WorldWideScience

Sample records for npp central nuclear

  1. Nuclear Energy in Central Europe 98, Proceedings

    International Nuclear Information System (INIS)

    Ravnik, M.; Jencic, I.; Zagar, T.

    1998-01-01

    Regional Meeting for Nuclear Energy in Central Europe is an annual meeting of the Nuclear Society of Slovenia. The proceedings contain 63 articles from Slovenia, sorounding countries and countries of the Central and Eastern European Region. Topics are: Research Reactors, Nuclear Methods, Reactor Physics, Thermal Hydraulics, Structural Analysis, Probabilistic Safety Assessment, Severe Accidents, NPP Operation and Nuclear Waste disposal

  2. Fourth Regional Meeting: Nuclear Energy in Central Europe, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Mavko, B; Cizelj, L [eds.; Nuclear Society of Slovenia (Slovenia)

    1997-07-01

    Fourth Regional Meeting for Nuclear Energy in Central Europe is an annual meeting of the Nuclear Society of Slovenia. The proceedings contain 89 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region. Topics are: Research Reactors, Reactor Physics, Probabilistic Safety Assessment, Severe Accidents, Ageing and Integrity, Thermal Hydraulics, NPP Operation Experiance, Radioactive Waste Management, Environment and Other Aspects, Public and Nuclear Energy, SG Replacement and Plant Uprating.

  3. International Conference of Ukrainian Nuclear Society ''NPP's safety and protection''(annotations)

    International Nuclear Information System (INIS)

    Barbashev, S.V.

    1997-01-01

    The abstracts of reports submitted to the Conference include: - New developments of the safe nuclear installations; - NPP ecological safety; - Methods of personnel and population protection; - Waste management safety (at transportation, processing and storage); - Spent nuclear fuel management; - NPP life extension and decommissioning; - Public opinion as an element of NPP safety; - Training of personnel, scientific support and safety culture; - Forecasting of nuclear power and industry safe development; - Development of international cooperation in nuclear power

  4. Third Regional Meeting: Nuclear Energy in Central Europe, Proceedings

    International Nuclear Information System (INIS)

    Stritar, A.; Jencic, I.

    1996-01-01

    Third Regional Meeting for Nuclear Energy in Central Europe is an annual meeting of the Nuclear Society of Slovenia. The proceedings contain 71 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region. Topics are: Research Reactors, Reactor Physics, Probabilistic Safety Assessment, Severe Accident management, Thermal Hydraulics, NPP Operation, Radioactive Waste Management, Main Components Integrity, Environment and Other Aspects and Public Information

  5. Third Regional Meeting: Nuclear Energy in Central Europe, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Stritar, A; Jencic, I [Nuclear Society of Slovenia (Slovenia); eds.

    1996-07-01

    Third Regional Meeting for Nuclear Energy in Central Europe is an annual meeting of the Nuclear Society of Slovenia. The proceedings contain 71 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region. Topics are: Research Reactors, Reactor Physics, Probabilistic Safety Assessment, Severe Accident management, Thermal Hydraulics, NPP Operation, Radioactive Waste Management, Main Components Integrity, Environment and Other Aspects and Public Information.

  6. International Conference Nuclear Energy in Central Europe 99, V. 1. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Gortnar, O; Stritar, A [Nuclear Society of Slovenia (Slovenia)

    1999-07-01

    International Conference Nuclear Energy in Central Europe is an annual meeting of the Nuclear Society of Slovenia. The proceedings contain 101 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region. Topics are: Reactor Physics, Research Reactors, Thermal Hydraulics, Structural Analysis, Probabilistic Safety Assessment, Severe Accidents, NPP Operation, Nuclear Energy and Public, Radioactive Waste, Radiological Protection and Environmental Issues, Nuclear Methods and Monte Carlo and Deterministic Transport Calculations.

  7. International Conference Nuclear Energy in Central Europe 99, V. 1. Proceedings

    International Nuclear Information System (INIS)

    Gortnar, O.; Stritar, A.

    1999-01-01

    International Conference Nuclear Energy in Central Europe is an annual meeting of the Nuclear Society of Slovenia. The proceedings contain 101 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region. Topics are: Reactor Physics, Research Reactors, Thermal Hydraulics, Structural Analysis, Probabilistic Safety Assessment, Severe Accidents, NPP Operation, Nuclear Energy and Public, Radioactive Waste, Radiological Protection and Environmental Issues, Nuclear Methods and Monte Carlo and Deterministic Transport Calculations

  8. Nuclear Oversight Function at Krsko NPP

    International Nuclear Information System (INIS)

    Bozin, B.; Kavsek, D.

    2010-01-01

    The nuclear oversight function is used at the Krsko NPP constructively to strengthen safety and improve performance. Nuclear safety is kept under constant examination through a variety of monitoring techniques and activities, some of which provide an independent review. The nuclear oversight function at the Krsko NPP is accomplished by Quality and Nuclear Oversight Division (SKV). SKV has completed its mission through a combination of compliance, performance and effectiveness-based assessments. The performance-based assessment is an assessment using various techniques (observations, interviews, walk-downs, document reviews) to assure compliance with standards and regulations, obtain insight into performance, performance trends and also to identify opportunities to improve effectiveness of implementation. Generally, the performance-based approach to oversight function is based on some essential elements. The most important one which is developed and implemented is an oversight program (procedure). The program focuses on techniques, activities and objectives commensurate with their significance to plant operational safety. These techniques and activities are: self-assessments, assessments, audits, performance indicators, monitoring of corrective action program (CAP), industry independent reviews (such as IAEA's OSART and WANO Peer Review), industry benchmarking etc. Graded approach is an inherent product of a performance based program and ranking process. It is important not only to focus on the highest ranked performance based attributes but to lead to effective utilization of an oversight program. The attributes selected for oversight need to be based on plant specific experience, current industry operating experience, supplier's performance and quality issues. Collaboration within the industry and effective utility oversight of processes and design activities are essential for achieving good plant performance. So the oversight program must integrate relevant

  9. The Bohunice NPP V-1 units nuclear safety upgrading

    International Nuclear Information System (INIS)

    Mlcuch, M.

    2000-01-01

    Safety upgrading and operational reliability improvement was carried out by the Bohunice NPP V-1 staff continuously since the plant commissioning. By now, more than 1200 minor or major modifications have been implemented, either by the NPP maintenance staff or by the contractors. Based on findings of safety assessment missions invited by Bohunice NPP in 1990 - 1991, the Czecho-slovak Nuclear Regulatory Authority (CSKAE) issued the decision No. 5/91 of 81 safety upgrading measures to be taken in different areas. These improvements are referred to as the 'Small Reconstruction of the Bohunice V-1 NPP'. Realization of measures during Small reconstruction of the Bohunice NPP V-1 became a power plant, which further operation is acceptable from safety point of view, but it is also necessary further safety improvement. During the period of the Small Reconstruction the development of a Safety Report for the Gradual reconstruction has been completed. Based on this report the SR Nuclear Regulatory Authority issued the Decision No. 1/94, in which requires 59 upgrading measures in different areas to be addressed. The development of Basic Engineering of the Gradual Reconstruction has been contracted to the Siemens AG. Implementation of safety measures are provided through contract with the consortium REKON (which consists of Siemens AG company and Nuclear Power Plants Research Institute Trnava) and other Czech, Russian and Slovak companies. The Gradual Reconstruction of Bohunice NPP V-1 will be finished in 2000. By implementation of the measures carried out during Gradual Reconstruction achievement of an internationally acceptable nuclear safety level will be reached. (author)

  10. Proceedings of the International Conference Nuclear Energy in Central Europe 2001

    International Nuclear Information System (INIS)

    Jencic, I.; Glumac, B.

    2001-01-01

    International Conference Nuclear Energy in Central Europe is an annual meeting of the Nuclear Society of Slovenia. The proceedings contain 98 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region. Topics are: reactor physics, thermal hydraulics, probabilistic safety assessment (PSA) and severe accidents, nuclear materials, NPP and research reactor operation, environmental issues and radiation measurement, fusion, radioactive waste and regulatory issues and public relations

  11. Standardization of Nuclear Instrumentation Applied in the NPP and in other nuclear installations

    International Nuclear Information System (INIS)

    Kusnowo, Arlinah; Darmawati, Suzie

    2002-01-01

    Nuclear power plant (NPP) and other nuclear installations have been recognized as applications needing very sophisticated technologies. One of technologies used in this all nuclear facilities is nuclear instrumentation. In order that NPP and other nuclear installations be operated safely, nuclear instrumentation requires standardization from design to its operation. Internationally, standardizations of nuclear instrumentation have been issued by IEC (International Electrotechnical Commission). Formulation of standard in nuclear instrumentation in IEC is carried out by Technical Committee (TC) 45. This paper describes briefly the standardization of nuclear instrumentation applied in Indonesia as Indonesian National Standard (SNI, Standard National Indonesia), standardization of nuclear instrumentation developed by TC 45, SC 45A, and SC 45B, as well as the possibility to adopt and apply those IEC standard in Indonesia

  12. Conference: Nuclear Safety at the Ignalina NPP - Achievements and Challenges

    International Nuclear Information System (INIS)

    1999-01-01

    Brief description of conference which took place in Vilnius on 8-9 April 1999 is presented. The aim of the international conference is to review the work carried out, to evaluate its influence on the nuclear safety, to get acquainted with the safety system of the Ignalina NPP. On December 31, the Ignalina NPP celebrated its 15 year anniversary. During that period the Ignalina NPP has produced more than 182 billion kWh of electricity. Nuclear power is not only immense economic benefit but also a syndrome of fear of an atomic bomb and the Chernobyl accident that has formed over the years. Numerous comprehensive international studies have been performed at the Ignalina NPP. After the Chernobyl accident many steps have been taken to improve the safety of the Ignalina NPP. The introduced changes guaranteed that the void coefficient remained negative in all possible circumstances. The Ignalina NPP is intensively preparing for licensing of unit 1

  13. Central alarm system replacement in NPP Krsko

    International Nuclear Information System (INIS)

    Cicvaric, D.; Susnic, M.; Djetelic, N.

    2004-01-01

    Current NPP Krsko central alarm system consists of three main segments. Main Control Board alarm system (BETA 1000), Ventilation Control Board alarm system (BETA 1000) and Electrical Control Board alarm system (BETA 1100). All sections are equipped with specific BetaTone audible alarms and silence, acknowledge as well as test push buttons. The main reason for central alarm system replacement is system obsolescence and problems with maintenance, due to lack of spare parts. Other issue is lack of system redundancy, which could lead to loss of several Alarm Light Boxes in the event of particular power supply failure. Current central alarm system does not provide means of alarm optimization, grouping or prioritization. There are three main options for central alarm system replacement: Conventional annunciator system, hybrid annunciator system and advanced alarm system. Advanced alarm system implementation requires Main Control Board upgrade, integration of process instrumentation and plant process computer as well as long time for replacement. NPP Krsko has decided to implement hybrid alarm system with patchwork approach. The new central alarm system will be stand alone, digital, with advanced filtering and alarm grouping options. Sequence of event recorder will be linked with plant process computer and time synchronized with redundant GPS signal. Advanced functions such as link to plant procedures will be implemented with plant process computer upgrade in outage 2006. Central alarm system replacement is due in outage 2004.(author)

  14. Disposal of spent nuclear fuel from NPP Krsko

    International Nuclear Information System (INIS)

    Mele, I.

    2004-01-01

    In order to get a clear view of the future liabilities of Slovenia and Croatia regarding the long term management of radioactive waste and spent nuclear fuel produced by the NPP Krsko, an estimation of disposal cost for low and intermediate level waste (LILW) as well as for spent nuclear fuel is needed. This cost estimation represents the basis for defining the target value for the financial resources to be accrued by the two national decommissioning and waste disposal funds, as determined in the agreement between Slovenia and Croatia on the ownership and exploitation of the NPP Krsko from March 2003, and for specifying their financial strategies. The one and only record of the NPP Krsko spent fuel disposal costs was made in the NPP Krsko Decommissioning Plan from 1996 [1]. As a result of incomplete input data, the above SF disposal cost estimate does not incorporate all cost elements. A new cost estimation was required in the process of preparation of the Joint Decommissioning and Waste Management Programme according to the provisions of the above mentioned agreement between Slovenia and Croatia. The basic presumptions and reference scenario for the disposal of spent nuclear fuel on which the cost estimation is based, as well as the applied methodology and results of cost estimation, are presented in this paper. Alternatives to the reference scenario and open questions which need to be resolved before the relevant final decision is taken, are also briefly discussed. (author)

  15. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    Science.gov (United States)

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  16. Nuclear Power Plant (NPP) safety in Brazil

    International Nuclear Information System (INIS)

    Lederman, L.

    1980-01-01

    The multidisciplinary aspects of the activities involved in the nuclear power plant (NPP) licensing, are presented. The activities of CNEN's technical staff in the licensing of Angra-1 and Angra-2 power plants are shown. (E.G.) [pt

  17. Technical and economical problems of decommissioning nuclear power plants (NPP) in Russia

    International Nuclear Information System (INIS)

    Vaneev, M.

    2001-01-01

    The introduction per new century has brought to atomic Engineering many new problems. One of them, which has got a serious urgency, we now shall consider. It is a problem of decommissioning NPP in Russia. By 2014 all maintained nowadays NPP in Russian Federation will develop the regular service life. And all of them on idea should be removed from operation. But, as we understand, in today's difficult economic conditions, to it NPP the procedure of prolongation of service life will be applied, and where it is impossible by virtue of the various reasons, the procedure of translation NPP in nuclear - safe condition and in a mode of a long storage under supervision, before acceptance of the decision about a method and way of financing of a decommissioning will be applied. Possible the following variants will be: use platforms of the old NPP for construction new NPP, or using as burial place NPP. The variant of a decommissioning up to a condition 'green grass' is represented unprofitable because of its dearness. The similar decommissioning was carried out in Japan. Was removed from operation research reactor of a type WWR. The expenses for this method of a decommissioning considerably surpass expenses for a method of a burial place NPP basically because of high cost of dismantle and transportation in long-term storehouses of the 1 contour equipment. The most urgent problem of decommissioning NPP, which developed their regular service life - is financing this final stage of a exploitation cycle of the block. I shall remind, that the financing is carried out from uniform fund of decommissioning. The formation of this fund occurs by deduction 1.3 % of cost of the put electric power to the consumers by all maintained NPP of Russia. The expenditure of this fund is carried on time on some tens years. They are spent for 3 basic stages: preparation to decommissioning NPP, long endurance under supervision, dismantle and burial the NPP equipment. Nowadays on faculty NPP MPEI

  18. Ukrainian Nuclear Society International Conference 'Modernization of the NPP with VVER reactor' (abstracts)

    International Nuclear Information System (INIS)

    Bar'yakhtar, V.G.

    1999-01-01

    Abstracts of the papers presented at International conference of the Ukrainian Nuclear Society 'Modernization of the NPP with VVER reactor'. The following problems are considered: improving the NPP's safety and reliability; reactor modernization, the lifetime prolongation; increasing of the reactor operating characteristics; methods of capacity factor increasing: refueling control, maintenance control; technical and economical aspects of NPP modernization; modernization of the automated control system of the fuel process at the NPP's; technical features and methods for the continued radiation and technology control at the NPP's; training, increasing the staff qualification and NPP modernization

  19. Financing Nuclear Projects. Case Study: Unit 2 Cernavoda NPP

    International Nuclear Information System (INIS)

    Chirica, Teodor; Constantin, Carmencita; Dobrin, Marian

    2003-01-01

    The implementation of a Nuclear Power Plant (NPP) is a major undertaking for all entities involved, due to the necessity of planning work and coordination of the implementation process of the different fields of interest, starting with the governmental authorities and ending with the public. Having in view the specific investment costs (relatively high) for a NPP, finding an adequate financing structure is possible through an iterative process that involves first an assessment of the technical performances of the project and secondly, the mathematical modelling of the financing structure effects on the projects. In this respect, the paper will be focused on the main steps needed in order to promote an investment project in nuclear field, starting with the decision phase, providing the documentation requested by the local and international authorities to promote the project and ending with the negotiation of the contracts (commercial contract, financing contract, purchase contract, etc). The case study will be focused on the phases achieved in order to promote the Unit 2 NPP Cernavoda completion works project. (authors)

  20. Financing nuclear projects. Case study: Unit 2 Cernavoda NPP

    International Nuclear Information System (INIS)

    Chirica, T.; Pall, S.; Lebedev, A.; Dobrin, M.

    2003-01-01

    The implementation of a Nuclear Power Plant (NPP) in a country is a major undertaking for all entities involved, due to the necessity of planning work and co-ordination of the implementation process of the different fields of interest, starting with the governmental authorities and ending with the people. Having in view the specific investment cost (relatively high) for a NPP, to find an adequate financing structure is possible through an iterative process that involves first an assessment of the technical performances of the project and second, the mathematical modelling of the financing structure effects on the project. In this respect, the paper proposed will be focused on the main steps needed in order to promote an investment project in nuclear field, starting with the decision phase, providing the documentations requested by the local and international authorities to promote the project and ending with the negotiation of the contracts (commercial contract, financing contract, power purchase contract, etc.) The case study will be focused on the phases achieved in order to promote the Unit 2 Cernavoda NPP completion works project. (author)

  1. Managing RTP Console Upgrading Project: Best Practice for Nuclear Malaysia as TSO in Supporting NPP Development

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Syahirah Abdul Rahman; Izhar Abu Hussin

    2011-01-01

    Human Resource Development (HRD) is required for Nuclear Power Programme (NPP). To be a Technical Support Organisation (TSO) for NPP, Nuclear Malaysia should be ready to take the responsibility in supporting Nuclear Regulatory Agency (NRA) and NPP Operators. In nurturing Nuclear Malaysia as TSO, the prime important and focus of HRD for the NPP is the reactor engineering technology. Nuclear Malaysia gives various phases of supports needed to build NPP such as during siting, design, planning, licensing, construction, commissioning, operation and maintenance in its own way and capability. The current Nuclear Malaysia unique approach is the TRIGA PUSPATI reactor (RTP) upgrading project. Research reactor plays an important role in Research and Developpement organization as a nuclear facility to assist the development of NPP. Therefore, upgrading the research reactor is needed to build the skills and gain knowledge of workers to work safely. After 29 years of operation, the RTP system is facing aging problems due to many components in the reactor are outdated. Therefore, immediate action should be carried out to mitigate the aging factor of the reactor to prevent the worsening of the aging problem, and to prevent untoward incident from happening. Action should also cover short and long term planning to prevent current situation from recurring. Currently, RTP is upgrading its console from analog to digital system. One of the achievements in this console upgrading project is the development and implementation of project management. This paper comprises the overview on the RTP console upgrading project, the project management and how this project can lead Nuclear Malaysia to be a good TSO for the development of NPP. (author)

  2. Nuclear Fuel in Cofrentes NPP

    International Nuclear Information System (INIS)

    2002-01-01

    Fuel is an essential in the nuclear power generating business because of its direct implications on safety, generating costs and the operating conditions and limitations of the facility. Fuel management in Cofrentes NPP has been targeted at optimized operation, enhanced reliability and the search for an in-depth knowledge of the design and licensing processes that will provide Iberdrola,as the responsible operator, with access to independent control of safety aspects related to fuel and free access to manufacturing markets. (Author)

  3. Management of Spent Nuclear Fuel from Nuclear Power Plant Reactor

    International Nuclear Information System (INIS)

    Wati, Nurokhim

    2008-01-01

    Management of spent nuclear fuel from Nuclear Power Plant (NPP) reactor had been studied to anticipate program of NPP operation in Indonesia. In this paper the quantity of generated spent nuclear fuel (SNF) is predicted based on the national electrical demand, power grade and type of reactor. Data was estimated using Pressurized Water Reactor (PWR) NPP type 1.000 MWe and the SNF management overview base on the experiences of some countries that have NPP. There are four strategy nuclear fuel cycle which can be developed i.e: direct disposal, reprocessing, DUPlC (Direct Use of Spent PWR Fuel In Candu) and wait and see. There are four alternative for SNF management i.e : storage at the reactor building (AR), away from reactor (AFR) using wet centralized storage, dry centralized storage AFR and prepare for reprocessing facility. For the Indonesian case, centralized facility of the wet type is recommended for PWR or BWR spent fuel. (author)

  4. NPP life management (abstracts)

    International Nuclear Information System (INIS)

    Litvinskij, L.L.; Barbashev, S.V.

    2002-01-01

    Abstracts of the papers presented at the International conference of the Ukrainian Nuclear Society 'NPP Life Management'. The following problems are considered: modernization of the NPP; NPP life management; waste and spent nuclear fuel management; decommissioning issues; control systems (including radiation and ecological control systems); information and control systems; legal and regulatory framework. State nuclear regulatory control; PR in nuclear power; training of personnel; economics of nuclear power engineering

  5. 76 FR 46330 - NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft...

    Science.gov (United States)

    2011-08-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0568] NUREG-1934, Nuclear Power Plant Fire Modeling... 1023259), ``Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Second Draft Report for...), ``Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Second Draft for Comment,'' is...

  6. Analysis of World Nuclear Market and Strategy of Korean NPP's Competitiveness Improvement for Exportation

    International Nuclear Information System (INIS)

    Choi, Jae Young; Jeong, Yong Hoon; Roh, Seungkook; Chang, Soon Heung

    2016-01-01

    China, India and USA (nuclear adopted countries) are planning tremendous number of NPPs to meet their increasing electricity demand and Saudi Arabia, Vietnam (nuclear adopting countries) are also planning to include nuclear power in their energy mix as a long-term plan. Korea has exported 4 units of APR1400 to the UAE in December, 2009. Korea became sixth NPP supplier country and our economic feasibility and safety features were started to evaluate worldwide. Nuclear industries became a new driver of Korea’s export and nuclear industries in Korea are now expecting another NPP export to Middle-eastern countries, including UAE and Saudi Arabia, based on the first-mover’s advantage at the UAE. In 2000s, five countries (Japan, USA, France, Russia and Korea), which are able to build NPP, focused on NPP export more than domestic construction. Global trend of world nuclear market changed rapidly, especially after NPP export to the UAE. By the global trend, hegemony of nuclear market migrated from supplier country to buyer country. Nuclear companies started cooperating rather than competing. Financing to developing countries become more important. In general, one of the considerable combinations is Korea-Japan-USA alliance. Korea is in charge of EPC, Japan supports financing and deficient technology (with USA partner), and Japan-USA handles fuel supply and back-end fuel cycle based on new agreed terms of ROK-US Nuclear Cooperation Agreement. This combination was judged to best way to collaborate with global companies. Paying attention to many delayed (or potentially delayed) constructions from Russia, intercepting the construction work will be available in case of contracted countries. Korea can emphasize the short construction time, high responsiveness and mild/equal diplomatic position to the target countries

  7. Perspectives on managing nuclear safety at Cernavoda NPP past, present and future

    International Nuclear Information System (INIS)

    Serban, M.

    1997-01-01

    The presentation considers the following issues: background of Romanian nuclear programme; 1990 management issues involved in Cernavoda project, nuclear safety perspectives; Cernavoda U1 operating organization today (safety related issues); good practices at Cernavoda NPP

  8. Perspectives on managing nuclear safety at Cernavoda NPP past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Serban, M [Technical Safety Directorate, Unit 1., Cernavoda Nuclear Power Plant (Romania)

    1997-12-01

    The presentation considers the following issues: background of Romanian nuclear programme; 1990 management issues involved in Cernavoda project, nuclear safety perspectives; Cernavoda U1 operating organization today (safety related issues); good practices at Cernavoda NPP.

  9. NPP physical protection and information security as necessary conditions for reducing nuclear and radiation accident risks

    International Nuclear Information System (INIS)

    Pogosov, O.Yu.; Derevyanko, O.V.

    2017-01-01

    The paper focuses on the fact that nuclear failures and incidents can lead to radioactive contamination of NPP premises. Nuclear and radiation hazard may be caused by malefactors in technological processes when applying computers or inadequate control in case of insufficient level of information security.The researchers performed analysis of factors for reducing risks of nuclear and radiation accidents at NPPs considering specific conditions related to information security of NPP physical protection systems. The paper considers connection of heterogeneous factors that may increase the risk of NPP accidents, possibilities and ways to improve adequate modelling of security of information with limited access directly related to the functioning of automated set of engineering and technical means for NPP physical protection. Within the overall Hutchinson formalization, it is proposed to include additional functional dependencies on indicators specific for NPPs into analysis algorithms.

  10. Studies of Effect Analysis of Electromagnetic Pulses (EMP) in Operating Nuclear Power Plants (NPP)

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Song Hae; Ryu, Ho Sun; Kim, Min Yi; Lee, Eui Jong [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    The effect analysis of electromagnetic pulses (EMPs) has been studied for the past year by the Central Research Institute of Korea Hydro Nuclear Power Co. (KHNP) in order to better establish safety measures in operating nuclear power plants. What is an electromagnetic pulse (EMP)? As a general term for high-power electromagnetic radiation, it refers to strong electromagnetic pulses that destroy only electronic equipment devices in a short period without loss of life. The effect analysis of EMPs in operating NPPs and their corresponding safety measures in terms of selecting target devices against EMP impact have been examined in this paper. In general, domestic nuclear power plants do apply the design of fail-safe concepts. For example, if key instruments of a system fail because of EMPs, the control rods of a nuclear reactor are dropped automatically in order to maintain safe conditions of the NPP. Reactor cooling presents no problem because the diesel generator will adopt the analog starting circuit least affected by the electromagnetic waves.

  11. Analysis of World Nuclear Market and Strategy of Korean NPP's Competitiveness Improvement for Exportation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Young; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of); Roh, Seungkook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chang, Soon Heung [Handong Global University, Pohang (Korea, Republic of)

    2016-10-15

    China, India and USA (nuclear adopted countries) are planning tremendous number of NPPs to meet their increasing electricity demand and Saudi Arabia, Vietnam (nuclear adopting countries) are also planning to include nuclear power in their energy mix as a long-term plan. Korea has exported 4 units of APR1400 to the UAE in December, 2009. Korea became sixth NPP supplier country and our economic feasibility and safety features were started to evaluate worldwide. Nuclear industries became a new driver of Korea’s export and nuclear industries in Korea are now expecting another NPP export to Middle-eastern countries, including UAE and Saudi Arabia, based on the first-mover’s advantage at the UAE. In 2000s, five countries (Japan, USA, France, Russia and Korea), which are able to build NPP, focused on NPP export more than domestic construction. Global trend of world nuclear market changed rapidly, especially after NPP export to the UAE. By the global trend, hegemony of nuclear market migrated from supplier country to buyer country. Nuclear companies started cooperating rather than competing. Financing to developing countries become more important. In general, one of the considerable combinations is Korea-Japan-USA alliance. Korea is in charge of EPC, Japan supports financing and deficient technology (with USA partner), and Japan-USA handles fuel supply and back-end fuel cycle based on new agreed terms of ROK-US Nuclear Cooperation Agreement. This combination was judged to best way to collaborate with global companies. Paying attention to many delayed (or potentially delayed) constructions from Russia, intercepting the construction work will be available in case of contracted countries. Korea can emphasize the short construction time, high responsiveness and mild/equal diplomatic position to the target countries.

  12. Status of Chinese NPP Industry and Nuclear Fuel Cycle Policy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R. X. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, W. I.; Kim, S. K. [Univ. of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    China still extended their experiences to both domestic and overseas so far. Chinese State Council approved its 'Medium and Long-term Nuclear Power Development Plan' in November 2007, indicating further definition for nuclear energy as indispensable energy option and future self-reliance development of nuclear industry. China intends to become self-sufficient not only in NPPs capacity, but also in the fuel production for all those plants. There are currently 17 NPPs in operation, and 28 NPPs under construction. However, domestic uranium mining supplying is currently less than a quarter of nuclear fuel demands. This paper investigated and summarized the updated status of NPP industry in China and Nuclear Fuel Cycle(NFC) policy. There still remain a number of technical innovation and comprehensive challenges for this nuclear developing country in the long-term, but its large ambitions and dramatic improvements toward future should not be ignored. As shown in this paper, the most suitable approach for China to achieve both environmentally-friendly power supplying and increasing energy demands meeting simultaneously must be considered. Nuclear energy now was recognized as the most potential and optimal way of energy supply system. In addition, to accommodate such a high-speed NPP construction in China, it should also focus on when and how spent nuclear fuel should be reprocessed. Finally, the nuclear back-end fuel cycle policy should be established, taking into accounts of all costs, uranium resource security, spent fuel management, proliferation resistance and environmental impact.

  13. Basic fracture toughness requirements for ferritic materials of nuclear class pressure retaining equipment in NPP

    International Nuclear Information System (INIS)

    Ning Dong; Yao Weida

    2005-01-01

    In this paper, theory basis on cold brittleness and anti-brittle fracture design of ferritic materials are introduced summarily and fracture toughness requirements for ferritic materials in ASME code for nuclear safety class pressure retaining equipment in NPP are summarized and evaluated. The results show that notch impact toughness requirements for materials relate to nuclear safety class of materials so as to ensure that brittle fracture of retaining pressure boundary in NPP can not occur. (authors)

  14. Integrated tool for NPP lifetime management in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Francia, L. [UNESA, Madrid (Spain); Lopez de Santa Maria, J. [ASCO-Vandellos 2 NPPs l' Hospitalet de l' Infant, Tarragona (Spain); Cardoso, A. [Tecnatom SA, Madrid (Spain)

    2001-07-01

    The project for the Integrated Nuclear Power Plant Lifetime Management System SIGEVI (Sistema Integrado de GEstion de VIda de Centrales Nucleares) was initiated in April 1998 and finalized in December 2000, the main objective of the project being to develop a computer application facilitating the assessment of the condition and lifetime of nuclear power plant components. This constituted the second phase of a further-reaching project on NPP Lifetime Management. During the first phase of this project, carried out between 1992 and 1995, the methodology and strategy for the lifetime management of the Spanish NPP's were developed. Among others, degradation phenomena were assessed and the most adequate methods for their monitoring were defined. The SIGEVI Project has been performed under the management of UNESA (Spanish Electricity Association) and with the collaboration of different engineering firms and research institutes (Tecnatom, Empresarios Agrupados, Ufisa, Initec and IIT), with Vandellos II as the pilot plant. The rest of the Spanish NPP's have also actively participated through the Project Steering Committee. The following sections describe the scope, the structure and the main functionalities of the system SIGEVI. (authors)

  15. Integrated tool for NPP lifetime management in Spain

    International Nuclear Information System (INIS)

    Francia, L.; Lopez de Santa Maria, J.; Cardoso, A.

    2001-01-01

    The project for the Integrated Nuclear Power Plant Lifetime Management System SIGEVI (Sistema Integrado de GEstion de VIda de Centrales Nucleares) was initiated in April 1998 and finalized in December 2000, the main objective of the project being to develop a computer application facilitating the assessment of the condition and lifetime of nuclear power plant components. This constituted the second phase of a further-reaching project on NPP Lifetime Management. During the first phase of this project, carried out between 1992 and 1995, the methodology and strategy for the lifetime management of the Spanish NPP's were developed. Among others, degradation phenomena were assessed and the most adequate methods for their monitoring were defined. The SIGEVI Project has been performed under the management of UNESA (Spanish Electricity Association) and with the collaboration of different engineering firms and research institutes (Tecnatom, Empresarios Agrupados, Ufisa, Initec and IIT), with Vandellos II as the pilot plant. The rest of the Spanish NPP's have also actively participated through the Project Steering Committee. The following sections describe the scope, the structure and the main functionalities of the system SIGEVI. (authors)

  16. Experience in NPP operation and prospects of nuclear power development in France

    International Nuclear Information System (INIS)

    Lekler, Zh.

