WorldWideScience

Sample records for nuclear chemistry investigations

  1. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors

  2. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors. (Auth.)

  3. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  4. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, K.

    1982-01-01

    The textbook is a Czech-to-German translation of the second revised edition and covers the subject under the headings: general nuclear chemistry, methods of nuclear chemistry, preparative nuclear chemistry, analytical nuclear chemistry, and applied chemistry. The book is especially directed to students

  5. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Matel, L.; Dulanska, S.

    2013-01-01

    This text-book is an introductory text in nuclear chemistry and radiochemistry, aimed on university undergraduate students in chemistry and related disciplines (physics, nuclear engineering). It covers the key aspects of modern nuclear chemistry. The text begins with basic theories in contemporary physics. It relates nuclear phenomena to key divisions of chemistry such as atomic structure, spectroscopy, equilibria and kinetics. It also gives an introduction to sources of ionizing radiation, detection of ionizing radiation, nuclear power industry and accident on nuclear installations as well as basic knowledge's of radiobiology. This book is essential reading for those taking a first course in nuclear chemistry and is a useful companion to other volumes in physical and analytical chemistry. It will also be of use to those new to working in nuclear chemistry or radiochemistry.

  6. Research in nuclear chemistry: current status and future perspectives

    International Nuclear Information System (INIS)

    Reddy, A.V.R.

    2007-01-01

    Research in nuclear chemistry has seen a huge growth over the last few decades. The large umbrella of nuclear chemistry includes several research areas such as nuclear fission, reactions, spectroscopy, nuclear probes and nuclear analytical techniques. Currently, nuclear chemistry research has extended its horizon into various applications like nuclear medicine, isotopes for understanding physico chemical processes, and addressing environmental and biomedical problems. Tremendous efforts are going on for synthesizing new elements (isotopes), isolating physically or chemically wherever possible and investigating their properties. Theses studies are useful to understand nuclear and chemical properties at extreme ends of instability. In addition, nuclear chemists are making substantial contribution to astrophysics and other related areas. During this talk, a few of the contributions made by nuclear chemistry group of BARC will be discussed and possible future areas of research will be enumerated. (author)

  7. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  8. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  9. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  10. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  11. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1971-05-01

    Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

  12. Nuclear chemistry 1

    International Nuclear Information System (INIS)

    Macasek, F.

    2009-01-01

    This text-book (electronic book - multi-media CD-ROM) constitutes a course-book - author's collection of lectures. It consists of 9 lectures in which the reader acquaints with the basis of nuclear chemistry and radiochemistry: History of nucleus; Atomic nuclei; Radioactivity; Nuclear reactions and nucleogenesis; Isotopism; Ionizing radiation; Radiation measurement; Nuclear energetics; Isotopic indicators. This course-book may be interesting for students, post-graduate students of chemistry, biology, physics, medicine a s well as for teachers, scientific workers and physicians. (author)

  13. Nuclear analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  14. Nuclear analytical chemistry

    International Nuclear Information System (INIS)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection

  15. Chemistry in and from nuclear fusion

    International Nuclear Information System (INIS)

    Okamoto, M.

    1989-01-01

    The time, of the realization of nuclear fusion reactor is not clear even now. However, it is generally believed that the nuclear fusion is only one candidate of the big power source for humanbeing. We may be not able to, but our children or grandchildren would be able to see the nuclear fusion reactors. The nuclear fusion development may be the last and biggest technology program for us, so it will take so long leading time. Now, we are in the first stage of this leading time, I think. As being found in the history of every technology, chemistry is essential to develop the fusion nuclear technology. To assure the safety of the nuclear fusion system, chemistry should play the main role. There have been already not a few advanced chemistry initiated by the connected technologies with the nuclear fusion researches. The nuclear fusion needs chemistry and the nuclear fusion leads some of the new phases of chemistry. (author)

  16. Frontiers in nuclear chemistry

    International Nuclear Information System (INIS)

    Sood, D.D.; Reddy, A.V.R.; Pujari, P.K.

    1996-01-01

    This book contains articles on the landmarks in nuclear and radiochemistry which takes through scientific history spanning over five decades from the times of Roentgen to the middle of this century. Articles on nuclear fission and back end of the nuclear fuel cycle give an insight into the current status of this subject. Reviews on frontier areas like lanthanides, actinides, muonium chemistry, accelerator based nuclear chemistry, fast radiochemical separations and nuclear medicine bring out the multidisciplinary nature of nuclear sciences. This book also includes an article on environmental radiochemistry and safety. Chapters relevant to INIS are indexed separately

  17. Where is the future of nuclear chemistry

    International Nuclear Information System (INIS)

    1980-01-01

    The future potentials of nuclear chemistry as a natural science with a strong orientation towards practical applications has been discussed at this meeting of 45 experts coming from research institutes and laboratories working in the fields of radiochemistry, nuclear chemistry, inorganic and applied chemistry, hot-atom chemistry, radiobiology, and nuclear biology, and from the two nuclear research centres at Juelich and Karlsruhe. The discussion centred around the four main aspects of future work, namely 1. basic research leading to an extension of the periodic table, nuclear reactions, the chemistry of superheavy elements, cosmochemistry; 2. radionuclide technology and activation analysis; 3. nuclear fuel cycle and reprocessing processes together with ultimate disposal methods; 4. radiochemistry in the life sciences, including nuclear chemistry and applications. (HK) [de

  18. Introduction to nuclear chemistry

    International Nuclear Information System (INIS)

    Lieser, K.H.

    1980-01-01

    The study in this book begins with the periodic system of elements (chapter 1). The physical fundamentals necessary to understand nuclear chemistry are dealt with in chapter 2. Chapter 3 and 4 treat the influence of the mass number on the chemical behaviour (isotope effect) and the isotope separation methods thus based on this effect. A main topic is studied in chapter 5, the laws of radioactive decay, a second main topic is dealt with in chapter 8, nuclear reactions. The chemical effects of nuclear reactions are treated on their own chapter 9. Radiochemical reactions which are partly closely linked to the latter are only briefly discussed in chapter 10. The following chapters discuss the various application fields of nuclear chemistry. The large apparatus indispensable for nuclear chemistry is dealt with in a special chapter (chapter 12). Chapter 15 summarizes the manifold applications. (orig.) [de

  19. Chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Nagasawa, Katsumi; Maeda, Katsuji

    1998-01-01

    Recently, the chemistry management in the nuclear power plants has been changing from the problem solution to the predictive diagnosis and maintenance. It is important to maintain the integrity of plant operation by an adequate chemistry control. For these reasons, many plant operation data and chemistry analysis data should be collected and treated effectively to evaluate chemistry condition of the nuclear power plants. When some indications of chemistry anomalies occur, quick and effective root cause evaluation and countermeasures should be required. The chemistry management system has been developed as to provide sophisticate chemistry management in the nuclear power plants. This paper introduces the concept and functions of the chemistry management system for the nuclear power plants. (author)

  20. Chemistry and nuclear technology

    International Nuclear Information System (INIS)

    De Wet, W.J.

    1977-01-01

    The underlying principles of nuclear sciece and technology as based on the two basic phenomena, namely, radioactivity and nuclear reactions, with their relatively large associated energy changes, are outlined. The most important contributions by chemists in the overall historical development are mentioned and the strong position chemistry has attained in these fields is indicated. It is concluded that chemistry as well as many other scientific discplines (apart from general benefits) have largely benefitted from these nuclear developments [af

  1. An ideal teaching program of nuclear chemistry in the undergraduate chemistry curriculum

    International Nuclear Information System (INIS)

    Uenak, T.

    2009-01-01

    It is well known that several reports on the common educational problems of nuclear chemistry have been prepared by certain groups of experts from time to time. According to very important statements in these reports, nuclear chemistry and related courses generally do not take sufficient importance in undergraduate chemistry curricula and it was generally proposed that nuclear chemistry and related courses should be introduced into undergraduate chemistry curricula at universities worldwide. Starting from these statements, an ideal program in an undergraduate chemistry curriculum was proposed to be introduced into the undergraduate chemistry program at the Department of Chemistry, Ege University, in Izmir, Turkey during the regular updating of the chemistry curriculum. Thus, it has been believed that this Department of Chemistry has recently gained an ideal teaching program in the field of nuclear chemistry and its applications in scientific, industrial, and medical sectors. In this contribution, the details of this program will be discussed. (author)

  2. Intermediate-energy nuclear chemistry workshop

    International Nuclear Information System (INIS)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities

  3. Intermediate-energy nuclear chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  4. Nuclear Chemistry, exercises

    International Nuclear Information System (INIS)

    Savio, E.; Saucedo, E.

    2002-01-01

    Those exercises have as objective to introduce the student in the basic concepts of nuclear chemistry: a) way of decline b) balances of mass used in nuclear reactions c) how to calculate activities, activity concentrations and specific activity d) radiotracers use in biomedical sciences pharmaceutical

  5. Department of Nuclear Physical Chemistry

    International Nuclear Information System (INIS)

    Mikulski, J.

    1994-01-01

    The research program at the Department of Nuclear Physical Chemistry of the Niewodniczanski Institute of Nuclear Physics is described. The Department consist of three laboratories. First - Laboratory of Physical Chemistry of Separation Processes on which the activity is concentrated on production and separation of neutron deficient isotopes for medical diagnostic. Recently, the main interest was in 111 In which is a promising tracer for cancer diagnostic. To increase the effectiveness of production of indium 111 In the reaction with deuterons on the enriched cadmium target was carried out instead of the previously used one with alpha particles on natural silver. In the second one - Laboratory of Chemistry and Radiochemistry - the systematic studies of physicochemical properties of transition elements in solutions are carried out. The results of the performed experiments were used for the elaboration of new rapid and selective methods for various elements. Some of these results have been applied for separation of trans actinide elements at U-400 cyclotron of JINR Dubna. The third one laboratory -Environmental Radioactivity Laboratory - conducts continuous monitoring of radioactivity contamination of atmosphere. The investigation of different radionuclides concentration in natural environment, mainly in the forest had been carried out

  6. The Living Textbook of Nuclear Chemistry

    International Nuclear Information System (INIS)

    Loveland, W.; Gallant, A.; Joiner, C.

    2005-01-01

    The Living Textbook of Nuclear Chemistry (http://livingtextbook.orst.edu) is a website, which is a collection of supplemental materials for the teaching of nuclear and radiochemistry. It contains audio-video presentations of the history of nuclear chemistry, tutorial lectures by recognized experts on advanced topics in nuclear and radiochemistry, links to data compilations, articles, and monographs, an audio course on radiochemistry, on-line editions of textbooks, training videos, etc. All content has been refereed. (author)

  7. The Nuclear and Radiochemistry in Chemistry Education Curriculum Project

    International Nuclear Information System (INIS)

    Robertson, J.D.; Missouri University, Columbia, MO; Kleppinger, E.W.

    2005-01-01

    Given the mismatch between supply of and demand for nuclear scientists, education in nuclear and radiochemistry has become a serious concern. The Nuclear and Radiochemistry in Chemistry Education (NRIChEd) Curriculum Project was undertaken to reintroduce the topics normally covered in a one-semester radiochemistry course into the traditional courses of a four-year chemistry major: general chemistry, organic chemistry, quantitative and instrumental analysis, and physical chemistry. NRIChEd uses a three-pronged approach that incorporates radiochemistry topics when related topics in the basic courses are covered, presents special topics of general interest as a vehicle for teaching nuclear and radiochemistry alongside traditional chemistry, and incorporates the use of non-licensed amounts of radioactive substances in demonstrations and student laboratory experiments. This approach seeks not only to reestablish nuclear science in the chemistry curriculum, but to use it as a tool for elucidating fundamental and applied aspects of chemistry as well. Moreover, because of its relevance in many academic areas, nuclear science enriches the chemistry curriculum by encouraging interdisciplinary thinking and problem solving. (author)

  8. Radiation chemistry in nuclear technology

    International Nuclear Information System (INIS)

    Katsumura, Yosuke

    2006-01-01

    The importance of radiation chemistry in the field of nuclear technology including reactor chemistry, spent fuel reprocessing and radioactive high level waste repository, is summarized and, in parallel, our research activity will be briefly presented. (author)

  9. Past and present trends of nuclear chemistry

    International Nuclear Information System (INIS)

    Matel, L.; Kuruc, J.

    2007-01-01

    This book represents not only the papers and lectures presented on the Seminar at the occasion of forty years of foundation of the Department of Nuclear Chemistry which took place on October 3 - 5, 2006 in Kezmarske Zlaby (High Tatras). It also contains the papers and presentations of post-graduate students and workers of the Department of Nuclear Chemistry as well as colleagues working in different field of nuclear chemistry and radioecology on various workplaces in the Slovak Republic, too. The book contains 17 papers, 15 presentations, photographs and 3 short video recording

  10. Nuclear chemistry in the traditional chemistry program

    International Nuclear Information System (INIS)

    Kleppinger, E.W.

    1993-01-01

    The traditional undergraduate program for chemistry majors, especially at institutions devoted solely to undergraduate education, has limited space for 'special topics' courses in areas such as nuclear and radiochemistry. A scheme is proposed whereby the basic topics covered in an introductury radiochemistry course are touched upon, and in some cases covered in detail, at some time during the four-year sequence of courses taken by a chemistry major. (author) 6 refs.; 7 tabs

  11. Nuclear chemistry research for the safe disposal of nuclear waste

    International Nuclear Information System (INIS)

    Fanghaenel, Thomas

    2011-01-01

    The safe disposal of high-level nuclear waste and spent nuclear fuel is of key importance for the future sustainable development of nuclear energy. Concepts foresee the isolation of the nuclear waste in deep geological formations. The long-term radiotoxicity of nuclear waste is dominated by plutonium and the minor actinides. Hence it is essential for the performance assessment of a nuclear waste disposal to understand the chemical behaviour of actinides in a repository system. The aqueous chemistry and thermodynamics of actinides is rather complex in particular due to their very rich redox chemistry. Recent results of our detailed study of the Plutonium and Neptunium redox - and complexation behaviour are presented and discussed. (author)

  12. Position paper on main areas of nuclear chemistry research and application

    International Nuclear Information System (INIS)

    2001-01-01

    Nuclear chemistry, with its specialized areas of nuclear chemistry, radiochemistry, and radiation chemistry, mainly covers these fields: basic research in nuclear chemistry; actinide chemistry; radioanalysis; nuclear chemistry in the life sciences, geosciences, and cosmic chemistry; radiotracers in technology; nuclear power technology; nuclear waste management; tritium chemistry in fusion technology, and radiation protection and radioecology. In the more than one hundred years of history of this branch of science and technology, which was opened up by the discovery of radioactivity and of the radioelements, pioneering discoveries and developments have been made in many sectors. Far beyond the confines of this area of work, they have achieved overriding importance in applications in many fields of technology and industry and in the life sciences. Research and application in nuclear chemistry continue to be highly relevant to society, ecology, and the economy, and the potential of science and technology in this field in Germany is acknowledged internationally. In the light of this vast area of activity, and against the need to maintain competence in nuclear chemistry for the use of nuclear power, irrespective of the status of this continued use in Germany, nuclear chemistry is indispensable to the solution of future problems. The Nuclear Chemistry Group of the Gesellschaft Deutscher Chemiker therefore uses this position paper to draw attention to the urgent need to keep up and further advance nuclear chemistry applications in a variety of areas of science and technology, also as a public duty of thorough education and research. (orig.) [de

  13. Teaching aids for nuclear chemistry

    International Nuclear Information System (INIS)

    Atwood, C.H.

    1994-01-01

    This paper provides teachers with a set of resources to use in teaching modern nuclear chemistry in their classrooms. Included in the resources are references to recent articles on nuclear science, some preprints and abstracts of articles, ideas of where to go for help, lab experiments, and a videotape of simulated nuclear reactions

  14. Nuclear forensics and nuclear analytical chemistry - iridium determination in a referred forensic sample

    International Nuclear Information System (INIS)

    Basu, A.K.; Bhadkambekar, C.A.; Tripathi, A.B.R.; Chattopadhyay, N.; Ghosh, P.

    2010-01-01

    Nuclear approaches for compositional characterization has bright application prospect in forensic perspective towards assessment of nature and origin of seized material. The macro and micro physical properties of nuclear materials can be specifically associated with a process or type of nuclear activity. Under the jurisdiction of nuclear analytical chemistry as well as nuclear forensics, thrust areas of scientific endeavor like determination of radioisotopes, isotopic and mass ratios, analysis for impurity contents, arriving at chemical forms/species and physical parameters play supporting evidence in forensic investigations. The analytical methods developed for this purposes can be used in international safeguards as well for nuclear forensics. Nuclear material seized in nuclear trafficking can be identified and a profile of the nuclear material can be created

  15. Chemistry for the nuclear energy of the future

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2011-01-01

    Chemistry - radiochemistry, radiation chemistry and nuclear chemical engineering play a very important role in the nuclear power development. Even at present, the offered technology is well developed, but still several improvements are needed and proposed. These developments concern all stages of the technology; front end, reactor operation (coolant chemistry and installation components decontamination, noble gas release control), back end of fuel cycle, etc. Chemistry for a partitioning and a transmutation is a new challenge for the chemists and chemical engineers. The IV th generation of nuclear reactors cannot be developed without chemical solutions for fuel fabrication, radiation-coolants interaction phenomena understanding and spent fuel/waste treatment technologies elaboration. Radiochemical analytical methods are fundamental for radioecological monitoring of radioisotopes of natural and anthropological origin. This paper addresses just a few subjects and is not a detailed overview of the field, however it illustrates a role of chemistry for a safe and economical nuclear power development. (author)

  16. An overview of the teaching of nuclear chemistry

    International Nuclear Information System (INIS)

    Seaborg, G.T.

    1993-01-01

    Subjective remarks by the author on teaching of nuclear chemistry are presented. A historical overview of nuclear chemistry and radiochemistry education and research as well as an outline of their prospects are given. (R.P.)

  17. Development of Database and Lecture Book for Nuclear Water Chemistry

    International Nuclear Information System (INIS)

    Maeng, Wan Young; Kim, U. C.; Na, J. W.; Choi, B. S.; Lee, E. H.; Kim, K. H.; Kim, K. M.; Kim, S. H.; Im, K. S.

    2010-02-01

    In order to establish a systematic and synthetic knowledge system of nuclear water chemistry, we held nuclear water chemistry experts group meetings. We discussed the way of buildup and propagation of nuclear water chemistry knowledge with domestic experts. We obtained a lot of various opinions that made the good use of this research project. The results will be applied to continuous buildup of domestic nuclear water chemistry knowledge database. Lessons in water chemistry of nuclear power plants (NPPs) have been opened in Nuclear Training and education Center, KAERI to educate the new generation who are working and will be working at the department of water chemistry of NPPs. The lessons were 17 and lesson period was from 12th May through 5th November. In order to progress the programs, many water chemistry experts were invited. They gave lectures to the younger generation once a week for 2 h about their experiences obtained during working on water chemistry of NPPs. The number of attendance was 290. The lessons were very effective and the lesson data will be used to make database for continuous use

  18. An introduction to serious nuclear accident chemistry

    Directory of Open Access Journals (Sweden)

    Mark Russell St. John Foreman

    2015-12-01

    Full Text Available A review of the chemistry occurring inside a nuclear power plant during a serious reactor accident is presented. This includes some aspects of the behavior of nuclear fuel, its cladding, cesium and iodine. This review concentrates on the chemistry of an accident in a water-cooled reactor loaded with uranium dioxide or mixed metal oxide fuel.

  19. Isotope and Nuclear Chemistry Division annual report, FY 1988

    International Nuclear Information System (INIS)

    1989-06-01

    This report describes some of the major research and development programs of the Isotope and Nuclear Chemistry Division during FY 1988. The report includes articles on weapons chemistry, biochemistry and nuclear medicine, nuclear structure and reactions, and the INC Division facilities and laboratories

  20. An overview of the teaching of nuclear chemistry

    International Nuclear Information System (INIS)

    Seaborg, G.I.

    1990-01-01

    Otto Hahn's book, Applied Radiochemistry, published in 1936, marked the author's entry into this field. Notes concerning a lecture course, An Introduction to Nuclear Chemistry, given during the summer of 1942 at the University of Chicago, as an introduction to the Plutonium Project of the Manhattan District, were widely distributed for use by participants in the Project. Nuclear chemistry courses, undergraduate and graduate, instigated at Berkeley in 1946, were taken by large numbers of students many of who became pioneers in the field. Noteworthy is Friedlander's and Kennedy's 1949 textbook, Introduction to Radiochemistry (and subsequent revisions). These courses and this book serve as typical examples, many other such courses were taught and books published during the intervening years. More recently the Department of Energy Summer School in Nuclear Chemistry (for high school students) at San Jose State University has helped to revive student interest in nuclear chemistry

  1. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    International Nuclear Information System (INIS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-01-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  2. American Chemical Society. Division of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The meeting of the 201st American Chemical Society Division of Nuclear Chemistry and Technology was comprised from a variety of topics in this field including: nuclear chemistry, nuclear physics, and nuclear techniques for environmental studies. Particular emphasis was given to fundamental research concerning nuclear structure (seven of the nineteen symposia) and studies of airborne particle monitoring and transport (five symposia). 105 papers were presented

  3. Nuclear chemistry and Radiochemistry in the USA

    International Nuclear Information System (INIS)

    Kronenberg, A.

    2004-01-01

    Nuclear chemistry and radiochemistry are very young sciences which developed at an extremely brisk pace within a very short period of time after the discovery of nuclear fission in 1938, and caused profound societal changes. In the United States, nuclear chemistry developed very differently from Germany, where nuclear research initially had been banned after the Second World War. The prime mover in the development in the United States was the Manhattan Project, the construction of the atomic bomb. The counteract the impending shortage of qualified personnel, important institutions have begun to establish training and support programs in the field. The National Laboratories in the United States introduced a National Security Internship Program, while the U.S. Department of Energy (DOE) tries to promote cooperation, and thus the training of personnel, by launching programs of its own. Yet, a greater shortage of qualified personnel is becoming apparent. The situation of nuclear chemistry and radiochemistry in the United States can be summarized in the finding that research at the National Laboratories is very wide ranging. It receives sufficient funds from the DOE. However, the National Laboratories show a very high proportion of elderly personnel, a problem which will have to be corrected in the years to come. This may be helped by the Summer Schools financed by the DOE, though a summer school of six weeks cannot replace a sound training in nuclear chemistry of the kind still to be found in Germany. (orig.) [de

  4. Chemistry evaluation in French EDF Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jacquier, Hervé

    2014-01-01

    The Nuclear Production Division of EDF is comprised of 19 power stations (58 PWR reactors) and 2 national engineering organisations. Nuclear Inspection (IN) is an internal assessment unit of the EDF Nuclear Production Directorate. At the request of the Directorate, it carries out periodic evaluations of all the units of the division. The evaluation of the nuclear sites (EGE: Overall Excellence Assessment) is carried out every 4 years, an intermediate evaluation is also carried out between each EGE. These evaluations are independent of the WANO and IAEA evaluations. Exchanges are carried out between Nuclear Inspection and the other international operators (for example, USA (INPO), England, China...) to share site evaluation methods. These evaluations are carried out by a team of 30 inspectors, reinforced during each evaluation by 10 peers who come from the various French nuclear sites. Nuclear Inspection produces a performance standards document for each FUNCTIONAL AREA, which is based on the requirements of the company. On the whole, 13 areas are evaluated during each inspection, in particular: Management, Operations, Maintenance, Engineering and Chemistry. The area of reactor plant chemistry has been evaluated since 2009. The Chemistry performance standards document is written from the EDF internal requirements and international references. During site evaluations, all the performance standards are assessed for compliance. The Chemistry performance standards document is comprised of 3 topics: Management of plant chemistry, The respect of the chemical and radiochemical specifications, The condition of the laboratories and the sampling lines, measuring equipment, and chemical products. The evaluations carried out make it possible to define strengths and weaknesses which the sites must address. After each evaluation, the assessment is presented to the site management and to the director of EDF Nuclear Production. For 4 years these evaluations have allowed progress to

  5. Radioanalytical Chemistry for Automated Nuclear Waste Process Monitoring

    International Nuclear Information System (INIS)

    Egorov, Oleg B.; Grate, Jay W.; DeVol, Timothy A.

    2004-01-01

    This research program is directed toward rapid, sensitive, and selective determination of beta and alpha-emitting radionuclides such as 99Tc, 90Sr, and trans-uranium (TRU) elements in low activity waste (LAW) processing streams. The overall technical approach is based on automated radiochemical measurement principles, which entails integration of sample treatment and separation chemistries and radiometric detection within a single functional analytical instrument. Nuclear waste process streams are particularly challenging for rapid analytical methods due to the complex, high-ionic-strength, caustic brine sample matrix, the presence of interfering radionuclides, and the variable and uncertain speciation of the radionuclides of interest. As a result, matrix modification, speciation control, and separation chemistries are required for use in automated process analyzers. Significant knowledge gaps exist relative to the design of chemistries for such analyzers so that radionuclides can be quantitatively and rapidly separated and analyzed in solutions derived from low-activity waste processing operations. This research is addressing these knowledge gaps in the area of separation science, nuclear detection, and analytical chemistry and instrumentation. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for sample matrix modification and analyte speciation control and chemistries for rapid and selective separation and preconcentration of target radionuclides from complex sample matrices. In addition, new approaches for quantification of alpha emitters in solution using solid-state diode detectors, as well as improved instrumentation and signal processing techniques for use with solid-state and scintillation detectors, will be developed. New knowledge of the performance of separation materials, matrix modification and speciation control chemistries, instrument configurations, and quantitative analytical approaches will

  6. Radioanalytical Chemistry for Automated Nuclear Waste Process Monitoring

    International Nuclear Information System (INIS)

    Egorov, Oleg B.; Grate, Jay W.; DeVol, Timothy A.

    2003-01-01

    This research program is directed toward rapid, sensitive, and selective determination of beta and alpha-emitting radionuclides such as 99Tc, 90Sr, and trans-uranium (TRU) elements in low activity waste (LAW) processing streams. The overall technical approach is based on automated radiochemical measurement principles. Nuclear waste process streams are particularly challenging for rapid analytical methods due to the complex, high- ionic-strength, caustic brine sample matrix, the presence of interfering radionuclides, and the variable and uncertain speciation of the radionuclides of interest. As a result, matrix modification, speciation control, and separation chemistries are required for use in automated process analyzers. Significant knowledge gaps exist relative to the design of chemistries for such analyzers so that radionuclides can be quantitatively and rapidly separated and analyzed in solutions derived from low-activity waste processing operations. This research is addressing these knowledge gaps in the area of separation science, nuclear detection, and analytical chemistry and instrumentation. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for sample matrix modification and analyte speciation control and chemistries for rapid and selective separation and preconcentration of target radionuclides from complex sample matrices. In addition, new approaches for quantification of alpha emitters in solution using solid state diode detectors, as well as improved instrumentation and signal processing techniques for use with solid-state and scintillation detectors, will be developed. New knowledge of the performance of separation materials, matrix modification and speciation control chemistries, instrument configurations, and quantitative analytical approaches will provide the basis for designing effective instrumentation for radioanalytical process monitoring. Specific analytical targets include 99 Tc, 90Sr and

  7. Technetium in chemistry and nuclear medicine

    International Nuclear Information System (INIS)

    Deutsch, E.; Nicolini, M.; Wagner, H.N.

    1983-01-01

    This volume explores the potential of technetium radiopharmaceuticals in clinical nuclear medicine. The authors examine the capabilities of synthetic inorganic chemists to synthesize technetium radiopharmaceuticals and the specific requirements of the nuclear medicine practitioner. Sections cover the chemistry of technetium, the production of radiopharmaceuticals labeled with technetium, and the use of technetium radiopharmaceuticals in nuclear medicine

  8. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    International Nuclear Information System (INIS)

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods

  9. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Michalik, J.; Smulek, W.; Godlewska-Para, E.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods

  10. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Michalik, J; Smulek, W; Godlewska-Para, E [eds.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods.

  11. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods.

  12. Nuclear techniques in analytical chemistry

    CERN Document Server

    Moses, Alfred J; Gordon, L

    1964-01-01

    Nuclear Techniques in Analytical Chemistry discusses highly sensitive nuclear techniques that determine the micro- and macro-amounts or trace elements of materials. With the increasingly frequent demand for the chemical determination of trace amounts of elements in materials, the analytical chemist had to search for more sensitive methods of analysis. This book accustoms analytical chemists with nuclear techniques that possess the desired sensitivity and applicability at trace levels. The topics covered include safe handling of radioactivity; measurement of natural radioactivity; and neutron a

  13. Isotope and Nuclear Chemistry Division annual report, FY 1983

    International Nuclear Information System (INIS)

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes

  14. Isotope and Nuclear Chemistry Division annual report, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H.; Lindberg, H.A. (eds.)

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  15. Isotope and Nuclear Chemistry Division annual report, FY 1984

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1985-04-01

    This report describes progress in the major research and development programs carried out in FY 1984 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques: development and applications; atmospheric chemistry and transport; and earth and planetary processes. 287 refs

  16. Institute of Nuclear Chemistry of Mainz University. Annual report 1987

    International Nuclear Information System (INIS)

    Weber, M.

    1988-06-01

    Apart from the traditional topics of the institute's five working groups, i.e. rapid separation and exotic nuclei, nuclear structures, nuclear fission, heavy ion reactions, and ecology of radionuclides, the report includes papers investigating into the chemistry of the heaviest elements, papers on nuclear astrophysics, and brief contributions on applied radioactivity in anticipation of further and more detailed ones. Most of the studies are the result of national and international efforts in the sense of modern co-operative research. The report refers to the institute's collaboration with university teams and research institutes. (orig./RB) [de

  17. Institute of Nuclear Chemistry and Technology annual report 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations

  18. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  19. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  20. Nuclear chemistry of transactinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Nagame, Yuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    The current status on the nuclear chemistry studies of transactinide elements is reviewed. The production of transactinides in heavy ion reactions is briefly discussed, and nuclear properties on the stability of transactinides are presented. Chemical properties of the trans-actinide elements 104, 105 and 106, and a typical experimental technique used to study these properties on an atom-at-a-time base are introduced. (author)

  1. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  2. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  3. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.4--Nuclear chemistry and radiation chemistry sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 24 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the fourth one, the content is about Nuclear chemistry and radiation chemistry sub-volume

  4. The Chemistry Departement of the Institute for Nuclear Physics Research, Amsterdam, The Netherlands

    International Nuclear Information System (INIS)

    Lindner, L.

    1977-01-01

    In 1946, the Institute for Nuclear Physics Research (IKO) in Amsterdam was founded as a typical post World War II effort to cope with the surge in scientific research, primarily in the USA. At present, the Institute encompasses almost 250 workers - including a Philips research group - out of which nearly 30 are members of the Chemistry Department. In the beginning, the investigations dealt with more or less conventional tracerwork using long-lived radionuclides produced in nuclear reactors. This changed rapidly with the synchrocyclotron coming into operation in 1947. The present can be best characterized as a sort of a transition state. Emphasis has been laid upon more typical chemical aspects of the research program: a shift from ''nuclear'' chemistry to ''radio'' chemistry. The future is determined by the 500 MeV linear electron accelerator, dubbed MEA (Medium Energy Accelerator) already under construction. (T.G.)

  5. Nuclear Chemistry and Services

    International Nuclear Information System (INIS)

    Vandevelde, L.

    2002-01-01

    The objectives, the programme, and the achievements of R and D at the Belgian Nuclear Research Centre SCK-CEN in the field of nuclear chemistry and analytical techniques are summarized. Major achievement in 2001 included the completion of a project on the measurement of critical radionuclides in reactor waste fluxes (the ARIANE project), the radiochemical characterisation of beryllium material originating from the second matrix of the BR2 reactor as well as to a the organisation of a workshop on the analysis of thorium and its isotopes in workplace materials

  6. Saclay Center of Nuclear Studies, Direction of Materials and Nuclear Fuels, Department of Physico-Chemistry, Division of Physical Chemistry. 1968 Annual report

    International Nuclear Information System (INIS)

    Schmidt, M.; Clerc, M.; Le Calve, J.; Bourene, M.; Lesigne, B.; Gillois, M.; Devillers, C.; Arvis, M.; Gilles, L.; Moreau, M.; Sutton, J.; Faraggi, M.; Desalos, J.; Tran Dinh Son; Barat, F.; Hickel, B.; Chachaty, C.; Forchioni, A.; Shiotani, M.; Larher, Y.; Maurice, P.; Le Bail, H.; Nenner, T.

    1969-03-01

    This document is the 1968 annual report of research activities at the Physico-Chemistry Department (Physical Chemistry Division), part of the Directorate of Materials and Nuclear Fuels of the CEA Saclay center of nuclear studies. The report is divided into two main parts: radiolysis and photolysis studies (gaseous phase, condensed phase), and general physico-chemical studies (sorption, molecular jets)

  7. Highlights of nuclear chemistry 1995

    International Nuclear Information System (INIS)

    1996-07-01

    In this report 9 topics of the work of the Nuclear Chemistry Group in 1995 are highlighted. A list of publications and an overview of the international cooperation is given. (orig.). 19 refs., 19 figs., 2 tabs., 2 app

  8. Highlights of nuclear chemistry 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    In this report 9 topics of the work of the Nuclear Chemistry Group in 1995 are highlighted. A list of publications and an overview of the international cooperation is given. (orig.). 19 refs., 19 figs., 2 tabs., 2 app.

  9. Advances in nuclear chemistry and its applications in the Philippines

    International Nuclear Information System (INIS)

    Dela Rosa, Alumanda M.

    2015-01-01

    Nuclear chemistry was born almost 120 years ago with the discovery of radioactivity by Antoine Henry Becquerel in 1896. Nuclear chemistry is a subfield of chemistry that deals with radioactivity, nuclear reactions and processes, and nuclear properties. The composition of the nucleus and the changes that occur within the nucleus define the properties of the radioisotope and the nuclear reactions and processes it is involved in. Almost six decades ago, nuclear chemistry established its roots in the Philippines under the Philippine Atomic Energy Commission, presently the Philippine Nuclear Research Institute. The main areas of nuclear chemistry, namely, namely radiochemistry, radiation chemistry, radiation biology, and isotopic chemistry have been studies, and have found applications in food and agriculture, medicine and health, in idustry, and in the protection of the environment. Early work in nuclear chemistry utilized the Philippine Research Reactor (PRR-1) for the production of radioisotopes which were used in either research or direct applications in food and agriculture, health and medicine, and industry. The PRR-1 provided neutrons for the non destructive multi element analysis of various samples using the neutron activation analysis technique. Radioactive materials as sources of ionizing radiation are being used extensively to study the chemical and biological effects of radiation on matter. Current studies involve the irradiation of certain plants and insects causing changes in their DNA which result in mutation for better crop varieties and sterility in insects for quarantine treatment and pest management. Radiation can modify the properties of polymers. Natural polymers such as carrageenan, chitosan and cellulose in abaca and water hyacinth fibers are subjected to gamma irradiation changing their properties and resulting in new products such as wound drressing, hemostatic agents, plant growth promoters, and metal-chelating agents. Radioisotopes are also

  10. Annual Report of Institute of Nuclear Chemistry and Technology 1999

    International Nuclear Information System (INIS)

    2000-06-01

    The INCT 1999 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators

  11. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    International Nuclear Information System (INIS)

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators

  12. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators.

  13. Annual Report of Institute of Nuclear Chemistry and Technology 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    The INCT 1999 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators.

  14. Abstracts Book of 3. All-Polish Conference on Radiochemistry and Nuclear Chemistry

    International Nuclear Information System (INIS)

    2001-01-01

    The development of radiochemistry and nuclear chemistry in Poland have been presented during the 3. All-Polish Conference on Radiochemistry and Nuclear Chemistry held in Kazimierz Dolny in May 2001. The broad range of problems connected with radiochemistry and nuclear chemistry application in environmental protection and quality control, nuclear medicine and radiation protection, radioactive waste processing and many other scientific and everyday problems solution have been extensively presented and discussed

  15. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  16. Institute of Nuclear Chemistry and Technology annual report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994

  17. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  18. Developments in nuclear power plant water chemistry

    International Nuclear Information System (INIS)

    Fruzetti, K.; Wood, C.J.

    2007-01-01

    This paper illustrates the changing role of water chemistry in current operation of nuclear power plants. Water chemistry was sometimes perceived as the cause of materials problems, such as denting in PWR steam generators and intergranular stress corrosion cracking in BWRs. However, starting in the last decade, new chemistry options have been introduced to mitigate stress corrosion cracking and reduce fuel performance concerns. In BWRs and PWRs alike, water chemistry has evolved to successfully mitigate many problems as they have developed. The increasing complexity of the chemistry alternatives, coupled with the pressures to increase output and reduce costs, have demonstrated the need for new approaches to managing plant chemistry, which are addressed in the final part of this paper. (orig.)

  19. Annual Report of Institute of Nuclear Chemistry and Technology 1998

    International Nuclear Information System (INIS)

    1999-04-01

    Actual edition of Annual Report is a full review of scientific activities of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1998. The abstracts are presented in the following group of subjects: radiation chemistry and physics, radiation technologies (26); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (25); radiobiology (11); nuclear technologies and methods - process engineering (5); material engineering, structural studies and diagnostics (9); nucleonic control systems (7). The edition also included the list of INCT scientific publications and patents as well as information on conferences organized or co-organized by the INCT in 1998

  20. Handbook on process and chemistry on nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki [Tokyo Univ., Tokyo (Japan); Asakura, Toshihide; Adachi, Takeo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO{sub 2} fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  1. Handbook on process and chemistry on nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki; Asakura, Toshihide; Adachi, Takeo

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO 2 fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  2. Annual Report 2003 of the Institute of Nuclear Chemistry and Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The INCT 2003 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies, nucleonic control systems and accelerators.

  3. Annual Report 2003 of the Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    2004-01-01

    The INCT 2003 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies, nucleonic control systems and accelerators

  4. Handbook on process and chemistry on nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki (ed.) [Tokyo Univ., Tokyo (Japan); Asakura, Toshihide; Adachi, Takeo (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO{sub 2} fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  5. The Crisis in Radiochemistry and Nuclear Chemistry Education

    International Nuclear Information System (INIS)

    Hoffman, D C

    2005-01-01

    A brief summary of the current status of radiochemistry and nuclear chemistry in the U. S. and abroad will be given. Current and future needs for scientists in these fields, especially in the U. S., will be discussed. Challenges that must be met in order to reverse the ''catastrophic'' downward trend in the numbers of students, faculty, and university programs in radiochemistry and nuclear chemistry will be considered, and some potential ways to reinvigorate and expand relevant university research and educational programs will be suggested

  6. Proceedings of 26. annual academic conference of China Chemical Society--modern nuclear chemistry and radiochemistry

    International Nuclear Information System (INIS)

    2008-08-01

    26. annual academic conference of China Chemical Society was held in Tianjing, 13-16 July, 2008. This proceedings is about modern nuclear chemistry and radiochemistry, the contents include: new elements and new nuclides; advanced nuclear chemistry; radiochemistry and national security; new radiopharmaceutical chemistry; modern radiological analytical chemistry and large scientific facilities; radiological environmental chemistry and nuclear radioactive waste; actinide chemistry and transactinide chemistry; radiochemistry and cross discipline, etc.

  7. Advanced chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Maeda, Katsuji; Kobayashi, Yasuhiro; Nagasawa, Katsumi

    2000-01-01

    Chemistry control in a boiling water reactor (BWR) plant has a close relationship with radiation field buildup, fuel reliability, integrity of plant components and materials, performance of the water treatment systems and radioactive waste generation. Chemistry management in BWR plants has become more important in order to maintain and enhance plant reliability. Adequate chemistry control and management are also essential to establish, maintain, and enhance plant availability. For these reasons, we have developed the advanced chemistry management system for nuclear power plants in order to effectively collect and evaluate a large number of plant operating and chemistry data. (author)

  8. Isotope and Nuclear Chemistry Division annual report, FY 1990, October 1, 1989--September 30, 1990

    International Nuclear Information System (INIS)

    Heiken, J.; Minahan, M.

    1991-06-01

    This report describes some of the major research and development programs of the Isotope and Nuclear Chemistry Division during FY 1990. The report includes articles on weapons chemistry, environmental chemistry, actinide and transition metal chemistry, geochemistry, nuclear structure and reactions, biochemistry and nuclear medicine, materials chemistry, and INC Division facilities and laboratories

  9. Annual Report of the Institute of Nuclear Chemistry and Technology 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    The INCT 2000 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators.

  10. Annual Report of the Institute of Nuclear Chemistry and Technology 2000

    International Nuclear Information System (INIS)

    2001-06-01

    The INCT 2000 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators

  11. Qualifying works of the Department of nuclear chemistry (1963 - 2006)

    International Nuclear Information System (INIS)

    Kuruc, J.

    2007-01-01

    In this review qualifying works (theses - bachelor, master, PhD., DrSc., habilitation and inauguration theses) elaborated at the Department of nuclear chemistry, Faculty of Natural Chemistry, Comenius University in Bratislava during forty years (from origin of the Section of Nuclear chemistry in 1963 up to 2006 are presented. During this time, in totally, 3 bachelor theses, 265 master theses, 24 PhD. (CSc.) and 10 PhD. dissertanions, 2 DrSc. dissertanions as well as 8 habilitation and one inauguration these were defended (author)

  12. Nuclear chemistry progress report

    International Nuclear Information System (INIS)

    1984-09-01

    The activities of the nuclear chemistry group at Indiana University during the period September 1, 1983 to August 31, 1984, are summarized. The primary thrust of our research program has continued to be the investigation of damped collision mechanisms at near-barrier energies and of linear momentum and energy transfer in the low-to-intermediate energy regime. In addition, during the past year we have initiated studies of complex fragment emission from highly excited nuclei and have also completed measurements relevant to understanding the origin and propagation of galactic cosmic rays. Equipment development efforts have resulted in significantly improving the resolution and solid-angle acceptance of our detector systems. The experimental program has been carried out at several accelerators including the Indiana University Cyclotron Facility, the Lawrence Berkeley Laboratory SuperHILAC, the Holifield Heavy-Ion Research Facility and the National Superconducting Cyclotron Laboratory at Michigan State University. Publications and activities are listed

  13. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry

  14. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H. (ed.)

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

  15. Annual report of Institute of Nuclear Chemistry and Technology 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations

  16. Annual report of Institute of Nuclear Chemistry and Technology 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations.

  17. Actinide separation chemistry in nuclear waste streams, an OECD Nuclear Energy Agency review

    International Nuclear Information System (INIS)

    Madic, C.

    1997-01-01

    The separation of actinide elements from various waste materials, either produced in nuclear fuel cycle or in the past during nuclear weapon production, represent a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected from a better knowledge of the chemistry of these elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide chemistry to review the current and developing separation techniques and chemical processes. Recommendations were made for future research and development programs. This article presents briefly the work of the Task Force which will be published soon as an OECD/NEA/NSC Report. (author)

  18. Summer Schools In Nuclear Chemistry

    International Nuclear Information System (INIS)

    Clark, Sue; Herbert, Mieva; Mantica, Paul

    2006-01-01

    This the report for the 5 year activities for the ACS Summer Schools in Nuclear and Radiochemistry. The American Chemical Society's Summer Schools in Nuclear and Radiochemistry were held at Brookhaven National Laboratory (Upton, NY) and San Jose State University (San Jose, CA) during the award period February 1, 2002 to January 31, 2007. The Summer Schools are intensive, six-week program involving both a lecture component covering fundamental principles of nuclear chemistry and radiochemistry and a laboratory component allowing hands-on experience for the students to test many of the basic principles they learn about in lecture. Each site hosted 12 undergraduate students annually, and students received coursework credits towards their undergraduate degrees. Up to 7 student credit hours were earned at San Jose State University, and Brookhaven students received up to 6 college credits through BNL's management partner, SUNY Stony Brook. Funding from the award period covered travel, housing, educational expenses, and student stipends, for the 24 undergraduate participants. Furthermore, funding was also used to cover expenses for lecturers and staff to run the programs at the two facilities. The students were provided with nuclear and radiochemistry training equivalent to a three-hour upper-level undergraduate course along with a two-hour hands-on laboratory experience within the six-week summer period. Lectures were held 5 days per week. Students completed an extensive laboratory sequence, as well as radiation safety training at the start of the Summer Schools. The summer school curriculum was enhanced with a Guest Lecture series, as well as through several one-day symposia and organized field trips to nuclear-related research and applied science laboratories. This enrichment afforded an opportunity for students to see the broader impacts of nuclear science in today's world, and to experience some of the future challenges through formal and informal discussions with

  19. Research on water chemistry in a nuclear power plant

    International Nuclear Information System (INIS)

    Chae, Sung Ki; Yang, Kyung Rin; Kang, Hi Dong; Koo, Je Hyoo; Hwang, Churl Kew; Lee, Eun Hee; Han, Jung Ho; Kim, Uh Chul; Kim, Joung Soo; Song, Myung Ho; Lee, Deok Hyun; Jeong, Jong Hwan

    1986-12-01

    To prevent the corrosion problems on important components of nuclear power plants, the computerization methods of water chemistry and the analyses of corrosion failures were studied. A preliminary study on the computerization of water chemistry log-sheet data was performed using a personal computer with dBASE-III and LOTUS packages. Recent technical informations on a computerized online chemistry data management system which provides an efficient and thorough method of system-wide monitoring of utility's secondary side chemistry were evaluated for the application to KEPCO's nuclear power plants. According to the evaluation of water chemistry data and eddy current test results, it was likely that S/G tube defect type was pitting. Pitting is believed to result from excess oxygen in make-up and air ingress, sea-water ingress bycondenser leak, and copper in sludge. A design of a corrosion tests apparatus for the tests under simulated operational conditions, such as water chemistry, water flow, high temperature and pressure, etc., of the plant has been completed. The completion of these apparatus will make it possible to do corrosion tests under the conditions mentioned above to find out the cause of corrosion failures, and to device a counter measure to these. The result of corrosion tests with alloy-600 showed that the initiation of pits occurred most severely around 175 deg C which is lower than plant-operation temperature(300 deg C) while their propagation rate had trend to be maximum around 90 deg C. It was conformed that the use of Cu-base alloys in a secondary cooling system accelerates the formation of pits by the leaking of sea-water and expected that the replacement of them can reduce the failures of S/G tubes by pitting. Preliminary works on the examination of pit-formed specimens with bare eyes, a metallurgical microscope and a SEM including EDAX analysis were done for the future use of these techniques to investigate S/G tubes. Most of corrosion products

  20. Separation chemistry for the nuclear industry

    International Nuclear Information System (INIS)

    Musikas, C.; Condamines, N.; Cuillerdier, C.

