaction). Nowadays only the fission has reached the stage of profitable energetic application, finding the other three forms in research and development. The non-energetic applications of the nuclear energy are characterized by they do not require of prior conversion to another form of energy and they are made through the use of radioisotopes as well as through the use of endothermic reaction caused in particle accelerators. In this work are presented some of the non-energetic applications with its theoretical and experimental basis as well as its benefits of each one. (Author)

  3. Application of nuclear gamma methods in mining

    International Nuclear Information System (INIS)

    Simon, L.; Bosak, J.

    1980-01-01

    A brief review is presented of basic physical characteristics of laboratory, field and operating gamma methods, of their classifications and principles. The measuring instrumentation used and the current state of applications of nuclear gamma methods in coal and ore mining and related branches are described in detail. Principles and practical recommendations are given for safety at work when handling gamma sources. (B.S.)

  4. Radioisotope licence application: Fixed nuclear gauges

    International Nuclear Information System (INIS)

    1995-09-01

    This guide will assist you in completing and filing an application for a new licence or licence renewal for fixed nuclear gauges in accordance with the Atomic Energy Control Regulations and radioisotope licensing policies. It also provides some of the background information that you will require in order to safely use radioactive materials

  5. Application of oligonucleotide array CGH to the simultaneous detection of a deletion in the nuclear TK2 gene and mtDNA depletion.

    Science.gov (United States)

    Zhang, Shulin; Li, Fang-Yuan; Bass, Harold N; Pursley, Amber; Schmitt, Eric S; Brown, Blaire L; Brundage, Ellen K; Mardach, Rebecca; Wong, Lee-Jun

    2010-01-01

    Thymidine kinase 2 (TK2), encoded by the TK2 gene on chromosome 16q22, is one of the deoxyribonucleoside kinases responsible for the maintenance of mitochondrial deoxyribonucleotide pools. Defects in TK2 mainly cause a myopathic form of the mitochondrial DNA depletion syndrome (MDDS). Currently, only point mutations and small insertions and deletions have been reported in TK2 gene; gross rearrangements of TK2 gene and possible hepatic involvement in patients with TK2 mutations have not been described. We report a non-consanguineous Jordanian family with three deceased siblings due to mtDNA depletion. Sequence analysis of the father detected a heterozygous c.761T>A (p.I254N) mutation in his TK2 gene; however, point mutations in the mother were not detected. Subsequent gene dosage analysis using oligonucleotide array CGH identified an intragenic approximately 5.8-kb deletion encompassing the 5'UTR to intron 2 of her TK2 gene. Sequence analysis confirmed that the deletion spans c.1-495 to c.283-2899 of the TK2 gene (nucleotide 65,136,256-65,142,086 of chromosome 16). Analysis of liver and muscle specimens from one of the deceased infants in this family revealed compound heterozygosity for the paternal point mutation and maternal intragenic deletion. In addition, a significant reduction of the mtDNA content in liver and muscle was detected (10% and 20% of age- and tissue-matched controls, respectively). Prenatal diagnosis was performed in the third pregnancy. The fetus was found to carry both the point mutation and the deletion. This child died 6months after birth due to myopathy. A serum specimen demonstrated elevated liver transaminases in two of the infants from whom results were available. This report expands the mutation spectrum associated with TK2 deficiency. While the myopathic form of MDDS appears to be the main phenotype of TK2 mutations, liver dysfunction may also be a part of the mitochondrial depletion syndrome caused by TK2 gene defects.

  6. Advancing capabilities for detecting undeclared nuclear activities

    International Nuclear Information System (INIS)

    Baute, J.

    2013-01-01

    When a country presents a consistent, transparent and predictable picture of its nuclear programme that is supported by the analysis of all information, IAEA inspectors do not need to go there as frequently for routine verification activities. Rather IAEA can redirect those resources to addressing safeguards issues in the state posing real proliferation concerns. The point is how to establish a coherent picture of a nuclear program and how to identify early warnings of safeguard breaches. A key element is the exploitation of all the information available (open sources, inspection report, satellite imagery, state declarations,...) through effective and quick information analysis. This document is made up of the slides of the presentation

  7. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiemann, Dora K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Choi, Junoh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development of room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.

  8. Augmented reality. Fundamentals and nuclear related applications

    International Nuclear Information System (INIS)

    Ishii, Hirotake

    2010-01-01

    In recent years, Augmented Reality (AR) has attracted considerable interest from both academia and industry. Virtual Reality enables users to interact only with virtual objects in a virtual environment, but AR enables users to interact with both virtual objects and real objects in the real world. This feature supports application of AR to various fields such as education, driving, entertainment, and navigation. Especially, by application of AR to support workers in nuclear power plants, it is expected that working time and human error can be decreased. However, many problems remain unsolved to apply AR to real fields. In this lecture note, fundamental knowledge of AR is presented first including the overview of elemental technologies to realize AR. Then various AR applications to nuclear fields are described. Finally, future prospects are given. (author)

  9. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  10. Nuclear isomers and their possible applications

    International Nuclear Information System (INIS)

    Jain, Ashok Kumar

    2016-01-01

    Nuclear isomers are the long lived excited states of nuclei having half-lives much larger than the half-lives of normal excited states. They are also known as the meta-stable states of atomic nuclei which are formed in nuclear reactions or, in radioactive decay of nuclei. Typical half-lives of isomers may range from nanoseconds to years. One of the most direct applications of nuclear isomers is in nuclear medicine. Radioisotopes are being widely used for imaging and therapeutic applications. They are particularly suitable for Single Photon Emission Computer Tomography (SPECT) imaging, where a single and relatively low energy γ ray photon is emitted. The most common example is "9"9"mTc (T_1_/_2 = 6 hours) which decays via a 142 keV γ ray photon. Examples of other isomers that are used in medical applications will be presented. Relatively long-lived isomers, such as "1"9"3"mPt and "1"9"5"mPt, for example, are being used in certain cancer treatments. Because of the high multi-pole order of the decaying transitions, most of the decays occur via internal conversion electrons, with subsequent emission of Auger electrons that can be used to kill various cancer cells. There are also some cases where the isomer decays by positron emission and is used for Positron Emission Tomography (PET) imaging

  11. ODS Alloys for Nuclear Applications

    International Nuclear Information System (INIS)

    Jang, Jin Sung

    2006-01-01

    ODS (oxide dispersion strengthening) alloy is one of the potential candidate alloys for the cladding or in reactor components of Generation IV reactors and for the structural material even for fusion reactors. It is widely accepted as very resistant material to neutron irradiation as well as strong material at high temperature due to its finely distributed and stable oxide particles. Among Generation IV reactors SFR and SCWR are anticipated in general to run in the temperature range between 300 and 550 .deg. C, and the peak cladding temperature is supposed to reach at about 620 .deg. C during the normal operation. Therefore Zr.base alloys, which have been widely known and adopted for the cladding material due to their excellent neutron economics, are no more adequate at these operating conditions. Fe-base ODS alloys in general has a good high temperature strength at the above high temperature as well as the neutron resistance. In this study a range of commercial grade ODS alloys and their applications are reviewed, including an investigation of the stability of a commercial grade 20% Cr Fe-base ODS alloy(MA956). The alloy was evaluated in terms of the fracture toughness change along with the aging treatment. Also an attempt of the development of 9% Cr Fe-base ODS alloys is introduced

  12. Superalloy applications in the nuclear field

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Padilha, A.F.

    1984-01-01

    The process conditions in the areas of nuclear fuel processing, fabrication, utilization, reprocessing and disposal are severe, demanding therefore the use of materials with high temperature mechanical strength and corrosion resistance. A number of refractory metal containing superalloys have found application in the diferrent areas of the nuclear field. The main aspects of the microstructure, strengthening mechanisms and corrosion resistance of 3 superalloys, namely Incoloy 825, Inconel 718 and Hastelloy C have been discussed. The role of the refractory metal elements in influencing the mechanical strength and corrosion resistance of superalloys has been emphasised. (Author) [pt

  13. Nuclear magnetic resonance and medicine. Present applications

    International Nuclear Information System (INIS)

    1984-01-01

    At the workshop on nuclear magnetic resonance and medicine held at Saclay, the following topics were presented: physical principles of NMR; NMR spectroscopy signal to noise ratio; principles of NMR imaging; methods of NMR imaging; image options in NMR; biological significance of contrast in proton NMR imaging; measurement and significance of relaxation times in cancers; NMR contrast agents; NMR for in-vivo biochemistry; potential effects and hazards of NMR applications in Medicine; difficulties of NMR implantation in Hospitals; NMR imaging of brain tumors and diseases of the spinal cord; NMR and Nuclear Medicine in brain diseases [fr

  14. Probabilistic pipe fracture evaluations for leak-rate-detection applications

    International Nuclear Information System (INIS)

    Rahman, S.; Ghadiali, N.; Paul, D.; Wilkowski, G.

    1995-04-01

    Regulatory Guide 1.45, open-quotes Reactor Coolant Pressure Boundary Leakage Detection Systems,close quotes was published by the U.S. Nuclear Regulatory Commission (NRC) in May 1973, and provides guidance on leak detection methods and system requirements for Light Water Reactors. Additionally, leak detection limits are specified in plant Technical Specifications and are different for Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). These leak detection limits are also used in leak-before-break evaluations performed in accordance with Draft Standard Review Plan, Section 3.6.3, open-quotes Leak Before Break Evaluation Proceduresclose quotes where a margin of 10 on the leak detection limit is used in determining the crack size considered in subsequent fracture analyses. This study was requested by the NRC to: (1) evaluate the conditional failure probability for BWR and PWR piping for pipes that were leaking at the allowable leak detection limit, and (2) evaluate the margin of 10 to determine if it was unnecessarily large. A probabilistic approach was undertaken to conduct fracture evaluations of circumferentially cracked pipes for leak-rate-detection applications. Sixteen nuclear piping systems in BWR and PWR plants were analyzed to evaluate conditional failure probability and effects of crack-morphology variability on the current margins used in leak rate detection for leak-before-break

  15. Radiation Detection Overview for Nuclear Emergency Response

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-16

    This presentation discusses the fundamentals of gamma and neutron detection; presents an overview of the DOE Triage and JTOT Programs, gamma, and neutron signatures in select measurements; and offers a detector demonstration.

  16. Clinical nuclear medicine applications in Turkey and specific renal studies

    International Nuclear Information System (INIS)

    Erbas, B.

    2004-01-01

    Full text: Nuclear cardiology, nuclear oncology, pediatric nuclear medicine and nuclear endocrinology are the main application areas of clinical nuclear medicine in Turkey. Not only imaging studies, but also therapeutic application of radiopharmaceuticals is also performed at many institutes, such as hyperthyroidism treatment with radioiodine, thyroid cancer ablation and metastases treatment with radioiodine, radio synovectomy, metastatic pain therapy, and recently radioimmunotherapy of lymphomas. Almost all radionuclides and radiopharmaceuticals are obtained commercially from European countries, except 18-FDG which is obtained from two cyclotrons in Turkey. More than 30.000 renal procedures are performed at the University hospitals in a year. Pediatric age groups is approximately % 55 of patients. 99mTc-DTPA (%44), 99mTc-DMSA (%37), 99mTc-MAG3 (%17) and 99mTc-EC (%2) are the most commonly used radiopharmaceuticals for renal imaging. More than 6.000 vials of several pharmaceuticals are used for renal cortical scintigraphy (%35), dynamic renal imaging (%34), renal scintigraphy with diuretic (%27) and captopril scintigraphy (%4). Most common indication for renal cortical scintigraphy is detection of cortical scarring (%53). In addition, using single plasma sample method or gamma-camera method renal clearance measurements with 99mTc-MAG3 99mTc-DTPA have been used at some institutions

  17. Clinical nuclear medicine applications in Turkey and specific renal studies

    International Nuclear Information System (INIS)

    Erbas, B.

    2004-01-01

    Nuclear cardiology, nuclear oncology, pediatric nuclear medicine and nuclear endocrinology are the main application areas of clinical nuclear medicine in Turkey. Not only imaging studies, but also therapeutic application of radiopharmaceuticals is also performed at many institutes, such as hyperthyroidism treatment with radioiodine, thyroid cancer ablation and metastases treatment with radioiodine, radio synovectomy, metastatic pain therapy, and recently radioimmunotherapy of lymphomas. Almost all radionuclides and radiopharmaceuticals are obtained commercially from European countries, except 18-FDG which is obtained from two cyclotrons in Turkey. More than 30.000 renal procedures are performed at the University hospitals in a year. Pediatric age groups is approximately % 55 of patients. 99m Tc-DTPA (%44), 99m Tc-DMSA (%37), 99m Tc-MAG3 (%17) and 99m Tc-EC (%2) are the most commonly used radiopharmaceuticals for renal imaging. More than 6.000 vials of several pharmaceuticals are used for renal cortical scintigraphy (%35), dynamic renal imaging (%34), renal scintigraphy with diuretic (%27) and captopril scintigraphy (%4). Most common indication for renal cortical scintigraphy is detection of cortical scarring (%53). In addition, using single plasma sample method or gamma-camera method renal clearance measurements with 99m Tc-MAG3 99m Tc-DTPA have been used at some institutions. (author)

  18. The multiple applications of the nuclear techniques in Argentina

    International Nuclear Information System (INIS)

    Manzini, Alberto C.

    2001-01-01

    A review is given of the use of nuclear technology in Argentina, especially in the field of the production of radioisotopes and radiopharmaceuticals, nuclear medicine, and industrial applications. The applications of ionizing radiation are also reviewed

  19. Thermosyphon evaporator for nuclear waste management application

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Rajani; Singh, A K; Rana, D S [Waste Management Projects Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Nuclear plant equipment are associated with radioactive material which needs to be safely contained under all conditions of operation. Because of large radioactivity associated with the operations of nuclear waste management plants, the equipment are not accessible to human intervention. Hence, the design of the equipment needs to incorporate features for high reliability and safety so as to avoid unnecessary outage. As far as possible the equipment must be maintenance free. Wherever maintenance is inevitable, it has to be designed to be carried out without exposure of personnel to radiation, preventing spread of radiation or contamination. This paper outlines the design features of a thermosyphon evaporator for nuclear application. (author). 2 figs., 1 tab.

  20. Radiochemistry and its application to nuclear medicine

    International Nuclear Information System (INIS)

    Welch, J.J.

    1990-01-01

    The role of the radiochemist in Nuclear Medicine has increased since the early 1960's. At that time the first medical 99 Mo/ 99m /Tc generator was developed at Brookhaven National Laboratory and the first hospital based cyclotron installed at Washington University. Radiochemists have been involved in both the development and application of generator and accelerator based radiopharmaceuticals. The development of oxygen-15, nitrogen 13, carbon-11 and fluorine-18 simple compound and synthetic precursors will be discussed. In recent years new high current accelerators have been proposed from Nuclear Medicine isotope production. Generator produced radiopharmaceuticals continue to play a major role in Nuclear Medicine. Problems in the development of targetry to produce parent nuclides as well as challenges in generator development will be described

  1. Nuclear decay data: some applications and needs

    International Nuclear Information System (INIS)

    Reich, C.W.

    1985-01-01

    Nuclear decay data have broad relevance to a number of basic scientific disciplines as well as to many areas of technology. In this paper we discuss selected applications where decay data are making, or promise to make, important contributions. The following specific illustrations are discussed: the large body of precise new actinide-nuclide decay data produced through the work of the recently concluded IAEA Coordinated Research Program on the Measurement and Evaluation of Transactinium Isotope Nuclear Decay Data; the use of actinide-nuclide half-lives as reference standards in nuclear-data measurements; and the relevance of short-lived fission-product decay data to basic physics and reactor technology and some of the problems and challenges that they present to both theory and experiment

  2. Thermosetting resins for nuclear track detection

    International Nuclear Information System (INIS)

    Fujii, M.

    1985-01-01

    Several new thermosetting resins with a three dimensional network structure like CR-39 were polymerized to study their characteristics for use as nuclear track detectors. During the course of this study, thermosetting resins with good etching properties and various sensitivities have been obtained. The comparison of the molecular structures of these resins gives up an important clue for the development of highly sensitive polymeric track detectors. They will also be useful for observations of ultra-heavy cosmic rays and heavily ionizing particles at low energies. (orig.)

  3. Thermosetting resins for nuclear track detection

    International Nuclear Information System (INIS)

    Fujii, Masami; Yokota, Rikio

    1985-01-01

    Several new thermosetting resins with a three dimensional network structure like CR-39 were polymerized to study their characteristics for use as nuclear track detectors. During the course of this study, thermosetting resins with good etching properties and various sensitivities have been obtained. The comparison of the molecular structures of these resins gives us an important clue for the development of highly sensitive polymeric track detectors. They will also be useful for observations of ultra-heavy cosmic rays and heavily ionizing particles at low energies. (author)

  4. Applications of lithium in nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Oliviera, Glaucia A.C. de; Bustillos, José O.V.; Ferreira, João C.; Bergamaschi, Vanderlei S.; Moraes, Rafaeli M. de; Gimenez, Maíse P.; Miyamoto, Flavia K.; Seneda, José A., E-mail: glaucia.oliveira@ipen.br, E-mail: ovega@ipen.br, E-mail: jcferrei@ipen.br, E-mail: vsberga@ipen.br, E-mail: rafaeli.medeiros.moraes@gmail.com, E-mail: maisepastore@hotmail.com, E-mail: fla.kimiyamoto@gmail.com, E-mail: jaseneda@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), Paulo, SP (Brazil)

    2017-07-01

    Lithium is a material of great interest in the world, it is found in different minerals on Earth's crust (spodumene, lepidolite, amblygonite and petalite) also in salt pans. This element belongs to alkaline group and has two natural isotopes: Li-6 and Li-7. In the nuclear field, lithium isotopes are used for different purposes. The Li-6 is applied in the production of energy, because its section of shock is larger than the other isotope. The Li-7 regulates the pH in refrigerant material in the primary circuits of the Pressurized Water Nuclear Reactor (PWR). In nuclear reactor, lithium is used as a heat transfer due its boiling temperature (1342°C), making it an excellent thermal conductor. However, to reach all these applications, lithium must have high purity (> 99%). The main processes to reach a high purity level of lithium employee a combination of solvent extraction and ion exchange process, to obtain its salts or ending with chemical electrolysis of its chlorides to obtain its pure metal. This work presents a review of new applications of Lithium in Nuclear Energy and its purification and enrichment processes. (author)

  5. Applications of lithium in nuclear energy

    International Nuclear Information System (INIS)

    Oliviera, Glaucia A.C. de; Bustillos, José O.V.; Ferreira, João C.; Bergamaschi, Vanderlei S.; Moraes, Rafaeli M. de; Gimenez, Maíse P.; Miyamoto, Flavia K.; Seneda, José A.

    2017-01-01

    Lithium is a material of great interest in the world, it is found in different minerals on Earth's crust (spodumene, lepidolite, amblygonite and petalite) also in salt pans. This element belongs to alkaline group and has two natural isotopes: Li-6 and Li-7. In the nuclear field, lithium isotopes are used for different purposes. The Li-6 is applied in the production of energy, because its section of shock is larger than the other isotope. The Li-7 regulates the pH in refrigerant material in the primary circuits of the Pressurized Water Nuclear Reactor (PWR). In nuclear reactor, lithium is used as a heat transfer due its boiling temperature (1342°C), making it an excellent thermal conductor. However, to reach all these applications, lithium must have high purity (> 99%). The main processes to reach a high purity level of lithium employee a combination of solvent extraction and ion exchange process, to obtain its salts or ending with chemical electrolysis of its chlorides to obtain its pure metal. This work presents a review of new applications of Lithium in Nuclear Energy and its purification and enrichment processes. (author)

  6. Sign Detection Theory and Its Applications.

    Science.gov (United States)

    Heine, M. H.

    1984-01-01

    Offers characterization of sign-transmission which is more general than conventional signal-transmission theory. Concepts and terminology, formal description of individual communications process, reconciliation with classical signal-detection theory, applications of sign-detection formalism to information retrieval on MEDLINE database, and a…

  7. Nuclear science in the 20th century. Nuclear technology applications in material science

    International Nuclear Information System (INIS)

    Pei Junchen; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear technology to material science has led to a new cross subject, nuclear material science (also named nuclear solid physics) which covers material analysis, material modification and new material synthesis. This paper reviews the development of nuclear technical applications in material science and the basic physics involved

  8. CR-39 plastic nuclear track detector and its application in nuclear science

    International Nuclear Information System (INIS)

    Zhai Pengji; Tang Xiaowei; Wang Long; Liang Tianjiao

    2000-01-01

    The transparent and stable plastic material CR-39 can be used as a nuclear track detector which is highly sensitive to charged particles. It can record tracks induced by protons , alphas, fission fragments and other charged particles. Among various available solid state nuclear track detectors CR-39 has the lowest deposited energy density detection-threshold. The response of CR-39 to charged particles and the response curve of υ T of different charged particles to REL are given. The CR-39 detector is widely used in studies of nuclear reactions, angular distributions and reaction cross-sections caused by neutrons and charged particles. Neutron spectra, over a wide energy range, can be measured by the combination of CR-39 and a transformation screen. The successful applications of CR-39 in alpha particle dosimetry, environmental science (especially in the measurement of radon) and in biomedicine, such as the analysis of alpha radioactivity in sections of organic tissues, are described

  9. Thorium dioxide: properties and nuclear applications

    International Nuclear Information System (INIS)

    Belle, J.; Berman, R.M.

    1984-01-01

    This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core

  10. Nuclear and radiochemistry fundamentals and applications

    CERN Document Server

    Lieser, Karl Heinrich

    2001-01-01

    his new edition of the best-selling handbook gives a complete and concise description of the latest knowledge on nuclear and radiochemistry as well as their applications in the various fields of science. It is based on over 40 years experience in teaching courses and research.The book is aimed at all researchers seeking sound knowledge about the properties of matter, whether chemists, physicists, medical doctors, mineralogists or biologists. All of them will find this a valuable source of information

  11. Thorium dioxide: properties and nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Belle, J.; Berman, R.M. (eds.)

    1984-01-01

    This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core.

  12. Nuclear plant analyzer development and analysis applications

    International Nuclear Information System (INIS)

    Laats, E.T.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is being developed as the U.S. Nuclear Regulatory Commission's (NRC's) state of the art safety analysis and engineering tool to address key nuclear plant safety issues. The NPA integrates the NRC's computerized reactor behavior simulation codes such as RELAP5 and TRAC-BWR, both of which are well-developed computer graphics programs, and large repositories of reactor design and experimental data. Utilizing the complex reactor behavior codes as well as the experiment data repositories enables simulation applications of the NPA that are generally not possible with more simplistic, less mechanistic reactor behavior codes. These latter codes are used in training simulators or with other NPA-type software packages and are limited to displaying calculated data only. This paper describes four applications of the NPA in assisting reactor safety analyses. Two analyses evaluated reactor operating procedures, during off-normal operation, for a pressurized water reactor (PWR) and a boiling water reactor (BWR), respectively. The third analysis was performed in support of a reactor safety experiment conducted in the Semiscale facility. The final application demonstrated the usefulness of atmospheric dispersion computer codes for site emergency planning purposes. An overview of the NPA and how it supported these analyses are the topics of this paper

  13. Artificial intelligence applications to nuclear reactor diagnostics

    International Nuclear Information System (INIS)

    Lee, J.C.; Hassberger, J.A.; Wehe, D.K.

    1987-01-01

    The authors research into applications of artificial intelligence to nuclear reactor diagnostics involves three main areas. In the first area, the authors combine reactor simulation models and expert systems to diagnose the state of the plant. The second area examines ways in which the rule or knowledge base of an intelligent controller can be generated systematically from either fault trees or acquired plant data. Third, efforts are described to develop the capabilities to validate these techniques in a realistic reactor setting. The techniques are applicable to all reactor types, including fast reactors

  14. Necessity of long term nuclear data development for various applications needing nuclear data

    International Nuclear Information System (INIS)

    Fukahori, Tokio

    2001-01-01

    Necessity of long term nuclear data development for accelerator-driven system target design, high-energy radiation shielding, medical application, space and astrophysical applications, etc. is described in this paper. For each application field needing nuclear data, considered were importance of nuclear data in determining the success or failure of the application, important gaps remaining in the nuclear data and feasibility of filling the gaps with a modest research effort. It can be concluded much more international discussions are required. (author)

  15. Thermosetting resins for nuclear track detection

    International Nuclear Information System (INIS)

    Fujii, M.; Yokota, R.

    1986-01-01

    Several new thermosetting resins with a three dimensional network structure similar to that of CR-39 were polymerized to study their characteristics as nuclear track detectors. The comparison of the molecular structures of these resins gives us an important clue to develop highly sensitive polymeric track detectors. For example, butanediol bis allylcarbonate (BuAC) shows the sensitivity about ten times higher than diallyl and adipate (DAA). This suggests the carbonate groups in the BuAC molecule provide a much higher sensitivity than the ester groups in the DAA. During the course of this study, thermosetting resins with good etching properties and various sensitivities have been developed. Though the sensitivity of DAA is low, it will be useful for observations of ultra heavy cosmic rays and heavily ionizing particles at low energies. (author)

  16. Application of nuclear energy in Vietnam

    International Nuclear Information System (INIS)

    Van Thuan, V.

    2006-01-01

    Full text: Radioactive isotopes were introduced to medical treatment in Vietnam very early by M. Curie in 1923. A research reactor has been in operation since 1963 serving up to now an effective base for radioisotope production and nuclear analysis. After reunification of the country, the nuclear technique applications are developing faster and getting widespread. The twenty-year period from 1976 to 1995 was relatively limited by activity of R and D institutions. Nowadays, their interaction with companies demonstrates a dynamic commercialization of nuclear techniques in Vietnam. Investment from government as well as from the private sector has been increased significantly for the last ten years to nuclear medicine and radiotherapy. The radiographic NDT is getting a familiar technique to industry, particularly, in construction of strategy-important industrial and civil projects. NCS are upgraded in different factories, such as mining, ore processing and cement industries. Tracer techniques have shown benefit in oil offshore exploring and in sedimentation management of rivers and harbours. Isotope techniques are playing a competitive role for environmental monitoring and underground water management in the country. Radiation processing is transferred to a commercial scale emphasizing on sterilization of medical products and food preservation. There are still some problems such as public acceptance of radioactive techniques or a lack of both infrastructure and manpower to meet the national demands. However, the government of Vietnam has recently approved the national strategy for peaceful uses of atomic energy, which not only highlights the development of isotope and radiation applications in near future, but also clearly emphasizes the need of nuclear electrical generation by 2017-2020 for the national energy security

  17. Solid State nuclear track detector - [Part] III : applications in science and technology

    International Nuclear Information System (INIS)

    Lal, Nand

    1992-01-01

    The present article describes the applications of solid state nuclear track detection techniques in different branches of science (e.g. life sciences, nuclear physics, cosmic ray and solar physics, earth sciences, teaching laboratories) and technology with selected examples from voluminous literature available on the subject. (author). 28 refs., 6 figs., 3 tabs

  18. Summary of nuclear-excavation applications

    Energy Technology Data Exchange (ETDEWEB)

    Toman, John [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Although many nuclear-excavation applications have been proposed, few have been seriously considered and none have been brought to fruition. This paper summarizes and discusses specific examples of a canal, a harbor, a highway cut and a nuclear quarry, all of which have been studied in some detail. It is believed that useful demonstration projects - such as a deep-water harbor and a nuclear quarry - can be safely accomplished with existing technology. Current assessments of the feasibility of constructing a sea-level canal in either Panama or Colombia appear to be favorable from a technical viewpoint. The concept of close spacing in row-charge designs has made it possible to greatly reduce the estimated required salvo yields for both proposed canals. Salvo yields have been reduced from 35 Mt to 13 Mt in Colombia and 11 Mt in Panama. As a result, the seismic motions predicted for large cities in these countries are similar to motions produced in populated areas in the United States by nuclear tests and earthquakes in which no real damage to residential or high-rise structures was noted. (author)

  19. Summary of nuclear-excavation applications

    International Nuclear Information System (INIS)

    Toman, John

    1970-01-01

    Although many nuclear-excavation applications have been proposed, few have been seriously considered and none have been brought to fruition. This paper summarizes and discusses specific examples of a canal, a harbor, a highway cut and a nuclear quarry, all of which have been studied in some detail. It is believed that useful demonstration projects - such as a deep-water harbor and a nuclear quarry - can be safely accomplished with existing technology. Current assessments of the feasibility of constructing a sea-level canal in either Panama or Colombia appear to be favorable from a technical viewpoint. The concept of close spacing in row-charge designs has made it possible to greatly reduce the estimated required salvo yields for both proposed canals. Salvo yields have been reduced from 35 Mt to 13 Mt in Colombia and 11 Mt in Panama. As a result, the seismic motions predicted for large cities in these countries are similar to motions produced in populated areas in the United States by nuclear tests and earthquakes in which no real damage to residential or high-rise structures was noted. (author)

  20. Meta-material for nuclear particle detection

    Science.gov (United States)

    Merlo, V.; Salvato, M.; Lucci, M.; Ottaviani, I.; Cirillo, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.; Celentano, G.; Pietropaolo, A.

    2017-02-01

    Superconducting strips coated with boron were engineered with a view to subnuclear particle detection. Combining the characteristics of boron as a generator of α-particles (as a consequence of neutron absorption) and the ability of superconducting strips to act as resistive switches, it is shown that fabricated Nb-boron and NbN-boron strips represent a promising basis for implementing neutron detection devices. In particular, the superconducting transition of boron-coated NbN strips generates voltage outputs of the order of a few volts thanks to the relatively higher normal state resitivity of NbN with respect to Nb. This result, combined with the relatively high transition temperature of NbN (of the order of 16 K for the bulk material), is an appealing prospect for future developments. The coated strips are meta-devices since their constituting material does not exist in nature and it is engineered to accomplish a specific task, i.e. generate an output voltage signal upon α-particle irradiation.

  1. Applications of nuclear physics: Future trends

    International Nuclear Information System (INIS)

    Eichler, R.

    2005-01-01

    Nuclear physics and energy research depends on and advances science and technology outside of the nuclear field. Perhaps the most commonly perceived benefits to society from nuclear and particle physics are those derived from particle beam technology. Charged particle accelerators play an increasing role in applications in industry and medicine. Neutrons produced with a high power proton accelerator in a spallation process are used from basic research, radiography in automotive industry (example fuel cell development) to transmutation of highly radioactive fission products. Production and acceleration of ultra cold neutrons provide intense and almost mono-energetic neutrons to study soft matter. Heavier radioisotopes are used in a wide field ranging from medicine to semiconductor industry (ion implantation for doping or coating technologies). Concrete examples and future trends will be given. Detailed understanding of ion physics at low energy allows the design of compact accelerator mass spectroscopy (close to table top size). The ability to measure concentrations of specific radioactive isotopes even below the natural radioactivity widens the scope of applications from archaeology, climate research to food industry. Such a compact device is close to commercialisation. (author)

  2. Failure position detection device for nuclear fuel rod

    International Nuclear Information System (INIS)

    Ishida, Takeshi; Higuchi, Shin-ichi; Ito, Masaru; Matsuda, Yasuhiko

    1987-01-01

    Purpose: To easily detect failure position of a nuclear fuel rod by relatively moving an air-tightly shielded detection portion to a fuel rod. Constitution: For detecting the failure position of a leaked fuel assembly, the fuel assembly is dismantled and a portion of withdrawn fuel rod is air-tightly sealed with an inspection portion. The inside of the inspection portion is maintained at a pressure-reduced state. Then, in a case if failed openings are formed at a portion sealed by the inspection portion in the fuel rod, FP gases in the fuel rod are released based on the reduced pressure and the FP gases are detected in the detection portion. Accordingly, by relatively moving the detection portion to the fuel rod, the failure position can be detected. (Yoshino, Y.)