    1986-01-01

    Main results and perspectives of nuclear power development in France are analysed. Data characterizing operation of NPPs with PWR reactors in France and leading capitalist countries are given. Problems related to the organization of works on control of NPP operation and its maintenance are discussed. Power utilization factor for french power units amounted to 75% in 1984. NPP share of all electric power generated in the country constituted 59%. Emergency reactor shut-downs took 5% of calendar time in 1984

  17. Two managerial grids in NPP

    International Nuclear Information System (INIS)

    Zhao Hui

    2012-01-01

    Today, the nuclear power corporation (NPC) enjoys the profit of LCEP (the low carbon economic policy). at the same time, they also enduring more and more pressure. For example, the partner competition or the NPP potential occupational risk . The efficient counterplot of risk is the self-ability cultivation. It is essential to research the NPP managerial flow. The nuclear power plant (NPP) unit is a carrier of the NPC enterprise management system, and has taken on a new look 'pull one portion then the whole moving'. The NPP has three systematical characters, the security responsibility center, the man-machine system and the input-output system. The manufacturing system and the enterprise management system are the great constituents of the NPP managerial flows. Means of systems analysis, we can find out the truth of the NPP running interface. In CHINA, there are many operating experiences near 20 years. It indicates that the NPP manufacturing system and the enterprise system are the roots of the nuclear power corporation, the core of the all NPP systems must be based on it. So the ability cultivation is the work core to NPP. It is reliably to ensure the NPP to be up against problems, for instance, the security duty, the costing control and the man-machine system running harmoniously. This paper introduces the NPP managerial flow and the present state of QNPC, also come up with a proposal to refer for the NPC development actions of collective measure, specialization, standardization, fine. (author)

  18. Radioactive source management in Daya Bay NPP

    International Nuclear Information System (INIS)

    Mao Chun Yang

    2000-01-01

    'Small sources causes big accidents' had occurred worldwide many times. Radioactive source management in Nuclear Power Plant in very important for its safety record. This paper introduces the way and experience of radioactive source management in Daya Bay NPP from aspects of clarifying the responsibilities, centralizing the management of high radioactivity sources, work process management and experience feedback etc. (author)

  19. The V-1 NPP and V-2 NPP upgrading

    International Nuclear Information System (INIS)

    1998-01-01

    A brief account of activities in the V-1 NPP and V-2 NPP upgrading as well as maintenance carried out by the Nuclear power plants Jaslovske Bohunice in 1997 is presented. The V-1 NPP applied the so called 'Small Backfitting Programme'covering 81 points of the Czechoslovak Atomic energy Commission Decree No 5/91. Continual upgrading continued after the Backfitting Programme completion with the Safety Report and following Nuclear Regulatory Authority of Slovak Republic (NRA SR) Decrees No 1/94 and 110/94 setting spheres and procedure for adopting and implementation of measures enabling the units to operate further on. Results of expert missions, analyses and assessments of components identified by Basic Engineering became the basis for the development of the Gradual Reconstruction Programme. The Programme outputs underwent economic and probabilistic assessing their contribution to nuclear safety. This process resulted in finalizing the Gradual Reconstruction Programme which started to be implemented in 1996 and will be completed in 1999. It is implemented by the REKON consortium and covers 17 areas including Instrumentation and Control, self-consumption emergency supply, leakage monitoring, emergency core cooling system, seismic reinforcement and radioactivity localisation. Both units will reach internationally acceptable safety standards for the remaining life-time period. The V-2 NPP Upgrading and Safety Enhancement Programme includes results of activities performed in the course of last years to define all important activities leading to enhancement of nuclear safety and performance reliability and effectiveness within the plant life-time period and to establish conditions for extending the life-time of these units for 40 years. The V-2 NPP Upgrading and Safety Enhancement Programme aims to assure safe operation with a probability of the core damages less than 10 -4 /reactor · year

  20. Training system enhancement for nuclear safety at PAKS NPP

    International Nuclear Information System (INIS)

    KIss, I.

    2000-01-01

    Paks Nuclear Power Plant is the only commercial nuclear facility in Hungary, which has been operational since 1982. The over 15 years operation of the plant can from all aspects be considered as a success, to which the well qualified, competent staff significantly contributes. Like other N-plants, Paks NPP is also exposed to major challenges due to plant ageing and changes in circumstances that affect the operation. The management focusing on maintaining nuclear safety launched an overall programme to upgrade quality of personnel training and to improve its infrastructure. Though this programme has successfully finished with visible proofs, further actions to develop a reconsidered human resource policy is needed so that the plant would successfully stand against the challenges of the 21. century. (author)

  1. A Study on Human Factors in Maintenance of a Nuclear Power Plant (NPP)

    International Nuclear Information System (INIS)

    Park, Young Ho; Seong, Poong Hyun

    2006-01-01

    In human factors research, more attention has been devoted to the operation of a nuclear power plant (NPP) than to their maintenance. However, more NPP incidents are caused by inadequate maintenance rather than by faulty operation. There is a trend in NPP toward introducing digital technology into safety and non-safety systems. This lead to changes of maintenance, and support systems such as diagnosis system, augmentation system and handy terminal will be developed. In this context, it is important to identify tasks of human related to each phase of maintenance and their relation in order to apply those to maintenance. However, there are few researches of human factors in maintenance. This paper studies on framework of cognitive task analysis for developing maintenance support systems

  2. Public acceptance of nuclear energy in Indonesia. A traditional puppet show for NPP in Java

    International Nuclear Information System (INIS)

    Suyudi Soeliarno

    1995-01-01

    In Indonesia, activities on public relation have been carried out since the establishment of the agency responsible for research and development of atomic energy in 1958 (which later in the year 1964 became Batan, National Atomic Energy Agency), wile activities on public acceptance started 'at the end of 1985. After the Government indicated that it has to look seriously into the construction of the NPP, as from 1990, the public acceptance (PA) activities have been intensified in anticipation of the construction of the first NPP. An important part of the preparatory activities for the construction of the NPP is preparing the people, particularly those who live near the NPP site, to accept and to support the NPP program. The interdepartmental team has bee established in August 1990 consisting of representatives of several institutions, namely, Ministry of Information, Ministry of Domestic Affairs, Ministry of Defense, Land Utilization Agency, State Electricity Corporation, Office of the Minister for Population and Environment, and Batan. This team, called the 'Team on Public Acceptance of NPP', has the main task providing extensive information to the public concerning the government plan to construct nuclear power plants in Indonesia. From 1990 through the middle of 1994 the activity of the Team on Public Acceptance of NPP was focused on providing information on te NPP program to the local community leaders and the public, particularly in the districts of the NPP site in the Muria Peninsula region. Its main purpose was to precondition the people who live near the NPP site to accept the NPP in their neighbourhood without fear

  3. Women in nuclear energy – motivation and prospects at Kozloduy NPP report

    International Nuclear Information System (INIS)

    Radneva, R.

    2015-01-01

    The report presents part of the study of the staff motivation at Kozloduy NPP plc, which is performed annually. A total of 25 factors have been considered, and for 8 of them the internal motivation characteristics have been discussed, while the remaining 17 factors determine the satisfaction from external motivation stimuli: positive ones (remuneration, bonuses, awards, etc.), as well as negative (little lead time, sanctions, punishments, excessive control in the performance of tasks, etc.). Women in the nuclear industry contribute to the unique image of nuclear organisations and are an especially valued asset. In the selection of staff for vacancies there is no sex discrimination, and it is increasingly becoming evident from the number of women employed in jobs considered until recently as typically male. The satisfaction from the measured Internal motivation factors concerning the women working at Kozloduy NPP is presented in this work.

  4. NPP Information Model as an Innovative Approach to End-to-End Lifecycle Management of the NPP and Nuclear Knowledge Management Proven in Russia

    International Nuclear Information System (INIS)

    Tikhonovsky, V.; Kanischev, A.; Kononov, V.; Salnikov, N.; Shkarin, A.; Dorobin, D.

    2016-01-01

    Full text: Managing engineering data for an industrial facility, including integration and maintenance of all engineering and technical data, ensuring fast and convenient access to that information and its analysis, proves to be necessary in order to perform the following tasks: 1) to increase economic efficiency of the plant during its lifecycle, including the decommissioning stage; 2) to ensure strict adherence to industrial safety requirements, radiation safety requirements (in case of nuclear facilities) and environmental safety requirements during operation (including refurbishment and restoration projects) and decommissioning. While performing tasks 1) and 2), one faces a range of challenges: 1. A huge amount of information describing the plant configuration. 2. Complexity of engineering procedures, step-by-step commissioning and significant geographical distribution of industrial infrastructure. 3. High importance of plant refurbishment projects. 4. The need to ensure comprehensive knowledge transfer between different generations of operational personnel and, which is especially important for the nuclear energy industry, between the commissioning personnel generations. NPP information model is an innovative method of NPP knowledge management throughout the whole plant lifecycle. It is an integrated database with all NPP technical engineering information (design, construction, operation, diagnosing, maintenance, refurbishment). (author

  5. An Extreme Meteorological Events Analysis For Nuclear Power Plant (NPP) Siting Project at Bangka Island, Indonesia

    Science.gov (United States)

    Septiadi, Deni; S, Yarianto Sugeng B.; Sriyana; Anzhar, Kurnia; Suntoko, Hadi

    2018-03-01

    The potential sources of meteorological phenomena in Nuclear Power Plant (NPP) area of interest are identified and the extreme values of the possible resulting hazards associated which such phenomena are evaluated to derive the appropriate design bases for the NPP. The appropriate design bases shall be determined according to the Nuclear Energy Regulatory Agency (Bapeten) applicable regulations, which presently do not indicate quantitative criteria for purposes of determining the design bases for meteorological hazards. These meteorological investigations are also carried out to evaluate the regional and site specific meteorological parameters which affect the transport and dispersion of radioactive effluents on the environment of the region around the NPP site. The meteorological hazards are to be monitored and assessed periodically over the lifetime of the plant to ensure that consistency with the design assumptions is maintained throughout the full lifetime of the facility.

  6. Scheme of higher-density storage of spent nuclear fuel in Chernobyl NPP interim storage facility no. 1

    International Nuclear Information System (INIS)

    Britan, P.M.

    2008-01-01

    On 29. March 2000 the Cabinet of Ministers of Ukraine issued a decree prescribing that the last operating unit of Chernobyl NPP be shut down before its design lifetime expiry. In accordance with the Contract concluded on 14 June 1999 between the National Energy-generating Company 'Energoatom' and the Consortium of Framatome, Campenon Bernard-SGE and Bouygues, in order to store the spent ChNPP fuel a new interim dry storage facility (ISF-2) for spent ChNPP fuel would be built. Currently the spent nuclear fuel (spent fuel assemblies - SFAs) is stored in reactor cooling pools and in the reactors on Units 1, 2, 3, as well as in the wet Interim Storage Facility (ISF-1). Taking into account the expected delay with the commissioning of ISF-2, and in connection with the scheduled activities to build the New Safe Confinement (including the taking-down of the existing ventilation stack of ChNPP Units 3 and 4) and the expiry of the design operation life of Units 1 and 2, it is expedient to remove the nuclear fuel from Units 1, 2 and 3. This is essential to improve nuclear safety and ensure that the schedule of construction of the New Safe Confinement is met. The design capacity of ISF-1 (17 800 SFAs) is insufficient to store all SFAs (21 284) currently on ChNPP. A technically feasible option that has been applied on other RBMK plants is denser storage of spent nuclear fuel in the cooling ponds of the existing ISF-1. The purpose of the proposed modifications is to introduce changes to the ISF-1 design supported by necessary justifications required by the Ukrainian codes with the objective of enabling the storage of additional SFAs in the existing storage space (cooling pools). The need for the modification is caused by the requirement to remove nuclear fuel from the ChNPP units as soon as possible, before the work begins to decommission these units, as well as to create safe conditions for the construction of the New Safe Confinement over the existing Shelter Unit. (author)

  7. NPP electrical price and tariff in the world

    International Nuclear Information System (INIS)

    Mochamad Nasrullah and Sriyana

    2010-01-01

    Construction of a Nuclear Power Plant (NPP) is always become a controversial issue. Nuclear utility and other party which support the NPP present a calculation of NPP electricity cost too optimistic. However for utility and other party that contra to nuclear present a calculation of NPP electricity cost too pessimistic. This study present to reduce the controversy of nuclear cost. In this study, capital cost (Engineering Procurement Construction, EPC) was taken from Asian, America and Europe, operating and maintenance cost uses experience data of PLN, and nuclear fuel cost uses data year of 2008 with high price, low price and average price scenario. The methodological tools used to compare electricity generation cost was LEGECOST, a program developed by IAEA (International Atomic Energy Agency), while for electricity tariff- price calculation using a program developed by PLN research and development center. With the discount rate 10%, the result shows that the cheapest electricity generation cost of NPP is less than 40 mills/kWh, and average electricity tariff was 55 mills/kWh. In the Europe countries the electricity tariff more expensive than NPP in Asia. However generating cost and electricity tariff of NPP in United Stated of America (USA) less competitive because investment cost more expensive. Generating cost and electricity tariff was different at each country depend on salary, labor wage, materials price, construction specification, regulation related to NPP and environment aspect. (author)

  8. Bases of updating of nuclear safety regulations for NPP in Romania

    International Nuclear Information System (INIS)

    Biro, Lucian; Serbanescu, Dan

    1999-01-01

    The paper presents the basic principles of reviewing and updating process of the regulatory environment pyramid. The main part of this review process refers to Cernavoda NPP Unit 2. However, there is an important impact on Cernavoda NPP Unit 1. The basic principles were defined in 1993/1994 when the licensing process for Unit 1 was resumed in order to be in accordance with the latest developments of Candu 600 worldwide and with the IAEA and NEA latest recommended documents and practices. After the licensing process for the Unit 1 was completed up to operation stage, CNCAN developed new updated regulations on nuclear safety and the regulatory pyramid in the framework of the RAMG PHARE project. CNCAN issued in 1996 the regulatory Policy for Unit 2, self-sustained and independent of future possible revisions of the regulations. The use of the concept of hierarchical systems, systematic review of safety criteria and objectives and margins along with the feedback from international and national experience on this topic ensured issuance of a reference document for future approach of nuclear safety in Romania. (authors)

  9. Checking of seismic and tsunami hazard for coastal NPP of Chinese continent after Fukushima nuclear accident

    Institute of Scientific and Technical Information of China (English)

    Chang Xiangdong; Zhou Bengang; Zhao Lianda

    2013-01-01

    A checking on seismic and tsunami hazard for coastal nuclear power plant (NPP) of Chinese continent has been made after Japanese Fukushima nuclear accident caused by earthquake tsunami.The results of the checking are introduced briefly in this paper,including the evaluations of seismic and tsunami hazard in NPP siting period,checking results on seismic and tsunami hazard.Because Chinese coastal area belongs to the continental shelf and far from the boundary of plate collision,the tsunami hazard is not significant for coastal area of Chinese continent.However,the effect from tsunami still can' t be excluded absolutely since calculated result of Manila trench tsunami source although the tsunami wave is lower than water level from storm surge.The research about earthquake tsunami will continue in future.The tsunami warning system and emergency program of NPP will be established based on principle of defense in depth in China.

  10. The nuclear regulatory authority of the Slovak Republic and start-up of the Mochovce NPP

    International Nuclear Information System (INIS)

    Seliga, Mojmir

    1999-01-01

    The important aspect is testing if the nuclear energy in the Slovak Republic is due to obligatory rules acceptable and its operation is regulated by the state through the independent institution - The Nuclear Regulatory Authority of the Slovak Republic (UJD). UJD considers the whole area of public relations an essential component of its activity. UJD intends to serve the public true, systematic, qualified, understandable and independent information regarding nuclear safety of nuclear power plants, as well as regarding methods and results of UJD work. Generally, public information is considered as significant contribution to the creation of confidence into the regulatory work. The public relations are understood as attempts to establish, keep and improve UJD-s good relations to its neighbours through purposeful informing. An Information centre at the offices of UJD was built and opened in October 1995 with IAEA Director General as the first visitor. NPP Mochovee is an example of international co-operation in achieving internationally acceptable safety standards. Companies from France, Germany, USA, Russian Federation, Czech Republic and Slovakia and last, but not least also the IAEA participated significantly on increasing the safety level of this NPP. We have been fully aware of the importance of good communication with press, TV and radio broadcasting in this pre-operation and operation period about nuclear safety, nuclear standard and other nuclear aspects commissioning of the NPP Mochovce in the UJD. The information policy of the UJD was in this period focused on the preparation an actual press releases for general and specialised news- paper and national press agencies. Very important were the frequent presentations the requirement safety stages of the NPP Mochovce inIV and radio broadcasting by headquarters of the UJD. UJD as the state authority provides information related to its competence, namely information on safety of operation of nuclear installations

  11. NPP financial and regulatory risks-Importance of a balanced and comprehensive nuclear law for a newcomer country considering nuclear power programme

    Science.gov (United States)

    Manan, J. A. N. Abd; Mostafa, N. A.; Salim, M. F.

    2015-04-01

    The nature of Nuclear Power Plant (NPP) projects are: long duration (10-15 years for new build), high capital investment, reasonable risks and highly regulated industries to meet national & international requirement on Safety, Security, Safeguards (3S) and Liabilities. It requires long term planning and commitment from siting to final disposal of waste/spent fuel. Potential financial and regulatory risks are common in massive NPP projects and will be magnified in the case of using unproven technology. If the risks are not properly managed, it can lead to high project and operation costs, and, fail to fulfil its objectives to provide compatible electricity prices and. energy security. To ensure successful, the government and investors need to ensure that the NPP project is bankable with low cost of project and funding, have fair treatment and proper risk mitigation, and able to complete on time with no cost overrun. One of the requirements as prerequisite for the development of NPP as stipulated by the International Atomic Energy Agency (IAEA) is the establishment of a Legal and Regulatory Framework. The main objective of nuclear law is to ensure that the activities and projects carried-out in the country are legal and compliant to national and international requirements. The law should also be able to provide fair treatment of risks on its activities that is acceptable to investors. The challenge for a newcomer country is to develop a balanced and comprehensive national nuclear law that meet these objectives while taking into consideration various stakeholders' interest without compromising on safety, security, safeguard, liability requirements and other international obligations. This paper highlights the nature of NPP projects, its potential and associated financial and regulatory risks, and its major concerns and challenges. It proposes possible risks treatment and mitigation through the formulation of a balanced and comprehensive legislation by clear

  12. NPP financial and regulatory risks-Importance of a balanced and comprehensive nuclear law for a newcomer country considering nuclear power programme

    International Nuclear Information System (INIS)

    Manan, J. A. N. Abd; Mostafa, N. A.; Salim, M. F.

    2015-01-01

    The nature of Nuclear Power Plant (NPP) projects are: long duration (10-15 years for new build), high capital investment, reasonable risks and highly regulated industries to meet national and international requirement on Safety, Security, Safeguards (3S) and Liabilities. It requires long term planning and commitment from siting to final disposal of waste/spent fuel. Potential financial and regulatory risks are common in massive NPP projects and will be magnified in the case of using unproven technology. If the risks are not properly managed, it can lead to high project and operation costs, and, fail to fulfil its objectives to provide compatible electricity prices and. energy security. To ensure successful, the government and investors need to ensure that the NPP project is bankable with low cost of project and funding, have fair treatment and proper risk mitigation, and able to complete on time with no cost overrun. One of the requirements as prerequisite for the development of NPP as stipulated by the International Atomic Energy Agency (IAEA) is the establishment of a Legal and Regulatory Framework. The main objective of nuclear law is to ensure that the activities and projects carried-out in the country are legal and compliant to national and international requirements. The law should also be able to provide fair treatment of risks on its activities that is acceptable to investors. The challenge for a newcomer country is to develop a balanced and comprehensive national nuclear law that meet these objectives while taking into consideration various stakeholders’ interest without compromising on safety, security, safeguard, liability requirements and other international obligations. This paper highlights the nature of NPP projects, its potential and associated financial and regulatory risks, and its major concerns and challenges. It proposes possible risks treatment and mitigation through the formulation of a balanced and comprehensive legislation by clear

  13. NPP financial and regulatory risks-Importance of a balanced and comprehensive nuclear law for a newcomer country considering nuclear power programme

    Energy Technology Data Exchange (ETDEWEB)

    Manan, J. A. N. Abd, E-mail: jamalan@tnb.com.my; Mostafa, N. A.; Salim, M. F. [Nuclear Energy Department, Planning Division, Tenaga Nasional Berhad Level 32, Dua Sentral, No. 8 Jalan Tun Sambanthan, 50470 Brickfields, Kuala Lumpur (Malaysia)

    2015-04-29

    The nature of Nuclear Power Plant (NPP) projects are: long duration (10-15 years for new build), high capital investment, reasonable risks and highly regulated industries to meet national and international requirement on Safety, Security, Safeguards (3S) and Liabilities. It requires long term planning and commitment from siting to final disposal of waste/spent fuel. Potential financial and regulatory risks are common in massive NPP projects and will be magnified in the case of using unproven technology. If the risks are not properly managed, it can lead to high project and operation costs, and, fail to fulfil its objectives to provide compatible electricity prices and. energy security. To ensure successful, the government and investors need to ensure that the NPP project is bankable with low cost of project and funding, have fair treatment and proper risk mitigation, and able to complete on time with no cost overrun. One of the requirements as prerequisite for the development of NPP as stipulated by the International Atomic Energy Agency (IAEA) is the establishment of a Legal and Regulatory Framework. The main objective of nuclear law is to ensure that the activities and projects carried-out in the country are legal and compliant to national and international requirements. The law should also be able to provide fair treatment of risks on its activities that is acceptable to investors. The challenge for a newcomer country is to develop a balanced and comprehensive national nuclear law that meet these objectives while taking into consideration various stakeholders’ interest without compromising on safety, security, safeguard, liability requirements and other international obligations. This paper highlights the nature of NPP projects, its potential and associated financial and regulatory risks, and its major concerns and challenges. It proposes possible risks treatment and mitigation through the formulation of a balanced and comprehensive legislation by clear

  14. Dissemination of National Nuclear-HRD Network for Efficient and Effective N-HRD for NPP-Embarking Countries

    International Nuclear Information System (INIS)

    Yamashita, K.; Toba, A.; Hirose, H.; Ikuta, Y.; Sawai, T.; Takahashi, A.; Ueda, K.; Kita, T.

    2016-01-01

    Full text: Close mutual cooperation among nuclear-related organizations, such as government, industry and academia is extremely useful to promote nuclear human resources development (HRD). National HRD network has already been established in Japan since Nov. 2010. The network has promoted the following five discussions: 1) elementary to high school education, 2) nuclear education at universities and colleges, 3) HRD for working engineers, 4) HRD to internationalize national human resources, and 5) supportive HRD activities to newly NPP introducing countries successfully. Through the establishment of the network, the communication has been strongly improved so that the Japan–IAEA joint Nuclear Energy Management School can be held successfully every year. Based on the good experience with the network, Japan would like to recommend the introduction of national nuclear HRD (N-HRD)-network to the NPP-embarking countries. We are interested in cooperation with IAEA for establishment of national N-HRD network for efficient and effective N-HRD. (author

  15. Perspectives of NPP personnel training in the future?

    International Nuclear Information System (INIS)

    Khess, R.E.

    1996-01-01

    Problems of the NPP personnel education are discussed during radical reorganization of the state regulation of energy production and distribution when nuclear energetics will appears in the market conditions. Effective methods of the NPP personnel training developed by the corporation GPU Nuclear are given. Potentials of the application of simulators and computerized programs for increasing the NPP personnel education efficiency are considered

  16. NPP Prevlaka - Preparation of construction

    International Nuclear Information System (INIS)

    Bojic, K.

    1984-01-01

    On the basis of study 'Optimal electricity generation structure till the year 2000' production of 3 x 500 MWe in nuclear power plants has been anticipated. Second Croatian-Slovenian NPP project will be based on the same principles the first one (NPP Krsko) was based on. Preconstruction investigation studies are performed at site Prevlaka on river Sava downstream of Zagreb. Licensing procedure has started with republic Urban countryside planning activities. Preconstruction activities are planned to be finished by the end of 1986. while the construction is expected to start during 1987. Parallel to investigation studies for NPP Prevlaka, evaluation of nuclear technology and reactor type is planned to be made. (author)

  17. Development of tools to manage the operational monitoring and pre-design of the NPP-LV cycle

    International Nuclear Information System (INIS)

    Perusquia, R.; Arredondo S, C.; Hernandez M, J. L.; Montes T, J. L.; Castillo M, A.; Ortiz S, J. J.

    2015-09-01

    This paper presents the development of tools to facilitate the management so much, the operational monitoring of boiling water reactors (BWR) of the nuclear power plant of Laguna Verde (NPP-LV) through independent codes, and how to carry out the static calculations corresponding to process of optimized pre-design of the reference cycle next to current cycle. The progress and preliminary results obtained with the program SACal, developed at Instituto Nacional de Investigaciones Nucleares (ININ), central tool to achieve provide a management platform of the operational monitoring and pre-design of NPP-LV cycle are also described. The reached preliminary advances directed to get an Analysis center and automated design of fuel assembly cells are also presented, which together with centers or similar modules related with the fuel reloads form the key part to meet the targets set for the realization of a Management Platform of Nuclear Fuel of the NPP-LV. (Author)

  18. Training human resource for NPP in Vietnam

    International Nuclear Information System (INIS)

    Nguyen, Trung Tinh; Dam, Xuan Hiep

    2008-01-01

    Vietnam will establish the first NPP in the near future. With us the first important thing is the human resource, but now there is no university in Vietnam training nuclear engineers. In EPU (Electric Power University), now we are preparing for training nuclear engineers. In this paper, we review the nuclear man power and the way to train the high quality human resource for NPP and for other nuclear application in Vietnam. (author)

  19. Application of linear scheduling method (LSM) for nuclear power plant (NPP) construction

    International Nuclear Information System (INIS)

    Kim, Woojoong; Ryu, Dongsoo; Jung, Youngsoo

    2014-01-01

    Highlights: • Mixed use of linear scheduling method with traditional CPM is suggested for NPP. • A methodology for selecting promising areas for LSM application is proposed. • A case-study is conducted to validate the proposed LSM selection methodology. • A case-study of reducing NPP construction duration by using LSM is introduced. - Abstract: According to a forecast, global energy demand is expected to increase by 56% from 2010 to 2040 (EIA, 2013). The nuclear power plant construction market is also growing with sharper competition. In nuclear power plant construction, scheduling is one of the most important functions due to its large size and complexity. Therefore, it is crucial to incorporate the ‘distinct characteristics of construction commodities and the complex characteristics of scheduling techniques’ (Jung and Woo, 2004) when selecting appropriate schedule control methods for nuclear power plant construction. However, among various types of construction scheduling techniques, the traditional critical path method (CPM) has been used most frequently in real-world practice. In this context, the purpose of this paper is to examine the viability and effectiveness of linear scheduling method (LSM) applications for specific areas in nuclear power plant construction. In order to identify the criteria for selecting scheduling techniques, the characteristics of CPM and LSM were compared and analyzed first through a literature review. Distinct characteristics of nuclear power plant construction were then explored by using a case project in order to develop a methodology to select effective areas of LSM application to nuclear power plant construction. Finally, promising areas for actual LSM application are suggested based on the proposed evaluation criteria and the case project. Findings and practical implications are discussed for further implementation

  20. Application of linear scheduling method (LSM) for nuclear power plant (NPP) construction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woojoong, E-mail: minidung@nate.com [Central Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Daejeon 305-343 (Korea, Republic of); Ryu, Dongsoo, E-mail: energyboy@khnp.co.kr [Central Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Daejeon 305-343 (Korea, Republic of); Jung, Youngsoo, E-mail: yjung97@mju.ac.kr [College of Architecture, Myongji University, Yongin 449-728 (Korea, Republic of)

    2014-04-01

    Highlights: • Mixed use of linear scheduling method with traditional CPM is suggested for NPP. • A methodology for selecting promising areas for LSM application is proposed. • A case-study is conducted to validate the proposed LSM selection methodology. • A case-study of reducing NPP construction duration by using LSM is introduced. - Abstract: According to a forecast, global energy demand is expected to increase by 56% from 2010 to 2040 (EIA, 2013). The nuclear power plant construction market is also growing with sharper competition. In nuclear power plant construction, scheduling is one of the most important functions due to its large size and complexity. Therefore, it is crucial to incorporate the ‘distinct characteristics of construction commodities and the complex characteristics of scheduling techniques’ (Jung and Woo, 2004) when selecting appropriate schedule control methods for nuclear power plant construction. However, among various types of construction scheduling techniques, the traditional critical path method (CPM) has been used most frequently in real-world practice. In this context, the purpose of this paper is to examine the viability and effectiveness of linear scheduling method (LSM) applications for specific areas in nuclear power plant construction. In order to identify the criteria for selecting scheduling techniques, the characteristics of CPM and LSM were compared and analyzed first through a literature review. Distinct characteristics of nuclear power plant construction were then explored by using a case project in order to develop a methodology to select effective areas of LSM application to nuclear power plant construction. Finally, promising areas for actual LSM application are suggested based on the proposed evaluation criteria and the case project. Findings and practical implications are discussed for further implementation.

  1. Radioactive dispersion analysis for hypothetical nuclear power plant (NPP) candidate site in Perak state, Malaysia

    Science.gov (United States)

    Shamsuddin, Shazmeen Daniar; Basri, Nor Afifah; Omar, Nurlyana; Koh, Meng-Hock; Ramli, Ahmad Termizi; Saridan Wan Hassan, Wan Muhamad

    2017-10-01

    Malaysia is planning to build a nuclear power plant (NPP) by 2030 to diversify the national electricity supply and resources. Selection of an NPP site must consider various factors, especially nuclear safety consideration to fulfil the nuclear safety objectives. Environmental Risk Assessment Analysis is a part of safety requirements by the International Atomic Energy Agency (IAEA) prior to the NPP commissioning process. Risk Assessments Analysis (RIA) is compulsory for the NPP site evaluation. One of RIA methods are Radioactive Dispersion Analysis using probabilistic risk analysis software. It is also important to perform studies to estimate the impact to the neighbouring population in the case of a nuclear accident at the power plant. In the present work, aimed to study the impact of a hypothetical nuclear accident by simulating the dispersion pattern of radionuclides originated from a candidate site at Manjung, Perak. The work has been performed using the HotSpot Health Physics codes. Two types of radionuclides have been considered namely 137Cs and 131I. In calculations, the initial concentration of radioactive materials of Fukushima Daiichi accident data are used which are 2.06 x 1016 Bq and 1.68 x 1017 Bq respectively for the two radionuclides. The result shows that the dispersion distance obtained from both software are not the same. It shows that 137Cs and 131I can be dispersed as far as 16 km and 80 km away from the site during radiological accident respectively, reaching major towns in Perak. Using HOTSPOT, the estimated total effective dose equivalent (TEDE) for 137Cs and 131I at major towns in Perak such as Lumut and Sitiawan are 1.2 mSv and 9.9 mSv. As for Taiping, Ipoh, Kampar, and Teluk Intan the estimated TEDE is around 0.2 mSv and 1.6 mSv respectively. In conclusion, the dispersion can reach as far as 80 km from the site. However, estimated annual effective dose is not more than 1 mSv limit, which is considered acceptable in the point of view of

  2. Radioactive dispersion analysis for hypothetical nuclear power plant (NPP candidate site in Perak state, Malaysia

    Directory of Open Access Journals (Sweden)

    Shamsuddin Shazmeen Daniar

    2017-01-01

    Full Text Available Malaysia is planning to build a nuclear power plant (NPP by 2030 to diversify the national electricity supply and resources. Selection of an NPP site must consider various factors, especially nuclear safety consideration to fulfil the nuclear safety objectives. Environmental Risk Assessment Analysis is a part of safety requirements by the International Atomic Energy Agency (IAEA prior to the NPP commissioning process. Risk Assessments Analysis (RIA is compulsory for the NPP site evaluation. One of RIA methods are Radioactive Dispersion Analysis using probabilistic risk analysis software. It is also important to perform studies to estimate the impact to the neighbouring population in the case of a nuclear accident at the power plant. In the present work, aimed to study the impact of a hypothetical nuclear accident by simulating the dispersion pattern of radionuclides originated from a candidate site at Manjung, Perak. The work has been performed using the HotSpot Health Physics codes. Two types of radionuclides have been considered namely 137Cs and 131I. In calculations, the initial concentration of radioactive materials of Fukushima Daiichi accident data are used which are 2.06 x 1016 Bq and 1.68 x 1017 Bq respectively for the two radionuclides. The result shows that the dispersion distance obtained from both software are not the same. It shows that 137Cs and 131I can be dispersed as far as 16 km and 80 km away from the site during radiological accident respectively, reaching major towns in Perak. Using HOTSPOT, the estimated total effective dose equivalent (TEDE for 137Cs and 131I at major towns in Perak such as Lumut and Sitiawan are 1.2 mSv and 9.9 mSv. As for Taiping, Ipoh, Kampar, and Teluk Intan the estimated TEDE is around 0.2 mSv and 1.6 mSv respectively. In conclusion, the dispersion can reach as far as 80 km from the site. However, estimated annual effective dose is not more than 1 mSv limit, which is considered acceptable in the point

  3. Radioactive wastes management of NPP

    International Nuclear Information System (INIS)

    Klyuchnikov, A.A.; Pazukhin, Eh.M.; Shigera, Yu. M.; Shigera, V.Yu.

    2005-01-01

    Modern knowledge in the field of radiation waste management on example of the most serious man-made accident at Chernobyl NPP are illuminated. This nuclear power plant that after accident in 1986 became in definite aspect an experimental scientific ground, includes all variety of problems which have to be solved by NPP personnel and specialists from scientific organizations. This book is aimed for large sphere of readers. It will be useful for students, engineers, specialists and those working in the field of nuclear power, ionizing source and radiation technology use for acquiring modern experience in nuclear material management

  4. Nuclear power plant V-2

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -2 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - December 1976; first controlled reactor power - 7 August 1984, 2 August 1985; connection to the grid - 20 August 1984, 9 August 1985; commercial operation - 14 February 1985, 18 December 1985. This leaflet contains: NPP V-2 construction; Major technological equipment [WWER 440 V230 type reactor; Nuclear Power plant operation safety (Safety barriers; Safety systems [Active safety systems, Passive safety systems]); Centralized heat supply system; Scheme of Bohunice V-2 NPP and technical data

  5. Nuclear power plant maintenance personnel reliability prediction (NPP/MPRP) effort at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Knee, H.E.; Haas, P.M.; Siegel, A.I.

    1981-01-01

    Human errors committed during maintenance activities are potentially a major contribution to the overall risk associated with the operation of a nuclear power plant (NPP). An NRC-sponsored program at Oak Ridge National Laboratory is attempting to develop a quantitative predictive technique to evaluate the contribution of maintenance errors to the overall NPP risk. The current work includes a survey of the requirements of potential users to ascertain the need for and content of the proposed quantitative model, plus an initial job/task analysis to determine the scope and applicability of various maintenance tasks. In addition, existing human reliability prediction models are being reviewed and assessed with respect to their applicability to NPP maintenance tasks. This paper discusses the status of the program and summarizes the results to date

  6. Jose Cabrera NPP; Central Nuclear Jose Cabrera

    Energy Technology Data Exchange (ETDEWEB)

    Diez, P.