    1991-01-01

    A review of the actinide and Lanthanide extraction chemistry by N,N-dialkylamides and N,N'-tetraalkylamides is given. It includes the extraction equilibria of inorganic acids. The prospects of using these completely incinerable extractants in the nuclear fuels cycle is discussed

  1. Nuclear chemistry on the Czech Technical University in Prague after introduction of structured study and foundation of the Centre for Radiochemistry and Radiation Chemistry

    International Nuclear Information System (INIS)

    John, J.

    2007-01-01

    In this presentation the author (head of the Centre for Radiochemistry and Radiation Chemistry) give a short review of history of the Department of Nuclear Chemistry and of the Centre for Radiochemistry and Radiation Chemistry of the Czech Technical University in Prague. Education in structured study in specialisation of nuclear chemistry in bachelor level, master level, as well as post-graduate study in nuclear chemistry with academic degree PhD. are realised. Some scientific results are presented

  2. Research advancements and applications of carboranes in nuclear medicinal chemistry

    International Nuclear Information System (INIS)

    Chen Wen; Wei Hongyuan; Luo Shunzhong

    2011-01-01

    Because of their uniquely high thermal and chemical stabilities, carboranes have become a subject of study with high interest in the chemistry of supra molecules, catalysts and radiopharmaceuticals. In recent years, the role of carboranes in nuclear medicinal chemistry has been diversified, from the traditional use in boron neutron capture therapy (BNCT), to the clinical applications in molecular radio imaging and therapy. This paper provides an overview of the synthesis and characterization of carboranes and their applications in nuclear medicinal chemistry, with highlights of recent key advancements in the re- search areas of BNCT and radio imaging. (authors)

  3. Proceedings of the 3rd international symposium on material chemistry in nuclear environment (MATERIAL CHEMISTRY '02)

    International Nuclear Information System (INIS)

    2003-03-01

    The volume contains all presented papers during the 3rd International Symposium on Material Chemistry in Nuclear Environment: MATERIAL CHEMISTRY 02 (MC'02), held March 13-15, 2002. The purpose of this symposium is to provide an international forum for the discussion of recent progress in the field of materials chemistry in nuclear environments. This symposium intends to build on the success of the previous symposiums held in Tsukuba in 1992 and 1996. The topics discussed in the symposium MC'02 are Chemical Reaction and Thermodynamics, Degradation Phenomena, New Characterization Technology, Fabrication and New Materials, Composite Materials, Surface Modification, and Computational Science. The 61 of the presented papers are indexed individually. (J.P.N.)

  4. Rapid automated nuclear chemistry

    International Nuclear Information System (INIS)

    Meyer, R.A.

    1979-01-01

    Rapid Automated Nuclear Chemistry (RANC) can be thought of as the Z-separation of Neutron-rich Isotopes by Automated Methods. The range of RANC studies of fission and its products is large. In a sense, the studies can be categorized into various energy ranges from the highest where the fission process and particle emission are considered, to low energies where nuclear dynamics are being explored. This paper presents a table which gives examples of current research using RANC on fission and fission products. The remainder of this text is divided into three parts. The first contains a discussion of the chemical methods available for the fission product elements, the second describes the major techniques, and in the last section, examples of recent results are discussed as illustrations of the use of RANC

  5. Underlying chemistry research for the nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Sagert, N.H.; Shoesmith, D.W.; Taylor, P.

    1984-04-01

    This document reviews the underlying chemistry research part of the Canadian Nuclear Fuel Waste Management Program, carried out in the Research Chemistry Branch. This research is concerned with developing the basic chemical knowledge and under-standing required in other parts of the Program. There are four areas of underlying research: Waste Form Chemistry, Solute and Solution Chemistry, Rock-Water-Waste Interactions, and Abatement and Monitoring of Gas-Phase Radionuclides

  6. Water Chemistry Control Technology to Improve the Performance of Nuclear Power Plants for Extended Fuel Cycles

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Na, J. W.; Lee, E. H.

    2010-07-01

    Ο To Develop the technology to manage the problems of AOA and radiation, corrosion as long term PWR operation. Ο To Establish the advanced water chemical operating systems. - Development of the proper water chemistry guidelines for long term PWR operation. AOA(Axial Offest Anomaly) has been reported in many PWR plants in the world, including Korea, especially in the plants of higher burn-up and longer cycle operation or power up-rate. A test loop has been designed and made by KAERI, in order to investigate and mitigate AOA problems in Korea. This project included the study of hydrodynamic simulation and the modeling about AOA. The analysis of radioactive crud was performed to investigate of NPPs primary water chemical effect on AOA and to reduce the radioactive dose rate. The high temperature measurement system was developed to on-line monitor of water chemistry in nuclear power plants. The effects of various environmental factors such as temperature, pressure, and flow rate on YSZ-based pH electrode were evaluated for ensuring the accuracy of high-temperature pH measurement. The inhibition technology for fouling and SCC of SG tube was evaluated to establish the water chemistry technology of corrosion control of nuclear system. The high temperature and high pressure crevice chemistry analysis test loop was manufactured to develop the water chemistry technology of crevice chemistry control

  7. Fission product chemistry in severe nuclear reactor accidents

    International Nuclear Information System (INIS)

    Nichols, A.L.

    1990-09-01

    A specialist's meeting was held at JRC-Ispra from 15 to 17 January 1990 to review the current understanding of fission-product chemistry during severe accidents in light water reactors. Discussions focussed on the important chemical phenomena that could occur across the wide range of conditions of a damaged nuclear plant. Recommendations for future chemistry work were made covering the following areas: (a) fuel degradation and fission-product release, (b) transport and attenuation processes in the reactor coolant system, (c) containment chemistry (iodine behaviour and core-concrete interactions)

  8. Chemistry programmes at a technological and nuclear centre

    International Nuclear Information System (INIS)

    Servian, J.L.

    1984-01-01

    The application of chemical principles and techniques have played a major role in the development of nuclear sciences and technology. The discovery of radioactivity, the isolation of radium and polonium, the discovery of artificial radioactivity and nuclear fission and the production of transuranium elements are historical landmarks that show the prominent role performed by chemistry. The purpose of this paper is to summarize the chemistry areas and experimental facilities for programmes of training, research and development, and service that might be designed for implementation at the Centre when appropriate. Though the areas are separately presented for analysis, they are closely related among themselves and also related to other activities of the Centre. (author)

  9. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    1966-01-01

    The second panel on the Analytical Chemistry of Nuclear Materials was organized for two purposes: first, to advise the Seibersdorf Laboratory of the Agency on its future programme, and second, to review the results of the Second International Comparison of routine analysis of trace impurities in uranium and also the action taken as a result of the recommendations of the first panel in 1962. Refs, figs and tabs

  10. Radiochemistry and nuclear chemistry

    CERN Document Server

    Choppin, Gregory; RYDBERG, JAN; Ekberg, Christian

    2013-01-01

    Radiochemistry or nuclear chemistry is the study of radiation from an atomic and molecular perspective, including elemental transformation and reaction effects, as well as physical, health and medical properties. This revised edition of one of the earliest and best-known books on the subject has been updated to bring into teaching the latest developments in research and the current hot topics in the field. To further enhance the functionality of this text, the authors have added numerous teaching aids, examples in MathCAD with variable quantities and options, hotlinks to relevant text secti

  11. Handbook on process and chemistry of nuclear fuel reprocessing version 2

    International Nuclear Information System (INIS)

    2008-10-01

    Aqueous nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of aqueous reprocessing, because it contributes to establish and develop fuel reprocessing technology and nuclear fuel cycle treating high burn-up UO 2 fuel and spent MOX fuel, and to utilize aqueous reprocessing technology much widely. This handbook is the second edition of the first report, which summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing' from FY 1993 until FY 2000. (author)

  12. Transactinide nuclear chemistry at JAERI

    International Nuclear Information System (INIS)

    Nagame, Y.; Haba, H.; Tsukada, K.

    2002-01-01

    Nuclear chemistry study of trans actinide elements in Japan is currently being in progress at JAERI (Japan Atomic Energy Research Institute). We have developed new experimental apparatuses: a beam-line safety system for the usage of the gas-jet coupled radioactive 248 Cm target chamber, a rotating wheel catcher apparatus for the measurement of α and spontaneous fission decay of the transactinides, MANON (Measurement system for Alpha particles and spontaneous fission events ON line), and an automated rapid chemical separation apparatus based on the high performance liquid chromatography, AIDA (Automated Ion exchange separation system coupled with the Detection apparatus for Alpha spectroscopy). The transactinide nuclei, 261 Rf and 262 Db, have been successfully produced via the reactions of 248 Cm( 18 O,5n) and 248 Cm( 19 F,5n), respectively, and the excitation functions for each reaction have been measured to evaluate the optimum irradiation condition for the production of these nuclei. The maximum cross sections in each reaction were 13 nb at the 18 O beam energy of 94-MeV and 1.5 Nb at the 103-MeV 19 F beam energy. On-line ion exchange experiments of Rf together with the lighter homologues Zr and Hf in the HCl, HNO 3 and HF solutions with AIDA have been carried out, and the results clearly show that the behavior of Rf is typical of the group-4 element. Relativistic molecular orbital calculations of the chloride and nitrate complexes of tetravalent Rf are also being performed to gain an understanding of the complex chemistry. Prospects and some recent experimental results for the nuclear chemistry study of the transactinide elements at JAERI are discussed. (author)

  13. Regulatory oversight strategy for chemistry program at Canadian nuclear power plants

    International Nuclear Information System (INIS)

    Kameswaran; Ram

    2012-09-01

    Chemistry program is one of the essential programs for the safe operation of a nuclear power plant. It helps to ensure the necessary integrity, reliability and availability of plant structures, systems and components important to safety. Additionally, the program plays an important role in asset preservation, limiting radiation exposure and environmental protection. A good chemistry program will minimize corrosion of materials, reduce activation products, minimize of the buildup of radioactive material leading to occupational radiation exposure and it helps limit the release of chemicals and radioactive materials to the environment. The legal basis for the chemistry oversight at Canadian NPPs is established by the Nuclear Safety and Control Act and its associated regulations. It draws on the Canadian Nuclear Safety Commission's regulatory framework and NPP operating license conditions that include applicable standards such as CAN/CSA N286-05 Management System Requirements for Nuclear Power Plants. This paper focuses on the regulatory oversight strategy used in Canada to assess the performance of chemistry program at the nuclear power plants (NPPs) licensed by CNSC. The strategy consists of a combination of inspection and performance monitoring activities. The activities are further supported from information gathered through staff inspections of cross-cutting areas such as maintenance, corrective-action follow-ups, event reviews and safety related performance indicators. (authors)

  14. Incorporating nuclear and radiochemistry in the traditional undergraduate chemistry program

    International Nuclear Information System (INIS)

    Robertson, J.D.; Kleppinger, E.W.

    1994-01-01

    Although many areas of major national need depend critically on professionals trained in nuclear and radiochemistry, there has been a steady decline in both the educational opportunities and student interest in this area. One major factor that has contributed greatly to the lack of student interest in nuclear and radiochemistry is that most undergraduate students in chemistry and other sciences are no longer introduced to these topics. This deficiency in the traditional chemistry curriculum, coupled with the negative public perception towards all things open-quotes nuclear,close quotes has resulted in a serious shortage of individuals with a background in this area. The authors are trying to address this problem by open-quotes educating the educators.close quotes The authors are developing a set of summer workshops to provide faculty from four-year colleges with the curriculum materials, training, and motivation to incorporate these topics on a continuing basis in their traditional undergraduate chemistry curricula. The first series of workshops is scheduled for the summer of 1995

  15. Nuclear analytical chemistry 5. Tables, nomograms and schemes

    Energy Technology Data Exchange (ETDEWEB)

    Tolgyessy, J; Varga, S; Dillinger, P; Kyrs, M

    1976-01-01

    Tables, graphs and nomograms are given on aspects of nuclear analytical chemistry. The tables contain data on physical and chemical units and their conversion, exponential functions, the characteristics of radioactive nuclides, data on the interaction of nuclear radiation with matter, data useful in measuring nuclear radiation, in scintillation and semiconductor spectrometry, activation analysis, data on masking reactions of ions in chemical separation, on extraction, ion exchange, accuracy in applying the method of isotope dilution, on radiochemical analysis.

  16. Isotope and nuclear chemistry division. Annual report, FY 1987. Progress report, October 1986-September 1987

    International Nuclear Information System (INIS)

    Barr, D.W.; Heiken, J.H.

    1988-05-01

    This report describes progress in the major research and development programs carried out in FY 1987 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical weapons diagnostics and research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry

  17. 5. National Conference on Radiochemistry and Nuclear Chemistry. Abstracts

    International Nuclear Information System (INIS)

    Fuks, L.

    2009-01-01

    Held in Krakow-Przegorzaly (24-27 May 2009) 5. National Conference on Radiochemistry and Nuclear Chemistry focused on the following research topics: (a) radioanalytical methods; (b) environmental studies; (c) radiopharmacy; (d) isotopic effects; (e) nuclear safety. Participants presented 6 plenary lectures, 24 communications and 38 posters

  18. Importance of nuclear power for chemistry

    International Nuclear Information System (INIS)

    Kolotyrkin, J.

    1982-01-01

    Examples are given of the use of ionizing radiations in nuclear chemistry, in radiation cross-linking of polymers. The possibilities are also indicated of applications in the disinfection of wastes, in fertilizer production and packaging, in the production of cellulose and hydrogen. The implementation of the said technologies depends on the solution of a number organizational problems. (J.B.)

  19. Development of High Temperature Chemistry Measurement System for Establishment of On-Line Water Chemistry Surveillance Network in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yeon, Jei Won; Kim, Won Ho; Song, Kyu Seok; Joo, Ki Soo; Choi, Ke Chon; Ha, Yeong Keong; Ahn, Hong Joo; Im, Hee Jung; Maeng, Wan Young

    2010-07-01

    An integrated high-temperature water chemistry sensor (pH, E redox ) was developed for the establishment of the on-line water chemistry surveillance system in nuclear power plants. The basic performance of the integrated sensor was confirmed in high-temperature (280 .deg. C, 150kg/m 2 ) lithium borate solutions by using the relationship between the concentration of lithium ion and pH-E redox values. Especially, the effects of various environmental factors such as temperature, pressure, and flow rate on YSZ-based pH electrode were evaluated for ensuring the accuracy of high-temperature pH measurement. And the relationships between each water chemistry factor (pH, redox potential, electrical conductivity) were induced for enhancing the credibility of water chemistry measurement. In addition, on the basis of the evaluation of a nuclear plant design company, we suggested potential installation positions of the measurement system in a nuclear power plant

  20. Isotope and Nuclear Chemistry Division annual report FY 1985, October 1984-September 1985

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1986-04-01

    This report describes progress in the major research and development programs carried out in FY 1985 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiations facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes

  1. Mainz University, Institute of Nuclear Chemistry. Annual report 1993

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    1994-03-01

    The report presents the results achieved by the Institute's five working groups in the following fields: Development of chemical separation processes, chemistry of ultraheavy elements; Developments in instrumentation; Nuclear fission and heavy ion reactions; Nuclear astrophysics, decay characteristics, structure of atoms and nuclei; Environmental pollution analysis. (orig./EF) [de

  2. Report of scientific results 1976. Section nuclear chemistry and reactor

    International Nuclear Information System (INIS)

    1976-01-01

    The report of the section Nuclear Chemistry and Reactor presents the results of R and D in the fields of neutron scattering, radiation damage in solids, reactor chemistry, trace elements research in biomedicine, geochemistry, reactor operation, radioisotope production, and gives a survey of publications and lectures. (HK) [de

  3. Actinide separation chemistry in nuclear waste streams and materials

    International Nuclear Information System (INIS)

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  4. Actinide separation chemistry in nuclear waste streams and materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  5. The 40th AAAS Gordon Conference on nuclear chemistry

    International Nuclear Information System (INIS)

    Seaborg, G.T.

    1991-01-01

    I am pleased to speak at the Fortieth Gordon Conference on Nuclear Chemistry. I served as Chairman of the first Gordon Conference on Nuclear Chemistry held June 23--27, 1952, at New Hampton, New Hampshire. In my remarks, during which I shall quote from my journal, I shall describe some of the background leading up to the first Gordon Conference on Nuclear Chemistry and my attendance at the first seven Gordon Conferences during the period 1952 through 1958. I shall also quote my description of my appearance as the featured speaker at the Silver Anniversary of the Gordon Research Conferences on December 27, 1956 held at the Commodore Hotel in New York City. I shall begin with reference to my participation in the predecessor to the Gordon Conferences, the Gibson Island Research Conferences 45 years ago, on Thursday, June 20, 1946, as a speaker. This was 15 years after the start of these conferences in 1931. Neil Gordon played a leading role in these conferences, which were named (in 1948) in his honor -- the Gordon Research Conferences -- soon after they were moved to Colby Junior College, New London, New Hampshire in 1947. W. George Parks became Director in 1947, Alexander Cruickshank became Assistant Director in 1947 and Director in 1968

  6. The 40th AAAS Gordon Conference on nuclear chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, G.T.

    1991-06-27

    I am pleased to speak at the Fortieth Gordon Conference on Nuclear Chemistry. I served as Chairman of the first Gordon Conference on Nuclear Chemistry held June 23--27, 1952, at New Hampton, New Hampshire. In my remarks, during which I shall quote from my journal, I shall describe some of the background leading up to the first Gordon Conference on Nuclear Chemistry and my attendance at the first seven Gordon Conferences during the period 1952 through 1958. I shall also quote my description of my appearance as the featured speaker at the Silver Anniversary of the Gordon Research Conferences on December 27, 1956 held at the Commodore Hotel in New York City. I shall begin with reference to my participation in the predecessor to the Gordon Conferences, the Gibson Island Research Conferences 45 years ago, on Thursday, June 20, 1946, as a speaker. This was 15 years after the start of these conferences in 1931. Neil Gordon played a leading role in these conferences, which were named (in 1948) in his honor -- the Gordon Research Conferences -- soon after they were moved to Colby Junior College, New London, New Hampshire in 1947. W. George Parks became Director in 1947, Alexander Cruickshank became Assistant Director in 1947 and Director in 1968.

  7. Workshop of Advanced Science Research Center, JAERI. Nuclear physics and nuclear chemistry of superheavy elements

    International Nuclear Information System (INIS)

    Nishio, Katsuhisa; Nishinaka, Ichiro; Ikezoe, Hiroshi; Nagame, Yuichiro

    2004-03-01

    A liquid drop model predicts that the fission barrier of a nucleus whose atomic number (Z) is larger than 106 disappears, so that such heavier nuclei as Z > 106 cannot exist. The shell effect, however, drastically changes structure of the fission barrier and stabilizes nucleus against fission, predicting the presence of super heavy element (SHE, Z=114-126) with measurable half-life. In the SHE region, a wave function of outermost electron of an atom, which controls chemical properties of an elements, is disturbed or changed by relativistic effects compared to the one from the non-relativistic model. This suggests that the SHEs have different chemical properties from those of lighter elements belonging to the same family. The chemistry of SHEs requires event by event analysis to reveal their chemical properties, thus is called 'atom-at-a-time chemistry'. Japan Atomic Energy Research Institute (JAERI) has been investigating fusion mechanism between heavy nuclei to find out favorable reactions to produce SHE by using JAERI-tandem and booster accelerator. In the JAERI-tandem facility, isotopes of Rf and Db are produced by using actinide targets such as 248 Cm in order to investigate their chemical properties. The present workshop was held in Advanced Science Research Center of JAERI at February 27-28 (2003) in order to discuss current status and future plans for the heavy element research. The workshop also included topics of the radioactive nuclear beam project forwarded by the JAERI-KEK cooperation and the nuclear transmutation facility of J-PARC. Also included is the nuclear fission process as a decay characteristic of heavy elements. There were sixty participants in the workshop including graduate and undergraduate eleven students. We had guests from Germany and Hungary. Through the workshop, we had a common knowledge that researches on SHE in Japan should fill an important role in the world. (author)

  8. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    International Nuclear Information System (INIS)

    1997-01-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel

  9. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  10. Chemistry of nuclear resources, technology, and waste

    International Nuclear Information System (INIS)

    Keller, O.L. Jr.

    1978-01-01

    Chemistry is being called on today to obtain useful results in areas that have been found very difficult for it in the past, but new instrumentation and new theories are allowing much progress. The area of hydrolytic phenomena and colloid chemistry, as exemplified by the plutonium polymer problem, is clearly entering a new phase in which it can be studied in a much more controlled and understandable manner. The same is true of the little studied interfacial regions, where so much important chemistry occurs in solvent extraction and other systems. The studies of the adsorption phenomena on clays are an illustration of the new and useful modeling of geochemical phenomena that is now possible. And finally, the chemist is called upon to participate in the developement and evaluation of models for nuclear waste isolation requiring extrapolations of hundreds to hundreds of thousands of years into the future. It is shown that chemistry may be useful in keeping the extrapolations in the shorter time spans, and also in selecting the best materials for containment. 36 figures

  11. Nuclear chemistry, the MET Lab, and Nathan Sugarman - A retrospective

    International Nuclear Information System (INIS)

    Steinberg, E.P.

    1991-01-01

    The evolution of nuclear chemistry will be traced briefly, with special emphasis on the exciting and highly productive period of the war-time Metallurgical Laboratory from 1942 to 1946. In particular, the Fission Product Radiochemistry section at The University of Chicago, which underwent sequential fissions of its own to Oak Ridge and Los Alamos, will provide a major focus. The post-war spread of nuclear chemistry throughout the country and the establishment of the National Laboratories provided the setting for the Golden Age of the field. Throughout this period, the personality and character of Nathan Sugarman was clearly evident. Whether as teacher, researcher, colleague, critic, counselor, friend, or acquaintance, Sug's intelligence, warmth, humor, high standards, and quiet leadership make a lasting impression on a generation of nuclear chemists

  12. Nuclear science in the 20th century. Radiation chemistry and radiation processing

    International Nuclear Information System (INIS)

    Fu Tao; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear science and technology to chemistry has led to two important subjects, radiation chemistry and radiation processing, which are playing important roles in many aspects of science and society. We review the development and major applications of radiation chemistry and radiation processing, including the basic physical and chemical mechanisms involved

  13. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    1963-01-01

    The last two decades have witnessed an enormous development in chemical analysis. The rapid progress of nuclear energy, of solid-state physics and of other fields of modern industry has extended the concept of purity to limits previously unthought of, and to reach the new dimensions of these extreme demands, entirely new techniques have been invented and applied and old ones have been refined. Recognizing these facts, the International Atomic Energy Agency convened a Panel on Analytical Chemistry of Nuclear Materials to discuss the general problems facing the analytical chemist engaged in nuclear energy development, particularly in newly developing centre and countries, to analyse the represent situation and to advise as to the directions in which research and development appear to be most necessary. The Panel also discussed the analytical programme of the Agency's laboratory at Seibersdorf, where the Agency has already started a programme of international comparison of analytical methods which may lead to the establishment of international standards for many materials of interest. Refs and tabs

  14. Coordination chemistry of technetium as related to nuclear medicine

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Richards, P.

    1982-01-01

    Significant advances have been made in the area of technetium coordination chemistry during the last five years. The main driving force behind this recent surge of interest in the field has been due to the practical application of technetium-99m in the rapidly growing speciality of nuclear medicine. Technetium-99 is one of the products of nuclear fission reactions, but it was the development of the molybdenum-99-technetium-99m generator about two decades ago that provided the basis for the development of radiopharmaceuticals routinely used in modern diagnostic applications. The chemistry of this element has proven to be quite rich owing to its multiple oxidation states and variable geometry. This can be attributed to its position in the middle of the periodic table. Diagnostic radiopharmaceuticals comprise predominantly III, IV and V oxidation states of Tc and involve a variety of coordination complexes. Even though the chemistry of Tc has been slow to evolve, recent synthetic advances have provided a more scientific basis for the study of a number of compounds with diverse coordination geometries and structures. Ligands with oxygen, nitrogen and sulfur donor atoms have been utilized to elucidate various aspects of the coordination chemistry of Tc. Single crystal X-ray structural analysis has been extensively used to characterize Tc complexes and thus construct a firm foundation for the study of synthetic and mechanistic aspects of the chemistry of this element. (author)

  15. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    International Nuclear Information System (INIS)

    Reid Richard; Kim Karen; McCree, Anisa; Eaker, Richard; Sawochka, Steve; Giannelli, Joe

    2012-09-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for currently operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of state-of-the-art, industry developed water chemistry controls. In parallel, the industry will need to consider and update water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. EPRI has performed assessments of water chemistry control guidance or assumptions provided in design and licensing documents for several advanced plant designs. These designs include: Westinghouse AP1000 Pressurized Water Reactor AREVA US-EPR Pressurized Water Reactor Mitsubishi Nuclear Energy Systems/Mitsubishi Heavy Industries Advanced Pressurized Water Reactor Korea Hydro and Nuclear Power APR1400 Pressurized Water Reactor Toshiba Advanced Boiling Water Reactor (ABWR) General Electric-Hitachi Economic Simplified Boiling Water Reactor (ESBWR) The intent of these assessments was to identify key design differences in each of the new plant designs relative to the current operating fleet and to identify differences in water chemistry specifications or design assumptions provided in design and licensing documents for the plants in comparison to current EPRI Water Chemistry Guidelines. This paper provides a summary of the key results of these assessments. The fundamental design and operation of the advanced plants is similar to the currently operating fleet. As such, the new plants are

  16. Handbook on process and chemistry of nuclear fuel reprocessing. 3rd edition

    International Nuclear Information System (INIS)

    2015-03-01

    The fundamental data on spent nuclear fuel reprocessing and related chemistry was collected and summarized as a new edition of 'Handbook on Process and Chemistry of Nuclear Fuel Reprocessing'. The purpose of this handbook is contribution to development of the fuel reprocessing and fuel cycle technology for uranium fuel and mixed oxide fuel utilization. Contents in this book was discussed and reviewed by specialists of science and technology on fuel reprocessing in Japan. (author)

  17. Analytical chemistry in nuclear science and technology: a scientometric mapping

    International Nuclear Information System (INIS)

    Kademani, B.S.; Kumar, Anil; Kumar, Vijai

    2007-01-01

    This paper attempts to analyse quantitatively the growth and development of Analytical Chemistry research in Nuclear Science and Technology in terms of publication output as reflected in International Nuclear Information System (INIS) database (1970-2005). During 1970-2005 a total of 8224 papers were published. There were only seven papers published in 1970. Thereafter, a tremendous explosion of literature was observed in this area. The highest number of papers (636) were published in 1985. The average number of publications published per year was 228.44. United States topped the list with 1811 publications followed by USSR with 1688 publications, Germany with 777 publications, India with 730 publications and Hungary with 519 publications. Authorship and collaboration trend was towards multi-authored papers as 80.3 percent of the papers were collaborative is indicative of the multidisciplinary nature of research activity. The most prolific authors were: B. F. Myasoedov, AN SSSR Moscow Inst. Geokhimii I Analitisheskoi Khimii, Russian Federation with 84 publications, M. Sudersanan, Bhabha Atomic Research Centre, Mumbai, India with 67 publications, P.Vanura and V. Jedinakova Krizova both from Institute of Chemical Technology, Prague, Czech Republic with 54 publications each, S. Gangadharan, Bhabha Atomic Research Centre, Mumbai, India with 47 publications, V.M. Ivanova , M.V. Lomonosov Moscow State University, Russian Federation with 45 publications and Yu. A Zolotov Lomonosov Moscow State University, Russian Federation with 40 publications. The journals most preferred by the scientists for publication of papers were : Zhurnal Analiticheskoj Khimii with 713 papers, Journal of Radioanalytical and Nuclear Chemistry with 409 papers, Analytical Chemistry Washington with 364 papers, Fresenius' Journal of Analytical Chemistry with 324 papers, Indian Journal of Chemistry, Section A with 251 papers, and Journal of Analytical Chemistry of the USSR with 145 papers. The high

  18. Progress report 1985-1986 Reactor Chemistry Department

    International Nuclear Information System (INIS)

    1987-12-01

    The report of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission, during the period 1985-1986, covers works of investigation, development and service related to the Argentine Nuclear Power Plants. The main subjects are the experimental and theoretical studies about physical chemistry and chemistry control at the moderators and heat transport system of the nuclear power plants. The more relevant topics are related to: 1: Behaviour of gases, electrolites and other additives for nuclear power plants, at high temperature and pressure; 2: Ionic exchangers of nuclear degree; 3: Electrochemistry studies connected with the constitutive materials' corrosion and with the nuclear power plants decontamination processes; 4: Behaviour of suspensions and colloids in nuclear power plants; 5: Use of new additives for chemistry control of the oxides which are in the circuits of nuclear power plants; 6: Research methods that allow to check reactor's control quality; 7: Study of the radiolytic behaviour of nuclear reactor's solutions. (M.E.L.) [es

  19. Nuclear chemistry research and spectroscopy with radioactive sources. Twenty-first annual progress report, February 1, 1985-January 31, 1986

    International Nuclear Information System (INIS)

    Fink, R.W.

    1985-01-01

    The nuclear chemistry group in the School of Chemistry continues investigating the radioactive decay of nuclei far from stability under this DOE contract. These nuclei are produced with heavy ions from the Holifield Heavy Ion Research Facility [HHIRF] and studied on-line with the University Isotope Separator at Oak Ridge [UNISOR]. Radioactive decay represents a unique method for the population of low-energy, low-spin structures in nuclei, and new phenomena which do not occur near stability can be explored. Our research encompasses three aspects of nuclear structure: (1) nuclear spectroscopy with detailed γγt, e - γt, Xγt, etc., multiparameter coincidence spectrometry; (2) on-line laser hyperfine structure [hfs] and isotope shift measurements for the determination of nuclear quadrupole moments, nuclear spins, and changes in mean nuclear charge radii as a means of revealing systematic shape changes in nuclei; and (3) theoretical calculations of predictions of nuclear models for comparison with experimental level structures in nuclei studied at UNISOR. 20 refs., 9 figs., 2 tabs

  20. Nuclear Forensics and Radiochemistry: Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-17

    The chemical behavior of radioactive elements can differ from conventional wisdom because the number of atoms can be unusually small. Kinetic effects and unusual oxidation states are phenomena that make radiochemistry different from conventional analytic chemistry. The procedures developed at Los Alamos are designed to minimize these effects and provide reproducible results over a wide range of sample types. The analysis of nuclear debris has the additional complication of chemical fractionation and the incorporation of environmental contaminants. These are dealt with through the use of three component isotope ratios and the use of appropriate end members.

  1. Nuclear chemistry project. Progress report, January 1, 1978--December 31, 1978

    International Nuclear Information System (INIS)

    Naumann, R.A.

    1978-01-01

    Research on the nuclear chemistry project is summarized including Coulomb capture of negative muons by atoms and molecules, nuclear structure and spectroscopy, and the preparation and use of radioactive targets both to study the internal electric fields acting on the nuclei of foreign atoms introduced in metallic solids by radioactive decay and determination of nuclear moments by optical hyperfine spectroscopy

  2. General Chemistry Exercises Focused on the Professional Profile on Nuclear Careers

    International Nuclear Information System (INIS)

    Lau-González, Maritza; Jáuregui-Haza, Ulises; Corona-Hernández, José Ángel; Santamaría-Arbona, María Teresa; Abreu-Díaz, Aidamary

    2016-01-01

    The subject General Chemistry is part of the base curriculum of the nuclear profile careers: Radiochemistry Careers and Engineering on Nuclear Technologies and Energetics. It has as main objectives the complementing, the deep analysis and integration of the basic principles of chemistry as a science, and due to its content, it constitutes an excellent platform to settle inter-subject relationships with those of the nuclear specialties. The aim of this paper is presenting linking examples among the subjects, through exercises that are supported in the Moodle Platform, conceived for the independent work of students, which besides facilitating the consolidation of the received knowledge in high school, and those ones in the first year of the career, allow them to be familiar with the future of their profession. (author)

  3. Aspects of chemistry in management of radioactive liquid wastes from nuclear installations

    International Nuclear Information System (INIS)

    Yeotikar, R.G.

    2007-01-01

    Nuclear energy is the only source available to the mankind to fulfill the continuous and ever increasing demand of energy. The public acceptance and popularity of nuclear energy depends to a large extent on management of radioactive waste. The nuclear waste management demands eco-friendly process/systems. This article highlights the sources of different types of radioactive liquid wastes generated in the nuclear installation and their treatment process. The radioactive liquid waste is classified mainly into three categories based on activity levels e.g. low, intermediate and high level. The management of radioactive liquid waste is very critical because of its 'mobility and liquid' nature. Secondly the liquid wastes have wide range of activity and chemistry spectrum and their volumes are also different. Hence the methods for management of different types of liquid wastes are also different. Mostly the treatment and conditioning processes are chemical processes. The chemistry involved in the treatment and conditioning of these wastes, problems related with chemistry for each processes and efforts to solve these problems, aspects of adoption on plant scale, etc., have been discussed in this article. (author)

  4. Discussion meeting on nuclear-, radio- and radiation chemistry - basics and applications

    International Nuclear Information System (INIS)

    1982-01-01

    The following fields have been represented at this meeting: 1. nuclear reactions and properties of the formed products; 2. geo- and cosmochemistry; 3. chemistry of actinides and other radioisotopes; 4. radioanalysis; 5. isotope applications; 6. nuclear fuel cycle. Single papers are listed under appropriate categories. (RB)

  5. Nuclear chemistry progress report

    International Nuclear Information System (INIS)

    1983-09-01

    The activities of the nuclear chemistry program at Indiana University during the period September 1, 1982 to August 31, 1983 are reviewed. As in the past, these investigations have focused on understanding the properties of nucleus-nucleus collisions at low-to-intermediate energies. During the past year new programs have been initiated at the National Superconducting Cyclotron Laboratory at Michigan State University and the Hollifield Heavy-Ion Research Facility at Oak Ridge. With the unique beams provided by these accelerators we have extended our previous studies of energy dissipation phenomena into new energy regimes. The MSU measurements, performed with E/A = 15 to 30 MeV 14 N beams, combined with recent results we have obtained at IUCF, have indicated the existence of a saturation in the average amount of linear momentum that can be transferred in nucleus-nucleus collisions. This saturation value is about 140 (MeV/C)/A and occurs at beam energies in the E/A approx. 30 to 50 MeV range for 3 He- to 20 Ne-projectiles. At HHIRF, studies of the 56 Fe + 56 Fe reaction at E/A = 14.6 MeV have provided additional evidence for structure in the energy spectra of projectile-like fragments formed in symmetric collisions. Studies of near-barrier 56 Fe-induced reactions have continued at the Lawrence Berkeley Laboratory SuperHILAC

  6. Development of advanced secondary chemistry monitoring system for Korea nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Sang Hak; Kim, Chung Tae

    1997-01-01

    Water chemistry control is one of the most important tasks in order to maintain the reliability of plant equipments and extend the operating life of the plant. KEPCO and KOPEC developed a computerized tool for this purpose -ASCMS (advanced secondary chemistry monitoring system) which is able to monitor and diagnose the secondary water chemistry. A prototype system had been installed at KORI 3 nuclear power plant since April 1993 in order to evaluate the system performance. After the implementation of enhancements identified during the testing of the prototype, we have developed the advanced secondary monitoring system, ASCMS which is installed at 5 nuclear power plants and has been under operations since April 1997. The ASCMS comprises PC subsystem designed for data acquisition, data analysis, and data diagnosis. The ASCMS will provide overall information related to steam generator secondary side water chemistry problems and improve plant availability, reduce radiation exposure to workers, and reduce operating and maintenance costs. 6 figs

  7. Nuclear chemistry research and spectroscopy with radioactive sources. Twenty-second annual progress report, February 1, 1986-January 31, 1987

    International Nuclear Information System (INIS)

    Fink, R.W.

    1986-01-01

    The nuclear chemistry group in the School of Chemistry continues investigations of radioactive decay of nuclei far from stability under this DOE contract. These nuclei are produced with heavy ions from the Holifield Heavy Ion Research Facility (HHIRF) and studied on-line with the University Isotope Separator at Oak Ridge (UNISOR). Radioactive decay represents a unique method for the population of low-energy, low-spin structures in nuclei, and new phenomena which do not occur near stability can be explored. Our research interest encompasses three aspects of nuclear structure: (1) nuclear spectroscopy with detailed γγt, e - γt, Xγt, αγt multiparameter coincidence spectrometry; (2) measurements of single γ-ray angular distributions and magnetic moments of mass separated low-temperature oriented nuclei, using the helium dilution refrigerator ''ORIENT'' being installed on-line to the isotope separator; and (3) on-line laser hyperfine structure (hfs) and isotope shift measurements for determination of nuclear quadrupole moments, nuclear spins, and changes in mean nuclear charge radii as a means of revealing systematic shape changes in nuclei. 35 refs., 8 figs., 1 tab

  8. Current status of neutron activation analysis and applied nuclear chemistry

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1990-01-01

    A review of recent scientometric studies of citations and publication data shows the present state of NAA and applied nuclear chemistry as compared to other analytical techniques. (author) 9 refs.; 7 tabs

  9. Climate and chemistry effects of a regional scale nuclear conflict

    Science.gov (United States)

    Stenke, A.; Hoyle, C. R.; Luo, B.; Rozanov, E.; Gröbner, J.; Maag, L.; Brönnimann, S.; Peter, T.

    2013-10-01

    Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North America and Eurasia to a

  10. Climate and chemistry effects of a regional scale nuclear conflict

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2013-10-01

    Full Text Available Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size" against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North

  11. Accelerators and nuclear reactors as tools in hot atom chemistry

    International Nuclear Information System (INIS)

    Lindner, L.

    1975-01-01

    The characteristics of accelerators and of nuclear reactors - the latter to a lesser extent - are discussed in view of their present and future use in hot atom chemistry research and its applications. (author)

  12. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglewski, S.

    2002-01-01

    Full text: Research in the Department of Nuclear Physical Chemistry concentrates on three main topics: 1. Radiochemistry of transactinide elements; 2. Environmental radioactivity and related problems; 3. Preparation and applications of radioactive isotopes. The investigations on radiochemistry of transactinide elements are carried out in the Laboratory of Chemistry and Radiochemistry. Practical difficulties due to short half-lives and very low cross sections of formation of the superheavy nuclei are being overcome by developing fast and efficient methods of chemical separation, basing mostly on ion-exchange processes which are thoroughly studied via model experiments on lighter homologues of the elements of interest. During the year 2001, work with composite ferrocyanide sorbents was continued, and the efforts resulted in a patent application. The developed ion-exchangers (whose characteristics are constantly checked and improved in the laboratory) can find practical applications in environmental protection as well as in fundamental studies on the most exotic elements: 104 Rf, 105 Db, 106 Sg, 107 Bh, 108 Hs, and more. As to the latter, the discovery in Dubna of the relatively long-lived element 114 (t 1/2 =30s) gives hope that studies on aqueous chemistry of the elements Z =107 would be feasible. In this context, chemical methods of separation and identification of the heaviest elements are necessary to know the behaviour of the whole decay chains, for example: 114 -α-112 -α-110 -α-108 -α-106. The group is contributing its expertise to the top specialist international co-operation, involving the Joint Institute of Nuclear Research, Dubna, Russia, the Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, Russia, and three German institutions: the Technical University of Dresden, the University of Mainz, and the GSI Darmstadt. The Environmental Radioactivity Laboratory is following up traces of α, β, and γ radioactive

  13. Role of analytical chemistry in the development of nuclear fuels

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2012-01-01

    Analytical chemistry is indispensable and plays a pivotal role in the entire gamut of nuclear fuel cycle activities starting from ore refining, conversion, nuclear fuel fabrication, reactor operation, nuclear fuel reprocessing to waste management. As the fuel is the most critical component of the reactor where the fissions take place to produce power, extreme care should be taken to qualify the fuel. For example, in nuclear fuel fabrication, depending upon the reactor system, selection of nuclear fuel has to be made. The fuel for thermal reactors is normally uranium oxide either natural or slightly enriched. For research reactors it can be uranium metal or alloy. The fuel for FBR can be metal, alloy, oxide, carbide or nitride. India is planning an advanced heavy water reactor for utilization of vast resources of thorium in the country. Also research is going on to identify suitable metallic/alloy fuels for our future fast reactors and possible use in fast breeder test reactor. Other advanced fuel materials are also being investigated for thermal reactors for realizing increased performance levels. For example, advanced fuels made from UO 2 doped with Cr 2 O 3 and Al 2 O 3 are being suggested in LWR applications. These have shown to facilitate pellet densification during sintering and enlarge the pellet grain size. The chemistry of these materials has to be understood during the preparation to the stringent specification. A number of analytical parameters need to be determined as a part of chemical quality control of nuclear materials. Myriad of analytical techniques starting from the classical to sophisticated instrumentation techniques are available for this purpose. Insatiable urge of the analytical chemist enables to devise and adopt new superior methodologies in terms of reduction in the time of analysis, improvement in the measurement precision and accuracy, simplicity of the technique itself etc. Chemical quality control provides a means to ensure that the

  14. Twenty years of chemistry associated with the needs and utilization of nuclear reactors at the 'Boris Kidric' Institute of nuclear sciences, Vinca, Yugoslavia

    International Nuclear Information System (INIS)

    1969-01-01

    This publication covers nine review papers on the following topics related to the needs and utilization of nuclear reactors in the Boris Kidric Institute of nuclear sciences during previous twenty years: radiochemistry, hot atom chemistry, isotope production, spent nuclear fuel reprocessing, chemistry of transuranium elements; liquid radioactive waste processing, purification of reactor coolant water by inorganic ion exchangers, research related to deuterium concentration processes, and chemical dosimetry at the RA reactor [sr

  15. Nuclear microprobe and Raman investigation of the chemistry of the shell of the pacific oyster, Crassostrea gigas

    International Nuclear Information System (INIS)

    Markwitz, A.; Gauldie, R.W.; Pithie, J.; Sharma, S.K.; Jamieson, D.J.

    1999-01-01

    High-resolution nuclear microscopy was used to study the layered structure in the shell of the pacific oyster, Crassostrea gigas. In cross section, the layers appear as opaque white zones and clearer translucent zones. Raman spectroscopy indicates that the zones consist of alternating layers of the aragonite and calcite morphs of calcium carbonate, the mineral constituent of the shell. The chemistry of the shell varies from individual to individual but generally the predominant metal ion is Ca, with varying amounts of Si, Cl, Cr, Mn, Fe, Zn, Sb, Ni, Fe, As and Sr. Two dimensional maps of these major, minor and trace elements were measured in many shells with nuclear microscopy to identify the patterns of Zn and Sr deposition reflecting the calcite and aragonite layers. The significant difference in the patterns identified by ion beam analyses are possibly a result of isostructural exclusion of these metal ions between the different aragonite and calcite polymorphic forms of calcium carbonate. (author)

  16. The Nuclear Science Facility at San Jose State University and the U.S. Department of Energy sponsored Summer School in Nuclear Chemistry

    International Nuclear Information System (INIS)

    Ling, A.C.

    1990-01-01

    The Nuclear Science Facility at SJSU was first opened for classes in 1975. It is designed primarily for undergraduate teaching of nuclear chemistry, radiochemistry, tracer techniques, and radiation safety. Utilizing nearly $1.5 million in counting equipment alone, but excluding a reactor or accelerator, it allows simultaneous use of multiple counting assemblages for up to 20 individual students, even for advanced experiments with Ge/MCA units. Current academic programs include a B.S. Degree in Radiochemistry, an M.S. in Radiological Health Physics, and community outreach to grade schools (nearly 2,000 student-experiments for grades 7-12 were performed in AY88/89). To encourage nuclear chemistry as a potential area of study in graduate school, the US Department of Energy funded a special national Summer School in Nuclear Chemistry. This was first held at SJSU in 1984; summer 1990 will see the seventh such program taught

  17. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  18. The role of post accident chemistry data in nuclear safety

    International Nuclear Information System (INIS)

    Bradshaw, R.W.; Caruthers, G.F.