  3. Failure position detection device for nuclear fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Takeshi; Higuchi, Shin-ichi; Ito, Masaru; Matsuda, Yasuhiko

    1987-03-24

    Purpose: To easily detect failure position of a nuclear fuel rod by relatively moving an air-tightly shielded detection portion to a fuel rod. Constitution: For detecting the failure position of a leaked fuel assembly, the fuel assembly is dismantled and a portion of withdrawn fuel rod is air-tightly sealed with an inspection portion. The inside of the inspection portion is maintained at a pressure-reduced state. Then, in a case if failed openings are formed at a portion sealed by the inspection portion in the fuel rod, FP gases in the fuel rod are released based on the reduced pressure and the FP gases are detected in the detection portion. Accordingly, by relatively moving the detection portion to the fuel rod, the failure position can be detected. (Yoshino, Y.).

  4. Qualitative knowledge engineering for nuclear applications

    International Nuclear Information System (INIS)

    Kim, Jae H.; Kim, Ko R.; Lee, Jae C.

    1996-01-01

    After the TMI nuclear power plant accident, the two topics of plant safety and operational efficiency became more important areas of artificial intelligence, which have difference characteristics. Qualitative deep model is the recently prospective technology of AI, that can overcome several handicaps of the existing expert systems such as lack of common sense reasoning. The application of AI to the large and complex system like nuclear power plants is typically and effectively done through a module-based hierarchical system. As each module has to be built with suitable AI system. Through the experiences of hierarchical system construction, we aimed to develop basic AI application schemes for the power plant safety and operational efficiency as well as basic technologies for autonomous power plants. The goal of the research is to develop qualitative reasoning technologies for nuclear power plants. For this purpose, the development of qualitative modeling technologies and qualitative behaviour prediction technologies of the power plant are accomplished. In addition, the feasibility of application of typical qualitative reasoning technologies to power plants is studied . The goal of the application is to develop intelligent control technologies of power plants, support technologies. For these purposes, we analyzed the operation of power plants according to its operation purpose: power generation operation, shut-down and start-up operation. As a result, qualitative model of basic components were sketched, including pipes, valves, pumps and heat exchangers. Finally, plant behaviour prediction technologies through qualitative plant heat transfer model and design support technologies through 2nd-order differential equation were developed. For the construction of AI system of power plants, we have studied on the mixed module based hierarchical software. As a testbed, we have considered the spent fuel system and the feedwater system. We also studied the integration

  5. Nuclear pharmacy: An introduction to the clinical application of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Chilton, H.M.; Witcofski, R.L.

    1986-01-01

    This introductory text reviews fundamental concepts of nuclear pharmacy in a logical, stepwise manner. It presents those aspects of radioactivity basic to nuclear pharmacy including production of radioactivity and the types of instrumentation used to detect and measure radiation

  6. Nuclear energy and its medical application

    International Nuclear Information System (INIS)

    Jain, S.K.

    2010-01-01

    Ionising radiation is used in radiotherapy to treat cancer and to sterilise medical equipment because it destroys cells. Radioactive tracers are used in nuclear medicine because the ionising radiation it emits is easy to detect. There are three main uses of ionising radiation in medicine: treatment, diagnosis and sterilisation. Radiotherapy is used to treat cancers by irradiating them with ionising radiation. Radioactive tracers are used to diagnose and investigate several medical conditions. Ionising radiation is used to sterilise medical equipment as it kills germs and/or bacteria

  7. Detecting and identifying underground nuclear explosions

    International Nuclear Information System (INIS)

    Spiliopoulos, S.

    1996-01-01

    The monitoring of underground nuclear explosions involves, first determining that the signals have originated from a test site and if so, then a pattern recognition analysis is undertaken to determine whether the signals originate from an explosion rather than an earthquake. In this we are aided by seismic observations of previous explosions from each test site. To determine the origin of a signal use is first made of the two seismic arrays in central Australia. Each of these arrays consists of 20 spatially separated sensors (seismometers), and each of which can provide a preliminary estimate of the location of the source. In practice this is done automatically by inserting delays into the output of each of the sensors to compensate for a seismic signal taking a finite time to cross the array, and then adding the output of each sensor to form what are called 'array beams'. When the correct delays for a particular azimuth and wavespeed (corresponding to a particular source location) have been inserted, the signals recorded by each sensor will be in phase and the energy in the array beam will be a maximum. Because the seismic background noise at each sensor is not correlated, this beam forming also improves the signal-to-noise ratio. In this sense a seismic array is equivalent to other arrays of sensors - e.g. a radar antenna. Having determined that a signal originates from somewhere near a test site a more precise location can be obtained from the times that the signal arrives at different seismic stations

  8. Detecting and identifying underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Spiliopoulos, S. [Australian Geological Survey Organisation, Anzac Park, Canberra, ACT (Australia). Department of Primary Industry

    1996-12-31

    The monitoring of underground nuclear explosions involves, first determining that the signals have originated from a test site and if so, then a pattern recognition analysis is undertaken to determine whether the signals originate from an explosion rather than an earthquake. In this we are aided by seismic observations of previous explosions from each test site. To determine the origin of a signal use is first made of the two seismic arrays in central Australia. Each of these arrays consists of 20 spatially separated sensors (seismometers), and each of which can provide a preliminary estimate of the location of the source. In practice this is done automatically by inserting delays into the output of each of the sensors to compensate for a seismic signal taking a finite time to cross the array, and then adding the output of each sensor to form what are called `array beams`. When the correct delays for a particular azimuth and wavespeed (corresponding to a particular source location) have been inserted, the signals recorded by each sensor will be in phase and the energy in the array beam will be a maximum. Because the seismic background noise at each sensor is not correlated, this beam forming also improves the signal-to-noise ratio. In this sense a seismic array is equivalent to other arrays of sensors - e.g. a radar antenna. Having determined that a signal originates from somewhere near a test site a more precise location can be obtained from the times that the signal arrives at different seismic stations

  9. Application of Nuclear Application Programs to APR1400 Simulator

    International Nuclear Information System (INIS)

    Hwang, Do Hyun; Lee, Myeong Soo; Hong, Jin Hyuk

    2012-01-01

    Advanced Power Reactor 1400MWe (APR1400) simulator has been developed and installed at Kori Training Center for operators of ShinKori no.3, 4 nuclear power plant by Korea Hydro and Nuclear Power,s Central Research Institute (KHNP CRI). NAPS (Nuclear Application Programs) is a computerbased system which provides operators with past and real-time information for monitoring and controlling NSSS (Nuclear Steam Supply System), BOP (Balance Of Plant) and Electric system. NAPS consists of several programs such as COLSS (Core Operating Limit Supervisory System), SPADES+ (Safety Parameter Display and Evaluation System), CEA (Control Element Assembly) Application Program, and so on. Each program makes calculations based on its own algorithm and provides information available for operation. In order to use NAPS programs with a simulator even though they are being used in a real plant, they should be modified to add several simulation functions such as reset, snap, run/freeze and backtrack required by ANSI/ANS-3.5 to the original NAPS functionality. On top of that, interfacing programs should be developed for the data communication between respective NAPS programs and simulator sever. The purpose of this paper is to provide the overall architecture of the communication system between NAPS and simulator model, and to describe the method to apply NAPS to APR1400 simulator

  10. Chemistry of cements for nuclear applications

    International Nuclear Information System (INIS)

    Barrett, P.; Glasser, F.P.

    1992-01-01

    In recent times the nuclear industry has thrown up challenges which cannot be met by the application of conventional civil and materials engineering knowledge. The contributions in this volume investigate all aspects of cement performance. The scope of the papers demonstrates the current balance of activities which have as their objective the elucidation of kinetics and immobilization, determining material interactions and of assessing future performance. The papers reflect the varied goals of the sponsors who include national governments, the Commission of the European Communities and the nuclear industries. In six parts attention is paid to the durability of cement and concrete in repository environment; interactions between cement, waste components and ground water; properties and performance of cement materials; leach behavior and mechanisms, diffusional properties of cement and concrete, including porosity-permeability relationships; and thermodynamics of cementitious systems and modelling of cement performance

  11. Limits of Tumor Detectability in Nuclear Medicine and PET

    Directory of Open Access Journals (Sweden)

    Yusuf Emre Erdi

    2012-04-01

    Full Text Available Objective: Nuclear medicine is becoming increasingly important in the early detection of malignancy. The advantage of nuclear medicine over other imaging modalities is the high sensitivity of the gamma camera. Nuclear medicine counting equipment has the capability of detecting levels of radioactivity which exceed background levels by as little as 2.4 to 1. This translates to only a few hundred counts per minute on a regular gamma camera or as few as 3 counts per minute when using coincidence detection on a positron emission tomography (PET camera. Material and Methods: We have experimentally measured the limits of detectability using a set of hollow spheres in a Jaszczak phantom at various tumor-to-background ratios. Imaging modalities for this work were (1 planar, (2 SPECT, (3 PET, and (4 planar camera with coincidence detection capability (MCD. Results: When there is no background (infinite contrast activity present, the detectability of tumors is similar for PET and planar imaging. With the presence of the background activity , PET can detect objects in an order of magnitude smaller in size than that can be seen by conventional planar imaging especially in the typical clinical low (3:1 T/B ratios. The detection capability of the MCD camera lies between a conventional nuclear medicine (planar / SPECT scans and the detection capability of a dedicated PET scanner Conclusion: Among nuclear medicine’s armamentarium, PET is the closest modality to CT or MR imaging in terms of limits of detection. Modern clinical PET scanners have a resolution limit of 4 mm, corresponding to the detection of tumors with a volume of 0.2 ml (7 mm diameter in 5:1 T/B ratio. It is also possible to obtain better resolution limits with dedicated brain and animal scanners. The future holds promise in development of new detector materials, improved camera design, and new reconstruction algorithms which will improve sensitivity, resolution, contrast, and thereby further

  12. Simulation of land mine detection processes using nuclear techniques

    International Nuclear Information System (INIS)

    Aziz, M.

    2005-01-01

    A computer models were designed to study the processes of land mine detection using nuclear technique. Parameters that affect the detection were analyzed . Mines of different masses at different depths in the soil are considered using two types of sources , 252 C f and 14 MeV neutron source. The capability to differentiate between mines and other objects such as concrete , iron , wood , Aluminum ,water and polyethylene were analyzed and studied

  13. U.S. Forward Operating Base Applications of Nuclear Power

    International Nuclear Information System (INIS)

    Griffith, George W.

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  14. IAEA safeguards and detection of undeclared nuclear activities

    International Nuclear Information System (INIS)

    Harry, R.J.S.

    1996-03-01

    Verfication of State declarations is an essential feature of IAEA safeguards. The issue of completeness of the declaration of all nuclear material, nuclear activities and nuclear facilities arises only in full scope safeguards, like those pursuant to NPT. Concentrating on the accountability aspect of nuclear material, the NPT safeguards system has achieved a high level of objective and quantified performance. Some of the basic ideas of the drafters of INFCIRC/153 (corrected) have been stalled. Non-proliferation concerns demand also for a detection probability for undeclared nuclear activities. Following the example of the Chemical Weapon Convention (CWC), advanced detection techniques are proposed, which go beyond the classical nuclear material accountability approach. Recent proposals for additional measures to strengthen IAEA safeguards conform to rules of NPT and related safeguards. Some proposals have been agreed generally, others can only be implemented on a voluntary basis between the State and the IAEA. The implementation will require additional resources and support for the IAEA. Great care is required to maintain the existing capability of the IAEA for a technically sound, independent, objective, and internationally acceptable judgement with available resources, and at the same time to change emphasis on certain elements of the existing safeguards system. (orig.)

  15. IAEA safeguards and detection of undeclared nuclear activities

    Energy Technology Data Exchange (ETDEWEB)

    Harry, R.J.S.

    1996-03-01

    Verfication of State declarations is an essential feature of IAEA safeguards. The issue of completeness of the declaration of all nuclear material, nuclear activities and nuclear facilities arises only in full scope safeguards, like those pursuant to NPT. Concentrating on the accountability aspect of nuclear material, the NPT safeguards system has achieved a high level of objective and quantified performance. Some of the basic ideas of the drafters of INFCIRC/153 (corrected) have been stalled. Non-proliferation concerns demand also for a detection probability for undeclared nuclear activities. Following the example of the Chemical Weapon Convention (CWC), advanced detection techniques are proposed, which go beyond the classical nuclear material accountability approach. Recent proposals for additional measures to strengthen IAEA safeguards conform to rules of NPT and related safeguards. Some proposals have been agreed generally, others can only be implemented on a voluntary basis between the State and the IAEA. The implementation will require additional resources and support for the IAEA. Great care is required to maintain the existing capability of the IAEA for a technically sound, independent, objective, and internationally acceptable judgement with available resources, and at the same time to change emphasis on certain elements of the existing safeguards system. (orig.).

  16. Coded aperture imaging system for nuclear fuel motion detection

    International Nuclear Information System (INIS)

    Stalker, K.T.; Kelly, J.G.

    1980-01-01

    A Coded Aperature Imaging System (CAIS) has been developed at Sandia National Laboratories to image the motion of nuclear fuel rods undergoing tests simulating accident conditions within a liquid metal fast breeder reactor. The tests require that the motion of the test fuel be monitored while it is immersed in a liquid sodium coolant precluding the use of normal optical means of imaging. However, using the fission gamma rays emitted by the fuel itself and coded aperture techniques, images with 1.5 mm radial and 5 mm axial resolution have been attained. Using an electro-optical detection system coupled to a high speed motion picture camera a time resolution of one millisecond can be achieved. This paper will discuss the application of coded aperture imaging to the problem, including the design of the one-dimensional Fresnel zone plate apertures used and the special problems arising from the reactor environment and use of high energy gamma ray photons to form the coded image. Also to be discussed will be the reconstruction techniques employed and the effect of various noise sources on system performance. Finally, some experimental results obtained using the system will be presented

  17. Leakage detection system in nuclear reactor container

    International Nuclear Information System (INIS)

    Kurosawa, Masahiko.

    1993-01-01

    The present invention comprises an injection means for adding radioactive materials to coolants in a container cooler, a gamma ray amplitude analyzer connected to coolant pipelines and a means for recording/transferring the data of the result of the measurement, a gamma ray amplitude analyzer connected to a drain water sump and a means for recording/transferring the data of the result of the measurement, a gamma ray amplitude analyzer connected to various kinds of pipelines and a means for recording/transferring the data of the result of the measurement, and a data processing means for comparing and analyzing the measured data of each of the gamma ray amplitude analyzers inputted from each of date recording/transferring means. The gamma ray amplitude analysis for each of the pipelines and drain water sump are conducted at an appropriate frequency, and the measured data are compared and analyzed, to improve the detection accuracy for a trace amount of leakage from each of the pressure pipelines and the container cooler coolant pipelines, thereby enabling to specify the pipeline having leakage. Maintenance efficiency is improved, and severe rupture accident in each of pressure pipelines is prevented previously. (N.H.)

  18. Video motion detection for physical security applications

    International Nuclear Information System (INIS)

    Matter, J.C.

    1990-01-01

    Physical security specialists have been attracted to the concept of video motion detection for several years. Claimed potential advantages included additional benefit from existing video surveillance systems, automatic detection, improved performance compared to human observers, and cost-effectiveness. In recent years, significant advances in image-processing dedicated hardware and image analysis algorithms and software have accelerated the successful application of video motion detection systems to a variety of physical security applications. Early video motion detectors (VMDs) were useful for interior applications of volumetric sensing. Success depended on having a relatively well-controlled environment. Attempts to use these systems outdoors frequently resulted in an unacceptable number of nuisance alarms. Currently, Sandia National Laboratories (SNL) is developing several advanced systems that employ image-processing techniques for a broader set of safeguards and security applications. The Target Cueing and Tracking System (TCATS), the Video Imaging System for Detection, Tracking, and Assessment (VISDTA), the Linear Infrared Scanning Array (LISA); the Mobile Intrusion Detection and Assessment System (MIDAS), and the Visual Artificially Intelligent Surveillance (VAIS) systems are described briefly

  19. Fiber optic sensors for nuclear power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu-603102 (India)

    2012-05-17

    Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

  20. New nuclear facilities and their analytical applications in China

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; He, X.; Ma, Y.H.; Ding, Y.Y.; Chai, Z.F.

    2014-01-01

    Nuclear analytical techniques are a family of modern analytical methods that are based on nuclear reactions, nuclear effects, nuclear radiations, nuclear spectroscopy, nuclear parameters, and nuclear facilities. Because of their combined characteristics of sensitivity and selectivity, they are widely used in projects ranging from life sciences to deep-space exploration. In this review article, new nuclear facilities and their analytical applications in China are selectively reviewed, covering the following aspects: large scientific facilities, national demands, and key scientific issues with the emphasis on the new achievements. (orig.)

  1. Device for detecting neutron flux in nuclear reactor. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Bessho, Y; Nishizawa, Y

    1976-07-30

    The object of the invention is to ensure accuracy in the operation of the nuclear reactor by reducing the difference that results between the readings of a Traversing Incore Probe (TIP) and a Local Power Range Monitor (LPRM) when the neutron flux distribution undergoes a change. In an apparatus for detecting neutrons in a nuclear reactor, an LPRM sensor comprising a layer containing a substance capable of nuclear fission, a section filled with argon gas and a collector is constructed so as to surround a TIP within a TIP guide tube at the height of the reactor axis. In this way, the LPRM detects the average value of neutron distribution in the region surrounding the TIP, so that no great difference between the readings of both the sensors is produced even if the neutron flux distribution is changed.

  2. System to detect nuclear materials by active neutron method

    International Nuclear Information System (INIS)

    Koroev, M.; Korolev, Yu.; Lopatin, Yu.; Filonov, V.

    1999-01-01

    The report presents the results of the development of the system to detect nuclear materials by active neutron method measuring delayed neutrons. As the neutron source the neutron generator was used. The neutron generator was controlled by the system. The detectors were developed on the base of the helium-3 counters. Each detector consist of 6 counters. Using a number of such detectors it is possible to verify materials stored in different geometry. There is an spectrometric scintillator detector in the system which gives an additional functional ability to the system. The system could be used to estimate the nuclear materials in waste, to detect the unauthorized transfer of the nuclear materials, to estimate the material in tubes [ru

  3. Nuclear analytical chemistry: recent developments and applications

    International Nuclear Information System (INIS)

    Acharya, R.

    2013-01-01

    Recent R and D studies on Nuclear Analytical Chemistry utilizing techniques like Neutron Activation Analysis (NAA), Prompt Gamma-ray NAA (PGNAA), Particle Induced Gamma Ray and X-Ray Emission (PICE/PIXE) for compositional analysis of materials have been summarized. The work includes developments and applications of (i) single comparator NAA, called as k 0 -NAA, (ii) k 0 -based internal monostandard NAA (IM-NAA), (iii) k 0 -based prompt gamma ray NAA (PGNAA) and (iv) instrumental NAA using thermal and epithermal neutrons and (v) PIGE and PIXE methods using proton beam for low Z and medium Z elements, respectively. (author)

  4. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond L; Murphy, Arthur T; Rosenthal, Daniel I

    1987-01-01

    Nuclear Energy: An Introduction to the Concepts, Systems, and Applications of Nuclear Processes introduces the reader to the concepts, systems, and applications of nuclear processes. It provides a factual description of basic nuclear phenomena, as well as devices and processes that involve nuclear reactions. The problems and opportunities that are inherent in a nuclear age are also highlighted.Comprised of 27 chapters, this book begins with an overview of fundamental facts and principles, with emphasis on energy and states of matter, atoms and nuclei, and nuclear reactions. Radioactivi

  5. The applications of nuclear techniques in nuclear medicine

    International Nuclear Information System (INIS)

    Zhao Huiyang

    1986-01-01

    There are a great deal of advanced techniques in nuclear medicine imaging, because many recent achivements of nuclear techniques have been applied to medicine in recent years. This paper presents the effects of nuclear techniques in development of nuclear medicine imaging. The first part describes radiopharmaceuticals and nuclear medicine imaging including commonly used 99m Tc labeled agents and cyclotron produced radionuclides for organ imaging. The second part describes nuclear medicine instrucments, including PECT, SPECT, MRI ect.; and discussions on the advantages, disadvantages and present status

  6. Potential applications of neural networks to nuclear power plants

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1991-01-01

    Application of neural networks to the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: diagnosing specific abnormal conditions, detection of the change of mode of operation, signal validation, monitoring of check valves, plant-wide monitoring using autoassociative neural networks, modeling of the plant thermodynamics, emulation of core reload calculations, monitoring of plant parameters, and analysis of plant vibrations. Each of these projects and its status are described briefly in this article. The objective of each of these projects is to enhance the safety and performance of nuclear plants through the use of neural networks

  7. NUCLEAR SAFETY DESIGN BASES FOR LICENSE APPLICATION

    International Nuclear Information System (INIS)

    Garrett, R.J.

    2005-01-01

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111 [DIRS 156605] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113 [DIRS 156605] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period

  8. Nuclear Safety Design Base for License Application

    International Nuclear Information System (INIS)

    R.J. Garrett

    2005-01-01

    The purpose of this report is to identify and document the nuclear safety design requirements that are specific to structures, systems, and components (SSCs) of the repository that are important to safety (ITS) during the preclosure period and to support the preclosure safety analysis and the license application for the high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. The scope of this report includes the assignment of nuclear safety design requirements to SSCs that are ITS and does not include the assignment of design requirements to SSCs or natural or engineered barriers that are important to waste isolation (ITWI). These requirements are used as input for the design of the SSCs that are ITS such that the preclosure performance objectives of 10 CFR 63.111(b) [DIRS 173273] are met. The natural or engineered barriers that are important to meeting the postclosure performance objectives of 10 CFR 63.113(b) and (c) [DIRS 173273] are identified as ITWI. Although a structure, system, or component (SSC) that is ITS may also be ITWI, this report is only concerned with providing the nuclear safety requirements for SSCs that are ITS to prevent or mitigate event sequences during the repository preclosure period

  9. Nuclear gauge application in road industry

    Science.gov (United States)

    Azmi Ismail, Mohd

    2017-11-01

    Soil compaction is essential in road construction. The evaluation of the degree of compaction relies on the knowledge of density and moisture of the compacted layers is very important to the performance of the pavement structure. Among the various tests used for making these determinations, the sand replacement density test and the moisture content determination by oven drying are perhaps the most widely used. However, these methods are not only time consuming and need wearisome procedures to obtain the results but also destructive and the number of measurements that can be taken at any time is limited. The test can on be fed back to the construction site the next day. To solve these problems, a nuclear technique has been introduced as a quicker and easier way of measuring the density and moisture of construction materials. Nuclear moisture density gauges have been used for many years in pavement construction as a method of non-destructive density testing The technique which can determine both wet density and moisture content offers an in situ method for construction control at the work site. The simplicity, the speed, and non-destructive nature offer a great advantage for quality control. This paper provides an overview of nuclear gauge application in road construction and presents a case study of monitoring compaction status of in Sedenak - Skudai, Johor rehabilitation projects.

  10. Prophetic forecast on the nuclear power applications

    International Nuclear Information System (INIS)

    Lee, Chang-Kun

    1996-01-01

    It was asked to attempt the ''prophetic forecast''. The time required for the doubling of world population continued to shrink, and now it is mere 40 years. The life of a contemporary person is now sustained by some 30,000 different ''daily necessities'', and despite such proliferation of options, the avarice for much more has not diminished. Over the past 35 years, the Korean population has increased by 1.79 times, and the electric power generation by 168.53 fold. Similar mushrooming trends have occurred in water and food consumption, clothing, plastics, paper, iron and steel, aluminum and so forth. The annual minimum temperature in Seoul has sharply jumped up in the last 80 years, and in the last 2-3 years, sea level went up by 10 mm per annum. Nuclear energy will play a crucial role in helping save all forms of life on the earth and keep the biosphere clean and livable, by reducing the discharge of detrimental gases and contaminating effluents. The main cause of various problems is human population burst, but now there may be a reason for some optimism as far as containing unbounded population growth, by the dilution of sperm density in human semen. In order to avoid the crashing of a large planetoid on the earth in 2126, nuclear architects must develop powerful and accurate nuclear weapons to shoot it off course. The prophetic view is that by the active and judicious applications of nuclear power and technology, the continued survival of mankind will be able to be ensured. (K.I.)

  11. Prophetic forecast on the nuclear power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Kun [Atomic Energy Commission (Korea, Republic of)

    1996-10-01

    It was asked to attempt the ``prophetic forecast``. The time required for the doubling of world population continued to shrink, and now it is mere 40 years. The life of a contemporary person is now sustained by some 30,000 different ``daily necessities``, and despite such proliferation of options, the avarice for much more has not diminished. Over the past 35 years, the Korean population has increased by 1.79 times, and the electric power generation by 168.53 fold. Similar mushrooming trends have occurred in water and food consumption, clothing, plastics, paper, iron and steel, aluminum and so forth. The annual minimum temperature in Seoul has sharply jumped up in the last 80 years, and in the last 2-3 years, sea level went up by 10 mm per annum. Nuclear energy will play a crucial role in helping save all forms of life on the earth and keep the biosphere clean and livable, by reducing the discharge of detrimental gases and contaminating effluents. The main cause of various problems is human population burst, but now there may be a reason for some optimism as far as containing unbounded population growth, by the dilution of sperm density in human semen. In order to avoid the crashing of a large planetoid on the earth in 2126, nuclear architects must develop powerful and accurate nuclear weapons to shoot it off course. The prophetic view is that by the active and judicious applications of nuclear power and technology, the continued survival of mankind will be able to be ensured. (K.I.)

  12. Recent applications of nuclear track emulsion technique

    Energy Technology Data Exchange (ETDEWEB)

    Zarubin, P. I., E-mail: zarubin@lhe.jinr.ru [Joint Institute for Nuclear Research, Veksler and Baldin Laboratory of High Energy Physics (Russian Federation)

    2016-12-15

    A survey of recent results obtained using the nuclear track emulsion (NTE) technique in low energy applications is given. NTE irradiation with 60 MeV {sup 8}He nuclei provides identification of their decays at stopping, evaluation of the possibility of α range spectrometry, and observation of drift of thermalized {sup 8}He atoms. Correlations of α particles studied in {sup 12}C → 3α splitting induced by 14.1 MeV neutrons indicate the presence of a superposition of 0{sup +} and 2{sup +} states of the {sup 8}Be nucleus in the ground state of {sup 12}C. Angular correlations of fragments are studied in boron-enriched NTE, and the prospects of NTE application in radioactivity and nuclear fission research are discussed. It is proposed to use an automated microscope to search for collinear tripartition of heavy nuclei implanted in NTE. Surface irradiation of NTE by a {sup 252}Cf source is started. Planar events containing fragment pairs and long range α particles, as well as fragment triples, are studied. NTE samples are calibrated using Kr and Xe ions with an energy of 1.2 and 3 A MeV.

  13. Management of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    1997-01-01

    Radioactive waste arises from the generation of nuclear energy and from the production of radioactive materials and their applications in industry, agriculture, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. Technical expertise is a prerequisite for safe and cost-effective management of radioactive waste. A training course is considered an effective tool for providing technical expertise in various aspects of waste management. The IAEA, in co-operation with national authorities concerned with radioactive waste management, has organized and conducted a number of radioactive waste management training courses. The results of the courses conducted by the IAEA in 1991-1995 have been evaluated at consultants meetings held in December 1995 and May 1996. This guidance document for use by Member States in arranging national training courses on the management of low and intermediate level radioactive waste from nuclear applications has been prepared as the result of that effort. The report outlines the various requirements for the organization, conduct and evaluation of training courses in radioactive waste management and proposes an annotated outline of a reference training course

  14. The diode pump: its application to nuclear particle counting and to the detection of rapid neutronic power excursions in atomic piles (1962); La pompe a diodes, son application au comptage de particules nucleaires et a la detection des excursions rapides de puissance neutronique d'une pile atomique (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Nicolo, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-05-15

    This work deals in particular with three applications of an electronic device whose principle is based on that of the diode pump. 1- Linear response circuit 2- Logarithmic response circuit 3- Detection of neutronic power excursions in atomic piles using a circuit or a combination of several circuits of the linear response type. Each of the applications has been studied theoretically and experimentally. Finally, the detection of rapid power excursions is extensively discussed with reference to the many methods available, emphasis being laid on the rapidity of the electronic response. (author) [French] Cet ouvrage traite plus particulierement de trois applications d'un dispositif electronique dont le principe de fonctionnement est base sur celui de la pompe a diodes. 1- Circuit a reponse lineaire 2- Circuit a reponse logarithmique 3- Detection des excursions de puissance neutronique d'une pile atomique a l'aide d'un circuit ou d'une association de plusieurs circuits a reponse lineaire. Chacune des applications fait l'objet d'une etude theorique et experimentale. Enfin, la detection des excursions rapides de puissance est tres largement discutee a travers plusieurs methodes, notamment sur la partie concernant la rapidite de reponse de l'electronique. (auteur)

  15. Explosives detection with applications to landmines

    International Nuclear Information System (INIS)

    Lanza, R.C.

    1998-01-01

    Modern mines have been made difficult to detect by conventional means such as magnetic detection. The problem is not only that there is often only a small amount of metal in the mine but that the war zone may contain an enormous amount of metal pieces from other weapons. Thus the problem is not just one of detection, but of developing methods to discriminate between many kinds of background and clutter that are present. One of techniques is the use of fast neutrons to probe material with subsequent spectrometry of gamma rays produced by inelastic neutron interactions. Another approach is the use of an infrared camera to detect mines after heating soil with a large heater. Certain advantages has Nuclear Quadrupole Resonance to detect nitrogen in compounds such as TNT. Use of remote controlled mechanical devices to detonate mines can also be considered. It is important to note that no single device will solve the problem and therefore it will be more effective to build devices specific to problem

  16. Development and application of nuclear power operation database

    International Nuclear Information System (INIS)

    Shao Juying; Fang Zhaoxia

    1996-01-01

    The article describes the development of the Nuclear Power Operation Database which include Domestic and Overseas Nuclear Event Scale Database, Overseas Nuclear Power Operation Abnormal Event Database, Overseas Nuclear Power Operation General Reliability Database and Qinshan Nuclear Power Operation Abnormal Event Database. The development includes data collection and analysis, database construction and code design, database management system selection. The application of the database to provide support to the safety analysis of the NPPs which have been in commercial operation is also introduced

  17. Application of fieldbus techniques in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Xu; Chen Hang; Yu Shuxin; Zhang Xinli

    2012-01-01

    The successful application experience of fieldbus techniques in thermal power plants and nuclear power plants are outlined first. And then, the application of fieldbus techniques in domestic 3rd-generation nuclear power plant (NPP) project is discussed. After that, the solution to the potential problems of fieldbus techniques application in NPP is provided. (authors)

  18. Fluorine disposal processes for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Netzer, W.D.

    1977-04-08

    A study was performed to determine the best method for disposing of waste fluorine in the effluent from a uranium oxide conversion facility. After reviewing the fluorine disposal literature and upon considering the nuclear safety constraints, it was determined that the two most promising processes were the fluidized alumina bed and the caustic scrubber. To obtain more design data for the latter process, a 3-stage, 5-in. I.D. spray tower was constructed and operated. This unit used a 10% potassium hydroxide solution at flows of 1.5 to 3 gpm and achieved a 90% fluorine efficiency at fluorine flowrates as high as 4 scfm. However, two toxic by-products, oxygen difluoride and nitroxy fluoride, were detected in the effluent gases. After considering the relative merits of both disposal processes, it is concluded that the fluidized bed is superior, especially if the contaminated waste material were salable.

  19. Fluorine disposal processes for nuclear applications

    International Nuclear Information System (INIS)

    Netzer, W.D.

    1977-01-01

    A study was performed to determine the best method for disposing of waste fluorine in the effluent from a uranium oxide conversion facility. After reviewing the fluorine disposal literature and upon considering the nuclear safety constraints, it was determined that the two most promising processes were the fluidized alumina bed and the caustic scrubber. To obtain more design data for the latter process, a 3-stage, 5-in. I.D. spray tower was constructed and operated. This unit used a 10% potassium hydroxide solution at flows of 1.5 to 3 gpm and achieved a 90% fluorine efficiency at fluorine flowrates as high as 4 scfm. However, two toxic by-products, oxygen difluoride and nitroxy fluoride, were detected in the effluent gases. After considering the relative merits of both disposal processes, it is concluded that the fluidized bed is superior, especially if the contaminated waste material were salable

  20. Qualitative knowledge engineering for nuclear applications

    International Nuclear Information System (INIS)

    Kim, Jae H.; Kim, Ko R.; Lee, Jae C.; Choi, You R.