    2004-07-01

    During 2003, the Jose Cabrera nuclear power plant (JCNPP) operated without any incidents involving an undue risk to the population or environment. The year 2003 was the Plant's 35th year of operation, and during that time it has provided 33.209 million kilowatt-hours to the electric grid. The Plant set a record for continuous operation with 386 days of uninterrupted operation. The Plant had an outage for the 27th refueling and for equipment and systems maintenance, inspection and testing activities. The Plant reported nine events to the Administration that were classified as zero on the International Nuclear Event Scale (INES) and another event classified as level 1. AENOR performance the audit for renewing certificate UNE-EN ISO-9001, and for tracking environmental management systems as per UNE-EN ISO 14001, with satisfactory results. The dose around the Plant caused by plant operation has been insignificant. For the first time in the Spanish industry, the Plant has implemented an integrated safety system that encompasses all the plant's safety-related activities.

  7. Safety upgrading program in NPP Mochovce

    International Nuclear Information System (INIS)

    Baumeister, P.

    1999-01-01

    EMO interest is to operate only nuclear power plants with high standards of nuclear safety. This aim EMO declare on preparation completion and commissioning of Mochovce Nuclear Power Plant. Wide co-operation of our company with International Atomic Energy Agency and west European Inst.ions and companies has been started with aim to fulfil the nuclear safety requirements for Mochovce NPP. Set of 87 safety measures was implemented at Mochovce Unit 1 and is under construction at Unit 2. Mochovce NPP approach to safety upgrading implementation is showed on chosen measures. This presentation is focused on the issues category III.(author)

  8. Proposal of a dry storage installation in Angra NPP for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, Luiz S.; Rzyski, Barbara M.

    2009-01-01

    When nuclear fuel is removed from a power reactor core after the depletion of efficiency in generating energy is called Spent Nuclear Fuel (SNF). After its withdrawal from the reactor core, SNF is temporarily stored in pools usually at the same site of the reactor. During this time, short-living radioactive elements and generated heat undergo decay until levels that allow removing the SNF from the pool and sending it for reprocessing or a temporary storage whether any of its final destinations has not yet been defined. It can be loaded in casks and disposed during years in a dry storage installations until be sent to a reprocessing plant or deep repositories. Before any decision, reprocessing or disposal, the SNF needs to be safely and efficiently isolated in one of many types of storages that exist around the world. Worldwide, the amount of SNF increases annually and in the next years this amount will be higher as a consequence of new Nuclear Power Plants (NPP) construction. In Brazil, that is about to construct the Angra 3 nuclear power reactor, a project about the final destination of the SNF is not yet ready. This paper presents a proposal for a dry storage installation in the Angra NPP site since it can be an initial solution for the Brazilian's SNF, until a final decision is taken. (author)

  9. Channel Nucleoporins Recruit PLK-1 to Nuclear Pore Complexes to Direct Nuclear Envelope Breakdown in C. elegans.

    Science.gov (United States)

    Martino, Lisa; Morchoisne-Bolhy, Stéphanie; Cheerambathur, Dhanya K; Van Hove, Lucie; Dumont, Julien; Joly, Nicolas; Desai, Arshad; Doye, Valérie; Pintard, Lionel

    2017-10-23

    In animal cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Whereas mitotic kinases have been implicated in NEBD, how they coordinate their activity to trigger this event is unclear. Here, we show that both in human cells and Caenorhabditis elegans, the Polo-like kinase 1 (PLK-1) is recruited to the nuclear pore complexes, just prior to NEBD, through its Polo-box domain (PBD). We provide evidence that PLK-1 localization to the nuclear envelope (NE) is required for efficient NEBD. We identify the central channel nucleoporins NPP-1/Nup58, NPP-4/Nup54, and NPP-11/Nup62 as the critical factors anchoring PLK-1 to the NE in C. elegans. In particular, NPP-1, NPP-4, and NPP-11 primed at multiple Polo-docking sites by Cdk1 and PLK-1 itself physically interact with the PLK-1 PBD. We conclude that nucleoporins play an unanticipated regulatory role in NEBD, by recruiting PLK-1 to the NE thereby facilitating phosphorylation of critical downstream targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Results and development prospects for the Cernavoda NPP

    International Nuclear Information System (INIS)

    Rotaru, Ioan

    2001-01-01

    The new competitive market in the power sector offers favorable conditions for continual developing of Nuclear Power in Romania. The principal arguments in this respect are: the CANDU technology is a western technology recognized world wide both for its operation reliability and its economical performances. The results obtained by Cernavoda NPP Unit 1 over a period of four years and a half commercial operation confirms the validity of the CANDU project in Romania in the new conditions of competitive market. Accomplishing the Unit 2 of Cernavoda NPP represents for the time being one of the most cost-effective investment in the Romanian power sector. Also, the participation of the local industry to the project implementation is important as it ensures the initial heavy water and nuclear fuel charging, specific materials and equipment production, design and construction works, etc. Heaving in view all these favorable arguments, the construction of Unit 2 of Cernavoda NPP represents one of the highest priorities of the State Budget of the present administration in year 2001. The Nuclear Power Project in Romania, based on CANDU technology meets national as well as EU regulations concerning nuclear power and as such its development poses no significant problems both in the context of EU extension and in the frame of the developing competitive market in the power sector. For SNN SA the main objectives in view for the next stage are: operating Cernavoda NPP Unit 1 in conditions of highest nuclear safety and economical efficiency; finalizing the Cernavoda NPP Unit 2 and creation of an organisation for operating the two units; promoting of a functional system characteristic to the competitive market economy and open to privatization; creating opportunities for exporting electrical energy. The contribution contains the following sections: 1. General overlook; 2. Performance of the power production in the year 2000; 2.1. Unit 1 of Cernavoda NPP; 2.2. Nuclear Fuel Plant

  11. Licensing of the Ignalina NPP

    International Nuclear Information System (INIS)

    Kutas, S.

    1999-01-01

    Since 1991 State Nuclear Power Safety Inspectorate (VATESI) has regulated Ignalina NPP operation by issuing annual operating permits. Those have been issued following submission of specified documents by the Ignalina NPP that have been reviewed by VATESI. However, according to to the procedures that are now established in the Law on Nuclear Energy and subordinate regulations the use of nuclear energy in the Republic of Lithuania is subject to strict licensing. Therefore a decision about the licence for continued operation of unit 1 should be taken. Licence would be granted by VATESI in cooperation with the Ministry of Health, Ministry of Environment and the institutions of local authorities. Ignalina NPP presented to the VATESI safety analysis report (SAR) with other documents. SAR was made mainly by foreign experts and financed by European Bank for Reconstruction and Development (EBRD). VATESI in this process is supported by western regulators. A special project LAP - Licensing Assistance Project was launched to help VATESI perform licensing according western practices

  12. Aims of failed fuel detection and substantiation of radiation safety at implementation of new kinds of nuclear fuel and fuel cycles on NPP with WWER

    International Nuclear Information System (INIS)

    Miglo, V.; Luzanova, L.

    2011-01-01

    their operation, allow to fulfill the RS requirements on the limiting population exposure doses with a considerable margin. For maintenance authentic and informative FFD at implementation of new kinds of nuclear fuel and fuel cycles on NPP with WWER it is necessary to consider influence of some parameters of fuel matrix and fuel rods on results of FFD. Such parameters in particular are the absence of the central hole in the fuel column, the raised sizes of grains of a fuel matrix and the burnup of fuel reaching and exceeding 60 MW·day/kg U can be considered. The implementation of new kinds of fuel can demand improvement and-or completion of methods and means of FFD on the shutdown reactor, available now on the NPP with WWER

  13. Summary of NPP personnel training in Czech Republic

    International Nuclear Information System (INIS)

    1996-01-01

    The preparation of NPP personnel is one of the most important phases of the process of construction, commissioning, operation and maintenance of nuclear power facilities. The objective is to improve personnel abilities so that they would be able to assure reliable, safe and economic operation of these facilities with high investment costs. It is the purpose of Nuclear Training Centre Brno (NTC Brno) to provide training and services which are responsive to the technological demands and emerging educational standards and criteria of the NPP and the nuclear industry. Fulfilling this purpose is a challenging task. The staff of NTC Brno, in a joint effort with NPP Dukovany and NPP Temelin, has responded to the challenge with comprehensive programs aimed at meeting customers needs. The programs are broadly based, yet flexible so that they can incorporate specific customer requirements

  14. Current status of NPP generation IV

    International Nuclear Information System (INIS)

    Yohanes Dwi Anggoro; Dharu Dewi; Nurlaila; Arief Tris Yuliyanto

    2013-01-01

    Today development of nuclear technology has reached the stage of research and development of Generation IV nuclear power plants (advanced reactor systems) which is an innovative development from the previous generation of nuclear power plants. There are six types of power generation IV reactors, namely: Very High Temperature Reactor (VHTR), Sodium-cooled Fast Reactor (SFR), Gas-cooled Fast Reactor (GFR), Lead-cooled Fast Reactor (LFR), Molten Salt Reactor (MSR), and Super Critical Water-cooled Reactor (SCWR). The purpose of this study is to know the development of Generation IV nuclear power plants that have been done by the thirteen countries that are members of the Gen IV International Forum (GIF). The method used is review study and refers to various studies related to the current status of research and development of generation IV nuclear power. The result of this study showed that the systems and technology on Generation IV nuclear power plants offer significant advances in sustainability, safety and reliability, economics, and proliferation resistance and physical protection. In addition, based on the research and development experience is estimated that: SFR can be used optimally in 2015, VHTR in 2020, while NPP types GFR, LFR, MSR, and SCWR in 2025. Utilization of NPP generation IV said to be optimal if fulfill the goal of NPP generation IV, such as: capable to generate energy sustainability and promote long-term availability of nuclear fuel, minimize nuclear waste and reduce the long term stewardship burden, has an advantage in the field of safety and reliability compared to the previous generation of NPP and VHTR technology have a good prospects in Indonesia. (author)

  15. NPP service life management

    International Nuclear Information System (INIS)

    Elagin, Yu.P.

    2001-01-01

    Problems of NPP service life management and service life prolongation are reviewed. Methods for the prolongation of the French NPP service life are discussed, priority directions of nuclear block service life management in regard to aging in the context of the European program of investigation into the materials aging are identified. Questions of the provision of the 60 years service life of the Mihama 1 block (Japan) and decision of the problem of the control equipment aging in Great Britain are discussed. Situation with the prolongation of licenses on the NPP operation in the USA and Spain is considered [ru

  16. Preparation for Ignalina NPP decommissioning

    International Nuclear Information System (INIS)

    Medeliene, D.

    2004-01-01

    Latest developments of atomic energy in Lithuania, works done to prepare Ignalina NPP for final shutdown and decommissioning are described. Information on decommissioning program for Ignalina NPP unit 1, decommissioning method, stages and funding is presented. Other topics: radiation protection, radioactive waste management and disposal. Key facts related to nuclear energy in Lithuania are listed

  17. The ATC, the centralized temporary storage facility for the spanish nuclear spend fuel; El ATC, la instalación de Almacenamiento Temporal Centralizado de Combustible Nuclear Gastado Español

    Energy Technology Data Exchange (ETDEWEB)

    González Fernández-Conde, A.; Gónzalez Gandal, R.; Larrosa Peruga, O.; Medinilla Téllez, G.; Navarro Santos, M.

    2016-07-01

    The ATC, strategic project contained in the Sixth Radioactive Waste General Plan approved by the Government in 2006, is the temporary storage facility of centralized nature intended to store the spent nuclear fuel generated by Spanish NPP during their operation life, for other so-called special waste arising either from the ATC operation itself or from NPP dismantling, and for vitrified waste generated as a result of fuel reprocessing from Vandellós 1 NPP. The main functions of the ATC are the reception of transport casks, encapsulation of spent fuel, and storage of such canister in dry vaults with passive cooling by natural convection; and additionally, the temporary storage of storage casks with spent fuel, of other special waste in canisters, and finally of secondary waste generated during the operation of the facility. The facility estimated operation lifetime is 60 years, and its safety structures, systems and components are designed considering the requirements according to the Spanish nuclear regulations and using best international practices. In the detailed design, major Spanish and some foreign nuclear sector engineering companies are taking part. [Spanish] El ATC, proyecto estratégico recogido en el Sexto Plan General de Residuos Radiactivos aprobado por el Gobierno en 2006, es la instalación de almacenamiento temporal de carácter centralizado destinada para el combustible nuclear gastado generado por las centrales nucleares españolas durante su proceso de operación, así como de otros residuos denominados especiales originados por la propia operación o durante el desmantelamiento de las citadas centrales nucleares, así como los residuos vitrificados originados como consecuencia del reproceso del combustible de la central nuclear de Vandellós I. Las principales funciones del ATC son la recepción de los contenedores de transporte, encapsulado del combustible y almacenamiento de dichas cápsulas en bóvedas en seco con refrigeración pasiva por

  18. Equipment reliability improvement process; implementation in Almaraz NPP and Trillo NPP

    International Nuclear Information System (INIS)

    Risquez Bailon, Aranzazu; Gutierrez Fernandez, Eduardo

    2010-01-01

    The Equipment Reliability Improvement Process (INPO AP-913) is a non-regulatory process developed by the US Nuclear Industry for improving Plants Availability. This Process integrates and coordinates a broad range of equipment reliability activities into one process, performed by the Plant in a non-centralized way. The integration and coordination of these activities will allow plant personnel to evaluate the trends of important station equipment, develop and implement long-term equipment health plans, monitor equipment performance and condition, and make adjustments to preventive maintenance tasks and frequencies based on equipment operating experience, if necessary, arbitrating operational and design improvements, to reach a Failure-free Operation. This paper describes the methodology of Equipment Reliability Improvement Process, being focused on main aspects of the implementation process, relating to the scope and establishment of an Equipment Reliability Monitoring Plan, which should include and complement the existing mechanisms and organizations in the Plant to monitor the condition and performance of the equipments, with the common aim of achieving an operation free of failures. The paper will describe the tools that Iberdrola Ingenieria has developed to support the implementation and monitoring of the Equipment Reliability Improvement Process, as well as the results and lessons learned from its implementation in Almaraz NPP and Trillo NPP. (authors)

  19. Safeguards at Kozloduy NPP - Experience and expectations

    International Nuclear Information System (INIS)

    Elenkov, Todor

    2001-01-01

    Bulgaria is a party of Non Proliferation Treaty since 5 September 1969. The agreement between IAEA and Bulgaria - INFCIRC 178 - has been in force since 29 February 1972. At that time Bulgaria had one research reactor IRT-2000 in Sofia and two power reactors of WWER-440 type under construction. Now at Kozloduy NPP site there are 4 facilities, which consist of 4 WWER-440 and 2 WWER-1000 type power reactors, producing almost 50% of the electricity in Bulgaria and 1 wet away from reactor spent fuel storage. In 1991 under the green movements and social pressure, the research reactor in Sofia was closed and the construction of the second NPP in Belene with 2 WWER-1000 type reactors was halted. After the transfer in 1994 of the fresh fuel from the research reactor to Kozloduy due to security reasons practically NPP Kozloduy remains the only significant (from safeguards point of view) nuclear site in Bulgaria. In 1972 a 'Nuclear Fuel' group was formed at the Physicists Department in NPP Kozloduy with responsibilities to carry out for safeguards records and reports, fresh and spent fuel transport and control. In 1990 this group was transferred to the Safety Section and since 1992 it exists as 'Control and Accounting for of the Nuclear Materials' - a section in the Safety Department. Currently the section serves all four facilities in NPP Kozloduy and has four people: section head, chief inspector and two inspectors. The main activities of the section include: a) Control of the nuclear fuel location as well as meeting the storage and transport conditions regulations; b) Control of the conditions for normal operations of the installed IAEA surveillance systems; c) Preparation of documents for licensing of fresh and spent nuclear fuel transport; d) Preparation of the official information on nuclear materials location and quantity; e) Preparation of accounting records and the reports for IAEA (ICR, PIL, MBR); f) Co-ordination of the IAEA safeguards inspection activities at NPP

  20. The nuclear power plant maintenance personnel reliability prediction (NPP/MPRP) effort at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Knee, H.E.; Haas, P.M.; Siegel, A.I.

    1982-01-01

    Human errors committed during maintenance activities are potentially a major contribution to the overall risk associated with the operation of a nuclear power plant (NPP). An NRC-sponsored program at Oak Ridge National Laboratory is attempting to develop a quantitative predictive technique to evaluate the contribution of maintenance errors to the overall NPP risk. The current work includes a survey of the requirements of potential users to ascertain the need for and content of the proposed quantitative model, plus an initial job/task analysis to determine the scope and applicability of various maintenance tasks. In addition, existing human reliability prediction models are being reviewed and assessed with respect to their applicability to NPP maintenance tasks. This paper discusses the status of the program and summarizes the results to date

  1. Report of the State Office for Nuclear Safety on state supervision of nuclear safety of nuclear facilities and radiation protection in 1998

    International Nuclear Information System (INIS)

    1999-05-01

    The legislative basis of the authority of the State Office for Nuclear Safety as the Czech national regulatory body is outlined, its organizational scheme is presented, and the responsibilities of the various departments are highlighted. The operation of major Czech nuclear facilities, including the Dukovany NPP which is in operation and the Temelin NPP which is under construction, is described with respect to nuclear safety. Since the Office's responsibilities also cover radiation protection in the Czech Republic, a survey of ionizing radiation sources and their supervision is given. Other topics include, among other things, nuclear material transport, the state system for nuclear materials accountancy and control, central registries for radiation protection, nuclear waste management, the National Radiation Monitoring Network, personnel qualification and training, emergency planning, legislative activities, international cooperation, and public information. (P.A.)

  2. Nuclear fuel operation at Balakovo NPP

    International Nuclear Information System (INIS)

    Morozov, A.

    2015-01-01

    The presentation addressed the positive experience of the TVS-2M assemblies implementation at Balakovo NPP in 18 month fuel cycles, at uprated power (104%) and the usage of the axial profiled Gd-rods in order to minimize the power peaking factors and linear heat rate in the upper part in some of the fuel rods. The results of the test operation of fuel rods with different claddings, made by E110M, E125 and E635M alloys at Balakovo NPP were also provided. The recently observed problem with the “white crust” on the cladding surfaces was also discussed

  3. Regulatory approach to NPP ageing in Bulgaria

    International Nuclear Information System (INIS)

    Vassilev, D.

    2000-01-01

    In this contribution summary information of Kozloduy NPP units is presented. The nuclear legislation, regulatory approach for managing safety aspects on NPP ageing, short term programme, complex programme PRG'97 ant other aspects of ageing management are discussed

  4. Dose trend analysis of the PWR nuclear power plants

    International Nuclear Information System (INIS)

    Cernilogar Radez, M.; Janzekovic, H.; Krizman, M.

    2002-01-01

    The analyses of occupational dose trends in Krsko NPP in the period from 1995 to 2001 are given in comparison to the worldwide data. The Central Dose Register of Workers in Nuclear Installations at the Slovenian Nuclear Safety Administration enables the comprehensive dose trend analysis of the occupational doses in Krsko NPP. The time dose trend of the collective annual effective dose at the Krsko NPP shows somehow different trend than the trends of the ISOE data [1]. The performance indicators describing dose data distributions related to the radiation protection standards [2, 3] are discussed.(author)

  5. Development of Information Datasheets of Nuclear Power Plant (NPP) Equipment using cfiXLM schema

    International Nuclear Information System (INIS)

    Lee, Jaiho; Song, Eunhye

    2014-01-01

    In 2009, EPRI (Electrical Power Research Institute) published a new NPP information handover guide to provide NPP owners and operators with data handover templates in consistent format for effective delivery of information during all stages of the handover process. Another difficult concern for NPP data information management is to exchange the data information among many organizations such as NPP owners, operators, engineering companies, suppliers, and vendors. As a matter of fact, the improperly formatted handover of information sometimes occurs due to the discrepancy of data format (e. g., data description language type). This improper delivery can make negative effects on NPP integrity and safety. Thus, the lack of proper exchange for different data information systems of organizations should be resolved by using an international standard data format. The standard data format can reduce the cost and time for data exchange in each phase for design, procurement, delivery, installation, operation and maintenance of equipment. The AEX(automating equipment information exchange) pilot implementation project team under EPRI advanced nuclear technology (ANT) program has been conducted a research for the use of XML equipment schemas for electronic data exchange(EDE). They applied XML equipment schema for the design, selection, quotation, purchase and mock install of a safety injection centrifugal pump using EDE standard HI(hydraulic institute) 50.7. For data exchange, FIATECH, an industry consortium, has equally developed library of templates and reference data for ISO-15926, which is an international standard capable of reducing data-error and delivery time for exchanging data among different organizations. KHNP as an only owner/operator company has not experienced much difficulty in data interoperability with other organizations, but continued its unremitting exertions to develop a robust system capable of managing data information generated in all the stages of NPP

  6. Development of Information Datasheets of Nuclear Power Plant (NPP) Equipment using cfiXLM schema

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaiho; Song, Eunhye [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In 2009, EPRI (Electrical Power Research Institute) published a new NPP information handover guide to provide NPP owners and operators with data handover templates in consistent format for effective delivery of information during all stages of the handover process. Another difficult concern for NPP data information management is to exchange the data information among many organizations such as NPP owners, operators, engineering companies, suppliers, and vendors. As a matter of fact, the improperly formatted handover of information sometimes occurs due to the discrepancy of data format (e. g., data description language type). This improper delivery can make negative effects on NPP integrity and safety. Thus, the lack of proper exchange for different data information systems of organizations should be resolved by using an international standard data format. The standard data format can reduce the cost and time for data exchange in each phase for design, procurement, delivery, installation, operation and maintenance of equipment. The AEX(automating equipment information exchange) pilot implementation project team under EPRI advanced nuclear technology (ANT) program has been conducted a research for the use of XML equipment schemas for electronic data exchange(EDE). They applied XML equipment schema for the design, selection, quotation, purchase and mock install of a safety injection centrifugal pump using EDE standard HI(hydraulic institute) 50.7. For data exchange, FIATECH, an industry consortium, has equally developed library of templates and reference data for ISO-15926, which is an international standard capable of reducing data-error and delivery time for exchanging data among different organizations. KHNP as an only owner/operator company has not experienced much difficulty in data interoperability with other organizations, but continued its unremitting exertions to develop a robust system capable of managing data information generated in all the stages of NPP

  7. Operation Aspect of the Main Control Room of NPP

    International Nuclear Information System (INIS)

    Sahala M Lumbanraja

    2009-01-01

    The main control room of Nuclear Power Plant (NPP) is operational centre to control all of the operation activity of NPP. NPP must be operated carefully and safely. Many aspect that contributed to operation of NPP, such as man power whose operated, technology type used, ergonomic of main control room, operational management, etc. The disturbances of communication in control room must be anticipated so the high availability of NPP can be achieved. The ergonomic of the NPP control room that will be used in Indonesia must be designed suitable to anthropometric of Indonesia society. (author)

  8. Regulatory aspects of NPP safety

    International Nuclear Information System (INIS)

    Kastchiev, G.

    1999-01-01

    Extensive review of the NPP Safety is presented including tasks of Ministry of Health, Ministry of Internal Affairs, Ministry of Environment and Waters, Ministry of Defense in the field of national system for monitoring the nuclear power. In the frame of national nuclear safety legislation Bulgaria is in the process of approximation of the national legislation to that of EC. Detailed analysis of the status of regulatory body, its functions, organisation structure, responsibilities and future tasks is included. Basis for establishing the system of regulatory inspections and safety enforcement as well as intensification of inspections is described. Assessment of safety modifications is concerned with complex program for reconstruction of Units 1-4 of Kozloduy NPP, as well as for modernisation of Units 5 and 6. Qualification and licensing of the NPP personnel, Year 2000 problem, priorities and the need of international assistance are mentioned

  9. NPP-VIIRS DNB-based reallocating subpopulations to mercury in Urumqi city cluster, central Asia

    Science.gov (United States)

    Zhou, X.; Feng, X. B.; Dai, W.; Li, P.; Ju, C. Y.; Bao, Z. D.; Han, Y. L.

    2017-02-01

    Accurate and update assignment of population-related environmental matters onto fine grid cells in oasis cities of arid areas remains challenging. We present the approach based on Suomi National Polar-orbiting Partnership (S-NPP) -Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) to reallocate population onto a regular finer surface. The number of potential population to the mercury were reallocated onto 0.1x0.1 km reference grid in Urumqi city cluster of China’s Xinjiang, central Asia. The result of Monte Carlo modelling indicated that the range of 0.5 to 2.4 million people was reliable. The study highlights that the NPP-VIIRS DNB-based multi-layered, dasymetric, spatial method enhances our abilities to remotely estimate the distribution and size of target population at the street-level scale and has the potential to transform control strategies for epidemiology, public policy and other socioeconomic fields.

  10. Chernobyl NPP decommissioning efforts - Past, Present and Future. Decommissioning Efforts on Chernobyl NPP site - Past, Present

    International Nuclear Information System (INIS)

    Kuchinskiy, V.

    2017-01-01

    Two unique large-scale projects are underway at the moment within the Chernobyl - Exclusion zone - Shelter object transformation into ecologically safe system and the decommissioning of 3 Chernobyl NPP Units. As a result of beyond design accident in 1986 the entire territory of the industrial site and facilities located on it was heavily contaminated. Priority measures were carried out at the damaged Unit under very difficult conditions to reduce the accident consequences and works to ensure nuclear and radiation safety are continuous, and the Unit four in 1986 was transformed into the Shelter object. Currently, works at the Shelter object are in progress. Under assistance of the International Community new protective construction was built above the existing Shelter object - New Safe Confinement, which will ensure the SO Safety for the long term - within up to 100 years. The second major project is the simultaneous decommissioning of Chernobyl NPP Units 1, 2 and 3. Currently existing Chernobyl NPP decommissioning Strategy has been continuously improved starting from the Concept of 1992. Over the years the following was analyzed and taken into account: the results of numerous research and development works, international experience in decommissioning, IAEA recommendations, comments and suggestions from the governmental and regulatory bodies in the fields of nuclear energy use and radioactive waste management. In 2008 the final decommissioning strategy option for Chernobyl NPP was approved, that was deferred gradual dismantling (SAFSTOR). In accordance with this strategy, decommissioning will be carried out in 3 stages (Final Shutdown and Preservation, Safe Enclosure, Dismantling). The SAFSTOR strategy stipulates: -) the preservation of the reactor, the primary circuit and the reactor compartment equipment; -) the dismantling of the equipment external in relation to the reactor; -) the safe enclosure (under the supervision); -) the gradual dismantling of the primary

  11. Training-related activities for nuclear power plant personnel in the countries of Central and Eastern Europe and the former Soviet Union. Working material

    International Nuclear Information System (INIS)

    1993-01-01

    A Technical Cooperation Meeting on Training-Related Activities for NPP Personnel in the Countries of Central and Eastern Europe and the Former Soviet Union was held at the IAEA, Vienna. The main objective of the meeting was to identify, through information exchange and discussion, possible TC projects and assistance related to nuclear power plant (NPP) personnel training, which would meet overall coherent national goals and would demonstrate and important impact and relevance for national policy priorities. An array of such projects were identified for each participating country of the CEEC and FSU as were a number of regional cooperation projects. Refs, figs and tabs

  12. Near Regional and Site Investigations of the Temelin NPP Site

    International Nuclear Information System (INIS)

    Prachar, Ivan; Vacek, Jiri; Heralecky, Pavel

    2011-01-01

    The Temelin NPP is worldwide through heated discussion with nuclear energetic opposition. In addition this discussion goes beyond a border of the Czech Republic. On the other side, results of several international supervisions shown that Temelin NPP is fully comparable with the safest nuclear power plants in the world regarding its technical design and safety functions. This presentation deals with the near regional and site investigations of the Temelin NPP Site. It must be noted that although the Temelin site is situated in the area with low seismicity, item of seismicity is a basic argument against Temelin NPP and therefore a detail seismic hazard assessment was performed

  13. Bohunice V1 NPP upgrading programme

    International Nuclear Information System (INIS)

    Kerak, J.

    2001-01-01

    The paper describes whole process of Bohunice V1 NPP nuclear safety and operational reliability level increase which has been performed since units commissioning (1. unit in 1978, 2. unit in 1980), continued Small Reconstruction (1991 -1993) and finished Gradual Upgrading(1994 -2000). The main purpose is to last stage -Gradual upgrading of Bohunice V1 NPP. (author)

  14. IAEA activities in nuclear power plant personnel training and qualification

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1993-01-01

    Training to achieve and maintain the qualification and competence of nuclear power personnel is essential for safe and economic nuclear power. Technical Cooperation Meeting on Training-Related Activities for Nuclear Power Plant (NPP) Personnel in the countries of Central and Eastern Europe (CEEC) and of the former Soviet Union (FSU) has as its main objective the identification, through information exchange and discussion, of possible Technical Cooperation (TC) projects to assist Member States in meeting NPP personnel training needs and priorities, including the enhancing of training capabilities

  15. Quantitative analysis of psychological personality for NPP operators

    International Nuclear Information System (INIS)

    Gao Jia; Huang Xiangrui

    1998-01-01

    The author introduces the relevant personality quantitative psychological research work carried out by 'Prognoz' Laboratory and Taiwan, and presents the primary results of the research for Chinese Nuclear Power Plant (NPP) operator's psychological personality assessment, which based on the survey of MMPI, and presents the main contents for the personality quantitative psychological research in NPP of China. And emphasizes the need to carry out psychological selection and training in nuclear industry

  16. Akkuyu NPP – the first Turkish NPP. The new history of the project

    International Nuclear Information System (INIS)

    Tzocheva, V.

    2012-01-01

    An overview is given to the Turkish energy sector and nuclear power plans. The project for the construction of the first NPP in Turkey is presented. The general parameters of the Project are: CAPEX: $ 20 bln; Project design: NPP-2006; (VVER- 1200); Number of units: 4; Total capacity: 4 800 MW; Construction period: 2014 – 2023; PPA period; 15 years, fixed price terms. An account of the activities during 2011, the Worley Parsons participation are presented and a tentative project schedule is given

  17. Considerations related to Cernavoda NPP lifetime management

    International Nuclear Information System (INIS)

    Cojan, Mihail

    2007-01-01

    Cernavoda NPP, the first CANDU in Europe, is one of the original CANDU 6 plants and the first CANDU 6 producing over 706 MWe. While the first series of CANDU 6 plants (which entered service in the early 1980 s) have now reached the 2/3 of their 30 years design life, the Cernavoda NPP was put into service on the 2nd December 1996. After 10 years of operation the Plant Life Management (PLiM) Program for Cernavoda should be an increasingly important program to Utility ('CNE - Prod') in order to protect the investment and the continued success of plant operation. The goal of the paper is to present some considerations related to Cernavoda NPP lifetime management. The Plant Life Management Program, known as PLiM Program is concerned with the analysis of technical limits of the safe operation - from the point of view of nuclear safety - in NPP units, aiming at attaining the planned 30 years life duration and its extension to 40 or even 50 years of safe and economical operation. For the CANDU reactors the so-called PLiM and PLEX Programs are just applied. These are applied research programs that approach with priority the current practices for assessing the capability of safe operation within the limits of nuclear safety (fitness-for-service assessment). These programs also approach inspection, monitoring are prevention of degrading due to the ageing of critical systems, structures and components (CSSCs). As each nuclear plant is somewhat different in its components and systems, materials composition, procurement, construction, and operational history, directed research and development programs into materials behavior, monitoring techniques, and methods to mitigate ageing are required to support the lifetime management. Over the past 6 years, INR Pitesti (Institute for Nuclear Research - Romania) has been working on R and D Programs to support a comprehensive and integrated Cernavoda NPP Life Management Program (PLiM) that will see the Cernavoda NPP successfully and

  18. Framatome Contribution to Chinese NPP Development and Standardization

    International Nuclear Information System (INIS)

    Charbonneau, S.

    1996-01-01

    First discussions in 1978 between Framatome and Chinese authorities about the supply of an NPP were successfully concluded in 1986 by the signature of the supply contracts (nuclear islands, conventional islands, nuclear fuel assemblies, and project management assistance) for the Daya Bay NPP. Since then teams of engineers and technicians from Framatome and other French companies, and from relevant Chinese institutes and agencies have gotten to know each other better and have deepened their relationships

  19. Modernization and safety improvement project of the NPP V-2 Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Michal, V.; Losonsky, B.; Magdolen, J.