    1982-01-01

    The NRC instituted the NUREG-0737 requirements as implementation of the Post-TMI Action Plan in October, 1980. Among these requirements was the capability to obtain chemistry samples of the reactor coolant and containment building atmosphere under post accident conditions. The quantitative criteria were, in general, beyond the capabilities of existing plant systems. As a consequence the nuclear industry expended substantial efforts to design and install the post-accident sampling systems necessary to comply with these criteria. With such efforts essentially complete, the task remains to establish the role that data provided by these systems would play in mitigating the consequences of a nuclear plant accident. This role definition must include a characterization of the timing and priority for the post accident chemistry data. This paper defines that role using the Safety Level and Safety Function concepts as a matrix

  19. Visualizing Chemistry: Investigations for Teachers.

    Science.gov (United States)

    Ealy, Julie B.; Ealy, James L., Jr.

    This book contains 101 investigations for chemistry classrooms. Topics include: (1) Physical Properties; (2) Reactions of Some Elements; (3) Reactions Involving Gases; (4) Energy Changes; (5) Solutions and Solubility; (6) Transition Metals and Complex Ions; (7) Kinetics and Equilibrium; (8) Acids and Bases; (9) Oxidation-Reduction; (10)…

  20. Research activities at nuclear research institute in water chemistry and corrosion

    International Nuclear Information System (INIS)

    Kysela, Jan

    2000-01-01

    Research activities at Nuclear Research Institute Rez (NRI) are presented. They are based on former heavy water reactor program and now on pressurized reactors VVER types which are operated on Czech republic. There is LVR-15 research reactor operated in NRI. The reactor and its experimental facilities is utilized for water chemistry and corrosion studies. NRI services for power plants involve water chemistry optimalization, radioactivity build-up, fuel corrosion and structural materials corrosion tests. (author)

  1. Steam generator materials and secondary side water chemistry in nuclear power stations

    International Nuclear Information System (INIS)

    Rudelli, M.D.

    1979-04-01

    The main purpose of this work is to summarize the European and North American experiences regarding the materials used for the construction of the steam generators and their relative corrosion resistance considering the water chemestry control method. Reasons underlying decision for the adoption of Incoloy 800 as the material for the secondary steam generator system for Atucha I Nuclear Power Plant (Atucha Reactor) and Embalse de Rio III Nuclear Power Plant (Cordoba Reactor) are pointed out. Backup information taken into consideration for the decision of utilizing the All Volatil Treatment for the water chemistry control of the Cordoba Reactor is detailed. Also all the reasonswhich justify to continue with the congruent fosfatic method for the Atucha Reactor are analyzed. Some investigation objectives which would eventually permit the revision of the decisions taken on these subjects are proposed. (E.A.C.) [es

  2. Nuclear chemistry progress report

    International Nuclear Information System (INIS)

    Viola, V.E.; Kwiatkowski, K.

    1991-08-01

    During the past year the Nuclear Chemistry Group at Indiana University has concentrated its efforts on (1) the analysis and publication of previous experimental studies and (2) the design and construction of ISiS, a 4π detector for multifragment emission studies. No new experiments were undertaken, rather all of our experimental effort has been directed toward component tests of ISiS, with a goal of beginning measurements with this device in 1992. Research projects that have been largely completed during the last year include: (1) multiple fragment emission studies of the 0.90 and 3.6 GeV 3 He + nat Ag reaction; (2) intermediate-mass-fragment (IMF: 3 ≤ Z ≤ 15) excitation function measurements for the E/A = 20-to-100 MeV 14 N + nat Ag and 197 Au reactions, and (3) particle-particle correlation studies for the determination of space-time relationships energy collisions

  3. Chemistry technician performance evaluation program Palo Verde Nuclear Generating Station

    International Nuclear Information System (INIS)

    Shawver, J.M.

    1992-01-01

    The Arizona Nuclear Power Project (ANPP), a three-reactor site located 50 miles west of Phoenix, Arizona, has developed and implemented a program for evaluating individual chemistry technician analytical performance on a routine basis. About 45 chemistry technicians are employed at the site, 15 at each operating unit. The technicians routinely perform trace level analyses for impurities of concern to PWRs. Each month a set of blind samples is provided by an outside vendor. The blind samples contain 16 parameters which are matrixed to approximate the PWR's primary and secondary cycles. Nine technicians receive the samples, three from each operating unit, and perform the required analyses. Acceptance criteria for successful performance on the blind parameters is based on the values found in the Institute of Nuclear Power Operations (INPO) Document 83-016, Revision 2, August 1989, Chemistry Quality Control Program. The goal of the program is to have each technician demonstrate acceptable performance on each of 16 analytical parameters. On completion of each monthly set, a summary report of all of the analytical results for the sample set is prepared. From the summary report, analytical bias can be detected, technician performance is documented, and overall laboratory performance can be evaluated. The program has been very successful at satisfying the INPO requirement that the analytical performance of each individual technician should be checked on at least a six-month frequency for all important parameters measured. This paper describes the program as implemented at the Palo Verde Nuclear Generating Station and provides a summary report and trend and bias graphs for illustrative purposes

  4. Nuclear chemistry progress report

    International Nuclear Information System (INIS)

    1976-01-01

    A brief administrative review is given of work in the following areas: investigations of the chemical effects accompanying muon capture in atoms and molecules, quadrupole interaction in metal and semimetal systems using perturbed gamma-ray angular correlation, and nuclear structure research using nuclear reaction spectroscopy. Detailed research reports were published in appropriate places; a publication list is included. 2 figures

  5. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    selection of chemistry controls is vital for NPPs with liquid metal cooled reactors. This paper highlights principles and approaches to chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors. The recommendations on how to arrange chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors are based taking into account: - the experience with operation of fossil power industry; - secondary side water chemistry of lead-bismuth eutectics cooled nuclear reactors at submarines; - steam/water cycles of NPPs with sodium cooled fast breeders BN-350 and BN-600; - secondary water chemistry at conventional NPPs with WER, RBMK and some other reactors. (authors)

  6. IAEA programme on water chemistry in nuclear power plants

    International Nuclear Information System (INIS)

    Nechaev, A.F.; Skjoeldebrand, R.

    1988-01-01

    The paper reviews the past future efforts of the IAEA, directed to ensure optimal water chemistry regimes in nuclear power plants. Corrosion of structural materials resulting from the interaction of the coolant with the internal surfaces comprising the primary heat transfer and auxiliary circuits of water reactors, creates two main problems. The first is an operational problem resulting in an increase in the core pressure drop or overheating of the fuel elements induced by crud buildup on the fuel cladding. The second problem is related to occupational radiation exposures arising from contamination of out-of-flux surfaces by corrosion products activated in the reactor core. These are the problems of reliability and safety which together with economics could be considered as the 'three whales' of nuclear power. The main goals of international cooperation in reactor water chemistry are: (1) to create a balanced and well-grounded methodological basis for corresponding regulatory and engineering solutions on a national level and (2) to improve 'the models and predictive capability of specialists for conditions that are different from or perhaps just beyond the realm of experience'. Continuing efforts are required to guarantee the highest reliability and safety standards under favorable economic indices of nuclear power plants, and to obtain understanding of such significant potential for solving the remaining problems. (Nogami, K.)

  7. Essentials of nuclear chemistry

    International Nuclear Information System (INIS)

    Arniker, H.J.

    1982-01-01

    Theories of nuclear structure, stability, and radioactivity; nuclear reactions including fission, fusion, and reactors; and the applications of radioactivity, are covered. A non-mathematical treatment of the higher concepts are presented. The use of SI units, with cgs equivalents and ample clarifications in the form of worked examples; original examples investigated by the author in the applications of radioactivity; and selected problems are included

  8. Laboratory Investigations of Stratospheric Halogen Chemistry

    Science.gov (United States)

    Wine, Paul H.; Nicovich, J. Michael; Stickel, Robert E.; Hynes, Anthony J.

    1997-01-01

    A final report for the NASA-supported project on laboratory investigations of stratospheric halogen chemistry is presented. In recent years, this project has focused on three areas of research: (1) kinetic, mechanistic, and thermochemical studies of reactions which produce weakly bound chemical species of atmospheric interest; (2) development of flash photolysis schemes for studying radical-radical reactions of stratospheric interest; and (3) photochemistry studies of interest for understanding stratospheric chemistry. The first section of this paper contains a discussion of work which has not yet been published. All subsequent chapters contain reprints of published papers that acknowledge support from this grant.

  9. LAMPF nuclear chemistry data acquisition system

    International Nuclear Information System (INIS)

    Giesler, G.C.

    1983-01-01

    The LAMPF Nuclear Chemistry Data Acquisition System (DAS) is designed to provide both real-time control of data acquisition and facilities for data processing for a large variety of users. It consists of a PDP-11/44 connected to a parallel CAMAC branch highway as well as to a large number of peripherals. The various types of radiation counters and spectrometers and their connections to the system will be described. Also discussed will be the various methods of connection considered and their advantages and disadvantages. The operation of the system from the standpoint of both hardware and software will be described as well as plans for the future

  10. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1981-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  11. Technetium chemistry

    International Nuclear Information System (INIS)

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-01-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL)

  12. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  13. Proceedings of BARC golden jubilee year DAE-BRNS topical symposium on role of analytical chemistry in nuclear technology

    International Nuclear Information System (INIS)

    Swain, K.K.; Venkataramani, B.

    2007-01-01

    Among the various disciplines in Chemistry, Analytical Chemistry is unique, because it is an integral part of every aspect of technology- product and process development and deployment. In Nuclear Industry, the quality assurance criteria are very stringent. And truly, Analytical Chemistry has continued to play a pivotal role in the entire nuclear fuel cycle, since the beginning of the Indian Atomic Energy Programme. The conference covers invited talk, nuclear materials, reactor systems, thorium technology, alternate energy sources, biology, agriculture and environment, water technology, isotope, radiation and laser technology, development of analytical instruments, and reference materials and inter-comparison exercises. Papers relevant to INIS are indexed separately. (author)

  14. Water chemistry technology. One of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke

    2013-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry should be simultaneously satisfied: (1) better reliability of reactor structures and fuel rods; (2) lower occupational exposure and (3) fewer radwaste sources. Various groups in academia have carried out basic research to support the technical bases of water chemistry in plants. The Research Committee on Water Chemistry of the Atomic Energy Society of Japan (AESJ), which has now been reorganized as the Division of Water Chemistry (DWC) of AESJ, has played important roles to promote improvements in water chemistry control, to share knowledge about and experiences with water chemistry control among plant operators and manufacturers and to establish common technological bases for plant water chemistry and then to transfer them to the next generation of plant workers engaged in water chemistry. Furthermore, the DWC has tried and succeeded arranging R and D proposals for further improvement in water chemistry control through roadmap planning. In the paper, major achievements in plant technologies and in basic research studies of water chemistry in Japan are reviewed. The contributions of the DWC to the long-term safe management of the damaged reactors at the Fukushima Daiichi Nuclear Power Plant until their decommissioning are introduced. (author)

  15. Nuclear power plant conference 2010 (NPC 2010): International conference on water chemistry of nuclear reactor systems and 8th International radiolysis, electrochemistry and materials performance workshop

    International Nuclear Information System (INIS)

    2010-01-01

    The Nuclear Plant Chemistry Conference was held in Quebec City, Quebec, Canada on October 3-7, 2010. It was hosted by the Canadian Nuclear Society and was held in Canada for the first time. This international event hosted over 300 attendees, two thirds from outside of Canada, mostly from Europe and and Far East. The conference is formally known as the International Conference on Water Chemistry of Nuclear Reactor Systems and is the 15th of a series that began in 1977 in Bournemouth, UK. The conference focussed on the latest developments in the science and technology of water chemistry control in nuclear reactor systems. Utility scientists, engineers and operations people met their counterparts from research institutes, service organizations and universities to address the challenges of chemistry control and degradation management of their complex and costly plants for the many decades that they are expected to operate. Following the four day conference, the 8th International Radiolysis, Electrochemistry and Materials Performance Workshop was held as associated, but otherwise free-standing event on Friday, October 8, 2010. It was also well attended and the primary focus was the effect of radiation on corrosion. When asked about the importance of chemistry in operating nuclear power plants, the primary organizers summarized it in the following statement: 'Once a nuclear plant is in operation, chemistry improvement is the only way to increase the longevity of the plant and its equipment'. The organisers of the 2010 Workshop and the NPC 2010 conference decided that these two events would be held consecutively, as previous, but for the first time the organization and registration would be shared, which proved to be a winning combination by the attendance.

  16. MADNESS applied to density functional theory in chemistry and nuclear physics

    International Nuclear Information System (INIS)

    Fann, G I; Harrison, R J; Beylkin, G; Jia, J; Hartman-Baker, R; Shelton, W A; Sugiki, S

    2007-01-01

    We describe some recent mathematical results in constructing computational methods that lead to the development of fast and accurate multiresolution numerical methods for solving quantum chemistry and nuclear physics problems based on Density Functional Theory (DFT). Using low separation rank representations of functions and operators in conjunction with representations in multiwavelet bases, we developed a multiscale solution method for integral and differential equations and integral transforms. The Poisson equation, the Schrodinger equation, and the projector on the divergence free functions provide important examples with a wide range of applications in computational chemistry, nuclear physics, computational electromagnetic and fluid dynamics. We have implemented this approach along with adaptive representations of operators and functions in the multiwavelet basis and low separation rank (LSR) approximation of operators and functions. These methods have been realized and implemented in a software package called Multiresolution Adaptive Numerical Evaluation for Scientific Simulation (MADNESS)

  17. Numerical verification of equilibrium chemistry software within nuclear fuel performance codes

    International Nuclear Information System (INIS)

    Piro, M.H.; Lewis, B.J.; Thompson, W.T.; Simunovic, S.; Besmann, T.M.

    2010-01-01

    A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing transport source terms, material properties, and boundary conditions in heat and mass transport modules. Consequently, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method called the Gibbs Criteria is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes. (author)

  18. Chemistry in nuclear power plants from the point of view of OSART

    International Nuclear Information System (INIS)

    Winkler, R.

    1990-01-01

    The standard programme of OSART (Operational Safety Review Team), a programme of the International Atomic Energy Agency, is divided into eight test areas. Chemistry as one of those areas is considered under the following aspects: Organization, personnel qualification, monitoring programmes, working rules, limit values, layout and equipment of laboratories, data acquisition and reporting, safety provisions and quality assurance in laboratories. At least one chemist belongs to the teams usually consisting of 10 to 15 experts and several observers. The author of this paper participated in various missions and in the periodical summary of OSART results. Here he speaks about the status and trends of chemistry in nuclear power plants with light water reactors. Following the principle of OSART, none of the nuclear power plants is named. (orig./BBR) [de

  19. Primary water chemistry control at units of Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Schunk, J.; Patek, G.; Pinter, T.; Tilky, P.; Doma, A.; Osz, J.

    2010-01-01

    The primary water chemistry of the four identical units of Paks Nuclear Power Plant has been developed based on Western-type PWR units, taking into consideration some Soviet-Russian modifications. The political changes in 90s have also influenced the water chemistry specifications and directions. At PWR units the transition operational modes have been developed while in case of VVER units - in lack of central uniform regulation - this question has become the competence and responsibility of each individual plant. This problem has resulted in separate water chemistry developments with a considerable time delay. The needs for life-time extensions all over the World have made the development of start-up and shut-down chemistry procedures extremely important, since they considerably influence the long term and safe operation of plants. The uniformly structured limit value system, the principles applied for the system development, and the logic schemes for actions to be taken are discussed in the paper, both for normal operation and transition modes. (author)

  20. Primary Water Chemistry Control at Units of Paks Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, J.; Pinter, G. Patek T.; Tilky, P.; Doma, A. [Paks Nuclear Power Plant Co. Ltd., Paks (Hungary); Osz, J. [Budapest University of Technology and Economics, Budapest (Hungary)

    2013-03-15

    The primary water chemistry of the four identical units of Paks Nuclear Power Plant has been developed based on Western type PWR units, taking into consideration some Russian modifications. The political changes in the 1990s have also influenced the water chemistry specifications and directions. At PWR units the transition operational modes have been developed while in case of WWER units - in lack of central uniform regulation - this question has become the competence and responsibility of each individual plant. This problem has resulted in separate water chemistry developments with a considerable time delay. The need for lifetime extensions worldwide has made the development of startup and shutdown chemistry procedures extremely important, since they considerably influence the long term and safe operation of plants. The uniformly structured limit value system, the principles applied for the system development, and the logic schemes for actions to be taken are discussed in the paper, both for normal operation and transition modes. (author)

  1. Nuclear analytical chemistry: recent developments and applications

    International Nuclear Information System (INIS)

    Acharya, R.

    2013-01-01

    Recent R and D studies on Nuclear Analytical Chemistry utilizing techniques like Neutron Activation Analysis (NAA), Prompt Gamma-ray NAA (PGNAA), Particle Induced Gamma Ray and X-Ray Emission (PICE/PIXE) for compositional analysis of materials have been summarized. The work includes developments and applications of (i) single comparator NAA, called as k 0 -NAA, (ii) k 0 -based internal monostandard NAA (IM-NAA), (iii) k 0 -based prompt gamma ray NAA (PGNAA) and (iv) instrumental NAA using thermal and epithermal neutrons and (v) PIGE and PIXE methods using proton beam for low Z and medium Z elements, respectively. (author)

  2. An Investigation of the Relationships among 11th Grade Students' Attitudes toward Chemistry, Metacognition and Chemistry Achievement

    OpenAIRE

    KINGIR, Sevgi; AYDEMİR, Nurdane

    2014-01-01

    The purpose of this study was to investigate the relationships among 11th grade students' metacognition, chemistry achievement and attitudes toward chemistry. A total of 81 high school students at 11th grade participated in this study. Data were collected using Metacognitive Awareness Inventory and Attitude Scale toward Chemistry at the end of the second half of the academic year 2010â€"2011. Students' report card mean scores in chemistry course for that academic year were ...

  3. Development of Iridium Solid-state Reference Electrode for the Water Chemistry Status Measurement in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ku, Heekwon; Lim, Dongseok; Cho, Jaeseon

    2013-01-01

    The result of ECP measurement of piping material in nuclear power plant at low temperature using the developed iridium (SSRE) reference electrode is approximately -0.370V. Based on the various results of this study, the developed iridium (SSRE) reference electrode can be applied to the water chemistry environments of nuclear power plant. Various metallic materials used in a nuclear power plant have been exposed to a variety of water chemistry environments and the corrosion of metallic materials occurs due to the reactions between metal structures and water chemistry environments. Therefore, the management of the water chemistry factors is needed to prevent corrosion. The chemical factors affecting the corrosion are pH and Electrochemical Corrosion Potential (ECP). The world-wide studies suggest that ECP and pH are effective indicators for preventing the material damage from water chemistry condition. ECP and pH should be measured as the reference electrodes, and should show stable potential characteristics with fast responses. In this study, the iridium reference electrodes using a solid-state metal oxide electrode has been developed to measure effective indicators such as ECP and pH. The iridium (SSRE) reference electrode for the ECP measurement in water chemistry environment of nuclear power plants has been developed. A calibration for water chemistry measurement was performed by potential measurement of iridium (SSRE) reference electrode with Ag/AgCl (SSRE) reference electrode. The result exhibited a stable potential for 117 hours and a super-Nernst ian response with 63.12mV/p H. In this study, the iridium (SSRE) reference electrode shows super-Nernst ian characteristic and it may be caused by the property of electrolytically coated iridium oxide. Considering the long-term stability of the developed electrode, it is possible to apply as a reference electrode through calibration procedure

  4. An Investigation of the Relationships among 11th Grade Students' Attitudes toward Chemistry, Metacognition and Chemistry Achievement

    OpenAIRE

    KINGIR, Sevgi; AYDEMİR, Nurdane

    2012-01-01

    The purpose of this study was to investigate the relationships among 11th grade students' metacognition, chemistry achievement and attitudes toward chemistry. A total of 81 high school students at 11th grade participated in this study. Data were collected using Metacognitive Awareness Inventory and Attitude Scale toward Chemistry at the end of the second half of the academic year 2010â€"2011. Students' report card mean scores in chemistry course for that academic year were used as an ind...

  5. Physical Chemistry '98: Fourth International Conference on Fundamental and Applied Aspects of Physical Chemistry - Papers

    International Nuclear Information System (INIS)

    Ribnikar, S.; Anic, S.

    1998-01-01

    The proceedings has following chapters: Plenary lectures; Chemical Thermodynamics; Spectroscopy, Molecular Structures, Physical Chemistry of Plasma; Kinetics, Catalysis, Nonlinear Dynamics; Electrochemistry; Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry; Solid State Physical Chemistry, Material Science; Macromolecular Physical Chemistry; Environmental Protection; Phase Boundaries; Complex Compounds; General Physical Chemistry. A separated abstract was prepared for each of the 20 papers selected from the three chapters: Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry. and Environmental Protection. Refs and figs

  6. Spallation RI beam facility and heavy element nuclear chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nagame, Yuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    An outline of the spallation RI (Radioactive Ion) beam facility is presented. Neutron-rich nuclides are produced in the reaction of high intensity (10-1000 {mu}A) protons with energy of 1.5 GeV and an uranium carbide target. Produced nuclides are ionized in an isotope separator on-line (ISOL) and accelerated by the JAERI tandem and the booster linac. Current progress and a future project on the development of the RI beam facility are given. Studies of transactinide elements, including the synthesis of superheavy elements, nuclear structure far from stability, and RI-probed material science are planned with RI beams. An outlook of the transactinide nuclear chemistry studies using neutron-rich RI beams is described. (author)

  7. Water chemistry: cause and control of corrosion degradation in nuclear power plants

    International Nuclear Information System (INIS)

    Kain, Vivekanand

    2008-01-01

    The corrosion degradation of a material is directly determined by the water chemistry, material (composition, fabrication procedure and microstructure) and by the stress/strain in the material under operating conditions. Water chemistry plays an important role in both uniform corrosion and localized forms of corrosion of materials. Once we understand how water chemistry is contributing to corrosion of a material, it is logical to modify/change that water chemistry to control the corrosion degradation. In nuclear power plants, different water chemistries have been used in different components/systems. This paper will cover the origin of corrosion degradation in the Primary Heat Transport system of different reactor types, Steam Generator tubing, secondary circuit pipelines, service water pipelines and auxiliary systems and establish the role of water chemistry in causing corrosion degradation. The history of changes in water chemistry adopted in these systems to control corrosion degradation is also described. It is shown by examples that there is an obvious limitation in changing water chemistry to control corrosion degradation and in those cases, a change of material or change of the state of stresses/fabrication procedure becomes necessary. The role of water chemistry as a causative factor and also as a controlling parameter on particular types of corrosion degradation e.g. stress corrosion cracking, flow accelerated corrosion, pitting, crevice corrosion is illustrated. It will be shown that increase in dissolved oxygen content (due to radiolysis in nuclear reactors) is sufficient to make even the de-mineralized water to cause stress corrosion cracking in Boiling Water Reactors. Hydrogen Water Chemistry (by hydrogen injection) to control dissolved oxygen is shown to control the stress corrosion cracking. However, it is not possible to control dissolved oxygen at all parts of the Boiling Water Reactors. Therefore, a further refinement in terms of noble metal

  8. Nuclear chemistry and geochemistry research. Carnegie Institute of Technology and Carnegie--Mellon University. Summary report

    International Nuclear Information System (INIS)

    Kohman, T.P.

    1976-01-01

    A summary is presented of the activities and results of research in nuclear chemistry, nuclear geochemistry, nuclear cosmochemistry, and other minor areas from 1950 to 1976. A complete listing is given of publications, doctoral dissertations, and reports resulting from the research. A chronological list provides an overview of the activities at any particular time

  9. Nuclear chemistry and geochemistry research. Carnegie Institute of Technology and Carnegie--Mellon University. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Kohman, T.P.

    1976-05-28

    A summary is presented of the activities and results of research in nuclear chemistry, nuclear geochemistry, nuclear cosmochemistry, and other minor areas from 1950 to 1976. A complete listing is given of publications, doctoral dissertations, and reports resulting from the research. A chronological list provides an overview of the activities at any particular time. (JSR)

  10. New horizons for nuclear and radioanalytical chemistry laboratories

    International Nuclear Information System (INIS)

    Bode, P.

    2005-01-01

    Nuclear and radiochemistry are reported to suffer from a worldwide depression in support in the academic curriculum. The visibility of nuclear research groups is weak in general as can be illustrated by the low citation impact factors of the nuclear science related journals. Moreover, the use of nuclear techniques over other techniques is often insufficiently justified. Although in many countries a shortage in radiochemists is forecasted to occur by the end of this decade -and ample jobs becoming available-, students in chemistry and physics seem to prefer a career in contemporary sciences such as biotechnology, nanotechnology and genomics. Much of the research in these sciences is related to organic compounds and biomolecules or deals with elements that seemingly have little or no opportunities to be studied using radionuclides and (nuclear) radiation. Laboratories operating nuclear analytical techniques therefore need to use their creativity finding ways for participation in the scientific areas that are booming at the beginning of the 21st century. It requires an open mind on the strengths and weaknesses of existing techniques, and a departure from traditional views on measurement, analysis and even sources for activation. The unique features of using radiotracers and activatable tracers need again to be explored. Some radiochemistry laboratories at large (national) research centers have already converted their traditional technique-oriented research into more problem-oriented research, combining nuclear and complimentary non-nuclear techniques. Smaller laboratories have fewer opportunities for such holistic approaches but there are still a variety of nuclear and radiochemical techniques that fruitfully can be applied in these sciences and which also may turn attention towards the potentials of nuclear research reactor facilities, (nuclear) radiation and radionuclides, contributing to the sustainability of nuclear analytical groups. Advances in radiation

  11. Properties of neutron-rich nuclei studied by fission product nuclear chemistry

    International Nuclear Information System (INIS)

    Meyer, R.A.; Henry, E.A.; Griffin, H.C.; Lien, O.G. III; Lane, S.M.; Stevenson, P.C.; Yaffe, R.P.; Skarnemark, G.

    1979-09-01

    A review is given of the properties of neutron-rich nuclei studied by fission product nuclear chemistry and includes the techniques used in elemental isolation and current research on the structure of nuclei near 132 Sn, particle emission, and coexisting structure in both neutron-poor and neutron-rich nuclei. 35 references

  12. Chemistry Optimitation of a PWR nuclear power plant

    International Nuclear Information System (INIS)

    Frandrich, J.; Ramminger, U.

    2015-01-01

    One of the main objectives for the plant operator of a Nuclear Power Plant is to protect the Steam Generators (SG) during the lifetime of the plant by ensuring a safe and reliable operation. The SGs serve as an important barrier to prevent the spread of contamination out of the primary circuit. One the other hand impurities are accumulated within the SGs leading to extreme chemical and physical conditions. The application of an optimized water chemistry treatment of the secondary side is essential to ensure a good performance of the steam generators. (Author)

  13. Water chemistry - one of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, S.; Otoha, K.; Ishigure, K.

    2006-01-01

    Full text: Full text: Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry, a) better reliability of reactor structures and fuels, b) lower occupational exposure, and c) fewer radwaste sources, should be simultaneously satisfied. The research committee related to water chemistry of the Atomic Energy Society of Japan has played important roles to enhance improvement in water chemistry control, to share knowledge and experience with water chemistry among plant operators and manufacturers, to establish common technological bases for plant water chemistry and then to transfer them to the next generation related to water chemistry. Furthermore, the committee has tried to contribute to arranging R and D proposals for further improvement in water chemistry control through road map planning

  14. Foreword of the Fifth Symposium on Nuclear Analytical Chemistry (NAC-V)

    International Nuclear Information System (INIS)

    Acharya, R.; Goswami, A.; Reddy, A.V.R.

    2014-01-01

    The Fifth Symposium on Nuclear Analytical Chemistry (NAC-V) was organized at BARC, Mumbai during January 20-24, 2014 with more than 300 participants. It was sponsored by the Board of Research in Nuclear Sciences, Department of Atomic Energy (DAE), India and organized in cooperation with the IAEA and coorganized by the IANCAS. A total of 240 contributed abstracts along with 27 invited talks and 10 invited short talks were presented in 15 technical sessions. Selected 54 full papers of NAC-V have been accepted after review for publication in special issue of JRNC. (author)

  15. 2010 Gordon Research Conference On Radiation Chemistry

    International Nuclear Information System (INIS)

    Orlando, Thomas

    2010-01-01

    The 2010 Gordon Conference on Radiation Chemistry will present cutting edge research regarding the study of radiation-induced chemical transformations. Radiation Chemistry or 'high energy' chemistry is primarily initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. These transients often interact or 'react' to form products vastly different than those produced under thermal equilibrium conditions. The non-equilibrium, non-thermal conditions driving radiation chemistry exist in plasmas, star-forming regions, the outer solar system, nuclear reactors, nuclear waste repositories, radiation-based medical/clinical treatment centers and in radiation/materials processing facilities. The 2010 conference has a strong interdisciplinary flavor with focus areas spanning (1) the fundamental physics and chemistry involved in ultrafast (atto/femtosecond) energy deposition events, (2) radiation-induced processes in biology (particularly spatially resolved studies), (3) radiation-induced modification of materials at the nanoscale and cosmic ray/x-ray mediated processes in planetary science/astrochemistry. While the conference concentrates on fundamental science, topical applied areas covered will also include nuclear power, materials/polymer processing, and clinical/radiation treatment in medicine. The Conference will bring together investigators at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present work in poster format or as contributors to the Young Investigator session. The program and format provides excellent avenues to promote cross-disciplinary collaborations.

  16. Overview. Department of Nuclear Physical Chemistry. Section 9

    Energy Technology Data Exchange (ETDEWEB)

    Szeglowski, Z. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    In the papers presented bellow the activities of the Department of Nuclear Physical Chemistry in 1994 are presented. A further effort was made towards routine production of neutron-deficient isotopes for nuclear medicine - and namely {sup 67} Ga and {sup 139} Ce. Small activities of {sup 111} In were produced by the {alpha} bombardment of Ag target. In order to improve the {sup 111} In production the deuterons reaction with cadmium target was studied. The other field of the Department research is studying of the physicochemical properties of transactinoid elements (104,105, 106). The Department is also engaged in works of the National Network of Early Detection of Radioactive Contamination in Air. In this section, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  17. Overview. Department of Nuclear Physical Chemistry. Section 9

    Energy Technology Data Exchange (ETDEWEB)

    Szeglowski, Z [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    In the papers presented bellow the activities of the Department of Nuclear Physical Chemistry in 1994 are presented. A further effort was made towards routine production of neutron-deficient isotopes for nuclear medicine - and namely {sup 67} Ga and {sup 139} Ce. Small activities of {sup 111} In were produced by the {alpha} bombardment of Ag target. In order to improve the {sup 111} In production the deuterons reaction with cadmium target was studied. The other field of the Department research is studying of the physicochemical properties of transactinoid elements (104,105, 106). The Department is also engaged in works of the National Network of Early Detection of Radioactive Contamination in Air. In this section, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  18. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Fruzzetti, K.; Garcia, S. [Electric Power Research Inst., Palo Alto, California (United States); Eaker, R. [Richard W. Eaker, LLC, Matthews, North Carolina (United States); Giannelli, J.; Tangen, J. [Finetech, Inc., Parsippany, New Jersey (United States); Gorman, J.; Marks, C. [Dominion Engineering, Inc., Reston, Virginia (United States); Sawochka, S. [NWT Corp., San Jose, California (United States)

    2010-07-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for current operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of industry approved water chemistry controls. In parallel, the industry will need to consider and develop updated water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. In 2010, EPRI began to assess chemistry control strategies at advanced plants, based on the Design Control Documents (DCDs), Combined Construction and Operating License Applications (COLA), and operating experiences (where they exist) against current Water Chemistry Guidelines. Based on this assessment, differences between planned chemistry operations at new plants and the current Guidelines will be identified. This assessment will form the basis of future activities to address these differences. The project will also assess and provide, as feasible, water chemistry guidance for startup and hot functional testing of the new plants. EPRI will initially assess the GE-Hitachi/Toshiba ABWR and the Westinghouse AP1000 designs. EPRI subsequently plans to assess other plant designs such as the AREVA U.S. EPR, Mitsubishi Heavy Industries (MHI) U.S. APWR, and GE-Hitachi (GE-H) ESBWR. This paper discusses the 2010 assessments of the ABWR and AP1000. (author)

  19. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    International Nuclear Information System (INIS)

    Kim, K.; Fruzzetti, K.; Garcia, S.; Eaker, R.; Giannelli, J.; Tangen, J.; Gorman, J.; Marks, C.; Sawochka, S.

    2010-01-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for current operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of industry approved water chemistry controls. In parallel, the industry will need to consider and develop updated water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. In 2010, EPRI began to assess chemistry control strategies at advanced plants, based on the Design Control Documents (DCDs), Combined Construction and Operating License Applications (COLA), and operating experiences (where they exist) against current Water Chemistry Guidelines. Based on this assessment, differences between planned chemistry operations at new plants and the current Guidelines will be identified. This assessment will form the basis of future activities to address these differences. The project will also assess and provide, as feasible, water chemistry guidance for startup and hot functional testing of the new plants. EPRI will initially assess the GE-Hitachi/Toshiba ABWR and the Westinghouse AP1000 designs. EPRI subsequently plans to assess other plant designs such as the AREVA U.S. EPR, Mitsubishi Heavy Industries (MHI) U.S. APWR, and GE-Hitachi (GE-H) ESBWR. This paper discusses the 2010 assessments of the ABWR and AP1000. (author)

  20. Development status of nuclear power in China and fundamental research progress on PWR primary water chemistry in China

    International Nuclear Information System (INIS)

    Wu, Xinqiang; Liu, Xiahe; Han, En-Hou; Ke, Wei; Xu, Yuming

    2015-01-01

    China's non-fossil fuels are expected to reach 20% in primary energy ratio by 2030. It is urgent for China to speed up the development of nuclear power to increase energy supply, reduce gas emissions and optimize resource allocation. Chinese government slowed down the approval of new nuclear power plant (NPP) projects after Fukushima accident in 2011. At the end of 2012, the State Council approved the nuclear safety program and adjusted long-term nuclear power development plan (2011-2020), the new NPP's projects have been restarted. In June 2015, there are 23 operating units in mainland in China with total installed capacity of about 21.386 GWe; another 26 units are under construction with total installed capacity of 28.5 GWe. The main type of reactors in operation and under construction in China is pressurized water reactor (PWR), including the first AP1000 NPPs in the world (units 1 in Sanmen) and China self-developed Hualong one NPPs (units 5 and 6 in Fuqing). Currently, China's nuclear power development is facing historic opportunities and also a series of challenges. One of the most important is the safety and economy of nuclear power. The optimization of primary water chemistry is one of the most effective ways to minimize radiation field, mitigate material degradation and maintain fuel performance in PWR NPPs, which is also a preferred path to achieve both safety and economy for operating NPPs. In recent years, an increased attention has been paid to fundamental research and engineering application of PWR primary water chemistry in China. The present talk mainly consists of four parts: (1) development status of China's nuclear power industry; (2) safety of nuclear power and operating water chemistry; (3) fundamental research progress on Zn-injected water chemistry in China; (4) summary and future. (author)

  1. The role of NAA in nuclear chemistry education

    International Nuclear Information System (INIS)

    Meyer, G.; Vivier, A.

    2007-01-01

    One of the missions of our Institute is the promotion of basic nuclear teaching for students as well as professional teaching for workers in nuclear industry and research. For nuclear chemistry education, we present here a one day teaching course on radioactive decay and nuclear reactions, and a two or three days course based on reactor irradiation of uranium oxide, instrumental and radiochemical analysis of fission products. In the first experiment, the neutron capture is presented as an example of nuclear reaction; the neutron activation of a silver coin with a Am-Be neutron source, followed by γ-ray spectrometry, is used to identify three radionuclides of silver and to calculate their half-lives. In the second experiment, our teaching reactor is used as a neutron source with a flux about 10 10 n x cm -2 x s -1 at a low thermal power (10 kW). This low flux allows us to irradiate a small uranium sample which is usable for spectrometry after a short cooling time of about two hours. The first day is reserved for instrumental analysis of the fission products and a second day for the radiochemical separation of a fission radionuclides. With these experimental results, the students have to calculate the number of fissions in the irradiated sample. On optional third day for postgraduate students is devoted to the presentation of NAA and some applications as uranium determination by the fission product spectrometry. (author)

  2. Assistance in chemistry and chemical processes related to primary, secondary and ancillary systems of nuclear power plants

    International Nuclear Information System (INIS)

    Chocron, Mauricio A.; Becquart, Elena T.; Iglesias, Alberto M.; La Gamma, Ana M.; Villegas, Marina

    2003-01-01

    Argentina is currently running two nuclear power plants: Atucha I (CNA I) and Embalse (CNE) operated by Nucleoelectrica Argentina (NASA) whereas the National Atomic Energy Commission (CNEA), among other activities, is responsible for research and development in the nuclear field, operates research reactors and carries out projects related to them. In particular, the Reactor Chemistry Section personnel (currently part of the Chemistry Dept.) has been working on the field of reactor water chemistry for more than 25 years, on research and support to the NPPs chemistry department. Though the most relevant tasks have been connected to primary and secondary circuits chemistry, ancillary systems show along the time unexpected problems or feasible improvements originated in the undergoing operating time as well as in phenomena not foreseen by the constructors. In the present paper are presented the tasks performed in relation to the following systems of Embalse NPP: 1) Heavy water upgrade column preliminary water treatment; 2) Liquid waste system preliminary water treatment; and 3) Primary heat transport system coolant crud composition. (author)

  3. Experimental Investigation of Turbulence-Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed Flames

    Science.gov (United States)

    2016-06-23

    AFRL-AFOSR-VA-TR-2016-0277 Experimental Investigation of Turbulence-Chemistry Interaction in High- Reynolds -Number Turbulent Partially Premixed...4. TITLE AND SUBTITLE [U] Experimental investigation of turbulence-chemistry interaction in high- Reynolds -number 5a. CONTRACT NUMBER turbulent...for public release Final Report: Experimental investigation of turbulence-chemistry interaction in high- Reynolds -number turbulent partially premixed

  4. Operational experience, evolution and developments in water chemistry in Indian Nuclear Power Plants - an overview

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    2000-01-01

    Lessons learnt from the experiences at nuclear power plants have enriched the understanding of corrosion behaviour in water systems. The need for proper water chemistry control not only during operation but also during fabrication and preoperational tests is clearly seen. It should not be construed that maintenance of proper water chemistry is a panacea for all corrosion and other associated problems. Unless adequate care is taken in selection of material and sound design and fabrication practices are followed, no regime of water chemistry can help in eliminating failure due to corrosion

  5. The chemistry of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Wiles, D.R.

    2002-01-01

    About one-fifth of the world's supply of energy is derived from nuclear fission. While this important source of power avoids the environmental and resource problems of most other fuels, and although nuclear accident statistics are much less alarming, no other peacetime technology has evoked such public disquiet and impassioned feeling. Central to dealing with these fears is the management and disposal of radioactive waste. An expert Canadian panel in 1977 recommended permanent disposal of wastes in deep geological formations, providing a basis for subsequent policies and research. In 1988, the Federal Environmental Assessment Review Office (FEARO) appointed a panel to assess the proposed disposal concepts and to recommend government policy. The panel in turn appointed a Scientific Review Group to examine the underlying science. Behind all these issues lay one central question: How well is the chemistry understood? This became the principal concern of Professor Donald Wiles, the senior nuclear chemist of the Scientific Review Group. In this book, Dr. Wiles carefully describes the nature of radioactivity and of nuclear power and discusses in detail the management of radioactive waste by the multi-barrier system, but also takes an unusual approach to assessing the risks. Using knowledge of the chemical properties of the various radionuclides in spent fuel, this book follows each of the important radionuclides as it travels through the many barriers placed in its path. It turns out that only two radionuclides are able to reach the biosphere, and they arrive at the earth's surface only after many thousands of years. A careful analysis of the critical points of the disposal plan emphasizes site rejection criteria and other stages at which particular care must be taken, demonstrating how dangers can be anticipated and putting to rest the fear of nuclear fuel waste and its geological burial

  6. Nuclear Chemistry Institute, Mainz University. Annual Report 1995

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    1996-03-01

    The annual report of the Institut fuer Kernchemie addresses inter alia three main research activities. The first belongs to the area of basic research, covering studies in the fields of nuclear fission, chemistry of the super-heavy elements and of heavy-ion reactions extending from the Coulomb barrier to relativistic energies, and nuclear astrophysics in connection with the ''r process''. By means of laser technology, high-precision data could be measured of the ionization energies of berkelium and californium. Studies of atomic clusters in the vacuum of an ionization trap revealed interesting aspects. The second major activity was devoted to the analysis of environmental media, applying inter alia neutron activation analysis and resonance ionization mass spectroscopy (RIMS). The third activity resulted in the development of novel processes, or the enhancement of existing processes or methods, for applications in basic research work and in environmental analytics. Another item of interest is the summarizing report on the operation of the TRIGA research reactor. (orig./SR) [de

  7. Westinghouse Electric Company experiences in chemistry on-line monitoring in Eastern European nuclear power plants

    International Nuclear Information System (INIS)

    Balavage, J.

    2001-01-01

    Westinghouse Electric Company has provided a number of Chemistry On-Line Monitoring (OLM) Systems to Nuclear Power Plants in Eastern Europe. Eleven systems were provided to the Temelin Nuclear Power Plant in the south of the Czech Republic. Four systems were provided to the Russian NPP at Novovoronezh. In addition, a system design was developed for primary side chemistry monitoring for units 5 and 6 of another eastern European VVER. The status of the Temelin OLM systems is discussed including updates to the Temelin designs, and the other Eastern European installations and designs are also described briefly. Some of the problems encountered and lessons learned from these projects are also discussed. (R.P.)

  8. A contribution from fundamental and applied technetium chemistry to the nuclear waste disposal safety case

    Energy Technology Data Exchange (ETDEWEB)

    Totskiy, Yury; Yalcintas, Ezgi; Huber, Florian; Gaona, Xavier; Schaefer, Thorsten; Altmaier, Marcus; Geckeis, Horst [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Nuclear Waste Disposal; Kalmykov, Stepan [Lomonosov Moscow State Univ. (Russian Federation)

    2015-07-01

    Nuclear waste disposal in deep geological formations such as crystalline (granite), sedimentary (claystone) or rock salt, is the favored option of the international nuclear waste disposal community. For the long-term safety assessment of nuclear waste repositories, a reliable prediction of radionuclide migration behavior is required. A potentially relevant mobilization and migration mechanism is caused by water intrusion into the repository, leading to radionuclide release via transport pathways. In this case, detailed knowledge of key parameters controlling the retention and mobilization of radionuclides in solution, i.e. redox processes, solubility limits and sorption properties, is essential. Dedicated research is required in order to derive process understanding and develop accurate site-independent chemical and thermodynamic models, applicable for all considered host rock formations and scenarios. Technetium-99 is a β-emitting fission product highly relevant for the safety assessment of nuclear waste repositories due to its significant content in radioactive waste (fission yield >6%), long half-life (t{sub 1/2} ∼ 2.1.10{sup 5} a) and redox sensitivity. The mobility of Tc in the environment strongly depends on its oxidation state. Tc(VII) exists as highly soluble and mobile TcO{sub 4-} pertechnetate anion under sub-oxic and oxidizing conditions, whereas Tc(IV) forms sparingly soluble hydrous oxide (TcO{sub 2}.xH{sub 2}O) solid phases under reducing conditions. In the first part of this study focusing on fundamental Tc chemistry, the redox behavior of Tc(VII)/Tc(IV) was investigated in dilute to concentrated solutions. The results are systematized according to Pourbaix diagrams calculated with the NEA.TDB data selection for Tc to assess the effect of homogeneous and heterogeneous reducing systems and ionic strength on Tc redox behaviour. Investigations focusing on the solubility and speciation of TcO{sub 2}.xH{sub 2}O(s) were performed in dilute to

  9. Progress report, Chemistry and Materials Division, 1 April to 30 June, 1979

    International Nuclear Information System (INIS)

    1979-07-01

    Research results are reported by groups investigating ion penetration, nuclear methods of analysis, accelerator operation, general analytical chemistry, radoactivity measurement, deuterium analysis, electrochemistry, mass spectrometry and fuel analysis, radiation chemistry and laser photochemistry, hydrogen-water exchange, isotope chemistry, surface chemistry, and electron microscopy. Work in an associated laboratory at the University of Toronto on isotopic changes in reaction rates is reported. (L.L.)

  10. Chemistry of actinides and fission products in the nuclear-fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    This colloquium was held under the auspices of the French and Russian Academies of Sciences, from 21 to 23 May 2003, at the 'Ecole nationale superieure de chimie de Paris' (ENSCP), under the cooperative framework agreed between the two Academies. Fifteen specialists from each country were brought together to present their results concerning research in their respective fields (industrial considerations, fundamental chemistry, the environment, new conditioning systems, hydro- and pyro-chemical separation techniques), situating the results in the general context of the two countries'common strategy for closing the nuclear fuel cycle and for the management of radioactive waste. The colloquium brought together 26 oral presentations, and three round table discussions (theoretical chemistry and modelling, the frontiers of research on the nuclear cycle, elemental characterisation). The speakers chosen represented a large section of the organisations involved in the research on these topics, from each country. This thematic issue of the Comptes Rendus Chimie presents some new insights into these topics and some original results. The colloquium was supported financially par the DRI of the French Academy des sciences, CNRS, IN2P3, CEA, Cogema, EDF, and ENSCP. (authors)

  11. Nuclear Chemistry Division annual report FY83

    International Nuclear Information System (INIS)

    Struble, G.