    1998-01-01

    After the TMI nuclear power plant accident, plant safety and operational efficiency became more important areas of artificial intelligence. They need to build artificial intelligence systems which can predict and explain plant behaviors in earlier phases. We have a 3-year plan to develop hybrid modeling technology of artificial intelligence and related prototype subsystems. After concept design of autonomous power plant in the first year, basic and essential AI technologies were studied and applied to nuclear power plant subsystems, such as the underwater bubble detection subsystem and the eddy current test (ECT) subsystem this year. We developed diagnostic algorithm and experimented it on a testbed we prepared. The testbed system consists of ultrasonic sensor arrays and signal processors, which generates bubble image data and ultrasonic signal distribution data. The essential algorithm to guess the bubble image and its position was studied and developed using two different technologies: the neural network technology and the ultrasonic tomography technology. We developed diagnostic algorithms through ECT data analysis and applied it on an ECT subsystem. During the analysis of ECT data, we concentrated on structure analysis of physical data and internal data, and especially on segmentation scheme of ECT data. The diagnostic algorithm was studied and developed using two different technologies: Fourier descriptors technology and neural network technology. In order to verify the diagnostic algorithms, we have developed the prototype diagnostic programs which proved its good performance. (author). 15 refs., 5 tabs., 25 figs

  1. A Software Application to Detect Dental Color

    Directory of Open Access Journals (Sweden)

    Dan SÎMPĂLEAN

    2015-09-01

    Full Text Available Choosing dental color for missing teeth or tooth reconstruction is an important step and it usually raises difficulties for dentists due to a significant amount of subjective factors that can influence the color selection. Dental reconstruction presumes the combination between dentistry and chromatics, thus implying important challenges. Purpose: The aim of this study was to develop and implement a software application for detecting dental color to come to the aid of dentists and largely to remove the inherent subjectiveness of the human vision. Basic Methods: The implemented application was named Color Detection and the application’s source code is written using the C++ language. During application development, for creating the GUI (graphical user interface the wxWidgets 2.8 library it was used. Results: The application displays the average color of the selected area of interest, the reference color from the key collection existent in the program and also the degree of similarity between the original (the selected area of interest and the nearest reference key. This degree of similarity is expressed as a percentage. Conclusions: The Color Detection Program, by eliminating the subjectivity inherent to human sight, can help the dentist to select an appropriate dental color with precision.

  2. Device for detecting defective nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Steven, J.

    1976-01-01

    A moisture sensor is provided for a nuclear fuel rod for water-cooled nuclear reactors wherein moisture can be present. The fuel rod has an end cap and a charge of nuclear fuel. The moisture sensor is disposed between the end cap and the charge and serves to detect a leak in the fuel rod. The moisture sensor includes a capsule-like housing having an inner space and having openings through which moisture can pass into the inner space in the event of a leak in the fuel rod. Ferromagnetic material is disposed in the inner space of the housing together with a moisture detector responsive to moisture for altering the diposition of the ferromagnetic material in the inner space. 5 claims, 6 drawing figures

  3. Solid state nuclear track detection: a useful geological/geophysical tool

    International Nuclear Information System (INIS)

    Khan, H.A.; Qureshi, A.A.

    1994-01-01

    Solid State Nuclear Track Detection (SSNTD) is a relatively new nuclear particle detection technique. Since its inception, it has found useful application in almost every branch of science. This paper gives a very brief review of the role it has played in solving some geological/geophysical problems. Since the technique has been found useful in a wide spectrum of geological/geophysical applications, it was simply not possible to discuss all of these in this paper due to severe space restrictions. However, an attempt has been made to discuss the salient features of some of the most prominent applications in the geological and geophysical sciences. The paper has been divided into two parts. Firstly, applications based on radon measurements by SSNTDs have been described. These include: Uranium/thorium and mineral exploration, search for geothermal energy sources, study of volcanic processes, location of geological faults and earthquake prediction, for example. Secondly, applications based on the study of spontaneous fission tracks in geological samples have been described briefly. The second group of applications includes: fission track dating (FTD) of geological samples, FTD in the study of emplacement times, provenance studies, and thermal histories of minerals. Necessary references have been provided for detailed studies of (a) the applications cited in this paper, and (b) other important geological/geophysical applications, which unfortunately could not be covered in the present paper. (author)

  4. Towards more accurate and reliable predictions for nuclear applications

    International Nuclear Information System (INIS)

    Goriely, S.

    2015-01-01

    The need for nuclear data far from the valley of stability, for applications such as nuclear astrophysics or future nuclear facilities, challenges the robustness as well as the predictive power of present nuclear models. Most of the nuclear data evaluation and prediction are still performed on the basis of phenomenological nuclear models. For the last decades, important progress has been achieved in fundamental nuclear physics, making it now feasible to use more reliable, but also more complex microscopic or semi-microscopic models in the evaluation and prediction of nuclear data for practical applications. In the present contribution, the reliability and accuracy of recent nuclear theories are discussed for most of the relevant quantities needed to estimate reaction cross sections and beta-decay rates, namely nuclear masses, nuclear level densities, gamma-ray strength, fission properties and beta-strength functions. It is shown that nowadays, mean-field models can be tuned at the same level of accuracy as the phenomenological models, renormalized on experimental data if needed, and therefore can replace the phenomenogical inputs in the prediction of nuclear data. While fundamental nuclear physicists keep on improving state-of-the-art models, e.g. within the shell model or ab initio models, nuclear applications could make use of their most recent results as quantitative constraints or guides to improve the predictions in energy or mass domain that will remain inaccessible experimentally. (orig.)

  5. Evaluation of a Kalman filter based power pressurizer instrument failure detection system implemented on a nuclear power plant training simulator

    International Nuclear Information System (INIS)

    Seegmiller, D.S.

    1984-01-01

    The usefulness of a nuclear power plant training simulator for developing and testing modern estimation and control applications for nuclear power plants is demonstrated. A Kalman filter based instrument failure detection technique for a pressurized water reactor pressurizer is implemented on the Department of Energy N Reactor Training Simulator. This real-time failure detection method computes the first two moments (mean and variance) of each element of a normalized filter innovations vector. Failed pressurizer instrumentation can be detected by comparing these moments to the known statistical properties of the steady state, linear Kalman fitler innovations sequence. The capabilities of the detection system are evaluated using simulated plant transients and instrument failures

  6. Detection of nuclear material by photon activation inside cargo containers

    Science.gov (United States)

    Gmar, Mehdi; Berthoumieux, Eric; Boyer, Sébastien; Carrel, Frédérick; Doré, Diane; Giacri, Marie-Laure; Lainé, Frédéric; Poumarède, Bénédicte; Ridikas, Danas; Van Lauwe, Aymeric

    2006-05-01

    Photons with energies above 6 MeV can be used to detect small amounts of nuclear material inside large cargo containers. The method consists in using an intense beam of high-energy photons (bremsstrahlung radiation) in order to induce reactions of photofission on actinides. The measurement of delayed neutrons and delayed gammas emitted by fission products brings specific information on localization and quantification of the nuclear material. A simultaneous measurement of both of these delayed signals can overcome some important limitations due to matrix effects like heavy shielding and/or the presence of light elements as hydrogen. We have a long experience in the field of nuclear waste package characterization by photon interrogation and we have demonstrated that presently the detection limit can be less than one gram of actinide per ton of package. Recently we tried to extend our knowledge to assess the performance of this method for the detection of special nuclear materials in sea and air freights. This paper presents our first results based on experimental measurements carried out in the SAPHIR facility, which houses a linear electron accelerator with the energy range from 15 MeV to 30 MeV. Our experiments were also modeled using the full scale Monte Carlo techniques. In addition, and in a more general frame, due to the lack of consistent data on photonuclear reactions, we have been working on the development of a new photonuclear activation file (PAF), which includes cross sections for more than 600 isotopes including photofission fragment distributions and delayed neutron tables for actinides. Therefore, this work includes also some experimental results obtained at the ELSA electron accelerator, which is more adapted for precise basic nuclear data measurements.

  7. Look back and look forward to the future of computer applications in the field of nuclear science and technology

    International Nuclear Information System (INIS)

    Yang Yanming; Dai Guiling

    1988-01-01

    All previous National Conferences on computer application in the field of nuclear science and technology sponsored by the Society of Nuclear Electronics and Detection Technology are reviewed. Surveys are geiven on the basic situations and technique levels of computer applications for each time period. Some points concerning possible developments of computer techniques are given as well

  8. Development of structural steels for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs.

  9. Prospect of nuclear application in food technology

    Energy Technology Data Exchange (ETDEWEB)

    Maha, M [National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre

    1982-04-01

    Irradiation changes the normal living process of cells and the structure of molecules. It is good for food preservation because it kills off many of the microorganisms in the product and makes the remainder more sensitive to antimicrobial factors prevailing after the radiation treatment. It offers more benefits than conventional preservation in that it increases storage stability and quality of foodstuffs with the minimum use of energy. Good storage quality gives way to wider distribution of food, alleviates the world's food shortage, and improves food supplies. Research proved that irradiation increased the quality of subtropical fruits, spices, fish, and meat. No refrigeration is needed to store meat, poultry and fish preserved by the combination of irradiation and mild heat treatment. Nuclear technology can also be applied to destroy harmful insects, to sterilize food, to inhibit the sprouting of root crops, and to control ripening in stored fruits and vegetables. Based on the above potentials of irradiation, the prospect of nuclear application in food technology is promising.

  10. JAERI FEL applications in nuclear energy industries

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2005-01-01

    The JAERI FEL has first discovered the new FEL lasing of 255fs ultra fast pulse, 6-9% high efficiency, 1GW high peak power, a few kilowatts average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing and energy-recovery linac technology, we could extend a more powerful and more efficient free-electron laser (FEL) than 10kW and 25%, respectively, for nuclear energy industries, and others. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the FEL will cover the application of non-thermal peeling, cutting, and drilling to prevent cold-worked stress-corrosion cracking failures in nuclear energy and other heavy industries. (author)

  11. Development of structural steels for nuclear application

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs

  12. Mobile Techniques for Rapid Detection of Concealed Nuclear Material

    International Nuclear Information System (INIS)

    Rosenstock, W.; Koeble, T.; Risse, M.; Berky, W.

    2015-01-01

    To prevent the diversion of nuclear material as well as illicit production, transport and use of nuclear material we investigated in mobile techniques to detect and identify such material in the field as early as possible. For that purpose we use a highly sensitive gamma measurement system installed in a car. It consists of two large volume plastic scintillators, one on each side of the car, each scintillator with 12 l active volume, and two extreme sensitive high purity Germanium detectors with 57 cm 2 crystal diameter, cooled electrically. The measured data are processed immediately with integrated, appropriate analysis software for direct assessment including material identification and classification within seconds. The software for the plastic scintillators can differentiate between natural and artificial radioactivity, thus giving a clear hint for the existence of unexpected material. In addition, the system is equipped with highly sensitive neutron detectors. We have performed numerous measurements by passing different radioactive and nuclear sources in relatively large distances with this measurement car. Even shielded as well as masked material was detected and identified in most of the cases. We will report on the measurements performed in the field (on an exercise area) and in the lab and discuss the capabilities of the system, especially with respect to timeliness and identification. This system will improve the nuclear verification capabilities also. (author)

  13. Detection of sensor failures in nuclear plants using analytic redundancy

    International Nuclear Information System (INIS)

    Kitamura, M.

    1980-01-01

    A method for on-line, nonperturbative detection and identification of sensor failures in nuclear power plants was studied to determine its feasibility. This method is called analytic redundancy, or functional redundancy. Sensor failure has traditionally been detected by comparing multiple signals from redundant sensors, such as in two-out-of-three logic. In analytic redundancy, with the help of an assumed model of the physical system, the signals from a set of sensors are processed to reproduce the signals from all system sensors

  14. Device for acoustic detection in a nuclear reactor

    International Nuclear Information System (INIS)

    Hanff, M.; Lions, N.; Peronnet, J.

    1975-01-01

    A description is given of a device which comprises a first acoustic conductor placed vertically within the coolant liquid contained in a nuclear reactor vessel and a second coaxial acoustic conductor extending to the exterior of the reactor vessel. The device essentially comprises an accelerometer assembly for detecting signals delivered by the second conductor and an amplifier which applies the detected signals to measuring instruments located outside the reactor vessel. The accelerometer comprises an amplifying pressure needle carried by the upper end of the second conductor, a piezoelectric ceramic element, a block fitted with a spring for applying the ceramic element against the needle and a preamplifier connected in series with the amplifier

  15. Applications of lasers in nuclear power plants

    International Nuclear Information System (INIS)

    Raj, Rupam; Sanyal, D.N.; Sil, Jaydeb

    2013-01-01

    Applications of lasers in nuclear power plants: Bellow lip cutting and high pressure feeder coupling stud (HPFC) cutting during en-masse coolant channel replacement (EMCCR) campaign at Narora Atomic Power Station Reactor 1 in May 2006; cutting of pressure tubes from Madras Atomic Power Station 1 (MAPS-1) for easy storage in April 2005; In-situ cutting of selected coolant channel S-7 at Kakrapar Atomic Power Station (KAPS-2) (cutting of 12 mm thick end fitting and 4 mm thick liner tube of stainless steel from inside) in January 2005; Development of a miniature cutting mechanism for steam generator tubes (14 mm i.d.) from inside, In-situ bellow repair for secondary shutdown system; LASER welding may be deployed for End shield of MAPS-1 leak repair

  16. Nuclear Cross Sections for Space Radiation Applications

    Science.gov (United States)

    Werneth, C. M.; Maung, K. M.; Ford, W. P.; Norbury, J. W.; Vera, M. D.

    2015-01-01

    The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (A = 16) and the momentum-space optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and LS3D methods and is compared to eikonal results. It is recommended that the LS3D method be used for high energy nucleon-nucleus reactions and nucleus-nucleus reactions at all energies because of its rapid numerical convergence and stability for both non-relativistic and relativistic kinematics.

  17. Summary Report for the Radiation Detection for Nuclear Security Summer School 2014

    Energy Technology Data Exchange (ETDEWEB)

    Runkle, Robert C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baciak, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woodring, Mitchell L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jenno, Diana M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Executive Summary The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the 3rd Radiation Detection for Nuclear Security Summer School from 16 – 27 June 2014. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectives of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security. In fact, we are beginning to see previous students both enroll in graduate programs (former undergraduates) and complete internships at agencies like the National Nuclear Security Administration.

  18. Studies on neutron detection with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Khouri, M.C.; Vilela, E.C.; Andrade, C. de.

    1993-03-01

    The detection of thermal and fast neutrons was studied. For thermal neutrons, alpha sensitive plastic was used in order to register the products of nuclear reactions taking place in boron and /or lithium converters. Fast neutrons produce recoil tracks within the detector. In the present case, CR-39 and Makrofol E were used. Chemical and electrochemical etching processes were used for thermal and fast neutron detectors, respectively. (F.E.). 6 refs, 4 figs, 6 tabs

  19. Capability for intrusion detection at nuclear fuel sites

    International Nuclear Information System (INIS)

    1978-03-01

    A safeguards vulnerability assessment was conducted at three separate licensed nuclear processing facilities. Emphasis was placed on: (1) performance of the total intrusion detection system, and (2) vulnerability of the system to compromise by insiders. The security guards were interviewed to evaluate their effectiveness in executing their duties in accordance with the plant's security plan and to assess their knowledge regarding the operation of the security equipment. A review of the training schedule showed that the guards, along with the other plant employees, are required to periodically attend in-plant training sessions. The vulnerability assessments continued with interviews of the personnel responsible for maintaining the security equipment, with discussions of detector false alarm and maintenance problems. The second part of the vulnerability assessments was to evaluate the effectiveness of the intrusion detection systems including the interior and the perimeter sensors, CCTV surveillance devices and the exterior lighting. Two types of perimeter detectors are used at the sites, a fence disturbance sensor and an infrared barrier type detector. Infrared barrier type detectors have a higher probability of detection, especially in conjunction with dedicated CCTV cameras. The exterior lights satisfy the 0.2 footcandle illumination requirement. The interior intrusion detection systems included ultrasonic motion detectors, microwave motion detectors,balanced magnetic switches, and CCTV cameras. Entrance doors to the materials access areas and vital areas are protected with balanced magnetic switches. The interior intrusion detection systems at the three nuclear processing sites are considered satisfactory with the exception of the areas protected with ultrasonic motion detectors

  20. Application of modern autoradiography to nuclear forensic analysis.

    Science.gov (United States)

    Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc; Stone, Gary; Caldeira, Lee; Ramon, Christina; Kristo, Michael

    2018-05-01

    Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary to information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20×40cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5 ) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ∼10μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. In this

  1. Some computer applications and digital image processing in nuclear medicine

    International Nuclear Information System (INIS)

    Lowinger, T.

    1981-01-01

    Methods of digital image processing are applied to problems in nuclear medicine imaging. The symmetry properties of central nervous system lesions are exploited in an attempt to determine the three-dimensional radioisotope density distribution within the lesions. An algorithm developed by astronomers at the end of the 19th century to determine the distribution of matter in globular clusters is applied to tumors. This algorithm permits the emission-computed-tomographic reconstruction of spherical lesions from a single view. The three-dimensional radioisotope distribution derived by the application of the algorithm can be used to characterize the lesions. The applicability to nuclear medicine images of ten edge detection methods in general usage in digital image processing were evaluated. A general model of image formation by scintillation cameras is developed. The model assumes that objects to be imaged are composed of a finite set of points. The validity of the model has been verified by its ability to duplicate experimental results. Practical applications of this work involve quantitative assessment of the distribution of radipharmaceuticals under clinical situations and the study of image processing algorithms

  2. He-4 fast neutron detectors in nuclear security applications

    International Nuclear Information System (INIS)

    Murer, D. E.

    2014-01-01

    This work presents studies of "4He fast neutron detectors for nuclear security applications. Such devices are high pressure gas scintillation detectors, sensitive to neutrons in the energy range of fission sources. First, an introduction to the scope of the intended application is given. This is followed by a description of all components relevant to the operation of the detector. The next chapter presents studies of various characteristics of the neutron detector, among them properties of its scintillation response, differences between neutron and gamma interactions and effects of the light collection process. The results of the detector characterization are used to develop neutron gamma discrimination methods. These methods are put to the test using measurements with a high gamma flux, and the results are compared to performance requirements of Radiation Portal Monitors. Background neutron measurements are presented next. Measured neutron rates are compared to values published in scientific literature. The fluctuation of the background count rate was studied, and the contribution of muons evaluated. Two applications of the detectors in the field of nuclear security are discussed in the last two chapters. The first one is a novel method to measure the plutonium mass in a container filled with Mixed Oxide Fuel. The last chapter presents the development of a Radiation Portal Monitor which, in addition to neutron and gamma counting, exploits time correlation to detect threats such as plutonium and "6"0Co. (author)

  3. He-4 fast neutron detectors in nuclear security applications

    Energy Technology Data Exchange (ETDEWEB)

    Murer, D. E.

    2014-07-01

    This work presents studies of {sup 4}He fast neutron detectors for nuclear security applications. Such devices are high pressure gas scintillation detectors, sensitive to neutrons in the energy range of fission sources. First, an introduction to the scope of the intended application is given. This is followed by a description of all components relevant to the operation of the detector. The next chapter presents studies of various characteristics of the neutron detector, among them properties of its scintillation response, differences between neutron and gamma interactions and effects of the light collection process. The results of the detector characterization are used to develop neutron gamma discrimination methods. These methods are put to the test using measurements with a high gamma flux, and the results are compared to performance requirements of Radiation Portal Monitors. Background neutron measurements are presented next. Measured neutron rates are compared to values published in scientific literature. The fluctuation of the background count rate was studied, and the contribution of muons evaluated. Two applications of the detectors in the field of nuclear security are discussed in the last two chapters. The first one is a novel method to measure the plutonium mass in a container filled with Mixed Oxide Fuel. The last chapter presents the development of a Radiation Portal Monitor which, in addition to neutron and gamma counting, exploits time correlation to detect threats such as plutonium and {sup 60}Co. (author)

  4. The VirtualwindoW for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.O.; McKay, M.D.; Willis, W.D.

    1997-08-01

    Throughout the Department of Energy (DOE) complex there are numerous facilities which were constructed to research and develop nuclear materials during the cold war era. As a result, there are now many facilities such as reactors which require dismantlement and clean up. Technological advances over the past 10 years have significantly increased the state of computers, electronics and automated machinery. Because of this rapid growth, the technology of robotics has played a key role in clean up and remote operations. While robotic systems which perform hazardous tasks are being advanced, the human interface has not. Only within the past few years has the human/machine interface been addressed. A growing concern with the rapid advances in technology is that the robotic systems will become so complex that operators will be overwhelmed by the complexity and number of controls. Thus there is an on going effort within the remote and teleoperated robotic field to develop better man-machine interfaces. The Department of Energy`s Idaho National Engineering Laboratory (INEL) has been researching methods to simplify this interface including telepresence techniques which are applicable to nuclear environments. Initial telepresence research conducted at the INEL developed a concept called the VirtualwindoW. This system minimizes the complexity of remote stereo viewing controls and provides the operator the `feel` of viewing the environment in a natural setting. The VirtualwindoW has shown that the man-machine interface can be simplified while increasing operator performance. This paper deals with the continuing research and development of the VirtualwindoW system to provide a standard camera interface. An application of the VirtualwindoW in the dismantlement of the Chicago Pile-Five (CP-5) reactor at Argonne National Laboratory-East is discussed.

  5. The Virtualwindo W for nuclear applications

    International Nuclear Information System (INIS)

    Anderson, M.O.; McKay, M.D.; Willis, W.D.

    1997-01-01

    Throughout the Department of Energy (DOE) complex there are numerous facilities which were constructed to research and develop nuclear materials during the cold war era. As a result, there are now many facilities such as reactors which require dismantlement and clean up. Technological advances over the past 10 years have significantly increased the state of computers, electronics and automated machinery. Because of this rapid growth, the technology of robotics has played a key role in clean up and remote operations. While robotic systems which perform hazardous tasks are being advanced, the human interface has not. Only within the past few years has the human/machine interface been addressed. A growing concern with the rapid advances in technology is that the robotic systems will become so complex that operators will be overwhelmed by the complexity and number of controls. Thus there is an on going effort within the remote and teleoperated robotic field to develop better man-machine interfaces. The Department of Energy's Idaho National Engineering Laboratory (INEL) has been researching methods to simplify this interface including telepresence techniques which are applicable to nuclear environments. Initial telepresence research conducted at the INEL developed a concept called the VirtualwindoW. This system minimizes the complexity of remote stereo viewing controls and provides the operator the 'feel' of viewing the environment in a natural setting. The VirtualwindoW has shown that the man-machine interface can be simplified while increasing operator performance. This paper deals with the continuing research and development of the VirtualwindoW system to provide a standard camera interface. An application of the VirtualwindoW in the dismantlement of the Chicago Pile-Five (CP-5) reactor at Argonne National Laboratory-East is discussed

  6. Recommended numerical nuclear physics data for cutting-edge nuclear technology applications

    International Nuclear Information System (INIS)

    Ganesan, S.; Srivenkatesan, R.; Anek Kumar; Murthy, C.S.R.C.; Dhekne, P.S.

    2005-01-01

    This paper introduces some aspects of online nuclear data services at Mumbai as part of today's technology of sharing knowledge of the recommended numerical nuclear physics data for nuclear applications. The physics foundation for cutting-edge technology applications is significantly strengthened by such knowledge generation and sharing techniques. A BARC server is presently mirroring the nuclear data services of the IAEA, Vienna. The users can get all the nuclear data information much faster from the BARC nuclear data mirror website that is now fully operational. The nuclear community is encouraged to develop the habit of accessing the website for recommended values of nuclear data for use in research and applications. The URL is: www-nds.indcentre.org.in (author)

  7. Enhancing international radiation/nuclear detection training opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Thomas L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bersell, Bridget M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Booker, Paul M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Gerald E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leitch, Rosalyn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meagher, John B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Siefken, Rob R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spracklen, James L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-23

    The United States has worked domestically to develop and provide radiological and nuclear detection training and education initiatives aimed at interior law enforcement, but the international community has predominantly focused efforts at border and customs officials. The interior law enforcement officials of a State play a critical role in maintaining an effective national-level nuclear detection architecture. To meet this vital need, DNDO was funded by the U.S. Department of State (DOS) to create and deliver a 1-week course at the International Law Enforcement Academy (ILEA) in Budapest, Hungary to inform interior law enforcement personnel of the overall mission, and to provide an understanding of how the participants can combat the threats of radiological and nuclear terrorism through detection efforts. Two courses, with approximately 20 students in each course, were delivered in fiscal year (FY) 2013, two were delivered in FY 2014 and FY 2015, and as of this report’s writing more are planned in FY 2016. However, while the ILEA courses produced measurable success, DNDO requested Pacific Northwest National Laboratory (PNNL) research potential avenues to further increase the course impact.In a multi-phased approach, PNNL researched and analyzed several possible global training locations and venues, and other possible ways to increase the impact of the course using an agreed-to data-gathering format.

  8. Frontier of Advanced Accelerator Applications and Medical Treatments Using Nuclear Techniques. Abstract

    International Nuclear Information System (INIS)

    2015-01-01

    To address the challenges of research-based practice, developing advanced accelerator applications, and medical treatments using nuclear tecniqoes, researchers from Rajamakala University of Technology Lanna, Office of Atoms for Peace, and Chiang Mai University have joined in hosting this conference. Nuclear medicine, amedical specialty, diagnoses and treats diseases in a safe and painless way. Nuclear techniques can determine medical information that may otherwise be unavailable, require surgery, or necessitate more expensive and invasive diagnostic tests. Advance in nuclear techniques also offer the potential to detect abnormalities at earlier stages, leasding to earlier treatment and a more successful prognosis.

  9. Continuous AE monitoring of nuclear plants to detect flaws - status and future

    International Nuclear Information System (INIS)

    Hutton, P.H.

    1986-01-01

    This paper gives a brief commentary on the evolution of acoustic emission (AE) technology for continuous monitoring of nuclear reactors and the current status. The technical work described to support the status description has the objective of developing and validating the use of AE to detect, locate, and evaluate growing flaws in reactor pressure boundaries. The future of AE for continuous monitoring is discussed in terms of envisioned applications and further accomplishments required to achieve them. 12 refs.

  10. Neutral networks and their application in nuclear power plants

    International Nuclear Information System (INIS)

    Zhao Fuyu; Li Tiejun; Liao Zhongyue

    1994-01-01

    The neutral theory has been applied to various fields and many achievements have been obtained in many aspects, and the theory has also applied to nuclear engineering. In this paper, a few patterns of neutral networks and application in nuclear power plant is surveyed so as to bring the researching direction to nuclear work's attention at home

  11. Proceedings of 1. Regional Meeting on Nuclear Applications

    International Nuclear Information System (INIS)

    1990-01-01

    This Meeting describes nuclear methods and techniques, emphasizing the development or adaptation of methodologies and instrumentations for national conditions. The works present here comprise several field of nuclear application as agronomy; industry; nuclear medicine; dosimetry; radiological protection and instrumentation. (C.G.C.)

  12. Safeguards: Modelling of the Detection and Characterization of Nuclear Materials

    International Nuclear Information System (INIS)

    Enqvist, Andreas

    2010-01-01

    Nuclear safeguards is a collective term for the tools and methods needed to ensure nonproliferation and safety in connection to utilization of nuclear materials. It encompasses a variety of concepts from legislation to measurement equipment. The objective of this thesis is to present a number of research results related to nuclear materials control and accountability, especially the area of nondestructive assay. Physical aspects of nuclear materials are often the same as for materials encountered in everyday life. One special aspect though is that nuclear materials also emit radiation allowing them to be qualitatively and quantitatively measured without direct interaction with the material. For the successful assay of the material, the particle generation and detection needs to be well understood, and verified with measurements, simulations and models. Four topics of research are included in the thesis. First the generation and multiplication of neutrons and gamma rays in a fissile multiplying sample is treated. The formalism used enables investigation of the number of generated, absorbed and detected particles, offering understanding of the different processes involved. Secondly, the issue of relating the coincident detector signals, generated by both neutrons and gamma rays, to sample parameters is dealt with. Fission rate depends directly on the sample mass, while parameters such as neutron generation by alpha decay and neutron leakage multiplication are parameters that depend on the size, composition and geometry of the sample. Artificial neural networks are utilized to solve the inverse problem of finding sample characteristics from the measured rates of particle multiples. In the third part the interactions between neutrons and organic scintillation detectors are treated. The detector material consists of hydrogen and carbon, on which the neutrons scatter and transfer energy. The problem shares many characteristics with the area of neutron moderation found in

  13. Non power applications of nuclear technology: The case of Belgium

    International Nuclear Information System (INIS)

    Jaumotte, A.L.

    1998-01-01

    The historical review and oversight of Belgium activities in applications of nuclear technologies has been presented. Especially attention have been paid on industrial applications as sterilization of surgical tools, medical supplies, drugs, food; radiation induced polymerization and composite materials production; nondestructive testing and application of sealed sources in industry. The detailed review has been done on nuclear medicine development in Belgium covering the range of therapeutic applications as well as diagnostic techniques

  14. Detecting nuclear materials smuggling: performance evaluation of container inspection policies.

    Science.gov (United States)

    Gaukler, Gary M; Li, Chenhua; Ding, Yu; Chirayath, Sunil S

    2012-03-01

    In recent years, the United States, along with many other countries, has significantly increased its detection and defense mechanisms against terrorist attacks. A potential attack with a nuclear weapon, using nuclear materials smuggled into the country, has been identified as a particularly grave threat. The system for detecting illicit nuclear materials that is currently in place at U.S. ports of entry relies heavily on passive radiation detectors and a risk-scoring approach using the automated targeting system (ATS). In this article we analyze this existing inspection system and demonstrate its performance for several smuggling scenarios. We provide evidence that the current inspection system is inherently incapable of reliably detecting sophisticated smuggling attempts that use small quantities of well-shielded nuclear material. To counter the weaknesses of the current ATS-based inspection system, we propose two new inspection systems: the hardness control system (HCS) and the hybrid inspection system (HYB). The HCS uses radiography information to classify incoming containers based on their cargo content into "hard" or "soft" containers, which then go through different inspection treatment. The HYB combines the radiography information with the intelligence information from the ATS. We compare and contrast the relative performance of these two new inspection systems with the existing ATS-based system. Our studies indicate that the HCS and HYB policies outperform the ATS-based policy for a wide range of realistic smuggling scenarios. We also examine the impact of changes in adversary behavior on the new inspection systems and find that they effectively preclude strategic gaming behavior of the adversary. © 2011 Society for Risk Analysis.

  15. Leak detection device for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Ikeda, Jun.

    1988-01-01

    Purpose: To test the leakage of a nuclear reactor pressure vessel during stopping for a short period of time with no change to the pressure vessel itself. Constitution: The device of the present invention comprises two O-rings disposed on the flange surface that connects a pressure vessel main body and an upper cover, a leak-off pipeway derived from the gap of the O-rings at the flange surface to the outside of the pressure vessel, a pressure detection means connected to the end of the pipeway, a humidity detection means disposed to the lead-off pipeway, a humidity detection means disposed to the lead-off pipeway, and gas supply means and gas suction means disposed each by way of a check valve to a side pipe branched from the pipeway. After stopping the operation of the nuclear reactor and pressurizing the pressure vessel by filling water, gases supplied to the gap between the O-rings at the flange surface by opening the check valve. In a case where water in the pressure vessel should leak to the flange surface, when gas suction is applied by properly opening the check valve, increase in the humidity due to the steams of leaked water diffused into the gas is detected to recognize the occurrence of leakage. (Kamimura, M.)