    2000-01-01

    This contribution deals with the form, present state, and results of the Nuclear Power Plants Research Institute (the Slovak acronym is VUJE - Vyskumny Ustav Jadrovych Elektrarni) participation in the NPP V-2 Jaslovske Bohunice Modernization and Safety Improvement Project. A short description of VUJE history, activity, and results is also presented as well as NPPs Jaslovske Bohunice characterization. VUJE was established in 1977 and deals with scientific and research needs of nuclear power plants, such as design, construction, commissioning and operation. The next fields of VUJE activity are, NPP reconstruction, NPP personnel training, radioactive waste management technology, and NPP decommissioning. The nuclear power plant, Jaslovske Bohunice, is situated approximately 15 km from the district town of Trnava in the southwestern region of the Slovak Republic. The construction of the first Czechoslovak NPP A-1 began on this site in 1957 .The construction of the double-unit NPP V-1 with WWER-440 (type V-230) reactor began in 1972. The first unit of NPP V-1 began operation in 1978 and the second in 1980. NPPs construction on the Bohunice site continued with NPP V-2, which has two units with WWER-440 (type V-213) reactors. Unit 1 and Unit 2 of NPP V-2 were commissioned in 1984 and 1985, respectively. Slovak electric utility Slovenske elektrarne (SE) is the owner/commissioner of NPP V-2. This NPP is responsible for more than 20% of the total electrical energy production of SE, making it an essential supporter of the Slovak economy. (authors)

  20. Nuclear fuel utilization in Kozloduy NPP

    Energy Technology Data Exchange (ETDEWEB)

    Boyadzhiev, Z; Kharalampieva, Ts; Pejchinov, Ts [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1994-12-31

    An assessment of fuel utilization in Kozloduy NPP units 1-6 is made on the basis of operational data obtained for a total of 62 fuel cycles. Basic characteristics of core loading and operation conditions are given. SPPS-1 and BIPR-7 codes are used to calculate assembly-wise power distributions for different full power days of a given cycle and unit. The data are compared with the measured values of these quantities. The analysis performed shows that the core loading option chosen has led to efficient fuel utilization without violation of the nuclear safety criteria. For WWER-440 (Units 1 - 4) this is expressed in effective reduction of the reactor vessel irradiation, maintaining the design duration of the fuel cycles at a reduced number of assemblies by a factor 5 - 5-10%, utilizing fuel with higher enrichment and implementing the 4-year fuel cycle. For WWER-1000 the improvements lead to: adoption of the 3-year fuel cycle utilizing fuel with 4.4% initial enrichment, implementation of improved fuel with a new type of absorbers and more effective low-leakage core loading patterns. 10 tabs., 6 figs., 7 refs.

  1. Current technological trends in development of NPP systems

    International Nuclear Information System (INIS)

    Florescu, Gheorghe; Panaitescu, Valeriu

    2010-01-01

    The recent nuclear research issues look for new technologies and continuous progress in finding different and efficient solutions for sustained and upraising energy demand. The trend of increasing energy consumption and occurring of new and large consumers, especially from Asian countries, imposes finding of new means for clean, large scale and sustained energy production. NPPs availability was continuously monitored and improved; at the same time the safety of the nuclear energy production was under surveillance. The present development of the new technologies, the discoveries of new materials and development of efficient technological processes offer the opportunities for their appropriate implementation and use in the NPP system configurations and functioning/operation. The new technologies and scientific discoveries, and also the international cooperation, offer the opportunities to mitigate the actual barriers in order to cumulate and use advanced energy production, to find new energy sources and to build improved, reliable and safe power plants. The monitoring systems, intelligent sensors and SSCs, nanotechnologies and new/intelligent materials constitute the main ways for improvement of the NPP systems configuration and processes. The paper presents: - The state of the art in the level of the currently applied technologies for nuclear power systems development; - The actual technological limits that need to be over passed for improving the NPP systems ; - The main systems that need improvement and reconfiguration for development of currently operating NPPs as well as raising the operation efficiency, availability and total safety; - The actual energy production issues; - The key arguments in sustaining the R and D new NPP systems development; - Future trends in NPP development; - The limitations in industrial processes knowledge and use. Appropriate R and D in the field of NPP systems have specific characteristics that were considered in paper completion

  2. Effectiveness of a large mimic panel in an existing nuclear power plant central control board

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Satoh, Hiroyuki; Sasajima, Katsuhiro; Kawano, Ryutaro; Shibuya Shinya

    1999-01-01

    We conducted the analysis of the nuclear power plant (NPP) operators' behaviors under emergency conditions by using training simulators as a joint research project by Japanese BWR groups for twelve years. In the phase-IV of this project we executed two kinds of experiments to evaluate the effectiveness of the interfaces. One was for evaluations of the interfaces such as CRTs with touch screen, a large mimic panel, and a hierarchical annunciator system introduced in the newly developed ABWR type central control board. The other was that we analyzed the operators' behaviors in emergency conditions by using the first generation BWR type central control board which was added new interfaces such as a large display screen and demarcation on the board to help operators to understand the plant. The demarcation is one of the visual interface improvements and its technique is that a line enclosing several components causes them to be perceived as a group.The result showed that both the large display panel Introduced in ABWR central control board and the large display screen in the existing BWR type central control board improved the performance of the NPP operators in the experiments. It was expected that introduction of the large mimic panel into the existing BWR type central control boards would improve operators' performance. However, in the case of actual installation of the large display board into the existing central control boards, there are spatial and hardware constraints. Therefore the size of lamps, lines connecting from symbols of the pumps or valves to the others' will have to be modified under these constraints. It is important to evaluate the displayed information on the large display board before actual installation. We made experiments to solve these problems by using TEPCO's research simulator which is added a large mimic panel. (author)

  3. Environmental Impact Assessment following a Nuclear Accident to a Candu NPP

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Margeanu, S.; Olteanu, Gh.

    2009-01-01

    The paper presents calculations of nuclear accident consequences to public and environment, for a Candu NPP using advanced fuel in two hypothetical accident scenarios: (1) large LOCA followed by partial core melting with early containment failure; (2) late core disassembly and containment bypass through ECCS. During both accidents a release occurs, radioactive contaminants being dispersed into atmosphere. As reference, estimations for Candu standard UO 2 fuel were used. The radioactive core inventory was obtained by using ORIGEN-S computer code included in ORNL,SCALE 5 programs package. Radiological consequences assessment to public and environment was performed by means of PC COSYMA computer code

  4. Jose Cabrera NPP severe accident management activities

    International Nuclear Information System (INIS)

    Blanco, J.; Almeida, P.; Saiz, J.; Sastre, J.L.; Delgado, R.

    1998-01-01

    To prepare a common acting plan with respect to Severe Accident Management, in 1994 was founded the severe accident management ''ad-hoc'' working group from the Spanish Westinghouse PWR Nuclear Power Plant Owners Group. In this group actively collaborated the Jose Cabrera NPP Training Centre and the Department of Nuclear Engineering of UNION FENOSA. From this moment, Jose Cabrera NPP began the planning of its specific Severe Accident Management Program, which main point are Severe Accident Management Guidelines (SAMG). To elaborate this guidelines, the Spanish translation of Westinghouse Owners Group (WOG) Severe Accident Management Guidelines were considered the reference documents. The implementation of this Guidelines to Jose Cabrera NPP started on January 1997. Once the specific guidelines have been implemented to the plant, training activities for the personnel involved in severe accident issues will be developed. To prepare the training exercises MAAP4 code will be used, and with this intention, a specific Jose Cabrera NPP MAAP-GRAAPH screen has been developed. Furthermore, a wide selection of MAAP input files for the simulation of different scenarios and accidental events is available. (Author)

  5. The proposed human factors engineering program plan for man-machine interface system design of the next generation NPP in Korea

    International Nuclear Information System (INIS)

    Oh, I.S.; Lee, H.C.; Seo, S.M.; Cheon, S.W.; Park, K.O.; Lee, J.W.; Sim, B.S.

    1994-01-01

    Human factors application to nuclear power plant (NPP) design, especially, to man-machine interface system (MMIS) design becomes an important issue among the licensing requirements. Recently, the nuclear regulatory bodies require the evidence of systematic human factors application to the MMIS design. Human Factors Engineering Program Plan (HFEPP), as a basis and central one among the human factors application by the MMIS designers. This paper describes the framework of HFEPP for the MMIS design of next generation NPP (NG-NPP) in Korea. This framework provides an integral plan and some bases of the systematic application of human factors to the MMIS design, and consists of purpose and scope, codes and standards, human factors organization, human factors tasks, engineering control methodology, human factors documentations, and milestones. The proposed HFEPP is a top level document to define and describe human factors tasks, based on each step of MMIS design process, in view point of how, what, when and by whom to be performed. (author). 11 refs, 1 fig

  6. Real-time management (RTM) by cloud computing system dynamics (CCSD) for risk analysis of Fukushima nuclear power plant (NPP) accident

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyo Sung [Yonsei Univ., Wonju Gangwon-do (Korea, Republic of). Dept. of Radiation Convergence Engineering; Woo, Tae Ho [Yonsei Univ., Wonju Gangwon-do (Korea, Republic of). Dept. of Radiation Convergence Engineering; The Cyber Univ. of Korea, Seoul (Korea, Republic of). Dept. of Mechanical and Control Engineering

    2017-03-15

    The earthquake and tsunami induced accident of nuclear power plant (NPP) in Fukushima disaster is investigated by the real-time management (RTM) method. This non-linear logic of the safety management is applied to enhance the methodological confidence in the NPP reliability. The case study of the earthquake is modeled for the fast reaction characteristics of the RTM. The system dynamics (SD) modeling simulations and cloud computing are applied for the RTM method where the real time simulation has the fast and effective communication for the accident remediation and prevention. Current tablet computing system can improve the safety standard of the NPP. Finally, the procedure of the cloud computing system dynamics (CCSD) modeling is constructed.

  7. Real-time management (RTM) by cloud computing system dynamics (CCSD) for risk analysis of Fukushima nuclear power plant (NPP) accident

    International Nuclear Information System (INIS)

    Cho, Hyo Sung; Woo, Tae Ho; The Cyber Univ. of Korea, Seoul

    2017-01-01

    The earthquake and tsunami induced accident of nuclear power plant (NPP) in Fukushima disaster is investigated by the real-time management (RTM) method. This non-linear logic of the safety management is applied to enhance the methodological confidence in the NPP reliability. The case study of the earthquake is modeled for the fast reaction characteristics of the RTM. The system dynamics (SD) modeling simulations and cloud computing are applied for the RTM method where the real time simulation has the fast and effective communication for the accident remediation and prevention. Current tablet computing system can improve the safety standard of the NPP. Finally, the procedure of the cloud computing system dynamics (CCSD) modeling is constructed.

  8. Technical innovations at NPP Dukovany - for safe and efficient operation

    International Nuclear Information System (INIS)

    Sabata, M.; Vasa, I.

    2000-01-01

    Inherent features of the NPP Dukovany design provide a significant confidence in its nuclear safety assurance; among these features should be emphasised the reactor core stability and its control and protection system capability to hold the reactor in safe state following scram or accident conditions. Nevertheless, NPP Dukovany was designed in the early seventies, and current requirements for nuclear safety assurance are more strict and/or specific as a result of the technical development and lessons learned from nuclear accidents. The paper compares the safety design base established at the time of NPP Dukovany project implementation and the current reference design base. The paper also presents procedures applied to implement technical and operational measures which are introduced to fulfil the current basic safety criteria. The scope of such measures applied at NPP Dukovany is compared with that of EU countries introduced for the same reason - to meet the updated safety related requirements. Examples of some innovations already implemented or under implementation give an idea how NPP Dukovany proceeds in reaching the goal of harmonising its safety with the requirements to be met before the Czech Republic becomes a member country of the European Union. (author)

  9. Polish media and public opinion on NPP Mochovce commissioning

    International Nuclear Information System (INIS)

    Latek, Stanislaw

    1999-01-01

    The so called 'Mochovce Problem' was one of the major topics in Polish media in the period from May to July 1998. The nuclear power plant commissioning caused an unexpectedly strong reaction, especially in the newspapers, slightly less so in electronic media. Faced with clearly hostile media reaction to Mochovce NPP, the National Atomic Energy Agency representatives, together with atomic and nuclear experts, undertook to change these attitudes. In numerous interviews, letters to the editors and talks with journalists, they attempted to correct the mistakes, explain the true safety situation in the nuclear power plant, by whom it was constructed, who supervised and tested the systems and so on. The completion of Mochovce NPP construction improved significantly the electricity balance in Slovakia, thus decreasing the pressure for continuing the operation of older Bohunice V1 units beyond their design lifetime. For this reason, as well as in view of striving for improvement in environmental factors beyond Polish southern border, especially after Kyoto/97 decisions on greenhouse gases emissions, the public opinion in Poland should support the Mochovce NPP construction. In 1996 Poland has signed with Slovakia a bilateral inter-governmental agreement on the prompt notification on nuclear accidents and on the cooperation in the nuclear safety and radiological protection matters. On the basis of this agreement the experts from Polish National Atomic Energy Agency are in perpetual contact with Slovakian Nuclear Regulatory Body and in each and every moment can obtain full and comprehensive information on the plant parameters iportant for nuclear safety. The experts explanations, together with the NAEA top management visit to the plant itself, brought some results. The media became less aggressive, and Polish public and authorities - contrary to the Austrians - do not protest loudly against the commissioning of this newest European NPP. Now, in December 1998, the tune of

  10. Intelligent system for accident identification in NPP; Sistema inteligente para la identificacion de accidentes en centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, J L [Centro Nacional de Seguridad Nuclear, La Habana (Cuba)

    1999-12-31

    Accidental situations in NPP are great concern for operators, the facility, regulatory bodies and the environmental. This work proposes a design of intelligent system aimed to assist the operator in the process of decision making initiator events with higher relative contribution to the reactor core damage occur. The intelligent System uses the results of the pre-operational Probabilistic safety Assessment and the Thermal hydraulic Safety Analysis of the NPP Juragua as source for building its knowledge base. The nucleus of the system is presented as a design of an intelligent hybrid from the combination of the artificial intelligence techniques fuzzy logic and artificial neural networks. The system works with variables from the process of the first circuit, second circuit and the containment and it is presented as a model for the integration of safety analyses in the process of decision making by the operator when tackling with accidental situations

  11. Principles of Defense-in-depth philosophy applied in NPP engineering management

    International Nuclear Information System (INIS)

    Wu Guangwei

    2011-01-01

    Based on the Defense-in-depth Concept in nuclear and radiation safety, Defense-in-depth Concept for design management of Nuclear Power Plant (NPP) is developed in this paper to analyze the feasibility and importance of the application of the basic principle: Defense-in-depth concept in NPP systems performed during the design control of NPP. This paper focuses on the NPP engineering management process, and according to the analysis of such process, 5 principles of Defense-in-depth Concept applied in NPP design management are raised: (1) preventing the non-conformities of design via effective design quality management system; (2) discovering and correcting non-conformities of design quality in time via design checkup and design review meeting; (3) carrying out timely analysis and treatment against design non-conformities which have been transferred to construction phase; (4) Assessing and judging the severe non-conformities in construction phase, putting forward treatment opinions and remedies accordingly so as to avoid the existence of such non-conformities in physical construction of NPP; (5) Paying 'return-visit' and performing 'post-assessment' for NPP design to assess the designed functions and safety of NPP comprehensively. (author)

  12. On-the-job training and qualification of nuclear power plant personnel. OJT at the Loviisa NPP

    International Nuclear Information System (INIS)

    1996-01-01

    On-the-job training and qualification process of nuclear power plant personnel is described, including the following issues: educational system of technical studies in Finland; training methods at the Loviisa NPP; on-the-job training of control room operators,field operators, maintenance personnel, other groups of the plant; qualifying examinations for different jobs

  13. Estimation of the future nuclear power research in Romania, based on the present Cernavoda NPP evolution

    International Nuclear Information System (INIS)

    Dumitrache, Ion

    2001-01-01

    For more than four decades, the electric power needs of Romania were evaluated on the basis of the State Plan for Economic Development. To identify the optimal solution, the 'least price per produced MWh' was practically the only criterion. Now, there is no convincing estimation of the future economic development and at least two additional criteria play a significant role, 'the safety in the supply of the needed electric power', and 'the need of limiting the environmental impact of electricity generation'. The analysis dedicated to evaluation of future electric power solutions must take into account several features of the present situation. There are no available internal funds to finance the construction of new generating units of the order of several hundreds of MW. Even the so-called 'refurbishing' of the existing thermal power plants is based on foreign loan. In the 2000 year, about 80 electricity generation units reached 30 years of operation, i.e., the design life. Other thermal power plants proved very modest performances during 15-20 years of operation. Consequently, the future of almost 100 generating units is either in shutdown + decommissioning or shutdown + modernization situation. The Government analyzed the situation and decided to continue the completion of the Cernavoda NPP. The Unit 2 will be commissioned in a couple of years, and there is a schedule of negotiations relating the future of the Unit 3. After almost five years of successful operation of the Unit 1, the collaboration between RDT Institutes and NPP has clear features. Based on the experience related to this collaboration and taking into account the evolution of the Cernavoda NPP, we estimated that five research domains have significant chances to obtain a stable (and, hopefully, consistent) financial support. 1. Nuclear Safety, in particular Accident Analysis. As the Government re-iterated the firm decision to meet the conditions required for European integration, most of the nuclear

  14. Principles of tariff determination for NPP electric power generation

    International Nuclear Information System (INIS)

    Ratnikov, B.E.; Gitel'man, L.D.; Artemov, Yu.N.; Fiantsev, V.S.

    1988-01-01

    Foundations of price-setting and order of accounting arrangement for NPP electric power are considered. NPP tariffs are established proceeding from standard costs of power generation. The standards are differentiated as to NPP groups, depending on technical, regional and natural geographic factors, taking into account the facility type, unit capacity and the number of similar NPP units. The conclusion is made that under conditions of NPP economic independence expansion and creation of prerequisites for going over to self-financing principles and also due to the qualitatively new stage of nuclear power generation development the level of efficiency, forseen by the tariffs, should be increased

  15. Research on the NPP human factors engineering operating experience review

    International Nuclear Information System (INIS)

    Ren Xiangchen; Miao Hongxing; Ning Zhonghe

    2006-01-01

    This paper addresses the importance of the human factors engineering (HFE) for the design of nuclear power plant (NPP), especially for the design of human-machine interface in the NPP. It also summarizes the scope and content of the NPP HFE. The function, scope, content and process of the NPP human factors engineering operating experience review (OER) are mainly focused on, and significantly discussed. Finally, it briefly introduces the situation of the studies on the OER in China. (authors)

  16. Safety culture at Mochovce NPP

    International Nuclear Information System (INIS)

    Markus, Jozef; Feik, Karol

    2002-01-01

    This article presents the approach of Mochovce NPP to the Safety culture. It presents activities, which have been taken by Mochovce NPP up to date in the area of Safety culture enhancement with the aim of getting the term into the subconscious of each employee, and thus minimising the human factor impact on occurrence of operational events in all safety areas. The article furthermore presents the most essential information on how the elements characterising a continuous progress in reaching the planned Safety culture goals of the company management have been implemented at Mochovce NPP, as well as the management's efforts to get among the best nuclear power plant operators in this area and to be an example for the others. (author)

  17. Spain in South Ukraine NPP

    International Nuclear Information System (INIS)

    Ibanez, M.

    1994-01-01

    A Technical Assistance Protocol was signed between the Governments of the GIS and the Commission of the European Union (CEU) on August 2, 1991 and this was the starting point of the TACIS program. In this article, the activities described are those related to the TACIS-92/93/94 on site technical assistance to South Ukraine NPP (SUK NPP). Within the scope of the TACIS 92 Program the CEU and the Ukrainian Authorities agreed a list of projects to be implemented at South Ukraine NPP with the aim to improve the operational safety of the plant. This part of the program is called TACIS 92 on-site activities. The total budget allocated to these projects is a MECU. The European Union ''utility'' selected to lead this program at South Ukraine NPP was UNESA and the first contract to cover our activities was signed in July 1993 between the CEU (Mr. Pablo Benavides) and UNESA (Mr. Pedro Rivero). The projects will be implemented at SUK NPP but according to the contract UNESA is ''The Consultant'' and GOSKOMATON (The Ukrainian Sate Committee on Nuclear Power Utilization) is the ''Recipient Institution''. (Author)

  18. Retrofitting of NPP Computer systems

    International Nuclear Information System (INIS)

    Pettersen, G.

    1994-01-01

    Retrofitting of nuclear power plant control rooms is a continuing process for most utilities. This involves introducing and/or extending computer-based solutions for surveillance and control as well as improving the human-computer interface. The paper describes typical requirements when retrofitting NPP process computer systems, and focuses on the activities of Institute for energieteknikk, OECD Halden Reactor project with respect to such retrofitting, using examples from actual delivery projects. In particular, a project carried out for Forsmarksverket in Sweden comprising upgrade of the operator system in the control rooms of units 1 and 2 is described. As many of the problems of retrofitting NPP process computer systems are similar to such work in other kinds of process industries, an example from a non-nuclear application area is also given

  19. Sitting Safety Aspects of Second Romanian NPP

    International Nuclear Information System (INIS)

    Mauna, T.

    2010-01-01

    The first Romanian NPP CANDU 6 type reactor gone to erection in 1980 on Cernavoda site planned to have 5 units like the Wolsong applied design project for nuclear island. For the BOP parts the ASALDO-GE project was applied with the careful about the interface connection NSP requirements. The new NPP sitting studies began from 1982 in a serious manner as first part on Nuclear Power Plant Romanian Program adopted by political and governmental authorities at the time. For develop the all package of the studies in concordance with the first IAEA Safety Standards recommendations. Till the 1982 the first mission of design and research multi-branch of specialists team was to adapt the NPP Cernavoda project having a open water cooling circuit to the new parameters of close water cooling circuit. But the team was looking at the other type of NPP for sitting. Also in the same time was studied the possibility of NSP foundation on hard less or soft soil foundation strata in connection with safety aspects. The close circuit of cooling water means others parameters of systems and need very large cooling towers. Also must be reconsidering the safety systems design and performance as new solution. In the south of Transylvania historical region in Romania the Olt River run from west to east having medium multi annual flow around 70 m3/s. The Olt River has a chain of small hydropower in operation and other planned. From geological and geophysical points of view two main faults, along the Olt river valley, one of this having seismically small activities was detected. Site region geotechnical studies show small quantity underground natural gas, salt and peat. The initial nuclear program has imposed 4 NPP units site near Olt River. Taking into account the orogenesis, water cooling needs and other local feature can't be built more than two NPP units on a site. This paper tries to reconsider the old analysis from the last IAEA Safety Standards point of view taking into account the new

  20. Knowledge Management and Organizational Proficiency with NPP

    International Nuclear Information System (INIS)

    Marler, M.

    2016-01-01

    Full text: The pace of new NPP construction, startup, and operation is straining the supply of proficient operators, technicians, and engineers. This technical brief explains an approach implemented by a US nuclear utility to capture and transfer knowledge possessed by proficient workers to new workers using the VISION learning content management system. This approach could also be used to accelerate worker proficiency in new NPP organizations. (author

  1. Nuclear power plant V-2

    International Nuclear Information System (INIS)

    1999-01-01

    In this leaflet the short history of commissioning of Bohunice V-2 NPP is reviewed (beginning of construction December 1976; First controlled reactor power, Reactor Unit 1 (RU1): 7 August 1984, Reactor Unit 2 (RU2): 2 August 1985; Connection to the grid: RU1 20 August 1984, RU2 9 August 1985; Commercial operation: RU1 14 February 1985, RU2 18 December 1985. The scheme of the nuclear reactor WWER 440/V213 is depicted. The major technological equipment are described. Principles of nuclear power plant operation safety (safety barriers, active and passive safety systems, centralized heat supply system, as well as technical data of the Bohunice V-2 NPP are presented

  2. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    Directory of Open Access Journals (Sweden)

    Volmert Ben

    2016-01-01

    Full Text Available In this paper, an overview of the Swiss Nuclear Power Plant (NPP activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  3. NPP Krsko decommissioning concept

    International Nuclear Information System (INIS)

    Novsak, M.; Fink, K.; Spiler, J.

    1996-01-01

    At the end of the operational lifetime of a nuclear power plant (NPP) it is necessary to take measures for the decommissioning as stated in different international regulations and also in the national Slovenian law. Based on these requirements Slovenian authorities requested the development of a site specific decommissioning plan for the NPP Krsko. In September 1995, the Nuklearna Elektrarna Krsko (NEK) developed a site specific scope and content for a decommissioning plan including the assumptions for determination of the decommissioning costs. The NEK Decommissioning Plan contains sufficient information to fulfill the decommissioning requirements identified by NRC, IAEA and OECD - NEA regulations. In this paper the activities and results of development of NEK Decommissioning Plan consisting of the development of three decommissioning strategies for the NPP Krsko and selection of the most suitable strategy based on site specific, social, technical, radiological and economic aspects, cost estimates for the strategies including the costs for construction of final disposal facilities for fuel/high level waste (fuel/HLW) and low/intermediate level waste (LLW/ILW) and scheduling of all activities necessary for the decommissioning of the NPP Krsko are presented. (author)

  4. NPP Krsko decommissioning concept

    International Nuclear Information System (INIS)

    Novsak, M.; Fink, K.; Spiler, J.

    1996-01-01

    At the end of the operational lifetime of a nuclear power plant (NPP) it is necessary to take measures for the decommissioning as stated in different international regulations and also in the national Slovenian law. Based on these requirements Slovenian authorities requested the development of a site specific decommissioning plan for the NPP KRSKO. In September 1995, the Nuklearna Elektrarna Krsko (NEK) developed a site specific scope and content for decommissioning plan including the assumptions for determination of the decommissioning costs. The NEK Decommissioning Plan contains sufficient information to fulfill decommissioning requirements identified by NRC, IAEA and OECD - NEA regulations. In this paper the activities and the results of development of NEK Decommissioning Plan consisting of the development of three decommissioning strategies for the NPP Krsko and selection of the most suitable strategy based on site specific, social, technical, radiological and economical aspects, cost estimates for the strategies including the costs for construction of final disposal facilities for fuel/high level waste (fuel/HLW) and low/intermediate level waste (LLW/ILW) and scheduling all activities necessary for the decommissioning of the NPP KRSKO are presented. (author)

  5. Heat delivery from Bohunice NPP, Slovakia

    International Nuclear Information System (INIS)

    Paley, I.

    1998-01-01

    Experience with nuclear district heating in the Slovak Republic is reported. The heating system of the town of Trnava is supplied by the Bohunice NPP and conventional sources. Construction of the hot water heating system from the Bohunice NPP began in 1983. Commercial operation began on 10 December 1987. Heat delivery has gradually increased from 478 TJ in 1988, to 1,104 TJ in 1995. The heat cost is low, resulting in an increasing number of consumers. (author)

  6. Treatment of NPP wastes using vitrification

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Lifanov, F.A.; Stefanovsky, S.V.; Kobelev, A.P.; Savkin, A.E.; Kornev, V.I.

    1998-01-01

    Glass-based materials to immobilize various liquid and solid radioactive wastes generated at nuclear power plants (NPP) were designed. Glassy waste forms can be produced using electric melting including a cold crucible melting. Leach rate of cesium was found to be 10 -5 -10 -6 g/(cm 2 day) (IAEA technique). Volume reduction factor after vitrification reached 4-5. Various technologies for NPP waste vitrification were developed. Direct vitrification means feeding of source waste into the melter with formation of glassy waste form to be disposed. Joule heated ceramic melter, and cold crucible were tested. Process variables at treatment of Kursk, Chernobyl (RBMK), Kalinin, Novovoronezh (VVER) NPP wastes were determined. The most promising melter was found to be the cold crucible. Pilot plant based on the cold crucibles has been designed and constructed. Solid burnable NPP wastes are incinerated and slags are incorporated in glass. (author)

  7. Distinct characteristics of NPP HRD and establishment of KINGS in Korea

    International Nuclear Information System (INIS)

    Namgung, Ihn

    2013-01-01

    Full text:Korean government set-up nuclear energy department within the ministry of education in 1956 and joined IAEA in 1957 and set up nuclear energy agency in 1959, and installed the first research reactor in 1962. The Korean Government started constructing NPP in 1971 that had started commercial operation in 1978. The first oil shock in 1973 had devastated Korean economy and that made Korean Government to accelerate the construction of NPPs. Since then Korea steadily constructed NPP as well as invested in the development of indigenized NPP technology. During 1990s, Korea developed KSNP PWR 600 MWe NPP and in the last decade Korea developed APR1400 MWe NPP. Through the time, the engineers and operators involved in every field of nuclear industry is getting old and started to retire. Someone freshly out from the university with bachelor or post graduate degree will take many years to be able to understand how things running and operating in nuclear industry. Even in many years of job assignment, one cannot experience and understand all aspect of nuclear industry. It is this reason to establish a special educational system to teach people already in the field and to be able to see the whole picture by systematically teaching most of the related subject. In order to prevent any influence from existing university system, it was determined to establish KINGS (KEPCO International Nuclear Graduate School) as separate and independent institution and as a post-graduate institution. The curriculum of KINGS was set up along this philosophy, and has only one academic department, for example NPP Engineering Department, to make more interactions among faculty and students. Also the curriculum is set up to teach practical experience; hence the graduates can bridge between industry and academia as well as fill in the large gap of technical experience of older generation. Also another aim is to make KINGS international institution to share experience of Korean NPP development

  8. In-core fuel management for Cofrentes NPP

    International Nuclear Information System (INIS)

    Marco, M.

    1990-01-01

    Hidroelectrica Espanola has established an in-house nuclear analysis capability in Hidrola's Servicio de Ingenieria y Analisis Nucleares (SIAN). This article describes SIAN, its origins, resources, codes, and its work related to the company's 100%-owned Cofrentes NPP. 1 fig., 2 tabs

  9. Impact of the measurement data on the CORD-2 nuclear design calculations of the NPP Krsko

    International Nuclear Information System (INIS)

    Kromar, M.; Kurincic, B.

    2004-01-01

    The CORD-2 package was developed at Jozef Stefan Institute and has been validated for the nuclear design calculations of PWR cores. It has been used for the independent verification of the NPP Krsko nuclear design for the last 6 cycles of operation. The accuracy of the package is very good fulfilling all criteria usually imposed on the design prediction of the reactor nuclear parameters. To obtain as robust package as possible and to eliminate potential systematic errors of the package, it was decided to rely on measured core power distributions. In core power measurements, which are performed each month of reactor operation, are used to obtain fuel assemblies burnup histories. Consequently, burnup distributions obtained from the power measurements of all previous cycles are taken as a starting point at the beginning of the considered cycle. Since a lot of experience has been gained with the package, it was decided to evaluate the impact of measurement data on the accuracy of the calculations. Burnup calculations of all 19 cycles of the NPP Krsko are repeated, building simultaneously the calculated library of burnup histories for all fuel assemblies. The basic reactor parameters such as HZP critical boron concentration, isothermal temperature coefficient, control rod worth and cycle length are compared to the results obtained with CORD-2 standard sequence of calculation and direct measurements.(author)

  10. Conduct of Operations at Nuclear Power Plants. Safety Guide (Spanish Edition); Realizacion de operaciones en centrales nucleares. Guia de seguridad

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-04-15

    This Safety Guide identifies the main responsibilities and practices of nuclear power plant (NPP) operations departments in relation to their responsibility for the safe functioning of the plant. The guide presents the factors to be considered in structuring the operations department of an NPP; setting high standards of performance; making safety related decisions in an effective manner; conducting control room and field activities in a thorough and professional manner; and maintaining an NPP within established operational limits and conditions. Contents: 1. Introduction; 2. Management and organization of plant operations; 3. Shift complement and functions; 4. Shift routines and operating practices; 5. Control of equipment and plant status; 6. Operations equipment and operator aids; 7. Work control and authorization.

  11. NPP safety and personnel training. XII International conference. Abstracts. Volume 2

    International Nuclear Information System (INIS)

    2011-01-01

    The XII International conference NPP Safety and Personnel Training took place in Obninsk, October 4-7 2011. The problems of personnel training for nuclear industry are discussed. The innovation nuclear systems and fuel cycle are considered. The much attention has been given to NPP radiation safety and radioecology issues. The recent high-speed computation and simulation methods used in reactor technology are presented [ru

  12. Construction project of Flamanville 3 NPP. The participation of Iberdrola engineering and Construction; El proyecto de construccion de la central nuclear de Flamanville 3. La participacion de Iberdrola Ingenieria y Construccion

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Prada, J. I.; Cubian, B.

    2014-10-01

    Iberdrola Engineering and Construction (IIC) leads several projects mini EPC for the EPR Flamanville 3 NPP for providing important for safety components and auxiliary systems in the pump house and in the turbine island. The realization of this new nuclear project has been a challenge from the technical and organizational perspective because the plant is the first of the new nuclear station (FDAKE) type EPR 1700 MWe series in a highly restrictive environment due to to the large number of particular requirements from the final customer and the meager degree of progress of the design to the date of commencement of construction. (Author)

  13. Safety improvement and results of commissioning of Mochovce NPP WWER 440/213

    International Nuclear Information System (INIS)

    Lipar, M.

    1998-01-01

    Mochovce NPP is the last one of this kind and compared to its predecessors, it is characterized by several modifications which contribute to the improvement of the safety level. In addition based on Nuclear Regulatory Authority requirements and based on documents: - IAEA - Safety Issues and their ranking for NPP WWER 440/213, - IAEA - Safety Improvement of Mochovce NPP Project Review Mission, - Riskaudit - Evaluation of the Mochovce NPP Safety Improvements. Additional safety measures have been implemented before commissioning. The consortium EUCOM (FRAMATOME - SIEMENS), SKODA Praha, ENERGOPROJEKT Praha, Russian organizations and VUJE Trnava Nuclear Power Plants research institute were selected for design and implementation of the safety measures. The papers summarized, safety requirements, safety measures implemented, results of commissioning and results of safety analysis report evaluation. (author)

  14. National presentation on Introduction of National Nuclear Power (NNP) in Niger

    International Nuclear Information System (INIS)

    Moutapha, S.T

    2010-01-01

    Niger is one of the world largest uranium producers with 62 % of Electricity needs imported. Decision was made in May 2009 with an official notification of Niger to the IAEA to consider a NPP. Discussions with IAEA Director General and his staff have been conducted in Vienna on broad considerations of NPP. The Ministry of Mines and Energy has been mandated to coordinate the established of a strategy for the NPP. For the moment, there is not any draft law but the nuclear regulatory body CNRP is the Central Regulatory Body. IRRS mission (2006): Evaluate the CNRP status and activities to the requirements of GS-R-1. CNRP actually performed Self-Assessment with IAEA SATCNRP responsibilities: Developing and implementing Regulations in RP; nuclear safety and security; Issuing authorizations; Performing controls and inspections in nuclear and radiological activities and facilities

  15. Belene NPP

    International Nuclear Information System (INIS)

    Tsvetanov, P.