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2)

  12. Karlsruhe international conference on analytical chemistry in nuclear technology

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents 218 abstracts of contributions by researchers working in the analytical chemistry field of nuclear technology. The majority of the papers deal with analysis with respect to process control in fuel reprocessing plants, fission and corrosion product characterization throughout the fuel cycle as well as studies of the chemical composition of radioactive wastes. Great interest is taken in the development and optimization of methods and instrumentation especially for in-line process control. About 3/4 of the papers have been entered into the data base separately. (RB)

  13. Climate and chemistry effects of a regional scale nuclear conflict

    OpenAIRE

    Stenke A.; Hoyle C. R.; Luo B.; Rozanov E.; Groebner J.; Maag L.; Broennimann S.; Peter T.

    2013-01-01

    Previous studies have highlighted the severity of detrimental effects for life on Earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a...

  14. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglowski, Z.

    2000-01-01

    Full text: In the Laboratory of Chemistry and Radiochemistry, research on chemical properties of super heavy elements Rf, Db and Sg, in model systems with their homologs Zr, Hf, Nb, Ta, Mo and W in aqueous solutions, was continued. The main subject of study was sorption of these elements on ion exchange resins, on ferrocyanide sorbents and on liquid anion exchanger Aliquat 336. Simultaneously, experiments on ion exchange behaviour of Tc and Re as homologs of Bh (Z =107) and of Os as that of Hs (Z =108) in the online and offline systems were carried out. Experiments with Hg and Pb as analogs of elements Z=112 and Z=114, started only in 1999, resulted in elaboration of a very fast continuous method for isolation of short-lived (t 1/2 ≥ 3 s) mercury isotopes. The above studies were performed in cooperation with the Joint Institute of Nuclear Research, Dubna, Russia, the Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, Russia, the Technical University of Dresden, Germany, the University of Mainz, Germany and the GSI Darmstadt, Germany. The Laboratory of Environmental Radioactivity was continuing two main directions of their activities: weekly reports on continuous monitoring of the ground level air and research on the environmental radioactivity. The results of six years of systematic measurements of long-lived γ-emitters present in the ground level air were the subject of a PhD thesis defended in May 1999. The main project in the Laboratory in 1999 was that on accumulation of Pu, Am, Cm, Sr and Eu isotopes in bones of wild herbivorous animals. Its major part, devoted to the α-emitters, has been completed. Another important research (performed in collaboration with the Nuclear Spectroscopy Department of the Institute) concerned development of a method for determination of high-energy pure β - emitters via measurement of Bremsstrahlung photons produced on a metal absorber of optimised thickness. The Laboratory was also

  15. Radiochemistry and associated nuclear chemistry in the beginning of the twenty-first century

    International Nuclear Information System (INIS)

    Goeij, J.J.M. de

    2002-01-01

    In many countries radiochemistry and associated nuclear chemistry are facing decreasing attention in scientific and technological education and training. In addition, research facilities involving radioactivity are dealing with growing difficulties, e.g. in respect to finances, staff, public support, and legislation. Quite often it is suggested that radiochemistry has matured and does not need any further development. Moreover, it is stated that radiochemical methods are out-run by new, non-nuclear methods, and thus have actually lost their raison d'etre. Altogether this leads to a situation where radioactivity and radiochemistry are partly vanishing both as a science and as a tool. This situation calls for a closer examination for areas where radiochemistry may continue to play a useful, if not a decisive role, and some guidelines were presented how to proceed in the near future. For that purpose a definition of radiochemistry is given to demarcate it from other areas. Nuclear chemistry as an adjacent field is strongly connected with radiochemistry, and in the frame of the presentation a relevant part of it is considered here as integrated in radiochemistry. The various areas of radiochemistry may be classified into three categories, which partly overlap. The first category is the field of the fundamental aspects of radiochemistry itself. This category covers among others nuclear reaction cross-sections, production routes with associated yields and radionuclidic impurities, decay schemes of radionuclides, radiochemical separations, recoil and hot-atom chemistry, isotope effects and fractionation, and interaction of radiation with matter and detection. The second category covers fields where radioactivity is inextricably bound to the subject involved. This holds e.g. for the entire nuclear fuel cycle, study of the very heavy elements (Z > 100), primordial radioactivity on earth, cosmogenic radioactivity in atmosphere and cosmos, and radionuclides for dating. The

  16. Nuclear chemistry and Radiochemistry in the USA; Kern- und Radiochemie in den USA

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, A. [Los Alamos National Lab., NM (United States). Isotope and Nuclear Chemistry Div.; Stoyer, M. [Lawrence Livermore National Lab., CA (United States)

    2004-04-01

    Nuclear chemistry and radiochemistry are very young sciences which developed at an extremely brisk pace within a very short period of time after the discovery of nuclear fission in 1938, and caused profound societal changes. In the United States, nuclear chemistry developed very differently from Germany, where nuclear research initially had been banned after the Second World War. The prime mover in the development in the United States was the Manhattan Project, the construction of the atomic bomb. The counteract the impending shortage of qualified personnel, important institutions have begun to establish training and support programs in the field. The National Laboratories in the United States introduced a National Security Internship Program, while the U.S. Department of Energy (DOE) tries to promote cooperation, and thus the training of personnel, by launching programs of its own. Yet, a greater shortage of qualified personnel is becoming apparent. The situation of nuclear chemistry and radiochemistry in the United States can be summarized in the finding that research at the National Laboratories is very wide ranging. It receives sufficient funds from the DOE. However, the National Laboratories show a very high proportion of elderly personnel, a problem which will have to be corrected in the years to come. This may be helped by the Summer Schools financed by the DOE, though a summer school of six weeks cannot replace a sound training in nuclear chemistry of the kind still to be found in Germany. (orig.) [German] Kern- und Radiochemie sind sehr junge Wissenschaften, die sich nach der Entdeckung der Kernspaltung 1938 innerhalb kuerzester Zeit extrem rasant entwickelt und tiefe gesellschaftliche Veraenderungen bewirkt haben. In den USA hat sich die Kernchemie sehr unterschiedlich im Vergleich zu Deutschland entwickelt, wo die Kernforschung nach dem 2. Weltkrieg vorerst verboten war. Massgeblich in den USA war dabei das Manhatten-Projekt zum Bau von Nuklearwaffen

  17. Future in actinoids coordination chemistry

    International Nuclear Information System (INIS)

    Kitazawa, Takafumi

    2006-01-01

    Actinoids coordination chemistry is concerned with spent nuclear fuel reprocessing, specifically with solid-state chemistry of nuclear fuels, separation process with radioactive substances, and geological disposal of high-level radioactive substances. In the 21st century, accumulation of minor actinides, Np, Am, Cm, and others will be realized according with the present program of nuclear energy development. The present article briefly introduces general properties of actinide elements, followed by their coordination chemistry compared with rare earths coordination chemistry. Special facility needed to treat actinoids as well as their chemistry is briefly explained, together with the specific experimental apparatus such as X-ray Absorption Fine Structure (XAFS) and time-resolved laser-induced fluorescence spectrometry (TRLFS) with synchrotron radiation facilities. The effect of coordination with actinoids in the environment chemistry is important in underground disposal of high-level radioactive wastes. For theoretical analysis of the results with actinoids chemistry, relativistic calculation is needed. (S. Ohno)

  18. Russian Federal nuclear center facilities for nuclear spectroscopy investigations

    International Nuclear Information System (INIS)

    Ilkaev, R.I.; Punin, V.T.; Abramovich, S.N.

    2001-01-01

    Russian Federal Nuclear Center facilities for Spectroscopy investigation in the field of nuclear spectroscopy are described. Here are discussed basic properties of used radiation sources, facilities and technologies for target material production and manufacture of targets from rare, high-toxic or radioactive materials. Here are also reported basic features of complex detector systems and technologies for manufacture of scintillation detectors with special properties VNIIEF was founded as a weapons laboratory. The development of nuclear and thermonuclear bombs was followed by a wide complex of nuclear-physics investigations. Naturally, data on nuclear-physics properties of active and structure materials being part of nuclear weapons were of greatest interest.At the initial stage of work on the development of nuclear weapons the information on nuclear constants of materials including the most important neutron ones was rather scant. Data published in scientific literature had low exactness and were insecure. Results of measurements sometimes differed greatly by various groups of investigators. At the same time it was clear that, for example, a 1,5-times mistake in the fission cross-section could cause a several times mistake in the choice of uranium or plutonium mass, which is necessary for the bomb development. These circumstances determined importance of the nuclear-physics investigations. Demands on knowledge of process details occurring inside the nuclei conditioned by a problem of developing and improving of nuclear weapons and atomic power are rather limited. However, the further development of nuclear industry has proved a well-known point that this knowledge being accumulated forms a critical mass that leads to an explosive situation in the elaboration both of ideological and technological aspects of these problems. It is the tendency of inside development of nuclear science that has conditioned preparedness of knowledge about intranuclear processes for

  19. Report of the joint seminar on heavy-ion nuclear physics and nuclear chemistry in the energy region of tandem accelerators (II)

    International Nuclear Information System (INIS)

    1986-04-01

    A meeting of the second joint seminar on Heavy-Ion Nuclear Physics and Nuclear Chemistry in the Energy Region of Tandem Accelerators was held after an interval of two years at the Tokai Research Establishment of the JAERI, for three days from January 9 to 11, 1986. In the seminar, about 70 nuclear physicists and nuclear chemists of JAERI and other Institutes participated, and 38 papers were presented. These include general reviews and topical subjects which have been developed intensively in recent years, as well as the new results obtained by using the JAERI tandem accelerator. This report is a collection of the papers presented to the seminar. (author)

  20. Measurement and analysis of γ-spectra in the research of nuclear chemistry

    International Nuclear Information System (INIS)

    Li Wenxin; Sun Tongyu

    1990-01-01

    Measurement of γ-ray spectra and method of data analysis are described for the research of nuclear chemistry. Gamma-ray spectra are collected as a function of time and are analysed by the computer codes GAMA33 or LEONE. Decay curves are constructed by selection of characteristic γ-ray using the computer code SORT. The analysis of half-life and identification of nuclides are performed with the interactive computer code TAU85 and Tektronix graphics terminal. Nuclear reaction cross-sections are calculated on weighted average of all the observed γ-rays for each nuclide after duplicate or erroneous identifications are screened

  1. From hot atom chemistry to epithermal chemistry

    International Nuclear Information System (INIS)

    Roessler, K.

    2004-01-01

    The rise and fall of hot atom chemistry (HAC) over the years from 1934 to 2004 is reviewed. Several applications are discussed, in particular to astrophysics and the interaction of energetic ions and atoms in space. Epithermal chemistry (ETC) is proposed to substitute the old name, since it better fits the energy range as well as the non-thermal and non-equilibrium character of the reactions. ETC also avoids the strong connexion of HAC to nuclear chemistry and stands for the opening of the field to physical chemistry and astrophysics. (orig.)

  2. Chemistry aided nuclear physics studies

    NARCIS (Netherlands)

    Even, Julia

    2016-01-01

    Studies of the superheavy elements bring several challenges through low production yields, short half-lives, and high background rates. This paper describes the possibilities of chemical separations as techniques to overcome the background problematic and to investigate the nuclear properties of the

  3. Nuclear Forensics: Scientific Analysis Supporting Law Enforcement and Nuclear Security Investigations.

    Science.gov (United States)

    Keegan, Elizabeth; Kristo, Michael J; Toole, Kaitlyn; Kips, Ruth; Young, Emma

    2016-02-02

    Nuclear forensic science, or "nuclear forensic", aims to answer questions about nuclear material found outside of regulatory control. In this Feature, we provide a general overview of nuclear forensics, selecting examples of key "nuclear forensic signatures" which have allowed investigators to determine the identity of unknown nuclear material in real investigations.

  4. Analytical chemistry in semiconductor manufacturing: Techniques, role of nuclear methods and need for quality control

    International Nuclear Information System (INIS)

    1989-06-01

    This report is the result of a consultants meeting held in Gaithersburg, USA, 2-3 October 1987. The meeting was hosted by the National Bureau of Standards and Technology, and it was attended by 18 participants from Denmark, Finland, India, Japan, Norway, People's Republic of China and the USA. The purpose of the meeting was to assess the present status of analytical chemistry in semiconductor manufacturing, the role of nuclear analytical methods and the need for internationally organized quality control of the chemical analysis. The report contains the three presentations in full and a summary report of the discussions. Thus, it gives an overview of the need of analytical chemistry in manufacturing of silicon based devices, the use of nuclear analytical methods, and discusses the need for quality control. Refs, figs and tabs

  5. An Investigation into Water Chemistry in Primary Coolant Circuit of an Advanced Boiling Water Reactor

    International Nuclear Information System (INIS)

    Wu, Bing-Jhen; Yeh, Tsung-Kuang; Wang, Mei-Ya; Sheu, Rong-Jiun

    2012-09-01

    To ensure operation safety, an optimization on the coolant chemistry in the primary coolant circuit of a nuclear reactor is essential no matter what type or generation the reactor belongs to. For a better understanding toward the water chemistry in an advanced boiling water reactor (ABWR), such as the one being constructed in the northern part of Taiwan, and for a safer operation of this ABWR, we conducted a proactive, thorough water chemistry analysis prior to the completion of this reactor in this study. A numerical simulation model for water chemistry analyses in ABWRs has been developed, based upon the core technology we established in the past. This core technology for water chemistry modeling is basically an integration of water radiolysis, thermal-hydraulics, and reactor physics. The model, by the name of DEMACE - ABWR, is an improved version of the original DEMACE model and was used for radiolysis and water chemistry prediction in the Longmen ABWR in Taiwan. Predicted results pertinent to the water chemistry variation and the corrosion behavior of structure materials in the primary coolant circuit of this ABWR under rated-power operation were reported in this paper. (authors)

  6. Nuclear Chemistry Division annual report FY83

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G. (ed.)

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2).

  7. Nuclear chemistry fifty years after the discovery of artificial radioactivity

    International Nuclear Information System (INIS)

    Lefort, M.

    1984-01-01

    In January 1934, the observation and the chemical identification of radiophosphorus as a reaction product in the bombardment of Aluminium by alpha particles have been the first step of a new scientific branch: Nuclear Chemistry. We describe here how this discovery in itself contains the frame of all the development which has followed. It consisted in four stages, each of them being a crucial starting point. The first one is the possibility for a total balance of the nuclear reaction in the exit channels, so that reaction mechanisms can be studied. The second, the most important perhaps, is the opening of nuclear synthesis. Nuclear chemists can now interfere into nuclear matter and instead of staying as observers of the radioactive decays of natural isotopes, they were able to build up a numerous chart of various nuclear species, going step by step further and further away from the nuclear stability conditions. The third aspect of the discovery was the appearance of a new mode of radioactive decay with the production of the first particle an antimater. 50 years later, the instability due to a much larger excess of protons is known to induce the proton emission radioactivity for new species like 109 I or 115 Cs, in the vicinity of proton unstability. Finally, the last point, so fertile for the future, was the observation of a neutron in the exit channel, so that neutron fluxes could result from alpha induced nuclear reactions and became such a strong tool for the production of transuranium elements and for nuclear fission. In the present survey, the wide interest of the second point, i.e. the nuclear synthesis, is emphasized, as well as the huge change in the technical methods

  8. Research Program to Investigate the Fundamental Chemistry of Technetium

    International Nuclear Information System (INIS)

    Edelstein, Norman M.; Burns, Carol J.; Shuh, David D.; Lukens, Wayne

    2000-01-01

    Technetium (99Tc, half-life = 2.13x105 years, b-emitter) is one of the radionuclides of major concern for nuclear waste disposal. This concern is due to the long half-life of 99Tc, the ease with which pertechnetate, TcO4 -, migrates in the geosphere, and the corresponding regulatory considerations. The problem of mobility of pertechnetate in the environment is compounded by the fact that pertechnetate is the thermodynamically stable form of technetium in aerobic environments. These two factors present challenges for the safe, long term immobilization of technetium in waste forms. Because of the stability of pertechnetate, technetium has been assumed to exist as pertechnetate in the aqueous phase of nuclear waste tanks. However, recent studies indicate that a significant fraction of the technetium is in a different chemical form. This program addresses the fundamental solution chemistry of technetium in the waste tank environment, and in a second part, the stability of technetium in various waste forms. The chemistry of this element will be studied in aqueous solutions at high pH, with various added salts such as nitrate, nitrite, and organic complexants, and as a function of radiation dose, to determine whether radiolysis effects can reduce TcO4 -. A separate facet of this research is the search for chemical forms of technetium that may be thermodynamically and/or kinetically stable and may be incorporated in various waste forms for long term storage. This phase of the program will address the problem of the possible oxidation of lower valent technetium species in various waste form matrices and the subsequent leaching of the highly soluble TcO4 -

  9. RADIATION CHEMISTRY 2010 GORDON RESEARCH CONFERENCE JULY 18-23

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Orlando

    2010-07-23

    The 2010 Gordon Conference on Radiation Chemistry will present cutting edge research regarding the study of radiation-induced chemical transformations. Radiation Chemistry or 'high energy' chemistry is primarily initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. These transients often interact or 'react' to form products vastly different than those produced under thermal equilibrium conditions. The non-equilibrium, non-thermal conditions driving radiation chemistry exist in plasmas, star-forming regions, the outer solar system, nuclear reactors, nuclear waste repositories, radiation-based medical/clinical treatment centers and in radiation/materials processing facilities. The 2010 conference has a strong interdisciplinary flavor with focus areas spanning (1) the fundamental physics and chemistry involved in ultrafast (atto/femtosecond) energy deposition events, (2) radiation-induced processes in biology (particularly spatially resolved studies), (3) radiation-induced modification of materials at the nanoscale and cosmic ray/x-ray mediated processes in planetary science/astrochemistry. While the conference concentrates on fundamental science, topical applied areas covered will also include nuclear power, materials/polymer processing, and clinical/radiation treatment in medicine. The Conference will bring together investigators at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present work in poster format or as contributors to the Young Investigator session. The program and format provides excellent avenues to promote cross-disciplinary collaborations.

  10. Fission product chemistry in severe nuclear reactor accidents, specialists' meeting at JRC-Ispra, 15-17 January 1990

    International Nuclear Information System (INIS)

    Nichols, A.L.

    1990-05-01

    A specialists' meeting was held at JRC-Ispra from 15 to 17 January 1990 to review the current understanding of fission-product chemistry during severe accidents in light water reactors. Discussions focussed on the important chemical phenomena that could occur across the wide range of conditions of a damaged nuclear plant. Recommendations for future chemistry work were made covering the following areas: (a) fuel degradation and fission-product release, (b) transport and attenuation processes in the reactor coolant system, (c) containment chemistry (iodine behaviour and core-concrete interactions). (author)

  11. Proceedings of the Scientific Meeting and Presentation on Basic Research in Nuclear of the Science and Technology part II : Nuclear Chemistry and Process Technology

    International Nuclear Information System (INIS)

    Kamsul Abraha; Yateman Arryanto; Sri Jauhari S; Agus Taftazani; Kris Tri Basuki; Djoko Sardjono, Ign.; Sukarsono, R.; Samin; Syarip; Suryadi, MS; Sardjono, Y.; Tri Mardji Atmono; Dwiretnani Sudjoko; Tjipto Sujitno, BA.

    2007-08-01

    The Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity held by Centre for Accelerator Technology and Material Process, National Nuclear Energy Agency, for monitoring the research activity which achieved in National Nuclear Energy Agency. The Meeting was held in Yogyakarta on July 10, 2007. The proceedings contains papers presented on the meeting about Nuclear Chemistry and Process Technology and there are 47 papers which have separated index. The proceedings is the second part of the three parts which published in series. (PPIN)

  12. Data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (DAWAC). Report of a coordinated research project 2001-2005

    International Nuclear Information System (INIS)

    2006-06-01

    This publication provides information on the current status and development trends in monitoring, diagnostics and control of water chemistry and corrosion of core and primary circuit materials in water cooled power reactors. It summarizes the results of an IAEA Coordinated Research Project and focuses on the methods for development, qualification and implementation of water chemistry expert systems at nuclear power plants. These systems are needed to have full benefit from using on-line sensors in real time mode when sensor signals, and other chemistry and operational data, are collected and continuously analysed with data acquisition and evaluation software. Technical knowledge was acquired in water chemistry control techniques (grab sampling, on-line monitoring, data collecting and processing, etc), plant chemistry and corrosion diagnostics, plant monitoring (corrosion, chemistry, activity) and plant chemistry improvement (analytical models and practices). This publication covers contributions from leading experts in water chemistry/corrosion, representing organizations from 16 countries with the largest nuclear capacities

  13. Proceedings of the Scientific Meeting and Presentation on Basic Researchin Nuclear Science and Technology part II: Nuclear Chemistry, Process Technology, Radioactive Waste Management and Environment

    International Nuclear Information System (INIS)

    Sukarsono, R.; Karmanto, Eko-Edy; Suradjijo, Ganang

    2000-01-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Scienceand Technology is an annual activity held by Centre for Research and Development of Advanced Technology, National Nuclear Energy Agency, for monitoring research activities achieved by the Agency. The papers presented in the meeting were collected into proceedings. These are the second part of the proceedings that contain 71 articles in the fields of nuclear chemistry, process technology, radioactive waste management, and environment (PPIN).

  14. Nuclear chemistry counting facilities: requirements definition

    International Nuclear Information System (INIS)

    O'Brien, D.W.; Baker, J.

    1979-01-01

    In an effort to upgrade outdated instrumentation and to take advantage of current and imminent technologies the Nuclear Chemistry Division at Lawrence Livermore Laboratory is about to undertake a major upgrade of their low level radiation counting and analysis facilities. It is expected that such a project will make a more coordinated data acquisition and data processing system, reduce manual data handling operations and speed up data processing throughput. Before taking on a systems design it is appropriate to establish a definition of the requirements of the facilities. This report examines why such a project is necessary in the context of the current and projected operations, needs, problems, risks and costs. The authors also address a functional specification as a prelude to a system design and the design constraints implicit in the systems implementation. Technical, operational and economic assessments establish necessary boundary conditions for this discussion. This report also establishes the environment in which the requirements definition may be considered valid. The validity of these analyses is contingent on known and projected technical, scientific and political conditions

  15. The use of computers for chemistry and corrosion monitoring in the nuclear power industry

    International Nuclear Information System (INIS)

    Eber, K.

    1986-01-01

    Corrosion of steam generators in the nuclear power industry has caused increasingly expensive maintenance work during refueling outages. To assist in the control and monitoring of this problem, Northeast Utilities has developed computer programs for tracking steam generator water chemistry and steam generator eddy current inspection data. These programs have allowed detailed analytical studies to be performed which would have been extremely difficult without the use of computers. The paper discusses the capabilities and uses of a chemistry data management system. An example analysis of steam generator chemistry during plant startup is presented. The corrosion monitoring capabilities of several eddy current data analysis programs are also discussed. It is demonstrated how these programs allow a detailed analysis of the effects of a chemical cleaning operation to remove sludge from the steam generators. Applications of these analytical methods to other industries is also discussed

  16. Road maps on research and development plans for water chemistry of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke; Fuse, Motomasa; Takamori, Kenro; Tsuchiuchi, Yoshihiro; Maeda, Noriyoshi

    2008-01-01

    Water chemistry of nuclear power plants has played an important role in reduction of personnel doses, structural materials and fuel integrity assurance, and reduction of radioactive wastes production. Further contributions are requested for advanced utilization of the LWR, advanced fuels and aging management of plants. Since water chemistry has an effect on all structure and materials immersed and at the same time affected by them, the optimum control not sticking to specific issues and covering the whole plant is required for these requests. Taking account of roles and activities of the industry, governmental institutes and academia, road maps on research and development plans for water chemistry were compiled into identified eleven items with targets and counter measures taken, such as common basic technologies, dose reduction, SCC mitigation, fuel cans corrosion/hydrogen absorption mitigation, condition based maintenance and flow accelerated corrosion mitigation. (T. Tanaka)

  17. Proceedings of the symposium on the joint research program between JAERI and Universities. Current status and future perspectives of the chemistry research in the nuclear fuel cycle back end field

    International Nuclear Information System (INIS)

    1999-10-01

    The first Symposium on the Joint Research Project between JAERI and Universities was held in Tokyo, January 27, 1999, to present the main achievements of the project in these 5 years and to discuss future perspectives of the chemistry research relating to the nuclear fuel cycle. The areas covered by the Joint Research Project are (1) Nuclear Chemistry for TRU Recycling, (2) Solid State Chemistry on Nuclear Fuels and Wastes, (3) Solution Chemistry on Fuel Reprocessing and Waste Management, and (4) Fundamental Chemistry on Radioactive Waste Disposal. The 8 papers are indexed individually. (J.P.N.)

  18. Incorporating nuclear chemistry as an education tool in the undergraduate chemistry curriculum. A description of the curriculum project

    International Nuclear Information System (INIS)

    Kleppinger, E.W.; Robertson, J.D.

    1997-01-01

    Although many areas of major national need depend critically on professionals trained in nuclear and radiochemistry, educational opportunities and student interest in this area have declined steadily for the last twenty years. One major contributing factor to the lack of student interest is that most students in science and chemistry courses are never introduced to these topics. This deficiency in sciences curricula, coupled with the negative public perception towards all things 'nuclear', has resulted in a serious shortage of individuals with a background in this area. We propose to address this problem by 'educating the educators' - providing faculty from two- and four-year colleges and high school science teachers with the curriculum materials, training, and motivation to incorporate these topics on a continuing basis in their curricula. Two advantages of this approach are; it will generate scientists with a basic understanding of this field and as teachers incorporate nuclear topics, many students will have the opportunity to reflect on the role of science in a technological society. (author)

  19. Non-thermally activated chemistry

    International Nuclear Information System (INIS)

    Stiller, W.

    1987-01-01

    The subject is covered under the following headings: state-of-the art of non-thermally activated chemical processes; basic phenomena in non-thermal chemistry including mechanochemistry, photochemistry, laser chemistry, electrochemistry, photo-electro chemistry, high-field chemistry, magneto chemistry, plasma chemistry, radiation chemistry, hot-atom chemistry, and positronium and muonium chemistry; elementary processes in non-thermal chemistry including nuclear chemistry, interactions of electromagnetic radiations, electrons and heavy particles with matter, ionic elementary processes, elementary processes with excited species, radicalic elementary processes, and energy-induced elementary processes on surfaces and interfaces; and comparative considerations. An appendix with historical data and a subject index is given. 44 figs., 41 tabs., and 544 refs

  20. Final Report, Research Program to Investigate the Fundamental Chemistry of Technetium

    International Nuclear Information System (INIS)

    Lukens, Wayne W. Jr.; Fickes, Michael J.; Bucher, Jerome J.; Burns, Carol J.; Edelstein, Norman M.; Shuh, David K.

    2000-01-01

    The purpose is to increase the basic scientific understanding of technetium chemistry to better understand the behavior of technetium in chemical environments relevant to DOE. Two important areas in need of study are the behavior of technetium in highly alkaline solutions similar to high-level nuclear waste, and its behavior in different waste forms. This research program addressed these two needs. Two separate approaches were used in this program. The first focus was to understand the basic solution chemistry of technetium, which underlies its behavior in the highly alkaline environment of the nuclear waste tanks located at the Savannah River and Hanford Sites. The specific problems at these sites are related to the anomalous oxidation state of technetium (Schroeder 1995). Although, at high pH, technetium should exist in its highest oxidation state as TcO 4 - , soluble, lower-valent technetium species have been observed in certain wastes. The specific unknowns that this program sought to answer are the nature of lower valent technetium species that can be formed in highly alkaline solution and whether pertechnetate undergoes radiolytic reduction in highly alkaline solution when nitrate is present in excess. The second focus area is the behavior of technetium immobilized in various waste forms. The behavior of technetium in cement wastes was examined to gain information about its long-term stability. Specifically, this research examined the oxidation of reduced technetium species by components present in high-level waste that are incorporated into cement waste along with technetium

  1. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems

    International Nuclear Information System (INIS)

    Brossard, Ph.; Garzenne, C.; Mouney, H.

    2002-01-01

    In the frame of the studies on next generation nuclear systems, and especially for the molten salt reactors and for the integrated fuel cycle (as IFR), the fuel cycle constraints must be taken into account in the preliminary studies of the system to improve the cycle and reactor optimisation. Among the purposes for next generation nuclear systems, sustainability and waste (radio-toxicity and mass) management are important goals. These goals imply reprocessing and recycling strategies. The objectives of this workshop are to present and to share the different strategies and scenarios, the needs based on these scenarios, the experimental facilities available today or in the future and their capabilities, the needs for demonstration. It aims at: identifying the needs for fuel cycle based on solid fuel or liquid fuel, and especially, the on-line reprocessing or clean up for the molten salt reactors; assessing the state-of-the-art on the pyro-chemistry applied to solid fuel and to present the research activities; assessing the state-of-the-art on liquid fuels (or others), and to present the research activities; expressing the R and D programs for pyro-chemistry, molten salt, and also to propose innovative processes; and proposing some joint activities in the frame of GEDEON and PRACTIS programs. This document brings together the transparencies of 18 contributions dealing with: scenario studies with AMSTER concept (Scenarios, MSR, breeders (Th) and burners); fuel cycle for innovative systems; current reprocessing of spent nuclear fuel (SNF) in molten salts (review of pyro-chemistry processes (non nuclear and nuclear)); high temperature NMR spectroscopies in molten salts; reductive extraction of An from molten fluorides (salt - liquid metal extraction); electrochemistry characterisation; characterisation with physical methods - extraction coefficient and kinetics; electrolytic extraction; dissolution-precipitation of plutonium in the eutectic LiCl-KCl (dissolution and

  2. Chemistry of americium

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.W.

    1976-01-01

    Essential features of the descriptive chemistry of americium are reviewed. Chapter titles are: discovery, atomic and nuclear properties, collateral reading, production and uses, chemistry in aqueous solution, metal, alloys, and compounds, and, recovery, separation, purification. Author and subject indexes are included. (JCB)

  3. Conducting water chemistry of the secondary coolant circuit of VVER-based nuclear power plant units constructed without using copper containing alloys

    Science.gov (United States)

    Tyapkov, V. F.

    2014-07-01

    The secondary coolant circuit water chemistry with metering amines began to be put in use in Russia in 2005, and all nuclear power plant units equipped with VVER-1000 reactors have been shifted to operate with this water chemistry for the past seven years. Owing to the use of water chemistry with metering amines, the amount of products from corrosion of structural materials entering into the volume of steam generators has been reduced, and the flow-accelerated corrosion rate of pipelines and equipment has been slowed down. The article presents data on conducting water chemistry in nuclear power plant units with VVER-1000 reactors for the secondary coolant system equipment made without using copper-containing alloys. Statistical data are presented on conducting ammonia-morpholine and ammonia-ethanolamine water chemistries in new-generation operating power units with VVER-1000 reactors with an increased level of pH. The values of cooling water leaks in turbine condensers the tube system of which is made of stainless steel or titanium alloy are given.

  4. Exploring hypothetical learning progressions for the chemistry of nitrogen and nuclear processes

    Science.gov (United States)

    Henry, Deborah McKern

    Chemistry is a bridge that connects a number of scientific disciplines. High school students should be able to determine whether scientific information is accurate, how chemistry applies to daily life, and the mechanism by which systems operate (NRC, 2012). This research focuses on describing hypothetical learning progressions for student understanding of the chemical reactions of nitrogen and nuclear processes and examines whether there is consistency in scientific reasoning between these two distinct conceptual areas. The constant comparative method was used to analyze the written products of students including homework, formative and summative tests, laboratory notebooks, reflective journals, written presentations, and discussion board contributions via Edmodo (an online program). The ten participants were 15 and 16 year old students enrolled in a general high school chemistry course. Instruction took place over a ten week period. The learning progression levels ranged from 0 to 4 and were described as missing, novice, intermediate, proficient, and expert. The results were compared to the standards set by the NRC with a lower anchor (expectations for grade 8) and upper anchor (expectations for grade 12). The results indicate that, on average, students were able to reach an intermediate level of understanding for these concepts.

  5. Ground water chemistry and water-rock interaction at Kivetty

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Leino-Forsman, H.

    1992-10-01

    The geochemistry of the groundwater at one of the investigation areas for nuclear waste, Kivetty (Kongingas) in central Finland is evaluated. The hydrogeological data is collected from boreholes drilled down to 1000-m depth into crystalline bedrock. The interpretation is based on groundwater chemistry and isotope data, mineralogical data and the structure and hydrology of the bedrock, using correlation diagrams and thermodynamic calculations (PHREEQE). The hydrogeochemistry and major processes controlling the groundwater chemistry are discussed

  6. Actinyl chemistry at the Centre for Radiochemistry Research

    International Nuclear Information System (INIS)

    May, Iain; Copping, Roy; Cornet, Stephanie M.; Talbot-Eeckelears, Catherine E.; Gaunt, Andrew J.; John, Gordon H.; Redmond, Mike P.; Sharrad, Clint A.; Sutton, Andrew D.; Collison, David; Fox, O. Danny; Jones, Chris J.; Sarsfield, Mark J.; Taylor, Robin J.

    2007-01-01

    Increasing our basic chemical knowledge of the actinyl cations ({AnO 2 } 2+/+ , where An = U, Np, Pu or Am) is vital for underpinning the development of novel nuclear waste management and nuclear fuel processing technologies, as well as increasing our understanding of actinide behaviour in the environment. Over recent years there have been significant advances made in uranyl, neptunyl and plutonyl chemistry, with the main focus on uranyl. At the Centre for Radiochemistry Research (CRR), University of Manchester, there are ongoing projects investigating the coordination chemistry of the actinyl cations. These projects are undertaken at the CRR and at higher specific activity alpha facilities accessed through Nexia Solutions and the EU ACTINET programme, as well as concomitant computational chemistry projects at University College London. Recent discoveries have included the complexation of transuranic actinyl cations with tri-lacunary heteropolytungstate ligands and spectroscopic and structural evidence for the direct coordination of the pertechnetate anion to {UO 2 } 2+

  7. Ground-water sampling of the NNWSI (Nevada Nuclear Waste Storage Investigation) water table test wells surrounding Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Matuska, N.A.

    1988-12-01

    The US Geological Survey (USGS), as part of the Nevada Nuclear Waste Storage Investigation (NNWSI) study of the water table in the vicinity of Yucca Mountain, completed 16 test holes on the Nevada Test Site and Bureau of Land Management-administered lands surrounding Yucca Mountain. These 16 wells are monitored by the USGS for water-level data; however, they had not been sampled for ground-water chemistry or isotropic composition. As part of the review of the proposed Yucca Mountain high-level nuclear waste repository, the Desert Research Institute (DRI) sampled six of these wells. The goal of this sampling program was to measure field-dependent parameters of the water such as electrical conductivity, pH, temperature and dissolved oxygen, and to collect samples for major and minor element chemistry and isotopic analysis. This information will be used as part of a program to geochemically model the flow direction between the volcanic tuff aquifers and the underlying regional carbonate aquifer

  8. BWR Water Chemistry Guidelines: 1993 Revision, Normal and hydrogen water chemistry

    International Nuclear Information System (INIS)

    Karlberg, G.; Goddard, C.; Fitzpatrick, S.

    1994-02-01

    The goal of water chemistry control is to extend the operating life of the reactor and rector coolant system, balance-of-plant components, and turbines while simultaneously controlling costs to safeguard the continued economic viability of the nuclear power generation investment. To further this goal an industry committee of chemistry personnel prepared guidelines to identify the benefits, risks, and costs associated with water chemistry in BWRs and to provide a template for an optimized water chemistry program. This document replaces the BWR Normal Water Chemistry Guidelines - 1986 Revision and the BWR Hydrogen Water Chemistry Guidelines -- 1987 Revision. It expands on the previous guidelines documents by covering the economic implications of BWR water chemistry control

  9. The latest general chemistry

    International Nuclear Information System (INIS)

    Ryu, Geun Bae; Choi, Se Yeong; Kim, Chin Yeong; Yoon, Gil Jung; Lee, Eun Seok; Seo, Moon Gyu

    1995-02-01

    This book deals with the latest general chemistry, which is comprised of twenty-three chapters, the contents of this book are introduction, theory of atoms and molecule, chemical formula and a chemical reaction formula, structure of atoms, nature of atoms and the periodic table, structure of molecule and spectrum, gas, solution, solid, chemical combination, chemical reaction speed, chemical equilibrium, thermal chemistry, oxidation-reduction, electrochemistry, acid-base, complex, aquatic chemistry, air chemistry, nuclear chemistry, metal and nonmetal, organic chemistry and biochemistry. It has exercise in the end of each chapter.

  10. Water Chemistry and Chemistry Monitoring at Thermal and Nuclear Power Plants: Problems and Tasks (Based on Proceedings of Conferences)

    Science.gov (United States)

    Larin, B. M.

    2018-02-01

    In late May-early June 2017, two international science and technology conferences on problems of water chemistry and chemistry monitoring at thermal and nuclear power plants were held. The participants of both the first conference held at OAO VTI and the second conference that took place at NITI formulated the problems of the development of the regulatory base and implementation of promising water treatment technologies and outlined the ways of improving the water chemistry and chemistry monitoring at TPPs and NPPs for the near future. It was pointed out that the new amine-containing VTIAMIN agent developed by OAO VTI had been successfully tested on the power-generating units equipped with steam-gas plants to establish the minimum excess of the film-forming amine in the power-generating unit circuit that ensures the protection of the metal as 5-10 μg/dm3. A flow-injection technique for the analysis of trace concentrations of chlorides was proposed; the technique applied to the condensate of the 1000-MW steam turbine of the NPP power-generating unit yields the results comparable with the results obtained by the ion chromatography and the potentiometric method using the solver electrode. The participants of the conferences were demonstrated new Russian instruments to analyze the water media at the TPPs and NPPs, including the total organic carbon analyzer and the analyzer of mineral impurities in the condensate and feed water, that won a gold medal at the 45th International Exhibition of Inventions held in Geneva this April.

  11. Investigating the Effectiveness of Computer Simulations for Chemistry Learning

    Science.gov (United States)

    Plass, Jan L.; Milne, Catherine; Homer, Bruce D.; Schwartz, Ruth N.; Hayward, Elizabeth O.; Jordan, Trace; Verkuilen, Jay; Ng, Florrie; Wang, Yan; Barrientos, Juan

    2012-01-01

    Are well-designed computer simulations an effective tool to support student understanding of complex concepts in chemistry when integrated into high school science classrooms? We investigated scaling up the use of a sequence of simulations of kinetic molecular theory and associated topics of diffusion, gas laws, and phase change, which we designed…

  12. High field nuclear magnetic resonance application to polysaccharide chemistry

    International Nuclear Information System (INIS)

    Vincendon, Marc

    1972-01-01

    Nuclear magnetic resonance has been applied to polysaccharide chemistry using time averaging technique and high fields (100 and 250 MHz). The three methyl signals of methyl cellulose and cellulose triacetate are separated, and the C-6 substituent has been identified. Biosynthesis of bacterial cellulose has been performed using deuterium labelled D-glucose and Acetobacter xylinum. Per-acetylated derivative of bacterial cellulose has been studied by NMR; this study permitted us to determine the quantity of deuterium on each position of the anhydro-glucose unit in the polymer. NMR has also been used to see the anomeric end chain of cellulose and amylose derivatives and to show the fixation of bromine and t-butyl group on the free anomeric end chain of cellulose triacetate. (author) [fr

  13. Proceeding of the Scientific Meeting and Presentation on Basic Research of Nuclear Science and Technology: Book II. Nuclear Chemistry, Process Technology, and Radioactive Waste Processing and Environment

    International Nuclear Information System (INIS)

    1996-06-01

    The proceeding contains papers presented on Scientific Meeting and Presentation on on Basic Research of Nuclear Science and Technology, held in Yogyakarta, 25-27 April 1995. This proceeding is second part of two books published for the meeting contains papers on nuclear chemistry, process technology, and radioactive waste management and environment. There are 62 papers indexed individually. (ID)

  14. Nuclear activation analysis work at Analytical Chemistry Division: an overview

    International Nuclear Information System (INIS)

    Verma, R.; Swain, K.K.; Remya Devi, P.S.; Dalvi, Aditi A.; Ajith, Nicy; Ghosh, M.; Chowdhury, D.P.; Datta, J.; Dasgupta, S.

    2016-04-01

    Nuclear activation analysis using neutron and charged particles is used routinely for analysis and research at Analytical Chemistry Division (ACD), Bhabha Atomic Research Centre (BARC). Neutron activation analysis at ACD, BARC, Mumbai, India has been pursued since late fifties using Apsara, CIRUS, Dhruva and Critical facility Research reactors, 239 Pu-Be neutron source and neutron generator. Instrumental, Radiochemical, Chemical and Derivative neutron activation analysis approaches are adopted depending on the analyte and the matrix. Large sample neutron activation analysis as well as k 0 -based internal monostandard neutron activation analysis is also used. Charged particle activation analysis at ACD, Variable Energy Cyclotron Centre (VECC), Kolkata started in late eighties and is being used for industrial applications and research. Proton, alpha, deuteron and heavy ion beams from 224 cm room temperature Variable Energy Cyclotron are used for determination of trace elements, measurement of excitation function, thin layer activation and preparation of endohedral fullerenes encapsulated with radioactive isotopes. Analytical Chemistry Division regularly participates in Inter and Intra laboratory comparison exercises conducted by various organizations including International Atomic Energy Agency (IAEA) and the results invariably include values obtained by neutron activation analysis. (author)

  15. Department of Chemistry, progress report

    International Nuclear Information System (INIS)

    1989-05-01

    The research activities in Department of Chemistry during the last 3 years from 1986 to 1988 were compiled. The researches and works of Department of Chemistry are mainly those concerned with important basic matters and items which are committed to the further development of the nuclear fuels and materials, to the establishment of the nuclear fuel cycle, and to the acquisition of data for the environmental safety studies. Intensive efforts were also made on chemical analysis service of various fuels and nuclear materials. (author)

  16. Final Report, Research Program to Investigate the Fundamental Chemistry of Technetium

    Energy Technology Data Exchange (ETDEWEB)

    Lukens Jr., Wayne W.; Fickes, Michael J.; Bucher, Jerome J.; Burns, Carol J.; Edelstein, Norman M.; Shuh, David K.

    2000-12-23

    The purpose is to increase the basic scientific understanding of technetium chemistry to better understand the behavior of technetium in chemical environments relevant to DOE. Two important areas in need of study are the behavior of technetium in highly alkaline solutions similar to high-level nuclear waste, and its behavior in different waste forms. This research program addressed these two needs. Two separate approaches were used in this program. The first focus was to understand the basic solution chemistry of technetium, which underlies its behavior in the highly alkaline environment of the nuclear waste tanks located at the Savannah River and Hanford Sites. The specific problems at these sites are related to the anomalous oxidation state of technetium (Schroeder 1995). Although, at high pH, technetium should exist in its highest oxidation state as TcO{sub 4}{sup {minus}}, soluble, lower-valent technetium species have been observed in certain wastes. The specific unknowns that this program sought to answer are the nature of lower valent technetium species that can be formed in highly alkaline solution and whether pertechnetate undergoes radiolytic reduction in highly alkaline solution when nitrate is present in excess. The second focus area is the behavior of technetium immobilized in various waste forms. The behavior of technetium in cement wastes was examined to gain information about its long-term stability. Specifically, this research examined the oxidation of reduced technetium species by components present in high-level waste that are incorporated into cement waste along with technetium.

  17. Nuclear chemical engineering

    International Nuclear Information System (INIS)

    Lee, Geon Jae; Shin, Young Jun

    1989-08-01

    The contents of this book are introduction of chemical engineering and related chemistry on an atomic reactor, foundation of the chemistry nuclear chemical engineering, theory on nuclear engineering, the cycle of uranium and nuclear fuel, a product of nuclear division, nuclear reprocessing, management of spent fuel separation of radioisotope, materials of an atomic reactor, technology and chemistry related water in atomic reactors and utilization of radioisotope and radiation. This book has the exercises and reference books for the each chapter.

  18. Department of Chemistry Progress Report (January 1989 - December 1991)

    International Nuclear Information System (INIS)

    1992-03-01

    The research activities in Department of Chemistry during the last 3 years from 1989 to 1991 were compiled. The researches and works of Department of Chemistry are mainly those concerned with important basic matters and items which are committed to further development of nuclear fuels and materials, to establishment of the nuclear fuel cycle, and to new development of advanced nuclear researches such as laser, ion-beam and photo-chemistry. Intensive efforts were also made on chemical analysis service of various fuels and nuclear materials. (author)

  19. Chemistry Division annual progress report for period ending July 31, 1981

    International Nuclear Information System (INIS)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery

  20. Chemistry Division annual progress report for period ending July 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery. (DLC)

  1. Actinide separative chemistry

    International Nuclear Information System (INIS)

    Boullis, B.