  16. A study on expert system applications for nuclear power plant

    International Nuclear Information System (INIS)

    Huh, Young Hwan; Kim, Yeong Jin; Park, Nam Seog; Dong, In Sook; Choi, In Seon

    1987-12-01

    The application of artificial intelligence techniques to nuclear power plants such as expert systems is rapidly emerging. expert systems can contribute significantly to the availability and the improved operation and safety of nuclear power plants. The objective of the project is to develop an expert system in a selected application area in the nuclear power plants. This project will last for 3 years. The first year's tasks are: - Information collection and literature survey on expert systems. - Analysis of several applicable areas for applying AI technologies to the nuclear power plants. - Conceptual design of a few selected domains. - Selection of hardware and software tools for the development of the expert system

  17. Potential refractory alloy requirements for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.

    1984-01-01

    In reviewing design requirements for refractory alloys for space nuclear applications, several key points are identified. First, the successful utilization of refractory alloys is considered an enabling requirement for the successful deployment of high efficiency, lightweight, and small space nuclear systems. Second, the recapture of refractory alloy nuclear technology developed in the 1960s and early 1970s appears to be a pacing activity in the successful utilization of refractory alloys. Third, the successful application of refractory alloys for space nuclear applications will present a significant challenge to both the materials and the systems design communities

  18. Review for the military application of nuclear energy

    International Nuclear Information System (INIS)

    Park, M. J.

    1998-01-01

    In order to understand the broad technology of nuclear energy, we have explored how our present knowledge of nuclear energy has been developed, and how some of this knowledge is applied. Techniques learned from nuclear physics are used the build fearsome weapons of mass destruction, whose proliferation is a constant threat to our future. To develop military applications of nuclear technology systematically, high level human resources and creative brains should be sufficiently trained and secured

  19. Nuclear data, cross section libraries and their application in nuclear technology

    International Nuclear Information System (INIS)

    1985-01-01

    These proceedings contain the articles presented at the named seminar. The articles deal with evaluated nuclear data libraries, computer codes for neutron transport and reactor calculations using nuclear data libraries, and the application of nuclear data libraries for the calculation of the interaction of neutron beams with materials. (HSI)

  20. High temperature heat exchange: nuclear process heat applications

    International Nuclear Information System (INIS)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  1. Applications of nuclear data on short-lived fission products

    International Nuclear Information System (INIS)

    Rudstam, G.; Aagaard, P.; Aleklett, K.; Lund, E.

    1981-01-01

    The study of short-lived fission products gives information about the nuclear structure on the neutron-rich side of stability. The data are also of interest for various applications both to basic science and to nuclear technology. Some of these applications, taken up by the OSIRIS group at Studsvik, are described in the present contribution. (orig.)

  2. Nanotechnology and nuclear medicine; research and preclinical applications.

    Science.gov (United States)

    Assadi, Majid; Afrasiabi, Kolsoom; Nabipour, Iraj; Seyedabadi, Mohammad

    2011-01-01

    The birth of nanotechnology in human society was around 2000 years ago and soon found applications in various fields. In this article, we highlight the current status of research and preclinical applications and also future prospects of nanotechnology in medicine and in nuclear medicine. The most important field is cancer. A regular nanotechnology training program for nuclear medicine physicians may be welcome.

  3. Application of thermal-hydraulic codes in the nuclear sector

    International Nuclear Information System (INIS)

    Queral, C.; Coriso, M.; Garcia Sedano, P. J.; Ruiz, J. A.; Posada, J. M.; Jimenez Varas, G.; Sol, I.; Herranz, L. E.

    2011-01-01

    Use of thermal-hydraulic codes is extended all over many different aspects of nuclear engineering. This article groups and briefly describes the main features of some of the well known codes as an introduction to their recent applications in the Spain nuclear sector. the broad range and quality of applications highlight the maturity achieved both in industry and research organizations and universities within the Spanish nuclear sector. (Author)

  4. Proceedings of the Eighth Conference of Nuclear Sciences and Applications

    International Nuclear Information System (INIS)

    2004-02-01

    The publication has been set up as a textbook for researching dealing with radioisotope production during work with Human needs of Nuclear Science and applications. The book consists of the following chapters: chemistry; radioisotope production, trace analysis; environment monitoring; environmental effect; waste management; physics; reactors; nuclear safety and safeguards; materials; radiation protection ; agriculture; hydrology; nuclear medicine; medical applications; radiation chemistry; environmental studies; biological effects of ionizing radiation on agriculture;

  5. Automatic detection and analysis of nuclear plant malfunctions

    International Nuclear Information System (INIS)

    Bruschi, R.; Di Porto, P.; Pallottelli, R.

    1985-01-01

    In this paper a system is proposed, which performs dynamically the detection and analysis of malfunctions in a nuclear plant. The proposed method was developed and implemented on a Reactor Simulator, instead of on a real one, thus allowing a wide range of tests. For all variables under control, a simulation module was identified and implemented on the reactor on-line computer. In the malfunction identification phase all modules run separately, processing plant input variables and producing their output variable in Real-Time; continuous comparison of the computed variables with plant variables allows malfunction's detection. At this moment the second phase can occur: when a malfunction is detected, all modules are connected, except the module simulating the wrong variable, and a fast simulation is carried on, to analyse the consequences. (author)

  6. The Application of Nuclear Technology for a Better World

    International Nuclear Information System (INIS)

    Ita, E.B.

    2015-01-01

    Nuclear Technology is widely used in different areas and sector of our economy to better man kind and his environment. Peaceful applications of nuclear technology have several benefits to the world today. It is widely believed that nuclear technology is mainly used mainly for the production of electricity (Nuclear Power Plants – NPPs). Many are not aware of the other numerous benefits of nuclear technology. Nuclear technology can be applied in different fields for numerous benefits. Different sectors Nuclear Technology application can improve the living standard of man and his environment: – Food and Agriculture; – Medicine; – Industrial; – Energy; – Education; — Research and Development; – Environment. The benefits of the application of nuclear technology cannot be over emphasised. These benefits range from the improved quality of purified water we drink, the textiles we wear, improved quality of stored grains for preservation of foods, water analyses, improved transportation system work, drugs production, medical tests and analysis, clean environment through radioisotope techniques etc. The application of nuclear technology also gives a safer, greener, healthier and pollution free environment and atmosphere for human habitation. In my poster, the numerous benefits of the various applications of Nuclear Technology will be clearly enumerated and heighted. (author)

  7. Application of crime countermeasures for the protection of nuclear materials

    International Nuclear Information System (INIS)

    Bean, C.H.

    1975-01-01

    Federal regulations prepared by the Nuclear Regulatory Commission and published in the Federal Register require licensees to take appropriate action to protect the health and safety of the public from unauthorized use of special nuclear material (SNM), which includes plutonium, uranium-233, and highly enriched uranium. Crime countermeasures for compliance with these regulations are an important part of the guidance that is provided by the NRC's Office of Standards Development. The use of crime countermeasures and protective devices is intended to prevent the unauthorized diversion of material and to aid in the detection of diversion should it be attempted. Plant and equipment designs should incorporate both electronic and physical security measures for protection of SNM. This applies to facilities and equipment for reprocessing, fabrication, and transportation of SNM. The protection systems include physical barriers, access controls, intrusion detection devices, surveillance devices, central alarm stations, communications, and response capability. Acceptable security measures and devices applicable to protected areas, material access areas, vital areas, vital equipment, and transportation vehicles have been presented in Regulatory Guides. (U.S.)

  8. Proceedings of the first nuclear science and technology conference no. 1. Nuclear science and its application

    International Nuclear Information System (INIS)

    1986-01-01

    This conference contains papers on non-power applications of nuclear technology in agriculture and industry. These applications include irradiation of food for disinfestation and radiopreservation, radiation monitoring, and radiation chemistry important to industrial processes

  9. Filtering technique for detection and identification of measurement failures in nuclear power plants

    International Nuclear Information System (INIS)

    Racz, A.

    1989-11-01

    The basic requirement of the safe operation of nuclear power plants (NPP) is to have reliable information on all quantities that can be measured, monitored or controlled during the operation. Kalman filtering techniques have been applied for prompt detection and identification of failures in the measurement systems used in NPPs. Mathematical basis of Kalman filtering and various models applied to failure detection are overviewed. The applicability of some models are evaluated by real results of NPP measurements. A sample system for an NPP is suggested, based on several numerical tests. (R.P.) 23 refs.; 40 figs.; 2 tabs

  10. Detection of special nuclear materials with the associate particle technique

    International Nuclear Information System (INIS)

    Carasco, Cédric; Deyglun, Clément; Pérot, Bertrand; Eléon, Cyrille; Normand, Stéphane; Sannié, Guillaume; Boudergui, Karim; Corre, Gwenolé; Konzdrasovs, Vladimir; Pras, Philippe

    2013-01-01

    In the frame of the French trans-governmental R and D program against chemical, biological, radiological, nuclear and explosives (CBRN-E) threats, CEA is studying the detection of Special Nuclear Materials (SNM) by neutron interrogation with fast neutrons produced by an associated particle sealed tube neutron generator. The deuterium-tritium fusion reaction produces an alpha particle and a 14 MeV neutron almost back to back, allowing tagging neutron emission both in time and direction with an alpha particle position-sensitive sensor embedded in the generator. Fission prompt neutrons and gamma rays induced by tagged neutrons which are tagged by an alpha particle are detected in coincidence with plastic scintillators. This paper presents numerical simulations performed with the MCNP-PoliMi Monte Carlo computer code and with post processing software developed with the ROOT data analysis package. False coincidences due to neutron and photon scattering between adjacent detectors (cross talk) are filtered out to increase the selectivity between nuclear and benign materials. Accidental coincidences, which are not correlated to an alpha particle, are also taken into account in the numerical model, as well as counting statistics, and the time-energy resolution of the data acquisition system. Such realistic calculations show that relevant quantities of SNM (few kg) can be distinguished from cargo and shielding materials in 10 min acquisitions. First laboratory tests of the system under development in CEA laboratories are also presented.

  11. Gamma and neutron detection modeling in the nuclear detection figure of merit (NDFOM) portal

    International Nuclear Information System (INIS)

    Stroud, Phillip D.; Saeger, Kevin J.

    2009-01-01

    The Nuclear Detection Figure Of Merit (NDFOM) portal is a database of objects and algorithms for evaluating the performance of radiation detectors to detect nuclear material. This paper describes the algorithms used to model the physics and mathematics of radiation detection. As a first-principles end-to-end analysis system, it starts with the representation of the gamma and neutron spectral fluxes, which are computed with the particle and radiation transport code MCNPX. The gamma spectra emitted by uranium, plutonium, and several other materials of interest are described. The impact of shielding and other intervening material is computed by the method of build-up factors. The interaction of radiation with the detector material is computed by a detector response function approach. The construction of detector response function matrices based on MCNPX simulation runs is described in detail. Neutron fluxes are represented in a three group formulation to treat differences in detector sensitivities to thermal, epithermal, and fast neutrons.

  12. Environmental aspects of nuclear power applications

    International Nuclear Information System (INIS)

    Penner, S.S.; Howe, J.P.; Icerman, L.

    1976-01-01

    The paper estimates the future dangers from the nuclear industry. Historically, the occurrence of nuclear reactor accidents has not been a hazard to the U.S. population, because of relatively limited reactor deployment and because of relatively safe operation. Some factual inputs were taken from the Rasmussen Report, ''An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants.'' It is noted that data on nuclear power plant accidents follow a curve about four orders of magnitude below that for persons on the ground killed by air crashes. Data show that coal mining produced about ten times as many disabilities as uranium mining and milling per 10 6 MW(e)h of energy recovered, while the number of injuries per 10 6 man-hours of work was roughly comparable for these two types of occupations. Information on the following subjects is then presented: radiation protection standards, radiation exposures; radiation emitted from nuclear reactors under normal operating conditions; accidents involving nuclear fission reactors; fuel reprocessing; nuclear waste disposal; estimates of environmental and safety aspects of fusion power; licensing of nuclear reactors; nuclear safeguards: diversion of nuclear materials, sabotage, and subversion; and nuclear energy and trade deficits in which data are presented estimating a timetable expressing the economic power of OPEC, or the time required for OPEC wealth to purchase the world's major assets

  13. Digital nuclear instrumentation application to nuclear power plant

    International Nuclear Information System (INIS)

    Burel, J.-P.; Fanet, H.

    1993-01-01

    The use of digital techniques for the control of nuclear reactors offers an interesting prospect in the improvement of the operation and safety of reactors. Thanks to close collaboration between Merlin Gerin and the French Atomic Energy Commission, a new piece of technology for nuclear instrumentation systems has been developed in order to meet the needs of different types of reactors. The principles of measurement are presented and the technology used is described. Other interesting points of this technology in addition to installation, operation and safety are examined. The digital neutron measurements are already operating in research reactors in France and will be installed in a different configuration in the new 1400 MW nuclear power plant. Integration into different designs is easily attainable by adapting the information transmission mode according to the technology present in the protection system and the treatment and visualization systems. (author)

  14. Nuclear Analytical Applications within the IAEA Nuclear Data Section

    International Nuclear Information System (INIS)

    Kellett, Mark A.

    2011-01-01

    The Nuclear Data Section, International Atomic Energy Agency, supports Member States development of nuclear techniques through a number of targeted actions and projects. The Section fulfills this role by organizing Coordinated Research Projects, or through less formal Data Development Projects and/or Technical Meetings. Training workshops are also regularly organized in conjunction with the International Centre for Theoretical Physics (ICTP), Trieste, Italy. A number of projects relating to materials analysis techniques have been recently undertaken, e.g. neutron activation analysis, ion beam analysis, and proton induced X- or γ-ray emission. In particular, details of the Coordinated Research Project focusing on the nuclear data requirements for the k 0 method of neutron activation analysis are given. The paper illustrates how the IAEA strives to bring together relevant partners and provides a unique and structured basis for international collaboration.

  15. Laser-induced nuclear physics and applications

    International Nuclear Information System (INIS)

    Ledingham, K.W.D.; Singhal, R.P.; McKenna, P.; Spencer, I.

    2002-01-01

    With a 1 ps pulse laser at 1 μm wavelength, He gas is ionised at about 3.10 14 W.cm -2 . As the intensity increases, the inert gases become multiple ionised and between 10 18 and 10 19 W.cm -2 photon induced nuclear reactions are energetically possible. Close to 10 21 W.cm -2 pion production can take place. At the very high intensities of 10 28 W.cm -2 , it can be shown that electron-positron pairs can be created from the vacuum. The authors review the applications of high intensity focused laser beams in particle acceleration, laser-induced fission and laser production of protons and neutrons. Exciting new phenomena are expected at intensities higher than 10 22 W.cm -2 , -) the oscillating electric field can affect directly the protons in exactly the same way as the electrons in the plasma, -) fusion reactions by direct laser acceleration of ions. (A.C.)

  16. Applications of PRA in nuclear criticality safety

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1992-01-01

    Traditionally, criticality accident prevention at Los Alamos has been based on a thorough review and understanding of proposed operations of changes to operations, involving both process supervision and criticality safety staff. The outcome of this communication was usually an agreement, based on professional judgement, that certain accident sequences were credible and had to be reduced in likelihood either by administrative controls or by equipment design and others were not credible, and thus did not warrant expenditures to further reduce their likelihood. The extent of analysis and documentation was generally in proportion to the complexity of the operation but did not include quantified risk assessments. During the last three years nuclear criticality safety related Probabilistic Risk Assessments (PRAs) have been preformed on operations in two Los Alamos facilities. Both of these were conducted in order to better understand the cost/benefit aspects of PRA's as they apply to largely ''hands-on'' operations with fissile material for which human errors or equipment failures significant to criticality safety are both rare and unique. Based on these two applications and an appreciation of the historical criticality accident record (frequency and consequences) it is apparent that quantified risk assessments should be performed very selectively

  17. Digital signal processing application in nuclear spectroscopy

    Directory of Open Access Journals (Sweden)

    O. V. Zeynalova

    2009-06-01

    Full Text Available Digital signal processing algorithms for nuclear particle spectroscopy are described along with a digital pile-up elimination method applicable to equidistantly sampled detector signals pre-processed by a charge-sensitive preamplifier. The signal processing algorithms provided as recursive one- or multi-step procedures which can be easily programmed using modern computer programming languages. The influence of the number of bits of the sampling analogue-to-digital converter to the final signal-to-noise ratio of the spectrometer considered. Algorithms for a digital shaping-filter amplifier, for a digital pile-up elimination scheme and for ballistic deficit correction were investigated using a high purity germanium detector. The pile-up elimination method was originally developed for fission fragment spectroscopy using a Frisch-grid back-to-back double ionisation chamber and was mainly intended for pile-up elimination in case of high alpha-radioactivity of the fissile target. The developed pile-up elimination method affects only the electronic noise generated by the preamplifier. Therefore, the influence of the pile-up elimination scheme on the final resolution of the spectrometer investigated in terms of the distance between piled-up pulses. The efficiency of developed algorithms compared with other signal processing schemes published in literature.

  18. Nuclear Techniques in Agriculture: Status and Applications

    International Nuclear Information System (INIS)

    Kurdali, F.

    2007-01-01

    This paper is focused on the role of nuclear techniques and their applications in agriculture science for plant and animal production, and to study the relationships among soil, plant, air, water, nutrients and agricultural pests. For example, carbon isotope discrimination 12 C/ 13 C can be used to select appropriate plant genotypes which are tolerant to drought and salinity stress. Using 15 N to study, symbiotic N 2 fixation, inorganic N dynamics in the soil, plant system, mineralization of organic N in soils, efficient use of chemical and organic N fertilizers and microbial protein production in ruminants. Neutron gauges are used for soil moisture measurements to assess crop water use efficiencies, crops water requirements, and irrigation scheduling for conventional and new methods of irrigation. The use of environmental isotopes ( 18 O, 2 H, 3 H and 14 C) in hydrology; and 137 Cs to study soil erosion. Using 32 P to study the fate of applied P fertilizers (chemical fractionation and availability), their use efficiency and phosphorus metabolism in animals. Ionizing radiation is used to improve the quality and productivity of major crops, to induce mutations, to improve the metabolisable and digestible energy of unconventional feeds and the nutritive value of agricultural residues, and to protect crops against agricultural pests and in food conservation. Radioimmunoassay is used in studies to improve the production and reproductive performance of indigenous small ruminants. (author)

  19. Nuclear Forensics: A Methodology Applicable to Nuclear Security and to Non-Proliferation

    International Nuclear Information System (INIS)

    Mayer, K; Wallenius, M; Luetzenkirchen, K; Galy, J; Varga, Z; Erdmann, N; Buda, R; Kratz, J-V; Trautmann, N; Fifield, K

    2011-01-01

    Nuclear Security aims at the prevention and detection of and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear material. Nuclear Forensics is a key element of nuclear security. Nuclear Forensics is defined as a methodology that aims at re-establishing the history of nuclear material of unknown origin. It is based on indicators that arise from known relationships between material characteristics and process history. Thus, nuclear forensics analysis includes the characterization of the material and correlation with production history. To this end, we can make use of parameters such as the isotopic composition of the nuclear material and accompanying elements, chemical impurities, macroscopic appearance and microstructure of the material. In the present paper, we discuss the opportunities for attribution of nuclear material offered by nuclear forensics as well as its limitations. Particular attention will be given to the role of nuclear reactions. Such reactions include the radioactive decay of the nuclear material, but also reactions with neutrons. When uranium (of natural composition) is exposed to neutrons, plutonium is formed, as well as 236 U. We will illustrate the methodology using the example of a piece of uranium metal that dates back to the German nuclear program in the 1940's. A combination of different analytical techniques and model calculations enables a nuclear forensics interpretation, thus correlating the material characteristics with the production history.

  20. Nuclear Forensics: A Methodology Applicable to Nuclear Security and to Non-Proliferation

    Science.gov (United States)

    Mayer, K.; Wallenius, M.; Lützenkirchen, K.; Galy, J.; Varga, Z.; Erdmann, N.; Buda, R.; Kratz, J.-V.; Trautmann, N.; Fifield, K.

    2011-09-01

    Nuclear Security aims at the prevention and detection of and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear material. Nuclear Forensics is a key element of nuclear security. Nuclear Forensics is defined as a methodology that aims at re-establishing the history of nuclear material of unknown origin. It is based on indicators that arise from known relationships between material characteristics and process history. Thus, nuclear forensics analysis includes the characterization of the material and correlation with production history. To this end, we can make use of parameters such as the isotopic composition of the nuclear material and accompanying elements, chemical impurities, macroscopic appearance and microstructure of the material. In the present paper, we discuss the opportunities for attribution of nuclear material offered by nuclear forensics as well as its limitations. Particular attention will be given to the role of nuclear reactions. Such reactions include the radioactive decay of the nuclear material, but also reactions with neutrons. When uranium (of natural composition) is exposed to neutrons, plutonium is formed, as well as 236U. We will illustrate the methodology using the example of a piece of uranium metal that dates back to the German nuclear program in the 1940's. A combination of different analytical techniques and model calculations enables a nuclear forensics interpretation, thus correlating the material characteristics with the production history.

  1. Atomic nuclei and nuclear reactions. Theory and application

    International Nuclear Information System (INIS)

    Sitenko, A.G.; Tartakovsky, V.K.; Kenjebaev, K.K.; Shunkeyev, K.Sh.; Ismatov, E.I.; Mukhammedov, S.; Comsan, M.N.H.; Djuraev, Sh.Kh.

    2004-01-01

    Full text: The short description of the book preparation by the collective authors from Ukraine, Kazakhstan, Uzbekistan and Egypt is given. The present book is the expanded course of lectures on the theory of nuclei, nuclear reactions and their applications delivered by the authors for a number of years in the Ukrainian National University, Aktubinsk State University of the Kazakhstan Republic, Tashkent National University, Samarkand and Termez State Universities of Uzbekistan Republic, Egyptian National Universities (Al-Az'har, Menoufeya, Suez-Canal and Tanta) and the Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan. The lectures present foundations of the modern concepts of the structure of nuclei, on the nature of nuclear processes and nuclear transformations. Main attention in the book was paid to the presentation of the basics and some modern achievements in the field of the theory of nuclei and nuclear reactions. A number of problems was investigated in original works and were not presented in the physics textbooks. The book presents the non-relativistic theory of nuclear reactions, questions of relativistic nuclear physics were not considered here. Non-relativistic theory of nuclear reactions is based on the notions of collision matrix or S-matrix. In absence of consequent microscopic theory, the scattering matrix can be found phenomenological based on definite assumptions on the character of nuclear interactions. Modern applications of nuclear reactions for the development of nuclear methods of analysis are presented. The delayed and nuclear techniques with nuclear reactor, accelerators and radioisotopic sources are considered. The book is designed as a textbook for bachelor and postgraduate students of physical faculties of universities and engineering-physical institutions, lecturers and researchers, working in the field of nuclear physics. The book gives an up-to-date list of references on nuclear reaction theory and

  2. Applications of Nuclear Reaction Analysis for Semiconductor Industry

    International Nuclear Information System (INIS)

    Wei Luncun

    2003-01-01

    Many thin film samples used in the semiconductor industry contain C, N and O. The detection limits and accuracy obtained by Rutherford Backscattering Spectroscopy (RBS) measurement are limited due to the small cross section values. High energy non-Rutherford backscattering is often used to enhance the sensitivities. But non-Rutherford cross section values are irregular and can not be calculated as normal Rutherford backscattering values. It is also difficult to find an appropriate energy window that for all these elements, and high-energy ions are needed. In this paper, the Nuclear Reaction Analysis (NRA) method is used to simultaneously measure C, N and O. several applications in the semiconductor research, development, and manufacturing areas are presented

  3. Model-based fault detection and isolation of a PWR nuclear power plant using neural networks

    International Nuclear Information System (INIS)

    Far, R.R.; Davilu, H.; Lucas, C.

    2008-01-01

    The proper and timely fault detection and isolation of industrial plant is of premier importance to guarantee the safe and reliable operation of industrial plants. The paper presents application of a neural networks-based scheme for fault detection and isolation, for the pressurizer of a PWR nuclear power plant. The scheme is constituted by 2 components: residual generation and fault isolation. The first component generates residuals via the discrepancy between measurements coming from the plant and a nominal model. The neutral network estimator is trained with healthy data collected from a full-scale simulator. For the second component detection thresholds are used to encode the residuals as bipolar vectors which represent fault patterns. These patterns are stored in an associative memory based on a recurrent neutral network. The proposed fault diagnosis tool is evaluated on-line via a full-scale simulator detected and isolate the main faults appearing in the pressurizer of a PWR. (orig.)

  4. Nuclear medicine applications for the diabetic foot

    International Nuclear Information System (INIS)

    Hartshorne, M.F.; Peters, V.

    1987-01-01

    Although not frequently described in the podiatric literature, nuclear medicine imaging may be of great assistance to the clinical podiatrist. This report reviews in detail the use of modern nuclear medicine approaches to the diagnosis and management of the diabetic foot. Nuclear medicine techniques are helpful in evaluating possible osteomyelitis, in determining appropriate amputation levels, and in predicting response to conservative ulcer management. Specific indications for bone, gallium, and perfusion imaging are described

  5. Nuclear forensics in law enforcement applications

    International Nuclear Information System (INIS)

    Grant, P.M.; Moody, K.J.; Hutcheon, I.D.; Phinney, D.L.; Whipple, R.E.; Haas, J.S.; Alcaraz, A.; Andrews, J.E.; Klunder, G.L.; Russo, R.E.

    1998-01-01

    Over the past several years, the Livermore Forensic Science Center has conducted analyses of nuclear-related samples in conjunction with domestic and international criminal investigations. Law enforcement officials have sought conventional and nuclear-forensic analyses of questioned specimens that have typically consisted of miscellaneous metal species or actinide salts. The investigated activities have included nuclear smuggling and the proliferation of alleged fissionable materials, nonradioactive hoaxes such as 'Red Mercury', and the interdiction of illegal laboratories engaged in methamphetamine synthesis. (author)

  6. Medical applications of the nuclear energy

    International Nuclear Information System (INIS)

    Ugarte, Valentin E.

    2001-01-01

    The Nuclear Medicine School Foundation, in Mendoza (Argentina) was created in 1986 by the National Atomic Energy Commission (CNEA) and is supported by the Government of the Mendoza Province, the CNEA, and the National University of Cuyo. The main activities of the school are medical diagnosis using nuclear techniques and the training of physicians and technicians in nuclear medicine. Teletherapy and brachytherapy are also performed. The use of the PET is described in some detail

  7. Legal framework and practice to prevent and detect illicit trafficking of nuclear and radioactive materials

    International Nuclear Information System (INIS)

    Sembiring, D.

    2001-01-01

    Full text: Illicit trafficking in nuclear and radioactive materials in the country and across country borders has become serious problem from both nuclear proliferation and radiological hazard point of view. Prevention and detection of illicit trafficking in nuclear and radioactive materials is based on the regulation and procedure set up to ensure the control of the nuclear and radioactive materials throughout their life. Practically, prevention and detection measures in ensuring that nuclear materials do not become the subject of unauthorized use leading to illicit trafficking constitute (1) accounting for and (2) control of nuclear and radioactive materials and (3) physical protection of such materials. The Nuclear Energy Act No. 10 year 1997 is the legislative basis for the safety, including nuclear material accounting and control activities as well as security measures on the utilization of the nuclear and radioactive material in Indonesia. Government establishes Nuclear Energy Control Board (BAPETEN) as Regulatory Body having the task to control any activities using nuclear energy. The activities of control are implemented through regulation, licensing and inspection. The mission of the BAPETEN is to ensure adequate protection of the public health and safety, the common security, and the environmental in the peaceful uses of nuclear energy in Indonesia. To support this mission, BAPETEN has three principal regulatory functions: (1) establish regulation; (2) issue licenses and (3) inspect nuclear facilities. First component of regulatory function is establishing regulations, which define the capabilities that need to be satisfied by facility operators to protect against theft which in turn could lead to illicit trafficking. BAPETEN established the Decree on National System of Accounting for and Control of Nuclear Material (SSAC) based on the Agreement between Rl and IAEA on the Application of Safeguards in connection with NPT ratified in the Act No.8 year 1978

  8. Advance of nuclear cardiology in clinical application

    International Nuclear Information System (INIS)

    Shi Hongcheng

    2007-01-01

    Nuclear cardiology has make a little bit progress in the past year. Both nuclear cardiology and other cardiac imaging have its own advantage and disadvantage in the diagnostic of coronary artery disease. And the relationship of them is complementary but not instead of each other. Nuclear cardiology provides a one-stop shop for diagnosis, risk stratification, and management of coronary artery disease. Nuclear cardiology plays a very important role in the diagnostic of coronary artery disease in early stage in the special group of people. (authors)

  9. Nuclear medicine applications: Summary of Panel 4

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1988-01-01

    Nuclear medicine is currently facing a desperate shortage of organic and inorganic chemists and nuclear pharmacists who also have advanced training in nuclear and radiochemistry. Ironically, this shortfall is occurring in the face of rapid growth and technological advances which have made the practice of nuclear medicine an integral part of the modern health care system. This shortage threatens to limit the availability of radiopharmaceuticals required in routine hospital procedures and to impede the development of new diagnostic and therapeutic agents. To redress this need and prevent a similar shortfall in the future, this panel recommends immediate action and a long-term commitment to the following: educating the public on the benefits of nuclear medicine; informing undergraduate and graduate chemistry students about career opportunities in nuclear medicine; offering upper level courses in nuclear and radiochemistry (including laboratory) in universities; establishing training centers and fellowships at the postgraduate level for specialized education in the aspects of nuclear and radiochemistry required by the nuclear medicine profession. 1 tab

  10. Applications of neutron radiography for the nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Craft, Aaron E.; Barton, John P.

    2016-11-01

    The World Conference on Neutron Radiography (WCNR) and International Topical Meeting on Neutron Radiography (ITMNR) series have been running over 35 years. The most recent event, ITMNR-8, focused on industrial applications and was the first time this series was hosted in China. In China, more than twenty new nuclear power plants are in construction and plans have been announced to increase the nuclear capacity further by a factor of three within fifteen years. There are additional prospects in many other nations. Neutron tests were vital during previous developments of materials and components for nuclear power applications, as reported in this conference series. For example a majority of the 140 papers in the Proceedings of the First WCNR are for the benefit of the nuclear power industry. Included are reviews of the diverse techniques being applied in Europe, Japan, the United States, and at many other centers. Many of those techniques are being utilized and advanced to the present time. Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Applications include examination of nuclear waste, nuclear fuels, cladding, control elements, and other critical components. In this paper, the techniques developed and applied internationally for the nuclear power industry since the earliest years are reviewed, and the question is asked whether neutron test techniques can be of value in development of the present and future generations of nuclear power plants world-wide.

  11. Nuclear radiation detected optical pumping of neutron deficient Hg isotopes

    International Nuclear Information System (INIS)

    Bonn, J.

    1975-01-01

    The extension of the Nuclear Radiation Detected Optical Pumping method to mass-separated samples of isotopes far off stability is presented for a series of light Hg isotopes produced at the ISOLDE facility at CERN. The isotope under investigation is transferred by an automatic transfer system into the optical pumping apparatus. Zeeman scanning of an isotopically pure Hg spectral lamp is used to reach energetic coincidence with the hyperfine structure components of the 6s 2 1 S 0 -6s6p 3 P 1 (lambda = 2537 A) resonance line of the investigated isotope and the Hg lamp. The orientation build up by optical pumping is monitored via the asymmetry or anisotropy of the nuclear radiation. Nuclear spins, magnetic moments, electric quadrupole moments and isotopic shift are obtained for 181 Hg- 191 Hg using the β-asymmetry as detector. The extension of the method using the γ-anisotropy is discussed and measurements on 193 Hg are presented. (orig./HK)

  12. Implementation of graphical user interfaces in nuclear applications

    International Nuclear Information System (INIS)

    Barmsnes, K.A.; Johnsen, T.; Sundling, C.-V.

    1997-01-01

    During recent years a demand has formed for systems that support design and implementation of graphical user interfaces (GUIs) in the control rooms of nuclear power plants. Picasso-3 is a user interface management system supporting object oriented definition of GUIs in a distributed computing environment. The system is currently being used in a number of different application areas within the nuclear industry, such as retrofitting of display systems in simulators and control rooms, education and training applications, etc. Some examples are given of nuclear applications where the Picasso-3 system has been used

  13. Laser applications in nuclear power plants

    Indian Academy of Sciences (India)

    2014-01-09

    Jan 9, 2014 ... Keywords. Nd:YAG laser; fibre-optic beam delivery; laser cutting; laser welding; nuclear reactor. ... Author Affiliations. D N Sanyal1. Remote Tooling Section, Technology Development Group, Nuclear Power Corporation of India Ltd., Mumbai 400 094, India ...