    1990-01-01

    The book presents the main results of the studies of the Bulgarian Academy of Sciences (BAS) on the construction of a new nuclear power plant at Belene on the Danube river. The programme of the studies comprises five areas: the socio-economic and energy development and the necessity of the commissioning; a technical project and design level of the equipment (safety, radioactivity control, waste disposal and economic efficiency of the power plant); the seismic properties of the construction site; the corresponding risk and design features of the plant; the ecological impacts of the NPP and public opinion. The studies in the different areas have been carried out by independent teams, fully responsible for the formulated topical conclusions. The general opinion of the BAS voiced in the book is that the construction of Belene NPP is not sufficiently substantiated and is considered unacceptable. 94 refs., 53 fig., 56 tabs. (R.Ts.)

  16. Cernavoda NPP Unit 1 - a plant of several generations

    International Nuclear Information System (INIS)

    Rotaru, I.; Metes, M.; Anghelescu, M.S.

    2001-01-01

    The paper reflects some key aspects related to the shift of generations during the project's development, including the present stage. Further, the place of Cernavoda NPP Unit 1 in the Romanian power sector and among other nuclear stations in the world is presented. The operational performances achieved 'in service' up to the end of 1999, with reference to the performance indicators for electrical energy production, nuclear safety, radiation protection, radioactive wastes and nuclear fuel are illustrated. For all of these items, comparisons are performed with similar indicators reported by other worldwide nuclear power plants, in order to assess our results. Finally, some comments about Cernavoda NPP Unit 2 project status and need to completion and commissioning it are included. (authors)

  17. NPP A-1 decommissioning - Phase I

    International Nuclear Information System (INIS)

    Krstenik, A.; Blazek, J.

    2000-01-01

    Nuclear power plant A-1 with output 150 MW e , with metallic natural uranium fuelled, CO 2 cooled and heavy water moderated reactor had been prematurely finally shut down in 1977. It is necessary to mention that neither operator nor regulatory and other authorities have been prepared for the solution of such situation. During next two consecutive years after shutdown main effort of operator focused on technical and administrative activities which are described in the previous paper together with approach, condition and constraints for NPP A-1 decommissioning as well as the work and research carried out up to the development and approval of the Project for NPP A-1 decommissioning - I. phase. Subject of this paper is description of: (1) An approach to NPP A -1 decommissioning; (2) An approach to development of the project for NPP A-1 decommissioning; (3) Project - tasks, scope, objectives; (4) Mode of the Project realisation; (5) Progress achieved up to the 1999 year. (authors)

  18. Enhancing NPP Safety Through an Effective Dependability Management

    Energy Technology Data Exchange (ETDEWEB)

    Vieru, G., E-mail: g_vieru@yahoo.com [AREN, Bucharest (Romania)

    2014-10-15

    Taking into account the importance of the continuous improvement of the performance and reliability of a NPP and practical measures to strengthen nuclear safety and security, it is to be noted that a good management for a nuclear power reactor involves a ''good dependability management'' of the activities, such as: Reliability, Availability, Maintainability (RAM) and maintenance support. In order to evaluate certain safety assessment criteria intended to be applied at the level of the nuclear reactor unit management, equipment dependability indicators and their impact over the availability and reactor safety have to be evaluated. Reactor equipment dependability indicators provide a quantitative indication of equipment RAM performances (Reliability, Availability and Maintenance). One of the important benefits of maintenance and failure data gathering is that it can be used as a support of probabilistic safety assessment (PSA). Also, a good dependability management implementation may be used to complement reactor level unit performance indicators in the field of safe operation, maintenance and improving operating parameters, as well as for Strengthening Safety and Improving Reliability of a NPP. This paper underlines the importance of nuclear safety and security as prerequisites for nuclear power. In addition, it demonstrates how different technical aspects, through implementation of a good dependability management, contribute to a strengthened safety and an improvement of availability of the NPP through dependability indicators determination and evaluation. (author)

  19. Qualification of NPP operations personnel

    International Nuclear Information System (INIS)

    Wang Jiao.

    1987-01-01

    Competence of personnel is one of the important problems for safety operation of nuclear power plant. This paper gives a description of some aspects, such as the administration of NPP, posts, competence of personnel, training, assessing the competence and personnel management

  20. Joint probability safety assessment for NPP defense infrastructure against extreme external natural hazards

    International Nuclear Information System (INIS)

    Guilin, L.; Defu, L.; Huajun, L.; Fengqing, W.; Tao, Z.

    2012-01-01

    With the increasing tendency of natural hazards, the typhoon, hurricane and tropical Cyclone induced surge, wave, precipitation, flood and wind as extreme external loads menacing Nuclear Power Plants (NPP) in coastal and inland provinces of China. For all of planned, designed And constructed NPP the National Nuclear Safety Administration of China and IAEA recommended Probable Maximum Hurricane /Typhoon/(PMH/T), Probable Maximum Storm Surge (PMSS), Probable Maximum Flood (PMF), Design Basis Flood (DBF) as safety regulations for NPP defense infrastructures. This paper discusses the joint probability analysis of simultaneous occurrence typhoon induced extreme external hazards and compare with IAEA 2006-2009 recommended safety regulation design criteria for some NPP defense infrastructures along China coast. (authors)

  1. Attitude of the population and students to further construction of NPP

    International Nuclear Information System (INIS)

    Machacek, Ladislav

    1993-01-01

    This presentation shows the public opinion poll young people on NPP in the Slovakia i.e. comparative research results on Attitude of the Slovak population (1991 - a sample 1104 respondents, and Slovak students 1992 - a sample 291 respondents) to the nuclear energy and NPP; Source of information about NE and NPP, motivation of apprehensions of young people concerning NE; what meaning for young people have the arguments FOR and AGAINST construction of NPP in Slovakia; whom students from Bratislava believe during discussions about NE

  2. IAEA activities on NPP personnel training and qualification

    International Nuclear Information System (INIS)

    Kossilov, A.

    1998-01-01

    Activities of IAEA concerning training and qualification of NPP personnel consider the availability of sufficient number of competent personnel which is one of the most critical requirements for safe and reliable NPP operation and maintenance. Competence of personnel is essential for reducing the frequency of events connected to human errors and equipment failures. The IAEA Guidebook on Nuclear Power Plant Personnel Training and its Evaluation incorporates the experience gained worldwide and provides recommendations on the use of SAT being the best practice for attaining and maintaining the qualification and competence of NPP personnel and for quality assurance of training

  3. Consideration on application of RAP to G-II NPP

    International Nuclear Information System (INIS)

    Shen Shen

    2010-01-01

    The design (D-RAP) for nuclear power plant has been adopted internationally in new-build advanced nuclear power plant design, which increases the ability of the risk-significant SSCs to carry out its functions during the accident circumstances especially in the severe accident situation, and reduces the risk of a nuclear power plant. The concept of reliability assurance program for advanced nuclear power plant can also be applied to nuclear power plants which second-generation NPP technology is used. Through analysis and research, the risk-significant SSCs in actual NPP can also be screened, and these SSCs can be managed appropriately, so that can improve the overall plant ability to against the severe accident, reduce the risk, and improve their safety and economy. Also such technology used does not exist any insurmountable technical difficulties and a lot of money input. (authors)

  4. Revision of Krsko NPP Quality Assurance Plan

    International Nuclear Information System (INIS)

    Biscan, R.; Fifnja, I.; Kavsek, D.

    2012-01-01

    International standards from nuclear power plant operation area are being frequently upgraded and revised in accordance with the continuous improvement philosophy. This philosophy applies also to the area of Quality Assurance, which has also undergone significant improvement since the early 1950s. Besides just nuclear industry, there are also other international quality standards that are being continuously developed and revised, bringing needs for upgrades also in the nuclear application. Since the beginning of Krsko NPP construction, the overall Quality Assurance program and its applicable procedures were in place to assure that all planned and systematic actions necessary to provide adequate confidence that an item or service will satisfy given requirements to quality, are in place. The overall requirements for quality as one of the major objectives for Krsko NPP operation are also set forth in the Updated Safety Analyses Report, the document that serves as a base for operating license. During more than 30 years of Krsko NPP operation, the quality requirements and related documents were revised and upgraded in several attempts. The latest revision 6 of QD-1, Quality Assurance Plan was issued during the year 2011. The bases for the revision were: Changes of the Slovenian regulatory requirements (ZVISJV, JV5, JV9?), Changes of Krsko NPP licensing documents (USAR section 13?), SNSA inspection requirements, Changes of international standards (IAEA, ISO?), Conclusions of first PSR, Implementation of ISO standards in Krsko NPP (ISO14001, ISO17025), Changes of plant procedures, etc. One of the most obvious changes was the enlargement of the QA Plan scope to cover interdisciplinary areas defined in the plant management program MD-1, such as Safety culture, Self-assessment, Human performance, Industrial Safety etc. The attachment of the QA Plan defining relationships between certain standards was also updated to provide matrix for better correlation of requirements of

  5. Procedure for Application of Software Reliability Growth Models to NPP PSA

    International Nuclear Information System (INIS)

    Son, Han Seong; Kang, Hyun Gook; Chang, Seung Cheol

    2009-01-01

    As the use of software increases at nuclear power plants (NPPs), the necessity for including software reliability and/or safety into the NPP Probabilistic Safety Assessment (PSA) rises. This work proposes an application procedure of software reliability growth models (RGMs), which are most widely used to quantify software reliability, to NPP PSA. Through the proposed procedure, it can be determined if a software reliability growth model can be applied to the NPP PSA before its real application. The procedure proposed in this work is expected to be very helpful for incorporating software into NPP PSA

  6. Life management plants at nuclear power plants PWR; Planes de gestion de vida en centrales nucleares PWR

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, G.

    2014-10-01

    Since in 2009 the CSN published the Safety Instruction IS-22 (1) which established the regulatory framework the Spanish nuclear power plants must meet in regard to Life Management, most of Spanish nuclear plants began a process of convergence of their Life Management Plants to practice 10 CFR 54 (2), which is the current standard of Spanish nuclear industry for Ageing Management, either during the design lifetime of the plant, as well as for Long-Term Operation. This article describe how Life Management Plans are being implemented in Spanish PWR NPP. (Author)

  7. About choosing the power unit of NPP

    International Nuclear Information System (INIS)

    Alekseev, P.N.; Mordashev, V.M.; Proshkin, A.A.; Stukalov, V.A.; Subbotin, S.A.; Tsibul'skij, V.F.; Chernilin, Yu.F.

    2008-01-01

    The present-day domestic nuclear power industry faces the necessity to make both process and economy related decisions. The mentioned decisions should cover all the aspects of the nuclear power complex. In particular, as of now, no substantiation of the present-day and the future requirements for the power unit of the WWER and fast reactor NPPs is available. The choice of the unit power of an NPP should involve consideration of all factors and should not be boiled down to the efforts to ensure the minimization of the investment and the operation constituents of the electric power generation costs. The aim of the present paper was to ensure elaboration of the recommendations to substantiate the optimal unit power of NPP power units based on the analysis of various factors to design, to construct and to operate an NPP (investment, time of construction, the unscheduled shutdown losses, the unification, the fabrication quality, the accident damage, etc.), and the electrical network potentialities and the regional electric power demands [ru

  8. Nuclear emergency buildings of Asco and Vandellos II nuclear power plants; Centros alternativos de emergencias de las centrales nucleares de Asco y Vandellos II

    Energy Technology Data Exchange (ETDEWEB)

    Massuet, J.; Sabater, J.; Mirallas Esteban, S.

    2016-08-01

    The Nuclear Emergency Buildings sited at Asco and Vandellos II Nuclear Power Plants (NPP) are designed to safety manage emergencies in extreme situations, beyond the design basis of the Nuclear Power Plants. Designed in accordance with the requirements of the Spanish Nuclear Regulator (Consejo de Seguridad Nuclear-CSN) these buildings are ready to operate over a period of 72 hours without external assistance and ensure habitability for crews of 120 and 70 people respectively. This article describes the architectural conception, features and major systems of the Nuclear Emergency Buildings sited at Asco and Vandellos II. (Author)

  9. NPP Krsko natural circulation performance evaluation

    International Nuclear Information System (INIS)

    Segon, Velimir; Bajs, Tomislav; Frogheri, Monica

    1999-01-01

    The present document deals with an evaluation of the natural circulation performance of the Krsko nuclear power plant. Two calculation have been performed using the NPP Krsko nodalization (both similar to the LOBI A2-77 natural circulation experiment) - the first with the present steam generators at NPP Krsko (Westinghouse, 18% plugged), the second with the future steam generators (Siemens, 0% plugged). The results were evaluated using the natural circulation flow map derived in /1/, and were compared to evaluate the influence of the new steam generators on the natural circulation performance. (author)

  10. Can the Ignalina NPP be safe?

    International Nuclear Information System (INIS)

    Kutas, S.

    1999-01-01

    Many countries started using nuclear power before Lithuania, the IAEA and NEA were established and have been functioning efficiently, numerous conventions have been signed that control nuclear activities, nuclear safety regulations and standards have been set. Lithuania which is striving to integrate into the West European structures and to become a member of the 'club' of the world's nuclear states, has become a full and equal member of the IAEA and recognises its recommendations. Furthermore, it has signed or joined international conventions and is doing its best to introduce the practice of controlling nuclear safety applied in western countries. Nuclear safety cannot be taken as something finite that does not change. The requirements of nuclear and radiation safety are continuously redefined taking into consideration scientific discoveries and inventions as well as technical progress. Safety assurance can be the only criterion that should determine whether the nuclear power plant can be operated in Lithuania. The safety analysis report confirmed that the Ignalina NPP can be safely operated until the channel-graphite gap closes. The experiments conducted to date have convincingly shown that by the year 2000 the gap will not close in any of the fuel channels of unit 1. It can be hoped that the submitted studies, analyses and assessments will confirm that the Ignalina NPP meets Lithuania's nuclear safety requirements that have been drawn up in compliance with the recommendations of IAEA

  11. Safety upgrading of Bohunice V1 NPP

    International Nuclear Information System (INIS)

    2001-01-01

    This CD is multimedia presentation of programme safety upgrading of Bohunice V1 NPP. It consist of next chapters: (1) Introductory speeches; (2) Nuclear power plant WWER 440; (3) Safety improvement; (4) Bohunice Nuclear power plants subsidiary; (5) Siemens; (6) REKON; (7) VUJE Trnava, Inc. - Engineering, Design and Research Organisation; (8) Album

  12. Experience on implementing risk-oriented in-service inspection at NPP in USA

    International Nuclear Information System (INIS)

    Grebenyuk, Yu.P.; Zaritskij, N.S.; Kovyrshin, V.G.; Kostenko, S.P.

    2001-01-01

    Experience of implementing risk-oriented in-service inspection (RIISI) of pipelines at the US NPP analyzed. RIISI processes according to the methodologies developed by Westinghouse and EPRI are described and compared. The information is addressed concerning practical matters of RIISI implementing at NPP Beaver Valley and Arkansas Nuclear One. Regulatory activity of the US NRC while implementing NRC at the US NPP. It is shown that using RIISI at NPP is aimed at improvement of examination efficiency, decreasing costs and occupational dose loads while inspecting pipelines

  13. A comparison of the Kozloduy NPP and Temelin NPP I and C projects

    International Nuclear Information System (INIS)

    Cook, B.M.

    2004-01-01

    Because Kozloduy NPP and Temelin NPP are both VVER 1000 plants of roughly the same vintage, they are very similar in design. However, from the viewpoint of their I and C modernization projects, there are significant differences between these plants. Some of these differences stem from the evolution of I and C technology over the relatively short period between the two projects. Other differences arise from the fact that the Kozloduy project is a phased upgrade of the I and C systems in an operating plant while the Temelin project was a 'one time' installation of the entire plant I and C system. This paper discusses these differences as well as trends in the nuclear I and C field that will shape the industry in the future. In addition to technology evolution, the comparative advantages or problems in phased upgrade versus 'one time' installations are discussed. Conclusions drawn provide insight for the planning of future I and C upgrades in VVERs and other types of nuclear power plants. (author)

  14. The regulatory requirements, design bases, researches and assessments in the field of Ukrainian NPP's seismic safety

    International Nuclear Information System (INIS)

    Mykolaychuk, O.; Mayboroda, O.; Krytskyy, V.; Karnaukhov, O.

    2001-01-01

    State Nuclear Regulatory Authority of Ukraine (SNRA) pays large attention to problem of nuclear installations seismic stability. As a result the seismic design regulatory guides is revised, additional seismic researches of NPP sites are conducted, seismic reassessment of NPP designs were begun. The experts involved address all seismic related factors under close contact with the staff of NPP, design institutes and research organizations. This document takes stock on the situation and the research programs. (author)

  15. Prioritization of Delay Factors for NPP Construction Risk in International Project by Using AHP Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hossen, Muhammed Mufazzal; Kang, Sunkoo; Kim, Jonghyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    It is crucial for the nuclear power plant project decision makers and management personnel to identify the actual factors of construction delay and their ranking in order to take preventive actions. NPP project is complex in nature and the construction phase is one of the most key phase which is subject to many factors result from many sources. From experience, nuclear projects have faced challenges similar to other complex mega projects with additional nuclear specific issues and life time cost of nuclear reactor is concentrated upfront as capital cost, and therefore delays in construction may become intolerable in terms of both lost revenues and interest on the capital. Budget over-runs and delays on next generation new build nuclear projects in recent years clearly demonstrate that the nuclear industry continues to repeat its failed management and project control processes of the past. Similar to major infra-structure projects, actual completion times can vary substantially from initial estimates but this uncertainty is too crucial to the nuclear industry due to high levels of capital at risk, for every year a project is delayed the levelized cost of electricity increases by approximately 8-10%. causes of delay, to develop a generalized AHP model for delay factors, and to prioritize the risk in different factors in various levels of construction phase in international turnkey NPP project. This paper describes and prioritizes Nuclear Power Plant (NPP) construction schedule delay factor for turnkey international project. This study also determines the different party's importance in percentage behind the construction schedule delay of NPP which constitutes main contractor (28.4%), regulatory authority (27.3%), financial and country factor (23.5%), and utility (20.8%). Decision makers of nuclear industry can understand the significance of different factors on NPP construction phase and they can apply risk informed decision making to avoid unexpected

  16. Prioritization of Delay Factors for NPP Construction Risk in International Project by Using AHP Methodology

    International Nuclear Information System (INIS)

    Hossen, Muhammed Mufazzal; Kang, Sunkoo; Kim, Jonghyun

    2014-01-01

    It is crucial for the nuclear power plant project decision makers and management personnel to identify the actual factors of construction delay and their ranking in order to take preventive actions. NPP project is complex in nature and the construction phase is one of the most key phase which is subject to many factors result from many sources. From experience, nuclear projects have faced challenges similar to other complex mega projects with additional nuclear specific issues and life time cost of nuclear reactor is concentrated upfront as capital cost, and therefore delays in construction may become intolerable in terms of both lost revenues and interest on the capital. Budget over-runs and delays on next generation new build nuclear projects in recent years clearly demonstrate that the nuclear industry continues to repeat its failed management and project control processes of the past. Similar to major infra-structure projects, actual completion times can vary substantially from initial estimates but this uncertainty is too crucial to the nuclear industry due to high levels of capital at risk, for every year a project is delayed the levelized cost of electricity increases by approximately 8-10%. causes of delay, to develop a generalized AHP model for delay factors, and to prioritize the risk in different factors in various levels of construction phase in international turnkey NPP project. This paper describes and prioritizes Nuclear Power Plant (NPP) construction schedule delay factor for turnkey international project. This study also determines the different party's importance in percentage behind the construction schedule delay of NPP which constitutes main contractor (28.4%), regulatory authority (27.3%), financial and country factor (23.5%), and utility (20.8%). Decision makers of nuclear industry can understand the significance of different factors on NPP construction phase and they can apply risk informed decision making to avoid unexpected

  17. Challenges of Ignalina NPP Decommissioning - View of Lithuanian Operator

    International Nuclear Information System (INIS)

    Aksionov, P.

    2017-01-01

    The state enterprise Ignalina Nuclear Power Plant (INPP) operates 2 similar design units of RBMK-1500 water-cooled graphite-moderated channel-type power reactors (1500 MW electrical power). INPP is carrying out the decommissioning project of the 2 reactors which includes: -) the retrieval of the spent nuclear fuel from the power units and its transportation into the Interim Spent Fuel Storage Facility; -) equipment and building decontamination and dismantling; -) radioactive waste treatment and storage; and -) the operation of key systems to ensure nuclear, radiation and fire protection. Ignalina NPP decommissioning project is planned to be completed by 2038. The presentation will be focused on the ongoing decommissioning activities at Ignalina NPP. The overview of main aspects and challenges of INPP decommissioning will be provided

  18. Equipment Reliability Process in Krsko NPP

    International Nuclear Information System (INIS)

    Gluhak, M.

    2016-01-01

    To ensure long-term safe and reliable plant operation, equipment operability and availability must also be ensured by setting a group of processes to be established within the nuclear power plant. Equipment reliability process represents the integration and coordination of important equipment reliability activities into one process, which enables equipment performance and condition monitoring, preventive maintenance activities development, implementation and optimization, continuous improvement of the processes and long term planning. The initiative for introducing systematic approach for equipment reliability assuring came from US nuclear industry guided by INPO (Institute of Nuclear Power Operations) and by participation of several US nuclear utilities. As a result of the initiative, first edition of INPO document AP-913, 'Equipment Reliability Process Description' was issued and it became a basic document for implementation of equipment reliability process for the whole nuclear industry. The scope of equipment reliability process in Krsko NPP consists of following programs: equipment criticality classification, preventive maintenance program, corrective action program, system health reports and long-term investment plan. By implementation, supervision and continuous improvement of those programs, guided by more than thirty years of operating experience, Krsko NPP will continue to be on a track of safe and reliable operation until the end of prolonged life time. (author).

  19. Cernavoda NPP Unit 2 and Romanian nuclear industry

    International Nuclear Information System (INIS)

    Mocanu Horia

    2001-01-01

    On 18 May 2001, in the presence of Mr. Adrian Nastase, the Prime-Minister of Romania, the presidents of AECL, ANSALDO and Director General of SN Nuclearelectrica, the commercial and management contract for completing the Cernavoda NPP Unit 2 was signed. This document stipulates the goal and the partners' commitments, leadership organization, the SN Nuclearelectrica's control of the Budget, costs for the technical assistance (around 180 specialists from abroad), as well as the costs of equipment supplied from Canada and Italy. Services and equipment supplied by Canada and Italy amounts up to around USD 300 millions. Efforts are currently undertaken to obtain a loan of USD 300 millions from EURATOM, beginning from 2003. An auction process, implying around 10 companies, is underway and by the completion of the process, in February 2002, the practical delivery of equipment will start. The so-far invested capital amounts around USD 650 millions while the capital funds remaining to be invested amounts up to about USD 689 millions. From the latter figure, around USD 100 millions represent the costs for heavy water and the initial nuclear fuel charging. The personnel dynamics is presented as well as problems relating with recruitment and salary policy. Romanian nuclear industry is engaged for supply of a series of important components. General Turbo SA, supplied already components of some tens USD millions for the turbogenerator complex. PETROTUB company from Roman, Romania supplied already one thousand tones of non-nuclear carbon steel tubing valued at about USD 300 millions. ARIO, Bistrita, Romania, has signed contracts valued at about USD 400,000 for non-nuclear reinforcing materials. Other companies like AVERSA SA and Ventilatorul SA supplied reliable equipment for Unit 1 and will continue to do the same for Unit 2. Contracts of over one million USD are carried on with VULCAN for carbon steel fittings and with TITAN Nuclear Equipment for components of the fueling

  20. Modernization of tritium in air monitoring system for CANDU type NPP

    International Nuclear Information System (INIS)

    Purghel, L.; Iancu, R.; Popescu, M.

    2009-01-01

    Nuclear energy provides at present one third of Europe's electricity with nearly no greenhouse-gas emissions. Sustained efforts are now being conducted to harmonize regulations all over Europe through WENRA and to converge on technical nuclear safety practices within the TSO network ETSON (European Technical Safety Organizations Network). In order to achieve this goals of safety function, IFIN-HH together with CITON developed a new solution to improve the Tritium Monitoring System (TMS) of Cernavoda NPP and the new generation of CANDU type reactors, using Tritium in air Intelligent Monitors (TIM) developed and patented by IFIN-HH. The paper presents a comparative analysis between the technical characteristics of traditional solutions implemented in CANDU type NPP, particularly in Cernavoda NPP Unit 2 and the newly proposed solution. (authors)

  1. Development of tools to manage the operational monitoring and pre-design of the NPP-LV cycle; Desarrollo de herramientas para administrar el seguimiento operativo y el pre-diseno del ciclo de la CLV

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia, R.; Arredondo S, C.; Hernandez M, J. L.; Montes T, J. L.; Castillo M, A.; Ortiz S, J. J., E-mail: raul.perusquia@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    This paper presents the development of tools to facilitate the management so much, the operational monitoring of boiling water reactors (BWR) of the nuclear power plant of Laguna Verde (NPP-LV) through independent codes, and how to carry out the static calculations corresponding to process of optimized pre-design of the reference cycle next to current cycle. The progress and preliminary results obtained with the program SACal, developed at Instituto Nacional de Investigaciones Nucleares (ININ), central tool to achieve provide a management platform of the operational monitoring and pre-design of NPP-LV cycle are also described. The reached preliminary advances directed to get an Analysis center and automated design of fuel assembly cells are also presented, which together with centers or similar modules related with the fuel reloads form the key part to meet the targets set for the realization of a Management Platform of Nuclear Fuel of the NPP-LV. (Author)

  2. Proceedings of the joint WANO/OECD-NEA workshop on pre-stress loss in NPP containments

    International Nuclear Information System (INIS)

    1997-01-01

    This joint WANO/OECD-NEA workshop on pre-stress loss in NPP containments started with Opening Remarks (by OECD and EDF) and two presentations on 'Creep and Shrinkage of Concrete: Physical Origins, Practical Measurements', and 'Past, Present and Future Techniques for Predicting Creep and Shrinkage of Concrete'. It was then followed by papers and presentations from 12 countries, which titles are: Assessment of Creep Methodologies for Predicting Prestressing Forces Losses in Nuclear Power Plant Containments; Prestress Behaviour in Belgian NPP Containments; Presentation of Gentilly 2 NPP Containment (abstract only); Containment Structure Monitoring and Prestress Losses; Experience from Daya Bay Nuclear Power Plant (China); Prestress losses in NPP containments - the EDF experience; Prestress Force Monitoring on the THTR Prestressed Concrete Reactor Vessel During 19 Years; NPP Containment Design: Evolution and Indian Experience; In-Service Inspections and R and D of PCCVs in Japan; Comparison of Grouted and Un-grouted Tendons in NPP Containments; Prestress Losses in Containment of VVER 1000 Units; Prestressing in Nuclear Power Plants; Anchor Lift-off Measuring System for 37 T 15 Tendons; Monitoring of Stressed-Strained State and Forces in Reinforcing Cables of Prestressed Containment Shells of Nuclear Power Plants; Long-Term In-Service Monitoring of Pre-stressing in Magnox Pre-stressed Concrete Pressure Vessels; The Measurement of Un-bonded Tendon Loads in PCPV and Primary Containment Buildings; The Long Term In-service Performance of Corrosion Protection to Prestressing Tendons in AGR Prestressed Concrete Pressure Vessels; Prestress Force Losses in Containments of U.S. Nuclear Power Plants. Discussions and a synthesis are also presented

  3. Regulatory review of NPP Krsko Periodic Safety Review

    International Nuclear Information System (INIS)

    Lovincic, D.; Muehleisen, A.; Persic, A.

    2004-01-01

    At the request of the Slovenian Nuclear Safety Administration (SNSA), Krsko NPP prepared a Periodic Safety Review (PSR) program in January 2001. This is the first PSR of NPP Krsko, the only nuclear power plant in Slovenia. The program was reviewed by the IAEA mission in May 2001 and approved by SNSA in July 2001. The program is made in accordance with the IAEA Safety Guide 'Periodic Safety Review of Operational Nuclear Power Plants' No. 50-SG-012 and with European practice. It contains a systematic review of operation of the NPP Krsko, including the review of the changes as a result of the modernization of the facility. The main tasks of PSR are review of plant status for each safety factor, development of aging and life cycle management program, review of seismic design and PSHA analysis and update of regulatory compliance program. The prioritization process of findings and action plan are also important tasks of PSR. The basic safety factors of the PSR review are: Operational Experience, Safety Assessment and Analyses, Equipment Qualification and Ageing Management, Safety Culture, Emergency Planing, Environmental Impact and Radioactive Waste, Compliance with license requirements and Prioritization. It had been agreed that SNSA will have reviewed all PSR reports generated during the PSR process. At the end of 2003 the PSR Summary Report with selected recommendations for action plan was completed and delivered to SNSA for review. The paper presents regulatory review of NPP Krsko PSR with emphasis on the evaluation of the PSR issues ranking process. (author)

  4. Dissemination of Knowledge about NPP Instrumentation and Control Systems

    International Nuclear Information System (INIS)

    Yastrebenetsky, M.

    2016-01-01

    Full text: Instrumentation and control (I&C) systems are the most variable part in the nuclear power plants (NPP) comparatively with any other NPP systems. This statement is connected with the wide use of computers, rapid changes in information technologies, with the appearance of new computer complex electronic components, e.g., field programmable gate arrays (FPGA) and with appropriate point of their insertion into NPP I&C life cycle. The changes in NPP I&C systems require the dissemination of the knowledge about these systems. Lessons after Fukushima accident increase necessity of these actions. The elaboration and following dissemination of this knowledge took place in different directions: • Writing and issue of three new books about NPP I&C systems for specialists and for students which were issued in Ukrainian and USA public houses (the last book was issued in 2014); • Organization of five international scientific technical conferences, devoted to NPP I&C safety problems; • Elaboration of national (Ukrainian) standards and regulations pertaining to safety important NPP I&C systems (the last standard was issued in 2015) and participation in elaboration of international standards; • Lecturing for university students, NPP specialists and I&C designers. These actions in all directions are added to IAEA activity in the area NPP I&C systems (e.g., IAEA NP-T-3.12 “Core Knowledge on I&C systems in NPP”). (author

  5. NPP safety and personnel training. XII International conference. Abstracts

    International Nuclear Information System (INIS)

    2011-01-01

    The 12th International conference NPP Safety and Personnel Training took place in Obninsk, October 4-7, 2011. The issues of nuclear technologies safety are considered.The problems of life-cycle management of nuclear facilities are discussed. The criteria of assessment of physical protection systems of nuclear facilities are presented [ru

  6. Lifetime evaluation of Bohunice NPP components

    International Nuclear Information System (INIS)

    Kupca, L.

    2001-01-01

    The paper discuss some aspects of the main primary components lifetime evaluation program in Bohunice NPP which is performed by Nuclear Power Plant Research Institute (NPPRI) Trnava in cooperation with Bohunice and other organizations involved. Facts presented here are based on the NPPRI research report which is regularly issued after each reactor fuel campaign under conditions of project resulted from the contract between NPPRI and Bohunice NPP. For the calculations, there has been used some computer codes adapted (or made) by NPPRI and the results are just the conclusive and very brief, presented here in Tables (Figures). (authors)

  7. A reliability evaluation method for NPP safety DCS application software

    International Nuclear Information System (INIS)

    Li Yunjian; Zhang Lei; Liu Yuan

    2014-01-01

    In the field of nuclear power plant (NPP) digital i and c application, reliability evaluation for safety DCS application software is a key obstacle to be removed. In order to quantitatively evaluate reliability of NPP safety DCS application software, this paper propose a reliability evaluating method based on software development life cycle every stage's v and v defects density characteristics, by which the operating reliability level of the software can be predicted before its delivery, and helps to improve the reliability of NPP safety important software. (authors)

  8. The main steps of the Romanian nuclear power program development - Accumulated experience

    International Nuclear Information System (INIS)

    Chirica, T.; Popescu, D.; Condu, M.; Vatamanu, M.

    1998-01-01

    The paper presents a historical summary of the Romanian Nuclear Power Program development, providing details for the main criteria and principles the Program was based upon, the contracts signed with the foreign partners to implement it, and the national participation (site contractors, suppliers and design organizations). The effect of the equipment assimilation program on the NPP Cernavoda (5x700 MWe) and especially on Unit 1 schedule and performance is analyzed. Further on the impact of the transition from centralized to a market economy over the Romanian Nuclear Power Program development is analyzed, providing information's on its actual status and perspectives for the next 20 years. A description of the NPP Cernavoda Unit 1 actual progress and of the main steps performed by RENEL to get finance to complete NPP Cernavoda Unit 2 is included. Finally there is summarized the accumulated experience, and its feed back on RENEL strategy to complete NPP Cernavoda Unit 2. (author)

  9. NPP Krsko on-line low pressure containment tightness monitoring implementation

    International Nuclear Information System (INIS)

    Dudas, M.; Basic, I.