    2004-01-01

    Actinide separative chemistry has focused very heavy work during the last decades. The main was nuclear spent fuel reprocessing: solvent extraction processes appeared quickly a suitable, an efficient way to recover major actinides (uranium and plutonium), and an extensive research, concerning both process chemistry and chemical engineering technologies, allowed the industrial development in this field. We can observe for about half a century a succession of Purex plants which, if based on the same initial discovery (i.e. the outstanding properties of a molecule, the famous TBP), present huge improvements at each step, for a large part due to an increased mastery of the mechanisms involved. And actinide separation should still focus R and D in the near future: there is a real, an important need for this, even if reprocessing may appear as a mature industry. We can present three main reasons for this. First, actinide recycling appear as a key-issue for future nuclear fuel cycles, both for waste management optimization and for conservation of natural resource; and the need concerns not only major actinide but also so-called minor ones, thus enlarging the scope of the investigation. Second, extraction processes are not well mastered at microscopic scale: there is a real, great lack in fundamental knowledge, useful or even necessary for process optimization (for instance, how to design the best extracting molecule, taken into account the several notifications and constraints, from selectivity to radiolytic resistivity?); and such a need for a real optimization is to be more accurate with the search of always cheaper, cleaner processes. And then, there is room too for exploratory research, on new concepts-perhaps for processing quite new fuels- which could appear attractive and justify further developments to be properly assessed: pyro-processes first, but also others, like chemistry in 'extreme' or 'unusual' conditions (supercritical solvents, sono-chemistry, could be

  2. Manifestations of metacognitive activity during the collaborative planning of chemistry practical investigations

    Science.gov (United States)

    Mathabathe, Kgadi Clarrie; Potgieter, Marietjie

    2017-07-01

    This paper elaborates a process followed to characterise manifestations of cognitive regulation during the collaborative planning of chemistry practical investigations. Metacognitive activity was defined as the demonstration of planning, monitoring, control and evaluation of cognitive activities by students while carrying out the chemistry task. Inherent in collaborative learning is the social aspect of metacognition, which in this study was evidenced in social cognitive regulation (notably of intra- and interpersonal metacognitive regulations) as groups of students went about planning their practical investigations. Discussions of two of the learning groups (n = 4; n = 3) as they planned the extended practical investigation were recorded, transcribed and analysed for indicators of any inherent metacognitive activity. The process of characterising the manifestations of metacognition resulted in the development of a coding system which specifies not only the regulatory strategies at play but the type of regulation (self or other), the area of regulation (cognition, task performance or behaviour) as well as the depth of regulatory contributions (high or low). The fine-grained coding system allowed for a finer theoretical elucidation of the social nature of metacognition. The implications of this study for metacognition and chemistry education research are highlighted.

  3. Proceedings of 4. Meeting on Chemistry in Northeast

    International Nuclear Information System (INIS)

    1989-01-01

    The works of IV Meeting on Chemistry in Northeast are presented, including topics about compounds determination by nuclear analytical techniques and the non-nuclear techniques and physical-chemistry studies of chemical compounds. (C.G.C.)

  4. Degradation of Environmental Contaminants with Water-Soluble Cobalt Catalysts: An Integrative Inorganic Chemistry Investigation

    Science.gov (United States)

    Evans, Alexandra L.; Messersmith, Reid E.; Green, David B.; Fritsch, Joseph M.

    2011-01-01

    We present an integrative laboratory investigation incorporating skills from inorganic chemistry, analytical instrumentation, and physical chemistry applied to a laboratory-scale model of the environmental problem of chlorinated ethylenes in groundwater. Perchloroethylene (C[subscript 2]Cl[subscript 4], PCE) a common dry cleaning solvent,…

  5. Water chemistry guidance in nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Okada, Hidetoshi; Suzuki, Hiroaki; Naitoh, Masanori

    2012-01-01

    Water chemistry plays important roles in safe and reliable plant operation which are very critical for future power rate increases as well as aging plant management. Water chemistry control is required to satisfy the need for improved integrity of target materials, and at the same time it must be optimal for all materials and systems in a plant. Optimal water chemistry can be maintained by expert engineers who are knowledgeable about plant water chemistry, who have sufficient experience with plant operation, and whose knowledge is based on fundamental technologies. One of the latest subjects in the field of water chemistry is achieving suitable technical transfers, in which the achievements and experience with plant water chemistry accumulated by experts are successfully transferred to the next generation of engineers. For this purpose, documents on experience with water chemistry are being compiled as the guidance for water chemistry control and water chemistry standards, e.g., standards for chemical analysis procedures and guidance for water chemistry control procedures. This paper introduces the latest activities in Japan in establishing water chemistry guidance involving water chemistry standards, guidance documents and their supporting documents. (orig.)

  6. Nuclear Technology Programs

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product 99 Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  7. Nuclear technology programs

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  8. Nuclear Technology Programs

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. (ed.)

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  9. AECL research programs in chemistry

    International Nuclear Information System (INIS)

    Crocker, I.H.; Eastwood, T.A.; Smith, D.R.; Stewart, R.B.; Tomlinson, M.; Torgerson, D.F.

    1980-09-01

    Fundamental or underlying research in chemistry is being done in AECL laboratories to further the understanding of processes involved in current nuclear energy systems and maintain an awareness of progress at the frontiers of chemical research so that new advances can be turned to advantage in future AECL endeavours. The report introduces the current research topics and describes them briefly under the following headings: radiation chemistry, isotope separation, high temperature solution chemistry, fuel reprocessing chemistry, and analytical chemistry. (auth)

  10. Advanced chemistry management system to optimize BWR chemistry control

    International Nuclear Information System (INIS)

    Maeda, K.; Nagasawa, K.

    2002-01-01

    BWR plant chemistry control has close relationships among nuclear safety, component reliability, radiation field management and fuel integrity. Advanced technology is required to improve chemistry control [1,3,6,7,10,11]. Toshiba has developed TACMAN (Toshiba Advanced Chemistry Management system) to support BWR chemistry control. The TACMAN has been developed as response to utilities' years of requirements to keep plant operation safety, reliability and cost benefit. The advanced technology built into the TACMAN allows utilities to make efficient chemistry control and to keep cost benefit. TACMAN is currently being used in response to the needs for tools those plant chemists and engineers could use to optimize and identify plant chemistry conditions continuously. If an incipient condition or anomaly is detected at early stage, root causes evaluation and immediate countermeasures can be provided. Especially, the expert system brings numerous and competitive advantages not only to improve plant chemistry reliability but also to standardize and systematize know-how, empirical knowledge and technologies in BWR chemistry This paper shows detail functions of TACMAN and practical results to evaluate actual plant. (authors)

  11. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids)

  12. Chemistry Division. Quarterly progress report for period ending June 30, 1949

    Energy Technology Data Exchange (ETDEWEB)

    1949-09-14

    Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the following classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.

  13. Recent development and application of radioanalytical chemistry in China

    International Nuclear Information System (INIS)

    Su Khun guj.

    1996-01-01

    A brief description of the recent investigations and different applications of the methods of radioanalytical chemistry in China is given in the paper. The various important aspects (activation analysis, determination of actinide elements, analysis of nuclear reaction products and environmental samples) have been emphasized. 40 refs

  14. Proceeding of the Scientific Meeting and Presentation on Basic Research in Nuclear of the Scientific and Technology Part II : Nuclear Chemistry; Process Technology and Radioactive Waste Management; Environment

    International Nuclear Information System (INIS)

    Sudjatmoko; Karmanto, Eko Edy; Endang-Supartini

    1996-04-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity was held by Yogyakarta Nuclear Research Centre, National Atomic Energy Agency (BATAN) for monitoring the research activity which achieved in BATAN. The Proceeding contains a proposal about basic which has Nuclear Chemistry, Process Technology, Radioactive Waste Management and Environment. This proceeding is the second part from two part which published in series. There are 61 articles which have separated index

  15. Computer-based system for inspection of water chemistry regimes in WWER-type nuclear power plants

    International Nuclear Information System (INIS)

    Burcl, R.; Novak, M.; Malenka, P.

    1993-01-01

    The unsatisfactory situation in water chemistry testing at nuclear power plants with WWER type reactors is described. The testing primarily relies on laboratory analyses of manually taken samples. About 40 samples from one unit are tested per shift, which comprises approximately 250 determinations of various parameters. The time between two determinations is no shorter than 4 to 6 hours, thus rapid parameter changes between two determinations fail to be monitored. A novel system of automated chemistry monitoring is outlined, feasible for WWER type reactors. The system comprises 10 sets of sensors for monitoring all the relevant chemistry parameters of both the primary and secondary coolant circuits. Each sensor set has its own autonomous computer which secures its function even in case of loss of the chemical information network. The entire system is controlled by a master computer which also collects the results and provides contact with the power plant's information system. (Z.S.). 1 fig

  16. Investigating Students' Similarity Judgments in Organic Chemistry

    Science.gov (United States)

    Graulich, N.; Bhattacharyya, G.

    2017-01-01

    Organic chemistry is possibly the most visual science of all chemistry disciplines. The process of scientific inquiry in organic chemistry relies on external representations, such as Lewis structures, mechanisms, and electron arrows. Information about chemical properties or driving forces of mechanistic steps is not available through direct…

  17. Using Think-Aloud Protocols to Investigate Secondary School Chemistry Teachers' Misconceptions about Chemical Equilibrium

    Science.gov (United States)

    Cheung, Derek

    2009-01-01

    Secondary school chemistry teachers' understanding of chemical equilibrium was investigated through interviews using the think-aloud technique. The interviews were conducted with twelve volunteer chemistry teachers in Hong Kong. Their teaching experience ranged from 3 to 18 years. They were asked to predict what would happen to the equilibrium…

  18. Environmental chemistry of the actinide elements

    International Nuclear Information System (INIS)

    Rao Linfeng

    1986-01-01

    The environmental chemistry of the actinide elements is a new branch of science developing with the application of nuclear energy on a larger and larger scale. Various aspects of the environmental chemistry of the actinide elements are briefly reviewed in this paper, such as its significance in the nuclear waste disposal, its coverage of research fields and possible directions for future study

  19. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-01-01

    Gallium and copper radionuclides have a long history of use in nuclear medicine. Table 1 presents the nuclear properties of several gallium and copper isotopes that either are used in the routine practice of clinical nuclear medicine or exhibit particular characteristics that might make them useful in diagnostic or therapeutic medicine. This paper will provide some historic perspective along with an overview of some current research directions in gallium and copper radiopharmaceutical chemistry. A more extensive review of gallium radiopharmaceutical chemistry has recently appeared and can be consulted for a more in-depth treatment of this topic

  20. Abstracts of the 16. Latin-American Congress of Chemistry

    International Nuclear Information System (INIS)

    1984-01-01

    Abstracts of experimental works on analytical chemistry, physical-chemistry, medical chemistry and technology of chemical processes are presented. Those papers dealing with the application of nuclear techniques for the analysis of various substances and also those concerned with the study of materials and/or elements of nuclear interest, are indexed. (C.L.B.) [pt

  1. Optimization of secondary side water chemistry in TQNPC

    International Nuclear Information System (INIS)

    Fang Lan

    2007-01-01

    This article briefly introduces the types of corrosion that may be happened on steam generator heat exchange tubes in Qinshan CANDU6 nuclear power station and chemical effects on corrosion. The water chemistry optimization on minimzing deposition and corrosion of steam generators are introduced. The article summarizes the experiences of plant chemistry control and morpholine operation, providing guidance for optimizing secondary side water chemistry in the future, giving reference on selection of secondary side alkali agent and setting water chemistry specifications for other nuclear power stations. (authors)

  2. On-line water chemistry monitoring for corrosion prevention in ageing nuclear power plants

    International Nuclear Information System (INIS)

    Aaltonen, P.; Jaernstroem, R.; Kvarnstroem, R.; Chanfreau, E.

    1991-01-01

    General corrosion and consequently radiation buildup in nuclear power plants are controlled by the selection of material and the chemical environment. In power plants useful information concerning the kinetics of chemical reactions can be obtained by using high temperature, high pressure measurements for pH, conductivity and electrochemical potentials (ECP) of construction materials or redox-potential. The rates of general or uniform corrosion of materials in contact with the primary coolant are quite low and do not compromise the integrity of the primary circuit. Chemistry control should be applied in the first hand to minimize the dissolution and the transport and subsequent deposition of activated corrosion products to out-of-core regions. A computerized monitoring system for high temperature high pressure pH and electrochemical potential (ECP) has been in continuous use at the Loviisa power plant since 1988. Special emphasis has been put on learning the effect of pH and ECP control during cooldown process in order to further reduce background radiation buildup. During the shutdown for refueling outage in summer 1989 the high temperature water chemistry parameters were monitored. In addition to the high temperature water chemistry parameters concentrations of dissolved corrosion products as well as the activities of the corrosion products were measured. In this paper the results obtained through simultaneous monitoring of water chemistry parameters and concentrations of dissolved corrosion products as well as the activity measurements are presented and discussed. (author)

  3. Complex fluids, divided solids and their interfaces: Open scientific questions addressed at the Institute of Separation Chemistry of Marcoule for a sustainable nuclear energy

    International Nuclear Information System (INIS)

    Leroy, M.; Henge-Napoli, M.H.; Zemb, Th.

    2007-01-01

    Key issues in radiochemistry, physical chemistry of separation and chemistry of materials needed for a sustainable nuclear energy production are described. These driving questions are at the origin of the creation of the Institute of Separation Chemistry at Marcoule. Each of the domains has been described extensively in recent reports for science and technology of the French academy of Science. (authors)

  4. Thirteen textbooks of basic chemistry and their treatment of radioactivity

    International Nuclear Information System (INIS)

    Mueller, G.; Navarrete, M.; Martinez, T.; Cabrera, L.

    2009-01-01

    Nuclear chemistry is usually associated with great disasters, especially the atomic bomb; this without reflecting that knowledge of nuclear chemistry has also had many benefits in the field of medicine and health. Whereas in technologically advanced countries, nuclear chemistry is considered to be an important part of the syllabus, including topics such as radioactivity with the emphasis in making conscience in the common citizen of the inherent benefits. (author)

  5. Remarks on theoretical hot-atom chemistry

    International Nuclear Information System (INIS)

    Inokuti, Mitio

    1993-01-01

    The publication of the 'Handbook of Hot Atom Chemistry', following the earlier volume 'Recent Trend and Application', was a major milestone in physical chemistry. Theoretical treatments of hot atom chemistry must address two classes of problems. The first class concerns the individual collisions of hot atoms with other atoms or molecules. The second class concerns the description of the consequences of the many collisions of hot atoms and their chemical environment. Most of the remarks pertain to the problems of the first class. The central issue is the adiabaticity of nuclear motions versus electronic motions. To be precise, any atomic core motion should be mentioned rather than pure nuclear motion, because tightly bound core electrons are largely irrelevant to the chemistry. When nuclear motions are sufficiently slow, or for other reasons that can be regarded as adiabatic, the collision problem is basically straightforward, therefore, interatomic and intermolecular forces can be assumed, and their consequences for nuclear motions are calculable in principle. In the case of non-adiabaticity being important, much more difficult problems arise, and it is briefly discussed, and the work by Phelps is cited. (K.I.)

  6. Abstracts of the 26. Brazilian Congress on Chemistry

    International Nuclear Information System (INIS)

    1985-01-01

    It is presented the short communications of papers presented at the 26. Brazilian Congress on Chemistry, of nuclear interest. The papers are classified in four areas: isotope chemistry, organic chemistry, inorganic chemistry and physico-chemical. (E.G.) [pt

  7. 8. International Conference on Pulse Investigations in Chemistry, Biology and Physics - PULS'2008. Abstracts

    International Nuclear Information System (INIS)

    2008-01-01

    The Report comprises abstracts of 68 communications (oral and posters) presented during the 8. International Conference on Pulse Investigations in Chemistry, Biology and Physics - PULS'2008, held on September 6 - 12, 2008 in Cracow. Presentations cover a variety of research fields representing different fields of pulse radiolysis in chemistry, biology and physics

  8. 8. International Conference on Pulse Investigations in Chemistry, Biology and Physics - PULS'2008. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The Report comprises abstracts of 68 communications (oral and posters) presented during the 8. International Conference on Pulse Investigations in Chemistry, Biology and Physics - PULS'2008, held on September 6 - 12, 2008 in Cracow. Presentations cover a variety of research fields representing different fields of pulse radiolysis in chemistry, biology and physics.

  9. QM/MM investigations of organic chemistry oriented questions.

    Science.gov (United States)

    Schmidt, Thomas C; Paasche, Alexander; Grebner, Christoph; Ansorg, Kay; Becker, Johannes; Lee, Wook; Engels, Bernd

    2014-01-01

    About 35 years after its first suggestion, QM/MM became the standard theoretical approach to investigate enzymatic structures and processes. The success is due to the ability of QM/MM to provide an accurate atomistic picture of enzymes and related processes. This picture can even be turned into a movie if nuclei-dynamics is taken into account to describe enzymatic processes. In the field of organic chemistry, QM/MM methods are used to a much lesser extent although almost all relevant processes happen in condensed matter or are influenced by complicated interactions between substrate and catalyst. There is less importance for theoretical organic chemistry since the influence of nonpolar solvents is rather weak and the effect of polar solvents can often be accurately described by continuum approaches. Catalytic processes (homogeneous and heterogeneous) can often be reduced to truncated model systems, which are so small that pure quantum-mechanical approaches can be employed. However, since QM/MM becomes more and more efficient due to the success in software and hardware developments, it is more and more used in theoretical organic chemistry to study effects which result from the molecular nature of the environment. It is shown by many examples discussed in this review that the influence can be tremendous, even for nonpolar reactions. The importance of environmental effects in theoretical spectroscopy was already known. Due to its benefits, QM/MM can be expected to experience ongoing growth for the next decade.In the present chapter we give an overview of QM/MM developments and their importance in theoretical organic chemistry, and review applications which give impressions of the possibilities and the importance of the relevant effects. Since there is already a bunch of excellent reviews dealing with QM/MM, we will discuss fundamental ingredients and developments of QM/MM very briefly with a focus on very recent progress. For the applications we follow a similar

  10. High temperature water chemistry monitoring

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1992-01-01

    Almost all corrosion phenomena in nuclear power plants can be prevented or at least damped by water chemistry control or by the change of water chemistry control or by the change of water chemistry. Successful water chemistry control needs regular and continuous monitoring of such water chemistry parameters like dissolved oxygen content, pH, conductivity and impurity contents. Conventionally the monitoring is carried out at low pressures and temperatures, which method, however, has some shortcomings. Recently electrodes have been developed which enables the direct monitoring at operating pressures and temperatures. (author). 2 refs, 5 figs

  11. Chemistry of cements for nuclear applications

    International Nuclear Information System (INIS)

    Barrett, P.; Glasser, F.P.

    1992-01-01

    In recent times the nuclear industry has thrown up challenges which cannot be met by the application of conventional civil and materials engineering knowledge. The contributions in this volume investigate all aspects of cement performance. The scope of the papers demonstrates the current balance of activities which have as their objective the elucidation of kinetics and immobilization, determining material interactions and of assessing future performance. The papers reflect the varied goals of the sponsors who include national governments, the Commission of the European Communities and the nuclear industries. In six parts attention is paid to the durability of cement and concrete in repository environment; interactions between cement, waste components and ground water; properties and performance of cement materials; leach behavior and mechanisms, diffusional properties of cement and concrete, including porosity-permeability relationships; and thermodynamics of cementitious systems and modelling of cement performance

  12. The Department of Chemistry of the Austrian Research Centre Seibersdorf

    International Nuclear Information System (INIS)

    Proksch, E.

    1984-03-01

    The present report describes the R and D work carried out during 1981 to 1983. This work is still almost exclusively devoted to applied research items; a major fraction of the capacity available is devoted to contract research. The main R and D areas are: - applied radiation chemistry - conditioning of wastes - nuclear fuel chemistry and technology - non-nuclear technical chemistry - radioisotopes and labelled compounds - analytical chemistry. (Author) [de

  13. Chemistry of Technetium

    International Nuclear Information System (INIS)

    Omori, Takashi

    2001-01-01

    Since the late 1970's the coordination chemistry of technetium has been developed remarkably. The background of the development is obviously related to the use of technetium radiopharmaceuticals for diagnosis in nuclear medicine. Much attention has also been denoted to the chemical behavior of environmental 99 Tc released from reprocessing plants. This review covers the several aspects of technetium chemistry, including production of radioisotopes, analytical chemistry and coordination chemistry. In the analytical chemistry, separation of technetium, emphasizing chromatography and solvent extraction, is described together with spectrophotometric determination of technetium. In the coordination chemistry of technetium, a characteristic feature of the chemistry of Tc(V) complexes is referred from the view point of the formation of a wide variety of highly stable complexes containing the Tc=O or Tc≡N bond. Kinetic studies of the preparation of Tc(III) complexes using hexakis (thiourea) technetium(III) ion as a starting material are summarized, together with the base hydrolysis reactions of Tc(III), Tc(IV) and Tc(V) complexes. (author)

  14. Challenges of adolescent and maturing nuclear plants: a chemistry perspective on maintenance and outages

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.G. [Bruce Power, Chemistry Design, Plant Design Engineering, Tiverton, Ontario (Canada)]. E-mail: john.roberts@brucepower.com

    2003-07-01

    In his address to the Canadian Nuclear Society, Bruce Power's Section Manager for Chemistry Design will relate how Designers and Specifiers for Plant and Components have historically limited their approach to that of new plants. As nuclear plants become operational, John G. Roberts will explain how the requirements to protect the assets change as a result of changed capabilities, environments and requirements. John will offer examples to show how challenges were met during construction and commissioning. While plant changes are often necessary following commissioning to prevent serious operational problems, John will also discuss ways in which planners, suppliers and maintenance staff can broaden their views and embrace new work methods to ensure those changes don't unwittingly create new challenges. (author)

  15. Challenges of adolescent and maturing nuclear plants: a chemistry perspective on maintenance and outages

    International Nuclear Information System (INIS)

    Roberts, J.G.

    2003-01-01

    In his address to the Canadian Nuclear Society, Bruce Power's Section Manager for Chemistry Design will relate how Designers and Specifiers for Plant and Components have historically limited their approach to that of new plants. As nuclear plants become operational, John G. Roberts will explain how the requirements to protect the assets change as a result of changed capabilities, environments and requirements. John will offer examples to show how challenges were met during construction and commissioning. While plant changes are often necessary following commissioning to prevent serious operational problems, John will also discuss ways in which planners, suppliers and maintenance staff can broaden their views and embrace new work methods to ensure those changes don't unwittingly create new challenges. (author)

  16. Chemistry of the elements

    International Nuclear Information System (INIS)

    Greenwood, N.N.; Earnshaw, A.

    1984-01-01

    This textbook presents an account of the chemistry of the elements for both undergraduate and postgraduate students. It covers not only the 'inorganic' chemistry of the elements, but also analytical, theoretical, industrial, organometallic;, bio-inorganic and other areas of chemistry which apply. The following elements of special nuclear interest are included: Rb, Cs, Fr, Sr, Ba, Ra, Po, At, Rn, Sc, Y, Zr, Hf, V, Nb, Ta, Mo, Tc, Ru, the Lanthanide Elements, the Actinide Elements. (U.K.)

  17. Fuel Chemistry Division annual progress report for 1990

    International Nuclear Information System (INIS)

    Vaidyanathan, R.

    1993-01-01

    The progress report gives brief descriptions of the various activities of the Fuel Chemistry Division of Bhabha Atomic Research Centre, Bombay for the year 1990. The descriptions of activities are arranged under the headings: Fuel Development Chemistry, Chemistry of Actinides, Quality Control of Nuclear Fuels, and studies related to Nuclear Materials Accounting. At the end of the report, a list of papers published in journals and presented at various conferences/symposia is also given. (author). 7 figs., 52 tabs

  18. Advances in high temperature water chemistry and future issues

    International Nuclear Information System (INIS)

    Millett, P.J.

    2005-01-01

    This paper traces the development of advances in high temperature water chemistry with emphasis in the field of nuclear power. Many of the water chemistry technologies used in plants throughout the world today would not have been possible without the underlying scientific advances made in this field. In recent years, optimization of water chemistry has been accomplished by the availability of high temperature water chemistry codes such as MULTEQ. These tools have made the science of high temperature chemistry readily accessible for engineering purposes. The paper closes with a discussion of what additional scientific data and insights must be pursued in order to support the further development of water chemistry technologies for the nuclear industry. (orig.)

  19. Investigating Pre-Service Chemistry Teachers' Problem Solving Strategies: Towards Developing a Framework in Teaching Stoichiometry

    Science.gov (United States)

    Espinosa, Allen A.; Nueva España, Rebecca C.; Marasigan, Arlyne C.

    2016-01-01

    The present study investigated pre-service chemistry teachers' problem solving strategies and alternative conceptions in solving stoichiometric problems and later on formulate a teaching framework based from the result of the study. The pre-service chemistry teachers were given four stoichiometric problems with increasing complexity and they need…

  20. Summary report for April, May, and June 1950. Chemistry Divison

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, D. W. [ed.

    1950-07-27

    A summary of activities for the Chemistry Division is reported for April-June 1950. Areas reporting activity include: Nuclear and Radiation Chemistry, Physical and Inorganic Chemistry, and Process Chemistry.

  1. Developments in nuclear medicine

    International Nuclear Information System (INIS)

    Elias, H.

    1977-01-01

    The article reports on the first international meeting about radiopharmaceutical chemistry in the Brookhaven National Laboratory, Long Island/USA, from 21st to 24th September, 1976. The meeting report is preceded by the explanation of the terms 'radiopharmaceutical chemistry' and 'nuclear medicine' and a brief survey of the history. The interdisciplinary connection of the spheres of nuclear physics, nuclear chemistry, biochemistry, nuclear medicine, and data processing is also briefly shown. This is necessary before radiodiagnosis can be made for a patient. (RB) [de

  2. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Petelenz, B.

    1999-01-01

    In the Laboratory of Chemistry and Radiochemistry, research on chemistry of the transactinide elements 104(Rf), 105(Db) and 106(Sg) in model systems with their homologs (Zr, Hf, Nb, Ta, Mo, and W) was continued, and studies on ion-exchange and extraction behaviour of Tc, Re and Os as homologs of Bh(107) and Hs(108) were started. Basing on the law of periodicity, conditions for separation of superheavy elements Rf, Sg, and Bh were adjusted. A particularly important achievement was participation of our group in the third experiment in the world on aqueous chemistry of Sg, performed in the summer 1998 in GSI Darmstadt. The Environmental Radioactivity Laboratory, was continuing non-stop records of the ground-level atmospheric radioactivity. Besides, Pu content was determined in two-years collection of rainwater samples. An air monitoring station was recently equipped with a prototype γ-spectrometric scintillation system which, modem-coupled with the central server, will be tested in the Laboratory. For ultra-low-background measurements a muonic chamber was designed and made, and new spectrometer's background was recorded in various shielding configurations. Research on α-active and γ-active environmental contaminants in Antarctic samples, supplied by the Institute of Botany of the Jagiellonian University, resulted in an M.Sc. thesis defended in June 1998. Other cooperations of the Laboratory in 1998 have been the following: a) determination of 90 Sr and 137 Cs in wild animals bones (Institute of Nuclear Techniques, Technical University, Budapest, Hungary and Medical Academy, Bialystok, Poland); b) PIXE determinations of trace elements in ASS-500 air filters (Department 2 of the Institute) and mineralogical studies of collected dusts (Institute of Geological Sciences, Jagiellonian University and the Institute of Geography, Pedagogical University, Cracow); c) a-spectrometric determination of radium isotopes in river waters and bottom sediments (Institute of Geography

  3. Controlling chemistry parameters in nuclear reactors and power plants, plant chemistry specification requirements and compliance - an overview of TAPS 1 and 2 experiences

    International Nuclear Information System (INIS)

    Ravindranath; Muralidharan, K.; Save, C.B.; Patil, D.P.

    2006-01-01

    Tarapur Atomic Power Station -TAPS 1 and 2 is a twin unit Boiling Water Reactor (BWR) Nuclear Power Plant commissioned in the year 1969. Both units are running with capacity factor of more than 90 % in their 20 th cycle of operation as on today. The 220 MWe units were derated to 160 MWe during 1984 consequent to isolation of Secondary Steam Generators (SSG) in the 10 th cycle of operation due to SSG tube leaks. This paper presents an overview of Plant Chemistry Control measures and experiences during the last 38 years of operation. The overall plant chemistry performance of TAPS 1 and 2 observed is very good; which is evident from the material condition of various systems reflected in QC and I reports, NDT and ISI reports. This is also supported by the fact that both Units are showing excellent performance continuously during recent years. (author)

  4. Investigation of nuclear power safety objects

    International Nuclear Information System (INIS)

    2003-09-01

    It is a report of ground and concept of nuclear safety objects and future issues in Japan, which has investigated by the Committee of Experts on Investigation of Nuclear Safety Objects in the Nuclear Safety Research Association. The report consisted of member of committee, main conclusions and five chapters. The first chapter contains construction of safety objects and range of object, the second chapter qualitative safety objects, the third chapter quantitative safety objects, the forth subsiding objects and the fifth other items under consideration. The qualitative safety objects on individual and society, the quantitative one on effects on health and social cost, aspect of safety objects, relation between radiation protection and safety objects, practical objective values and earthquake are stated. (S.Y.)

  5. Aspects of nuclear science

    International Nuclear Information System (INIS)

    Hageboe, E.; Salbu, B.

    1987-01-01

    The aspects of nuclear science presented in this book result from a symposium that was held in Oslo in October 1985. On this special occasion the rapid development of nuclear science as an interdisciplinary field was illustrated with brief presentations of some selected areas. These areas represent parts of the main interests of the Section for Nuclear Chemistry in the Department of Chemistry at the University of Oslo. This section has for decades been among the leading laboratories for nuclear chemistry in Scandinavia, thanks to its founder and inspiring leader professor Alexis C. Pappas

  6. Nuclear fission - the great discovery of the nuclear chemistry 50 years ago

    International Nuclear Information System (INIS)

    Eichler, B.

    1988-01-01

    A scientific discovery only seldom in that extent has influenced the scientific-technical progress and the historical development of mankind as the discovery of nuclear fission. The investigation of the reactions at irradiation of the uranium with neutrons was historically the order of the day. In 1938, the radiochemical proof of the nuclear fission succeeded by coprecipitation, fractional crystallization and application of the tracer method. To be master of these methods as well as their profound physico-chemical insight enabled O. Hahn and F. Strassmann to give reliable evidence of fission by identifying the fission product barium. (author)

  7. Status: nuclear and radiochemistry discipline

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2013-01-01

    There is no universally accepted definition for the term 'nuclear chemistry'. We may regard nuclear chemistry as an interdisciplinary subject with roots in physics, biology, and chemistry. The basic aspects include among others (i) nuclear reactions and energy levels, (ii) the types and energetics of radioactive decay, (iii) the formation and properties of radioactive elements, (iv) the effect of individual isotopes on chemical and physical properties, and (v) the effects of nuclear radiation on matter. Research in (i) and (ii) is often indistinguishable in purpose and practice from that in nuclear physics, although for nuclear chemists, chemical techniques may play a significant role. (iii) and (iv) can be classified as radiochemistry and isotope chemistry, while (v) falls in the classification of radiation chemistry. There is an urgent need in India also to have similar mechanism. Different universities, research organizations and the education administrators should join hands to address this issue in a focused manner. This is all the more needed urgently as the nuclear power programme and other applications are expected to increase many fold in coming years

  8. Chemistry in water reactors

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Norring, K.

    1994-01-01

    The international conference Chemistry in Water Reactors was arranged in Nice 24-27/04/1994 by the French Nuclear Energy Society. Examples of technical program areas were primary chemistry, operational experience, fundamental studies and new technology. Furthermore there were sessions about radiation field build-up, hydrogen chemistry, electro-chemistry, condensate polishing, decontamination and chemical cleaning. The conference gave the impression that there are some areas that are going to be more important than others during the next few years to come. Cladding integrity: Professor Ishigure from Japan emphasized that cladding integrity is a subject of great concern, especially with respect to waterside corrosion, deposition and release of crud. Chemistry control: The control of the iron/nickel concentration quotient seems to be not as important as previously considered. The future operation of a nuclear power plant is going to require a better control of the water chemistry than achievable today. One example of this is solubility control via regulation in BWR. Trends in USA: means an increasing use of hydrogen, minimization of SCC/IASCC, minimization of radiation fields by thorough chemistry control, guarding fuel integrity by minimization of cladding corrosion and minimization of flow assisted corrosion. Stellite replacement: The search for replacement materials will continue. Secondary side crevice chemistry: Modeling and practical studies are required to increase knowledge about the crevice chemistry and how it develops under plant operation conditions. Inhibitors: Inhibitors for IGSCC and IGA as well for the primary- (zinc) as for the secondary side (Ti) should be studied. The effects and mode of operation of the inhibitors should be documented. Chemical cleaning: of heat transfer surfaces will be an important subject. Prophylactic cleaning at regular intervals could be one mode of operation

  9. Bio-organic chemistry at BARC

    International Nuclear Information System (INIS)

    Sharma, A.; Ghosh, S.K.; Chattopadhyay, S.

    2009-01-01

    Bioorganic chemistry plays a pivotal role of co-ordination amongst the research and developmental activities of physical, biological, material and nuclear sciences. Understandably, the domain of bioorganic chemistry encompasses overlapping scientific fields, and often involves multi-disciplinary subjects. The research activities of bioorganic research at BARC are, therefore directed with reference to deliverables, relevant to various nuclear and non-nuclear programmes of the department. Also, the activities of the division are fine tuned to address the contemporary needs. It is now well recognized that organic compounds are essential in various programmes of nuclear technology. These include solvents and membranes for the back-end process, carrier molecules for radiopharmaceuticals, optoelectrical materials and sensors for high tech applications etc. Coupled with this, bioorganics also form integral part of the departmental mission-oriented societal programmes in the areas of health and agriculture

  10. Fuel Chemistry Division annual progress report for 1989

    International Nuclear Information System (INIS)

    Singh Mudher, K.D.

    1993-01-01

    The progress report gives a brief description of the various activities of the Fuel Chemistry Division of Bhabha Atomic Research Centre, Bombay for the year 1989. The descriptions of activities are arranged under the headings: Fuel Development Chemistry, Chemical Quality Control, Chemistry of Actinides, Sol-Gel process for the non Nuclear Ceramics and Studies related to Nuclear Material Accounting.At the end of the report, a list of papers published in journals and presented at various conferences/symposia is also given. (author). 69 tabs., 6 figs

  11. Nitrogen Compounds in Radiation Chemistry

    International Nuclear Information System (INIS)

    Sims, H.E.; Dey, G.R.; Vaudey, C.E.; Peaucelle, C.; Boucher, J.L.; Toulhoat, N.; Bererd, N.; Koppenol, W.H.; Janata, E.; Dauvois, V.; Durand, D.; Legand, S.; Roujou, J.L.; Doizi, D.; Dannoux, A.; Lamouroux, C.

    2009-01-01

    Water radiolysis in presence of N 2 is probably the topic the most controversy in the field of water radiolysis. It still exists a strong discrepancy between the different reports of ammonia formation by water radiolysis in presence of N 2 and moreover in absence of oxygen there is no agreement on the formation or not of nitrogen oxide like NO 2 - and NO 3 -. These discrepancies come from multiple sources: - the complexity of the reaction mechanisms where nitrogen is involved - the experimental difficulties - and, the irradiation conditions. The aim of the workshop is to capitalize the knowledge needed to go further in simulations and understanding the problems caused (or not) by the presence of nitrogen / water in the environment of radioactive materials. Implications are evident in terms of corrosion, understanding of biological systems and atmospheric chemistry under radiation. Topics covered include experimental and theoretical approaches, application and fundamental researches: - Nitrate and Ammonia in radiation chemistry in nuclear cycle; - NOx in biological systems and atmospheric chemistry; - Formation of Nitrogen compounds in Nuclear installations; - Nitrogen in future power plant projects (Gen4, ITER...) and large particle accelerators. This document gathers the transparencies available for 7 of the presentations given at this workshop. These are: - H.E SIMS: 'Radiation Chemistry of Nitrogen Compounds in Nuclear Power Plant'; - G.R. DEY: 'Nitrogen Compounds Formation in the Radiolysis of Aqueous Solutions'; - C.E. VAUDEY et al.: 'Radiolytic corrosion of nuclear graphite studied with the dedicated gas irradiation cell of IPNL'; - J.L. BOUCHER: 'Roles and biosynthesis of NO in eukaryotes and prokaryotes'; - W.H. KOPPENOL: 'Chemistry of NOx'; - E. JANATA: 'Yield of OH in N 2 O saturated aqueous solution'; - V. DAUVOIS: 'Analytical strategy for the study of radiolysis gases'

  12. EPRI PWR primary water chemistry guidelines revision

    International Nuclear Information System (INIS)

    McElrath, Joel; Fruzzetti, Keith

    2014-01-01

    EPRI periodically updates the PWR Primary Water Chemistry Guidelines as new information becomes available and as required by NEI 97-06 (Steam Generator Program Guidelines) and NEI 03-08 (Guideline for the Management of Materials Issues). The last revision of the PWR water chemistry guidelines identified an optimum primary water chemistry program based on then-current understanding of research and field information. This new revision provides further details with regard to primary water stress corrosion cracking (PWSCC), fuel integrity, and shutdown dose rates. A committee of industry experts, including utility specialists, nuclear steam supply system (NSSS) and fuel vendor representatives, Institute of Nuclear Power Operations (INPO) representatives, consultants, and EPRI staff collaborated in reviewing the available data on primary water chemistry, reactor water coolant system materials issues, fuel integrity and performance issues, and radiation dose rate issues. From the data, the committee updated the water chemistry guidelines that all PWR nuclear plants should adopt. The committee revised guidance with regard to optimization to reflect industry experience gained since the publication of Revision 6. Among the changes, the technical information regarding the impact of zinc injection on PWSCC initiation and dose rate reduction has been updated to reflect the current level of knowledge within the industry. Similarly, industry experience with elevated lithium concentrations with regard to fuel performance and radiation dose rates has been updated to reflect data collected to date. Recognizing that each nuclear plant owner has a unique set of design, operating, and corporate concerns, the guidelines committee has retained a method for plant-specific optimization. Revision 7 of the Pressurized Water Reactor Primary Water Chemistry Guidelines provides guidance for PWR primary systems of all manufacture and design. The guidelines continue to emphasize plant

  13. Progress report, Chemistry and Materials Division, April 1 to June 30, 1977

    International Nuclear Information System (INIS)

    1977-07-01

    Research results are reported in such areas as ion penetration, electron microscopy, metal physics and radiation damage, nuclear methods of analysis, fuel analysis, and general analytical chemistry, electrochemistry, radiation chemistry, hydrogen-deuterium exchange, and surface chemistry of nuclear materials like zirconium base alloys. (E.C.B.)

  14. Chemistry Division annual progress report for period ending January 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    Progress is reported in the following fields: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, high-temperature chemistry and thermodynamics of structural materials, chemistry of transuranium elements and compounds, separations chemistry, elecrochemistry, catalysis, chemical physics, theoretical chemistry, nuclear waste chemistry, chemistry of hazardous chemicals, and thermal energy storage.

  15. Investigations of Nitrogen Oxide Plasmas: Fundamental Chemistry and Surface Reactivity and Monitoring Student Perceptions in a General Chemistry Recitation

    Science.gov (United States)

    Blechle, Joshua M.

    2016-01-01

    Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of…

  16. Nuclear- and radiochemistry. Vol. 2. Modern applications

    International Nuclear Information System (INIS)

    Roesch, Frank

    2016-01-01

    This work is conceived to meet the demand of state-of-the-art literature to teach the fundamentals as well as the modern applications of nuclear chemistry. The work will consist of two volumes: the first one covering the basics of nuclear chemistry such as the relevant parameters of instable atomic nuclei, the various modi of radioactive transmutations, the corresponding types of radiation including their detection and dosimetry, and finally the mechanisms of nuclear reactions. The second volume addresses relevant fields of nuclear chemistry, such as the chemistry of radioactive elements, application of radioactive nuclei in life sciences, nuclear energy, waste managements and environmental aspects, radiochemical separations, radioanalytical and spectroscopic methods, etc. Here, leading experts will contribute up-to-date knowledge on the most important application of nuclear chemistry.

  17. Iodine chemistry in a reactor regulation

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D A [Nuclear Regulatory Commission, Washington, DC (United States). Advisory Committee on Reactor Safeguards

    1996-12-01

    Radioactive iodine has always been an important consideration in the regulation of nuclear power reactors to assure the health and safety of the public. Regulators adopted conservatively bounding predictions of iodine behavior in the earliest days of the development of nuclear power because there was so little known about either accidents or the chemistry of iodine. Today there is a flood of new information and understanding of the chemistry of iodine under reactor accident conditions. This paper offers some thoughts on how the community of scientists engaged in the study of iodine chemistry can present the results of their work so that it is more immediately adopted by the regulator. It is suggested that the scientific community consider the concept of consensus standards so effectively used within the engineering community to define the status of the study of radioactive iodine chemistry for reactor safety. (author) 9 refs.

  18. Iodine chemistry in a reactor regulation

    International Nuclear Information System (INIS)

    Powers, D.A.

    1996-01-01

    Radioactive iodine has always been an important consideration in the regulation of nuclear power reactors to assure the health and safety of the public. Regulators adopted conservatively bounding predictions of iodine behavior in the earliest days of the development of nuclear power because there was so little known about either accidents or the chemistry of iodine. Today there is a flood of new information and understanding of the chemistry of iodine under reactor accident conditions. This paper offers some thoughts on how the community of scientists engaged in the study of iodine chemistry can present the results of their work so that it is more immediately adopted by the regulator. It is suggested that the scientific community consider the concept of consensus standards so effectively used within the engineering community to define the status of the study of radioactive iodine chemistry for reactor safety. (author) 9 refs

  19. Research needs and opportunities in radiation chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Barbara, Paul F

    1998-04-19

    There is a growing urgency for forefront basic research on ionizing radiation-induced chemical reactions, due to the relevance of these reactions in such areas of critical national need as environmental waste management, environmental remediation, nuclear energy production, and medical diagnosis and radiation therapy. Fortunately, the emergence of new theoretical and experimental tools for the study of radiation-induced chemical and physical processes, i.e. Radiation Chemistry, makes future progress quite promising. Nevertheless, a recent decline in he number of young investigators in radiation chemistry, as well as a natural obsolescence of large research facilities in radiation chemistry are serious obstacles to further progress. Understanding radiation-induced processes is of vital significance in such diverse fields as waste remediation in environmental cleanup, radiation processing of polymers and food, medical diagnosis and therapy, catalysis of chemical reactions, environmentally benign synthesis, and nuclear energy production. Radiation chemistry provides for these fields fundamental quantitative data, such as reaction rate coefficients, diffusion coefficients, radiation chemical yields, etc. As well as providing useful quantitative information of technological and medical importance, radiation chemistry is also a valuable tool for solving fundamental problems in chemistry and in material sciences. Exploiting the many facets of radiation chemistry requires a thorough and comprehensive understanding of the underlying chemical and physical processes. An understanding of the structure and dynamics of “tracks” produced by ionizing radiation is a central issue in the field. There is a continuing need to study the ultrafast processes that link the chemistry and physics of radiation-induced phenomena. This is especially true for practically important, but less well understood, nonstandard environments such as interfacial systems, supercritical media, and

  20. Chemistry Division annual progress report for period ending January 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    This report has been indexed by 11 separate chapters. The subjects covered are: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, materials chemistry, chemistry of transuranium elements and compounds, separations chemistry, catalysis, electron spectroscopy, nuclear waste chemistry, heuristic modeling, and special topics. (PLG)

  1. Chemistry Division annual progress report for period ending January 31, 1986

    International Nuclear Information System (INIS)

    1986-05-01

    This report has been indexed by 11 separate chapters. The subjects covered are: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, materials chemistry, chemistry of transuranium elements and compounds, separations chemistry, catalysis, electron spectroscopy, nuclear waste chemistry, heuristic modeling, and special topics

  2. Progress report 1987-1988. Reactor Chemistry Department

    International Nuclear Information System (INIS)

    1988-01-01

    Review of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission of Argentina during 1987-1988. This department provides services and assistance in all matters related to water chemistry and nuclear reactors chemistry, in all their phases: design, construction, commissioning and decommissioning. The appendix includes information on the Reactor Chemistry Department staff, its publications, services, seminars, courses and conferences performed during 1987-1988. (Author) [es

  3. Nuclear Chemistry and Services

    International Nuclear Information System (INIS)

    Vandevelde, L.

    2000-01-01

    The objectives, the programme, and the achievements of research activities at the Belgian Nuclear Research Centre SCK-CEN in the field of nuclear analytical techniques are summarized. Major efforts in 1999 went to a project on the qualification of radioanalytical routines for the determination of alpha-emitting nuclides in conditioned radioactive waste; the ARIANE project; and the provision of radiochemical and chemical analytical services to internal and external clients

  4. Investigations of nitrogen oxide plasmas: Fundamental chemistry and surface reactivity and monitoring student perceptions in a general chemistry recitation

    Science.gov (United States)

    Blechle, Joshua M.

    Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of these plasma systems. Understanding the kinetics and thermodynamics of processes in these systems is vital to realizing their potential in a range of applications. Unraveling the complex chemical nature of these systems, however, presents numerous challenges. As such, this work serves as a foundational step in the diagnostics and assessment of these NxOy plasmas. The partitioning of energy within the plasma system is essential to unraveling these complications as it provides insight into both gas and surface reactivity. To obtain this information, techniques such as optical emission spectroscopy (OES), broadband absorption spectroscopy (BAS), and laser induced fluorescence (LIF) were utilized to determine species energetics (vibrational, rotational, translational temperatures). These temperature data provide mechanistic insight and establish the relationships between system parameters and energetic outcomes. Additionally, these data are also correlated to surface reactivity data collected with the Imaging of Radicals Interacting with Surfaces (IRIS) technique. IRIS data demonstrate the relationship between internal temperatures of radicals and their observed surface scatter coefficients (S), the latter of which is directly related to surface reactivity (R) [R = 1-S]. Furthermore, time-resolved (TR) spectroscopic techniques, specifically TR-OES, revealed kinetic trends in NO and N2 formation from a range of precursors (NO, N2O, N2/O2). By examining the rate constants associated with the generation and destruction of various plasma species we can investigate possible mechanistic implications. All told, such data provides

  5. Investigation of primary cooling water chemistry following the partial meltdown of Pu-Be neutron source in Tehran Research Reactor Core (TRR)

    Energy Technology Data Exchange (ETDEWEB)

    Aghoyeh, Reza Gholizadeh [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Khalafi, Hossein, E-mail: hkhalafi@aeoi.org.i [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of)

    2011-03-15

    Research highlights: Effect of Pu-Be neutron source meltdown in core on reactor water chemistry. Water chemistry of primary cooling before, during and after of above incident was compared. Training importance. Management of nuclear incident and accident. - Abstract: Effect of Pu-Be neutron source meltdown in core on reactor water chemistry was main aim of this study. Leaving the neutron source in the core after reactor power exceeds a few hundred Watts was the main reason for its partial meltdown. Water chemistry of primary cooling before, during and after of above incident was compared. Activity of some radio-nuclides such as Ba-140, La-140, I-131, I-132, Te-132 and Xe-135 increased. Other radio-nuclides such as Nd-147, Xe-133, Sr-91, I-133 and I-135 are also detected which were not existed before this incident.

  6. Progress report 1983-1984 Reactor Chemistry Department

    International Nuclear Information System (INIS)

    1985-11-01

    Description of the activity developed by the Reactor Chemistry Department of the National Atomic Energy Commission during the period 1983-1984 in its four divisions: Chemical Control; Moderator and Refrigerant Chemistry; Radiation Chemistry and Nuclear Power Plant's Service. A list of the publications made by the personnel during this period is also included. (M.E.L.) [es

  7. Coordination compounds in nuclear medicine

    International Nuclear Information System (INIS)

    Jurisson, S.; Berning, D.; Wei Jia; Dangshe Ma

    1993-01-01

    Radiopharmaceuticals, drugs containing a radionuclide, are used routinely in nuclear medicine departments for the diagnosis of disease and are under investigation for use in the treatment of disease. Nuclear medicine takes advantage of both the nuclear properties of the radionuclide and the pharmacological properties of the radiopharmaceutical. Herein lies the real strength of nuclear medicine, the ability to monitor biochemical and physiological functions in vivo. This review discusses the coordination chemistry that forms the basis for nuclear medicine applications of the FDA-approved radiopharmaceuticals that are in clinical use, and of the most promising diagnostic and therapeutic radiopharmaceuticals that are in various stages of development. 232 refs

  8. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.4--nuclear material

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally.This is the fourth one, the content is about nuclear materials, isotope separation, nuclear chemistry and radiological chemistry.

  9. Work on the hot atom chemistry at the Institute of Nuclear Sciences Boris Kidric, Vinca, Yugoslavia

    International Nuclear Information System (INIS)

    Veljkovic, S.

    1969-01-01

    A survey of work on hot atom chemistry from the establishment of the Institute up to now, where the role of Prof. P. Savic, should be specially emphasized, is given. The investigations in this domain during the first period, were directed to solve various problems in production of radioactive isotopes. Today these investigations are closely associated with the work in radiochemistry, physical chemistry of liquid and solid systems and fast reaction kinetics improving the development of these branches (author) [sr

  10. Applied radiation chemistry - the present status in the Institute for Nuclear Research Academia Sinica (INRAS)

    International Nuclear Information System (INIS)

    Nian-yun, L.

    1981-01-01

    The department of radiation chemistry in INRAS is one of the research centers of radiation chemistry in China. Since its establishment in 1958, basic theoretical and applied radiation chemistry have been extensively studied and promoted. In the field of applied radiation chemistry of polymers, radiation modification of polymeric systems is an important and active branch. Materials such as permselective membranes based on different polymer films have been prepared by means of radiation crosslinking and grafting. Superfine powdered wax, which may be used for the preparation of special lubricating grease of high quality, has been obtained via radiation degradation of PTFE (polytetrafluoroethylene). As for applied organic radiation chemistry, the main technological conditions of preparation of alkane sulfonic acid by radiation sulphoxidation of n-paraffin were optimized and the radiation sensitization effects of halogenated alkane and acetic anhydride on the indicated system were studied. The radiation stability of linear conjugated molecules and the related effects of intra- and intermolecular radiation protection were particularly investigated. These studies are described. (author)

  11. Proceedings of the 37. Brazilian Congress on Chemistry. Abstracts

    International Nuclear Information System (INIS)

    1997-01-01

    This volume contains the summaries of the papers presented at the 37. Brazilian Congress on Chemistry. The topics include subjects about new technologies in the field of relevance for nuclear interest and energy field, involving environmental aspects, analytical chemistry and electrochemistry. The chemistry of elements of nuclear interest has been presented, and dissertations about rare earth elements were discussed. Studies about fuels, mainly petroleum, their products and biomass fuels, including their production, physical-chemical properties, structure studies and feasibility studies has also been comprehended

  12. An Investigation of the Effects of Reader Characteristics on Reading Comprehension Of a General Chemistry Text

    Science.gov (United States)

    Neiles, Kelly Y.

    There is great concern in the scientific community that students in the United States, when compared with other countries, are falling behind in their scientific achievement. Increasing students' reading comprehension of scientific text may be one of the components involved in students' science achievement. To investigate students' reading comprehension this quantitative study examined the effects of different reader characteristics, namely, students' logical reasoning ability, factual chemistry knowledge, working memory capacity, and schema of the chemistry concepts, on reading comprehension of a chemistry text. Students' reading comprehension was measured through their ability to encode the text, access the meanings of words (lexical access), make bridging and elaborative inferences, and integrate the text with their existing schemas to make a lasting mental representation of the text (situational model). Students completed a series of tasks that measured the reader characteristic and reading comprehension variables. Some of the variables were measured using new technologies and software to investigate different cognitive processes. These technologies and software included eye tracking to investigate students' lexical accessing and a Pathfinder program to investigate students' schema of the chemistry concepts. The results from this study were analyzed using canonical correlation and regression analysis. The canonical correlation analysis allows for the ten variables described previously to be included in one multivariate analysis. Results indicate that the relationship between the reader characteristic variables and the reading comprehension variables is significant. The resulting canonical function accounts for a greater amount of variance in students' responses then any individual variable. Regression analysis was used to further investigate which reader characteristic variables accounted for the differences in students' responses for each reading comprehension

  13. Institute for Nuclear Chemistry of the University of Mainz. Annual report 1986

    International Nuclear Information System (INIS)

    Weber, M.

    1987-01-01

    The report summarizes the points of main efforts of the Institute for Nuclear Chemistry during 1986: A. Rapid separations (thermochromatography of platinum elements; ICP source for the HELIOS mass separator; oxidation states of Lr; ionic radii of Lr 3+ and Md 3+ ; heats of hydration). B. Exotic nuclei and nuclear structure (lifetime of the 167 keV level of 97 Sr; description of the K=3/2 + side band in 99 Y with the IBF/PTQ model; pairing-free K π =1 + -rotational bands in deformed odd/odd A ≅ 100 nuclei; proton particle states in 103,105 Rh; β-decay of the 110,112 Rh isomers; β-decay half-life of 130 48 Cd and its importance for astrophysical r-process scenarios; alpha burning of 14 O; β-decay half-lives of nuclei far from stability for astrophysical application; beta delayed neutron energy spectra for application in reactor physics). C. Nuclear fission (charge distribution in the reaction 232 Th(n R ,f); isomeric ratios and decay properties of 96m,g Y, 97m,g Y and 134m,g I). D. Heavy ion reactions (quasi fission in the reaction 40 Ar + 208 Pb near the Coulomb barrier; unusual excitation-energy distribution in quasi-fission reactions; competition of direct reactions with fusion; nucleon transfer in the reaction 40 Ar + 235 U; nuclear reactions and nuclear contact in U+U collisions below the barrier; deflection function and fragmentation in the system 197 Au → 197 Au; search for exotic heavy nuclei using Rutherford backscattering). E. Ecology of radionuclides (preparation of plutonium samples for laser spectroscopy; laser resonance-ionization mass spectrometry on uranium and plutonium; capture of externally produced ions in a high frequency quadrupole trap; Chernobyl fallout in the Mainz area). (orig./RB) [de

  14. Nuclear methods in entomological investigations

    International Nuclear Information System (INIS)

    Sethi, G.R.; Bhatia, Parvathy

    1979-01-01

    Insect pests of crops are responsible for immense crop losses in agriculture. Ever since the release of high yielding varieties and improved crop husbandry practices the problems posed by insect pests have been accentuated, as these conditions provide ideal environment for their development. Effective control of insect pests can help greatly in achieving a breakthrough in agricultural production. In order to sustain production and reduce crop losses entomologists all over the world have continued their efforts to devise and develop methods of pest control taking full advantage of the advances made in other branches of science. Consequently, avenues opened by the developments in the field of nuclear energy have also been fully exploited in investigating various pest problems. This communication briefly highlights the various areas of research in which nuclear toots have been fruitfutty used in investigating problems posed by insect pests. (auth.)

  15. Chemistry Programme for Water Cooled Nuclear Power Plants. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-01-15

    This publication provides guidance on establishing a high standard chemistry programme in accordance with plant safety policy and regulatory requirements. It will be useful to managers of operating organizations and other staff responsible for supporting or monitoring plant activities and for oversight of the plant chemistry programme, as well as to regulatory bodies. Contents: 1. Introduction; 2. Functions, responsibilities and interfaces; 3. Chemistry programme; 4. Chemistry control; 5. Chemistry aspects of radiation exposure optimization; 6. Chemistry surveillance; 7. Management of chemistry data; 8. Training and qualification; 9. Quality control of chemicals and other substances.

  16. Chemistry Programme for Water Cooled Nuclear Power Plants. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    This publication provides guidance on establishing a high standard chemistry programme in accordance with plant safety policy and regulatory requirements. It will be useful to managers of operating organizations and other staff responsible for supporting or monitoring plant activities and for oversight of the plant chemistry programme, as well as to regulatory bodies. Contents: 1. Introduction; 2. Functions, responsibilities and interfaces; 3. Chemistry programme; 4. Chemistry control; 5. Chemistry aspects of radiation exposure optimization; 6. Chemistry surveillance; 7. Management of chemistry data; 8. Training and qualification; 9. Quality control of chemicals and other substances

  17. General chemistry

    International Nuclear Information System (INIS)

    Kwon, Yeong Sik; Lee, Dong Seop; Ryu, Haung Ryong; Jang, Cheol Hyeon; Choi, Bong Jong; Choi, Sang Won

    1993-07-01

    The book concentrates on the latest general chemistry, which is divided int twenty-three chapters. It deals with basic conception and stoichiometry, nature of gas, structure of atoms, quantum mechanics, symbol and structure of an electron of ion and molecule, chemical thermodynamics, nature of solid, change of state and liquid, properties of solution, chemical equilibrium, solution and acid-base, equilibrium of aqueous solution, electrochemistry, chemical reaction speed, molecule spectroscopy, hydrogen, oxygen and water, metallic atom; 1A, IIA, IIIA, carbon and atom IVA, nonmetal atom and an inert gas, transition metals, lanthanons, and actinoids, nuclear properties and radioactivity, biochemistry and environment chemistry.

  18. Effect of reactor chemistry and operating variables on fuel cladding corrosion in PWRs

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Lee, Sang Hee

    1997-01-01

    As the nuclear industry extends the fuel cycle length, waterside corrosion of zircaloy cladding has become a limiting factor in PWR fuel design. Many plant chemistry factors such as, higher lithium/boron concentration in the primary coolant can influence the corrosion behavior of zircaloy cladding. The chemistry effect can be amplified in higher duty fuel, particularlywhen surface boiling occurs. Local boiling can result in increased crud deposition on fuel cladding which may induce axial power offset anomalies (AOA), recently reported in several PWR units. In this study, the effect of reactor chemistry and operating variables on Zircaloy cladding corrosion is investigated and simulation studies are performed to evaluate the optimal primary chemistry condition for extended cycle operation. (author). 8 refs., 3 tabs., 16 figs

  19. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems

  20. Ground water chemistry and water-rock interaction at Olkiluoto

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Front, K.

    1992-02-01

    Bedrock investigations for the final repository for low- and intermediate level wastes (VLJ repository) generated at the Olkiluoto (TVO-I and TVO-II) nuclear power plant, stareted in 1980. Since 1988 the area has been investigated for the final disposal of spent nuclear fuel. In the report the geochemistry at the nuclear waste investigation site, Olkiluoto, is evaluated. The hydrogeological data are collected from boreholes drilled down to 1000-m depth into Proterozoic crystalline bedrock. The interpretation is based on groundwater chemistry and isotope data, mineralogical data, and the structure and hydrology of the bedrock, using correlation diagrams and thermodynamic calculations (PHREEQE). The hydrogeochemistry and major processes controlling the groundwater chemistry are discussed. The groundwater types are characterized by water-rock interaction but they also show features of other origins. The fresh and brackish waters are contaminated by varying amounts of young meteoric water and brackish seawater. The saline water contains residues of possibly ancient hydrothermal waters, imprints of which are occasionally seen in the rock itself. Different mixing phenomenas are indicated by the isotope contents (O-l8/H-2, H-3) and the Ca/Cl, Na/Cl, HCO 3 /Cl, SO 4 /Cl, Br/Cl, SI(calcite)/SI(dolomite) ratios. The interaction between bedrock and groundwater is reflected by the behaviour of pH, Eh, Ca, Mg, Na, K, Fe, HCO 3 and S0 4 . Dissolution and precipitation of calcite and pyrite, and aluminosilicate hydrolysis play the major role in defining the groundwater composition of the above components

  1. Quantitative x-ray diffraction analyses of samples used for sorption studies by the Isotope and Nuclear Chemistry Division, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Chipera, S.J.; Bish, D.L.

    1989-09-01

    Yucca Mountain, Nevada, is currently being investigated to determine its suitability to host our nation's first geologic high-level nuclear waste repository. As part of an effort to determine how radionuclides will interact with rocks at Yucca Mountain, the Isotope and Nuclear Chemistry (INC) Division of Los Alamos National Laboratory has conducted numerous batch sorption experiments using core samples from Yucca Mountain. In order to understand better the interaction between the rocks and radionuclides, we have analyzed the samples used by INC with quantitative x-ray diffraction methods. Our analytical methods accurately determine the presence or absence of major phases, but we have not identified phases present below ∼1 wt %. These results should aid in understanding and predicting the potential interactions between radionuclides and the rocks at Yucca Mountain, although the mineralogic complexity of the samples and the lack of information on trace phases suggest that pure mineral studies may be necessary for a more complete understanding. 12 refs., 1 fig., 1 tab

  2. 15. Mendeleev's meeting on general and applied chemistry. Obninsk symposium. Radiological problems in nuclear energetics and industry conversion. Abstracts. V. 2

    International Nuclear Information System (INIS)

    1993-01-01

    Ecological aspects of nuclear-fuel engineering cycle and radiochemical technologies, radioactive waste processing and water purification, accidents at NPP and their consequences, ecological problems of industry conversion were discussed at the 15th Mendeleev's meeting on general and applied chemistry

  3. Applications of the gas chromatography in the nuclear science and technology; Aplicaciones de la cromatografia de gases a la ciencia y tecnologia nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Gasco Sanchez, L

    1972-07-01

    This paper is a review on the applications of the gas chromatography in the nuclear science and technology published up to December 1971. Its contents has been classified under the following heads; I) Radiogaschromatography, II) Isotope separation, III) Preparation of labelled molecules, IV) Nuclear fuel cycle, V) Nuclear reactor technology, VI) Irradiation chemistry, VIl) Separation of me tal compounds in gas phase, VIII) Applications of the gas chromatography carried out at the Junta de Energia Nuclear, Spain. Arapter VIII only includes the investigations carried out from January 1969 to December 1971. Previous investigations in this field has been published elsewhere. (Author)

  4. Water Chemistry Section: progress report (1981-82)

    International Nuclear Information System (INIS)

    Dharwadkar, S.R.; Ramshesh, V.

    1983-01-01

    The activities of the Water Chemistry Section of the Bhabha Atomic Research Centre (BARC), Bombay, during the years 1981 and 1982 are reported in the form of individual summaries. The research activities of the Section cover the following areas: (1) chemistry and thermodynamics of nuclear materials, (2) crystal structure of organo-metallic complexes using X-ray diffraction, (3) thermophysical and phase transition studies, (4) solid state chemistry and thermochemical studies, (5) water and steam chemistry of heavy water plants and phwr type reactors, and (6) uranium isotope exchange studies. A survey is also given of: (i) the Section's participation in advisory and consultancy services in nuclear and thermal power stations, (ii) training activities, and (iii) assistance in chemical analysis by various techniques to other units of BARC and outside agencies. A list of publications and lectures by the staff during the report period is included. (M.G.B.)

  5. Chemistry of superheavy elements

    International Nuclear Information System (INIS)

    Schaedel, M.

    2012-01-01

    The chemistry of superheavy elements - or transactinides from their position in the Periodic Table - is summarized. After giving an overview over historical developments, nuclear aspects about synthesis of neutron-rich isotopes of these elements, produced in hot-fusion reactions, and their nuclear decay properties are briefly mentioned. Specific requirements to cope with the one-atom-at-a-time situation in automated chemical separations and recent developments in aqueous-phase and gas-phase chemistry are presented. Exciting, current developments, first applications, and future prospects of chemical separations behind physical recoil separators ('pre-separator') are discussed in detail. The status of our current knowledge about the chemistry of rutherfordium (Rf, element 104), dubnium (Db, element 105), seaborgium (Sg, element 106), bohrium (Bh, element 107), hassium (Hs, element 108), copernicium (Cn, element 112), and element 114 is discussed from an experimental point of view. Recent results are emphasized and compared with empirical extrapolations and with fully-relativistic theoretical calculations, especially also under the aspect of the architecture of the Periodic Table. (orig.)

  6. Improving chemistry performance in CANDU plants

    International Nuclear Information System (INIS)

    Turner, C.; Guzonas, D.

    2010-01-01

    There is a strong interplay between coolant chemistry and materials selection in any nuclear power plant system. To achieve the design life of reactor components it is necessary to monitor and control relevant chemistry parameters, such as ionic conductivity, pH, concentrations of dissolved ions and redox species (e.g., hydrogen, hydrazine, oxygen) and the concentrations of suspended corrosion products. Chemistry specifications are set to achieve a balance between the sometimes conflicting requirements to minimize corrosion and radiological dose and to minimize operating and maintenance costs over the lifetime of the plant. For the past decade, Atomic Energy of Canada Limited (AECL) has taken a rigorous and disciplined approach to reviewing and updating all aspects of chemistry control in the CANDU® nuclear power plant (NPP). This approach has included proactively reviewing chemistry operating experience from existing CANDU® and other water-cooled NPPs worldwide to identify and address emerging issues, updating all of our chemistry control documentation to ensure that each chemistry parameter is linked to a specific requirement (e.g., reduce activity transport, monitor for condenser leak) and incorporating the latest results from our Research and Development (R and D) programs to ensure that all chemistry specifications are supported by a sound rationale. The results of this review and update have been incorporated into updated chemistry specifications and, in some cases, modified operating procedures for new and existing plants. In addition, recommendations have been made for design modifications to improve chemistry control in new build plants, especially during periods of shutdown and startup when chemistry control has traditionally been more challenging. Chemistry control in new-build CANDU® plants will rely increasingly on the use of on-line instrumentation interfaced directly to AECL's state-of-the-art chemistry monitoring, diagnostics and analysis

  7. Superheavy element chemistry. Achievements and perspectives

    International Nuclear Information System (INIS)

    Schaedel, M.

    2007-01-01

    Superheavy elements have been synthesized and chemically characterized one-atom-at-a-time up to element 108. Presently, the quest for element 112 is one of the hottest topics in this field. The transactinide elements 104 to 108 are members of group 4 to 8 of the Periodic Table and element 112 belongs into group 12. Chemical properties of some of these elements, like elements 104 and 105, show stunning deviations from simple extrapolations within their respective group while others exhibit great similarities with their lighter homologues elements. First experiments to investigate seaborgium (Sg, element 106) in aqueous solution were performed. Again, in large international collaborations at the GSI, several gas-phase chemistry experiments were performed with hassium (Hs, element 108). Recently, the highly efficient and very clean separation of Hs was applied for nuclear studies of various Hs nuclides investigating their cross section and their nuclear decay properties in the region of the doubly-magic 270 Hs (Z=108, N=162). To overcome certain limitations of the presently used on-line chemical separations the new TransActinide Separation and Chemistry Apparatus (TASCA) - with a gas-filled recoil separator as a front-end tool - was designed and built at the GSI in a collaborative effort. Presently in its commissioning phase, TASCA shall be a key instrument for a big leap into quantitatively and qualitatively new experiments in the region of superheavy elements. (author)

  8. PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Bell, M.J.; Blomgren, J.C.; Fackelmann, J.M.

    1982-10-01

    Steam generators in pressurized water reactor (PWR) nuclear power plants have experienced tubing degradation by a variety of corrosion-related mechanisms which depend directly on secondary water chemistry. As a result of this experience, the Steam Generator Owners Group and EPRI have sponsored a major program to provide solutions to PWR steam generator problems. This report, PWR Secondary Water Chemistry Guidelines, in addition to presenting justification for water chemistry control parameters, discusses available analytical methods, data management and surveillance, and the management philosophy required to successfully implement the guidelines

  9. Automated rapid chemistry in heavy element research

    International Nuclear Information System (INIS)

    Schaedel, M.

    1994-01-01

    With the increasingly short half-lives of the heavy element isotopes in the transition region from the heaviest actinides to the transactinide elements the demand for automated rapid chemistry techniques is also increasing. Separation times of significantly less than one minute, high chemical yields, high repetition rates, and an adequate detection system are prerequisites for many successful experiments in this field. The development of techniques for separations in the gas phase and in the aqueous phase for applications of chemical or nuclear studies of the heaviest elements are briefly outlined. Typical examples of results obtained with automated techniques are presented for studies up to element 105, especially those obtained with the Automated Rapid Chemistry Apparatus, ARCA. The prospects to investigate the properties of even heavier elements with chemical techniques are discussed

  10. Applied Chemistry Division progress report for the period 1993-1995

    Energy Technology Data Exchange (ETDEWEB)

    Naik, D. B.; Ramshesh, V.; Wani, B. N. [eds.; Bhabha Atomic Research Centre, Mumbai (India). Applied Chemistry Div.

    1997-09-01

    The report covers the research and development (R and D) activities of the Applied Chemistry Division for the period January 1993 to December 1995. This period is marked by important contributions pertaining to the R and D programmes on chemistry aspects related to nuclear power stations. The thrust areas of the Division`s R and D programmes are : chemical decontamination of nuclear reactor systems, metal-water interactions relevant to the Nuclear Power Stations and other industrial units of the Department, biofouling and its control in cooling water circuits and cooling water treatment. Other major research programmes are in the areas of radiation chemistry, solid state reactions and thermodynamic studies aimed at reactor applications. refs., 9 tabs., 1 fig.

  11. Applied Chemistry Division progress report for the period 1993-1995

    International Nuclear Information System (INIS)

    Naik, D.B.; Ramshesh, V.; Wani, B.N.

    1997-01-01

    The report covers the research and development (R and D) activities of the Applied Chemistry Division for the period January 1993 to December 1995. This period is marked by important contributions pertaining to the R and D programmes on chemistry aspects related to nuclear power stations. The thrust areas of the Division's R and D programmes are : chemical decontamination of nuclear reactor systems, metal-water interactions relevant to the Nuclear Power Stations and other industrial units of the Department, biofouling and its control in cooling water circuits and cooling water treatment. Other major research programmes are in the areas of radiation chemistry, solid state reactions and thermodynamic studies aimed at reactor applications. refs., 9 tabs., 1 fig

  12. Nuclear and radiochemistry in China. Present status and future perspectives

    International Nuclear Information System (INIS)

    Shi, W.Q.; Zhao, Y.L.; Chai, Z.F.

    2012-01-01

    Nuclear and radiochemistry is one of the frontier areas of chemistry with high impact on national security, energy supply, scientific advances, social and economic development. Nuclear and radiochemistry in China is now experiencing a renaissance, which is being strongly motivated by China's huge demand for nuclear energy. With this in review, the progress in nuclear and radiochemistry of China is selectively addressed. Some hot topics have been summarized and the main research results achieved by Chinese scientists in this field are highlighted, with emphasis on the basic nuclear chemistry, actinide and trans-actinide chemistry, chemistry of spent nuclear fuel reprocessing, radioanalytical chemistry, environmental radiochemistry and radiopharmaceutical chemistry, etc. Some measures about how to promote the radiochemical education and research in China are suggested, and future perspectives are briefly outlined as well. (orig.)

  13. Nuclear Technology Programs semiannual progress report, April-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  14. Nuclear Technology Programs semiannual progress report, April-- September 1990

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  15. The present status and prospects for the development of radiochemistry and nuclear chemistry in Poland

    International Nuclear Information System (INIS)

    Narbutt, J.; Chmielewski, A.G.

    2001-01-01

    The report deals with a short history, achievements and trends of development of radiochemistry and nuclear chemistry in the world. It also presents the main achievements and short programmes of fundamental and applied research, as well as works on technology, as delivered by more than thirty research institutes and universities in Poland. The related teaching activities of Polish academic centers has been briefly discussed. The documents enclosed [list of publications (1997-2000; list of research groups; list of apparatus] bring a more detailed representation of the Polish research centers' activity in this field. (author)

  16. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.

    Science.gov (United States)

    Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz

    2016-10-01

    The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.

  17. International conference on nuclear and radiochemistry (ICNR' 86)

    International Nuclear Information System (INIS)

    1986-11-01

    This publication contains the abstracts of the papers presented at the conference. A total of 288 abstracts are divided in the four areas: 1. Nuclear Reaction Chemistry; 2. Actinide Chemistry and Chemistry of Nuclear Fuel Cycle; 3. Radioanalytical Chemistry; 4. Radiopharmceuticals and Radiolabelled Compounds; and a General Session

  18. Geological and geotechnical investigations for nuclear power plants sites

    International Nuclear Information System (INIS)

    Alves, P.R.R.

    1984-09-01

    This dissertation presents a general methodology for the tasks of geological and geotechnical investigations, to be performed in the proposed sites for construction of nuclear Power Plants. In this work, items dealing with the standards applied to licensing of Nuclear Power Plants, with the selection process of sites and identification of geological and geotechnical parameters needed for the regional and local characterization of the area being studied, were incorporated. This dissertation also provides an aid to the writing of Technical Reports, which are part of the documentation an owner of a Nuclear Power Plant needs to submit to the Comissao Nacional de Energia Nuclear, to fulfill the nuclear installation licensing requirements. Moreover, this work can contribute to the planning of field and laboratory studies, needed to determine the parameters of the area under investigation, for the siting of Nuclear Power Plants. (Author) [pt

  19. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    1991-07-01

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  20. George de Hevesy (1885-1966). Discoverer of hafnium, founder of radioanalytical chemistry and X-ray fluorescence analysis and father of nuclear medicine

    International Nuclear Information System (INIS)

    Niese, Siegfried

    2017-01-01

    George de Hevesy known as discoverer of hafnium, founder of radioanalytical chemistry and X-ray fluorescence analysis and father of nuclear medicine has done important research work in inorganic, physical and radioanalytical and physiological chemistry as well as in geochemistry, radiation biology and medicine. When he must flee for political reasons from a country he must change his colleagues, his equipments, and the topic of his work. It is extremely surprising that he could receive important results under such circumstances even at an advanced age. (author)

  1. Actinide Sciences at ITN - Basic Studies in Chemistry with Potential Interest for Partitioning, Fuel Fabrication and More

    International Nuclear Information System (INIS)

    Almeida, M.; Dias, M.; Goncalves, A.P.; Henriques, M.S.; Lopes, E.B.; Pereira, L.C.J.; Santos, I.C.; Verbovytskyy, Y.; Waerenborgh, J.C.; Branco, J.B.; Carretas, J.M.; Cruz, A.; Ferreira, A.C.; Gasche, T.A.; Leal, J.P.; Lopes, G.; Lourenco, C.; Marcalo, J.; Maria, L.; Monteiro, B.; Mora, E.; Pereira, C.C.L.; Paiva, I.

    2010-01-01

    The current activities in the area of actinide chemistry at ITN, comprising basic research studies in inorganic and organometallic chemistry, catalysis, gas-phase ion chemistry, thermochemistry, and solid state chemistry, are briefly described. Actinide (and lanthanide) chemistry studies at ITN will be pursued connecting basic research with potential applications in nuclear and non-nuclear areas. (authors)

  2. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1990-01-01

    The research and teaching operations of the Nuclear Chemistry Division of the Dept. of Chemistry and the Dept. of Nuclear Engineering are housed at the Oregon State University Radiation Center. This facility which includes a 1.1 MW TRIGA reactor was used for 53 classes from a number of different academic departments last year. About one-half of these classes used the reactor and ∼25% of the reactor's 45 hour week was devoted to teaching. Descriptions will be given of reactor-oriented instructional programs in nuclear engineering, radiation health and nuclear chemistry. In nuclear chemistry, classes in (a) nuclear chemistry for nuclear engineers, (b) radiotracer methods, (c) elementary and advanced activation analysis, and (d) advanced nuclear instrumentation will be described in detail. The use of the facility to promote general nuclear literacy among college students, high school and grade school students and the general population will also be covered

  3. Radioactive nuclides in nuclear reactors

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1982-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around nuclear reactors. The curricula of the courses contain also chemical subject materials. With reference to the foreign curricula, a plan of educational subject material of chemistry was considered for students of the school in the previous report (JAERI-M 9827), where the first part of the plan, ''Fundamentals of Reactor Chemistry'', was reviewed. This report is a review of the second part of the plan containing fission products chemistry, actinoids elements chemistry and activated reactor materials chemistry. (author)

  4. A combinatorial chemistry approach to the investigation of cerium oxide and plutonium oxide reactions with small molecules

    Science.gov (United States)

    Brady, John T.; Warner, Benjamin P.; Bridgewater, Jon S.; Havrilla, George J.; Morris, David E.; Buscher, C. Thomas

    2000-07-01

    We are currently investigating the potential chemistry of the 3013 Standard waste storage containers. These containers are filled with waste that is a mixture of inorganic salts and plutonium oxide that has been calcined to remove water and other volatiles. There has been concern about possible pressure buildup due to the formation of hydrogen or other gases. We are utilizing a combinatorial chemistry approach to investigate a range of possible reactions that may occur in the containers with various concentrations of metal oxides and inorganic salts.

  5. Chemistry of technetium in the environment

    International Nuclear Information System (INIS)

    McFadden, K.M.

    1980-08-01

    Technetium release to the environment may occur during separation and recovery of spent nuclear fuels, or in disposal of aqueous waste from nuclear facilities, hospitals, or other users. The chemistry and sources of technetium are reviewed as a basis for prediction of its behavior in the environment

  6. Final results of the FY'78 chemistry and materials science research program review

    International Nuclear Information System (INIS)

    Frazer, J.W.

    1977-01-01

    18 projects which were selected to be sponsored by ''Chemistry Research Program'' are summarized. These include: lasers for chemical analysis; multi-element analysis systems; spectroscopic analysis of surface passivation; non-aqueous titrimetry; materials damage prediction for fiber composites; safe high energy explosives; single photon absorption reaction chemistry; reaction in shock waves; cryogenic heavy hydrogen technology; acoustic emission; metallic alloy glasses; basic study of toughness in steel; static equation-of-state at 100 GPa; transuranium element research; nuclear structure research; neutron capture gamma measurements; x-ray fluorescence analysis; and pyrochemical investigation

  7. Research program to investigate the fundamental chemistry of technetium

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, David A.; Buechele, Andrew C.; Lukens, Wayne W.; Muller, Isabelle S.; Shuh, David K.; Pegg, Ian L.

    2007-10-12

    The objective of this research is to increase the knowledge of the fundamental technetium chemistry necessary to address challenges to the safe, long-term disposal of high-level nuclear waste posed by this element. The primary issues examined during the course of this project were the behavior of technetium and its surrogate rhenium during waste vitrification and glass corrosion. Since the redox behavior of technetium can play a large role in determining its volatility, one goal of this research was to better understand the behavior of technetium in glass as a function of the redox potential of the glass melt. In addition, the behavior of rhenium was examined, since rhenium is commonly used as a surrogate for technetium in waste vitrification studies. A number of glasses similar to Hanford Low Activity Waste (LAW) glasses were prepared under controlled atmospheres. The redox state of the glass was determined from the Fe(II)/Fe(III) ratio in the cooled glass, and the speciation of technetium and rhenium was determined by x-ray absorption fine structure (XAFS) spectroscopy. The behavior of rhenium and technetium during glass alteration was also examined using the vapor hydration test (VHT).

  8. Investigation of Varied Strontium-Transuranic Precipitation Chemistries for Crossflow

    International Nuclear Information System (INIS)

    Nash, C.A.

    2000-01-01

    Precipitation chemistries for strontium and transuranic (TRU) removal have been tested for crossflow filterability and lanthanide removal with simulants of Hanford tank 241-AN-107 supernate. This is the initial work indicating the usefulness of a strontium and permanganate precipitation process as applied to the Hanford River Protection Project. Precipitations with both ferric and ferrous iron were shown to be at least two orders of magnitude less filterable than a 0.1 gpm/ft target average flux that was desired at the time. A precipitate from a strontium nitrate strike alone was found to filter easily and to make the desired average flux. Other chemistries tested included precipitant of lanthanum(III), nickel (II), calcium (II), and a redox chemistry using sodium permanganate. Of these chemistries a strontium and permanganate strike including calcium provided the highest filter flux compared to the other chemistries. It showed the most promise in lanthanide removal as well. This work provides a promising direction for further work to achieve both acceptable filterability and decontamination for Envelope C wastes to be treated by the Hanford River Protection Project. The work reported here was originally intended to satisfy needs for crossflow filter testing of a strontium and ferric precipitation method for treating Envelope C using a 241-AN-107 simulant

  9. Investigation of Varied Strontium-Transuranic Precipitation Chemistries for Crossflow

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.A.

    2000-07-27

    Precipitation chemistries for strontium and transuranic (TRU) removal have been tested for crossflow filterability and lanthanide removal with simulants of Hanford tank 241-AN-107 supernate. This is the initial work indicating the usefulness of a strontium and permanganate precipitation process as applied to the Hanford River Protection Project. Precipitations with both ferric and ferrous iron were shown to be at least two orders of magnitude less filterable than a 0.1 gpm/ft target average flux that was desired at the time. A precipitate from a strontium nitrate strike alone was found to filter easily and to make the desired average flux. Other chemistries tested included precipitant of lanthanum(III), nickel (II), calcium (II), and a redox chemistry using sodium permanganate. Of these chemistries a strontium and permanganate strike including calcium provided the highest filter flux compared to the other chemistries. It showed the most promise in lanthanide removal as well. This work provides a promising direction for further work to achieve both acceptable filterability and decontamination for Envelope C wastes to be treated by the Hanford River Protection Project. The work reported here was originally intended to satisfy needs for crossflow filter testing of a strontium and ferric precipitation method for treating Envelope C using a 241-AN-107 simulant.

  10. Chemistry and radioactivity: a century after Marie Curie

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2011-01-01

    Coupling chemistry and radioactivity has led to radiochemistry, the part of chemistry dealing with the behaviour of radioactive materials. Many activities are of concern, as well in basic research as in the fields of health and energy. They call researches going from the study of the extremely diluted radioactive material (environment) until that of the most man-made radioactive material ever produced (spent nuclear fuel from reactors). When radiochemistry is not the mirror of the traditional chemistry, it uses in radioactive surroundings its own methods based on the measurement of the emitted rays. Radiochemistry will have in the next decades a major input to prepare the nuclear energy of the future. (author)

  11. State-of-the-Art Report on the Progress of Nuclear Fuel Cycle Chemistry

    International Nuclear Information System (INIS)

    Collins, E.D.; DelCul, G.D.; Spencer, B.B.; Jubin, R.T.; Maher, C.; Kim, I.-T.; Lee, H.; Federov, Yu. S.; Saprykin, V.F.; Beznosyuk, V.I.; Kolyadin, A.B.; Baron, P.; Miguirditchian, M.; Sorel, C.; Morita, Y.; Taylor, R.; Khaperskaya, A.; Hill, C.; Malmbeck, R.; Law, J.; Angelis, G. de; Boucher, L.; Xeres, X.; Collins, E.; Mendes, E.; Lee, H.-S.; Inoue, T.; Glatz, J.P.; Kormilitsyn, M.; Uhlir, J.; Ignatiev, V.; Serp, J.; Delpech, S.

    2018-01-01

    The implementation of advanced nuclear systems requires that new technologies associated with the back end of the fuel cycle are developed. The separation of minor actinides from other fuel components is one of the advanced concepts being studied to help close the nuclear fuel cycle and to improve the long-term effects on the performance of geological repositories. Separating spent fuel elements and subsequently converting them through transmutation into short-lived nuclides should considerably reduce the long-term risks associated with nuclear power generation. R and D programs worldwide are attempting to address such challenges, and many processes for advanced reprocessing and partitioning minor actinides are being developed. This report provides a comprehensive overview of progress on separation chemistry processes, and in particular on the technologies associated with the separation and recovery of minor actinides for recycling so as to help move towards the implementation of advanced fuel cycles. The report examines both aqueous and pyro processes, as well as the status of current and proposed technologies described according to the hierarchy of separations targeting different fuel components. The process criteria that will affect technology down-selection are also reviewed, as are non-proliferation requirements. The maturity of different reprocessing techniques are assessed using a scale based on the technology readiness level, and perspectives for future R and D are reviewed

  12. Nanomaterials and nanotechnologies in nuclear energy chemistry

    International Nuclear Information System (INIS)

    Shi, W.Q.; Yuan, L.Y.; Li, Z.J.; Lan, J.H.; Zhao, Y.L.; Chai, Z.F.

    2012-01-01

    With the rapid growth of human demands for nuclear energy and in response to the challenges of nuclear energy development, the world's major nuclear countries have started research and development work on advanced nuclear energy systems in which new materials and new technologies are considered to play important roles. Nanomaterials and nanotechnologies, which have gained extensive attention in recent years, have shown a wide range of application potentials in future nuclear energy system. In this review, the basic research progress in nanomaterials and nanotechnologies for advanced nuclear fuel fabrication, spent nuclear fuel reprocessing, nuclear waste disposal and nuclear environmental remediation is selectively highlighted, with the emphasis on Chinese research achievements. In addition, the challenges and opportunities of nanomaterials and nanotechnologies in future advanced nuclear energy system are also discussed. (orig.)

  13. Present status of water chemistry in nuclear power plants

    International Nuclear Information System (INIS)

    Berge, Ph.; Fiquet, J.M.

    1991-01-01

    As operational experience increases, solutions to mitigate corrosion problems of existing plants are found. They also, hopefully, can solve the corrosion problems for future reactors when materials and design can be modified. Improvement of chemistry solved numerous early problems in PWRs (denting, pitting) and limitated other phenomena such as erosion-corrosion of steels in the secondary circuit. Chemistry has not been successful for other problems such as primary-side cracking of PWRs and has been moderately efficient for stress corrosion cracking or IGA of tubes at the support plate. Based on the experience, several recommendations for an optimum chemistry can be formulated. (author)

  14. The Uranium Chemistry Research Unit

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The article discusses the research work done at the Uranium Chemistry Research Unit of the University of Port Elizabeth. The initial research programme dealt with fundamental aspects of uranium chemistry. New uranium compounds were synthesized and their chemical properties were studied. Research was also done to assist the mining industry, as well as on nuclear medicine. Special mentioning is made of the use of technetium for medical diagnosis and therapy

  15. Overview of VVER water chemistry

    International Nuclear Information System (INIS)

    Ganesh, S.; Selvaraj, S.; Balasubramanian, M.R.; Selvavinayagam, P.; Sundar, R.S.

    2007-01-01

    Kudankulam Nuclear Power project is having twin units of 1000MWe of VVER type. This paper highlights the different analytical techniques that are followed to maintain the system chemistry within the technical specifications. This paper also briefs the different chemicals that are added to the systems and how they are monitored. Basic differences with respect to chemistry between a PHWR and VVER are also highlighted in this paper. (author)

  16. Comet Halley and interstellar chemistry

    International Nuclear Information System (INIS)

    Snyder, L.E.

    1989-01-01

    How complex is the chemistry of the interstellar medium? How far does it evolve and how has it interacted with the chemistry of the solar system? Are the galactic chemical processes destroyed, preserved, or even enhanced in comets? Are biogenic molecules formed in space and have the formation mechanisms interacted in any way with prebiotic organic chemical processes on the early earth? Radio molecular studies of comets are important for probing deep into the coma and nuclear region and thus may help answer these questions. Comets are believed to be pristine samples of the debris left from the formation of the solar system and may have been the carrier between interstellar and terrestrial prebiotic chemistries. Recent observations of Comet Halley and subsequent comets have given the author an excellent opportunity to study the relationship between interstellar molecular chemistry and cometary chemistry

  17. Current status of regulatory aspects relating to water chemistry in Japanese NPPs

    International Nuclear Information System (INIS)

    Sato, Masatoshi

    2014-01-01

    In nuclear power plants, water chemistry of cooling water is carefully monitored and controlled to keep integrity of structures, systems and components, and to reduce occupational radiation exposures. As increasing demand for advanced application of light water cooled reactors, water chemistry control plays more important roles on plant reliability. The road maps on R and D for water chemistry of nuclear power systems have been proposed along with promotion of R and D related water chemistry in Japan. In academic and engineering societies, non-governmental standards for water chemistry are going to be established. In the present paper, recent trends of water chemistry in Japan have been surveyed. The effects of water chemistry on plant safety and radiation exposures have been discussed. In addition, possible contributions of regulation regarding water chemistry control have been confirmed. Major water chemistry regulatory aspects relating to reactor safety and radiation safety are also outlined in this paper. (author)

  18. Students' Written Arguments in General Chemistry Laboratory Investigations

    Science.gov (United States)

    Choi, Aeran; Hand, Brian; Greenbowe, Thomas

    2013-01-01

    This study aimed to examine the written arguments developed by college freshman students using the Science Writing Heuristic approach in inquiry-based general chemistry laboratory classrooms and its relationships with students' achievement in chemistry courses. Fourteen freshman students participated in the first year of the study while 19…

  19. Technological aspects of the radiation chemistry

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2006-01-01

    Main technological aspects of the radiation chemistry are reviewed: network formation in polymers and caoutchouc, production of the sterile hydrogels, sterilisation of the expendable medical equipment and the environmental protection technologies (e.g. purification of the combustion gases from the sulfur oxides). Achievements of the are reviewed Institute of Nuclear Chemistry and Technology, Warsaw (Poland) in these fields are presented

  20. PWR secondary water chemistry study

    International Nuclear Information System (INIS)

    Pearl, W.L.; Sawochka, S.G.

    1977-02-01

    Several types of corrosion damage are currently chronic problems in PWR recirculating steam generators. One probable cause of damage is a local high concentration of an aggressive chemical even though only trace levels are present in feedwater. A wide variety of trace chemicals can find their way into feedwater, depending on the sources of condenser cooling water and the specific feedwater treatment. In February 1975, Nuclear Water and Waste Technology Corporation (NWT), was contracted to characterize secondary system water chemistry at five operating PWRs. Plants were selected to allow effects of cooling water chemistry and operating history on steam generator corrosion to be evaluated. Calvert Cliffs 1, Prairie Island 1 and 2, Surry 2, and Turkey Point 4 were monitored during the program. Results to date in the following areas are summarized: (1) plant chemistry variations during normal operation, transients, and shutdowns; (2) effects of condenser leakage on steam generator chemistry; (3) corrosion product transport during all phases of operation; (4) analytical prediction of chemistry in local areas from bulk water chemistry measurements; and (5) correlation of corrosion damage to chemistry variation

  1. Applications of the gas chromatography in the nuclear science and technology

    International Nuclear Information System (INIS)

    Gasco Sanchez, L.