  14. Chaos and fractals. Applications to nuclear engineering

    International Nuclear Information System (INIS)

    Clausse, A.; Delmastro, D.F.

    1990-01-01

    This work presents a description of the research lines carried out by the authors on chaos and fractal theories, oriented to the nuclear field. The possibilities that appear in the nuclear security branch where the information deriving from chaos and fractal techniques may help to the development of better criteria and more reliable designs, are of special importance. (Author) [es

  15. Measuring nuclear power plant output by neutrino detection

    International Nuclear Information System (INIS)

    Korovkin, V.A.; Kodanev, S.A.; Panashchenko, N.S.; Sokolov, D.A.; Solov'yanov, O.M.; Tverdovskii, N.D.; Yarichin, A.D.; Ketov, S.N.; Kopeikin, V.I.; Machulin, I.N.; Mikaelyan, L.A.; Sinev, V.V.

    1989-01-01

    Neutrino emission from a reactor is inseparably linked with the fission process of heavy nuclei: each fission contributes a specific amount to the overall power output and gives rise to neutrinos which are emitted by the fission fragments created. Using a detector to record the neutrino flux gives a curve for the number of nuclei undergoing fission and the reactor power output. The question of whether it is practically possible to make use of neutrino emission from reactors was first posed in the mid-70s in connection with preparations for neutrino research at the Roven nuclear power plant (RAES) and in 1986 at an IAEA symposium on the topic of guarantees. Since 1982, research has been carried on at RAES on the fundamental properties and interactions of neutrinos. Based on this research and in parallel with it, in 1983 specialists from the Kurchatov Nuclear Power Institute and RAES jointly conducted an experiment which demonstrated in principle the possibility of remotely measuring reactor power output using the neutrino emission. This experiment had extremely limited statistics and is of interest today as the first demonstration of practical usage of neutrino emission from a reactor. At present the statistics for detecting neutrino events have increased tenfold and experience in lengthy measurements has been accumulated. This allows better analysis for the possibilities of the method. This paper reviews neutrino detection, theoretical bases of the method, determining the fission scale values for converting a number of neutrinos into power output, and measuring the power output

  16. Master on Nuclear Engineering and Applications (MINA): instrument of knowledge management in the nuclear sector

    International Nuclear Information System (INIS)

    Herranz, L. E.; Garcia Cuesta, J. C.; Falcon, S.; Casas, J. A.

    2013-01-01

    Knowledge Management in nuclear industry is indespensable to ensure excellence in performance and safety of nuclear installations. The Master on Nuclear Engineering and Applications (MINA) is a Spanish education venture which foundations and evolution have meant and adaptation to the European Education system and to the domestic and international changes occured in the nuclear environment. This paper summarizes the most relevant aspects of such transformation, its motivation and the final outcome. Finally, it discusses the potential benefit of a closer collaboration among the existing national education ventures in the frame of Nuclear Engineering. (Author)

  17. Neural networks and their potential application to nuclear power plants

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1991-01-01

    A network of artificial neurons, usually called an artificial neural network is a data processing system consisting of a number of highly interconnected processing elements in an architecture inspired by the structure of the cerebral cortex portion of the brain. Hence, neural networks are often capable of doing things which humans or animals do well but which conventional computers often do poorly. Neural networks exhibit characteristics and capabilities not provided by any other technology. Neural networks may be designed so as to classify an input pattern as one of several predefined types or to create, as needed, categories or classes of system states which can be interpreted by a human operator. Neural networks have the ability to recognize patterns, even when the information comprising these patterns is noisy, sparse, or incomplete. Thus, systems of artificial neural networks show great promise for use in environments in which robust, fault-tolerant pattern recognition is necessary in a real-time mode, and in which the incoming data may be distorted or noisy. The application of neural networks, a rapidly evolving technology used extensively in defense applications, alone or in conjunction with other advanced technologies, to some of the problems of operating nuclear power plants has the potential to enhance the safety, reliability and operability of nuclear power plants. The potential applications of neural networking include, but are not limited to diagnosing specific abnormal conditions, identification of nonlinear dynamics and transients, detection of the change of mode of operation, control of temperature and pressure during start-up, signal validation, plant-wide monitoring using autoassociative neural networks, monitoring of check valves, modeling of the plant thermodynamics, emulation of core reload calculations, analysis of temporal sequences in NRC's ''licensee event reports,'' and monitoring of plant parameters

  18. Application of data mining techniques for nuclear data and instrumentation

    International Nuclear Information System (INIS)

    Toshniwal, Durga

    2013-01-01

    Data mining is defined as the discovery of previously unknown, valid, novel, potentially useful, and understandable patterns in large databases. It encompasses many different techniques and algorithms which differ in the kinds of data that can be analyzed and the form of knowledge representation used to convey the discovered knowledge. Patterns in the data can be represented in many different forms, including classification rules, association rules, clusters, etc. Data mining thus deals with the discovery of hidden trends and patterns from large quantities of data. The field of data mining is emerging as a new, fundamental research area with important applications to science, engineering, medicine, business, and education. It is an interdisciplinary research area and draws upon several roots, including database systems, machine learning, information systems, statistics and expert systems. Data mining, when performed on time series data, is known as time series data mining (TSDM). A time series is a sequence of real numbers, each number representing a value at a point of time. During the past few years, there has been an explosion of research in the area of time series data mining. This includes attempts to model time series data, to design languages to query such data, and to develop access structures to efficiently process queries on such data. Time series data arises naturally in many real-world applications. Efficient discovery of knowledge through time series data mining can be helpful in several domains such as: Stock market analysis, Weather forecasting etc. An important application area of data mining techniques is in nuclear power plant and related data. Nuclear power plant data can be represented in form of time sequences. Often it may be of prime importance to analyze such data to find trends and anomalies. The general goals of data mining include feature extraction, similarity search, clustering and classification, association rule mining and anomaly

  19. Nuclear safeguards applications of energy-dispersive absorption edge densitometry

    International Nuclear Information System (INIS)

    Russo, P.A.; Hsue, S.T.; Langner, D.G.; Sprinkle, J.K. Jr.

    1980-01-01

    The principles and techniques of absorption edge densitometry in the energy-dispersive mode are summarized as they apply to the nondestructive assay of special nuclear materials. Five existing field instruments, designed for special nuclear materials accounting measurements, are described. Results of the testing of these instruments as well as recent laboratory results are used to define the capabilities of the technique for special nuclear materials accounting. Possibilities for future applications are reviewed. 14 figures

  20. Nuclear chromodynamics: applications of QCD to relativistic multiquark systems

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Ji, C.R.

    1984-07-01

    We review the applications of quantum chromodynamics to nuclear multiquark systems. In particular, predictions are given for the deuteron reduced form factor in the high momentum transfer region, hidden color components in nuclear wavefunctions, and the short distance effective force between nucleons. A new antisymmetrization technique is presented which allows a basis for relativistic multiquark wavefunctions and solutions to their evolution to short distances. Areas in which conventional nuclear theory conflicts with QCD are also briefly reviewed. 48 references

  1. Dynamic social community detection and its applications.

    Directory of Open Access Journals (Sweden)

    Nam P Nguyen

    Full Text Available Community structure is one of the most commonly observed features of Online Social Networks (OSNs in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA, an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1 A social-aware message forwarding strategy in MANETs, and (2 worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods.

  2. Dynamic social community detection and its applications.

    Science.gov (United States)

    Nguyen, Nam P; Dinh, Thang N; Shen, Yilin; Thai, My T

    2014-01-01

    Community structure is one of the most commonly observed features of Online Social Networks (OSNs) in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs) and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA), an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1) A social-aware message forwarding strategy in MANETs, and (2) worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods.

  3. Application of digital control systems in nuclear power plants

    International Nuclear Information System (INIS)

    Keiper, J.T.

    1993-01-01

    This paper describes a sampling of recent digital applications, both safety related and non-safety related, in four nuclear power plants and discusses a few of the unique application experiences. Each application accrues unique benefits, but also poses unique problems. A few of the benefits and problems are discussed

  4. Nuclear Security Systems and Measures for the Detection of Nuclear and Other Radioactive Material out of Regulatory Control. Implementing Guide

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear terrorism and the illicit trafficking of nuclear and other radioactive material threaten the security of all States. There are large quantities of diverse radioactive material in existence, which are used in areas such as health, the environment, agriculture and industry. The possibility that nuclear and other radioactive material may be used for terrorist acts cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material, and to establish capabilities for detection and response to nuclear and other radioactive material out of regulatory control. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This approach recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in nuclear and other radioactive material; national response plans; and contingency measures. Within its nuclear security programme, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. Each State carries the full responsibility for nuclear security, specifically: to provide for the security of nuclear and other radioactive material and associated facilities and activities; to ensure the security of such material in use, storage or in transport; to combat illicit trafficking; and to detect and respond to nuclear security events. This is an Implementing Guide on nuclear security systems and measures for the detection of nuclear and other radioactive material out of regulatory control. The objective of the publication is to provide guidance to Member States for the

  5. Low-temperature nuclear heat applications: Nuclear power plants for district heating

    International Nuclear Information System (INIS)

    1987-08-01

    The IAEA reflected the needs of its Member States for the exchange of information in the field of nuclear heat application already in the late 1970s. In the early 1980s, some Member States showed their interest in the use of heat from electricity producing nuclear power plants and in the development of nuclear heating plants. Accordingly, a technical committee meeting with a workshop was organized in 1983 to review the status of nuclear heat application which confirmed both the progress made in this field and the renewed interest of Member States in an active exchange of information about this subject. In 1985 an Advisory Group summarized the Potential of Low-Temperature Nuclear Heat Application; the relevant Technical Document reviewing the situation in the IAEA's Member States was issued in 1986 (IAEA-TECDOC-397). Programme plans were made for 1986-88 and the IAEA was asked to promote the exchange of information, with specific emphasis on the design criteria, operating experience, safety requirements and specifications for heat-only reactors, co-generation plants and power plants adapted for heat application. Because of a growing interest of the IAEA's Member States about nuclear heat employment in the district heating domaine, an Advisory Group meeting was organized by the IAEA on ''Low-Temperature Nuclear Heat Application: Nuclear Power Plants for District Heating'' in Prague, Czechoslovakia in June 1986. The information gained up to 1986 and discussed during this meeting is embodied in the present Technical Document. 22 figs, 11 tabs

  6. Internet applications in nuclear power plant operation management

    International Nuclear Information System (INIS)

    Munoz, M.

    2000-01-01

    The use of the Internet is quickly becoming widespread in practically all areas of business and industry. The nuclear industry should not remain indifferent to this new trend. This paper analyses some of the Internet applications that can be easily adapted to nuclear power plant operation management, including. (Author)

  7. Recent applications of nuclear orientation to solid state physics

    International Nuclear Information System (INIS)

    Turrell, B.G.

    1985-01-01

    The author reviews how certain problems in solid state physics have been clarified by low temperature nuclear orientation and nuclear magnetic resonance of oriented nuclei. The advantages of these techniques, a brief survey of recent progress in traditional applications, and new developments are discussed, and, finally, future trends are suggested. (Auth.)

  8. Methods and means of the radioisotope flaw detection of the nuclear power reactors components

    International Nuclear Information System (INIS)

    Dekopov, A.S.; Majorov, A.N.; Firsov, V.G.

    1979-01-01

    Methods and means are considered for the radioisotopic flaw detection of the nuclear reactors pressure vessels and structural components of the reactor circuit. Methods of control are described as in the technological process of fabrication of the power reactors assemblies as during the systematic-preventive repair of the nuclear power station equipment during exploitation. Methodological base is given of the technology of radiation control of welded joints of the pressure vessel branch piper of the WWER-440 and WWER-1000 reactors in the process of assembling and exploitation and joining pipes with the pipe-plate of the steamgenerator in the process of fabrication. Methods of the radioisotope flaw detection in the process of exploitation take into consideration the influence of the radioisotope background, and ensure obtaining of the demanded by the rules of control, sensitivity. Methods of control of welded joints of the steamgenerator of nuclear power plants are based on the simultaneous examination of all joints with application of the shaped radiographic plate-holders. Special gamma-flaw-detection equipment is developed for control of the welded joints of the main branch-pipes. Design peculiarities are given of the installation for flaw detection. These installations are equipped with the system for emergency return of the radiation source into the storage position from the position for exposure. They have automatic exposure-meters for determination of the exposure time. Successfull exploitation of such installations in the Finland during assembling equipment for the nuclear reactor of the nuclear power plant ''Loviisa-1'' and in the USSR on the Novovoronezh nuclear power plant has shown possibility for detection of flaws having dimensions about 1% of the equipment used. For control of welded joints of pipes with pipe-plates at the steam generators, portable flaw-detectors are used. Sensitivity of these flaw-detectors towards detection of the wire standards has

  9. Possibilities, advantages and disadvantages of application FEM in nuclear technology

    International Nuclear Information System (INIS)

    Jankovic, D.

    1997-01-01

    Possibilities of applying the finite element method in nuclear technology are shown in this paper. It has an example of application numerical procedure in fluid mechanics and description of its basic principles. (author)

  10. Dispersion-strengthened aluminium powder products for nuclear application

    DEFF Research Database (Denmark)

    Hansen, Niels

    1967-01-01

    Strength, elongation, corrosion resistance, homogeneity, purity, compatibility with fuel, and resistance to irradiation damage, being main properties of SAP of interest for their application in nuclear technology, are discussed in connection with commercial products; effect on tensile and creep...

  11. Artificial intelligence - applications in high energy and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U. E-mail: mueller@whep.uni-wuppertal.de

    2003-04-21

    In the parallel sessions at ACAT2002 different artificial intelligence applications in high energy and nuclear physics were presented. I will briefly summarize these presentations. Further details can be found in the relevant section of these proceedings.

  12. A review of calixarene applications in nuclear industries

    International Nuclear Information System (INIS)

    Bahram Mokhtari; Iranian Offshore Oil Company, Lavan Island; Kobra Pourabdollah; Naser Dallali

    2011-01-01

    Calixarenes has been subject to extensive research in development of many extractants, transporters, stationary phases, electrode ionophores and optical and electrochemical sensors over the past four decades. In this paper, the nuclear applications of calixarenes are summarized in six fields including complexation studies, solvent extraction, membrane transport, chromatography, luminescent and colorimetric applications, and electroanalytical applications. In the first to fourth sections, the extractability, extraction equilibria and extraction constants of lanthanide, actinide and other nuclear waste cations ions, which were subjected to solvent extraction by the macrocyclic ligands, are reviewed. In two last sections, the analytical applications of calixarene complexes towards nuclear waste cations, including spectroscopic and electroanalytic sensors, are discussed. The examples described in this review illustrate the potential of calixarene derivatives in the rapidly growing field of cations recognition in nuclear wastes. (author)

  13. Proceedings of the 3. Brazilian Meeting on Nuclear Applications

    International Nuclear Information System (INIS)

    1995-01-01

    Researches in nuclear applications have been developed in Brazil, and were presented in this Meeting. Over 230 papers were presented in the areas of dosimetry, instrumentation, medicine, biology, agriculture, industry, radiochemistry, radiological protection, hydrology, environment and waste management

  14. Interview in Radio Educacion on the applications of nuclear energy

    International Nuclear Information System (INIS)

    Balcazar G, M.

    1991-01-01

    The objective that presides over this interview, is to show before the public the diverse applications that can have the nuclear energy, apart from the warlike aspect and the electric power generation. (Author)

  15. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  16. Stochastic Effects; Application in Nuclear Physics

    International Nuclear Information System (INIS)

    Mazonka, O.

    2000-04-01

    Stochastic effects in nuclear physics refer to the study of the dynamics of nuclear systems evolving under stochastic equations of motion. In this dissertation we restrict our attention to classical scattering models. We begin with introduction of the model of nuclear dynamics and deterministic equations of evolution. We apply a Langevin approach - an additional property of the model, which reflect the statistical nature of low energy nuclear behaviour. We than concentrate our attention on the problem of calculating tails of distribution functions, which actually is the problem of calculating probabilities of rare outcomes. Two general strategies are proposed. Result and discussion follow. Finally in the appendix we consider stochastic effects in nonequilibrium systems. A few exactly solvable models are presented. For one model we show explicitly that stochastic behaviour in a microscopic description can lead to ordered collective effects on the macroscopic scale. Two others are solved to confirm the predictions of the fluctuation theorem. (author)

  17. Applications in nuclear data and reactor physics

    International Nuclear Information System (INIS)

    Cullen, D.E.; Muranaka, R.; Schmidt, J.

    1986-01-01

    This book presents the papers given at a conference on reactor kinetics and nuclear data collections. Topics considered at the conference included nuclear data processing, PWR core design calculations, reactor neutron dosimetry, in-core fuel management, reactor safety analysis, transients, two-phase flow, fuel cycles of research reactors, slightly enriched uranium, highly enriched uranium, reactor start-up, computer codes, and the transport of spent fuel elements

  18. Open-Phase Condition Detecting System for Transformers in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ha, Che-Wung; Lee, Do-Hwan

    2015-01-01

    Recently, several events involving the loss of one of the three phases of the offsite power circuit occurred in the US nuclear power plants (NPPs).. In some cases, the open-phase condition existed undetected for an extended period and in other case, was not properly responded to. Accordingly, the Nuclear Regulatory Commission (NRC) requested all license holders to take corrective actions to address the open-phase condition. It was also requested that all holders or applicant for a standard design certification (DC) include a description of a protection system to detect and separate the open circuit into design control document (DCD). Currently, NPPs including Duke Energy, Exelon, and institutes including Electric Power Research Institute (EPRI) are working together to resolve issues associated with detecting an open-phase condition. This paper, using Electromagnetic Transients Program (EMTP), presents a system to detect and address the loss of one of three phases of the offsite power circuit connected to main, auxiliary and standby transformers, which is hard to be detected in the current protection system. This paper, using EMTP, presents a system to detect and address the loss of one of three phases of the offsite power circuit running to MT, UAT or SAT which is hard to be detected in the current protection system. The system presented in this paper will be useful not only for the KHNP to meet the NRC requirement, but also for nuclear power plants at home and abroad to take corrective actions to provide protection from a single phase open circuit condition for offsite power sources

  19. Open-Phase Condition Detecting System for Transformers in Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Che-Wung; Lee, Do-Hwan [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Recently, several events involving the loss of one of the three phases of the offsite power circuit occurred in the US nuclear power plants (NPPs).. In some cases, the open-phase condition existed undetected for an extended period and in other case, was not properly responded to. Accordingly, the Nuclear Regulatory Commission (NRC) requested all license holders to take corrective actions to address the open-phase condition. It was also requested that all holders or applicant for a standard design certification (DC) include a description of a protection system to detect and separate the open circuit into design control document (DCD). Currently, NPPs including Duke Energy, Exelon, and institutes including Electric Power Research Institute (EPRI) are working together to resolve issues associated with detecting an open-phase condition. This paper, using Electromagnetic Transients Program (EMTP), presents a system to detect and address the loss of one of three phases of the offsite power circuit connected to main, auxiliary and standby transformers, which is hard to be detected in the current protection system. This paper, using EMTP, presents a system to detect and address the loss of one of three phases of the offsite power circuit running to MT, UAT or SAT which is hard to be detected in the current protection system. The system presented in this paper will be useful not only for the KHNP to meet the NRC requirement, but also for nuclear power plants at home and abroad to take corrective actions to provide protection from a single phase open circuit condition for offsite power sources.

  20. Superheated emulsions for the detection of special nuclear material

    International Nuclear Information System (INIS)

    D’Errico, Francesco; Di Fulvio, Angela

    2011-01-01

    A novel solution for the detection and smuggling interdiction of special nuclear materials is presented here consisting of large detector modules which contain superheated emulsions and which are readout with an optical approach. The detectors can be produced to be fully sensitive to prompt fission neutrons and totally insensitive to the interrogation beam, whether X-rays or neutrons below a chosen energy threshold. Therefore, the detectors are able to operate while the selected interrogation beam is on and they will only pick up the signal from fission neutrons. A position-sensitive readout mechanism is used in our design, relying on the scattering of light by neutron-induced bubbles. A beam of coherent light crosses the active area of the detector, and local variations in scattered light due to the presence of bubbles are detected in real time by arrays of silicon planar photodiodes affixed along the whole length of the detector. The system may offer a variety of advantages compared to current approaches, such as the possibility of simultaneous irradiation and detection, i.e. a 100% duty cycle, without requiring complex signal analysis, and high signal-to-noise ratio, minimizing costly nuisance alarms, thanks to its inherent insensitivity to photons.

  1. Multivariate diagnostics and anomaly detection for nuclear safeguards

    International Nuclear Information System (INIS)

    Burr, T.

    1994-01-01

    For process control and other reasons, new and future nuclear reprocessing plants are expected to be increasingly more automated than older plants. As a consequence of this automation, the quantity of data potentially available for safeguards may be much greater in future reprocessing plants than in current plants. The authors first review recent literature that applies multivariate Shewhart and multivariate cumulative sum (Cusum) tests to detect anomalous data. These tests are used to evaluate residuals obtained from a simulated three-tank problem in which five variables (volume, density, and concentrations of uranium, plutonium, and nitric acid) in each tank are modeled and measured. They then present results from several simulations involving transfers between the tanks and between the tanks and the environment. Residuals from a no-fault problem in which the measurements and model predictions are both correct are used to develop Cusum test parameters which are then used to test for faults for several simulated anomalous situations, such as an unknown leak or diversion of material from one of the tanks. The leak can be detected by comparing measurements, which estimate the true state of the tank system, with the model predictions, which estimate the state of the tank system as it ''should'' be. The no-fault simulation compares false alarm behavior for the various tests, whereas the anomalous problems allow one to compare the power of the various tests to detect faults under possible diversion scenarios. For comparison with the multivariate tests, univariate tests are also applied to the residuals

  2. Method and apparatus for detecting failed fuels in nuclear reactor

    International Nuclear Information System (INIS)

    Tsuji, Tadashi.

    1981-01-01

    Purpose: To enable safety and automatic sampling for sample water in failed fuel detection. Constitution: A cap containing inner caps by the number of fuel assemblies inserted into each grid of a nuclear reactor is mounted to the upper end of the fuel assemblies. After the mounting, it is confirmed if the mounting is collectly made by the mounting state detection device utilizing the change in the pressure within the tube communicating to a water seal pipe. Then, air at a predetermined pressure introduced from an air supply tube opening into the cap is introduced into the cap to replace the coolants in the cap with the air. The pressure difference between the inside and the outside of the cap is detected and, if it shows a set value, it is confirmed that the cooling water level is independent for every fuel assembly. Then, sample water is sampled by the sampling tube within the guide cap provided to the upper end of the inner cap. (Furukawa, Y.)

  3. Application of nuclear irradiation to traditional chinese medicine

    International Nuclear Information System (INIS)

    Liang Jianping; Li Xuehu; Lu Xihong; Tao Lei; Wang Shuyang

    2010-01-01

    The application of nuclear irradiation in the field of traditional Chinese medicine has received much attention. In this paper we reviewed the application of nuclear radiation on the cultivation, breeding and disinfection of traditional Chinese medicine, and pointed out that the combination of radiation-induced mutagenesis and biological technology would promise broad prospects for increasing the cellular mutation rate and speeding up the genetic improvement of traditional Chinese medicine. (authors)

  4. Applications in the nuclear fuel cycle and radiopharmacy

    International Nuclear Information System (INIS)

    Jones, C.J.

    1987-01-01

    Chapter 6 of comprehensive coordination chemistry deals with applications of uranium and thorium in the nuclear fuel cycle. There are sections on the separation and recovery of the two metals from their ores and on the preparation of and re-processing of nuclear fuels. Another section is devoted to the chemistry of gallium, indium and technetium and to pharmaceutical applications of radionuclides for diagnostic imaging. (UK)

  5. The investigation of nano-monitoring technology and the probability analysis of application of nuclear technology

    International Nuclear Information System (INIS)

    Kang Kejun; Wang Xuewu; Gao Wenhuan

    1999-01-01

    After several-decade of development, nano science/nano technology has become a scientific and technical frontier that with major trends foreseen in several disciplines. By connecting with the development of nano science/nano technology and considering the human body environment that the nano system is applicable in, the author analyzes the probability of the present nuclear detection technologies integrating and application with the monitoring of nano system, and draws an analysis of optimality choice

  6. Enhancement of crack detection in stud bolts of nuclear reactor by ultrasonic signal processing technique

    International Nuclear Information System (INIS)

    Lee, J.H.; Oh, W.D.; Choi, S.W.; Park, M.H.

    2004-01-01

    'Full-text:' The stud bolts is one of the most critical parts for safety of reactor vessels in the nuclear power plants. However, in the application of ultrasonic technique for crack detection in stud bolt, some difficulties encountered are classification of crack signal from the signals reflected from threads part in stud bolt. In this study, shadow effect technique combined with new signal processing method is Investigated to enhance the detectability of small crack initiated from root of thread in stud bolt. The key idea of signal processing is based on the fact that the shape of waveforms from the threads is uniform since the shape of the threads in a bolt is same. If some cracks exist in the thread, the flaw signals are different to the reference signals. It is demonstrated that the small flaws are efficiently detected by novel ultrasonic technique combined with this new signal processing concept. (author)

  7. Intrusion detection techniques for plant-wide network in a nuclear power plant

    International Nuclear Information System (INIS)

    Rajasekhar, P.; Shrikhande, S.V.; Biswas, B.B.; Patil, R.K.

    2012-01-01

    Nuclear power plants have a lot of critical data to be sent to the operator workstations. A plant wide integrated communication network, with high throughput, determinism and redundancy, is required between the workstations and the field. Switched Ethernet network is a promising prospect for such an integrated communication network. But for such an integrated system, intrusion is a major issue. Hence the network should have an intrusion detection system to make the network data secure and enhance the network availability. Intrusion detection is the process of monitoring the events occurring in a network and analyzing them for signs of possible incidents, which are violations or imminent threats of violation of network security policies, acceptable user policies, or standard security practices. This paper states the various intrusion detection techniques and approaches which are applicable for analysis of a plant wide network. (author)

  8. National and International Security Applications of Cryogenic Detectors - Mostly Nuclear Safeguards

    International Nuclear Information System (INIS)

    Rabin, Michael W.

    2009-01-01

    As with science, so with security--in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma-ray, neutron, and alpha-particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invisible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  9. National and International Security Applications of Cryogenic Detectors—Mostly Nuclear Safeguards

    Science.gov (United States)

    Rabin, Michael W.

    2009-12-01

    As with science, so with security—in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma-ray, neutron, and alpha-particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invisible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  10. International and national security applications of cryogenic detectors - mostly nuclear safeguards

    International Nuclear Information System (INIS)

    Rabin, Michael W.

    2009-01-01

    As with science, so with security - in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma ray, neutron, and alpha particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invi sible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  11. Current Status of Non-Electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Shin, Young Joon; Lee, Jun; Lee, Tae Hoon

    2009-05-01

    IAEA Technical Meeting(I3-TM-37394) on 'Non-Electric Applications of Nuclear Energy' has been successfully held from March 3 to 6 in 2009 at KAERI/INTEC. The 24 experts from 12 countries participated in this meeting and provided 17 presentations and their opinions and comments in desalination, hydrogen production, and heat application sessions. All of the participants from 12 countries agreed that nuclear power should be the potential carbon-free energy source to replace crude oil and reduce greenhouse gas emissions in the fields of non-electric applications such as desalination, hydrogen production, district heating, and industrial processes applications

  12. Literature study regarding fire protection in nuclear power plants. Part 2: Fire detection and -extinguishing systems

    International Nuclear Information System (INIS)

    Isaksson, S.

    1996-01-01

    This literature study has been made on behalf of the Swedish Nuclear Power Inspectorate. The aim is to describe different aspects of fire protection in nuclear power plants. Detection and extinguishing systems in Swedish nuclear power plants have only to a limited extent been designed after functional demands, such as a maximum acceptable damage or a maximum time to detect a fire. The availability of detection systems is difficult to assess, partly because of lack of statistics. The user interface is very important in complex systems as nuclear plants. An extinguishing system designed according to the insurance companies' regulations will only fulfill the basic demands. It should be noted that normal sprinkler design does not aim for extinguishing fires, the objective is to control fire until manual extinguishment is possible. There is a great amount of statistics on wet and dry pipe sprinkler systems, while statistics are more scarce for deluge systems. The statistics on the reliability of gaseous extinguishing systems have been found very scarce. A drawback of these systems is that they are normally designed for one shot only. There are both traditional and more recent extinguishing systems that can replace halons. From now on there will be a greater need for a thorough examination of the properties needed for the individual application and a quantification of the acceptable damage. There are several indications on the importance of a high quality maintenance program as well as carefully developed routines for testing and surveillance to ensure the reliability of detection and extinguishing systems. 78 refs, 8 figs, 10 tabs

  13. Nuclear medicine and related radionuclide applications in developing countries

    International Nuclear Information System (INIS)

    1986-01-01

    The Symposium presentations were divided into sessions devoted to the following topics: Radioimmunoassay and related techniques (4 papers and 4 poster presentations); Radionuclide applications in the diagnosis of parasitic diseases (7 papers and 2 posters); Instrumentation (6 papers and 4 posters); Clinical nuclear medicine: liver, bones, thyroid, cardiovascular system, lungs, kidneys, brain (23 papers and 15 posters); Organization of nuclear medicine services in the developing countries (9 papers and 5 posters); Training in nuclear medicine (4 papers) and the panel discussion. Future of Nuclear Medicine in the developing countries. A separate abstract was prepared for each of these papers and posters

  14. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Cameron Russell [Univ. of California, Berkeley, CA (United States)

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  15. A new detection method of 99Tc by nuclear excitation

    International Nuclear Information System (INIS)

    Sekine, T.; Yoshihara, Kenji; Nemeth, Zs.; Lakosi, L.; Veres, A.

    1989-01-01

    A new nuclear excitation process, 99 Tc(γ,γ') 99m Tc reaction, was applied for the first time to radioactivation analysis of technetium. Bremsstrahlung irradiation of 99 Tc samples gave the reaction product 99m Tc which emits γ-ray easily measurable by a semiconductor detector. The production rate of 99m Tc per μg 99 Tc was linearly correlated with the flux of bremsstrahlung. The detection limit of 99 Tc was estimated to be nanogram order (0.63 Bq 99 Tc) under the optimum irradiation condition. Possible interference by 100 Ru(γ, p) 99m Tc reaction was also studied, which could be discriminated from the (γ,γ') reaction by simultaneously occurring 98 Ru(γ,p) 97 Ru reaction. (author) 17 refs.; 7 figs

  16. ICPMS for nuclear applications: merits, limitations and prospective developments

    International Nuclear Information System (INIS)

    Boulyga, S.; Poths, J.; Balsley, S.; Donohue, D.; ); Kappel, S.; Prohaska, T.

    2009-01-01

    Full text: Inductively coupled plasma mass spectrometry (ICPMS) is gaining increasing recognition for analysis of nuclear and related samples in safeguards, forensics and environmental monitoring. The most challenging applications of ICPMS include isotopic analysis of microsamples, age determination of nuclear materials as well as comprehensive analysis of nuclear samples. This presentation will discuss particular advantages and limitations of presently available ICPMS instrumentation for such applications. It will also highlight the current need for an improvement of ICPMS performance aimed at obtaining significantly more specific and accurate isotopic information. (author)

  17. Scintilla: A New International Platform for the Development, Evaluation and Benchmarking of Technologies to Detect Radioactive and Nuclear Material

    International Nuclear Information System (INIS)

    Sannie, G.; Normand, S.; Peerani, P.; Tagziria, H.; Friedrich, H.; Chmel, S.; De Vita, R.; Pavan, M.; Grattarola, M.; Botta, E.; Kovacs, A.S.; Lakosi, L.; Baumhauer, C.; Equios, M.; Petrossian, G.; Picard, J.M.; Dermody, G.; Crossingham, G.