    2004-01-01

    Containment Integrated Leak Rate Test (CILRT) 1999 in NPP Krsko was completely performed following regulation of 10CFR50 Appendix J Option A and ANSI/ANS 56.8-1987 at a design pressure (3.15 kp/cm2). In 2001 NPP Krsko proposed to Slovenian Nuclear Safety Administration (SNSA) the Technical Specification (TS) and Updated Safety Analysis Report (USAR) changes that describe implementation of new test intervals for Type A, B and C tests according to 10CFR50, Appendix J, Option B. After the positive final independent review of proposed changes by Authorized Institution, NPP Krsko received the License Amendment requiring from NPP Krsko to define technical solution for surveillance of containment tightness between two 10-years CILRT. This paper intends to discuss proposed methods by NPP Krsko, test equipment, performed measurements in 2004, associated analyses and evaluation.(author)

  10. Qinshan NPP large break LOCA safety analysis

    International Nuclear Information System (INIS)

    Shi Guobao; Tang Jiahuan; Zhou Quanfu; Wang Yangding

    1997-01-01

    Qinshan NPP is the first nuclear power plant in the mainland of China, a 300 MW(e) two-loop PWR. Large break LOCA is the design-basis accident of Qinshan NPP. Based on available computer codes, the own analysis method which complies with Appendix k of 10 CFR 50 has been established. The RELAP4/MOD7 code is employed for the calculations of blowdown, refill and reflood phase of the RCS respectively. The CONTEMPT-LT/028 code is used for the containment pressure and temperature analysis. The temperature transient in the hot rod is calculated using the FRAP-6T code. Conservative initial and functional assumptions were adopted during Qinshan NPP large break LOCA analysis. The results of the analysis show the applicable acceptance criteria for the loss-of-coolant accident are met

  11. Initial operational experience with Gd-2M+ fuel at Dukovany NPP

    International Nuclear Information System (INIS)

    Borovička, M.; Zýbal, J.

    2015-01-01

    Trend of continuous development of nuclear fuel and fuel cycle can be observed from the very beginning of Dukovany NPP operation. The results of this development are documented on the one hand by extending the length of the cycle and on the other by significant reduction in the number of fresh FA’s which are loaded into reactor cores. As a continuation of this trend introduces Dukovany NPP evolutional change of nuclear fuel from the fuel Gd-2M to the Gd-2M + . (authors) Keywords: Gd-2M + , fuel assembly, operational experience

  12. New Emergency control center of Slovenske Elektrarne Bohunice NPP

    International Nuclear Information System (INIS)

    Pecko, E.

    2012-01-01

    Emergency preparedness of nuclear power plant and operation assurance in case of a possible emergency calls to have devices for emergency response with equipment for rapid detection and continuous evaluation of anticipated events. Chief executive body designated to manage a nuclear power plant during major events is the emergency committee (EC). Emergency Committee is a part of the Emergency Response Organization (ERO). The following centers are on alert to ensure the activities of the ERO - Emergency Response office: - control room (CR) and emergency control room (ECR); - emergency management center (EMC); - Monitoring Centre (MC); - emergency backup control center (EBCC); - congregations of civil protection (CP) and CP shelters; - communications with warning and notification system (VARVYR). From a historical and practical point of view in the vicinity of Jaslovske Bohunice has been set up a joint emergency control center. The center was located on the territory of the former already inoperative V1 NPP. V1 NPP is currently integrated into the organizational structure of JAVYS. Operating Bohunice V2 NPP plant is a designated part of the Slovenske Elektrarne, a. s., whose majority owner is an Italian operator ENEL. In terms of various relevant factors, it was decided to build a new emergency management center on the territory of operating V2 NPP, meet the current standards.

  13. Cernavoda NPP environmental management system - tool for managing the impact on the environment

    International Nuclear Information System (INIS)

    Gabriel, B.; Adrian, J.

    2009-01-01

    Nuclearelectrica SA (SNN SA) is a state owned company which produces nuclear-generated electricity, heat and CANDU 6 type nuclear fuel. The company has also an active participation in the power development program in Romania. The Cernavovoda NPP, one of the SNN branches is situated at 180 km east of Bucharest, in Constanta County at about 2 km SE from Cernavoda town is a CANDU 6 type. Cernavoda Nuclear Power Plant (NPP) is dedicated to generate electrical and thermal power, safely and efficiently for at least 30 years. Having an annual gross output of 5.2 - 5.4 MWh, the Cernavoda Unit 1 NPP provides 10% of the Romanian electric power production. Starting January 01 2007, the Cernavoda Unit 1 NPP supplied into the grid 5518346 MWh electric power and during 1997 - 2007 the Cernavoda Unit 1 NPP supplied into the grid 55769213 MWh electric powers. Over the same period Unit 1 also provided the partial district heating of the town of the Cernavoda supplying about 601517.9 Gcal. Romania second CANDU nuclear power plant, Cernavoda Unit 2, was officially placed in service on Friday, October 5, 2007 together with Unit 1, the CNE-Cernavoda Station is the largest power producer in the country. It now accounts for about 18 per cent of Romania energy supply and significantly reduces its dependency on expensive energy resources from outside of Europe. It provides a structured approach to planning and implementing environmental protection measures. It also establishes a framework for tracking, evaluating and communicating environmental performance. SNN SA mission is to operate the Cernavoda NPP - in a competitive, safe and environmental friendly manner so that the production is optimized and the economic life time of the plant is as long as possible. One major accomplishment is the achievement of ISO 14001 certification for our Environmental Management System (EMS) at Cernavoda NPP. The aim of this paper is to present the EMS implemented and to emphasize the outcomes of the

  14. The Romanian experience on introduction of CANDU-600 reactor at the Cernavoda NPP

    International Nuclear Information System (INIS)

    Rapeanu, S.N.; Bujor, A.; Comsa, O.

    1998-01-01

    The Cernavoda Nuclear Power Plant (NPP) Project is a key component of the Romanian nuclear development program. Selection of the CANDU design represents a major contribution to this development, due to the technological feasibility for manufacturing of parts, components and the nuclear fuel based on the uranium resources in Romania. The Romanian nuclear development program also involves a nuclear fuel manufacturing plant, a heavy water production plant and organizations specialized in research, engineering, manufacturing and completion for systems and components. The agreement on technological transfer between Canada and Romania is supporting the Romanian involvement to the achievement of the Project, with a degree of participation that is gradually increasing from the first to the last NPP Unit. (author)

  15. Russian normative approach to the question of management of NPP life time

    International Nuclear Information System (INIS)

    Karpunin, N.I.

    2002-01-01

    Full text: In Russia, the designated service life of a nuclear power plant (NPP) is 30 years. During the period 2001-2010, 15 Russian NPP units will reach the end of their service life. The 'Basic Provisions of NPP Safety Assurance', OPB-88/97, Item 5.1.14, provide for a possible extension of NPP operation beyond the designated service life. For such an extension, the NPP operating organization must apply for a license renewal to Gosatomnadzor, which needs to specify the relevant requirements. GAN is developing regulatory documents to provide a basis for NPP license renewal/extension of NPP operation, which would benefit from international experience. In accordance with 'The program of Atomic Energy Development in the Russian Federation for 1998-2005 and up to 2010' adopted by Decree No. 815 of the Government of the Russian Federation on 21 July 1998, priority is placed on the preparation of NPPs for extension of service life and on ensuring safety in the extended operating period. The length of the extension beyond the designated service life is to be determined on the basis of a range of technical and economic considerations, including: The ability to ensure and maintain operational safety; Sufficient residual service life of the unit's non-repairable components; The availability of temporary storage facilities for the additional spent nuclear fuel and radioactive waste, or the possibility of its transport off-site; The ability to ensure safe handling of the radioactive waste generated during the extension period; To extend the lifetime of an NPP unit, the plant Operator is required to perform the following tasks: Carry out a comprehensive survey of the NPP unit; Draw up a programme of preparation for lifetime extension; Prepare the NPP unit for operation in the extended period; Carry out the necessary tests. There are also some normative documents, which regulate management of NPP life time. (author)

  16. 20 Years of Dukovany NPP Operation and Plans for Future

    International Nuclear Information System (INIS)

    Vlcek, J.

    2006-01-01

    NPP Dukovany (4x440MW), the first Czech nuclear power plant and a keystone of Czech Electricity Grid, in 2005 celebrated 20 years of successful operation. In my presentation I am going to speak about next areas. I will start about construction and commissioning history of Dukovany NPP, then I'll put forward what milestones of Dukovany NPP operation were accomplished, I'll say examples about our modernisation and investment activities (including replacement of IandC equipment, modifications for increasing of power and support grid services) and in the end our plans for future. (author)

  17. Human Resources Training Requirement on NPP Operation and Maintenance

    International Nuclear Information System (INIS)

    Nurlaila; Yuliastuti

    2009-01-01

    This paper discussed the human resources requirement on Nuclear Power Plant (NPP) operation and maintenance (O&M) phase related with the training required for O&M personnel. In addition, this paper also briefly discussed the availability of training facilities domestically include with some suggestion to develop the training facilities intended for the near future time in Indonesia. This paper was developed under the assumptions that Indonesia will build twin unit of NPP with capacity 1000 MWe for each using the turnkey contract method. The total of NPP O&M personnel were predicted about 692 peoples which consists of 42 personnel located in the head quarter and the rest 650 people work at NPP site. Up until now, Indonesia had the experience on operating and maintaining the nonnuclear power plant and several research reactors namely Kartini Reactor Yogyakarta, Triga Mark II Reactor Bandung, and GA Siwabessy Reactor Serpong. Beside that, experience on operating and maintaining the NPP in other countries would act as one of the reference to Indonesia in formulating an appropriate strategy to develop NPP human resources particularly in O&M phases. Education and training development program could be done trough the cooperation with vendor candidates. (author)

  18. Security Controls for NPP I and C Systems

    International Nuclear Information System (INIS)

    Kim, Y. M.; Jeong, C. H.; Kim, T. H.

    2014-01-01

    In Korea, regulatory body have required cyber security plan for nuclear I and C system. Also, all I and C systems and equipment must be classified according to cyber security level and technical, operational and managerial security controls must be provided based on each level. It is necessary to determine the best set of security controls for NPP I and C system. In our research, selection, implementation and verification process of security controls which can be used for I and C systems has developed. For establishing the cyber security of the nuclear I and C system, special cyber security system which consider the difference between general IT system and nuclear I and C system is needed. This research, we developed security improvement methodology for NPP I and C system through establishing security control, applying and verifying activity. Also, the cyber security activities which are needed during development are defined. It is expected that the methodology which has been developed by this research can be used for establish, implement, evaluate the security controls for protecting nuclear I and C system from cyber-attacks

  19. Security Controls for NPP I and C Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. M.; Jeong, C. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, T. H. [Formal Works Inc., Seoul (Korea, Republic of)

    2014-05-15

    In Korea, regulatory body have required cyber security plan for nuclear I and C system. Also, all I and C systems and equipment must be classified according to cyber security level and technical, operational and managerial security controls must be provided based on each level. It is necessary to determine the best set of security controls for NPP I and C system. In our research, selection, implementation and verification process of security controls which can be used for I and C systems has developed. For establishing the cyber security of the nuclear I and C system, special cyber security system which consider the difference between general IT system and nuclear I and C system is needed. This research, we developed security improvement methodology for NPP I and C system through establishing security control, applying and verifying activity. Also, the cyber security activities which are needed during development are defined. It is expected that the methodology which has been developed by this research can be used for establish, implement, evaluate the security controls for protecting nuclear I and C system from cyber-attacks.

  20. Core Management of NPPs in China and Experience of Tianwan NPP

    International Nuclear Information System (INIS)

    Guohan, G.

    2006-01-01

    The Current Status of the NPPs in China; the Nuclear Power Development Plan till 2020; the Fuel Management and the Core Management Strategy of NPPs are briefly presented in this paper. The gained experience during construction of Taiwan NPP, new design features and major construction milestones of Taiwan NPP are also discussed. The full list of 21 non-conformance reports (NCR) submitted by Jiangsu Nuclear Power Company to NNSA during construction of Taiwan NPP is given. The main issues raised during FSAR review like: RP operation with incomplete number of primary loops; Sedimentation in the construction and piping of service water system; Location of postulated pipe break; Stratification analysis for surge line of pressurizer; Safety classification of equipment in primary circuit; Fire resistant capability of cable insulation; Fire Hazard Analysis; Optimization of protection against ionizing radiation ect. are also listed

  1. Nuclear power complexes and economic-ecological problems of nuclear power development

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Bobolovich, V.N.; Emel'yanov, I.Ya.

    1977-01-01

    The effect of constructing NPP's at separate sites in densely populated areas on economic efficiency of nuclear power and its ecological implications has been investigated. Locating NPP's and nuclear fuel cycle plants at different sites results in large scale shipments of fresh and spent nuclear fuels and radioactive wastes. The fact increases the risk of a detrimental environmental impact, duration of the external fuel cycle, and worsens, in the end, nuclear power economics. The prudence of creating nuclear parks is discussed. The parks may be especially efficient if the program of developing NPP's with fast breeder reactors is a success. Comparative evaluations show that from economic standpoint deployment of nuclear parks in the European part of the USSR has no disadvantage before construction of separate NPP's and supporting fuel cycle facilities of equivalent capacity, even if the construction of nuclear parks runs dearer by 30% than assumed. The possibility for nuclear parks to meet a part of demand for ''off-peak'' energy production, district heating and process heat production is also shortly discussed

  2. Seismic analysis for safety related structures of 900MWe PWR NPP

    International Nuclear Information System (INIS)

    Liu Wei

    2002-01-01

    Nuclear Power Plant aseismic design becomes more and more important in China due to the fact that China is a country where earthquakes occur frequently and most of plants arc unavoidably located in seismic regions. Therefore, Chinese nuclear safety authority and organizations have worked out a series of regulations and codes related to NPP anti-seismic design taking account of local conditions. The author presents here an example of structural anti-seismic design of 90GM We PWR NPP which is comprised of: ground motion input, including the principles for ground motion determination and time history generation; soil and upper-structure modelling, presenting modeling procedures and typical models of safety related buildings such as Reactor Building, Nuclear Auxiliary Building and Fuel Building; soil-structure interaction analysis; and in-structure response analysis and floor response spectrum generation. With this example, the author intends to give an overview of Chinese practice in NPP structure anti-seismic design such as the main procedures to be followed and the codes and regulations to be respected. (author)

  3. Safety requirement of the nuclear power plants, after TMI-2 accident and their possible implementation on Bushehr NPP

    International Nuclear Information System (INIS)

    Mirhabibi, N.; Tochai, M.T.M.; Ashrafi, A.; Farnoudi, E.

    1985-01-01

    Based on the lessons learned from the TMI-2 accident and other research and developments, many improvements have been required for the design, manufacturing and operation of nuclear power plants in recent years. These requirements have already been implemented to the plants in operation and considered as new safety requirements for new plants. In the present paper these requirements and their possible implementation on Bushehr NPP are discussed. (Author)

  4. Second School of Nuclear Energetics

    International Nuclear Information System (INIS)

    2009-01-01

    At 3-5 Nov 2009 Institute of Nuclear Energy POLATOM, Association of Polish Electrical Engineers (SEP) and Polish Nuclear Society have organized Second School of Nuclear Energetics. 165 participants have arrived from all Poland and represented both different central institutions (e.g. ministries) and local institutions (e.g. Office of Technical Inspection, The Voivodship Presidential Offices, several societies, consulting firms or energetic enterprises). Students from the Warsaw Technical University and Gdansk Technical University, as well as the PhD students from the Institute of Nuclear Chemistry and Technology (Warsaw) attended the School. 20 invited lectures presented by eminent Polish specialists concerned basic problems of nuclear energetics, nuclear fuel cycle and different problems of the NPP construction in Poland. [pl

  5. Actual status of project Mochovce NPP units 3 and 4 completion

    International Nuclear Information System (INIS)

    Niznan, S.

    2005-01-01

    In this presentation author deals with actual status of project Mochovce NPP units 3 and 4 completion. Present state of Mochovce NPP, Units 3 and 4 enables real assumption to completion. It is expected that such supplier companies can be used which are experienced in field of nuclear projects. Based on budget of 2002, it seems that completion costs of 45 billions SKK are real. These figures were confirmed by study performed by TRACTEBEL in 2004. Based on experience from Bohunice NPP completion as well as from Mochovce NPP, Units 1 and 2 completion and if decision milestone and project start up deadlines will be observed according to modified preliminary schedule of Mochovce NPP Units 3 and 4 completion, it seems as real that Unit 3 will be completed till 06/2011 and Unit 4 - till 12/2011.

  6. South Ukraine NPP: Safety improvements through Plant Computer upgrade

    International Nuclear Information System (INIS)

    Brenman, O.; Chernyshov, M. A.; Denning, R. S.; Kolesov, S. A.; Balakan, H. H.; Bilyk, B. I.; Kuznetsov, V. I.; Trosman, G.

    2006-01-01

    This paper summarizes some results of the Plant Computer upgrade at the Units 2 and 3 of South Ukraine Nuclear Power Plant (NPP). A Plant Computer, which is also called the Computer Information System (CIS), is one of the key safety-related systems at VVER-1000 nuclear plants. The main function of the CIS is information support for the plant operators during normal and emergency operational modes. Before this upgrade, South Ukraine NPP operated out-of-date and obsolete systems. This upgrade project wax founded by the U.S. DOE in the framework of the International Nuclear Safety Program (INSP). The most efficient way to improve the quality and reliability of information provided to the plant operator is to upgrade the Human-System Interface (HSI), which is the Upper Level (UL) CIS. The upgrade of the CIS data-acquisition system (DAS), which is the Lower Level (LL) CIS, would have less effect on the unit safety. Generally speaking, the lifetime of the LL CIS is much higher than one of the UL CIS. Unlike Plant Computers at the Western-designed plants, the functionality of the WER-1000 CISs includes a control function (Centralized Protection Testing) and a number of the plant equipment monitoring functions, for example, Protection and Interlock Monitoring and Turbo-Generator Temperature Monitoring. The new system is consistent with a historical migration of the format by which information is presented to the operator away from the traditional graphic displays, for example, Piping and Instrument Diagrams (P and ID's), toward Integral Data displays. The cognitive approach to information presentation is currently limited by some licensing issues, but is adapted to a greater degree with each new system. The paper provides some lessons learned on the management of the international team. (authors)

  7. Computer Security of NPP Instrumentation and Control Systems: Cyber Threats

    International Nuclear Information System (INIS)

    Klevtsov, A.L.; Trubchaninov, S.A.

    2015-01-01

    The paper is devoted to cyber threats, as one of the aspects in computer security of instrumentation and control systems for nuclear power plants (NPP). The basic concepts, terms and definitions are shortly addressed. The paper presents a detailed analysis of potential cyber threats during the design and operation of NPP instrumentation and control systems. Eleven major types of threats are considered, including: the malicious software and hardware Trojans (in particular, in commercial-off-the-shelf software and hardware), computer attacks through data networks and intrusion of malicious software from an external storage media and portable devices. Particular attention is paid to the potential use of lower safety class software as a way of harmful effects (including the intrusion of malicious fragments of code) on higher safety class software. The examples of actual incidents at various nuclear facilities caused by intentional cyber attacks or unintentional computer errors during the operation of software of systems important to NPP safety.

  8. The main trends of work on ageing and lifetime management of NPP

    International Nuclear Information System (INIS)

    Dragunov, Yu.

    1994-01-01

    The main trends of work on aging and lifetime management of nuclear power plants(NPP) in Russia are described including Russian research programs on NPP components lifetime assurance, technical assistance program for CIS, measures for life extension of reactor pressure vessels, steam generator collectors and components for advances reactor plants. Figs and tabs

  9. Spent fuel pool risk analysis for the Dukovany NPP

    Energy Technology Data Exchange (ETDEWEB)

    Hust' ak, S.; Jaros, M.; Kubicek, J. [UJV Rez, a.s., Husinec-Rez (Czech Republic)

    2013-07-01

    UJV Rez, a.s. maintains a Living Probabilistic Safety Assessment (Living PSA) program for Dukovany Nuclear Power Plant (NPP) in the Czech Republic. This project has been established as a framework for activities related to risk assessment and to support for risk-informed decision making at this plant. The most extensively used PSA application at Dukovany NPP is risk monitoring of instantaneous (point-in-time) risk during plant operation, especially for the purpose of configuration risk management during plant scheduled outages to avoid risk significant configurations. The scope of PSA for Dukovany NPP includes also determination of a risk contribution from spent fuel pool (SFP) operation to provide recommendations for the prevention and mitigation of SFP accidents and to be applicable for configuration risk management. This paper describes the analysis of internal initiating events (IEs) in PSA for Dukovany NPP, which can contribute to the risk from SFP operation. The analysis of those IEs was done more thoroughly in the PSA for Dukovany NPP in order to be used in instantaneous risk monitoring. (orig.)

  10. International Collaboration in the Development of NPP Software

    International Nuclear Information System (INIS)

    Jiang, S.; Liu, L.; Yu, H.

    2015-01-01

    In this paper, we first review the progress and current status of international collaboration and technical exchange in the development of nuclear power plant (NPP) software by The State Nuclear Power Software Development Center (SNPSDC) in China. Then we discuss the importance of the international collaboration and exchange in the trend of globalisation of NPP technology. We also identify the role and contribution of professional women in this process. SNPSDC, the first professional software development centre for NPP in China, has been developing COSINE — a self-reliance NPP design and analysis software product with China brand—since 2010. Through participating in OECD/NEA’s joint projects, such as ROSA-2 Project, PKL–3 Project, HYMERES Project and ATLAS Project, SNPSDC shared data with other countries involved with respect to particular areas, such as high quality reactor thermal hydraulics test data. SNPSDC’s engineers have also been actively participating in international technical and research exchange for presenting their innovative work to the community while learning from peers. Our record shows that over 30 papers have been presented in international conferences with respect to nuclear reactor thermal hydraulics, safety analysis, reactor physics and software engineering within the past 4 years. The above international collaboration and technical exchange helped SNPSDC’s engineers to keep up with the state-of-art technology in this field. The large amount of valuable experimental data transferred to SNPSDC ensured the functionality, usability and reliability of software while greatly reduced the cost and shortened the cycle of development. Female engineers and other employees of SNPSDC either drove or got actively involved in a lot of aspects of the above collaboration and exchange, such as technical communication, business negotiation and overseas affairs management. These professional women played an irreplaceable role in this project by

  11. Advances in safety countermeasures at the Tomari NPP of Hokkaido Electric Power on the basis of Fukushima Daiichi NPP accident. Fire protection and other advances

    International Nuclear Information System (INIS)

    Shibata, Taku; Dasai, Katsumi

    2014-01-01

    Fire protections for the nuclear power plants have been based on the fire laws and the conventional guide. After Fukushima Daiichi NPP accident, many safety countermeasures - also about Fire Protection - have been discussed in the Japanese authorities. This paper shows our present activities in the Tomari NPP about the fire protections from the view points of Fire Prevention, Fire Detection/Suppression Systems and Fire Protection, and other advances. (author)

  12. Accident management insights after the Fukushima Daiichi NPP accident

    International Nuclear Information System (INIS)

    Degueldre, Didier; Viktorov, Alexandre; Tuomainen, Minna; Ducamp, Francois; Chevalier, Sophie; Guigueno, Yves; Tasset, Daniel; Heinrich, Marcus; Schneider, Matthias; Funahashi, Toshihiro; Hotta, Akitoshi; Kajimoto, Mitsuhiro; Chung, Dae-Wook; Kuriene, Laima; Kozlova, Nadezhda; Zivko, Tomi; Aleza, Santiago; Jones, John; McHale, Jack; Nieh, Ho; Pascal, Ghislain; ); Nakoski, John; Neretin, Victor; Nezuka, Takayoshi; )

    2014-01-01

    The Fukushima Daiichi nuclear power plant (NPP) accident, that took place on 11 March 2011, initiated a significant number of activities at the national and international levels to reassess the safety of existing NPPs, evaluate the sufficiency of technical means and administrative measures available for emergency response, and develop recommendations for increasing the robustness of NPPs to withstand extreme external events and beyond design basis accidents. The OECD Nuclear Energy Agency (NEA) is working closely with its member and partner countries to examine the causes of the accident and to identify lessons learnt with a view to the appropriate follow-up actions to be taken by the nuclear safety community. Accident management is a priority area of work for the NEA to address lessons being learnt from the accident at the Fukushima Daiichi NPP following the recommendations of Committee on Nuclear Regulatory Activities (CNRA), Committee on the Safety of Nuclear Installations (CSNI), and Committee on Radiation Protection and Public Health (CRPPH). Considering the importance of these issues, the CNRA authorised the formation of a task group on accident management (TGAM) in June 2012 to review the regulatory framework for accident management following the Fukushima Daiichi NPP accident. The task group was requested to assess the NEA member countries needs and challenges in light of the accident from a regulatory point of view. The general objectives of the TGAM review were to consider: - enhancements of on-site accident management procedures and guidelines based on lessons learnt from the Fukushima Daiichi NPP accident; - decision-making and guiding principles in emergency situations; - guidance for instrumentation, equipment and supplies for addressing long-term aspects of accident management; - guidance and implementation when taking extreme measures for accident management. The report is built on the existing bases for capabilities to respond to design basis

  13. The local impacts of Borssele NPP closing down

    International Nuclear Information System (INIS)

    Mandos, J.L.

    2000-01-01

    The municipal council of Borsele considers that the use of nuclear energy is a question of national policy, but considers itself responsible for town and country planning, safety and employment. The two latter aspects are especially significant if plans for shutdown are concerned. Confidence in safety of the NPP in Borsele has increased in recent years due to transparent information policy of the power plant itself as well as the local government and most of the employees living in the area. If considering the circumstances under which the decision about the closure of NPP one could sees this is a purely political decision. The local government will continue the close cooperation with the National government and the Parliament in solving the problem of employment and social impact of NPP shutdown

  14. Strategy of a Slovak back-end part of nuclear energy and financing of decommissioning of NPP A1

    International Nuclear Information System (INIS)

    Slugen, V.

    2014-01-01

    The base for all consideration about financing of decommissioning of NPPs after accident should be the national Strategy of a Back-end of Nuclear Energy. In case of the Slovak Republic, there exist roles stated in actual Strategy which was issued by Slovak Government at 21.5.2008 and prepared by National nuclear found of SR. This Strategy was currently up-grated and given to the discussions before acceptance at national level by Government. Financing of decommissioning costs of NPP A1 was recalculated and adapted according to the actual state of art in available technology as well as human potential in Slovakia. (authors)

  15. Cernavoda NPP impact study on terrestrial and aquatic biota. Preliminary results

    International Nuclear Information System (INIS)

    Bobric, Elena; Bucur, Cristina; Popescu, Ion; Simionov, Vasile; Titescu, Gheorghe; Varlam, Carmen

    2010-01-01

    Recently, the awareness of the vulnerability of the environment has increased and the need to protect it against industrial pollutants has been recognized. The concept of sustainable development, requires new and developing international policies for environmental protection. See 'Protection of the environment from the effects of ionizing radiation' IAEA-TECDOC-1091, International Atomic Energy Agency, Vienna. As it is recommended in 'Cernavoda Unit No. 2 NPP Environmental Impact Assessment CES-03702-IAD-006', it is Cernavoda NPP responsibility to conduct an Ecological Risk Assessment study, mainly to assess the impact of nuclear power plant operation on terrestrial and aquatic biota. Long records from normal operation of Cernavoda Unit 1, wind pattern, meteorological conditions, and source terms data were used to evaluate areas of interest for environmental impact, conducting to a circle of 20 km radius around mentioned nuclear objective. The screening campaign established tritium level (because Cernavoda NPP is a CANDU type reactor, and tritium is the most important radioisotope evacuated in the environment) in air, water, soil and vegetation, focusing the interest area on particular ecosystem. Using these primary data it was evaluated which are the monitored ecological receptors and which are the measurement endpoints.This paper presents the Ecological Risk Assessment at Cernavoda NPP technical requirements, and the preliminary results of evaluating criteria for representative ecosystem components at Cernavoda NPP. (authors)

  16. Integrated risk assessment for multi-unit NPP sites—A comparison

    International Nuclear Information System (INIS)

    Kumar, C. Senthil; Hassija, Varun; Velusamy, K.; Balasubramaniyan, V.

    2015-01-01

    Highlights: • Framework for integrated risk assessment for multi-unit NPP sites. • Categorization of external and internal events. • Modelling of key issues: mission time, cliff-edge, common cause failures, etc. • Safety goals for multi-unit NPP sites. • Comparison of site core damage frequency in one, two, three and four unit sites. - Abstract: Most of the nuclear power producing sites in the world houses multiple units. Such sites are faced with hazards generated from external events: earthquake, tsunami, flood, etc. and can threaten the safety of nuclear power plants. Further, risk from a multiple unit site and its impact on the public and environment was evident during the Fukushima nuclear disaster in March 2011. It is therefore important to evolve a methodology to systematically assess the risk from multi-unit site. For a single unit site, probabilistic risk assessment technique identifies the potential accident scenarios, their consequences, and estimates the core damage frequency that arise due to internal and external hazards. This challenging task becomes even more complex for a multiple unit site, especially when the external hazards that has the potential to generate one or more correlated hazards or a combination of non-correlated hazards are to be modelled. This paper presents an approach to evaluate risk for multiple NPP sites and also compare the risk for sites housing single, double and multiple nuclear plants.

  17. Integrated risk assessment for multi-unit NPP sites—A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, C. Senthil, E-mail: cskumar@igcar.gov.in [AERB-Safety Research Institute, Kalpakkam (India); Hassija, Varun; Velusamy, K. [Reactor Design Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Balasubramaniyan, V. [AERB-Safety Research Institute, Kalpakkam (India)

    2015-11-15

    Highlights: • Framework for integrated risk assessment for multi-unit NPP sites. • Categorization of external and internal events. • Modelling of key issues: mission time, cliff-edge, common cause failures, etc. • Safety goals for multi-unit NPP sites. • Comparison of site core damage frequency in one, two, three and four unit sites. - Abstract: Most of the nuclear power producing sites in the world houses multiple units. Such sites are faced with hazards generated from external events: earthquake, tsunami, flood, etc. and can threaten the safety of nuclear power plants. Further, risk from a multiple unit site and its impact on the public and environment was evident during the Fukushima nuclear disaster in March 2011. It is therefore important to evolve a methodology to systematically assess the risk from multi-unit site. For a single unit site, probabilistic risk assessment technique identifies the potential accident scenarios, their consequences, and estimates the core damage frequency that arise due to internal and external hazards. This challenging task becomes even more complex for a multiple unit site, especially when the external hazards that has the potential to generate one or more correlated hazards or a combination of non-correlated hazards are to be modelled. This paper presents an approach to evaluate risk for multiple NPP sites and also compare the risk for sites housing single, double and multiple nuclear plants.

  18. Tendencies of ecological changes in the region of Ignalina NPP and in Lake Drukshiai

    International Nuclear Information System (INIS)

    Pashkauskas, R.; Mazeika, J.; Baubinas, R.

    1999-01-01

    Since 1979, when the construction of the Ignalina Nuclear Power Plant started, a group of specialists from Lithuania research and academic institutions began to investigate both Lake Drukshiai - the cooler of the Ignalina NPP and the neighbouring area. The investigations were aimed not only at monitoring the environmental consequences of the Ignalina NPP impact but also at forecasting changes of the ecosystems. The State Scientific Program 'Ignalina Nuclear Power Plant and the Environment' was the result of final stage of complex investigations. This conference paper contains data on the changes of thermal state and water balance of Lake Drukshiai, the effect of permanent thermal and chemical pollution on the chemical composition and hydrochemical regime, the pollution of the lake water, the geochemical-contaminated state, the condition, dynamics and the changes of hydrobiont communities in Lake Drukshiai. Radioecological and eco toxicological state of Ignalina NPP region and Lake Drukshiai is estimated as well as changes in Lake Drukshiai and Ignalina NPP surrounding area ecosystems under the combine anthropogenic impact of the plant influence are elucidated. The findings on medical and biological studies in the Ignalina NPP influence population zone and the evidence of impact of Ignalina NPP on social-territorial processes in the region are presented as well

  19. Radiological impact on the surrounding area of Cernavoda NPP operation

    International Nuclear Information System (INIS)

    Busnita, M.; Penescu, M.; Neacsu, L.; Ion, M.; Moldoveanu, E.

    1996-01-01

    The objective of this paper is to present the protective measures provided to Cernavoda NPP for population and environment in case of normal operation and accidental situations. The paper describes the nuclear safety concept with the two aspects, the technical safety and the radiation protection, respectively, which represent the theoretical basis of the NPP design, construction and operation. The assessment of the potential radiological effects of Cernavoda NPP operation on the population and other environmental factors have been done by using the following input data: the natural and social characteristics of the site and the technical characteristics of the plant. The effects of Cernavoda NPP operation are also exposed in health risks which are compared with the daily risks of the population exposed of the natural phenomena or to the activities like transportation, domestics or industrial. (author). 1 tab., 6 refs

  20. Remote technology in RBMK-1000 spent fuel management at NPP site

    International Nuclear Information System (INIS)

    Makarchuk, T.F.; Kozlov, Y.V.; Tikhonov, N.S.; Tokarenko, A.I.; Spichev, V.V.; Kaljazin, N.N.

    1999-01-01

    The report describes the remote technologies employed in the nuclear power plant with RBMK-1000 type. Spent fuel transfer and handling operations at reactor (AR) and away from reactor (AFR) on reactor site (RS) facilities are illustrated by the example of the Leningradskaya NPP and are typical for all NPPs with RBMK-1000. The current approach to spent fuel management at NPP sites is also presented. (author)

  1. Conceptual Design of a Combined Power Generation Unit at the NPP Seaside

    International Nuclear Information System (INIS)

    Cha, Kyung H.