    1972-01-01

    This paper is a review on the applications of the gas chromatography in the nuclear science and technology published up to December 1971. Its contents has been classified under the following heads; I) Radiogaschromatography, II) Isotope separation, III) Preparation of labelled molecules, IV) Nuclear fuel cycle, V) Nuclear reactor technology, VI) Irradiation chemistry, VIl) Separation of me tal compounds in gas phase, VIII) Applications of the gas chromatography carried out at the Junta de Energia Nuclear, Spain. Arapter VIII only includes the investigations carried out from January 1969 to December 1971. Previous investigations in this field has been published elsewhere. (Author)

  2. Shutdown Chemistry Process Development for PWR Primary System

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K.B. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    This study report presents the shutdown chemistry of PWR primary system to reduce and remove the radioactive corrosion products which were deposited on the nuclear fuel rods surface and the outside of core like steam generator channel head, RCS pipings etc. The major research results are the follows ; the deposition radioactive mechanism of corrosion products, the radiochemical composition, the condition of coolant chemistry to promote the dissolution of radioactive cobalt and nickel ferrite, the control method of dissolved hydrogen concentration in the coolant by the mechanical and chemical methods. The another part of study is to investigate the removal characteristics of corrosion product ions and particles by the demineralization system to suggest the method which the system could be operate effectively in shut-down purification period. (author). 19 refs., 25 figs., 48 tabs.

  3. Progress report on research and development work 1991 of the Department of Hot Chemistry, Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    1991-03-01

    In the year under review, the Institute of Hot Chemistry (IHCH) was in the midst of a thematic reorientation process. The priority of future chemical-technical work will be in the field of the development of supercriticality processes. The objective of such work consists in seeking new ways for getting rid of resistant chemical pollutants (halogenated organic compounds). The following projects are presented in detail: 1) Waste control in the environment (communal waste management; water and soil; emission-reducing processes; highly polluted soils); 2) Solid state and materials research (chemistry of materials research); basic physical research (neutrino and particle physics); 3) Nuclear waste management (concluding work on reprocessing technology), and 4) Other research projects (Institute-related research). The Annex lists the publications made by the IHCH staff. (BBR) [de

  4. Proceedings of the 4. National Meeting on Analytical Chemistry - Abstracts

    International Nuclear Information System (INIS)

    1987-01-01

    The 4. National Meeting on Analytical Chemistry includes analysis of nuclear interest elements with nuclear and non nuclear methods and the elements not interest of nuclear energy with nuclear methods. The materials analysed are rocks, ores, metals alloys, waters, plants and biological materials. (C.G.C.)

  5. Coolant circuit water chemistry of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tilky, Peter; Doma, Arpad

    1985-01-01

    The numerous advantages of the proper selection of water chemistry parameters including low corrosion rate of the structural materials, hence the low-level activity build-up, depositions, radiation doses were emphasized. Major characteristics of water chemistry applied to the primary coolant of pressurized water reactors including neutral, slightly basic and strong basic ones are discussed. Boric acid is widely used to control reactivity. Primary coolant water chemistry of WWER type reactors which is based on the addition of ammonia and potassium hydroxide to boric acid is compared with that of other reactors. The demineralization of the total condensate of the steam turbines became a general trend in the water chemistry of the secondary coolant circuits. (V.N.)

  6. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  7. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  8. Highlights of nuclear chemistry 1994

    International Nuclear Information System (INIS)

    1994-12-01

    Highlights were: 1. Fission product release: benchmark calculations for severe nuclear accidents; 2. Thermochemical data for reactor materials and fission products; 3. thermochemical calculations on fuel of the high-temperature gas-cooled reactor; 4. Formation of organic tellurides during nuclear accidents?; 5. Reaction of tellurium with Zircaloy-4; 6. Transmutation of fission products; 7. The thermal conductivity of high-burnup UO 2 fuel; 8. Tritium retention in graphite. (orig./HP)

  9. Water chemistry experience of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Ishigure, Kenkichi; Abe, Kenji; Nakajima, Nobuo; Nagao, Hiroyuki; Uchida, Shunsuke.

    1989-01-01

    Japanese LWRs have experienced several troubles caused by corrosions of structural materials in the past ca. 20 years of their operational history, among which are increase in the occupational radiation exposures, intergranular stress corrosion cracking (IGSCC) of stainless steel piping in BWR, and steam generator corrosion problems in PWR. These problems arised partly from the improper operation of water chemistry control of reactor coolant systems. Consequently, it has been realized that water chemistry control is one of the most important factors to attain high availability and reliability of LWR, and extensive researches and developments have been conducted in Japan to achieve the optimum water chemistry control, which include the basic laboratory experiments, analyses of plant operational data, loop tests in operating plants and computer code developments. As a result of the continuing efforts, the Japanese LWR plants have currently attained a very high performance in their operation with high availability and low occupational radiation exposures. A brief review is given here on the R and D of water chemistry in Japan. (author)

  10. Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plant (FUWAC)

    International Nuclear Information System (INIS)

    2011-10-01

    This report presents the results of the Coordinated Research Project (CRP) on Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plants (FUWAC, 2006-2009). It provides an overview of the results of the investigations into the current state of water chemistry practice and concerns in the primary circuit of water cooled power reactors including: corrosion of primary circuit materials; deposit composition and thickness on the fuel; crud induced power shift; fuel oxide growth and thickness; radioactivity buildup in the reactor coolant system (RCS). The FUWAC CRP is a follow-up to the DAWAC CRP (Data Processing Technologies and Diagnostics for Water Chemistry and Corrosion Control in Nuclear Power Plants 2001-2005). The DAWAC project improved the data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (NPPs). With the improved methods for controlling and monitoring water chemistry now available, it was felt that a review of the principles of water chemistry management should be undertaken in the light of new materials, more onerous operating conditions, emergent issues such as CIPS, also known as axial offset anomaly (AOA) and the ageing of operating power plant. In the framework of this CRP, water chemistry specialists from 16 nuclear utilities and research organizations, representing 15 countries, exchanged experimental and operational data, models and insights into water chemistry management. The CD-ROM attached to this IAEA-TECDOC includes the report itself, detailed progress reports of three Research Coordination Meetings (RCMs) (Annexes I-III) and the reports and presentations made during the project by the participants.

  11. Chemistry Division: Annual progress report for period ending March 31, 1987

    International Nuclear Information System (INIS)

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics

  12. Progress report, Chemistry and Materials Division, October 1 to December 31, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Interim research results are reported in solid state science (ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis), general chemistry (analytical chemistry, hydrogen-water exchange, radioactivity measurements, electrochemistry), physical chemistry (radiation and isotope chemistry), materials science (surface chemistry and metal physics), and university research (deuterium exchange and zirconium alloy properties). (E.C.B.)

  13. Advances in water chemistry control for BWRs and PWRs

    International Nuclear Information System (INIS)

    Wood, C.J.

    1997-01-01

    This paper is an overview of the effects of water chemistry developments on the current operation of nuclear power plants in the United States, and the mitigation of corrosion-related degradation processes and radiation field build-up processes through the use of advanced water chemistry. Recent modifications in water chemistry to control and reduce radiation fields are outlined, including revisions to the EPRI water chemistry guidelines for BWRs and PWR primary and secondary systems. The change from a single water chemistry specification for all plants to a set of options, from which a plant-specific chemistry programme can be defined, is described. (author)

  14. Nuclear-physical methods in macro- and microanalytical investigations of contamination with radionuclides at Semipalatinsk Nuclear Test Site

    International Nuclear Information System (INIS)

    Solodukhin, V.P.

    2005-01-01

    A complex of nuclear-physical methods developed in the Institute of Nuclear Physics of Kazakhstan National Nuclear Center for the investigations of the rate, character and peculiarities of contamination with radionuclides of the Semipalatinsk Nuclear Test Site (SNTS) is presented. The developed method combines both macroinvestigations (radionuclide analysis, NAA, XRFA, ESR- and NGR-spectroscopy) and microinvestigations (MS, micro-PIXE, electron microscopy). The results of the investigations at the main SNTS test sites 'Opytnoye pole' and 'Degelen' are presented. (author)

  15. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  16. Closed cooling water chemistry guidelines revision

    International Nuclear Information System (INIS)

    McElrath, Joel; Breckenridge, Richard

    2014-01-01

    This second revision of the Closed Cooling Water Chemistry Guideline addresses the use of chemicals and monitoring methods to mitigate corrosion, fouling, and microbiological growth in the closed cooling-water (CCW) systems of nuclear and fossil-fueled power plants. This revision has been endorsed by the utility chemistry community and represents another step in developing a more proactive chemistry program to limit or control closed cooling system degradation with increased consideration of corporate resources and plant-specific design and operating concerns. These guidelines were developed using laboratory data, operating experience, and input from organizations and utilities within and outside of the United States of America. It is the intent of the Revision Committee that these guidelines are applicable to all nuclear and fossil-fueled generating stations around the world. A committee of industry experts—including utility specialists, Institute of Nuclear Power Operations representatives, water-treatment service-company representatives, consultants, a primary contractor, and EPRI staff—collaborated in reviewing available data on closed cooling-water system corrosion and microbiological issues. Recognizing that each plant owner has a unique set of design, operating, and corporate concerns, the Guidelines Committee developed a methodology for plant-specific optimization. The guideline provides the technical basis for a reasonable but conservative set of chemical treatment and monitoring programs. The use of operating ranges for the various treatment chemicals discussed in this guideline will allow a power plant to limit corrosion, fouling, and microbiological growth in CCW systems to acceptable levels. The guideline now includes closed cooling chemistry regimes proven successful in use in the international community. The guideline provides chemistry constraints for the use of phosphates control, as well as pure water with pH control. (author)

  17. Fuel Chemistry Division: progress report for 1987

    International Nuclear Information System (INIS)

    1990-01-01

    The progress of research and development activities of the Fuel Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during 1987 is reported in the form of summaries which are arranged under the headings: Fuel Development Chemistry, Chemistry of Actinides, Chemical Quality Control of Fuel, and Studies related to Nuclear Material Accounting. A list of publications by the members of the Division during the report period is given at the end of the report. (M.G.B.). refs., 15 figs., 85 tabs

  18. Nuclear Technology Programs semiannual progress report, April-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. (ed.)

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  19. Nuclear technology programs. Semiannual progress report, April--September 1991

    International Nuclear Information System (INIS)

    1993-07-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  20. Nevada Nuclear Waste Storage Investigations, 1986--1987

    International Nuclear Information System (INIS)

    Tamura, A.T.; Lorenz, J.J.

    1988-07-01

    This bibliography contains information on the Nevada Nuclear Waste Storage Investigations (NNWSI) that was added to the DOE Energy Data Base from January 1986 through December 1987. It is a supplement to the first bibliography, Nevada Nuclear Waste Storage Investigations, 1977--1985 (DOE/TIC-3406), and includes all information in the preceding two updates, DOE/TIC-3406(Add.1) and DOE/TIC-3406(Add.2). The bibliography is categorized by principal NNWSI Project participant organizations. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's bibliography list and are listed in chronological order. The following indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, Report Number, Order Number Correlation, and Key Word in Context

  1. Chemistry Division: Annual progress report for period ending March 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics. (DLC)

  2. Vesper - Venus Chemistry and Dynamics Orbiter - A NASA Discovery Mission Proposal: Submillimeter Investigation of Atmospheric Chemistry and Dynamics

    Science.gov (United States)

    Chin, Gordon

    2011-01-01

    Vesper conducts a focused investigation of the chemistry and dynamics of the middle atmosphere of our sister planet- from the base of the global cloud cover to the lower thermosphere. The middle atmosphere controls the stability of the Venus climate system. Vesper determines what processes maintain the atmospheric chemical stability, cause observed variability of chemical composition, control the escape of water, and drive the extreme super-rotation. The Vesper science investigation provides a unique perspective on the Earth environment due to the similarities in the middle atmosphere processes of both Venus and the Earth. Understanding key distinctions and similarities between Venus and Earth will increase our knowledge of how terrestrial planets evolve along different paths from nearly identical initial conditions.

  3. Textbook errors, 135: nuclear beta decay

    International Nuclear Information System (INIS)

    Loveland, W.

    1979-01-01

    Most general chemistry textbooks devote a chapter to the discussion of the subject of nuclear chemistry. Unfortunately, over 90% of these chapters contain serious conceptual errors in their treatment of fundamental nuclear processes. A correct but brief treatment of the subject is given

  4. Maintenance, outages and chemistry really can be compatible

    International Nuclear Information System (INIS)

    Roberts, J.G.; Deaconescu, R.

    2006-01-01

    'Full text:' In their address to the Canadian Nuclear Society, Bruce Power's Chemistry Design staff will describe how maintenance and outages can impact negatively on chemistry control and asset protection. Considerations of material impacts and material condition have significant influences on the approach to, and control of, chemistry. This applies equally to operation as it does during unit and/or system outages. Ideas will be presented as to how to facilitate making maintenance, outages and chemistry compatible. It will be shown how the lack of such an approach can lead to disastrous results. (author)

  5. Shanghai institute of nuclear research, academia sinica annual report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Annual Report is a comprehensive review of achievements made by Shanghai Institute of Nuclear Research (SINR), Academia Sinica in 1991, Which concerns nuclear physics (theories, experimentation, and application), nuclear chemistry (radiochemistry, radiopharmaceuticals, labelled compounds, analytical chemistry), radiation chemistry, accelerator physics and technology, nuclear detectors, computer application and maintenance, laboratory engineering, radiation protection and waste treatment. The maintenance, reconstruction and operation of its major facilities are also described

  6. Development of chemistry management for Onagawa Nuclear Power Plant

    International Nuclear Information System (INIS)

    Honda, Kazuaki; Sato, Junichi; Maeda, Katsuji; Nagasawa Katsumi; Hashiura, Sintaro

    2000-01-01

    Onagawa nuclear power plant developed a system for chemistry management of prevention and preservation of power plant. It is able to early detection of data change for prevention of plant. The system supports management of chemical custodian and consists of four parts such as management of water quality of plant , management of liquid waste, management of vapor waste and estimation of performance of chemical equipment. The system has three functions: management of operation, estimation of omen and examination of origin. The function of management of operation supports the routine inspection of chemical custodian by increasing efficiency of analytical and process data collection, practical use of data,, accuracy of data and rapid analysis. Estimation function of omen observes data fetched via online during 24 hr, indicates the small primary change and determines the origins. Examination function of origin supports their quick correspondences at accident and certificates the detailed origins. Histories of development of the system, business systemization, system construction, system functions are explained.The diagram of background of system development, system construction, management functions, verification of analytical data, automatic continuos monitoring diagram, screen of detection of abnormal phenomena, classified diagram of origins for change of water quality in reactor were developed. (S.Y.)

  7. Proceedings of the international conference on vistas in chemistry: book of abstracts

    International Nuclear Information System (INIS)

    Ganesan, V.; Anthonysamy, S.; Joseph, Kitheri

    2011-01-01

    This conference was being organised as part of celebration of the hundredth year of Nobel Prize awarded to Madame Curie. Chemistry plays a vital role in all walks of life. In particular, chemistry plays a prominent role in the nuclear energy programmes, be it the development of fuels, coolants, control and shielding materials or various structural materials. Chemistry plays a central role in closing the nuclear fuel cycle for efficient usage of the available precious fuel resources. Papers relevant to INIS are indexed separately

  8. Investigation and analysis of nuclear fuel cycle back-end technology development

    International Nuclear Information System (INIS)

    Song, Kee Chan

    2012-01-01

    The R and D status of the nuclear fuel cycle beckoned was investigated and analyzed for Korea and overseas nuclear countries. The technical achievement and future plan of Korea were outlined, and up-to-date R and D status and strategies of overseas nuclear countries were investigated and analyzed. Ο United States Ο France and European Union Ο Japan Ο Russia Ο China And the recent trend of the multilateral approach in the nuclear fuel cycle backoned was arranged

  9. Research activity of institute of physical chemistry of Russian Academy of sciences in the field of nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pikaev, A.K. [Institute of Physical Chemistry of Russian Academy of Sciences, Moscow (Russian Federation)

    2000-07-01

    The report is a brief review of the most important directions in research activity of the Institute of Physical Chemistry of RAS (Moscow) in the field of nuclear fuel cycle. The main attention is paid to researches and developments on liquid radioactive waste management including the removal of wastes to deep geological formations and the immobilization of the wastes. In particular, the data from the study on the properties of new, basaltic-like matrices for the immobilization are presented. The results of research on gas evolution from the systems modeling liquid high-level radioactive wastes are considered. The separation of some radionuclides from irradiated nuclear and the production of radiation sources by various methods are discussed. (author)

  10. Chemistry Programme for Water Cooled Nuclear Power Plants. Specific Safety Guide (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This publication provides guidance on establishing a high standard chemistry programme in accordance with plant safety policy and regulatory requirements. It will be useful to managers of operating organizations and other staff responsible for supporting or monitoring plant activities and for oversight of the plant chemistry programme, as well as to regulatory bodies. Contents: 1. Introduction; 2. Functions, responsibilities and interfaces; 3. Chemistry programme; 4. Chemistry control; 5. Chemistry aspects of radiation exposure optimization; 6. Chemistry surveillance; 7. Management of chemistry data; 8. Training and qualification; 9. Quality control of chemicals and other substances

  11. Alkaline-earth metal phenylphosphonates and their intercalation chemistry

    Czech Academy of Sciences Publication Activity Database

    Melánová, Klára; Beneš, L.; Svoboda, J.; Zima, Vítězslav; Pospíšil, M.; Kovář, P.

    2018-01-01

    Roč. 47, č. 9 (2018), s. 2867-2880 ISSN 1477-9226 R&D Projects: GA ČR(CZ) GA17-10639S Institutional support: RVO:61389013 Keywords : intercalation * layered compounds * alkaline-earth metal phenylphosphonates Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.029, year: 2016

  12. Electron tunneling in chemistry

    International Nuclear Information System (INIS)

    Zamaraev, K.I.; Khajrutdinov, R.F.; Zhdanov, V.P.; Molin, Yu.N.

    1985-01-01

    Results of experimental and theoretical investigations are outlined systematically on electron tunnelling in chemical reactions. Mechanism of electron transport to great distances is shown to be characteristic to chemical compounds of a wide range. The function of tunnel reactions is discussed for various fields of chemistry, including radiation chemistry, electrochemistry, chemistry of solids, chemistry of surface and catalysis

  13. Whistleblowers ask Congress to investigate TVA's nuclear power program

    International Nuclear Information System (INIS)

    Lane, E.

    1993-01-01

    Congress should investigate the Tennessee Valley Authority's nuclear power plant construction and operations programs as soon as possible, a coalition of Tennessee environmentalists and whistleblowers told reporters at a press conference in Washington, DC. The Foundation for Global Sustainability and four employees of TVA nuclear plants called for congressional action because they contend the Nuclear Regulatory Commission and the Department of Labor have failed to act to protect whistleblowers who report nuclear safety problems. The foundation contends the economics of nuclear plant construction by TVA do not make sense and in the rush to finish the Watts Bar nuclear plant, which has been under construction for 20 years, TVA has ignored safety issues

  14. Review of Investigations on Site Selection for Nuclear Power Plants in Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Malbasa, N [Ekonerg, Zagreb (Croatia)

    2008-07-01

    A review of site investigation for nuclear facilities in the Republic of Croatia that had been performed from 1964, when investigation started for the first nuclear power plant, to 1994 when the activities were stopped, is presented therein. Brief results of the main investigation were presented including the Tanja site on the Danube upstream of Vukovar. It is the best of all the investigated locations for nuclear power plant in Croatia. The review of results for site selection of low and intermediate level of radioactive waste disposal is also given. The position of nuclear power plants in the strategic documents of the Republic of Croatia was analysed. It is concluded that the status of nuclear facilities in the main strategic documents must be improved because the energy future in Croatia - as almost in all European countries - could hardly be successful without any further development of nuclear energy.(author)

  15. Review of Investigations on Site Selection for Nuclear Power Plants in Croatia

    International Nuclear Information System (INIS)

    Malbasa, N.

    2008-01-01

    A review of site investigation for nuclear facilities in the Republic of Croatia that had been performed from 1964, when investigation started for the first nuclear power plant, to 1994 when the activities were stopped, is presented therein. Brief results of the main investigation were presented including the Tanja site on the Danube upstream of Vukovar. It is the best of all the investigated locations for nuclear power plant in Croatia. The review of results for site selection of low and intermediate level of radioactive waste disposal is also given. The position of nuclear power plants in the strategic documents of the Republic of Croatia was analysed. It is concluded that the status of nuclear facilities in the main strategic documents must be improved because the energy future in Croatia - as almost in all European countries - could hardly be successful without any further development of nuclear energy.(author)

  16. Numerical Verification Of Equilibrium Chemistry

    International Nuclear Information System (INIS)

    Piro, Markus; Lewis, Brent; Thompson, William T.; Simunovic, Srdjan; Besmann, Theodore M.

    2010-01-01

    A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing boundary conditions in heat and mass transport modules. However, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes.

  17. Modelling of water-rock interaction at TVO investigation sites

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Leino-Forsman, H.

    1992-12-01

    The geochemistry of the groundwater at the Kivetty, Syyry and Olkiluoto site investigation areas in Finland for nuclear waste disposal is evaluated. The hydrogeological data is collected from boreholes drilled down to 100-m depth into crystalline bedrock. The interpretation is based on groundwater chemistry and isotope data, mineralogical data, and the structure and hydrology of the bedrock, using correlation diagrams and the thermodynamic calculations (PHREEQE,EQ3NR). The hydrogeochemistry and major processes controlling the groundwater chemistry are discussed

  18. Nuclear technology programs; Semiannual progress report, October 1989--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  19. Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plant (FUWAC). Additional Information

    International Nuclear Information System (INIS)

    2011-10-01

    This report presents the results of the Coordinated Research Project (CRP) on Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plants (FUWAC, 2006-2009). It provides an overview of the results of the investigations into the current state of water chemistry practice and concerns in the primary circuit of water cooled power reactors including: corrosion of primary circuit materials; deposit composition and thickness on the fuel; crud induced power shift; fuel oxide growth and thickness; radioactivity buildup in the reactor coolant system (RCS). The FUWAC CRP is a follow-up to the DAWAC CRP (Data Processing Technologies and Diagnostics for Water Chemistry and Corrosion Control in Nuclear Power Plants 2001-2005). The DAWAC project improved the data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (NPPs). With the improved methods for controlling and monitoring water chemistry now available, it was felt that a review of the principles of water chemistry management should be undertaken in the light of new materials, more onerous operating conditions, emergent issues such as CIPS, also known as axial offset anomaly (AOA) and the ageing of operating power plant. In the framework of this CRP, water chemistry specialists from 16 nuclear utilities and research organizations, representing 15 countries, exchanged experimental and operational data, models and insights into water chemistry management. This CD-ROM attached to the printed IAEA-TECDOC includes the report itself, detailed progress reports of three Research Coordination Meetings (RCMs) (Annexes I-III) and the reports and presentations made during the project by the participants.

  20. Chemistry Division : Annual progress report of 1974

    International Nuclear Information System (INIS)

    1974-01-01

    Research and development activities (during 1974) of the Chemistry Division of the Bhabha Atomic Research Centre, Bombay, are described. Some of the activities of particular interest to nuclear science and technology are: (1) chemistry-based problems of the operating power reactors such as development of a decontaminating solution for power reactors, correlation of iodine-131 levels in the primary heat transport system of a reactor with its operation (2) release of fission gases like xenon from ceramic fuels and (3) radiation chemistry of nitrate solutions (M.G.B.)

  1. Green chemistry using radiotracers at SINP

    International Nuclear Information System (INIS)

    Lahiri, Susanta

    2006-01-01

    Green chemistry is utilization of set of principles, which restricts the use, or generation of hazardous substances. In this aim, it is necessary to develop alternative methods, or to find greener reagents for minimum utilization of environmentally hostile substances. Radiotracers can be effectively utilized for development of such methods. This article describes the current status of Green Chemistry research using accelerator/reactor produced radionuclides at Saha Institute of Nuclear Physics, Kolkata, India. (author)

  2. Maintenance, outages and chemistry really can be compatible

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.G.; Deaconescu, R. [Bruce Power, Tiverton, Ontario (Canada)

    2006-07-01

    'Full text:' In their address to the Canadian Nuclear Society, Bruce Power's Chemistry Design staff will describe how maintenance and outages can impact negatively on chemistry control and asset protection. Considerations of material impacts and material condition have significant influences on the approach to, and control of, chemistry. This applies equally to operation as it does during unit and/or system outages. Ideas will be presented as to how to facilitate making maintenance, outages and chemistry compatible. It will be shown how the lack of such an approach can lead to disastrous results. (author)

  3. Investigative radiochemistry. A key element in nuclear forensics

    International Nuclear Information System (INIS)

    Mayer, K.; Wallenius, M.; Varga, Z.; Wiss, T.; Fanghaenel, T.

    2011-01-01

    Since the fall of the Iron Curtain illicit trafficking of nuclear and radioactive material has become an issue of concern both on the political and the scientific level. Seized material may be analysed in order to obtain clues on its origin and intended use and to prevent diversion of material from the same source in the future. Nuclear materials (uranium or plutonium) are of particular worry due to the nuclear proliferation risk associated with the material. Nuclear forensic investigations are aimed at the fact that nuclear material carries (inherent) information on its history, including on its origin and the processes applied for its production. Important conclusions can be drawn from decay products, activation products and fission products. Chemical impurities and the isotopic composition of certain major and minor constituents may provide additional information. Comparison of the measured results with nuclear material databases may yield evidence on the production site. The paper will describe the methodologies developed for addressing the above issues, focussing on radiochemical methods. Examples of nuclear forensic casework will illustrate the experience gathered in these areas. (orig.)

  4. Fourth Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group

    International Nuclear Information System (INIS)

    Schwantes, J.M.; Reilly, D.; Marsden, O.

    2018-01-01

    The Nuclear Forensics International Technical Working Group is a community of nuclear forensic practitioners who respond to incidents involving nuclear and other radioactive material out of regulatory control. The Group is dedicated to advancing nuclear forensic science in part through periodic participation in materials exercises. The Group completed its fourth Collaborative Materials Exercise in 2015 in which laboratories from 15 countries and one multinational organization analyzed three samples of special nuclear material in support of a mock nuclear forensic investigation. This special section of the Journal for Radioanalytical and Nuclear Chemistry is devoted to summarizing highlights from this exercise. (author)

  5. Progress report, Chemistry and Materials Division, January 1 to March 31, 1976

    International Nuclear Information System (INIS)

    1976-05-01

    Interim results are reported in research fields roughly classified as ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis, analytical chemistry, deuterium separation, radioactivity measurement, radiation and isotope chemistry, and surface chemistry and metal physics, primarily of zirconium alloys. (E.C.B.)

  6. Progress report, Chemistry and Materials Division, January 1 to March 31, 1977

    International Nuclear Information System (INIS)

    1977-04-01

    Results are described of research on ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis, computer calculating methods, analytical chemistry, deuterium exchange, radioactivity measurement, electrochemistry, mass spectrometry and fuel analysis, radiation chemistry, surface chemistry, and properties of zirconium base alloys. (E.C.B.)

  7. Twenty years of chemistry associated with the needs and utilization of nuclear reactors at the 'Boris Kidric' Institute of nuclear sciences, Vinca, Yugoslavia; Dvadeset godina hemije vezane za potrebe i koriscenje nuklearnih reaktora u Institutu za nuklearne nauke 'Boris kidric' i Vinci

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-07-01

    This publication covers nine review papers on the following topics related to the needs and utilization of nuclear reactors in the Boris Kidric Institute of nuclear sciences during previous twenty years: radiochemistry, hot atom chemistry, isotope production, spent nuclear fuel reprocessing, chemistry of transuranium elements; liquid radioactive waste processing, purification of reactor coolant water by inorganic ion exchangers, research related to deuterium concentration processes, and chemical dosimetry at the RA reactor. [Serbo-Croat] Ova publikacija obuhvata devet radova, po sledecim naslovima, a odnose se na potrebe i uslove nuklearnih reaktora u Institutu za nuklearne nauke 'Boris Kidric' tokom prethodnih dvadeset godina: radiohemija, hemija vruceg atoma, proizvodnja radioaktivnih izotopa, prerada isluzenog nuklearnog goriva, hemija transuranskih elemenata, obrada radioaktivnih otpadnih voda, preciscavanje vode za hladjenje nuklearnih reaktora pomocu neorganskih jonoizmenjivaca, istrazivanje procesa za koncentrovanje deuterijuma i hemijska dozimetrija reaktora RA.

  8. Coordination polymers: trapping of radionuclides and chemistry of tetravalent actinides (Th, U) carboxylates

    International Nuclear Information System (INIS)

    Falaise, Clement

    2014-01-01

    The use of nuclear energy obviously raises the question of the presence of radionuclides in the environment. Currently, their mitigation is a major issue associated with nuclear chemistry. This thesis focuses on both the trapping of radionuclides by porous solids called Metal-Organic Frameworks (MOF) and the crystal chemistry of the carboxylate of tetravalent actinides (AnIV). The academic knowledge of the reactivity of carboxylate of AnIV could help the understanding of actinides speciation in environment. We focused on the sequestration of iodine by aluminum based MOF. The functionalization (electron-donor group) of the MOF drastically enhances the iodine capture capacity. The removal of light actinides (Th and U) from aqueous solution was also investigated as well as the stability of (Al)-MOF under γ radiation. More than twenty coordination polymers based on tetravalent actinides have been synthesized and characterized by single crystal X-ray diffraction. The use of controlled hydrolysis promotes the formation of coordination polymers exhibiting polynuclear cluster ([U 4 ], [Th 6 ], [U 6 ] and [U 38 ]). In order to understand the formation of the largest cluster, the ex-situ study of the solvo-thermal synthesis of compound {U 38 } has also been investigated. (author)

  9. Proceedings of the DAE-BRNS fifth interdisciplinary symposium on materials chemistry

    International Nuclear Information System (INIS)

    Jafar, Mohsin; Tyagi, Adish; Tyagi, Deepak

    2014-12-01

    The focus of the present symposium on materials chemistry was on research areas in materials chemistry like: nuclear materials; high purity materials; nanomaterials and clusters; carbon based materials; fuel cell materials and other electro-ceramics; biomaterials; polymers and soft condensed matter; materials for energy conversion; thin films and surface chemistry; magnetic materials; catalysis; chemical sensors; organic and organometallic compounds; computational material chemistry etc. Papers relevant to INIS are indexed separately

  10. Nuclear and radiochemistry, 3rd edition

    International Nuclear Information System (INIS)

    Friedlander, G.; Kennedy, J.W.; Macias, E.S.; Miller, J.M.

    1981-01-01

    A broad coverage of radioactivity and nuclear phenomena fundamentals is presented, followed by discussions of applications in such fields as basic chemistry, biology, medicine, earth and space sciences. Following an introductory historical chapter, the basic fundamentals of nuclear properties, radioactive growth and decay, and nuclear reactions are covered in the first five chapters. Chapters 6-10 deal mainly with topics essential to the practicing radiochemist. They include discussion of interactions of radiation with matter, radiation detection and measurement, techniques in nuclear chemistry, statistics and radioactivity and nuclear models. Applications of these disciplines in the various fields noted above together with chapters on nuclear energy and sources of nuclear bombarding particles complete the 15 chapters of the book

  11. The application of artificial intelligence chemistry diagnostic system to nuclear power plants

    International Nuclear Information System (INIS)

    Chen Meizhen

    1996-01-01

    By processing water chemistry data to diagnose sensor and equipment malfunctions in realtime, artificial intelligence chemistry diagnostic system helps to reduce the plant downtime due to steam generator tubing failures and other accidents. A typical processing system of water chemistry data is presented

  12. The redox chemistry of neptunium in gamma-irradiated aqueous nitric acid in the presence of an organic phase

    Czech Academy of Sciences Publication Activity Database

    Mincher, B.J.; Přeček, Martin; Paulenova, A.

    2016-01-01

    Roč. 308, č. 3 (2016), s. 1005-1009 ISSN 0236-5731 R&D Projects: GA MŠk EE2.3.30.0057 Grant - others:OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : neptunium * redox chemistry * radiation chemistry * solvent extraction Subject RIV: CH - Nuclear ; Quantum Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.282, year: 2016

  13. 2012 RADIATION CHEMISTRY GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR, JULY 28, - AUGUST 3, 2012

    Energy Technology Data Exchange (ETDEWEB)

    y LaVerne

    2012-08-03

    The overarching objective of this conference is to catalyze the interchange of new ideas and recent discoveries within the basic radiation sciences of physics, chemistry, and biology, and to facilitate translating this knowledge to applications in medicine and industry. The 9 topics for the GRC are: "œFrom Energy Absorption to Disease", "œBiodosimetry after a Radiological Incident," "œTrack Structure and Low Energy Electrons," "Free Radical Processes in DNA and Proteins," "Irradiated Polymers for Industrial/ Medical Applications," "Space Radiation Chemistry/Biology," "Nuclear Power and Waste Management," "Nanoparticles and Surface Interfaces", and the "Young Investigator" session.

  14. Investigation of uranium molecular species using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Curreli, Davide [Univ. of Illinois, Urbana, IL (United States). Dept. of Nuclear, Plasma, and Radiological Engineering

    2017-07-12

    The goal of this project is to investigate the dynamic evolution of uranium oxide (UOx) molecular species in a rapidly cooling low-temperature plasma using a coupled experimental and modeling approach. Our purpose is to develop quantitative constraints on the UOx phase chemistry under physical conditions similar to that of a nuclear fireball at the time of debris condensation. This work is motivated by a need to better understand the factors controlling uranium chemical fractionation in post-detonation nuclear debris.

  15. Nuclear technology programs semiannual progress report, April--September 1989

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1991-08-01

    This document reports on the work done by the Nuclear Technology Program of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1989. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with developing a process for separating the organic and inorganic constitutents of the red-water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories. 154 refs., 154 figs., 100 tabs

  16. Green chemistry: to rethink chemistry for tomorrow's world. Press briefing of 20 January 2015

    International Nuclear Information System (INIS)

    Legrand, Francois

    2015-01-01

    This document discusses various issues related to the development of the green chemistry sector, and mentions and presents activities performed by the CEA in this respect. A first part outlines how green chemistry is an answer to stakes for a sustainable development. The second part addresses metal recycling: recovery of silver from photovoltaic cells, avoiding tensions related to rare earth supply. The third part discusses how to replace dangerous or costly compounds (chromium in aircraft paintings, platinum in fuel cells, ruthenium in photovoltaic cells, rare earth in magnetic wire). The fourth part addresses how to transform wastes into useful products (production of formamides, of aromatic compounds, and of methanol, respectively from waste recycling, natural lignin, and CO_2). The fifth part presents new concepts for chemical synthesis: chemistry under ultrasounds, production of hydrogen from water. The sixth part presents contributions of life sciences to green chemistry: reduction of carbon dioxide emissions, bioremediation (biology for soil rehabilitation), production of molecules of interest by using micro algae, enzymes or bacteria. The last part discusses issues which outline that chemistry is at the heart of challenges for a sustainable nuclear in terms of materials, for a closed fuel cycle, in terms of fuel cycle processes, of installation sanitation and dismantling. Appendices formulate 5 societal challenges for green chemistry, and 12 background principles of green chemistry

  17. Effect of water chemistry improvement on flow accelerated corrosion in light-water nuclear reactor

    International Nuclear Information System (INIS)

    Sugino, Wataru; Ohira, Taku; Nagata, Nobuaki; Abe, Ayumi; Takiguchi, Hideki

    2009-01-01

    Flow Accelerated Corrosion (FAC) of Carbon Steel (CS) piping has been one of main issues in Light-Water Nuclear Reactor (LWRs). Wall thinning of CS piping due to FAC increases potential risk of pipe rupture and cost for inspection and replacement of damaged pipes. In particular, corrosion products generated by FAC of CS piping brought steam generator (SG) tube corrosion and degradation of thermal performance, when it intruded and accumulated in secondary side of PWR. To preserve SG integrity by suppressing the corrosion of CS, High-AVT chemistry (Feedwater pH9.8±0.2) has been adopted to Tsuruga-2 (1160 MWe PWR, commercial operation in 1987) in July 2005 instead of conventional Low-AVT chemistry (Feedwater pH 9.3). By the High-AVT adoption, the accumulation rate of iron in SG was reduced to one-quarter of that under conventional Low-AVT. As a result, a tendency to degradation of the SG thermal efficiency was improved. On the other hand, it was clarified that High-AVT is ineffective against Flow Accelerated Corrosion (FAC) at the region where the flow turbulence is much larger. By contrast, wall thinning of CS feed water pipes due to FAC has been successfully controlled by oxygen treatment (OT) for long time in BWRs. Because Magnetite film formed on CS surface under AVT chemistry has higher solubility and porosity in comparison with Hematite film, which is formed under OT. In this paper, behavior of the FAC under various pH and dissolved oxygen concentration are discussed based on the actual wall thinning rate of BWR and PWR plant and experimental results by FAC test-loop. And, it is clarified that the FAC is suppressed even under extremely low DO concentration such as 2ppb under AVT condition in PWR. Based on this result, we propose the oxygenated water chemistry (OWC) for PWR secondary system which can mitigate the FAC of CS piping without any adverse effect for the SG integrity. Furthermore, the applicability and effectiveness of this concept developed for FAC

  18. Improvements of primary coolant shutdown chemistry and reactor coolant system cleanup

    International Nuclear Information System (INIS)

    Gaudard, G.; Gilles, B.; Mesnage, F.; Cattant, F.

    2002-01-01

    In the framework of a radiation exposure management program entitled >, EDF aims at decreasing the mass dosimetry of nuclear power plants workers. So, the annual dose per unit, which has improved from 2.44 m.Sv in 1991 to 1.08 in 2000, should target 0.8 mSv in the year 2005 term in order to meet the results of the best nuclear operators. One of the guidelines for irradiation source term reduction is the optimization of operation parameters, including reactor coolant system (RCS) chemistry in operation, RCS shutdown chemistry and RCS cleanup improvement. This paper presents the EDF strategy for the shutdown and start up RCS chemistry optimization. All the shutdown modes have been reviewed and for each of them, the chemical specifications will be fine tuned. A survey of some US PWRs shutdown practices has been conducted for an acid and reducing shutdown chemistry implementation test at one EDF unit. This survey shows that deviating from the EPRI recommended practice for acid and reducing shutdown chemistry is possible and that critical path impact can be minimized. The paper also presents some investigations about soluble and insoluble species behavior and characterization; the study focuses here on 110m Ag, 122 Sb, 124 Sb and iodine contamination. Concerning RCS cleanup improvement, the paper presents two studies. The first one highlights some limited design modifications that are either underway or planned, for an increased flow rate during the most critical periods of the shutdown. The second one focuses on the strategy EDF envisions for filters and resins selection criteria. Matching the study on contaminants behavior with the study of filters and resins selection criteria should allow improving the cleanup efficiency. (authors)

  19. Investigation and assessment of lead slag concrete as nuclear shields

    International Nuclear Information System (INIS)

    Zaghloul, Y.R.

    2009-01-01

    The present work is concerned with the efficiency of heavy weight concrete as a shielding material in constructing nuclear installations as well as for radioactive wastes disposal facilities.In this context, lead slag was used as a replacement for fine aggregates in heavy concrete shields that include local heavy weight aggregates (namely; barite and ilmenite) as well as normal concrete includes dolomite and sand as coarse and fine aggregates, as a reference. The effect of different percentages of lead slag was investigated to assess the produced lead slag concrete as a nuclear shielding material. The different properties (physical, mechanical and nuclear) of the produced lead slag concrete were investigated. The results obtained showed that increasing the lead slag percentage improving the investigated properties of the different concrete mixes. In addition, ilmenite concrete with 20% lead slag showed the best results for all the investigated properties.

  20. Shanghai institute of nuclear research, academia sinica annual report (1993-1994)

    International Nuclear Information System (INIS)

    1996-01-01

    This report is a comprehensive review of achievements made by Shanghai Institute of Nuclear Research (SINR), Academia Sinica in the period of 1993-1994, which concerns nuclear physics (theories, experimentation, and application), nuclear chemistry (radiochemistry, radiopharmaceuticals, labelled compounds, analytical chemistry), radiation chemistry, nuclear detectors, development and industrialization of nuclear techniques. The maintenance, reconstruction and operation of its major facilities are also described. There are keywords in each paper. In addition, a series of lists concerning awarded scientific technologies, scientific exchanges, scientific publications, academic activities and etc, is also included in the appendix

  1. Radiochemistry course in the undergraduate nuclear science program at Universiti Kebangsaan Malaysia

    International Nuclear Information System (INIS)

    Sarmani, S.B.; Yahaya, R.B.; Yasir, M.S.; Majid, A.Ab.; Khoo, K.S.; Rahman, I.A.; Mohamed, F.

    2015-01-01

    Universiti Kebangsaan Malaysia offered an undergraduate degree program in Nuclear Science since 1980 and the programme has undergone several modifications due to changes in national policy and priority. The programme covers nuclear sub-disciplines such as nuclear physics, radiobiology, radiochemistry, radiation chemistry and radiation safety. The radiochemistry component consists of radiochemistry, chemistry in nuclear industry, radiochemical analysis laboratory, radiopharmaceutical chemistry subjects and mini research project in radiochemistry. (author)

  2. Survey of Water Chemistry and Corrosion of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Sok; Hong, Bong Geon

    2008-06-15

    Status of water chemistry of nuclear power plant and materials corrosion has been surveyed. For PWR, system chemistry of primary coolant and secondary coolant as well as the related corrosion of materials was surveyed. For BWR, system chemistry as whole has been surveyed with its accompanying corrosion problems. Radiolysis of coolant water and activation of corrosion products also was surveyed. Future NPP such as supercritical water cooled reactor and fusion reactor has also been surveyed for their water chemistry and corrosion problems. As a result, proposal for some research items has been suggested. Some related corrosion research techniques and electrochemical fundamentals are also presented.

  3. Survey of Water Chemistry and Corrosion of NPP

    International Nuclear Information System (INIS)

    Jung, Ki Sok; Hong, Bong Geon

    2008-06-01

    Status of water chemistry of nuclear power plant and materials corrosion has been surveyed. For PWR, system chemistry of primary coolant and secondary coolant as well as the related corrosion of materials was surveyed. For BWR, system chemistry as whole has been surveyed with its accompanying corrosion problems. Radiolysis of coolant water and activation of corrosion products also was surveyed. Future NPP such as supercritical water cooled reactor and fusion reactor has also been surveyed for their water chemistry and corrosion problems. As a result, proposal for some research items has been suggested. Some related corrosion research techniques and electrochemical fundamentals are also presented

  4. Nuclear science research report

    International Nuclear Information System (INIS)

    1977-01-01

    Research activities in nuclear science carried out during 1976 are summarized. Research centers around nuclear structure and the application of nuclear techniques to solid state science, materials, engineering, chemistry, biology, and medicine. Reactor and accelerator operations are reported. (E.C.B.)

  5. HMI Department of Nuclear Chemistry and Reactor. Scientific report 1982

    International Nuclear Information System (INIS)

    1983-01-01

    This report depicts in brief the essential issues of R and D work carried out within the various departments of the Institute in 1982. Such are: in the field of 'neutron scatter': observation of critical phenomena with incoherent neutron scatter; in the field of 'radiation damage to solids': irradiation-induced diffusion, nucleation and dissociation in metals and alloys; in the field of 'reactor chemistry': radiation effects in selected crystalline phases of solidificated high-activity wastes; in the field of 'trace elements in bio-medicine': investigation of the biological function of selenium with respect to reproduction as values work on paraplacental exchange of Cd and Pb during pregnancy; in the field of 'geochemistry': investigation of aqueous geochemical systems under hydrothermal pressure and temperature conditions; in the field of 'reactor operation': periods of shutdown owing to faulty operation, expansion planning, utilization for irradiation experiments. The report also includes comprehensive lists of publications and lectures. (RB) [de

  6. Abstracts of the 1. Regional Meeting on Chemistry

    International Nuclear Information System (INIS)

    Abstracts from papers on Analytical, Inorganic and Organic Chemistry as well as on Physico-Chemistry are presented. Emphasis is given to the following subjects: use of nuclear techniques for chemical analysis, separation processes, studies about reaction kinetics and thermodynamic properties, radioisotopes production and applications, labelled compounds, electron-molecule collisions, construction of measuring instruments and data acquisition systems. (C.L.B.) [pt

  7. Detection of O-propargyl-puromycin with SUMO and ubiquitin by click chemistry at PML-nuclear bodies during abortive proteasome activities

    Energy Technology Data Exchange (ETDEWEB)

    Uozumi, Naoki; Matsumoto, Hotaru [Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan); Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp [Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan); Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto (Japan)

    2016-05-27

    The amino-nucleoside antibiotic, puromycin, acts by covalently linking to elongating polypeptide chains on ribosomes to generate prematurely terminated immature polypeptides. The trafficking of puromycin-conjugated (puromycylated) immature polypeptides within cell has, however, remained elusive. In this study, using O-propargyl-puromycin (OP-Puro), the distribution of puromycylated polypeptides was assessed in HeLa cells by click chemistry. Under standard culture conditions, OP-Puro signals were detected in the cytoplasm and nucleus with the highest concentrations in the nucleolus. Intriguingly, when proteasome activities were aborted using MG132, OP-Puro signals began to accumulate at promyelocytic leukemia nuclear bodies (PML-NBs) in addition to the nucleolus. We also found promiscuous association of OP-Puro signals with SUMO-2/3 and ubiquitin at PML-NBs, but not at the nucleolus, during abortive proteasome activities. This study reveals a previously unknown distribution of OP-Puro that argues for a nuclear function in regulating immature protein homeostasis. -- Highlights: •Click chemistry detects O-propargyl-puromycin (OP-Puro) signals in the nucleus. •OP-Puro accumulates at PML-NBs during abortive proteasome activities. •SUMO and ubiquitin are promiscuously associated with OP-Puro at PML-NBs. •The nucleus may function in immature protein homeostasis.