    2013-06-01

    For Homeland Security, enhanced detection and identification of radioactive sources and nuclear material has become of increasing importance. The scintilla project aims at minimizing the risk of radioactive sources dissemination especially with masked and shielded material. SCINTILLA offers the capacity to finding a reliable alternative to Helium-3 based detection systems since the gas which is predominantly used in nuclear safeguards and security applications has now become very expensive, rare and nearly unavailable. SCINTILLA benchmarks will be based on international standards. Radiation Portal testing being carried out at the Joint Research Centre (JRC) in Ispra (Italy). (authors)

  18. Early detection and diagnosis of disturbances in nuclear power plants

    International Nuclear Information System (INIS)

    Bjorlo, T.J.; Berg, O.; Grini, R.E.; Yokobayashi, M.

    1987-01-01

    The surveillance and control of nuclear power plants comprises a number of tasks and functions which have to be shared between the operators and the control and instrumentation systems. The trend in control room design towards a higher degree of computerization of the control and instrumentation systems and replacement of conventional instrument panels by VDU-based man-machine communication systems opens possibilities for improving the support given to the operators in their cognitive tasks. At the OECD Halden Reactor Project these possibilities are explored through a research and development programme centered around the NORS/HAMMLAB experimental control room facility. The full-scale PWR simulator, NORS, coupled with the HAlden Man-Machine LABoratory (HAMMLAB), which includes the experimental control room as well as an established research methodology and staff, constitutes a unique basis ofr the design, development and validation of operator support systems, as well as for more basic operator performance experimentation. The aim of the system development work at the Halden Project is to design, build and validate computer-based systems which can assist and support the operations in their various tasks and through this improve the total performance and safety of complex plant operation. Currently, the Halden Project is developing an integrated disturbance handling system for use at nuclear power plants. This paper describes the activities on fault detection and diagnosis within this development project

  19. Nuclear toxicology. To detect, to clean; Toxicologie nucleaire. Dectecter, depolluer

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, D. [CEA Cadarache (IBEB), Lab. de Bioenergetique Cellulaire, 13 - Saint-Paul-lez-Durance (France); Lecomte-Pradines, C. [Institut de Radioprotection et de Surete Nucleaire (IRSN/DEI), Lab. de Radioecologie et d' Ecotoxicologie, 13 - Saint-Paul-lez-Durance (France); Quemeneur, E. [CEA Valrho (IBEB), Lab. de Radioecologie et d' Ecotoxicologie Nucleaire, 30 - Marcoule (France); Petitot, F. [CEA Centre de Pierrelatte, Institut de Radioprotection et de Surete Nucleaire, (IRSN-DRPH-SRBE), Lab. de Radiotoxicologie Experimentale, 26 (France); Souidi, M.; Bertho, J.M. [CEA Fontenay-aux-Roses, Institut de Radioprotection et de Surete Nucleaire, (IRSN-DRPH-SRBE), Lab. de Radiotoxicologie Experimentale 92 (France); Junot, Ch. [CEA Saclay (iBiTec-S/SPI), Lab. d' Etude du Metabolisme des Medicaments, 91 - Gif-sur-Yvette (France); Malard, V. [CEA Valrho (IBEB-SBTN), Lab. de Biochimie des Systemes Perturbes, 30 - Marcoule (France); Berthomieu, C.; Chapon, V. [CEA Cadarache (IBEB), Lab. des Interactions Proteine Metal, 13 - Saint-Paul-lez-Durance (France); Gilbin, R.; Misson-Pons, J. [CEA Cadarache, Institut de Radioprotection et de Surete Nucleaire (IRSN/DEI), Lab. de Radioecologie et d' Ecotoxicologie, 13 - Saint-Paul-lez-Durance (France); Vavasseur, A. [CEA Cadarache (IBEB), Lab. des Echanges Membranaires et Signalisation, 13 - Saint-Paul-lez-Durance (France); Richaud, P. [CEA Cadarache (IBEB), Lab. de Bioenergetique et Biotechnologie des Basteries et Microalgues, 13 - Saint-Paul-lez-Durance (France); Ansoborlo, E.; Taran, F.; Benech, H.; Fattal, E.; Tsapis, N.; Menetrier, F.; Deverre, J.R.; Burgada, R. [CEA Marcoule (DEN/DRCP/CETAMA), 30 (France)

    2009-01-15

    This file shows two complementary parts: one aiming to a better detection of exposure for man and environment and and other one relative to the treatments to be used when there is a contamination. The development of biological captors is a research axis that could be very useful for nuclear toxicologists that wish to dispose of perceptible measurement tools. In the same idea biological markers could be an important help to determine the toxic quantity in organism in case of internal radioactive contamination. About remedial actions, bacteria are able to reduce, to oxide, to capture pollutants and then it is not insane to use them in efficient and low cost remediation for waters or contaminated lands, especially by trace metals or radioactive compounds. Next to them, plants can offer the same service it is the case for sunflower able to treat water loaded in uranium. This file ends with a review of the different treatments known nowadays as therapies for contamination by radioisotopes used in nuclear industry. (N.C.)

  20. 76 FR 81994 - UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...

    Science.gov (United States)

    2011-12-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit 3; Exemption 1.0 Background: UniStar Nuclear Energy (UNE) submitted to the U.S. Nuclear Regulatory Commission (NRC or the Commission ) a...

  1. Russian nuclear power plants for marine applications

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, O. [Norwegian Radiation Protection Authority (Norway); Oelgaard, P.L. [Risoe National Lab. (Denmark)

    2006-04-15

    In order to establish a systematic approach for future proliferation and environmental analyses of Russia's marine nuclear reactor systems, this paper summarizes and analyzes the available open-source information on the design properties of reactor systems and nuclear fuels. The most distinctive features of Russian marine reactor development are pointed out, and similarities and differences between Russian military and civilian reactor systems and fuel are discussed. Relevant updated information on all Russian vessels using nuclear propulsion is presented in Annex I. The basic analytic division in this paper follows vessel generations first to third generation; and reactor types PWR and LMC technology. Most of the available information is related to nuclear icebreakers. This information is systematically analyzed in order to identify stages in the development of Russia's civilian naval nuclear reactors. Three different reactor models are discussed: OK-150, OK-900 and KLT-40, together with several versions of these. Concerning military reactors, it is not possible to identify characteristics for the individual reactor models, so the basic division follows vessel generations first to third generation. From the information available, however, it is possible to identify the main lines along which the design of submarines of especially the first and the second generation has been made. The conclusions contain a discussion of possible implications of the results, in addition to suggestions for further work. (au)

  2. Russian nuclear power plants for marine applications

    International Nuclear Information System (INIS)

    Reistad, O.; Oelgaard, P.L.

    2006-04-01

    In order to establish a systematic approach for future proliferation and environmental analyses of Russia's marine nuclear reactor systems, this paper summarizes and analyzes the available open-source information on the design properties of reactor systems and nuclear fuels. The most distinctive features of Russian marine reactor development are pointed out, and similarities and differences between Russian military and civilian reactor systems and fuel are discussed. Relevant updated information on all Russian vessels using nuclear propulsion is presented in Annex I. The basic analytic division in this paper follows vessel generations first to third generation; and reactor types PWR and LMC technology. Most of the available information is related to nuclear icebreakers. This information is systematically analyzed in order to identify stages in the development of Russia's civilian naval nuclear reactors. Three different reactor models are discussed: OK-150, OK-900 and KLT-40, together with several versions of these. Concerning military reactors, it is not possible to identify characteristics for the individual reactor models, so the basic division follows vessel generations first to third generation. From the information available, however, it is possible to identify the main lines along which the design of submarines of especially the first and the second generation has been made. The conclusions contain a discussion of possible implications of the results, in addition to suggestions for further work. (au)

  3. Aggregation process, application to nuclear multifragmentation

    International Nuclear Information System (INIS)

    Garcia, Jean-Baptiste

    1995-01-01

    It is depicted an aggregation model (applied to nuclear multifragmentation) which I have elaborated and validated. This model contains an aggregation procedure, allowing one to determine the aggregation state of a given system. It takes into account spatial and kinetic nucleonic information, as well as in-medium effects. It is made of several energetic linkage criterions, all based on a single quantity: the energy of a system computed in its center of mass frame. This procedure has been applied to nuclear physics, assuming nucleus as a mix of two Fermi gas, interacting via the Yukawa potential (plus Coulomb in between protons) and obeying to a classical exclusion principle. The general trends of the model match with those of nuclear physics. Moreover, two comparisons between the model and nuclear multifragmentation experiments (ALADIN, then FOPI) exhibit nice agreements. The FOPI one, shows that fragments are bound to be formed at the beginning of the expansion phase (Au + Au at 150 MeV/nuc, for central collisions). This work ends with a study of the main ingredients included in the model. It reveals that in-medium effects, exclusion principle as well as the shape of the potential have a non negligible influence on the studied nuclear aggregation process. (author) [fr

  4. The multiple applications of the nuclear techniques in Argentina; Las multiples aplicaciones de la tecnologia nuclear en Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Alberto C [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Programa de Radioisotopos y Aplicaciones

    2001-07-01

    A review is given of the use of nuclear technology in Argentina, especially in the field of the production of radioisotopes and radiopharmaceuticals, nuclear medicine, and industrial applications. The applications of ionizing radiation are also reviewed.

  5. Physics of nuclear radiations concepts, techniques and applications

    CERN Document Server

    Rangacharyulu, Chary

    2013-01-01

    Physics of Nuclear Radiations: Concepts, Techniques and Applications makes the physics of nuclear radiations accessible to students with a basic background in physics and mathematics. Rather than convince students one way or the other about the hazards of nuclear radiations, the text empowers them with tools to calculate and assess nuclear radiations and their impact. It discusses the meaning behind mathematical formulae as well as the areas in which the equations can be applied. After reviewing the physics preliminaries, the author addresses the growth and decay of nuclear radiations, the stability of nuclei or particles against radioactive transformations, and the behavior of heavy charged particles, electrons, photons, and neutrons. He then presents the nomenclature and physics reasoning of dosimetry, covers typical nuclear facilities (such as medical x-ray machines and particle accelerators), and describes the physics principles of diverse detectors. The book also discusses methods for measuring energy a...

  6. Development of indigenous technology at CNEN in the fields of nuclear medicine, nuclear detectors, instrumentation, radioisotope production and application of nuclear techniques

    International Nuclear Information System (INIS)

    Mafra, O.

    1990-01-01

    The main objectives of the program developed at CNEN in the field of nuclear medicine, nuclear detectors, instrumentation, radioisotope production and application of nuclear technique are described. (E.G.) [pt

  7. ICT based training on nuclear technology applications in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Mdoe, S.L. [Nuclear Technology Applications Directorate, Tanzania Atomic Energy Commission, P.O. Box 743, Arusha (Tanzania)]. E-mail: slcmdoe@yahoo.com; Kimaro, E. [Nuclear Technology Applications Directorate, Tanzania Atomic Energy Commission, P.O. Box 743, Arusha (Tanzania)]. E-mail: taec@habari.co.tz

    2006-07-01

    Peaceful application of nuclear technology has contributed to socio-economic resource development in Tanzania. The Tanzania Atomic Energy Commission has taken some active steps for the incorporation and or adoption of ICT-based training modules in nuclear science and technology and its applications. The overall objective of this programme is to establish a sustainable national capability for using the potential of information communication technologies (ICTs) for training and education in the field of nuclear science and technology. This paper reviews some of the experience which the authors gained in the area of ICT based training in nuclear technology applications, it describes some of the challenges experienced, and some proposals to address the issues involved. (author)

  8. Survey of heat-pipe application under nuclear environment

    International Nuclear Information System (INIS)

    Tsuyuzaki, Noriyoshi; Saito, Takashi; Okamoto, Yoshizo; Hishida, Makoto; Negishi, Kanji.

    1986-11-01

    Heat pipes today are employed in a wide variety of special heat transfer applications including nuclear reactor. In this nuclear technology area in Japan, A headway speed of the heat pipe application technique is not so high because of safety confirmation and investigation under each developing step. Especially, the outline of space craft is a tendency to increase the size. Therefore, the power supply is also tendency to increase the outlet power and keep the long life. Under SP-100 project, the development of nuclear power supply system which power is 1400 - 1600 KW thermal and 100 KW electric power is steadily in progress. Many heat pipes are adopted for thermionic conversion and coolant system in order to construct more safety and light weight system for the project. This paper describes the survey of the heat pipe applications under the present and future condition for nuclear environment. (author)

  9. ICT based training on nuclear technology applications in Tanzania

    International Nuclear Information System (INIS)

    Mdoe, S.L.; Kimaro, E.

    2006-01-01

    Peaceful application of nuclear technology has contributed to socio-economic resource development in Tanzania. The Tanzania Atomic Energy Commission has taken some active steps for the incorporation and or adoption of ICT-based training modules in nuclear science and technology and its applications. The overall objective of this programme is to establish a sustainable national capability for using the potential of information communication technologies (ICTs) for training and education in the field of nuclear science and technology. This paper reviews some of the experience which the authors gained in the area of ICT based training in nuclear technology applications, it describes some of the challenges experienced, and some proposals to address the issues involved. (author)

  10. Nuclear cardiac imaging: Principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Iskandrian, A.S.

    1987-01-01

    This book is divided into 11 chapters. The first three provide a short description of the instrumentation, radiopharmaceuticals, and imaging techniques used in nuclear cardiology. Chapter 4 discusses exercise testing. Chapter 5 gives the theory, technical aspects, and interpretations of thallium-201 myocardial imaging and radionuclide ventriculography. The remaining chapters discuss the use of these techniques in patients with coronary artery disease, acute myocardial infarction, valvular heart disease, and other forms of cardiac disease. The author intended to emphasize the implications of nuclear cardiology procedures on patient care management and to provide a comprehensive bibliography.

  11. Nuclear cardiac imaging: Principles and applications

    International Nuclear Information System (INIS)

    Iskandrian, A.S.

    1987-01-01

    This book is divided into 11 chapters. The first three provide a short description of the instrumentation, radiopharmaceuticals, and imaging techniques used in nuclear cardiology. Chapter 4 discusses exercise testing. Chapter 5 gives the theory, technical aspects, and interpretations of thallium-201 myocardial imaging and radionuclide ventriculography. The remaining chapters discuss the use of these techniques in patients with coronary artery disease, acute myocardial infarction, valvular heart disease, and other forms of cardiac disease. The author intended to emphasize the implications of nuclear cardiology procedures on patient care management and to provide a comprehensive bibliography

  12. From basic nuclear data to applications

    International Nuclear Information System (INIS)

    Trkov, A.

    2001-01-01

    Reaction rates of neutron interactions with matter are parametrised by the neutron flux, which describes the neutron population and the nuclear data, which define the properties of the medium. Reaction rates determine other parameters of interest. To determine these parameters, a long chain of calculations needs to be performed. It requires on input a set of complex nuclear data and the accuracy of the calculations depends on them. To make calculations feasible, techniques have been developed to reduce the amount of information in several steps. In the lecture notes the data reduction techniques are briefly described, with emphasis on the classifications of the data resulting from individual steps. (author)

  13. Industrial applications of nuclear techniques in Poland

    International Nuclear Information System (INIS)

    Michalik, J.St.

    1981-01-01

    Application of radioisotope techniques in a number of Polish industries was reviewed. Studies on the usage of radiotracer as an evaluation method for technological processes were carried out and the advantages of such application were discussed

  14. Application of electrostatic accelerators for nuclear physics studies

    International Nuclear Information System (INIS)

    Kuz'minov, B.D.; Romanov, V.A.; Usachev, L.N.

    1983-01-01

    The data are reviewed on dynamics of the development of single- and two-stage electrostatic accelerators (ESA) used as a tool or nuclear physics studies in the range of low and medium energies. The ESA wide possibilities are shown on examples of the most specific studies in the field of nuclear physics, work on measurement of nuclear constants to safisfy the nuclear power needs and applied studies on nuclear microanalysis. It is concluded that the contribution of studies performed using ESA to the development of nowadays concepts on nuclear structure and nuclear reaction kinetics is immeasurably higher than of any other nuclear-physics tool. ESA turned out to be also exceptionally useful for solving applied problems and investigations in different fields of knowledge. Carrying over the technique of investigations using ESA and nuclear physics concepts to atomic and molecular problems has found its application in optical spectroscopy in Lamb shift investigations in strongly ionized heavy ions, in various experiments on atom-atom and atom-molecular scattering, in stUdies of collisions and charge exchange. ESA contributed to the progress in such scientific fields as astraphysics, nuclear physics, solid-state physics, material science and biophysics

  15. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond L

    1993-01-01

    This expanded, revised, and updated fourth edition of Nuclear Energy maintains the tradition of providing clear and comprehensive coverage of all aspects of the subject, with emphasis on the explanation of trends and developments. As in earlier editions, the book is divided into three parts that achieve a natural flow of ideas: Basic Concepts, including the fundamentals of energy, particle interactions, fission, and fusion; Nuclear Systems, including accelerators, isotope separators, detectors, and nuclear reactors; and Nuclear Energy and Man, covering the many applications of radionuclides, r

  16. Recent developments in the food quality detected by non-invasive nuclear magnetic resonance technology.

    Science.gov (United States)

    Fan, Kai; Zhang, Min

    2018-02-16

    Nuclear magnetic resonance (NMR) is a rapid, accurate and non-invasive technology and widely used to detect the quality of food, particularly to fruits and vegetables, meat and aquatic products. This review is a survey of recent developments in experimental results for the quality of food on various NMR technologies in processing and storage over the past decade. Following a discussion of the quality discrimination and classification of food, analysis of food compositions and detection of physical, chemical, structural and microbiological properties of food are outlined. Owing to high cost, low detection limit and sensitivity, the professional knowledge involved and the safety issues related to the maintenance of the magnetic field, so far the practical applications are limited to detect small range of food. In order to promote applications for a broader range of foods further research and development efforts are needed to overcome the limitations of NMR in the detection process. The needs and opportunities for future research and developments are outlined.

  17. Seismic Isolation Studies and Applications for Nuclear Facilities

    International Nuclear Information System (INIS)

    Choun, Young Sun

    2005-01-01

    Seismic isolation, which is being used worldwide for buildings, is a well-known technology to protect structures from destructive earthquakes. In spite of the many potential advantages of a seismic isolation, however, the applications of a seismic isolation to nuclear facilities have been very limited because of a lack of sufficient knowledge about the isolation practices. The most important advantage of seismic isolation applications in nuclear power plants is that the safety and reliability of the plants can be remarkably improved through the standardization of the structures and equipment regardless of the seismic conditions of the sites. The standardization of structures and equipment will reduce the capital cost and design/construction schedule for future plants. Also, a seismic isolation can facilitate decoupling of the design and development for equipment, piping, and components due to the use of the generic in-structure response spectra associated with the standardized plant. Moreover, a seismic isolation will improve the plant safety margin against the design basis earthquake (DBE) as well as a beyond design basis seismic event due to its superior seismic performance. A number of seismic isolation systems have been developed and tested since 1970s, and some of them have been applied to conventional structures in several countries of high seismicity. In the nuclear field, there have been many studies on the applicability of such seismic isolation systems, but the application of a seismic isolation is very limited. Currently, there are some discussions on the application of seismic isolation systems to nuclear facilities between the nuclear industries and the regulatory agencies in the U.S.. In the future, a seismic isolation for nuclear facilities will be one of the important issues in the nuclear industry. This paper summarizes the past studies and applications of a seismic isolation in the nuclear industry

  18. Detecting special nuclear material using muon-induced neutron emission

    Energy Technology Data Exchange (ETDEWEB)

    Guardincerri, Elena; Bacon, Jeffrey; Borozdin, Konstantin; Matthew Durham, J.; Fabritius II, Joseph [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, Adam [University of New Mexico, Albuquerque, NM 87131 (United States); Milner, Edward C. [Southern Methodist University, Dallas, TX 75205 (United States); Miyadera, Haruo; Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Perry, John [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of New Mexico, Albuquerque, NM 87131 (United States); Poulson, Daniel [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-07-21

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  19. Laser applications in nuclear power plants

    Indian Academy of Sciences (India)

    2014-01-09

    Jan 9, 2014 ... we have used laser techniques to cut stainless steel sheets up to 14 mm thickness and stainless steel weld up to ... radioactive environment, reasons being easiness in tool handling, flexibility, non-contact nature ... in nuclear power plants of NPCIL, India, by invoking different innovative techniques. Figure 1.

  20. Processing of nuclear data for reactor applications

    International Nuclear Information System (INIS)

    Trkov, A.; Ravnik, M.

    1996-01-01

    A brief description is given of the processing and validation of nuclear data in connection with the TRX-1, TRX-2, BAPL-1 and BAPL-2 benchmarks of a/o thermal reactors and in connection with the JEF-1, JENDL-3 and WIMS libraries. Also, the validation of the WLUP results are briefly discussed. 8 refs, 5 tabs

  1. New medical application: nuclear scattering radiography

    International Nuclear Information System (INIS)

    Saudinos, J.

    1977-01-01

    Nuclear scattering of 1 GeV protons is used to obtain three dimensional radiographies with a volume resolution of about 1 mm 3 . The information is different from the one given by X-ray radiographies and in particular one may get radiographies of the hydrogen included in objects. Results on a vertebral column and a 'sella turcica' are presented [fr

  2. Telerobotic technology for nuclear and space applications

    International Nuclear Information System (INIS)

    Herndon, J.N.; Hamel, W.R.

    1987-03-01

    Telerobotic development efforts at Oak Ridge National Laboratory are extensive and relatively diverse. Current efforts include development of a prototype space telerobot system for the NASA Langley Research Center and development and large-scale demonstration of nuclear fuel cycle teleoperators in the Consolidated Fuel Reprocessing Program. This paper presents an overview of the efforts in these major programs. 10 refs., 8 figs

  3. Overview of expert systems applications in Westinghouse Nuclear Fuel Activities

    International Nuclear Information System (INIS)

    Leech, W.J.

    1989-01-01

    Expert system applications have been introduced in several nuclear fuel activities, including engineering and manufacturing. This technology has been successfully implemented on the manufacturing floors to provide on-line process control at zirconium tubing and fuel fabrication plants. This paper provides an overview of current applications at Westinghouse with respect to fuel fabrication, zirconium tubing, zirconium production, and core design

  4. Survey of high-temperature nuclear heat application

    International Nuclear Information System (INIS)

    Kirch, N.; Schaefer, M.

    1984-01-01

    Nuclear heat application at high temperatures can be divided into two areas - use of high-temperature steam up to 550 deg. C and use of high-temperature helium up to about 950 deg. C. Techniques of high-temperature steam and heat production and application are being developed in several IAEA Member States. In all these countries the use of steam for other than electricity production is still in a project definition phase. Plans are being discussed about using steam in chemical industries, oil refineries and for new synfuel producing plants. The use of nuclear generated steam for oil recovery from sands and shale is also being considered. High-temperature nuclear process heat production gives new possibilities for the application of nuclear energy - hard coals, lignites, heavy oils, fuels with problems concerning transport, handling and pollution can be converted into gaseous or liquid energy carriers with no loss of their energy contents. The main methods for this conversion are hydrogasification with hydrogen generated by nuclear heated steam reformers and steam gasification. These techniques will allow countries with large coal resources to replace an important part of their natural gas and oil consumption. Even countries with no fossil fuels can benefit from high-temperature nuclear heat - hydrogen production by thermochemical water splitting, nuclear steel making, ammonia production and the chemical heat-pipe system are examples in this direction. (author)

  5. Basic study for development of nuclear heat application systems

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Yoshitomo; Fumizawa, Motoo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1996-05-01

    We need to intensely investigate real possibilities of nuclear heat application systems which exploit high potential of nuclear energy as a promising candidate of the future energy resource in the world. In this report, special interest was placed on coal reforming systems because we thought a compact heat source of nuclear power with a very high energy density might compensate the environmental problem caused by burning a great amount of coal. First, we reviewed state-of-the-art technologies for coal reforming technology with a special attention on coal gasification technologies. Based on these basic data, we proposed several nuclear coal reforming systems and discussed advantages and disadvantages of the systems. We also explored a model with which we could analyze nuclear heat application systems all together. In addition, we investigated possibility and effects of nuclear heat utilization systems producing chemical materials from carbon dioxide in flue gas of fossil fuel power plant. As a result, we showed nuclear heat application systems were useful. (author).

  6. Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications

    International Nuclear Information System (INIS)

    Seitz, B

    2012-01-01

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particles and their momentum vectors. Imaging Cherenkov counters (RICH and DIRC) are frequently employed in nuclear and particle physics experiments. These detectors require high-rate, single-photon capable light detection system with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of rate dependence, cross-talk, time-resolution and position resolution for a range of available photon detection solutions are presented. These properties make these photon detection systems ideal for radionuclide imaging applications. Cherenkov radiation can also be used for medical imaging applications. Two different applications using the Cherenkov effect for radionuclide imaging will be reviewed.

  7. Multivariate methods in nuclear waste remediation: Needs and applications

    International Nuclear Information System (INIS)

    Pulsipher, B.A.

    1992-05-01

    The United States Department of Energy (DOE) has developed a strategy for nuclear waste remediation and environmental restoration at several major sites across the country. Nuclear and hazardous wastes are found in underground storage tanks, containment drums, soils, and facilities. Due to the many possible contaminants and complexities of sampling and analysis, multivariate methods are directly applicable. However, effective application of multivariate methods will require greater ability to communicate methods and results to a non-statistician community. Moreover, more flexible multivariate methods may be required to accommodate inherent sampling and analysis limitations. This paper outlines multivariate applications in the context of select DOE environmental restoration activities and identifies several perceived needs

  8. Application of Nuclear Forensics in Combating Illicit Trafficking of Nuclear and Other Radioactive Material

    International Nuclear Information System (INIS)

    2014-01-01

    As a scientific discipline, nuclear forensics poses formidable scientific challenges with regard to extracting information on the history, origin, movement and processing of nuclear and other radioactive material found to be out of regulatory control. Research into optimized techniques is being pursued by leading nuclear forensic research groups around the world. This research encompasses areas including evidence collection, analytical measurements for rapid and reliable categorization and characterization of nuclear and radioactive material, and interpretation using diverse data characteristics or the 'science of signatures' from throughout the nuclear fuel cycle. In this regard, the IAEA recently concluded the Coordinated Research Project (CRP) entitled Application of Nuclear Forensics in Illicit Trafficking of Nuclear and Other Radioactive Material. The CRP seeks to improve the ability of Member States to provide robust categorization and characterization of seized material, reliable techniques for the collection and preservation of nuclear forensic evidence, and the ability to interpret the results for law enforcement and other purposes. In accordance with broader IAEA objectives, the CRP provides a technical forum for participating institutes from Member States to exchange technical information to benefit national confidence building as well as to advance the international discipline of nuclear forensics. This CRP was initially planned in 2006, commenced in 2008 and was completed in 2012. Three research coordination meetings (RCM) were convened at the IAEA in Vienna to review progress. The leadership of the chairpersons was essential to establishing the technical viability of nuclear forensics at the IAEA and with the Member States

  9. Nuclear structure calculations for astrophysical applications

    International Nuclear Information System (INIS)

    Moeller, P.; Kratz, K.L.

    1992-01-01

    Here we present calculated results on such diverse properties as nuclear energy levels, ground-state masses and shapes, β-decay properties and fission-barrier heights. Our approach to these calculations is to use a unified theoretical framework within which the above properties can all be studied. The results are obtained in the macroscopic-microscopic approach in which a microscopic nuclear-structure single-particle model with extensions is combined with a macroscopic model, such as the liquid drop model. In this model the total potential energy of the nucleus may be calculated as a function of shape. The maxima and minima in this function correspond to such features as the ground state, fission saddle points and shape-isomeric states. Various transition rate matrix elements are determined from wave-functions calculated in the single-particle model with pairing and other relevant residual interactions taken into account

  10. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    Science.gov (United States)

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  11. Application of analysis technology in nuclear plant

    International Nuclear Information System (INIS)

    Takaoka, Keiko; Miura, Hiromi; Umeda, Kenji

    1996-01-01

    Recently, thanks to the rapid improvement of EWS performance, the authors have been able to carry out design evaluation comparatively, easily, utilizing computational fluid dynamics (CFD) technology. The Nuclear Plant Engineering Department has carried out some analyses in the past several years with the main purpose of evaluating the design of nuclear reactor internals. These studies included ''Thermal Hydraulic Analysis for Top Plenum'' and ''Flow Analysis for Lower Plenum''. It is considered to be a special matter in thermal hydraulic analysis of the top plenum that temperature distribution has been estimated with a relatively small number of meshes by means of an imaginary spray nozzle, and in the flow analysis for the lower plenum that flow distribution has been found to change largely, depending on the reactor internals. One of the ways to confirm the safety of nuclear plants, detailed structural analysis, is required for all possible combinations of transient and load conditions during operation. In particular, it is very important to clarify the thermal stress behavior under operating conditions and to evaluate fatigue analysis in accordance with the Code Requirements. However, it is very complicated and it takes a lot of time. A new system was developed which can operate continuously all of the definitions of the analytical model, the analyzation of pressurized thermal and external stress, and editing reports. In this paper, the authors introduce this system and apply it to a pressurized water reactor

  12. Configuration and technology implications of potential nuclear hydrogen system applications.

    Energy Technology Data Exchange (ETDEWEB)

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options

  13. Biometrics and smart card based applications for nuclear industry

    International Nuclear Information System (INIS)

    Nishanth Reddy, J.; Dheeraj Reddy, J.; Narender Reddy, J.

    2004-01-01

    Biometrics has emerged as a convenient, foolproof and well-accepted technology for identification around the globe. Nucleonix has developed innovative solutions based on finger scan biometrics for various industries. This paper closely looks into the application areas for the nuclear industry and how it will benefit this industry, in terms of identification, access control, security of PCs and applications, attendance, machinery usage control and other custom applications. (author)

  14. A sample application of nuclear power human resources model

    International Nuclear Information System (INIS)

    Gurgen, A.; Ergun, S.

    2016-01-01

    One of the most important issues for a new comer country initializing the nuclear power plant projects is to have both quantitative and qualitative models for the human resources development. For the quantitative model of human resources development for Turkey, “Nuclear Power Human Resources (NPHR) Model” developed by the Los Alamos National Laboratory was used to determine the number of people that will be required from different professional or occupational fields in the planning of human resources for Akkuyu, Sinop and the third nuclear power plant projects. The number of people required for different professions for the Nuclear Energy Project Implementation Department, the regulatory authority, project companies, construction, nuclear power plants and the academy were calculated. In this study, a sample application of the human resources model is presented. The results of the first tries to calculate the human resources needs of Turkey were obtained. Keywords: Human Resources Development, New Comer Country, NPHR Model

  15. Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo

    Science.gov (United States)

    Slaughter, Dennis R [Oakland, CA; Pohl, Bertram A [Berkeley, CA; Dougan, Arden D [San Ramon, CA; Bernstein, Adam [Palo Alto, CA; Prussin, Stanley G [Kensington, CA; Norman, Eric B [Oakland, CA

    2008-04-15

    A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.

  16. Bayesian-statistical decision threshold, detection limit, and confidence interval in nuclear radiation measurement

    International Nuclear Information System (INIS)

    Weise, K.

    1998-01-01

    When a contribution of a particular nuclear radiation is to be detected, for instance, a spectral line of interest for some purpose of radiation protection, and quantities and their uncertainties must be taken into account which, such as influence quantities, cannot be determined by repeated measurements or by counting nuclear radiation events, then conventional statistics of event frequencies is not sufficient for defining the decision threshold, the detection limit, and the limits of a confidence interval. These characteristic limits are therefore redefined on the basis of Bayesian statistics for a wider applicability and in such a way that the usual practice remains as far as possible unaffected. The principle of maximum entropy is applied to establish probability distributions from available information. Quantiles of these distributions are used for defining the characteristic limits. But such a distribution must not be interpreted as a distribution of event frequencies such as the Poisson distribution. It rather expresses the actual state of incomplete knowledge of a physical quantity. The different definitions and interpretations and their quantitative consequences are presented and discussed with two examples. The new approach provides a theoretical basis for the DIN 25482-10 standard presently in preparation for general applications of the characteristic limits. (orig.) [de

  17. Topics for application of expert systems for nuclear power plants

    International Nuclear Information System (INIS)

    Trovato, S.A.; Aydin, F.