    2011-01-01

    In order to improve operational performance, an undersea tunnel is being utilized for in-taking and out-taking seawater as coolant in Nuclear Power Plant (NPP). This paper describes a Combined solar-wind-wave Power Generation Unit (CPGU) to be specialized for in-taking and out-taking seawater as coolant in NPP. Accordingly, the purpose of the CPGU is twofold: one is to contain some tunnels to be maintained on the bottom of the CPGU body in order to in-take and out-take coolant water, and the other is to generate a combined power at the NPP seaside. Fig. 1 shows the conceptual CPGU to be configured at the NPP seaside

  2. Human Reliability analysis for digitized nuclear power plants: Case study on the LingAo II nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yan Hua; Zhang, Li [Institute of Human Factors Engineering AND Safety Management, Hunan Institute of Technology, Hengyang (China); Dai, Cao; Li, Peng Cheng; Qing, Tao [Human Factors Institute, University of South China, Hengyang (China)

    2017-03-15

    The main control room (MCR) in advanced nuclear power plants (NPPs) has changed from analog to digital control system (DCS). Operation and control have become more automated, centralized, and accurate due to the digitalization of NPPs, which has improved the efficiency and security of the system. New issues associated with human reliability inevitably arise due to the adoption of new accident procedures and digitalization of main control rooms in NPPs. The LingAo II NPP is the first digital NPP in China to apply the state-oriented procedure. In order to address issues related to human reliability analysis for DCS and DCS + state-oriented procedure, the Hunan Institute of Technology conducted a research project based on a cooperative agreement with the LingDong Nuclear Power Co. Ltd. This paper is a brief introduction to the project.

  3. Human Reliability Analysis for Digitized Nuclear Power Plants: Case Study on the LingAo II Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Yanhua Zou

    2017-03-01

    Full Text Available The main control room (MCR in advanced nuclear power plants (NPPs has changed from analog to digital control system (DCS. Operation and control have become more automated, centralized, and accurate due to the digitalization of NPPs, which has improved the efficiency and security of the system. New issues associated with human reliability inevitably arise due to the adoption of new accident procedures and digitalization of main control rooms in NPPs. The LingAo II NPP is the first digital NPP in China to apply the state-oriented procedure. In order to address issues related to human reliability analysis for DCS and DCS + state-oriented procedure, the Hunan Institute of Technology conducted a research project based on a cooperative agreement with the LingDong Nuclear Power Co. Ltd. This paper is a brief introduction to the project.

  4. The analysis of financial risk management application for NPP project in Indonesia

    International Nuclear Information System (INIS)

    Imam Bastori; Moch Djoko Birmano

    2012-01-01

    NPP Project is one of full dynamic, risky and challenging business. Application of financial risk management t in Nuclear Power Plant (NPP) project becomes one alternative to be considered carefully. This paper explains an analysis to make a decision in the risk management application so that it can be applied in the NPP's construction in Indonesia. As case study, is NPP of conventional PWR type of class 1150 MWe. To calculate the economics and financing of NPP is used Spreadsheet INOVASI, further the decision of financial risk management were analyzed using a Model of Cash Flow Adjustment, which developed by Richard Fairchild. The analysis showed that the Method of Cash Flow Adjustment developed by Richard Fairchild is better than the method of NPV Adjustment on a NPP project, because it have included the aspects of financial risk management. NPP project can only be executed if the NPV 2 0 and decision to execute the financial risk management should be based on NPVrm > NPV. The application of financial risk management in NPP project is not needed if an insurance premium more expensive than all costs of financial distress, unless the insurance company can give discount of at least 20%. (author)

  5. Cernavoda NPP Unit 1 - a plant of several generations

    International Nuclear Information System (INIS)

    Rotaru, I.; Metes, M.; Anghelescu, M.S.

    2000-01-01

    Cernavoda NPP Unit 1, the first nuclear power unit in Romania, has a long and tormented history. It represents a rather unique case in Eastern Europe. The project started well before 1989 (the construction phase lasted 17 years and generations were involved in its completion), but it is effectively based on western technology (Candu). Meanwhile, the national nuclear program underwent many changes, affecting the lives and careers of Romanian nuclear professionals. Finally, on December 2 nd 1996, the unit began its c ommercial operation , being operated at its nominal power rating of 706 MW e . It now provides a reliable source of electricity for Romanian economy, supplying to the national grid about 10% of the country's average annual demand. The paper reflects some aspects related to the shift of generations during the project's development, including the present stage. The operational performances achieved 'in service' by Cernavoda NPP Unit 1 up to the end of 1999 , are also presented. Reference to the electrical energy production, performance indicators, production costs, nuclear safety, radiation protection, radioactive wastes, nuclear fuel consumption and nuclear fuel performances are included. Comparisons are performed with similar indicators reported by other worldwide nuclear power plants, in order to assess our results. (authors)

  6. Seismic qualification tests of fans of the NPP of Laguna Verde U-1 and U-2; Pruebas de calificacion sismica de ventiladores de la Central Laguna Verde U1 and U2

    Energy Technology Data Exchange (ETDEWEB)

    Jarvio C, G.; Garcia H, E. E.; Arguelles F, R.; Vela H, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Naranjo U, J. L., E-mail: gilberto.jarvio@inin.gob.mx [Comision Federal de Electricidad, Gerencia de Centrales Nucleoelectricas, Subgerencia de Ingenieria, Carretera Veracruz-Medellin Km 7.5, Dos Bocas, Veracruz (Mexico)

    2013-10-15

    This work presents the results of the seismic qualification tests applied to the fans that will be installed in the control panels of the three divisions of the diesel generators of the nuclear power plant (NPP) of Laguna Verde, Unit-1 and Unit-2. This seismic qualification process of the fans was carried out using two specimens that were tested in the seismic table (vibrating) of the Engineering Institute of Universidad Nacional Autonoma de Mexico (UNAM), in accordance with the requirements of the standard IEEE 344-1975, to satisfy the established requirements of seismic qualification in the technical specifications and normative documents required by the nuclear standards, in order to demonstrate its application in the diesel generators Divisions I, II and III of the NPP. The seismic qualification tests were developed on specimens that were retired of the NPP of Laguna Verde recently with a service life of 7.75 years. (Author)

  7. Operating Experience at NPP Krsko

    International Nuclear Information System (INIS)

    Kavsek, D.; Bach, B.

    1998-01-01

    Systematic analysis of operational experience by assessment of internal and industry events and the feedback of lessons learned is one of the essential activities in the improvement of the operational safety and reliability of the nuclear power plant. At NPP Krsko we have developed a document called ''Operating Experience Assessment Program''. Its purpose is to establish administrative guidance for the processing of operating events including on-site and industry events. Assessment of internal events is based on the following methods: Event and Causal Factor Charting, Change Analysis, Barrier Analysis, MORT (Management Oversight and Risk Tree Analysis) and Human Performance Evaluation. The operating experience group has developed a sophisticated program entitled ''Operating experience tracking system'' (OETS) in response to the need for a more efficient way of processing internal and industry operating experience information. The Operating Experience Tracking System is used to initiate and track operational events including recommended actions follow up. Six screens of the system contain diverse essential information which allows tracking of operational events and enables different kinds of browsing. OETS is a part of the NPP Krsko nuclear network system and can be easily accessed by all plant personnel. (author)

  8. Safety Analysis Report for Ignalina NPP

    International Nuclear Information System (INIS)

    Negrivoda, G.

    1997-01-01

    In December 1994 an agreement was signed between the European Bank for Reconstruction and Development and the Republic of Lithuania for the grant of 32.86 MECU for the safety Improvement at Ignalina NPP. One of the conditions for the provision of the grant, was a requirement for an in-depth analysis of the safety level at Ignalina NPP in the scope and according to the standards acceptable for a western nuclear power plant, and to publish a Safety Analysis Report (SAR). The report should investigate and analyze any factor that could limit a safe operation of the plant, and provide recommendations for actual safety improvements. According to the agreement, Lithuania had to finalize the SAR until 31 December, 1995. The bank has also organized and financed investigation of safety at Ignalina NPP and preparation of the SAR. EBRD made an agreement with Sweden's Vattenfall, which subcontracted well-known companies from Canada, USA, Germany, etc., and also the Russian Research and Development Institute of Power Engineering (NIKIET), reactor designer of Ignalina NPP. The SAR is a very comprehensive document and contains about 8000 pages of text, diagrams and tables. The main findings of the SAR are provided in the article. A large number of discrepancies with modern rules and western practices was detected, but they were not proved to be serious enough to require reactors shutdown. Based on the recommendations of the SAR Ignalina NPP has worked out Safety Improvement Program No. 2 (SIP-2), which is planned for three years and will cost 486 MLT. (author)

  9. Problems and experience of ensuring nuclear safety in NPP spent fuel storage facilities in Russia

    International Nuclear Information System (INIS)

    Vnukov, Victor S.; Ryazanov, Boris G.

    2003-01-01

    The amount of Nuclear Power Plant (NPP) spent fuel in special storage facilities of Russia runs to more than 15000 tons and the annual growth is equal to about 850 tons. The storage facilities for spent nuclear fuel from the main nuclear reactors of Russia (RBMK-1000, VVER-1000, BN-600, EGP-6) were designed in the 60s - 70s. In the last years when the concept of closed fuel cycle and safety requirements had changed, the need was generated to have the nuclear storage facilities more crowded. First of all it is due to the necessity to increase the storage capacity because the RBMK-1000, VVER-1000, EGP-6 fuel is not reprocessed. So there comes the need for the facilities of a bigger capacity which meet the current safety requirements. The paper presents the results of studies of the most important nuclear safety issues, in particular: development of regulatory requirements; analysis of design-basis and beyond-the design-basis accidents (DBA and BDBA); computation code development and verification; justification of nuclear safety when water density goes down; the use of burn-up fraction values; the necessity and possibility to experimentally study the storage facility subcriticality; development of storage norms and rules for new types of fuel assemblies with mixed fuel and burnable poison. (author)

  10. The contract for the completion and commissioning of Cernavoda NPP - Unit

    International Nuclear Information System (INIS)

    2001-01-01

    On May 18, 2001 the commercial contract for the completion and commissioning of the Cernavoda NPP Unit 2 has been signed by Nuclearelectrica National Company (SNN SA) and its partners, AECL-Canada and ANSALDO-Italy. This contract represents a continuation of the cooperation with AECL-Canada (the owner of the licence and the designer of the nuclear part of Cernavoda NPP Unit1) and ANSALDO-Italy (the designer of the conventional part of Cernavoda NPP Unit1). The completion is scheduled to last for 54 months (4.5 years) since the date the contract takes effect and the nuclear reactor start-up (the first criticality) is scheduled for the 49 th month. The total negotiated cost for the completion was estimated to amount to 689 million dollars, against the 750 million dollars initially estimated. The works at the site will be managed by an integrated staff team of specialized personnel form AECL-Canada (111 positions), ANSALDO-Italy (72 positions) and Romania (1200 positions)

  11. Start-up of NPP Krsko; Pokusno obratovanje NE Krsko

    Energy Technology Data Exchange (ETDEWEB)

    Spiler, J; Aralica, J [Nuklearna elektrana Krsko, Krsko (Yugoslavia)

    1984-07-01

    The report describes a review of start-up program and its realisation. There are also described some more significant start-up results with their evaluation. The most significant operation criteria are compared between NPP Krsko and other similar plants in the world. The comparison shows that after the first contractors and operation personnel efforts have been accomplished, our first nuclear power plant is a safe and reliable source of electric power. At the end there are listed NPP Krsko start-up recommendations and experience. (author)

  12. New appraisement of siting for a NPP on Mures river

    International Nuclear Information System (INIS)

    Traian Mauna

    2010-01-01

    The studies for a second NPP siting on inner Romanian rivers began in a careful manner since 1982 as a first part of the Nuclear Power Plant Romanian Program adopted by political and governmental authorities at the time. The experience gained from Cernavoda NPP siting, the first mission of new multi-branch of specialists team was to choose new NPP sites adapting the CANDU type NPP Cernavoda project to the new parameters of close water cooling circuit and of hard less or no rock foundation strata. The new sites conditions mean a lot of changes of CANDU license and a decrease the output power supplied to the national electric grid. The studies on the Mures river as alternative site of Olt river in Transylvania region began in 1986 and were stopped after 1990. This paper tries to reconsider shortly the old analysis focused on geological and geotechnical aspects and other local sites characteristics according to the last IAEA Safety Standards taking into account also the last types of NPP generations and the number of units. (author)

  13. Electrical systems at the nuclear power plant of Laguna Verde after the event in Fukushima; Sistemas electricos en la central nucleoelectrica Laguna Verde despues del evento de Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Lopez J, J. F., E-mail: jflopez@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose M. Barragan 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2016-09-15

    During the event at the nuclear power plant of Fukushima Daichii (Japan), the electrical systems were affected both Onsite and Offsite, which were lost for a long time with irreversible consequences. Therefore, the Mexican Regulatory Body known as the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) has taken various actions to review the current capacity of the electrical systems at the nuclear power plant of Laguna Verde (NPP-LV) before an event beyond the design bases. The CNSNS made special inspections to the NPP-LV to verify the current capacity of the electrical systems of Ac and Dc; as a result of the inspections, requirements were generated that must be met to demonstrate that has the capacity to deal with events beyond the design bases. In addition, CNSNS has participated in the Ibero-American Forum to deal with resistance testing. Is important to note that prior to the event at the nuclear power plant of Fukushima, the NPP-LV had implemented 1) the project Extended Power Increase in both Units of the NPP-LV, and 2) the Generic Charter 2006-02, both issues are considered contributions in the robustness of electrical systems. But it is also important to mention that the US Nuclear Regulatory Commission will soon issue mitigation strategies for a Station Blackout event, which could involve new actions at nuclear power plants. Based on the aforementioned, the CNSNS concludes that all the actions being taken contribute to the strengthening of the NPP-LV electrical systems, in order to increase their reliability, safety and operation when these are required to deal with events beyond the design bases as the event occurred in Fukushima Daichii and avoid as far as possible, damage in the reactor cores of the NPP-LV. (Author)

  14. Experience Practices on Decontamination Activity in NPP Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Bon; Kim, Jeongju; Sohn, Wook [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-10-15

    Decommissioning of a nuclear power plant (NPP) involves various technical and administrative activities for a utility to terminate its license, which allows the plant site to be released from the regulatory control (site release). Decontamination activity in NPP decommissioning is one of the main technical activities to be performed during the decommissioning. The decontamination at decommissioning sites is usually performed due to several reasons such as reducing personnel dose and disposal costs, and cleanup to meet license termination requirements by using physical or chemical removal techniques proven through the previous experience practices. This paper introduces the best and worst practices for the decontamination activities collected from the decommissioning operational experiences through the implementation of nuclear decommissioning projects around the world. Review of the experiences of decontamination shows that it is important to conduct an advanced planning for optimized implementation of decontamination taking into considering site specific conditions such as operating time, reactor type, system, and so on. Also, a review of newer decontamination methods is necessary to safely and economically decommission the nuclear facility.

  15. Structure study and design of Qinshan NPP PCCV

    International Nuclear Information System (INIS)

    Xia Zufeng; Xu Yongzhi; Wang Tianzhen; Wu Jibiao

    1993-02-01

    The design process of Qinshan NPP (nuclear power plant) PCCV (prestressed concrete containment vessel) is summarized. The tendon test, structural description, design bases and analysis method are introduced. The arrangement for preventing concrete from cracking and design features of post-tensioning system and steel liner are presented. The results of model test and non-linear analysis for ultimate load in Qinshan NPP PCCV are also given. Through the integrity test of PCCV, it shows that the test values are in agreement with predicted values, the structure is excellent and the performance of leak tightness conforms to the safety requirements

  16. ASSET experience at Paks NPP

    International Nuclear Information System (INIS)

    Szabo, I.

    1997-01-01

    At Paks NPP special attention has been paid to international reviews since the very beginning of operation. Several international teams visited Paks in order to provide independent assessment of plant performance, conditions and safety. Paks NPP Management has the further intention to invite international reviews regularly (yearly) in the future as well. The experience gained during these reviews helped to establish a unified process of preparation for the reviews, performing them and handling the results. The Safety Department is in charge of organization of the whole process. All these reviews have their specific features and they are focused on different areas. The ASSET reviews provides the assessment of plant performance and safety through the analysis of safety significant events, which have occurred at the nuclear power plant. This approach makes this review specific and different from the other ones

  17. ASSET experience at Paks NPP

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, I [Operational Safety Dept., Paks NPP, Paks (Hungary)

    1997-10-01

    At Paks NPP special attention has been paid to international reviews since the very beginning of operation. Several international teams visited Paks in order to provide independent assessment of plant performance, conditions and safety. Paks NPP Management has the further intention to invite international reviews regularly (yearly) in the future as well. The experience gained during these reviews helped to establish a unified process of preparation for the reviews, performing them and handling the results. The Safety Department is in charge of organization of the whole process. All these reviews have their specific features and they are focused on different areas. The ASSET reviews provides the assessment of plant performance and safety through the analysis of safety significant events, which have occurred at the nuclear power plant. This approach makes this review specific and different from the other ones.

  18. Nuclear Spent Fuel Management in Spain

    International Nuclear Information System (INIS)

    Zuloaga, P.

    2015-01-01

    The radioactive waste management policy is established by the Spanish Government through the Ministry of Industry, Tourism and Commerce. This policy is described in the Cabinet-approved General Radioactive Waste Plan. ENRESA is the Spanish organization in charge of radioactive waste and nuclear SFM and nuclear installations decommissioning. The priority goal in SFM is the construction of the centralized storage facility named Almacén Temporal Centralizado (ATC), whose generic design was approved by the safety authority, Consejo de Seguridad Nuclear. This facility is planned for some 6.700 tons of heavy metal. The ATC site selection process, based on a volunteer community’s scheme, has been launched by the Government in December 2009. After the selection of a site in a participative and transparent process, the site characterization and licensing activities will support the construction of the facility. Meanwhile, extension of the on-site storage capacity has been implemented at the seven nuclear power plants sites, including past reracking at all sites. More recent activities are: reracking performed at Cofrentes NPP; dual purpose casks re-licensing for higher burnup at Trillo NPP; transfer of the spent fuel inventory at Jose Cabrera NPP to a dry-storage system, to allow decommissioning operations; and licence application of a dry-storage installation at Ascó NPP, to provide the needed capacity until the ATC facility operation. For financing planning purposes, the long-term management of spent fuel is based on direct disposal. A final decision about major fuel management options is not made yet. To assist the decision makers a number of activities are under way, including basic designs of a geological disposal facility for clay and granite host rocks, together with associated performance assessment, and supported by a R&D programme, which also includes research projects in other options like advanced separation and transmutation. (author)

  19. Ukraine is nuclear Great Power

    International Nuclear Information System (INIS)

    Svolik, S.

    2005-01-01

    In this paper the interview with Mr. Jaroslav Holubec - the Director of the Mochovce NPP is published. MR. Jaroslav Holubec with Mr. Stefan Niznan - the Director of the 3 r d and 4 th blocks of the Mochovce NPP - took part in opening commissioning of blocks on the Rovno NPP and Khmelnitskaya NPP, both with installed reactors 1,000 MW. Development of nuclear energetics in the Ukraine is discussed. The share of nuclear energy on the production of the Ukraine constitutes 42 %

  20. The landscape basis of the complex monitoring of 30-km zone of NPP

    International Nuclear Information System (INIS)

    Malisheva, L.L.; Romanchuk, S.P.; Schur, U.V.; Rybalko, S.I.; Proskura, N.I.; Lury, D.I.

    1992-01-01

    This publication reviews works on the problem of creation the landscape basis of complex monitoring in 30 km zone of NPP(nuclear power plants). The objectives, subject and designation of monitoring system are considered. The monitoring network and organization of systematical observations are justified. The structure of radiation monitoring in NPP 30 km zone is considered in details. (author)

  1. Strengthening the control on radioactive sources - Cernavoda NPP operating experience

    International Nuclear Information System (INIS)

    Daian, I.; Simionov, V.

    2005-01-01

    This paper presents the national legal frame governing the radioactive source management, legislative requirements introduced during last years and current status of controlled radioactive sources program at Cernavoda NPP. Romania has only one nuclear power plant, Cernavoda NPP, equipped with five PHWR - CANDU-6 Canadian type reactors - with a 700 MW(e) gross capacity each, in different implementation stages. The legal representative of the nuclear power production sector in Romania is 'Nuclearelectrica' S.A. National Company (SNN). SNN is a governmental company controlled by the Ministry of Industry and Trade. The company has headquarters in Bucharest and three subsidiaries: - CNE-PROD Cernavoda (CNE-PROD), operating the Cernavoda NPP - Unit 1; - CNE-INVEST Cernavoda, in charge with the completion of Unit 2 and with the preservation of Units 3,4,5; - Nuclear Fuel Plant in Pitesti (FCN). Unit 1 is in commercial operation since December 2, 1996, Unit 2 is under construction (80% completed) and Units 3, 4, 5 are under preservation. The operation of Cernavoda NPP implies use of radioactive sources that may present a significant risk to health, property and the environment when control is lost. Within the last years CNCAN issued new regulations stating clear responsibilities for the different institutions involved in radioactive materials control programs. To manage radioactive sources in a safe way CNE-PROD established and revised the Controlled Radioactive Sources Program, as part of Station Radiation Protection Regulation, ensuring strict recording of the radioactive sources and their usage, ensuring physical and radiological security, protecting the personnel, members of the public and the environment from the hazards of ionizing radiation during the life cycle of the plant, including decommissioning. (authors)

  2. Strengthening the control on radioactive sources - Cernavoda NPP operating experience

    International Nuclear Information System (INIS)

    Daian, I.; Simionov, V.

    2005-01-01

    Full text: This paper presents the national legal frame governing the radioactive source management, legislative requirements introduced during last years and current status of controlled radioactive sources program at Cernavoda NPP. Romania has only one nuclear power plant, Cernavoda NPP, equipped with five PHWR - CANDU-6 Canadian type reactors - with a 700 MW(e) gross capacity each, in different implementation stages. The legal representative of the nuclear power production sector in Romania is 'Nuclearelectrica' S.A. National Company (SNN). SNN is a governmental company controlled by the Ministry of Industry and Trade. The company has headquarters in Bucharest and three subsidiaries: - CNE-PROD Cernavoda (CNE-PROD), operating the Cernavoda NPP - Unit 1; - CNE-INVEST Cernavoda, in charge with the completion of Unit 2 and with the preservation of Units 3,4,5; - Nuclear Fuel Plant in Pitesti (FCN). Unit 1 is in commercial operation since December 2, 1996, Unit 2 is under construction (80% completed) and Units 3, 4, 5 are under preservation. The operation of Cernavoda NPP implies use of radioactive sources that may present a significant risk to health, property and the environment when control is lost. Within the last years CNCAN issued new regulations stating clear responsibilities for the different institutions involved in radioactive materials control programs. To manage radioactive sources in a safe way CNE-PROD established and revised the Controlled Radioactive Sources Program, as part of Station Radiation Protection Regulation, ensuring strict recording of the radioactive sources and their usage, ensuring physical and radiological security, protecting the personnel, members of the public and the environment from the hazards of ionizing radiation during the life cycle of the plant. (authors)

  3. Social problems and territorial experiences from closing down Tihange NPP

    International Nuclear Information System (INIS)

    Lizin, A.M.

    2000-01-01

    The town of Huy, better known by the name of the NPP Tihange, which is the nearby village, accounts to 50,000 inhabitants including the surrounding region. An Advisory Committee at a community level was set up concerned with the emergency services and the NPP related problems. One of the outstanding problems is the planned interim storage for radioactive waste. The unsolved question of long term storage in Belgium resulted in the fact that general situation is not promising for launching the debate on the future of nuclear energy. The mission of the delegation from Huy visited Tokaimura with the aim to measure the scale of real responsibilities and the concern against nuclear power that the accident created in the population

  4. Preliminary study of the nuclear power option in Belarus

    International Nuclear Information System (INIS)

    Grusha, N.M.; Kazazyan, V.T.; Malykhin, A.P.; Mikhalevich, A.A.; Yakushau, A.P.; Yaroshevich, O.I.

    1999-01-01

    The Republic of Belarus possesses an economy with many energy intensive branches. At the same time the share of domestic energy resources is about 15% of total energy demand. The share of the payment for primary energy resources reaches 60% or USD 2 billion of the total energy import. That is comparable with the annual state budget. In addition to that, about half of the installed capacities have reached their operation life and 90% of the units have to be retrofitted or replaced until 2010. Thus, the problem of energy supply is one of the most important ones for Belarus' economy. The nuclear power appears to be one of the possible ways for solving the energy demand problem in Belarus which has, as in case of many countries of Central and South-Eastern Europe, limited energy resources. In 1992 - 1994 the works for studying the possibility of NPP siting were recommenced and six relatively competitive sites have been chosen out from 54 possible locations for NPP siting. Parallely, works on assessment of environmental NPP effect in these sites were carried out. As concerning the reactors to be purchased and installed in the sites selected, the following options were taken into consideration: PWR of American Company WESTINGHOUSE; PWR N4 of France Company FRAMATOME; PWR KONVOI of German Company SIEMENS. Also promising are the new generation of Russian Reactor NPP, namely NPP - 91, NPP - 92 and NPP with NGWWER - 640 reactors. Preliminary assessment having in view the feasibility characteristics, safety, reliability as well as the degree of completion shows the Russian projects NPP - 92 and NGWWER - 640 as more preferably at present. Concerning the radioactive waste management, sites for storing low and medium active waste have been determined as well as regions for high active waste disposal. At present Belarus Republic disposes of a definite production, engineering and scientific potential, which can be used when the nuclear power program will be launched. Construction

  5. Qinshan CANDU NPP outage performance improvement through benchmarking

    International Nuclear Information System (INIS)

    Jiang Fuming

    2005-01-01

    With the increasingly fierce competition in the deregulated Energy Market, the optimization of outage duration has become one of the focal points for the Nuclear Power Plant owners around the world. People are seeking various ways to shorten the outage duration of NPP. Great efforts have been made in the Light Water Reactor (LWR) family with the concept of benchmarking and evaluation, which great reduced the outage duration and improved outage performance. The average capacity factor of LWRs has been greatly improved over the last three decades, which now is close to 90%. CANDU (Pressurized Heavy Water Reactor) stations, with its unique feature of on power refueling, of nuclear fuel remaining in the reactor all through the planned outage, have given raise to more stringent safety requirements during planned outage. In addition, the above feature gives more variations to the critical path of planned outage in different station. In order to benchmarking again the best practices in the CANDU stations, Third Qinshan Nuclear Power Company (TQNPC) have initiated the benchmarking program among the CANDU stations aiming to standardize the outage maintenance windows and optimize the outage duration. The initial benchmarking has resulted the optimization of outage duration in Qinshan CANDU NPP and the formulation of its first long-term outage plan. This paper describes the benchmarking works that have been proven to be useful for optimizing outage duration in Qinshan CANDU NPP, and the vision of further optimize the duration with joint effort from the CANDU community. (authors)

  6. Report on nuclear safety on the operation of nuclear facilities in 1989

    International Nuclear Information System (INIS)

    Gregoric, M.; Levstek, M. F.; Horvat, D.; Kocuvan, M.; Cresnar, N.

    1990-01-01

    Currently Yugoslavia has one 632 MWe nuclear power plant (NPP) of PWR design, located at Krsko in the Socialist Republic (SR) of Slovenia. Krsko NPP, which is a two-loop plant, started power operation in 1981. In general, reactor safety activities in the SR of Slovenia are mostly related to upgrading the safety of our Krsko NPP and to developing capabilities for use in future units. This report presents the nuclear safety related legislation and organization of the corresponding regulatory body, and the activities related to nuclear safety of the participating organizations in the SR of Slovenia in 1989.

  7. Report on nuclear safety on the operation of nuclear facilities in 1990

    International Nuclear Information System (INIS)

    Gregoric, M.; Grlicarev, I.; Horvat, D.; Levstek, M.F.; Lukacs, E.; Kocuvan, M.; Skraban, A.

    1991-06-01

    Currently Yugoslavia has one 632 MWe nuclear power plant (NPP) of PWR design, located at Krsko in the Socialist Republic (SR) of Slovenia. Krsko NPP, which is a two-loop plant, started power operation in 1981. In general, reactor safety activities in the SR of Slovenia are mostly related to upgrading the safety of our Krsko NPP and to developing capabilities for use in future units. This report presents the nuclear safety related legislation and organization of the corresponding regulatory body, and the activities related to nuclear safety of the participating organizations in the SR of Slovenia in 1990.

  8. The Acceptance Strategy for Nuclear Power Plant In Indonesia

    Science.gov (United States)

    Suhaemi, Tjipta; Syaukat, Achmad

    2010-06-01

    THE ACCEPTANCE STRATEGY FOR NUCLEAR POWER PLANT IN INDONESIA. Indonesia has planned to build nuclear power plants. Some feasibility studies have been conducted intensively. However, the processes of NPP introduction are still uncertain. National Energy Plan in Indonesia, which has been made by some governmental agencies, does not yet give positive impact to the government decision to construct the nuclear power plant (NPP). This paper discusses the process of NPP introduction in Indonesia, which has been colored with debate of stakeholder and has delayed decision for go-nuclear. The technology paradigm is used to promote NPP as an alternative of reliable energy resources. This paradigm should be complemented with international politic-economic point of view. The international politic-economic point of view shows that structural powers, consisting of security, production, finance, and knowledge structures, within which the NPP is introduced, have dynamic characteristics. The process of NPP introduction in Indonesia contains some infrastructure development (R&D, legislation, regulation, energy planning, site study, public acceptance efforts, etc), but they need a better coherent NPP implementation program and NPP Acceptance Program. Strategic patterns for NPP acceptance described in this paper are made by considering nuclear regulation development and the interest of basic domestic participation. The first NPP program in Indonesia having proven technology and basic domestic participation is and important milestone toward and optimal national energy-mix.

  9. Co-ordinated research programme on benchmark study for the seismic analysis and testing of WWER-type nuclear power plants. V. 3E. Kozloduy NPP units 5/6: Analysis/testing. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    The Co-ordinated research programme on the benchmark study for the seismic analysis and testing of WWER-type nuclear power plants was initiated subsequent to the request from representatives of Member States. The conclusions adopted at the Technical Committee Meeting on Seismic Issues related to existing nuclear power plants held in Tokyo in 1991 called for the harmonization of methods and criteria used in Member States in issues related to seismic safety. The Consulltants' Meeting which followed resulted in producing a working document for CRP. It was decided that a benchmark study is the most effective way to achieve the principal objective. Two types of WWER reactors (WWER-440/213 and WWER-1000) were selected as prototypes for the benchmark exercise to be tested on a full scale using explosions and/or vibration generators. The two prototypes are Kozloduy Units 5/6 for WWER-1000 and Paks for WWER-440/213 nuclear power plants. This volume of Working material contains reports on data related to floor response spectra of Kozloduy NPP; calculational-experimental examination and ensuring of equipment and pipelines seismic resistance at starting and operating WWER-type NPPs; analysis of design floor response spectra and testing of the electrical systems; experimental investigations and seismic analysis Kozloduy NPP; testing of components on the shaking table facilities and contribution to full scale dynamic testing of Kozloduy NPP; seismic evaluation of the main steam line, piping systems, containment pre-stressing and steel ventilation chimney of Kozloduy NPP

  10. Geological study of Ujungwatu area as support for NPP planning in Muria Central Java

    International Nuclear Information System (INIS)

    Srijono

    1995-01-01

    In accordance with growth of life in Java, the need for electricity is also growing accordingly. Efforts to provide electricity such as planning to build nuclear power plant (NPP) has been in the debate for a while. There are many factors to be considered in this planning, such as its environmental condition. Geological factor is one of the important one to be considered. Surface geological conditions around NPP area at Ujungwatu needed include stratigraphy, geological structure, geomorphology, and environmental geology. Geology in Ujungwatu at radius 5 km is quite interesting. This area is part of Genuk volcano group which is laid at south and Ujungwatu coast at north. Genuk mountain group is divided into mountain slope, mountain back, and mountain skeleton. Coastal area is composed of coast sand. Sand up to broken rock was present along river gullies. Others were volcanic rocks which was composed of lapili tuff, trachite, pyroxene andesite, tuff breccia, tephrite-andesitic tuff breccia, and basaltic tuff breccia. Volcanic structure is well reflected by morphological feature as lineaments and half circular form in mount Genuk. This structure was predominantly in NW-SE direction, and less dominant in NE-SW direction. Ujungwatu, from environmental view, is deserved to be developed because of its underground potency. Iron sand, fluvial tuff, kaolin, mud, riverstone, volcanic rock, tuff and marble were easily found underground. Those could be benefited to the people in the area so that it could change socio-economical condition of the people which in turn electricity is becoming a necessity. Last but not least, Portuguese fort as potential touristic object is also situated at Kartini beach near Ujungwatu. (author). 15 refs, 3 tabs, 5 figs

  11. Integral design small nuclear power plant UNITHERM

    International Nuclear Information System (INIS)

    Adamovich, L. A.; Grechko, G. I.; Ulasevich, V. K.; Shishkin, V. A.