  8. Detection of O-propargyl-puromycin with SUMO and ubiquitin by click chemistry at PML-nuclear bodies during abortive proteasome activities

    International Nuclear Information System (INIS)

    Uozumi, Naoki; Matsumoto, Hotaru; Saitoh, Hisato

    2016-01-01

    The amino-nucleoside antibiotic, puromycin, acts by covalently linking to elongating polypeptide chains on ribosomes to generate prematurely terminated immature polypeptides. The trafficking of puromycin-conjugated (puromycylated) immature polypeptides within cell has, however, remained elusive. In this study, using O-propargyl-puromycin (OP-Puro), the distribution of puromycylated polypeptides was assessed in HeLa cells by click chemistry. Under standard culture conditions, OP-Puro signals were detected in the cytoplasm and nucleus with the highest concentrations in the nucleolus. Intriguingly, when proteasome activities were aborted using MG132, OP-Puro signals began to accumulate at promyelocytic leukemia nuclear bodies (PML-NBs) in addition to the nucleolus. We also found promiscuous association of OP-Puro signals with SUMO-2/3 and ubiquitin at PML-NBs, but not at the nucleolus, during abortive proteasome activities. This study reveals a previously unknown distribution of OP-Puro that argues for a nuclear function in regulating immature protein homeostasis. -- Highlights: •Click chemistry detects O-propargyl-puromycin (OP-Puro) signals in the nucleus. •OP-Puro accumulates at PML-NBs during abortive proteasome activities. •SUMO and ubiquitin are promiscuously associated with OP-Puro at PML-NBs. •The nucleus may function in immature protein homeostasis.

  9. CANDU fuel deposits and chemistry optimizations. Recent regulatory experience in Canadian Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kameswaran, Ram

    2014-01-01

    -exchange columns and filters could not be utilized. pH control was also less than optimal due to air ingress during outages. Canadian Nuclear Safety Commission (CNSC) imposed a 3% derating on the power to maintain the safety margins. The utility implemented changes to the chemistry specifications and is operating the unit at a slightly higher pH range. The utility has also since implemented design changes to permit purification and filtration of PHT system during outages. CNSC has been closely monitoring the situation and recommended additional monitoring and reporting requirements to the utility. This paper will describe the chemistry optimization, improvements to the filtration system and other efforts undertaken by the utility to reduce crud deposit on the fuel. (author)

  10. Nuclear Structure of the Heaviest Elements – Investigated at SHIP-GSI

    Directory of Open Access Journals (Sweden)

    Heßberger Fritz Peter

    2014-03-01

    Full Text Available The quest for the heaviest nuclei that can exist is a basic topic in natural science as their stability is characterized by a delicate interplay of short range nuclear forces acting between the nucleons (protons and neutrons and long-range Coulomb forces acting solely between charged particles, i.e. the protons. As the stability of a nucleus is strongly correlated to its structure, understanding the nuclear structure of heaviest nuclei is presently a main challenge of experimental and theoretical investigations concerning the field of Superheavy Elements. At the velocity filter SHIP at GSI Darmstadt an extensive program on nuclear structure investigations has been started about a decade ago. The project covered both as well systematic investigations of single particle levels in odd-mass isotopes populated by α-decay as investigation of two- or fourquasi-particle states forming K isomers and was supplemented by direct mass measurements at SHIPTRAP and investigation of spontaneous fission properties. Recent experimental studies allowed to extend the systematics of low lying levels in N = 151 and N = 153 up to 255Rf and 259Sg, investigation of possible relations between nuclear structure and fission properties of odd-mass nuclei and investigation of shell strengths at N = 152 and towards N = 162.

  11. The Fukushima Daiichi nuclear accident final report of the AESJ investigation committee

    CERN Document Server

    Atomic Energy Society of Japan

    2015-01-01

    The Magnitude 9 Great East Japan Earthquake on March 11, 2011, followed by a massive tsunami struck  TEPCO’s Fukushima Daiichi Nuclear Power Station and triggered an unprecedented core melt/severe accident in Units 1 – 3. The radioactivity release led to the evacuation of local residents, many of whom still have not been able to return to their homes. As a group of nuclear experts, the Atomic Energy Society of Japan established the Investigation Committee on the Nuclear Accident at the Fukushima Daiichi Nuclear Power Station, to investigate and analyze the accident from scientific and technical perspectives for clarifying the underlying and fundamental causes, and to make recommendations. The results of the investigation by the AESJ Investigation Committee has been compiled herewith as the Final Report. Direct contributing factors of the catastrophic nuclear incident at Fukushima Daiichi NPP initiated by an unprecedented massive earthquake/ tsunami – inadequacies in tsunami measures, severe accident ma...

  12. Progress report for Nuclear Chemistry Project. Period covered: October 1, 1974--September 30, 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Research on investigations of chemical bonding influences on the moderation and capture of negative mu mesons when stopped in matter, nuclear energy levels, internal fields in solids, and the validity of certain semiclassical approximations made in the treatment of nuclear rotational motion

  13. Nuclear Technology Series. Course 13: Power Plant Chemistry.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  14. Handbook of hot atom chemistry

    International Nuclear Information System (INIS)

    Adloff, J.P.; Matsuura, Tatsuo; Yoshihara, Kenji

    1992-01-01

    Hot atom chemistry is an increasingly important field, which has contributed significantly to our understanding of many fundamental processes and reactions. Its techniques have become firmly entrenched in numerous disciplines, such as applied physics, biomedical research, and all fields of chemistry. Written by leading experts, this comprehensive handbook encompasses a broad range of topics. Each chapter comprises a collection of stimulating essays, given an in-depth account of the state-of-the-art of the field, and stressing opportunities for future work. An extensive introduction to the whole area, this book provides unique insight into a vast subject, and a clear delineation of its goals, techniques, and recent findings. It also contains detailed discussions of applications in fields as diverse as nuclear medicine, geochemistry, reactor technology, and the chemistry of comets and interstellar grains. (orig.)

  15. 19F-nuclear magnetic resonance spectroscopy as a tool to ...

    African Journals Online (AJOL)

    19F-nuclear magnetic resonance spectroscopy as a tool to investigate host-guest complexation of some antidepressant drugs with natural and modified cyclodextrins. Leila Shafiee Dastjerdi1* and Mojtaba Shamsipur2. 1Faculty of Science, Roudehen Branch, Islamic Azad University, Tehran, 2Department of Chemistry, ...

  16. Research investigation report on Fukushima Daiichi nuclear accident

    International Nuclear Information System (INIS)

    2012-03-01

    This report was issued in February 2012 by Rebuild Japan Initiative Foundation's Independent Investigation Commission on the Fukushima Daiichi Nuclear Accident, which consisted of six members from the private sector in independent positions and with no direct interest in the business of promoting nuclear power. Commission aimed to determine the truth behind the accident by clarifying the various problems and reveal systematic problems behind these issues so as to create a new starting point by identifying clear lessons learned. Report composed of four chapters; (1) progression of Fukushima accident and resulting damage (accident management after Fukushima accident, and effects and countermeasure of radioactive materials discharged into the environment), (2) response against Fukushima accident (emergency response of cabinet office against nuclear disaster, risk communication and on-site response against nuclear disaster), (3) analysis of historical and structural factors (technical philosophy of nuclear safety, problems of nuclear safety regulation of Fukushima accident, safety regulatory governance and social background of 'Safety Myth'), (4) Global Context (implication in nuclear security, Japan in nuclear safety regime, U.S.-Japan relations for response against Fukushima accident, lessons learned from Fukushima accident - aiming at creation of resilience). Report could identify causes of Fukushima accident and factors related to resulting damages, show the realities behind failure to prevent the spread of damage, and analyze the overall structural and historical background behind the accidents. (T. Tanaka)

  17. Material chemistry challenges in vitrification of high level radioactive waste

    International Nuclear Information System (INIS)

    Kaushik, C.P.

    2008-01-01

    Full text: Nuclear technology with an affective environmental management plan and focused attention on safety measures is a much cleaner source of electricity generation as compared to other sources. With this perspective, India has undertaken nuclear energy program to share substantial part of future need of power. Safe containment and isolation of nuclear waste from human environment is an indispensable part of this programme. Majority of radioactivity in the entire nuclear fuel cycle is high level radioactive liquid waste (HLW), which is getting generated during reprocessing of spent nuclear fuels. A three stage strategy for management of HLW has been adopted in India. This involves (i) immobilization of waste oxides in stable and inert solid matrices, (ii) interim retrievable storage of the conditioned waste product under continuous cooling and (iii) disposal in deep geological formation. Borosilicate glass matrix has been adopted in India for immobilization of HLW. Material issue are very important during the entire process of waste immobilization. Performance of the materials used in nuclear waste management determines its safety/hazards. Material chemistry therefore has a significant bearing on immobilization science and its technological development for management of HLW. The choice of suitable waste form to deploy for nuclear waste immobilization is difficult decision and the durability of the conditioned product is not the sole criterion. In any immobilization process, where radioactive materials are involved, the process and operational conditions play an important role in final selection of a suitable glass formulation. In remotely operated vitrification process, study of chemistry of materials like glass, melter, materials of construction of other equipment under high temperature and hostile corrosive condition assume significance for safe and un-interrupted vitrification of radioactive to ensure its isolation waste from human environment. The present

  18. Nuclear Science Curriculum and Curriculum para la Ciencia Nuclear.

    Science.gov (United States)

    American Nuclear Society, La Grange Park, IL.

    This document presents a course in the science of nuclear energy, units of which may be included in high school physics, chemistry, and biology classes. It is intended for the use of teachers whose students have already completed algebra and chemistry or physics. Included in this paper are the objectives of this course, a course outline, a…

  19. Quality assurance and harmonisation of nuclear medicine investigations in Europe

    International Nuclear Information System (INIS)

    Bergmann, H.; Busemann-Sokole, E.; Horton, P.W.

    1995-01-01

    A survey of all member societies of the European Association of Nuclear Medicine has shown that a satisfactory degree of harmonisation exists for the quality assurance of the preparation and handling of radiopharmaceuticals and the performance of nuclear medicine instrumentation. However, variations were found in acquisition protocols, data analysis and the interpretation and presentation of clinical results. Harmonisation of these areas of a nuclear medicine investigation would help ensure the overall quality. A European initiative is proposed to collect and collate procedures in these areas in order to produce a reference framework of good practice for the acquisition, analysis and interpretation of nuclear medicine investigations. This would involve collaboration between national societies and exchange of information with and support from European organisations, taking into account relevant international activities. The reference framework should be compatible with quality management guidelines. (orig.)

  20. Chemistry and Nanoscience Research | NREL

    Science.gov (United States)

    Chemistry and Nanoscience Center at NREL investigates materials and processes for converting renewable and new technologies. NREL's primary research in the chemistry and nanoscience center includes the Electrochemical Engineering and Materials Chemistry Providing a knowledge base in materials science covering

  1. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. [ed.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  2. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. (ed.)

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  3. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product 99 Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories. 127 refs., 76 figs., 103 tabs

  4. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

  5. Chemistry of the actinide elements. Second edition

    International Nuclear Information System (INIS)

    Katz, J.J.; Seaborg, G.T.; Morss, L.R.

    1987-01-01

    This is an exhaustive, updated discourse on the chemistry of Actinides, Volume 1 contains a systematic coverage of the elements Ac, Th, Pa, U, Np, and Pu, which constitutes Part 1 of the work. The characterization of each element is discussed in terms of its nuclear properties, occurrence, preparation, atomic and metallic properties, chemistry of specific compounds, and solution chemistry. The first part of Volume 2 follows the same format as Volume 1 but is confined to the elements Am, Cm, Bk, Cf, and Es, plus a more condensed coverage of the Transeinsteinium elements (Fm, Md, No, Lw, and 104-109). Part 2 of this volume is devoted to a discussion of the actinide elements in general, with a specific focus on electronic spectra, thermodynamic and magnetic properties, the metallic state, structural chemistry, solution kinetics, organometallic chemistry for σ- and π-bonded compounds, and some concluding remarks on the superheavy elements

  6. Collaboration of chemistry instructional games and group investigation (Gi) model to improve learning outcome in high school students

    Science.gov (United States)

    Puspita, Ita; Sugiyarto, Kristian H.; Ikhsan, Jaslin

    2017-05-01

    The aims of this research are to: (1) develop chemistry instructional games on reaction rate matter; and (2) reveal the collaboration of chemistry instructional games and group investigation model to improvement learning outcome in high school student. This study is research and development (R&D). The procedure of developing product was adapted from Borg & Gall that modified into three principal steps: product planning, product developing, and product evaluating. The product planning step consist of field study, literature study, and manufacturing product. Product developing was developed product using Adobe Flash Professional CS 6 program. The last, product evaluating was performed by year XI of high school students, uses experimental methods nonequivalent control-group design by control class and experiment class. The results of this research show that: (1) a software of chemistry instructional games successfully developed using Adobe Flash Professional CS 6 and can be run on Android device; and (2) the test results of students showed that the collaboration of instructional games and group investigation model able to improvement learning outcome of hight school student.

  7. On the concepts of carrier and specific activity in nuclear chemistry, radioanalytical chemistry and radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Bonardi, Mauro L.

    2011-01-01

    At present a IUPAC Project regarding 'Terminology, Quantities and Units concerning Production and Applications of Radionuclides in Radiopharmaceutical and Radioanalytical Chemistry' states that: 'CARRIER is a chemical species - already present in the preparation or intentionally added - which will carry a given radionuclide in its associated species through the radiochemical procedure and/or prevents the radionuclide in its associated species from undergoing non-specific processes due to its low concentration'

  8. Federal Bureau of Investigation's use of nuclear forensics in combating illicit trafficking and nuclear terrorism

    International Nuclear Information System (INIS)

    Kaysak, J.M.

    2002-01-01

    Full text: This presentation outlines the Federal Bureau of Investigation's (FBI) role, responsibility and use of nuclear forensics analysis in combating illicit trafficking and nuclear terrorism. Nuclear forensics is defined and approached from a law enforcement perspective using the objectives of anticipation, prevention, attribution and prosecution in a court of law. A sustained, systematic and integrated approach is discussed utilizing established standard operating procedures and protocols between the law enforcement and scientific establishments as well as the challenges that still exist. (author)

  9. A Chemistry Lesson at Three Mile Island.

    Science.gov (United States)

    Mammano, Nicholas J.

    1980-01-01

    Details the procedures used in utilizing the hydrogen bubble incident at Three Mile Island to relate these basic chemical principles to nuclear chemistry: gas laws, Le Chatelier's principle and equilibrium, and stoichiometry. (CS)

  10. Materials of 4. international meeting on pulse investigations in physics, chemistry and biology. PULS'94

    International Nuclear Information System (INIS)

    1994-01-01

    4. International Meeting on Pulse Investigations in Physics, Chemistry and Biology, PULS'94 has been organized in honor of Professor Jerzy Kroh, the precursor of radiation chemistry in Poland. The meeting has been divided into three sessions: the historical session (H) with four review lectures, lecture session (L) collected 23 papers and poster session (P) with 39 posters. The fundamental studies on early stages of radiolysis have been presented for different systems being irradiated. The pulse radiolysis and flash photolysis methods has been predominantly used in reported experimental works. The reaction of intermediate products of radiolysis and photolysis such a trapped and solvated electrons, ions and radicals has been extensively studied. The reaction mechanisms and kinetics have been also discussed

  11. Field experience with advanced methods of on-line monitoring of water chemistry and corrosion degradation in nuclear power stations

    International Nuclear Information System (INIS)

    Stellwag, B.; Aaltonen, P.; Hickling, J.

    1997-01-01

    Advanced methods for on-line, in-situ water chemistry and corrosion monitoring in nuclear power stations have been developed during the past decade. The terms ''on-line'' and ''in-situ'' characterize approaches involving continuous measurement of relevant parameters in high temperature water, preferably directly in the systems and components and not in removed samples at room temperature. This paper describes the field experience to-date with such methods in terms of three examples: (1) On-line chemistry monitoring of the primary coolant during shutdown of a Type WWER-440 PWR. (2) Redox and corrosion potential measurements in final feedwater preheaters and steam generators of two large KWU PWRs over several cycles of plant operation. (3) Real-time, in-situ corrosion surveillance inside the calundia vault of a CANDU reactor. The way in which water chemistry sensors and corrosion monitoring sensors complement each other is outlined: on-line, in-situ measurement of pH, conductivity and redox potential gives information about the possible corrosivity of the environment. Electrochemical noise techniques display signals of corrosion activity under the actual environmental conditions. A common experience gained from separate use of these different types of sensors has been that new and additional information about plants and their actual process conditions is obtained. Moreover, they reveal the intimate relationship between the operational situation and its consequences for the quality of the working fluid and the corrosion behaviour of the plant materials. On this basis, the efficiency of the existing chemistry sampling and control system can be checked and corrosion degradation can be minimized. Furthermore, activity buildup in the primary circuit can be studied. Further significant advantages can be expected from an integration of these various types of sensors into a common water chemistry and corrosion surveillance system. For confirmation, a complete set of sensors

  12. Education of radiochemistry and radiation chemistry at a college of medical technology

    International Nuclear Information System (INIS)

    Asano, Takeyoshi

    2005-01-01

    The present report aims at introducing my creative textbook on the subject. The contents start from the history of the 20th century on discovery and use of radiation and radioisotope''. In the study of the history the students can aware of their position in a future profession as a medical radiation worker. In addition, own originality for the textbook was shown in the descriptions of (1) Auger effect of EC decay nuclide used remarkably in nuclear medicine, (2) the relation between isotope, isotone and isobar and the kind of nuclear reaction, (3) the distinction of the use of isotope dilution method in substoichiometry and radioimmunoassay, (4) nuclear reactor chemistry (nuclear fuel cycle and disposal of high level radioactive waste), (5) fundamental constants used in radioisotope techniques and (6) the exposure dose in taking a side view of the radiation chemistry. A questionnaire survey after the closing the lesson showed that the students took an interest in 60% of the contents in the textbook of radiochemistry and radiation chemistry. (author)

  13. Field experience with advanced methods of on-line monitoring of water chemistry and corrosion degradation in nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Stellwag, B [Siemens AG Unternehmensbereich KWU, Erlangen (Germany); Aaltonen, P [Technical Research Centre of Finland, Espoo (Finland); Hickling, J [CML GmbH, Erlangen (Germany)

    1997-02-01

    Advanced methods for on-line, in-situ water chemistry and corrosion monitoring in nuclear power stations have been developed during the past decade. The terms ``on-line`` and ``in-situ`` characterize approaches involving continuous measurement of relevant parameters in high temperature water, preferably directly in the systems and components and not in removed samples at room temperature. This paper describes the field experience to-date with such methods in terms of three examples: (1) On-line chemistry monitoring of the primary coolant during shutdown of a Type WWER-440 PWR. (2) Redox and corrosion potential measurements in final feedwater preheaters and steam generators of two large KWU PWRs over several cycles of plant operation. (3) Real-time, in-situ corrosion surveillance inside the calundia vault of a CANDU reactor. The way in which water chemistry sensors and corrosion monitoring sensors complement each other is outlined: on-line, in-situ measurement of pH, conductivity and redox potential gives information about the possible corrosivity of the environment. Electrochemical noise techniques display signals of corrosion activity under the actual environmental conditions. A common experience gained from separate use of these different types of sensors has been that new and additional information about plants and their actual process conditions is obtained. Moreover, they reveal the intimate relationship between the operational situation and its consequences for the quality of the working fluid and the corrosion behaviour of the plant materials. On this basis, the efficiency of the existing chemistry sampling and control system can be checked and corrosion degradation can be minimized. Furthermore, activity buildup in the primary circuit can be studied. Further significant advantages can be expected from an integration of these various types of sensors into a common water chemistry and corrosion surveillance system. (Abstract Truncated)

  14. Institute for separation chemistry of Marcoule I.C.S.M

    International Nuclear Information System (INIS)

    2007-01-01

    Institute for Separation Chemistry was created in March 2007, and the building including laboratory and offices will be opened to scientists and technicians the middle of 2008. Since resources in Uranium are scarce and wastes related to nuclear energy production are potentially dangerous, the chemistry associated to nuclear energy production always followed the principles of green chemistry: close the life-cycle of material and fuel, minimize wastes and ascertain the acceptability by a society via knowledge of chemistry and physical chemistry involved in processes. The Institute is devoted to chemistry at the service of the nuclear energy of the future, seen as an actor for sustainable development compatible with limited resources and chemical preservation of the atmosphere. Progresses in fundamental research, based on publication and education of students, engineers and young scientists, will be focused along seven identified directions, devoted to scattering and diffraction, microscopies and mainly mesoscopic modelling. The goals of the teams are described in this booklet, describing activities of the 28 scientists since two years. Separation chemistry, a branch of physical chemistry, is a key actor in 'green chemistry'. Nano-science and physical chemistry, at the roots of modern chemistry considering also non-covalent and long-range interactions, need to be included along the 'tools' involved in new processes. Three axis of research will be privileged: initial steps of separation, via dissolution by sono-chemical means, ion separation via colloids and complex fluids, and maintaining the separation between species involving self-repairing nano-materials, once the evolution of the interface fed from the evolving interface has been modelled. Eleven permanent staff scientists are already active since a few months on average at ICSM at the date of this report (5 CEA, 2 Universities and 4 CNRS). Teaching, scientific animation, summer schools and the common laboratory

  15. Superheavy Elements Challenge Experimental and Theoretical Chemistry

    CERN Document Server

    Zvára, I

    2003-01-01

    When reflecting on the story of superheavy elements, the an experimenter, acknowledges the role, which the predictions of nuclear and chemical theories have played in ongoing studies. Today, the problems of major interest for experimental chemistry are the studies of elements 112 and 114 including their chemical identification. Advanced quantum chemistry calculations of atoms and molecules would be of much help. First experiments with element 112 evidence that the metal is much more volatile and inert than mercury.

  16. Predictive Modeling in Actinide Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-16

    These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.

  17. Water chemistry control to meet the advanced design and operation of light water reactors

    International Nuclear Information System (INIS)

    Shirai, Hiroshi; Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Sato, Masatoshi

    2014-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. The road maps on R and D plans for water chemistry of nuclear power systems in Japan have been proposed along with promotion of R and D related water chemistry improvement for the advanced application of light water reactors (LWRs). The technical trends were divided into four categories, dose rate reduction, structural integrity, fuel integrity and radioactive waste reduction, and latest technical break through for each category was shown for the advanced application of LWRs. At the same time, the technical break through and the latest movements for regulation of water chemistry were introduced for each of major organizations related to nuclear engineering in the world. The conclusions were summarized as follows; 1. Water chemistry improvements might contribute to achieve the advanced application of LWRs, while water chemistry should be often changed to achieve the advanced application of LWRs. 2. Only one solution for water chemistry control was not obtained for achieving the advanced application of LWRs, but miscellaneous solutions were possible for achieving one. Optimal water chemistry control was desired for having the good practices for satisfying multi-targets at the same time and it was much affected by the plant unique systems and operational history. 3. That meant it was difficult to determine water chemistry regulation targets for achieving application of LWRs but it was necessary to prepare suitable guideline for good achievement of application of LWRs. That meant the guideline should be recommendation for good practice in the plant. 4. The water chemistry guide line should be modified along with progress of plant operation and water chemistry and related technologies. (author)

  18. A high-pressure plug flow reactor for combustion chemistry investigations

    Science.gov (United States)

    Lu, Zhewen; Cochet, Julien; Leplat, Nicolas; Yang, Yi; Brear, Michael J.

    2017-10-01

    A plug flow reactor (PFR) is built for investigating the oxidation chemistry of fuels at up to 50 bar and 1000 K. These conditions include those corresponding to the low temperature combustion (i.e. the autoignition) that commonly occurs in internal combustion engines. Turbulent flow that approximates ideal, plug flow conditions is established in a quartz tube reactor. The reacting mixture is highly diluted by excess air to reduce the reaction rates for kinetic investigations. A novel mixer design is used to achieve fast mixing of the preheated air and fuel vapour at the reactor entrance, reducing the issue of reaction initialization in kinetic modelling. A water-cooled probe moves along the reactor extracting gases for further analysis. Measurement of the sampled gas temperature uses an extended form of a three-thermocouple method that corrects for radiative heat losses from the thermocouples to the enclosed PFR environment. Investigation of the PFR’s operation is first conducted using non-reacting flows, and then with isooctane oxidation at 900 K and 10 bar. Mixing of the non-reacting temperature and species fields is shown to be rapid. The measured fuel consumption and CO formation are then closely reproduced by kinetic modelling using an extensively validated iso-octane mechanism from the literature and the corrected gas temperature. Together, these results demonstrate the PFR’s utility for chemical kinetic investigations.

  19. A high-pressure plug flow reactor for combustion chemistry investigations

    International Nuclear Information System (INIS)

    Lu, Zhewen; Cochet, Julien; Leplat, Nicolas; Yang, Yi; Brear, Michael J

    2017-01-01

    A plug flow reactor (PFR) is built for investigating the oxidation chemistry of fuels at up to 50 bar and 1000 K. These conditions include those corresponding to the low temperature combustion (i.e. the autoignition) that commonly occurs in internal combustion engines. Turbulent flow that approximates ideal, plug flow conditions is established in a quartz tube reactor. The reacting mixture is highly diluted by excess air to reduce the reaction rates for kinetic investigations. A novel mixer design is used to achieve fast mixing of the preheated air and fuel vapour at the reactor entrance, reducing the issue of reaction initialization in kinetic modelling. A water-cooled probe moves along the reactor extracting gases for further analysis. Measurement of the sampled gas temperature uses an extended form of a three-thermocouple method that corrects for radiative heat losses from the thermocouples to the enclosed PFR environment. Investigation of the PFR’s operation is first conducted using non-reacting flows, and then with isooctane oxidation at 900 K and 10 bar. Mixing of the non-reacting temperature and species fields is shown to be rapid. The measured fuel consumption and CO formation are then closely reproduced by kinetic modelling using an extensively validated iso-octane mechanism from the literature and the corrected gas temperature. Together, these results demonstrate the PFR’s utility for chemical kinetic investigations. (paper)

  20. Investigation of nuclear safety regulation and emergency preparedness for other countries

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Hitoshi; Kakuta, Akio; Yasuda, Makoto [Japan Nuclear Energy Safety Organization, Policy Planning and Coordination Department, Tokyo (Japan); Funahashi, Toshihiro [Japan Nuclear Energy Safety Organization, Nuclear Emergency Response and Prepardness Department, Tokyo (Japan)

    2012-10-15

    This investigation was carried out on organization and a role of nuclear regulatory body in the U.S., France, Germany, the U.K., Korea and Canada. In addition, nuclear emergency preparedness in these countries was investigated. A summary of this investigation is shown below. The Nuclear Regulatory Commission in the U.S. and the Nuclear Safety Authority in France have respectively headquarters and regional offices. The Nuclear Regulatory Commission has 4 regional offices and the Nuclear Safety Authority has 11 regional office. These regional offices are responsible primarily for the inspection of nuclear facilities. In Germany, the Federal Ministry of the Environment has delegated its regulatory authority to state governments, and the relevant department of each state government is in charge of inspection, oversight and approval of nuclear installations. In addition, in Korea, the U.S., and the U.K., the resident inspectors placed in each nuclear facility have the directed nuclear facilities. Meanwhile, Korea had changed its nuclear regulatory regime during this study period. The Nuclear Safety and Security Commission was newly established and took over from the Nuclear Safety Division of the Ministry of Education, Science and Technology. Regarding nuclear emergency preparedness system, it is secured that the public will be protected at the national level. And also the responding scheme and roles of regulatory agencies, operators, and the relevant ministries and agencies are identified. In addition, the licensee's responsibilities are defined. In France, existing organizations such as government organizations, governor who is appointed by the government and licensees respond to nuclear emergency. In Korea and the U.K., an emergency organization which consists of existing organizations are established and coped with nuclear emergency. In the U.S., Germany and Canada that have a federal system, the roles of state governments and the federal government are identified

  1. Progress report, Chemistry and Materials Division, April 1 to June 30, 1976

    International Nuclear Information System (INIS)

    1976-07-01

    Preliminary results are reported on research covering such topics as ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis, analytical chemistry, hydrogen-deuterium exchange, radiation chemistry, and corrosion (primarily of zirconium alloys). (E.C.B.)

  2. Investigating the Impact of Adding an Environmental Focus to a Developmental Chemistry Course

    Science.gov (United States)

    Robelia, Beth; McNeill, Kristopher; Wammer, Kristine; Lawrenz, Frances

    2010-01-01

    This study explores how adding environmental perspectives to a developmental chemistry course affected student learning of both general chemistry and environmental chemistry concepts. In addition to measuring learning changes, changes in students' environmental attitudes and behaviors were also measured. A pretest-posttest design measured…

  3. Progress report 1981-1982. Reactor Chemistry Department

    International Nuclear Information System (INIS)

    1983-08-01

    Review of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission of Argentina during 1981-1982. This Department provides services and assistance in all matters related to water chemistry and nuclear reactors chemistry, in all their phases: design, construction, commissioning and decommissioning. During this period, the following tasks were performed: study of the metallic oxide-water interphases; determination of the goethite and magnetite surficial charges; synthesis of the monodispersed nickel ferrites; study of the iron oxides dissolution mechanism in presence of different complexing agents; chemical decontamination of structural metals; thermodynamics of the water-nitrogen system; physico-chemical studies of aqueous solutions at high temperatures; hydrothermal decomposition of ionic exchange resines and study of the equilibria of the anionic exchange for the chemistry of pressurized reactor's primary loops. The appendix includes information on the Reactor Chemistry Department staff, its publications, services, seminars, courses and conferences performed during 1981-1982. (R.J.S.) [es

  4. Proceedings of the 32. Brazilian Congress on Chemistry; 5. Brazilian Meeting of Scientific Initiation on Chemistry - Abstracts

    International Nuclear Information System (INIS)

    1992-01-01

    This 32. Brazilian Congress on Chemistry happened in Belem, Para State, was important, considering the actual moment where the Amazonia assume a role in the international view. Works about synthesis, characterization and uses of nuclear materials and elements are presented. (C.G.C.)

  5. Nuclear energy: a world of service to humanity. 27th annual conference of the Canadian Nuclear Society and 30th Canadian Nuclear Society/Canadian Nuclear Association student conference

    International Nuclear Information System (INIS)

    2006-01-01

    The 27th Annual conference of the Canadian Nuclear Society was held on June 11-14, 2006 in Toronto, Ontario, Canada. The conference gathered close to 400 scientists, engineers, technologists and students interested in all aspects and applications of energy from the atom. The central objective of this conference was to provide a forum for exchange of views on how this technical enterprise can best serve the needs of humanity, now and in the future. The plenary sessions addressed broad industrial and commercial developments in the field. Over eighty papers were presented in 15 technical sessions on the following topics: safety analysis; plant refurbishment; control room operation; nuclear chemistry and materials; advanced reactor design; plant operation; reactor physics; safety analysis; nuclear instrumentation; and, nuclear general topics. Embedded in the conference was the 30th student conference, sponsored by the Canadian Nuclear Society and the Canadian Nuclear Association. Over thirty-five papers were presented in five sessions on the following topics: corrosion processes; control systems / physics / modelling; and, chemistry / chemical engineering

  6. Tritium in groundwater investigation at the Pickering Nuclear Generating Station

    International Nuclear Information System (INIS)

    DeWilde, J.; Yu, L.; Wootton, R.; Belanger, D.; Hansen, K.; McGurk, E.; Teare, A.

    2001-01-01

    Ontario Power Generation Inc. (OPG) investigated tritium in groundwater at the Pickering Nuclear Generating Station (PNGS). The objectives of the study were to evaluate and define the extent of radionuclides, primarily tritium, in groundwater, investigate the causes or sources of contamination, determine impacts on the natural environment, and provide recommendations to prevent future discharges. This paper provides an overview of the investigations conducted in 1999 and 2000 to identity the extent of the tritium beneath the site and the potential sources of tritium released to the groundwater. The investigation and findings are summarized with a focus on unique aspects of the investigation, on lessons learned and benefits. Some of the investigative techniques discussed include process assessments, video inspections, hydrostatic and tracer tests, Helium 3 analysis for tritium age dating, deuterium and tritium in soil analysis. The investigative techniques have widespread applications to other nuclear generating stations. (author)

  7. CAREM-25: considerations about primary coolant chemistry

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Iglesias, Alberto M.; Raffo Calderon, Maria C.; Villegas, Marina

    2000-01-01

    World operating experience, in conjunction with basic studies has been modifying chemistry specifications for the primary coolant of water cooled nuclear reactors along with the reactor type and structural materials involved in the design. For the reactor CAREM-25, the following sources of information have been used: 1) Experience gained by the Chemistry Department of the National Atomic Energy Commission (CNEA, Argentina); 2) Participation of the Chemistry Department (CNEA) in international cooperation projects; 3) Guidelines given by EPRI, Siemens-KWU, AECL, etc. Given the main objectives: materials integrity, low radiation levels and personnel safety, which are in turn a balance between the lowest corrosion and activity transport achievable and considering that the CAREM-25 is a pressurized vessel integrated reactor, a group of guidelines for the chemistry and additives for the primary coolant have been given in the present work. (author)

  8. Nuclear chemistry

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Topics covered include: mass asymmetry and total kinetic energy release in the spontaneous fission of 262 105; calculation of spontaneous fission properties of very heavy nuclei - 98 less than or equal to Z less than or equal to 106 and 150 less than or equal to N less than or equal to 164; energy losses for 84 Kr ions in nickel, aluminium and titanium; differences in compound nuclei formed with 40 Ar and 84 Kr projectiles; measurement of the energy division vs. mass in highly damped reactions; ambiguities in the inference of precompound emission from excitation function analysis; selective laser one-atom detection of neutral prompt fission fragments; laser induced nuclear polarization - application to the study of spontaneous fission isomers; quadrupole and hexadecapole deformations in the actinide nuclei; high-spin states in 164 Yb; contrasting behavior of h/sub 9/2/ and i/sub 13/2/ bands in 185 Au; multiple band crossings in 164 Er; recoil-distance measurement of lifetimes of rotational states in 164 Dy, lifetimes of ground-band states in 192 Pt and 194 Pt and application of the rotation-alignment model; coulomb excitation of vibrational nuclei with heavy ions; surface structure of deformed nuclei; valency contribution to neutron capture in 32 S; neutron capture cross section of manganese; search for superheavy elements in natural samples by neutron multiplicity counting; and gamma-ray studies on the geochemistry of achondritic meteorites

  9. Report of the Institute for Hot Chemistry on research and development in 1982

    International Nuclear Information System (INIS)

    1983-02-01

    The Institute for Hot Chemistry is concerned with research and development programmes in the field of re-processing nuclear fuels. The investigations are oriented towards the objectives of the planned waste disposal plant and are carried out within the frame-work of the Reprocessing, Waste Treatment and Fast Breeder Projects, with the cooperation of the firms DWK and WAK. The Institute can be divided up into the following subject areas: extraction chemistry and plant operation, analytical processing, chemical processing and apparatus development; solvent and waste gas treatment; process control and automation; organic analysis; and fundamental research. In the developmental stage, evaluations are carried out up to the kilogram and kilo-Curie level, at the technical level, however, up to a daily throughput in tonnes. (orig.) [de

  10. Nuclear chemistry research of high-energy nuclear reactions at Carnegie-Mellon University, 1961--1977. Summary report

    International Nuclear Information System (INIS)

    Caretto, A.A. Jr.

    1977-11-01

    The activities and the results of research in the study of high energy nuclear reactions carried out at Carnegie Institute of Technology from 1957 to 1967 and at Carnegie-Mellon University from 1967 to 1977 are summarized. A complete list of all publications, doctoral dissertations, and reports resulting from the research of this project is also included. A major part of the report is a review of the research activities and results. The objective of the research of this project was the study of reactions initiated by projectiles of energy above about 100 MeV. The main effort was the investigation of simple nuclear reactions with the objective to deduce reaction mechanisms. These reactions were also used as probes to determine the nuclear structure of the target. In addition, a number of studies of spallation reactions were undertaken which included the determination of excitation functions and recoil properties. Recent research activities which have involved the study of pion induced reactions as well as reactions initiated by heavy ions is also discussed

  11. Nuclear science and engineering in China

    Energy Technology Data Exchange (ETDEWEB)

    von Becker, K

    1979-01-01

    A brief review of the development of nuclear science and technology in China is given. It is stated that the change of leadership in China has brought about a radical revision of the attitude towards the science and technology. In the plan of the development of nuclear science and technology adopted in 1973 a great emphasis is laid on investigations in the field of high energy physics. For instance, it is planned to construct, before 1983, a 30-50 GeV proton accelerator. A brief description is given of main nuclear research institutes in Phangshan, Peking and Shanghai which are shown to Western visitors. It is indicated that at these institutes there are the only two research reactors in China, a 3.5-MW LWR and 10 MW HWR, two cyclotrons and a 90-cm tokamak. These institutes also conduct investigations on solid-state physics, low-temperature physics, high-pressure physics, lasers, radiation biology, radiation chemistry, etc.

  12. Molten fluoride fuel salt chemistry

    International Nuclear Information System (INIS)

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

    1995-01-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior which can be used effectively to reduce the amount of development required for future systems, some significant molten salt chemical questions must still be addressed. copyright American Institute of Physics 1995

  13. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    P.S. Domski

    2003-07-21

    The work associated with the development of this model report was performed in accordance with the requirements established in ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA'' (BSC 2002a). The in-package chemistry model and in-package chemistry model abstraction are developed to predict the bulk chemistry inside of a failed waste package and to provide simplified expressions of that chemistry. The purpose of this work is to provide the abstraction model to the Performance Assessment Project and the Waste Form Department for development of geochemical models of the waste package interior. The scope of this model report is to describe the development and validation of the in-package chemistry model and in-package chemistry model abstraction. The in-package chemistry model will consider chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) and codisposed high-level waste glass (HLWG) and N Reactor spent fuel (CDNR). The in-package chemistry model includes two sub-models, the first a water vapor condensation (WVC) model, where water enters a waste package as vapor and forms a film on the waste package components with subsequent film reactions with the waste package materials and waste form--this is a no-flow model, the reacted fluids do not exit the waste package via advection. The second sub-model of the in-package chemistry model is the seepage dripping model (SDM), where water, water that may have seeped into the repository from the surrounding rock, enters a failed waste package and reacts with the waste package components and waste form, and then exits the waste package with no accumulation of reacted water in the waste package. Both of the submodels of the in-package chemistry model are film models in contrast to past in-package chemistry models where all of the waste package pore space was filled with water. The

  14. In-Package Chemistry Abstraction

    International Nuclear Information System (INIS)

    P.S. Domski

    2003-01-01

    The work associated with the development of this model report was performed in accordance with the requirements established in ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA'' (BSC 2002a). The in-package chemistry model and in-package chemistry model abstraction are developed to predict the bulk chemistry inside of a failed waste package and to provide simplified expressions of that chemistry. The purpose of this work is to provide the abstraction model to the Performance Assessment Project and the Waste Form Department for development of geochemical models of the waste package interior. The scope of this model report is to describe the development and validation of the in-package chemistry model and in-package chemistry model abstraction. The in-package chemistry model will consider chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) and codisposed high-level waste glass (HLWG) and N Reactor spent fuel (CDNR). The in-package chemistry model includes two sub-models, the first a water vapor condensation (WVC) model, where water enters a waste package as vapor and forms a film on the waste package components with subsequent film reactions with the waste package materials and waste form--this is a no-flow model, the reacted fluids do not exit the waste package via advection. The second sub-model of the in-package chemistry model is the seepage dripping model (SDM), where water, water that may have seeped into the repository from the surrounding rock, enters a failed waste package and reacts with the waste package components and waste form, and then exits the waste package with no accumulation of reacted water in the waste package. Both of the submodels of the in-package chemistry model are film models in contrast to past in-package chemistry models where all of the waste package pore space was filled with water. The current in

  15. Vitrification chemistry and nuclear waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1985-01-01

    The vitrification of nuclear waste offers unique challenges to the glass technologist. The waste contains 50 or 60 elements, and often varies widely in composition. Most of these elements are seldom encountered in processing commercial glasses. The melter to vitrify the waste must be able to tolerate these variations in composition, while producing a durable glass. This glass must be produced without releasing hazardous radionuclides to the environment during any step of the vitrification process. Construction of a facility to convert the nearly 30 million gallons of high-level nuclear waste at the Savannah River Plant into borosilicate glass began in late 1983. In developing the vitrification process, the Savannah River Laboratory has had to overcome all of these challenges to the glass technologist. Advances in understanding in three areas have been crucial to our success: oxidation-reduction phenomena during glass melting; the reaction between glass and natural wastes; and the causes of foaming during glass melting

  16. USP university students social representations and views on nuclear power as energy option

    International Nuclear Information System (INIS)

    Farias, Luciana A.; Favaro, Deborah I.T.

    2011-01-01

    The Nuclear Energy Research Institute (IPEN) is located on the campus of the University of Sao Paulo and has long been publishing nuclear science projects in order to improve public opinion and disseminate nuclear energy issues. However, few studies have investigated the perception of university students concerning nuclear energy. This study questioned whether the location of a nuclear research facility, as well as promotion of scientific projects, can positively influence student opinion when the nuclear research reactor is on campus and used purely for research purposes. This study further investigated the students' understanding of the terms 'nuclear energy' as well as their perception of the social issues involved. Free evocations of words were produced and collected starting from the stimulative inductor 'Nuclear Energy'. In this test, the interviewees are asked to associate five words and answer a questionnaire. A total of 124 students were interviewed for this study: 62 from the Chemistry, Pharmacy, Environmental Chemistry, Chemical Engineering and Nutrition Departments, 29 from the Oceanography Department and 33 from the Economics, Business Administration and Accounting Department. A total of 78% of the interviewed students answered that they had basic or average knowledge of nuclear energy, 46% claimed to have no knowledge of IPEN and the remainder students have answered that IPEN's activities were aimed at research in energy and production of radiopharmaceuticals, which shows little knowledge of the activities of the Institute. However, these students indicated Nuclear Energy as a strong for the diversification of energy sources. It should be noted that this study was undertaken before the nuclear accident caused by the 2011 Japan tsunami and earthquake. (author)

  17. ChemSession'06 - 3rd Seminary of Warsaw PhD Students in Chemistry. Abstracts

    International Nuclear Information System (INIS)

    Zachara, J.; Lulinski, S.; Dobrowolski, J.C.; Raczynska, E.D.; Fuks, L.; Cyranski, M.K.; Stepien, B.T.; Sawicki, M.G.

    2006-01-01

    3 rd Annual Seminary of Warsaw PhD Students in Chemistry presented the latest achievements in chemistry, obtained in all Warsaw universities and scientific institutes. In 2006 participants presented 4 plenary lectures, and 109 posters. Among others, posters covered four disciplines related to the nuclear sciences: (a) radiobiology and radiotherapy, (b) radiation chemistry and photochemistry, (c) isotopic effects in chemistry, and (d) chemical technology

  18. ChemSession'07 - 4th Seminary of Warsaw PhD Students in Chemistry. Abstracts

    International Nuclear Information System (INIS)

    Dobrowolski, J.C.; Ostrowski, S.; Madura, I.; Sporzynski, A.; Szatylowicz, H.; Zubrowska, A.

    2007-01-01

    4 th Annual Seminary of Warsaw PhD Students in Chemistry presented the latest achievements in chemistry, obtained in all Warsaw universities and scientific institutes. In 2007 participants presented 4 plenary lectures, and 101 posters. Among others, posters covered four disciplines related to the nuclear sciences: (a) radiobiology and radiotherapy, (b) radiation chemistry and photochemistry, (c) isotopic effects in chemistry, and (d) chemical technology

  19. Nuclear techniques using radioactive beams for biophysical studies

    CERN Document Server

    Stachura, Monika Kinga

    Perturbed angular correlation of "-rays (PAC) spectroscopy and nuclear magnetic resonance measured by !-decay (betaNMR) spectroscopy are two very sensitive and, among life-scientists, infrequently encountered nuclear techniques. Both of them belong to the family of hyperfine techniques, which allow for measurements of the interactions of extra-nuclear electromagnetic fields with the nuclear moments. In this way - they can provide useful information about the local structure of the investigated systems. The first part of the work presented here focuses on investigating the fundamental chemistry of heavy metal ion - protein interactions mainly with PAC spectroscopy. A variety of questions concerning both the function of metal ions in natural systems and in synthetic biomolecules on the one hand and the toxic effects of some metal ions on the other were addressed, the results of which are described in four different papers. Paper I is a review article entitled ”Selected applications of perturbed angular correl...

  20. MEXICO loop provides essential technology for MYRRHA. SCK•CEN investigates the chemistry of lead-bismuth

    International Nuclear Information System (INIS)

    2014-01-01

    In the MYRRHA facility, Lead-Bismuth Eutectic (LBE) alloy will act as the primary coolant. There are different experimental lead-bismuth loops in the world. Most have been designed to study steel corrosion in LBE or the thermohydraulics of LBE. The article discusses the MEXICO test loop, which has been developed by SCK-CEN to investigate the chemistry of leadbismuth.