    1992-01-01

    Expert systems are an innovative form of computer software which offer to enhance productivity and improve operations of nuclear power plants. A survey and assessment of opportunities for application of this technology at Consolidated Edison Company of New York, Inc.'s (Con Edison) Indian Point 2 nuclear power plant was conducted. Eleven topics for expert systems are discussed in this paper. 1 ref., 2 figs., 2 tabs

  18. Data bank applications of a nuclear medical computer system

    International Nuclear Information System (INIS)

    Hale, T.I.; Jucker, A.; Haering, W.; Schmid, B.

    1980-01-01

    Computer systems in nuclear medicine are normally not used for data bank applications. A concept for a PDP-11-34 with RK 05 disc is presented, which serves the needs of data manipulations of a medium sized hospital including management of patient data, pharma stock control etc. besides specific use for nuclear medical work with absolute priority. The program is available upon request. (orig.) [de

  19. Hierarchical structure for risk criteria applicable to nuclear power plants

    International Nuclear Information System (INIS)

    Hall, R.E.; Mitra, S.P.

    1985-01-01

    This paper discusses the development of a hierarchical structure for risk criteria applicable to nuclear power plants. The structure provides a unified framework to systematically analyze the implications of different types of criteria, each focusing on a particular aspect of nuclear power plant risks. The framework allows investigation of the specific coverage of a particular criterion and comparison of different criteria with regard to areas to which they apply. 5 refs., 2 figs

  20. Technological improvements to high temperature thermocouples for nuclear reactor applications

    International Nuclear Information System (INIS)

    Schley, R.; Leveque, J.P.

    1980-07-01

    The specific operating conditions of thermocouples in nuclear reactors have provided an incentive for further advances in high temperature thermocouple applications and performance. This work covers the manufacture and improvement of existing alloys, the technology of clad thermocouples, calibration drift during heat treatment, resistance to thermal shock and the compatibility of insulating materials with thermo-electric alloys. The results lead to specifying improved operating conditions for thermocouples in nuclear reactor media (pressurized water, sodium, uranium oxide) [fr

  1. International meeting 'Selected topics on nuclear methods for non-nuclear applications'. Proceedings

    International Nuclear Information System (INIS)

    Stoyanov, Ch.

    2007-01-01

    The volume includes the presentations given on the International Meeting 'Selected Topics on Nuclear Methods for Non-nuclear Applications'. The meeting was organized by the Project CECOA. The Project 'CEnter for COoerative Activities' (CECOA) of the Institute for Nuclear Research and Nuclear Energy (INRNE) of Bulgarian Academy of Sciences is part of the Program 'Creating of Infrastructure' of Bulgarian Ministry of Science and Education. The CECOA-project unifies the groups of INRNE doing research in the field of nuclear methods. Four Laboratories of INRNE are members of CECOA-project: Moessbauer Spectroscopy and Low Radioactivity Measurements, High-Resolution Gamma-Spectroscopy, Neutron Methods in Condensed Matter, Neutron Optics and Structure Analysis. Taking into account the leading role of education on nuclear physics the Project includes program devoted to the training on nuclear physics. The presented volume contains 23 contributed papers. The contributions are separated in 6 sections. The section 'Nano technology' includes 5 papers. The activity in this field within the Project reveals the collaboration with other Institutes of Bulgarian Academy of Sciences as well as large international contacts. The section 'Radioecology and Radioactive Waste' is two fold. Part of the contributions of the section manifests the connection of the CECOA with small enterprises. The contacts are on the level of common projects concerning the investigations, remediation and release of radioactively contaminated terrain, soils, water, buildings and materials around the former uranium processing industry. Another part of the section is devoted to the application of nuclear methods to the treatment of radioactive waste produced by nuclear power stations. The section 'Neutron Physics' reveals the activity within the Project connected with the study of new materials using polarized neutrons and neutron diffraction methods. The section 'Nuclear Physics' is an introduction to some

  2. QCD sum rules and applications to nuclear physics

    International Nuclear Information System (INIS)

    Cohen, T.D.; Xuemin, J.

    1994-12-01

    Applications of QCD sum-rule methods to the physics of nuclei are reviewed, with an emphasis on calculations of baryon self-energies in infinite nuclear matter. The sum-rule approach relates spectral properties of hadrons propagating in the finite-density medium, such as optical potentials for quasinucleons, to matrix elements of QCD composite operators (condensates). The vacuum formalism for QCD sum rules is generalized to finite density, and the strategy and implementation of the approach is discussed. Predictions for baryon self-energies are compared to those suggested by relativistic nuclear physics phenomenology. Sum rules for vector mesons in dense nuclear matter are also considered. (author)

  3. World-wide termination of nuclear energy application

    International Nuclear Information System (INIS)

    Quirin, W.

    1991-01-01

    It is easy to require the widely discussed termination of nuclear energy application, but it is hardly possible to realise it, unless one is prepared to accept enormous economic and ecological problems. The article investigates, whether the other energy carriers or energy saving methods, respectively, would be in a position to replace the nuclear energy. Thereby the aspects of securing the supply and its economy are of considerable importance. The author describes furthermore the effects of terminating nuclear energy on the growing world population and the economy of trading countries. Ecological problems that may also be aggravated are dealt with, too. (orig.) [de

  4. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards

  5. ReNuAL: Renovation of the Nuclear Applications Laboratories

    International Nuclear Information System (INIS)

    Harman, Ruzanna

    2014-01-01

    The IAEA Department of Nuclear Sciences and Applications (NA) operates eight laboratories in Seibersdorf, near Vienna. Each of these laboratories performs unique functions that include supporting research and training for improving animal production and health, ensuring the effective and safe use of radiotherapy equipment, reinforcing food safety and developing hardier and higher-yielding food crops. They also contribute to protecting the global environment, enhancing countries’ capabilities in using nuclear instrumentation and analytical techniques, eliminating insect pests and managing soil and water sustainably. These are essential contributions to the IAEA’s mission of supporting the peaceful use of nuclear technologies to help meet global development challenges

  6. Proposal for grid computing for nuclear applications

    International Nuclear Information System (INIS)

    Faridah Mohamad Idris; Wan Ahmad Tajuddin Wan Abdullah; Zainol Abidin Ibrahim; Zukhaimira Zolkapli

    2013-01-01

    Full-text: The use of computer clusters for computational sciences including computational physics is vital as it provides computing power to crunch big numbers at a faster rate. In compute intensive applications that requires high resolution such as Monte Carlo simulation, the use of computer clusters in a grid form that supplies computational power to any nodes within the grid that needs computing power, has now become a necessity. In this paper, we described how the clusters running on a specific application could use resources within the grid, to run the applications to speed up the computing process. (author)

  7. Geospatial Image Mining For Nuclear Proliferation Detection: Challenges and New Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Vatsavai, Raju [ORNL; Bhaduri, Budhendra L [ORNL; Cheriyadat, Anil M [ORNL; Arrowood, Lloyd [Y-12 National Security Complex; Bright, Eddie A [ORNL; Gleason, Shaun Scott [ORNL; Diegert, Carl [Sandia National Laboratories (SNL); Katsaggelos, Aggelos K [ORNL; Pappas, Thrasos N [ORNL; Porter, Reid [Los Alamos National Laboratory (LANL); Bollinger, Jim [Savannah River National Laboratory (SRNL); Chen, Barry [Lawrence Livermore National Laboratory (LLNL); Hohimer, Ryan [Pacific Northwest National Laboratory (PNNL)

    2010-01-01

    With increasing understanding and availability of nuclear technologies, and increasing persuasion of nuclear technologies by several new countries, it is increasingly becoming important to monitor the nuclear proliferation activities. There is a great need for developing technologies to automatically or semi-automatically detect nuclear proliferation activities using remote sensing. Images acquired from earth observation satellites is an important source of information in detecting proliferation activities. High-resolution remote sensing images are highly useful in verifying the correctness, as well as completeness of any nuclear program. DOE national laboratories are interested in detecting nuclear proliferation by developing advanced geospatial image mining algorithms. In this paper we describe the current understanding of geospatial image mining techniques and enumerate key gaps and identify future research needs in the context of nuclear proliferation.

  8. Regulatory aspects for nuclear and radiation applications

    International Nuclear Information System (INIS)

    Duraisamy, S.

    2014-01-01

    The Atomic Energy Regulatory Board (AERB) is the national authority for ensuring that the use of ionizing radiation and nuclear energy does not cause any undue risk to the health of workers, members of the public and to the environment. AERB was constituted on November 15, 1983 and derives its regulatory power from the rules and notifications promulgated under the Atomic Energy Act, 1962 and the Environment (Protection) Act, 1986. AERB is provided with the necessary powers and mandate to frame safety policies, lay down safety standards and requirements for monitoring and enforcing the safety provisions. AERB follows multi-tier system for its review and assessment, safety monitoring, surveillance and enforcement. While regulating various nuclear and radiation facilities, AERB adopts a graded approach taking into account the hazard potential associated with the facilities being regulated. The regulatory process has been continuous evolving to cater to the new developments in reactor and radiation technologies. The regulatory effectiveness and efficiency of AERB have grown over the last three decades to make it into a robust organization. The radiation protection infrastructure in the country is on a sound footing and is constantly being strengthened based on experience and continued research and development. As one of its mandates AERB prescribes radiation dose limits for the occupational workers and the public, in line with the IAEA Safety Standard and ICRP recommendations. The current dose limits and the radiation safety requirements are more stringent than past. To meet the current safety standards, it is important for the facilities to have state of art radiation monitoring system and programme in place. While recognizing the current system in place, this presentation also highlights certain key radiation protection challenges associated with the implementation of radiation protection standards in the nuclear and radiation facilities especially in the areas of

  9. Sodium leak detection system for liquid metal cooled nuclear reactors

    International Nuclear Information System (INIS)

    Modarres, D.

    1991-01-01

    This patent describes a device for detecting sodium leaks from a reactor vessel of a liquid sodium cooled nuclear reactor the reactor vessel being concentrically surrounded by a a containment vessel so as to define an airtight gap containing argon. It comprises: a light source for generating a first light beam, the first light beam having first and second predominant wavelengths, the first wavelength being substantially equal to an absorption line of sodium and the second wavelength being chosen such that it is not absorbed by sodium and argon; an optical multiplexer optically coupled to the light source; optically coupled to the multiplexer, each of the sensors being embedded in the containment vessel of the reactor, each of the sensors projecting the first light beam into the gap and collecting the first light beam after it has reflected off of a surface of the reactor vessel; a beam splitter optically coupled to each of the sensors through the multiplexer, the beam splitter splitting the first light beam into second and third light beams of substantially equal intensities; a first filter dispersed within a path of second light beam for filtering the second wavelength out of the third light beam; first and second detector beams disposed with in the paths of the second and third light beams so as to detect the intensities of the second and third light beams, respectively; and processing means connected to the first and second detector means for calculating the amount of the first wavelength which is absorbed when passing through the argon

  10. Glassy carbon coated graphite for nuclear applications

    International Nuclear Information System (INIS)

    Delpeux S; Cacciaguerra T; Duclaux L

    2005-01-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF 2 , ThF 4 , and UF 4 ) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin or polyvinyl chloride precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm 3 and closed pores with nano-metric size (∼ 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons, in good agreement with the proposed texture model for glassy carbon. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry of the graphite substrate. The deposit regions where

  11. Nuclear magnetic resonance applications in biological systems

    International Nuclear Information System (INIS)

    Jiang Ling; Liu Maili

    2011-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a state-of-the-art technology which has been widely applied in biological systems over the past decades. It is a powerful tool for macromolecular structure determination in solution, and has the unique advantage of being capable of elucidating the structure and dynamic behavior of proteins during vital biomedical processes. In this review, we introduce the recent progress in NMR techniques for studying the structure, interaction and dynamics of proteins. The methods for NMR based drug discovery and metabonomics are also briefly introduced. (authors)

  12. Coatings and floor covers for nuclear applications

    International Nuclear Information System (INIS)

    Kunze, S.

    1998-01-01

    To prevent damage to, or even the destruction of, components of very sensitive electrical equipment in rooms in which unsealed radioactive emitters are handled, floors must be antistatic and capable of being decontaminated. Conductive additives to the cover compounds achieve the desired leakage resistance of 5.10 4 to 10 6 Ω. Investigations have shown the decontamination capability of all floor covers and coatings to be excellent in most cases, and good in a few cases. Except for one coating, the coatings examined after radiation exposure also meet the requirements applying to nuclear installations. (orig.) [de

  13. Glassy carbon coated graphite for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Delpeux, S.; Cacciaguerra, T.; Duclaux, L. [Orleans Univ., CRMD, CNRS, 45 (France)

    2005-07-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF{sub 2}, ThF{sub 4}, and UF{sub 4}) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin [1,2] or polyvinyl chloride [3] precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm{sup 3} and closed pores with nano-metric size ({approx} 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons (Fig 1), in good agreement with the proposed texture model for glassy carbon (Fig 2) [4]. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry

  14. Applications of polyolefins in the nuclear industry

    International Nuclear Information System (INIS)

    Erambert, M.; Goavec, P.

    1984-01-01

    The environment of a nuclear power plant often imposes impossible conditions on wires and cables. Cable manufacturers make great use of polymers, and the properties of the latter are limited in all the fields imposed: radiation, ageing, fire, corrosion. ACOME presents a cross-linked fireproof polyolefin, the properties of which have been verified in long-term tests: with very different ageing temperatures and times, very variable dose rates and very long simultaneous cycles. After all the tests proposed, the mechanical characteristics still made winding on cores possible. The electrical characteristics were very good, and fireproofing was unaffected [fr

  15. Nuclear physics for applications. A model approach

    International Nuclear Information System (INIS)

    Prussin, S.G.

    2007-01-01

    Written by a researcher and teacher with experience at top institutes in the US and Europe, this textbook provides advanced undergraduates minoring in physics with working knowledge of the principles of nuclear physics. Simplifying models and approaches reveal the essence of the principles involved, with the mathematical and quantum mechanical background integrated in the text where it is needed and not relegated to the appendices. The practicality of the book is enhanced by numerous end-of-chapter problems and solutions available on the Wiley homepage. (orig.)

  16. Radiation Detection System for Prevention of Illicit Trafficking of Nuclear and Radioactive Materials

    International Nuclear Information System (INIS)

    Kwak, Sung Woo; Chang, Sung Soon; Yoo, Ho Sik

    2010-01-01

    Fixed radiation portal monitors (RPMs) deployed at border, seaport, airport and key traffic checkpoints have played an important role in preventing the illicit trafficking and transport of nuclear and radioactive materials. However, the RPM is usually large and heavy and can't easily be moved to different locations. These reasons motivate us to develop a mobile radiation detection system. The objective of this paper is to report our experience on developing the mobile radiation detection system for search and detection of nuclear and radioactive materials during road transport. Field tests to characterize the developed detection system were performed at various speeds and distances between the radioactive isotope (RI) transporting car and the measurement car. Results of measurements and detection limits of our system are described in this paper. The mobile radiation detection system developed should contribute to defending public's health and safety and the environment against nuclear and radiological terrorism by detecting nuclear or radioactive material hidden illegally in a vehicle

  17. Application of probabilistic risk assessment in nuclear and environmental licensing processes of nuclear reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Jonatas F.C. da; Vasconcelos, Vanderley de; Mesquita, Amir Z., E-mail: jonatasfmata@yahoo.com.br, E-mail: vasconv@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The nuclear accident at Fukushima Daiichi, occurred in Japan in 2011, brought reflections, worldwide, on the management of nuclear and environmental licensing processes of existing nuclear reactors. One of the key lessons learned in this matter, is that the studies of Probabilistic Safety Assessment and Severe Accidents are becoming essential, even in the early stage of a nuclear development project. In Brazil, Brazilian Nuclear Energy Commission, CNEN, conducts the nuclear licensing. The organism responsible for the environmental licensing is Brazilian Institute of Environment and Renewable Natural Resources, IBAMA. In the scope of the licensing processes of these two institutions, the safety analysis is essentially deterministic, complemented by probabilistic studies. The Probabilistic Safety Assessment (PSA) is the study performed to evaluate the behavior of the nuclear reactor in a sequence of events that may lead to the melting of its core. It includes both probability and consequence estimation of these events, which are called Severe Accidents, allowing to obtain the risk assessment of the plant. Thus, the possible shortcomings in the design of systems are identified, providing basis for safety assessment and improving safety. During the environmental licensing, a Quantitative Risk Analysis (QRA), including probabilistic evaluations, is required in order to support the development of the Risk Analysis Study, the Risk Management Program and the Emergency Plan. This article aims to provide an overview of probabilistic risk assessment methodologies and their applications in nuclear and environmental licensing processes of nuclear reactors in Brazil. (author)

  18. Application of probabilistic risk assessment in nuclear and environmental licensing processes of nuclear reactors in Brazil

    International Nuclear Information System (INIS)

    Mata, Jonatas F.C. da; Vasconcelos, Vanderley de; Mesquita, Amir Z.

    2015-01-01

    The nuclear accident at Fukushima Daiichi, occurred in Japan in 2011, brought reflections, worldwide, on the management of nuclear and environmental licensing processes of existing nuclear reactors. One of the key lessons learned in this matter, is that the studies of Probabilistic Safety Assessment and Severe Accidents are becoming essential, even in the early stage of a nuclear development project. In Brazil, Brazilian Nuclear Energy Commission, CNEN, conducts the nuclear licensing. The organism responsible for the environmental licensing is Brazilian Institute of Environment and Renewable Natural Resources, IBAMA. In the scope of the licensing processes of these two institutions, the safety analysis is essentially deterministic, complemented by probabilistic studies. The Probabilistic Safety Assessment (PSA) is the study performed to evaluate the behavior of the nuclear reactor in a sequence of events that may lead to the melting of its core. It includes both probability and consequence estimation of these events, which are called Severe Accidents, allowing to obtain the risk assessment of the plant. Thus, the possible shortcomings in the design of systems are identified, providing basis for safety assessment and improving safety. During the environmental licensing, a Quantitative Risk Analysis (QRA), including probabilistic evaluations, is required in order to support the development of the Risk Analysis Study, the Risk Management Program and the Emergency Plan. This article aims to provide an overview of probabilistic risk assessment methodologies and their applications in nuclear and environmental licensing processes of nuclear reactors in Brazil. (author)

  19. Computer applications in the nuclear reprocessing industry

    International Nuclear Information System (INIS)

    McKenzie, H.G.; Swartfigure, G.T.

    1985-01-01

    The subject is discussed under the headings: introduction; benefits of computer application; factors affecting productivity; implementation of engineering design systems; the conceptual model; system design database; plant design system; pipe detailing system; overall assessment of benefits; conclusions. (U.K.)

  20. The nuclear car wash: A system to detect nuclear weapons in commercial cargo shipments

    Science.gov (United States)

    Slaughter, D. R.; Accatino, M. R.; Bernstein, A.; Biltoft, P.; Church, J. A.; Descalle, M. A.; Hall, J. M.; Manatt, D. R.; Mauger, G. J.; Moore, T. L.; Norman, E. B.; Petersen, D. C.; Pruet, J. A.; Prussin, S. G.

    2007-08-01

    A concept for detecting the presence of special nuclear material ( 235U or 239Pu) concealed in intermodal cargo containers has been developed, studied, and recent performance results are described. It is based on interrogation with a pulsed beam of 3-7 MeV neutrons that produce fission events and subsequent detection of their β-delayed neutron emission or β-delayed high-energy γ-radiation reveals the presence of fissionable material. Fission product β-delayed γ-rays above 3 MeV are nearly 10 times more abundant than β-delayed neutrons and are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified. Their impact on detection sensitivity is relatively minor and can be addressed readily. Components of a simple laboratory prototype have been assembled, tested with the most challenging cargo threat scenarios, and results compared to computer simulations. Preliminary results will be presented.

  1. The nuclear car wash: A system to detect nuclear weapons in commercial cargo shipments

    International Nuclear Information System (INIS)

    Slaughter, D.R.; Accatino, M.R.; Bernstein, A.; Biltoft, P.; Church, J.A.; Descalle, M.A.; Hall, J.M.; Manatt, D.R.; Mauger, G.J.; Moore, T.L.; Norman, E.B.; Petersen, D.C.; Pruet, J.A.; Prussin, S.G.

    2007-01-01

    A concept for detecting the presence of special nuclear material ( 235 U or 239 Pu) concealed in intermodal cargo containers has been developed, studied, and recent performance results are described. It is based on interrogation with a pulsed beam of 3-7 MeV neutrons that produce fission events and subsequent detection of their β-delayed neutron emission or β-delayed high-energy γ-radiation reveals the presence of fissionable material. Fission product β-delayed γ-rays above 3 MeV are nearly 10 times more abundant than β-delayed neutrons and are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified. Their impact on detection sensitivity is relatively minor and can be addressed readily. Components of a simple laboratory prototype have been assembled, tested with the most challenging cargo threat scenarios, and results compared to computer simulations. Preliminary results will be presented

  2. Proceedings of the national workshop on nuclear forensics: fundamentals and applications - course material

    International Nuclear Information System (INIS)

    Mishra, S.; Chaudhury, Probal

    2016-01-01

    This course introduces the understanding of the nuclear/radioactive material involved either in illicit trafficking or possibility of getting involved in nuclear or radiological threats or incidents. It will also highlight the basics of nuclear forensics involving various steps i.e categorization, characterization, interpretation and finally the reconstruction of the nuclear/radiological scenario. This will also provide a platform for discussing the challenges and opportunities associated with such investigations. Various techniques adopted throughout the globe for the characterization of nuclear/radioactive materials for nuclear/radiological forensic investigations involving destructive, non-destructive assay methodologies along with traditional forensic analysis will be discussed. The international cooperation which is an indispensable part for nuclear forensic investigation and nuclear forensics support at IAEA will also be discussed in the forum. Apart from this the applications of the techniques in safeguards and other frameworks will also be a part of this workshop. For understanding of the participants about the subject, a table top exercise will be conducted along with demonstration of different radiation detection systems. This manual will serve as a post course reference. Papers relevant to INIS are indexed separately

  3. Market potential for non-electric applications of nuclear energy

    International Nuclear Information System (INIS)

    2002-01-01

    The objective of this report is to assess the market potential for the non-electric applications of nuclear energy in the near (before 2020) and long (2020-2050) terms. The main non-electric applications are defined here as district heating, desalination (of sea, brackish and waste water), industrial heat supply, ship propulsion and the energy supply for spacecraft. This report is principally devoted to these applications, although a less detailed assessment of some innovative applications (e.g. hydrogen production and coal gasification) is also provided. While the technical details of these applications are covered briefly, emphasis is placed on the economic and other factors that may promote or hinder the penetration of the nuclear option into the market for non-electric energy services. The report is intentionally targeted towards expected demands. It is for this reason that its sections are structured by demand categories and not according to possible reactor types. At the same time, the orientation on the demand side can result in overlaps at the supply side, because the same nuclear reactor can often serve more than one type of demand. Such cases are noted as appropriate. Each section characterizes a specific non-electric application in terms of its market size, its prospects for nuclear technologies and the economic competitiveness of the technologies

  4. Applicability of compton imaging in nuclear decommissioning activities

    International Nuclear Information System (INIS)

    Ljubenov, V.Lj.; Marinkovic, P.M.

    2002-01-01

    During the decommissioning of nuclear facilities significant part of the activities is related to the radiological characterization, waste classification and management. For these purposes a relatively new imaging technique, based on information from the gamma radiation that undergoes Compton scattering, is applicable. Compton imaging systems have a number of advantages for nuclear waste characterization, such as identifying hot spots in mixed waste in order to reduce the volume of high-level waste requiring extensive treatment or long-term storage, imaging large contaminated areas and objects etc. Compton imaging also has potential applications for monitoring of production, transport and storage of nuclear materials and components. This paper discusses some system design requirements and performance specifications for these applications. The advantages of Compton imaging are compared to competing imaging techniques. (author)

  5. Review of biotechnology applications to nuclear waste treatment

    International Nuclear Information System (INIS)

    Ashley, N.V.; Roach, D.J.W.

    1990-01-01

    This paper gives an overview of the feasibility of the application of biotechnology to nuclear waste treatment. Many living and dead organisms accumulate heavy metals and radionuclides. The controlled use of this phenomenon forms the basis for the application of biotechnology to the removal of radionuclides from nuclear waste streams. An overview of biotechnology areas, namely the use of biopolymers and biosorption using biomass applicable to the removal of radionuclides from industrial nuclear effluents is given. The potential of biomagnetic separation technology, genetic engineering and monoclonal antibody technology is also to be examined. The most appropriate technologies to develop for radionuclide removal in the short term appear to be those based on biosorption of radionuclides by biomass and the use of modified and unmodified biopolymers in the medium term. (author)

  6. Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    CERN Document Server

    Sgouros, George

    2003-01-01

    This book examines the applications of Monte Carlo (MC) calculations in therapeutic nuclear medicine, from basic principles to computer implementations of software packages and their applications in radiation dosimetry and treatment planning. It is written for nuclear medicine physicists and physicians as well as radiation oncologists, and can serve as a supplementary text for medical imaging, radiation dosimetry and nuclear engineering graduate courses in science, medical and engineering faculties. With chapters is written by recognised authorities in that particular field, the book covers the entire range of MC applications in therapeutic medical and health physics, from its use in imaging prior to therapy to dose distribution modelling targeted radiotherapy. The contributions discuss the fundamental concepts of radiation dosimetry, radiobiological aspects of targeted radionuclide therapy and the various components and steps required for implementing a dose calculation and treatment planning methodology in ...

  7. Applications of neural networks to monitoring and decision making in the operation of nuclear power plants

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1990-01-01

    Application of neural networks to monitoring and decision making in the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (1) diagnosing specific abnormal conditions or problems in nuclear power plants, (2) detection of the change of mode of operation of the plant, (3) validating signals coming from detectors, (4) review of ''noise'' data from TVA's Sequoyah Nuclear Power Plant, and (5) examination of the NRC's database of ''Letter Event Reports'' for correlation of sequences of events in the reported incidents. Each of these projects and its status are described briefly in this paper. This broad based program has as its objective the definition of the state-of-the-art in using neural networks to enhance the performance of commercial nuclear power plants

  8. Special Nuclear Material Detection with a Water Cherenkov based Detector

    International Nuclear Information System (INIS)

    Sweany, M.; Bernstein, A.; Bowden, N.; Dazeley, S.; Svoboda, R.

    2008-01-01

    Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, produce a number of neutrons and high energy gamma-rays. Assuming the neutron multiplicity is approximately Poissonian with an average of 2 to 3, the observation of time correlations between these particles from a cargo container would constitute a robust signature of the presence of SNM inside. However, in order to be sensitive to the multiplicity, one would require a high total efficiency. There are two approaches to maximize the total efficiency; maximizing the detector efficiency or maximizing the detector solid angle coverage. The advanced detector group at LLNL is investigating one way to maximize the detector size. We are designing and building a water Cerenkov based gamma and neutron detector for the purpose of developing an efficient and cost effective way to deploy a large solid angle car wash style detector. We report on our progress in constructing a larger detector and also present preliminary results from our prototype detector that indicates detection of neutrons

  9. Proceedings of the sixth conference of nuclear sciences and applications. Vol. 1-4

    International Nuclear Information System (INIS)

    1996-03-01

    The six conference on nuclear sciences and applications was held on 15-20 March, 1996 in Cairo. The specialists discussed nuclear Sciences. The applications of nuclear engineering, chemistry, radioactive waste management, nuclear fuel and nuclear material were discussed at the proceeing.More than 1000 paper

  10. Proceedings of the sixth conference of nuclear sciences and applications. Vol. 1-4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The six conference on nuclear sciences and applications was held on 15-20 March, 1996 in Cairo. The specialists discussed nuclear Sciences. The applications of nuclear engineering, chemistry, radioactive waste management, nuclear fuel and nuclear material were discussed at the proceeing.More than 1000 paper.

  11. Reliability and radiation tolerance of robots for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, K [Risoe National Lab. (Denmark); Decreton, M [SCK.CEN (Belgium); Seifert, C C [Siemens AG (Germany); Sharp, R [AEA Technology (United Kingdom)

    1996-10-01

    The reliability of a robot for nuclear applications will be affected by environmental factors such as dust, water, vibrations, heat, and, in particular, ionising radiation. The present report describes the work carried out in a project addressing the reliability and radiation tolerance of such robots. A widely representative range of components and materials has been radiation tested and the test results have been collated in a database along with data provided by the participants from earlier work and data acquired from other sources. A radiation effects guide has been written for the use by designers of electronic equipment for robots. A generic reliability model has been set up together with generic failure strategies, forming the basis for specific reliability modelling carried out in other projects. Modelling tools have been examined and developed for the prediction of the performance of electronic circuits subjected to radiation. Reports have been produced dealing with the prediction and detection of upcoming failures in electronic systems. Operational experience from the use of robots in radiation work in various contexts has been compiled in a report, and another report has been written on cost/benefit considerations about the use of robots. Also the possible impact of robots on the safety of the surrounding plant has been considered and reported. (au) 16 ills., 236 refs.

  12. Nuclear and radiation applications in industry: Tools for innovation

    International Nuclear Information System (INIS)

    Machi, S.; Iyer, R.

    1994-01-01

    Applications of nuclear and radiation technologies have been contributing to industrial efficiency, energy conservation, and environmental protection for many years. Some of these are: Manufacturing industries: Radiation processing technologies are playing increasing roles during manufacturing of such everyday products as wire and cable, automobile tires, plastic films and sheets, and surface materials. Production processes: Other techniques employing radioisotope gauges are indispensable for on-line thickness measurements during paper, plastic, and steel plate production. Processing and quality checks are made using nucleonic control systems that are common features of industrial production lines. Sterilization of medical products using electron beam accelerators or cobalt-60 radiation is better than the conventional methods. Industrial safety and product quality: Non-destructive examination or testing using gamma- or X-ray radiography is widely used for checking welds, casting, machinery, and ceramics to ensure quality and safety. Additionally, radiotracer techniques are unique tools for the optimization of chemical processes in reactors, leakage detection, and wear and corrosion studies, for example. Environmental protection: An innovative technology using electron beams to simultaneously remove sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) has been under development. The electron beam technology is very cost competitive and its byproduct can be used as agricultural fertilizer

  13. Reliability and radiation tolerance of robots for nuclear applications

    International Nuclear Information System (INIS)

    Lauridsen, K.; Decreton, M.; Seifert, C.C.; Sharp, R.

    1996-10-01

    The reliability of a robot for nuclear applications will be affected by environmental factors such as dust, water, vibrations, heat, and, in particular, ionising radiation. The present report describes the work carried out in a project addressing the reliability and radiation tolerance of such robots. A widely representative range of components and materials has been radiation tested and the test results have been collated in a database along with data provided by the participants from earlier work and data acquired from other sources. A radiation effects guide has been written for the use by designers of electronic equipment for robots. A generic reliability model has been set up together with generic failure strategies, forming the basis for specific reliability modelling carried out in other projects. Modelling tools have been examined and developed for the prediction of the performance of electronic circuits subjected to radiation. Reports have been produced dealing with the prediction and detection of upcoming failures in electronic systems. Operational experience from the use of robots in radiation work in various contexts has been compiled in a report, and another report has been written on cost/benefit considerations about the use of robots. Also the possible impact of robots on the safety of the surrounding plant has been considered and reported. (au) 16 ills., 236 refs

  14. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  15. Extending nuclear energy to non-electrical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Houghton, Z. [NuScale Power, LLC, Corvallis, Oregon (United States); Bromm, R. [Fluor Corp., Greenville, SC (United States); Desportes, C. [Aquatech International, Canonsburg, PA (United States); McKellar, M.; Boardman, R. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-07-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these nontraditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers. (author)

  16. Application of acoustic emission, as non destructive testing technique, to nuclear components inspection

    International Nuclear Information System (INIS)

    Sanchez Miro, J.J.

    1980-01-01

    A panorama of actual state of acoustic emission as non destructive testing technique, from stand point of its safety applications to nuclear reactor is offered. In first place the physic grounds of acoustic emission phenomenon is briefly exposed. After we speak about the experimental methods for detection, and overall is made an explanation of the problems which are found during the application of this technology to on-line inspection of nuclear oower plants. It is hoped that this repport makes a contribution in the sense of to create a favourable atmosphere toward the introduction in our country of this important technique, and concretely within the nuclear power industry. In this last field the employ of acoustic emission is overcoming the experimental stage. (author)

  17. Research advancements and applications of carboranes in nuclear medicinal chemistry

    International Nuclear Information System (INIS)

    Chen Wen; Wei Hongyuan; Luo Shunzhong

    2011-01-01

    Because of their uniquely high thermal and chemical stabilities, carboranes have become a subject of study with high interest in the chemistry of supra molecules, catalysts and radiopharmaceuticals. In recent years, the role of carboranes in nuclear medicinal chemistry has been diversified, from the traditional use in boron neutron capture therapy (BNCT), to the clinical applications in molecular radio imaging and therapy. This paper provides an overview of the synthesis and characterization of carboranes and their applications in nuclear medicinal chemistry, with highlights of recent key advancements in the re- search areas of BNCT and radio imaging. (authors)

  18. Nuclear applications for health: Keeping pace with progress

    International Nuclear Information System (INIS)

    Cuaron, A.

    1994-01-01

    Over the past 100 years, the X-ray has become as familiar to most people as the dentist's chair. As we move into the next century, greater attention is being placed upon less known but more far-reaching radiation technologies and nuclear applications that today's physicians are able to use for earlier diagnosis and treatment of serious illness. Many of these tools stand at the core of the IARA's own programmes in the filed of human health. This article, in question-and-answer format, explains the differences between the various types of nuclear applications for human health, and looks at the evolution of, and strategies for, the IAEA's related activities

  19. Application of condition based maintenance to nuclear power plants

    International Nuclear Information System (INIS)

    Sonoda, Yukio; Nakano, Tomohito; Shimizu, Shunichi; Iida, Jun; Atomura, Masakazu; Abe, Masahiro

    2002-01-01

    Device Karte management system which supports application of condition based maintenance to nuclear power plants has been developed. The purpose of this system is to support maintenance personnel in device inspection scheduling based on operating condition monitoring and maintenance histories. There are four functions: field database, degradation estimation, inspection time decision and maintenance planning. The authors have been applying this system to dozens of devices of Onagawa Nuclear Power Station Unit No. 1 for one year. This paper represents the system concept and its application experiences. (author)

  20. The criticality check and its applicability for nuclear material accounting

    International Nuclear Information System (INIS)

    Sanchez Espinoza, V.H.; Adam, E.; Knorr, J.

    1988-01-01

    Different procedures are used by the realization of nuclear material check by the IAEA. The criticality check belongs to these methods and it appropriates especially to verification of the nuclear material inventory of reactors. General aspects of the applicability of this check procedure are formulated and application criteria are deduced. By the example of solid-moderated homogeneous zero-power reactors it is demonstrated the unsecurity which is to be reckoned by applying the criticality check. Finally a possibility for the reduction of errors in core material determination by additional measuring methods without questioning the criticality check method is presented. (author)

  1. Metallic radionuclides: applications in diagnostic and therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Weiner, R.E.; Thakur, M.L.

    1995-01-01

    Nuclear Medicine is a medical modality that utilizes radioactivity (radiopharmaceutical) to diagnose and treat disease. Radiopharmaceuticals contain a component which directs the radionuclide to the desire physiological target. For diagnostic applications, these nuclides must emit a γ ray that can penetrate the body and can be detected externally while for therapeutic purposes nuclides are preferred that emit β particles and deliver highly localized tissue damage. 67 Ga citrate is employed to detect chronic occult abscesses, Hodgkin's and non-Hodgkin's lymphomas, lung cancer, hepatoma and melanoma and localizes in these tissues utilizing iron-binding proteins. 201 Thallous chloride, a potassium analogue, used to diagnosis coronary artery disease, is incorporated in muscle tissue via the Na + -K + -ATPase. 111 In labeled autologous white blood cells, used for the diagnosis of acute infections and inflammations, takes advantage of the white cell's role in fighting infections. 111 In is incorporated in other radiopharmaceuticals e.g. polyclonal IgG, OncoScint CR/OV, OctreoScan and Myoscint by coupling diethylenetriaminepentaacetic acid, a chelate, covalently to these molecules. OncoScint CR/OV and Myoscint localize by antigen-antibody interactions while OctreoScan is taken up by malignant cells in a receptor based process. Polyclonal IgG may share some localization characteristics with 67 Ga. 89 Sr, a pure β emitter, is used for palliation of bone pain due to metastatic bone lesions. Bone salts [Ca(PO) 4 ] are increased in these lesions and this radionuclide is taken up similarly to Ca 2+ . 186 Re and 153 Sm bound to polydentate phosphonate chelates are used similarly and follow the phosphate pathway in lesion incorporation. (orig.)

  2. Metallic radionuclides: Applications in diagnostic and therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Werner, R.E.; Thakur, M. L.

    1997-01-01

    Nuclear Medicine is a medical modality that utilizes radioactivity (radiopharmaceutical) to diagnose and treat disease. Radiopharmaceuticals contain a component which directs the radionuclide to the desire physiological target. For diagnostic applications, these nuclides must emit a gamma ray that can penetrate the body and can be detected externally while for therapeutic purposes nuclides are preferred that emit beta particles and deliver highly localized tissue damage. sup 6 sup 7 Ga citrate is employed to detect chronic occult abscesses, Hodgkin's and non-Hodgkin's lymphomas, lung cancer, hepatoma and melanoma and localizes in these tissues utilizing iron-binding proteins. sup 2 sup 0 sup 1 Thallous chloride, a potassium analogue, used to diagnosis coronary artery disease, is incorporated in muscle tissue via the Na sup + -K sup + -ATPase. sup 1 sup 1 sup 1 In labeled autologous white blood cells, used for the diagnosis of acute infections and inflammations, takes advantage of the white cell's role in fighting infections. sup 1 sup 1 sup 1 In is incorporated in other radiopharmaceuticals e.g. polyclonal IgG, OncoScint CR/OV, OctreoScan and Myoscint by coupling diethylenetriaminepentaacetic acid, a chelate, covalently to these molecules. OncoScint CR/OV and Myoscint localize by antigen-antibody interactions while OctreoScan is taken up by malignant cells in a receptor based process. Polyclonal IgG may share some localization characteristics with sup 6 sup 7 Ga. sup 8 sup 9 Sr, a pure beta emitter, is used for palliation of bone pain due to metastatic bone lesions. Bone salts [Ca(PO) sub 4] are increased in these lesions and this radionuclide is taken up similarly to Ca sup 2 sup +. sup 1 sup 8 sup 6 Re and sup 1 sup 5 sup 3 Sm bound to polydentate phosphonate chelates are used similarly and follow the phosphate pathway in lesion incorporation. (author)

  3. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.7--Nuclear electronics and nuclear detection technology sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 57 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about Nuclear electronics and nuclear detection technology sub-volume

  4. Progress report on nuclear science and technology in China (Vol.2). Proceedings of academic annual meeting of China Nuclear Society in 2011, No.7--Nuclear electronics and nuclear detection technology sub-volume

    International Nuclear Information System (INIS)

    2012-10-01

    Progress report on nuclear science and technology in China (Vol. 2) includes 698 articles which are communicated on the second national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about Nuclear electronics and nuclear detection technology

  5. Applications of PRA in nuclear criticality safety

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1992-01-01

    Traditionally, criticality accident prevention at Los Alamos National Laboratory (LANL) has been based on a thorough review and understanding of proposed operations or changes to operations involving both process supervision and criticality safety staff. The outcome of this communication was usually an agreement, based on professional judgment, that certain accident sequences were credible and had to be precluded by design; others were incredible and thus did not warrant expenditures to further reduce their likelihood. The extent of documentation was generally in proportion to the complexity of the operation but never as detailed as that associated with quantified risk assessments. During the last 3 yr, nuclear criticality safety-related probabilistic risk assessments (PRAs) have been performed on operations in two LANL facilities. Both of these were conducted in order to better understand the cost/benefit aspects of PRAs as they apply to largely hands-on operations with fissile material

  6. Heavy gauge plates for nuclear application

    International Nuclear Information System (INIS)

    Cheviet, A.; Roux, J.-H.

    1977-01-01

    The production of energy from nuclear sources leads to the building of very large vessels working under pressure at elevated temperatures, requiring very thick steel plate (from 50 mm to 300 mm). The plates necessary for the production of these vessels have to be as large as possible in order to reduce the length of welds on the vessels. Those two requirements lead to the manufacture of heavy products from 10 to 80 tons unit weight. These products are special, because their fabrication requires very big facilities and also extremely high quality of the steel. The main points are: high cleanliness; properties as homogeneous as possible. The tests carried out on industrially produced plates (especially on a plate of 200 mm thick show the level of quality that can be reached [fr

  7. The ''nuclear car wash'': a scanner to detect illicit special nuclear material in cargo containers

    International Nuclear Information System (INIS)

    Slaughter, D. R.; Accatino, M. R.; Bernstein, A.; Dougan, A. D.; Hall, J. M.; Loshak, A.; Manatt, D. R.; Pohl, B. A.; Prussin, S. G.; Walling, R. S.; Weirup, D. L.

    2004-01-01

    There is an urgent need to improve the reliability of screening cargo containers for illicit nuclear material that may be hidden there for terrorist purposes. A screening system is described for detection of fissionable material hidden in maritime cargo containers. The system makes use of a low intensity neutron beam for producing fission; and the detection of the abundant high-energy γ rays emitted in the β-decay of short-lived fission products and β-delayed neutrons. The abundance of the delayed γ rays is almost an order of magnitude larger than that of the delayed neutrons normally used to detect fission and they are emitted on about the same time scale as the delayed neutrons, i.e., ∼1 min. The energy and temporal distributions of the delayed γ rays provide a unique signature of fission. Because of their high energy, these delayed γ rays penetrate loW--Z cargoes much more readily than the delayed neutrons. Coupled with their higher abundance, the signal from the delayed γ rays escaping from the container is predicted to be as much as six decades more intense than the delayed neutron signal, depending upon the type and thickness of the intervening cargo. The γ rays are detected in a large array of scintillators located along the sides of the container as it is moved through them. Measurements have confirmed the signal strength in somewhat idealized experiments and have also identified one interference when 14.5 MeV neutrons from the D, T reaction are used for the interrogation. The interference can be removed easily by the appropriate choice of the neutron source

  8. 78 FR 37324 - Preparation of Environmental Reports for Nuclear Power Plant License Renewal Applications

    Science.gov (United States)

    2013-06-20

    ... Environmental Reports for Nuclear Power Plant License Renewal Applications AGENCY: Nuclear Regulatory Commission... for Nuclear Power Plant License Renewal Applications.'' This regulatory guide provides guidance to... renewal of a nuclear power plant operating license. Applicants should use this regulatory guide when...

  9. Radar application in void and bar detection

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohamad Pauzi Ismail; Suhairy Sani

    2003-01-01

    Radar is one of the new non-destructive testing techniques for concrete and structures inspection. Radar is a non-ionizing electromagnetic wave that can penetrate deep into concrete or soil in about several tenths of meters. Method of inspection using radar enables us to perform high resolution detection, imaging and mapping of subsurface concrete and soil condition. This paper will discuss the use of radar for void and bar detection and sizing. The samples used in this paper are custom made samples and comparison will be made to validate the use of radar in detecting, locating and also size determination of voids and bars. (Author)

  10. Application of nuclear techniques in food conservation

    International Nuclear Information System (INIS)

    Alvarado, A.; Arias., L.

    1990-01-01

    This book has the following objectives: 1) determine the possibilities of establishing an investigation project, and the application of food irradiation in Costa Rica. 2) Promote national legislation and regulations in the field of irradiated foods. 3) Coordinate with the Comision de Energia Atomica de Costa Rica, the promotion of the food irradiation technology, at the producer/industrial/institutional/consumer level. 10 refs

  11. Nuclear heat sources for cryogenic refrigerator applications

    International Nuclear Information System (INIS)

    Raab, B.; Schock, A.; King, W.G.; Kline, T.; Russo, F.A.

    1975-01-01

    Spacecraft cryogenic refrigerators require thermal inputs on the order of 1000 W. First, the characteristics of solar-electric and radioisotope heat source systems for supplying this thermal input are compared. Then the design of a 238 Pu heat source for this application is described, and equipment for shipping and handling the heat source is discussed. (LCL)

  12. High temperature applications of nuclear energy

    International Nuclear Information System (INIS)

    1994-08-01

    The meeting was organized to review industry/user needs designs, status of technology and the associated economics for high temperature applications. It was attended by approximately 100 participants from nine countries. The participants presented 17 papers. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  13. The trials and tribulations of purchasing robots for nuclear applications

    International Nuclear Information System (INIS)

    Moore, F.W.; Bowen, W.W.

    1986-01-01

    The adaptation of commercial robots using current robotic technology to handle and manufacture nuclear materials has had its problems. The robots available today were developed primarily to support the automotive or electronics industries. Nuclear material is very heavy, abrasive material with stringent accountability and nuclear safety requirements. The operational space and maintenance constraints have special consideration where the robotic system must operate and be maintained in an environmentally controlled area. The robotic systems of today tend to have limited payload capability for nuclear applications or, if the payload is sufficient, the system is very large and has several operating and maintenance accessibility requirements. The process of specifying, purchasing, and modifying a robotic system is an expensive and time-consuming process at best. The process of product evaluation, operation envelop, design maintenance concepts, and special nuclear materials handling requirements are essential in the development of a procurement specification. The procurement specification is critical to getting an economical robotic system and successfully enticing robotic vendors to quote for nuclear applications

  14. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  15. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    International Nuclear Information System (INIS)

    Jenkins, David

    2015-01-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such 'medium-resolution' spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen. (paper)

  16. EPRI expert system activities for nuclear utility industry application

    International Nuclear Information System (INIS)

    Naser, J.A.

    1990-01-01

    This paper reports on expert systems which have reached a level of maturity where they offer considerable benefits for the nuclear utility industry. The ability of expert systems to enhance expertise makes them an important tool for the nuclear utility industry in the areas of engineering, operations and maintenance. Benefits of expert system applications include comprehensive and consistent reasoning, reduction of time required for activities, retention of human expertise and ability to utilize multiple experts knowledge for an activity. The Electric Power Research Institute (EPRI) has been performing four basic activities to help the nuclear industry take advantage of this expert system technology. The first is the development of expert system building tools which are tailored to nuclear utility industry applications. The second is the development of expert system applications. The third is work in developing a methodology for verification and validation of expert systems. The last is technology transfer activities to help the nuclear utility industry benefit from expert systems. The purpose of this paper is to describe the EPRI activities

  17. Market Potential for Non-electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H.; Nisan, S.

    2002-01-01

    The paper presents results of a recent IAEA study to assess the market potential for non-electric applications of nuclear energy in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, energy supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric energy services. The study makes a distinction between the market size (demand for a given service) and the market potential for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear energy entering into non-electric markets. (authors)

  18. Application of ceramic and glass materials in nuclear power plants

    International Nuclear Information System (INIS)

    Hamnabard, Z.

    2008-01-01

    Ceramic and glass are high temperature materials that can be used in many fields of application in nuclear industries. First, it is known that nuclear fuel UO 2 is a ceramic material. Also, ability to absorb neutrons without forming long lived radio-nuclides make the non-oxide ceramics attractive as an absorbent for neutron radiation arising in nuclear power plants. Glass-ceramic materials are a new type of ceramic that produced by the controlled nucleation and crystallization of glass, and have several advantages such as very low or null porosity, uniformity of microstructure, high chemical resistance etc. over conventional powder processed ceramics. These ceramic materials are synthesized in different systems based on their properties and applications. In nuclear industries, those are resistant to leaching and radiation damage for thousands of years, Such as glass-ceramics designed for radioactive waste immobilization and machinable glass-ceramics are used. This article introduces requirements of different glass and ceramic materials used in nuclear power plants and have been focused on developments in properties and application of them

  19. Automatic invariant detection in dynamic web applications

    NARCIS (Netherlands)

    Groeneveld, F.; Mesbah, A.; Van Deursen, A.

    2010-01-01

    The complexity of modern web applications increases as client-side JavaScript and dynamic DOM programming are used to offer a more interactive web experience. In this paper, we focus on improving the dependability of such applications by automatically inferring invariants from the client-side and

  20. Practical clinical applications of the computer in nuclear medicine

    International Nuclear Information System (INIS)

    Price, R.R.; Erickson, J.J.; Patton, J.A.; Jones, J.P.; Lagan, J.E.; Rollo, F.D.

    1978-01-01

    The impact of the computer on the practice of nuclear medicine has been felt primarily in the area of rapid dynamic studies. At this time it is difficult to find a clinic which routinely performs computer processing of static images. The general purpose digital computer is a sophisticated and flexible instrument. The number of applications for which one can use the computer to augment data acquisition, analysis, or display is essentially unlimited. In this light, the purpose of this exhibit is not to describe all possible applications of the computer in nuclear medicine but rather to illustrate those applications which have generally been accepted as practical in the routine clinical environment. Specifically, we have chosen examples of computer augmented cardiac, and renal function studies as well as examples of relative organ blood flow studies. In addition, a short description of basic computer components and terminology along with a few examples of non-imaging applications are presented

  1. Proposed advanced satellite applications utilizing space nuclear power systems

    International Nuclear Information System (INIS)

    Bailey, P.G.; Isenberg, L.

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000 kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Safety issues are shown to be identified, and if properly addressed should not pose a hindrance. Applications are summarized for the federal and civilian community. These applications include both low and high altitude satellite surveillance missions, communications satellites, planetary probes, low and high power lunar and planetary base power systems, broad-band global telecommunications, air traffic control, and high-definition television

  2. High temperature reactor and application to nuclear process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schulten, R; Kugeler, K [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.)

    1976-01-01

    The principle of high temperature nuclear process heat is explained and the main applications (hydrogasification of coal, nuclear chemical heat pipe, direct reduction of iron ore, coal gasification by steam and water splitting) are described in more detail. The motivation for the introduction of nuclear process heat to the market, questions of cost, of raw material resources and environmental aspects are the next point of discussion. The new technological questions of the nuclear reactor and the status of development are described, especially information about the fuel elements, the hot gas ducts, the contamination and some design considerations are added. Furthermore the status of development of helium heated steam reformers, the main results of the work until now and the further activities in this field are explained.

  3. Wide area change detection with satellite imagery for locating underground nuclear testing

    International Nuclear Information System (INIS)

    Canty, M.J.; Jasani, B.; Schlittenhardt, J.

    2001-01-01

    nicest aspects of the MAD method: It sorts different categories of change into different image components. Another very important characteristic of the MAD transformation is that it is invariant to linear transformations of the data. This means that if for example the sensors used for the two images have different gains, or if atmospheric haze attenuates the reflectance measurement in one of the images but not in the other, the results of the analysis will be unaffected. A Bayesian model of the probability distribution of the MAD components intensities is applied to determine automatically the decision thresholds for change and no change. The prerequisite image-to-image registration is carried out automatically with the help contour and comer matching to determine ground control points, followed by nearest-neighbor resampling. The inclusion of higher resolution panchromatic information into the procedure without loss of spectral discrimination is accomplished via wavelet fusion with the multispectral channels. A computer program CDSAT (Change Detection with SATellite imagery), which implements a user-friendly graphical environment for performing the various steps involved, is described briefly. The technique has been applied successfully to detect the exact position of an underground nuclear test in Rajasthan in 1998. In the present paper we discuss further results for tests carried out in Lop Nor, China in the 1990's and at the Nevada test site in the 1980's. Historical LANDSAT TM satellite images are used for change detection. Results are correlated with seismic and ground truth data and conclusions are drawn regarding the applicability of wide area change detection to complement seismic verification of the Comprehensive Test Ban Treaty

  4. How the Nuclear Applications Laboratories Help in Strengthening Emergency Response

    International Nuclear Information System (INIS)

    2014-01-01

    Safety is one of the most important considerations when engaging in highly advanced scientific and technological activities. In this respect, utilizing the potential of nuclear technology for peaceful purposes also involves risks, and nuclear techniques themselves can be useful in strengthening emergency response measures related to the use of nuclear technology. In the case of a nuclear incident, the rapid measurement and subsequent monitoring of radiation levels are top priorities as they help to determine the degree of risk faced by emergency responders and the general public. Instruments for the remote measurement of radioactivity are particularly important when there are potential health risks associated with entering areas with elevated radiation levels. The Nuclear Science and Instrumentation Laboratory (NSIL) — one of the eight laboratories of the Department of Nuclear Sciences and Applications (NA) in Seibersdorf, Austria — focuses on developing a variety of specialized analytical and diagnostic instruments and methods, and transferring knowledge to IAEA Member States. These include instruments capable of carrying out remote measurements. This emergency response work carried out by the NA laboratories supports health and safety in Member States and supports the IAEA’s mandate to promote the safe and peaceful use of nuclear energy

  5. The diverse applications of the nuclear power

    International Nuclear Information System (INIS)

    2004-01-01

    The three great categories of application in industry and environment of ionizing radiations are the use of ionizing radiation to transport energy in matter it is industrial irradiation, the use of radioactive sources of low activity to analyze and measure, it is the nucleonic instrumentation, the use of radioactive tracers to follow and study the matter transfer. Are explained the treatments to improve the plastic materials and the ionisation of food. (N.C.)

  6. Accuracy analysis of the CTBTO nuclear test detection scale and Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Young Kwang [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    CTBTO (Comprehensive nuclear Test Ban Treaty Organization) is charge of nuclear test monitoring for nuclear non-proliferation. CTBTO has 170 seismic stations in operation in 76 countries in order to detect the artificial earthquake that was caused by an underground nuclear test. Korea use formula that is based on the equations that are used by the IMS (International Monitoring System) of CTBTO for analysis of explosive scale, and reflect the nature of the terrain, such as rock. But the expression for calculating the exact scale explosive is still un-established state. And generally CTBTO doesn't care about artificial explosive that is being received low-yield in accordance with the criteria of nuclear detection. But, at the time that North Korea conduct a nuclear test, it should not be overlooked that the scale of the earthquake detection criteria below. Because DPRK is trying to conceal their nuclear development capability, there are possibility of low-yield nuclear test or possibility of install a buffer to hide actual explosive scale. These radionuclide observations were consistent with a DPRK low-yield nuclear test on May 2010, even though no seismic signals from such a test have been detected. But there were a few times of low-yield (magnitude 1.39-1.93) occurred around DPRK nuclear test site at that time.

  7. Nuclear-physics applications of MYRRHA

    Directory of Open Access Journals (Sweden)

    Popescu Lucia

    2014-03-01

    Full Text Available The Belgian Nuclear Research Centre SCK·CEN is currently working on the design of the MYRRHA research reactor, able to operate in both critical and sub-critical mode as an Accelerator-Driven System (ADS. When operated as an ADS, the MYRRHA reactor core will be coupled to an external neutron source, which is generated by a 600-MeV, 2- to 4-mA proton beam impinging on a lead-bismuth spallation target. By using a small fraction (up to 5% of the MYRRHA proton beam, intensities of 100-200 μA can be sent to a separate facility called ISOL@MYRRHA. Given the high proton energy, most isotopes known on the chart of nuclides can be produced. The production in the hot-target is followed by selective ionization and extraction of atoms in a Radioactive Ion Beam (RIB. Following mass-purification, high-intensity RIBs will be delivered for a large variety of experimental programmes requiring long measurement times. By its experimental programme, the ISOL@MYRRHA facility will be complementary to running and planned Isotope Separator On-Line (ISOL facilities in Europe and abroad.

  8. Prospects for applications of ship-propulsion nuclear reactors

    International Nuclear Information System (INIS)

    Mitenkov, F.M.

    1994-01-01

    The use of ship-propulsion nuclear power reactors in remote areas of Russia is examined. Two ship reactors were analyzed: the KLT-40, a 170 MW-thermal reactor; and the KN-3, a 300 MW-thermal reactor. The applications considered were electricity generation, desalination, and drinking water production. Analyses showed that the applications are technically justified and could be economically advantageous. 5 refs., 9 figs., 1 tab

  9. Clinical applications of nuclear magnetic resonance spectroscopy: a review

    International Nuclear Information System (INIS)

    Newman, R.J.

    1984-01-01

    The advantages and present limitations of the clinical applications of nuclear magnetic resonance spectroscopy are reviewed in outline, with passing references to skeletal muscular studies, in particular a group of children with advanced Duchenne dystrophy, and the applications to the study of cerebral metabolism of neonates, excised kidneys, biopsy studies of breast and axillary lymph node samples, and NMR spectroscopy performed during chemotherapy of a secondary rhabdomyosarcoma in the skin. (U.K.)

  10. Clinical applications of nuclear magnetic resonance spectroscopy: a review

    Energy Technology Data Exchange (ETDEWEB)

    Newman, R.J. (Glasgow Western Infirmary (UK))

    1984-09-01

    The advantages and present limitations of the clinical applications of nuclear magnetic resonance spectroscopy are reviewed in outline, with passing references to skeletal muscular studies, in particular a group of children with advanced Duchenne dystrophy, and the applications to the study of cerebral metabolism of neonates, excised kidneys, biopsy studies of breast and axillary lymph node samples, and NMR spectroscopy performed during chemotherapy of a secondary rhabdomyosarcoma in the skin.

  11. Nuclear model developments in FLUKA for present and future applications

    Science.gov (United States)

    Cerutti, Francesco; Empl, Anton; Fedynitch, Anatoli; Ferrari, Alfredo; Ruben, GarciaAlia; Sala, Paola R.; Smirnov, George; Vlachoudis, Vasilis

    2017-09-01

    The FLUKAS code [1-3] is used in research laboratories all around the world for challenging applications spanning a very wide range of energies, projectiles and targets. FLUKAS is also extensively used for in hadrontherapy research studies and clinical planning systems. In this paper some of the recent developments in the FLUKAS nuclear physics models of relevance for very different application fields including medical physics are presented. A few examples are shown demonstrating the effectiveness of the upgraded code.

  12. Small reactors for low-temperature nuclear heat applications

    International Nuclear Information System (INIS)

    1988-06-01

    In accordance with the Member States' calls for information exchange in the field of nuclear heat application (NHA) two IAEA meetings were organized already in 1976 and 1977. After this ''promising period'', the development of relevant programmes in IAEA Member States was slowed down and therefore only after several years interruption a new Technical Committee Meeting with a Workshop was organized in late 1983, to review the status of NHA, after a few new specific plans appeared in some IAEA Member States in the early 1980's for the use of heat from existing or constructed NPPs and for developing nuclear heating plants (NHP). In June 1987 an Advisory Group Meeting was convened in Winnipeg, Canada, to discuss and formulate a state-of-the-art review on ''Small Reactors for Low Temperature Nuclear Heat Application''. Information on this subject gained up to 1987 in the Member States whose experts attended this meeting is embodied in the present Technical Report. Figs and tabs

  13. EBSD applications in the steel and nuclear industries

    International Nuclear Information System (INIS)

    Nave, M.D.

    2005-01-01

    EBSD has established itself as an invaluable tool for materials science problem-solving in the steel and nuclear industries. In the steel industry, it increases our understanding of the deformation and recrystallization processes that influence the formability of steel sheets. It is also used to improve welding procedures and identify phases that accelerate corrosion. In the nuclear industry, EBSD plays a central role in extending the life of fuel cladding materials by shedding new light on the mechanisms of hydride formation. It is also used in efforts to improve the processing of material used for the storage of nuclear waste. This presentation provides an overview of EBSD applications within these two industries, emphasizing the broad applicability and practical usefulness of the technique. (author)

  14. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

    2012-07-17

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

  15. Non-power application of nuclear energy: Bangladesh perspective

    International Nuclear Information System (INIS)

    Naiyyum Choudhury

    2002-01-01

    Radiation technology offers a very wide scope for utilisation and commercial exploitation in various fields. All over the world, this non-power nuclear energy is being favourably considered for different applications like radiation processing of polymeric materials, non-destructive testing, nuclear and nuclear-related analytical techniques, radiation sterilization of medical products and human tissue allografts, preservation of food by controlling the physiological processes for extending shelf-life and eradication of microbial and insect pests, nuclear technology in agriculture and treatment of sewage sludge. Bangladesh Atomic Energy Commission has taken radiation processing programmes in a big way right from its inception. This paper describes the studies carried out by various research groups in Bangladesh Atomic Energy Commission in the planning and development of non-power nuclear technology for peaceful uses in the fields of food, agriculture, medicine, industry and environment. Both food preservation and medical sterilization of medical products are now being commercially carried out in the Gammatech facility as a joint venture company of BAEC and a private entrepreneur. Bangladesh is soon going to establish a full-fledged Tissue Bank to cater the needs of various tissue allografts for surgical replacement. Recently Government of Bangladesh has allocated US$ 1.00 million for strengthening of the Tissue Banking Laboratory. Application of nuclear techniques in agriculture is also quite intensive. BAEC has made quite a good research contribution on vulcanization of natural rubber latex, wood plastic composites, surface coating curing, polymer modification etc. Bangladesh has also made a very good progress in the fields of non-destructive testing, tracer technology, nuclear analytical techniques and nucleonic control. The impact of non-power nuclear energy in selected areas will no doubt be significant in coming years. (Author)

  16. Applications of accelerator mass spectrometry to nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Guo Zhiyu; Zhang Chuan

    2002-01-01

    As an ultra high sensitive analyzing method, accelerator mass spectrometry is playing an important role in the studies of nuclear physics and astrophysics. The accelerator mass spectrometry (AMS) applications in searching for violation of Pauli exclusion principle and study on supernovae are discussed as examples

  17. Proceedings of the 2. Brazilian Meeting on Nuclear Applications

    International Nuclear Information System (INIS)

    1993-01-01

    Researches in nuclear applications have been developed in Brazil, and were presented in this Meeting. Over 130 papers were presented in the areas of dosimetry, instrumentation, medicine, biology, agriculture , industry, radiochemistry, radiological protection, hydrology and environment. (L.C.J.A.)

  18. Application of nuclear analysis techniques in ancient chinese porcelain

    International Nuclear Information System (INIS)

    Feng Songlin; Xu Qing; Feng Xiangqian; Lei Yong; Cheng Lin; Wang Yanqing

    2005-01-01

    Ancient ceramic was fired with porcelain clay. It contains various provenance information and age characteristic. It is the scientific foundation of studying Chinese porcelain to analyze and research the ancient ceramic with modern analysis methods. According to the property of nuclear analysis technique, its function and application are discussed. (authors)

  19. Promoting the development of nuclear technology application in China

    International Nuclear Information System (INIS)

    Wang Naiyan

    2004-01-01

    The application of nuclear technology in China has been playing important parts in the fields of military, industry, agriculture, medical science, life science, material science, environment protection, etc. However, comparing with some advanced countries and to satisfy the need of national economy China still has a long way to go

  20. A Study on Current Status of Detection Technology and Establishment of National Detection Regime against Nuclear/Radiological Terrorism

    International Nuclear Information System (INIS)

    Kwak, Sung Woo; Jang, Sung Soon; Lee, Joung Hoon; Yoo, Ho Sik

    2009-01-01

    Since 1990s, some events - detection of a dirty bomb in a Russian nation park in 1995, 9/11 terrorist attack to WTC in 2001, discovery of Al-Qaeda's experimentation to build a dirty bomb in 2003 etc - have showed that nuclear or radiological terrorism relating to radioactive materials (hereinafter 'radioactive materials' is referred to as 'nuclear material, nuclear spent fuel and radioactive source') is not incredible but serious and credible threat. Thus, to respond to the new threat, the international community has not only strengthened security and physical protection of radioactive materials but also established prevention of and response to illicit trafficking of radioactive materials. In this regard, our government has enacted or revised the national regulatory framework with a view to improving security of radioactive materials and joined the international convention or agreement to meet this international trend. For the purpose of prevention of nuclear/radiological terrorism, this paper reviews physical characteristics of nuclear material and existing detection instruments used for prevention of illicit trafficking. Finally, national detection regime against nuclear/radiological terrorism based on paths of the smuggled radioactive materials to terrorist's target building/area, national topography and road networks, and defence-in-depth concept is suggested in this paper. This study should contribute to protect people's health, safety and environment from nuclear/radiological terrorism