    1995-01-01

    The need to erect expensive energy transmission lines to these places demands to use independent local energy sources. Therefore, a reasonable alternative to the plants fired fossil fuel, mostly hydrocarbon fuel, may come from the nuclear power plants (NPP) of relatively small capacity which are nonattended, shipped to the site by large-assembled modules and completely withdrawable from the site during decommissioning. Application of NPPs for power and heat supply may prove to be cost-efficient and rather positive from social and ecological point of view. UNITHERM NPP belongs to such energy sources and may be used for heat and power supply. Heat can be provided both as hot water and superheated steam. The consumers are able to specify heat/energy supply ratio. NPP design provides for independent energy supply to the consumers and the possibility to disconnect each of them without disruption of operation of the others. Thermal hydraulic diagram of UNITHERM NPP provides for the use of three interconnected, process circuits. The consumers of thermal energy (turbogenerator unit and boilers of the central heating unit) are arranged in the last circuit

  12. Commissioning of Temelin NPP as seen by scientific supervisory group

    International Nuclear Information System (INIS)

    Svoboda, C.

    2003-01-01

    Scientific Supervisory Group worked during the Temelin NPP commissioning process as an independent supervisor. The main tasks and main results of its activity are described in this contribution. The characteristic common features of commissioning process and most important events from the Scientific Supervisory Group point of view are presented. In April 1999 the Czech Power Utility with the objective to achieve maximum level of nuclear safety and quality within the NPP Temelin commissioning procedures has established a special body / Scientific Supervisory Group and requested Nuclear Research Institute Rez plc to perform the required function. The Scientific Supervisory Group proceeds in accordance with its Statute and provides an independent specialised professional and expert work focused on nuclear safety assurance, assesment of the selected documentation related to plant preparedness for the individual commissioning stages, and, of course. on assessment of the commissioning tests results. While performing its function the Scientific Supervisory Group is guided by the Atomic Act and the relevant Directives of State Office for Nuclear Safety; its activities are in compliance with the applicable IAEA recommendations (Authors)

  13. The 18 basic requirement of quality assurance for American design NPP

    International Nuclear Information System (INIS)

    Baliza, Ana Rosa

    2013-01-01

    On April 17th, 1969, the Atomic Energy Commission (AEC) published in the U.S. Federal Register (FR), Volume 34, Number 73, a proposed amendment to 10CFR50 to insert Appendix B - 'Quality assurance criteria for Nuclear Power Plant'. This Appendix was officially approved on June 27th, 1970 and published in the FR, volume 35, number 125. Appendix B is the Quality Assurance document for U.S. nuclear facilities. This document establishes eighteen basic requirements (BR) to design, construction, manufacture and operation of structures, systems and components (SSC) related to safety. The 18 BR describe 'what' shall be done, but not 'how' to do. In order to standardize the actions of nuclear facilities during 10 CFR 50 App B implementation, the industry has developed some documents, the main ones are: ASME NQA-1 (Quality Assurance Requirements for Nuclear Facility Applications) and the series ANSI N 45.2 (Quality Assurance Program Requirements for Nuclear Facilities). Both documents are approved by the NRC (Nuclear Regulatory Commission). The NRC is the licensing body of U.S. nuclear facilities. In Brazil, the licensing body is CNEN (Comissao Nacional de Energia Nuclear). This paper describes the 18 BR for American Designed Nuclear Power Plant (NPP), applicable to Angra-1 NPP. (author)

  14. Analysis of an NPP Structure subjected to Vibrations Induced from Airplane Crashes

    International Nuclear Information System (INIS)

    Noh, Sang Hoon; Kim, Yong Soo; Kim, Chong Hak

    2009-01-01

    After the terrorists' attacks with civilian airplanes on September 11, 2001, special attention has been paid to the potential for an airplane crash into a Nuclear Power Plant (NPP) as a man-made hazard. An airplane crash (APC) into an NPP has the potential to damage the roofs and walls of these structures, as well as other systems and components such as pipelines, electric motors, power supplies, power cables of electricity transmission that are important for safety. Therefore, an evaluation of the structural response to an APC is important for the safety of NPPs to be confirmed. A structural integrity analysis was carried out focusing on the vibration effects of an APC on an NPP structure. The NPP structure under consideration has been conceptually redesigned based on APR1400 to have double containments for the purpose of a feasibility study to meet European requirements. The finite element method was used for the structural analysis of the NPP, and the computer code ABAQUS was employed for this analysis

  15. Peculiarities of physical protection assurance of the nuclear materials at nuclear installation decommissioning stage

    International Nuclear Information System (INIS)

    Pinchuk, M.G.

    2001-01-01

    On December 15, 2000 Unit 3 of Chernobyl NPP, which is the last one in Ukraine having RBMK-type reactor, was permanently shutdown before the end of its lifetime. A number of projects related to establishing infrastructure for the plant decommissioning are being implemented in compliance with the Ukraine's commitments. Decommissioning stage includes activities on fuel unloading from the cores of Unit I and Unit 3, fuel cooling in the ponds followed by the fuel transportation to the spent fuel dry storage facility (currently under construction) for its safe long-term storage. Special facilities are being created for liquid and solid radioactive waste treatment. Besides, it is planned to implement a number of projects to convert Shelter Object in environmentally safe structure. Physical protection work being an essential part of the nuclear material management is organized in line with the recommendations of the IAEA, and the Laws of Ukraine 'On Nuclear Energy Utilization and Radiation Safety', 'On Physical Protection of Nuclear Installations and Materials', 'Regulations on Physical Protection of Nuclear Materials and Installations', other codes and standards. While organizing physical protection on ChNPP decommissioning stage we have to deal with some specific features, namely: Significant amount of fuel assemblies, which are continuously transferred between various storage and operation facilities; Big amount of odd nuclear material at Shelter Object; 'Theft of new fuel fragments from the central hall of the Shelter Object in 1995 with the intention of their further sale. The thieves were detained and sentenced. The stolen material was withdrawn, that prevented its possible proliferation and illicit trafficking. At present physical protection of ChNPP does not fully satisfy the needs of the decommissioning stage and Ukraine's commitments on non-admission of illicit trafficking. Work is carried out, aimed to improve nuclear material physical protection, whose main

  16. Nuclear power newsletter, Vol. 5, no. 1, March 2008

    International Nuclear Information System (INIS)

    2008-03-01

    The current issue presents information about the following: Development of Nuclear Energy Series - Clickable Map; NPP I and C Technologies; Plant Life Management; NPP Databases; Management Systems; NPP Infrastructure; Training and NPP Personnel; INPRO; Water Cooled Reactors; Fast Reactors and Accelerator Driven Systems; Small and Medium Sized Reactors; Gas Cooled Reactors; Nuclear Desalination and other

  17. Optimization of radiation protection at Bohunice NPP

    International Nuclear Information System (INIS)

    Dobis, L.; Svitek, J.

    2003-01-01

    Bohunice Nuclear Power Plant is situated in south - western part of Slovakia about 50 km away from Bratislava. There are four PWR reactors 440 MW e each - two units with reactors WWER - 230 (V1 NPP) and two units with WWER - 213 (V2 NPP). requirements for the optimization process are given in the mentioned Code No.12 of Ministry of Health. Code 12 stipulates the technical and organizational requirements for proving the Rational Achievable Level (RAL) of radiation protection. This level can be proved by means of the comparison of the dose distribution to the costs of protection. An example of two figures of dose constraints is: collective dose 20 man mSv for the specific task; individual exposure 1 mSv per day. The values of the financial equivalents of personal exposure - so called the alpha coefficients - are used for the calculation of the benefit of proposed measures. Impact of legislative changes into Bohunice NPP and optimization process are presented. Apparently the new law and the associate code created a base of transparent and understandable policy of radiation protection and optimization in Slovak Republic. The radiation protection legislative was implemented into the praxis and persons became familiar with it. Defining clear and unambiguous terms facilitated the communication between users and the regulatory body - State Health Institute. Optimization was generally accepted by the workers and managers and began to be a part of safety culture of operation at nuclear power plants. (authors)

  18. Ideal scaling of BETHSY 9.1.B test results to NPP

    International Nuclear Information System (INIS)

    Petelin, S.; Guntel, I.

    1995-01-01

    The transient scenario standard problem 27 (ISP-27) was implemented in the RELAP5 analysis of small break loss of coolant accident for Krsko nuclear power plant (Krsko NPP). The objective was to evaluate the effectiveness of ISP-27 proposed accident management procedure for real NPP and to compare the physical phenomena known from experimental background with the phenomena predicted by RELAP5 simulation of real plant transient. The analyses showed that, if relevant break, power scaling criteria, primary and secondary pressure are fulfilled the RELAP5 model of Krsko NPP cannot completely ensure the simulation of typical thermal-hydraulic phenomena observed in BETHSY facility during ISP-27. Much better satisfaction is observed on ideal scaled up model. (author)

  19. Education and training of nuclear power plant staff in the GDR - state of the art and trends

    International Nuclear Information System (INIS)

    Lehmann, R.; Schulz, K.D.; Mertins, M.; Rabold, H.

    1989-01-01

    Starting from the regulations applicable in the GDR as to the requirements on both qualification and education and training of NPP staff to ensure nuclear safety and radiation protection, the practice observed in the GDR is described and elucidated. On the example of the reactor operator whose education is considered the basic education for many other activities related to nuclear power plant operation the individual stages of education and training are presented and evaluated from the points of view of time, contents, and method. Central importance in this respect has an NPP simulator developed in the GDR for reactors of the WWER-440/W-213 type. (author)

  20. Knowledge management in the NPP domain

    International Nuclear Information System (INIS)

    Nilsen, Svein; Bisio, Rossella; Ludvigsen, Jan Tore

    2004-03-01

    This report gives an outlook on Knowledge Management (KM) activities within NPP related establishments as of today. There may be less activity in the NPP world as compared to many other industrial sectors. Still there is an awakening within the NPP industry demanding that KM should be attended to at a larger scale. The most notable reason for this is maybe an imminent increase in the number of people going into retirement. The types of establishments involved cover the major kinds such as utilities, research institutes and worldwide nuclear organizations. The report sums up a few of those efforts that are presently being implemented. Moreover the report looks at general advancements within the field of knowledge management. Simply stated the endeavours belong to either one of two classes. The first class emphasize the use of technology to solve knowledge management problems. The second class regard knowledge management as a problem pertaining to human factors and organizational issues. This report maintain that knowledge management initiatives should make due considerations to both perspectives. This report also sums up the Halden Reactor Project short term KM initiative. (Author)

  1. Safety Culture Survey in Krsko NPP

    International Nuclear Information System (INIS)

    Strucic, M.; Bilic Zadric, T.

    2008-01-01

    The high level of nuclear safety, stability and competitiveness of electricity production, and public acceptability are the main objectives of Krsko Nuclear Power Plant. This is achievable only in environment where strong Safety Culture is taking dominant place in the way how employees communicate, perform tasks, share their ideas and attitudes, and demonstrate their concern in all aspects of work and coexistence. To achieve these objectives, behaviour of all employees as well as specific ethical values must become more transparent and that must arise from the heart of organization. Continuous ongoing and periodic self assessments of Safety Culture in Krsko NPP present major tools in implementation process of this approach. Benefits from Periodic interdisciplinary focused self assessment approach, which main intention is finding the strengths and potential areas for improvements, was used second time to assess the area of Safety Culture in Krsko NPP. Main objectives of self assessment, performed in 2006, were to increase the awareness of the present culture, to serve as a basis for improvement and to keep track of the effects of change or improvement over a longer period of time. For the purpose of effective self assessment, extensive questionnaire was used to obtain information that is representative for whole organization. Wide range of questions was chosen to cover five major characteristics of safety culture: Accountability for safety is clear, Safety is integrated into all activities, Safety culture is learning-driven, Leadership for safety is clear and Safety is a clearly recognized value. 484 Krsko NPP employees and 96 contractors were participated in survey. 70-question survey provided information that was quantified and results compared between groups. Anonymity of participant, as well as their willingness to contribute in this assessment implicates the high level of their openness in answering the questions. High number of participant made analysis of

  2. Radiation monitoring in the NPP environment, control of radioactivity in NPP-environment system

    International Nuclear Information System (INIS)

    Egorov, Yu.A.

    1987-01-01

    Problems of radiation monitoring and control of the NPP-environment system (NPPES) are considered. Radiation control system at the NPP and in the environment provides for the control of the NPP, considered as the source of radioactive releases in the environment and for the environmental radiation climate control. It is shown, that the radiation control of the NPP-environment system must be based on the ecological normalization principles of the NPP environmental impacts. Ecological normalization should be individual for the NPP region of each ecosystem. The necessity to organize and conduct radiation ecological monitoring in the NPP regions is pointed out. Radiation ecological monitoring will provide for both environmental current radiation control and information for mathematical models, used in the NPPES radiation control

  3. Feature article. Fukushima Daiichi NPP accident

    International Nuclear Information System (INIS)

    Ekarinai, Masashi; Ake, Yutaka; Narabayashi, Tadashi

    2011-01-01

    This special feature article consisted of five reports and the minutes of emergency discussion meeting on Fukushima Daiichi Nuclear Power Plant (NPP) accident. Effects of the accident on future electricity supply of electric utilities and also on business development of nuclear industries were discussed. Activities of senior network team of atomic energy society of Japan (AESJ) to conduct severe accident analysis and early restoration from the accident were introduced. Circulating injection reactor cooling system and zeolite decontamination system of accumulated contaminated water was proposed. Effects of the accident on overseas reaction on nuclear development were also reported as well as personal experience of the professor in the US west coast on communications. (T. Tanaka)

  4. Decommissioning Study of Oskarshamn NPP

    International Nuclear Information System (INIS)

    Larsson, Helena; Anunti, Aake; Edelborg, Mathias

    2013-06-01

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for Oskarshamn NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding

  5. Decommissioning study of Forsmark NPP

    International Nuclear Information System (INIS)

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias

    2013-06-01

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding

  6. Decommissioning Study of Oskarshamn NPP

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Helena; Anunti, Aake; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for Oskarshamn NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  7. Decommissioning study of Forsmark NPP

    Energy Technology Data Exchange (ETDEWEB)

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  8. Central depression of nuclear charge density distribution

    International Nuclear Information System (INIS)

    Chu Yanyun; Ren Zhongzhou; Wang Zaijun; Dong Tiekuang

    2010-01-01

    The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of 46 Ar and 44 S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in 46 Ar and 44 S prefer to occupy the 1d 3/2 state rather than the 2s 1/2 state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of 46 Ar and 44 S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.

  9. NPP Temelin instrumentation and control system upgrade and verification

    International Nuclear Information System (INIS)

    Ubra, O.; Petrlik, J.

    1998-01-01

    Two units of Ver 1000 type of the Czech nuclear power plant Temelin, which are under construction are being upgraded with the latest instrumentation and control system delivered by WEC. To confirm that the functional design of the new Reactor Control and Limitation System, Turbine Control System and Plant Control System are in compliance with the Czech customer requirements and that these requirements are compatible with NPP Temelin upgraded technology, the verification of the control systems has been performed. The method of transient analysis has been applied. Some details of the NPP Temelin Reactor Control and Limitation System verification are presented.(author)

  10. NPP long term operation in Spain - First application for license renewal

    International Nuclear Information System (INIS)

    Francia, L.; Gorrochategui, I.; Marcos, R.

    2007-01-01

    Full text: In the operation of the Spanish nuclear power plants (NPP), safety is always the prime consideration. Plant Life Management Programmes have been set up with the strategic objective to operate the NPPs as long as they are considered safe and reliable. The safety of each NPP is reviewed by the Spanish nuclear regulatory authority (CSN) under a continuous process. In addition, experience is gained from operating the plants and from exchanges with operators of similar units. Current Spanish regulatory framework for renewing NPP operating licenses requires performing a Periodic Safety Review (PSR) to be performed every 10 years and submitted when applying for a new renewal of the NPP operating license. A few years ago, CSN issued a document regarding the licensing requirements that nuclear power plants should meet in order to be granted with an operating license for long term operation (i.e, operation beyond the original plant design life, typically 40 years). Besides the traditional PSR requirements, specific requirements regarding to long term operation (LTO) include: - An Aging Management and Evaluation Program, including the identification and evaluation of Time Limited Aging Analysis (TLAA). - An updated Radiological Impact Study. - A review and assessment of regulation/standard applicability. Garona NPP (GE, BWR/3 design) operated by Spanish utility Nuclenor from 1971 has a current operating license up to 2009. A decision was made to apply for a new operating license, being Garona plant the first one in Spain to face with the new long term operation requirements. The paper will provide an overview of the methodology used in Spain to address and perform the required analyses to support the LTO application for the operating license renewal. In particular, focus will be paid on the project developed in Garona (2002-2006) whose result has been the first Spanish application for License Renewal for LTO. Also it will be reported the ongoing work necessary to

  11. Technology for NPP decantate treatment realized at Kola NPP

    International Nuclear Information System (INIS)

    Stakhiv, Michael; Avezniyazov, Slava; Savkin, Alexander; Fedorov, Denis; Dmitriev, Sergei; Kornev, Vladimir

    2007-01-01

    At Moscow SIA 'Radon' jointly with JSC 'Alliance Gamma', the technology for NPP Decantate Treatment was developed, tested and realized at Kola NPP. This technology consists of dissolving the salt residue and subsequent treatment by ozonization, separation of the deposits formed from ozonization and selective cleaning by ferro-cyanide sorbents. The nonactive salt solution goes to an industrial waste disposal site or a repository specially developed at NPP sites for 'exempt waste' products by IAEA classification. This technology was realized at Kola NPP in December 2006 year. At this time more than 1000 m 3 of decantates log time stored are treated. It allows solving very old problem to empty decantates' tanks at NPPs in environmentally safe manner and with high volume reduction factor. (authors)

  12. Training Nuclear Power Specialists

    International Nuclear Information System (INIS)

    Paulikas, V.

    2003-01-01

    Situation of preparation of nuclear energy specialists in Lithuania is presented. Nuclear engineers are being prepared at Kaunas University of Technology. In view with decision to decommission Unit 1, the Ignalina NPP is limiting the number of new personnel to fill in vacancies. The main attention is given to the training courses for improvement skills of existing Ignalina NPP, VATESI personnel. Main topics of the training courses are listed. Comparison with previous years on personnel hired and dismissed in Ignalina NPP is made

  13. Development of NPP safety regulation in Russia

    International Nuclear Information System (INIS)

    Vishnevsky, Y.G.; Gutsalov, A.T.; Bukrinsky, A.M.; Gordon, B.G.

    1999-01-01

    The presentation describes the organisation scheme of Russian safety regulatory bodies, their tasks and responsibilities. Legislative and regulatory basis of NPP safety regulations rely on the federal laws: Law on the Use of Nuclear Energy and Law on Radiation Safety of the Population. Role of international cooperation and Improvement of regulatory activities in Russia are emphasised

  14. Document status for 1 and 2 Kozloduy NPP decommissioning activities -Phase 'Final Shutdown'

    International Nuclear Information System (INIS)

    Vangev, A.; Boyadjiev, Z.

    1997-01-01

    Decommissioning process (D and D) is the final phase of each nuclear reactor life cycle. The first nuclear reactor generation has reached his expiration life date. Decommissioning working documentation had not been taken into account at the project and construction stage. The decommissioning activities, planning and legislation has to develop along their operation. Most of developed nuclear energetic countries have gathered good experience and have create their own decommissioning strategy. This report represents in brief an overview of different country's approaches and the Kozloduy NPP decommissioning activity intention in near future and reviews the D and D working document status for 1 and 2 Kozloduy NPP Units decommissioning. Kozloduy NPP D and D task to the moment is to plan the first stage of the decommissioning process - 'The Final Shutdown' and to prepare the working documents for the phase execution. The Final Shutdown of Kozloduy NPP - 1 is the termination of operation of the Units 1 and 2 and the electricity production cessation after their useful life exhaust. In accordance with the legal legislation in Bulgaria only the normal planned termination of operation on units 1 and 2 should be prescribed. The project results concern the initial condition of the equipment and systems, their preparation and sequence for defueling, decontamination and dismantling. A plan for activities' organization for D and D and Complex Characterization of the Site under consideration will contain the following documents: 1. Time-schedule for the sequence of activities during the stages of the Final Shutdown and Safe Enclosure preparation. Technical project for organization of work related to Final Shutdown; 2. Complex Characterization Programme for a condition investigation of the Units 1 and 2 equipment and systems. 3. Technical project for design modifications and dismantling of equipment and systems which violate the radiation and nuclear safety during the Final Shutdown

  15. Review of accident analyses performed at Mochovce NPP

    International Nuclear Information System (INIS)

    Siko, D.

    2000-01-01

    In this paper the review of accident analysis performed in NPP Mochovce V-1 is presented. The scope of these safety measures was defined and development in the T SSM for NPP Mochovce Nuclear Safety Improvements Report' issued in July 1995. The main objectives of these safety measures were the followings: (a) to establish the criteria for selection and classification of accidental events, as well as defining the list of initiating events to be analysed. Accident classification to the individual groups must be performed in accordance with RG 1.70 and IAEA recommendations 'Guidelines for Accidental Analysis of WWER NPP' (IAEA-EBR-WWER-01) to select boundary cases to be calculated from the scope of initiating events; (b ) to elaborate the accident analysis methodology that also includes acceptance criteria for their result evaluation, initial and boundary conditions, assumption related with the application of the single failure criteria, requirements on the analysis quality, used computer codes, as well as NPP models and input data for the accident analysis; (c) to perform the accident analysis for the Pre-operational Safety Report (POSAR); (d) to provide a synthetic report addressing the validity range of codes models and correlations, the assessment against relevant tests results, the evidence of the user qualification, the modernisation and nodding scheme for the plant and the justification of used computer codes. Analyses results showed that all acceptance criteria were met with satisfactory margin and design of the NPP Mochovce is accurate. (author)

  16. Mochovce NPP safety improvement and completion

    International Nuclear Information System (INIS)

    1997-01-01

    6th Nuclear society information meeting dealt with the completion of the Mochovce NPP with regard to implementation of safety measures. It was aimed to next problems: I. 'Survey' presentation on the situation of the nuclear power industry in partner countries; II. Basic technical presentations; III. Presentations of operators of the other VVER 440/213 NPPs on their activities in the field of safety improvement in relation to IAEA recommendations; IV. Technical solutions of safety improvements ranked with IAEA degree 3 (Report SC 108 VVER); V: Technical solutions of selected Safety Measures ranked with IAEA degree 2 and 1 (Report SC 108 VVER)

  17. LTO License Application Project NPP Borssele

    International Nuclear Information System (INIS)

    Jong, A.E. de; Blom, F.J.; Leilich, J.

    2012-01-01

    Borssele NPP plans to extend its operating life with 20 years until 2034. Borssele has started the project LTO 'bewijsvoering' (LTO 'Justification') in order to meet the requirements of the Dutch regulator. The outline of the project is based on IAEA safety guide 57 'Safe Long Term Operation of Nuclear Power Plants'. This paper describes the contents and coherence of the different parts in the project and how these respond to the IAEA guidelines on LTO. The goal of the project LTO 'bewijsvoering' is to ensure that safety and safety relevant systems, structures and components continue to perform their intended functions during long term operation. The outcome of the project LTO 'bewijsvoering' will be used for a license change application and this will be submitted to the Dutch regulator KFD for approval of prolonged operation of Borssele NPP after 2013. (author)

  18. Introduction of the SAT based training programs at Paks NPP

    International Nuclear Information System (INIS)

    Kiss, I.

    1998-01-01

    An introduction of the SAT based training programs at Paks nuclear power plant is described in detail, including framework of project operation; project implementation; process of SAT applied at Paks NPP and the needs of its introduction

  19. Monitoring of spatiotemporal patterns of Net and Gross Primary Productivity (NPP & GPP) and their ratios (NPP/GPP) derived from MODIS data: assessment natural drivers and their effects on NDVI anomalies in arid and semi-arid zones of Central Asia.

    Science.gov (United States)

    Aralova, Dildora; Jarihani, Ben; Khujanazarov, Timur; Toderich, Kristina; Gafurov, Dilshod; Gismatulina, Liliya

    2017-04-01

    Previous studies have shown that precipitation anomalies and raising of temperature trends were deteriorate affected on large-scale of vegetation surveys in Central Asia (CA). Nowadays, remote sensing techniques can provide estimation of Net and Gross Primary Productivity (NPP & GPP) for regional and global scales, and selected zones in CA (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan) dominated by C4 plants (biomes) what it reveals more accurately simulate C4 carbon. The estimation of NPP & GPP from source (MOD17A2/A3) would be beneficial to determine natural driver factors, whether on rangeland ecosystem is a carbon sink or source, such as a vast area of the selected zones incorporates exacerbate regional drought-risk factors nowadays. Generally, we have combined last available NPP & GPP (2000-2015) with 1 km resolution from MODIS, with investigation of long-term vegetation patterns under Normalized Difference Vegetation Indices (NDVI) with 8 km resolution from AVHRR-GIMMS 3g sources (2001-2015) within aim to estimate potential values of rangeland ecosystems. Interaction ratios of NPP/GPP are integrating more accurately describe carbon sink process under natural or anthropogenic factors, specifically last results of NDVI trends were described as decreasing trends due to climate anomalies, besides the eastern and northern parts of CA (mostly boreal forest zones) where accumulated or indicated of raising trends of NDVI in last three years (2012-2015). Results revealed that, in CA were averaged annually value NDVI ranges from 0.19-0.21; (Kyrgyzstan: 0.23-0.26; Kazakhstan: 0.21-0.24; Tajikistan: 0.19-0.21); and resting countries as low NDVI accumulated areas were Turkmenistan and Uzbekistan ranges 0.13-0.16; Comparing datasets of GPP given the response dynamic change structures of NDVI values and explicit carbon uptake (CO2) in arid ecosystems and average GPPyearlyin CA ranges 2.42 kg C/m2; including to Tajikistan, Uzbekistan (3.09 kg C/m2) and

  20. The Acceptance Strategy for Nuclear Power Plant In Indonesia

    International Nuclear Information System (INIS)

    Suhaemi, Tjipta; Syaukat, Achmad

    2010-01-01

    Indonesia has planned to build nuclear power plants. Some feasibility studies have been conducted intensively. However, the processes of NPP introduction are still uncertain. National Energy Plan in Indonesia, which has been made by some governmental agencies, does not yet give positive impact to the government decision to construct the nuclear power plant (NPP). This paper discusses the process of NPP introduction in Indonesia, which has been colored with debate of stakeholder and has delayed decision for go-nuclear. The technology paradigm is used to promote NPP as an alternative of reliable energy resources. This paradigm should be complemented with international politic-economic point of view. The international politic-economic point of view shows that structural powers, consisting of security, production, finance, and knowledge structures, within which the NPP is introduced, have dynamic characteristics. The process of NPP introduction in Indonesia contains some infrastructure development (R and D, legislation, regulation, energy planning, site study, public acceptance efforts, etc), but they need a better coherent NPP implementation program and NPP Acceptance Program. Strategic patterns for NPP acceptance described in this paper are made by considering nuclear regulation development and the interest of basic domestic participation. The first NPP program in Indonesia having proven technology and basic domestic participation is and important milestone toward and optimal national energy-mix.

  1. The Chernobyl NPP decommissioning: Current status and alternatives

    International Nuclear Information System (INIS)

    Mikolaitchouk, H.; Steinberg, N.

    1996-01-01

    After the Chernobyl accident of April 26, 1986, many contradictory decisions were taken concerning the Chernobyl nuclear power plant (NPP) future. The principal source of contradictions was a deadline for a final shutdown of the Chernobyl NPP units. Alterations in a political and socioeconomic environment resulted in the latest decision of the Ukrainian Authorities about 2000 as a deadline for a beginning of the Chernobyl NPP decommissioning. The date seems a sound compromise among the parties concerned. However, in order to meet the data a lot of work should be done. First of all, a decommissioning strategy has to be established. The problem is complicated due to both site-specific aspects and an absence of proven solutions for the RBMK-type reactor decommissioning. In the paper the problem of decommissioning option selection is considered taking into account an influence of the following factors: relevant legislative and regulatory requirements; resources required to carry out decommissioning (man-power, equipment, technologies, waste management infrastructure, etc.); radiological and physical status of the plant, including structural integrity and predictable age and weather effects; impact of planned activities at the destroyed unit 4 and within the 30-km exclusion zone of the Chernobyl NPP; planed use of the site; socio-economic considerations

  2. Field experience of new nuclear fuel types on the Kola NPP

    International Nuclear Information System (INIS)

    Adeev, V.; Burlov, S.; Panov, A.; Saprykin, V.

    2008-01-01

    Specificity of the Kola nuclear power plant geographical position, conditions of region economics determine fuel management strategy. Isolation of Kola power supply system and, as a consequence, generating capacities redundancy cause operation of the nuclear power plant on reduced power level. At the same time there is a need to operate the power unit on the maximum power level in the case of not planned conditions. The basis of in-core fuel management is an achievement of the maximal burnup under providing of high installed capacity. At present there are not abilities to improve the fuel cycle based on traditional implementation fuel assemblies. Burnup maximum in these fuel cycles is achieved. At the core periphery installed highest possible quantity of the burned-up assemblies in the view of safety operation margins satisfaction. Works on application of the second generation fuel have been carried out on the Kola NPP since 2002. Fuel assemblies of this type are profiled. Burnable absorber, changed lattice spacing in relation to standard fuel, changed height of a fuel column, thickness of fuel pin clad are applied. In CR fuel followers modernized docking unit (with hafnium plates are intended for energy-release splash suppression) is used. At present 2-nd generation fuel is in experimental operation on unit 3 (18-21 fuel cycles, 2002-2007 years) and unit 4 (18-19 fuel cycles, 2005-2007 years). Safety margins did not exceeded. Coolant activity did not exceed the limiting value. There were not damaged fuel assemblies of second generation. Originally in the project of applications of new fuel it was supposed to refuel annually 78 fresh assemblies. At the moment annual refueling consists of 66 assemblies with effective enrichment 3.82 %. Cycle duration does not exceed 250-260 effective days. The part of assemblies is left on 5-th cycle of operation. In a similar fuel cycle in 2007 on the unit 1 operation with profiled fuel (enrichment of 3.82 %) of shakeproof type

  3. Chapter No.5. Nuclear materials and physical protection of nuclear installations

    International Nuclear Information System (INIS)

    2002-01-01

    The State System of Accounting for and Control of Nuclear Material (SSAC) is based on requirements resulting from the Safeguards Agreement between the Government of the Slovak Republic and the IAEA. UJD performs this activity according to the 'Atomic Act' and relevant decree. The purpose of the SSAC is also to prevent unauthorised use of nuclear materials, to detect loses of nuclear materials and provide information that could lead to the recovery of missing material. The main part of nuclear materials under jurisdiction of the Slovak Republic is located at NPP Jaslovske Bohunice, NPP Mochovce and at interim storage in Jaslovske Bohunice. Even though that there are located more then 99% of nuclear materials in these nuclear facilities, there are not any significant problems with their accountancy and control due to very simply identification of accountancy units - fuel assemblies, and due to stability of legal subjects responsible for operation and for keeping of information continuity, which is necessary for fulfilling requirements of the Agreement. The nuclear material located outside nuclear facilities is a special category. There are 81 such subjects of different types and orientations on the territory of the Slovak Republic. These subjects use mainly depleted uranium as a shielding and small quantity of natural uranium, low enrichment uranium and thorium for experimental purposes and education. Frequent changes of these subjects, their transformations into the other subjects, extinction and very high fluctuation of employees causes loss of information about nuclear materials and creates problems with fulfilling requirements resulting from the Agreement. In 2001, the UJD carried out 51 inspections of nuclear materials, of which 31 inspections were performed at nuclear installations in co-operation with the IAEA inspectors. No discrepancies concerning the management of nuclear materials were found out during inspections and safeguards goals in year 2001 were

  4. Review report on the dynamical study of the main building of the Paks NPP

    International Nuclear Information System (INIS)

    Gatti, F.

    1995-01-01

    The present report deals with the review of the report 'Dynamical Study of the main building of the Paks NPP', issued by Paks NPP (Hungary) on April, 1993, within the frame of the IAEA benchmark study for the seismic analysis and testing of an existing Nuclear Power Plant (M), and on behalf of ENEL DSR/VDN Rome, in the aims of the nuclear activities of ENEL DSR/VDN (Rome). After a foreword to define the aims of the job (Chapter 1) and the identification of the scope of the work (Chapter 2), a short list of references is given (Chapter 3). In Chapter 4, the criteria followed in the review activity are listed; in Chapter 5, the contents of the Paks NPP report are summarized. In Chapter 6 the results of the review are given, while the main conclusions of the review activities are summarized in the Chapter 7. (author)

  5. Feasibility and Competitiveness of the Further Nuclear Energy Production in Lithuania

    International Nuclear Information System (INIS)

    Gylys, S.; Ziedelis, S.; Klevas, V.

    2006-01-01

    The newest results gained during analysis of perspectives and technical - economical conditions of nuclear energy usage continuation in Lithuania are presented. After the compulsory premature closure of Ignalina NPP the negative power balance and the shortage of power generating capacity can emerge in the energy sector of Lithuania. This problem can arise already in 2010. Depending on rate of growth of economy the extent of shortage of power generating capacity can range from -50 MW to -583 MW with evident trend for further growing. The positive power balance could be restored if new nuclear power plant (NPP) or new combined cycle gas turbine power plants (CCGT PP) are erected. Feasibility and competitiveness of the new NPP and CCGT PP are compared, analysed and evaluated. Analysis is performed taking into account volume of investments for construction, level of discount rate, forecast of changes of the price of primary energy sources, possible loading level of a new power plant. At the case of low plant loading level (7000 hours per year) the electricity production costs are almost the same for NPP and for CCGT PP. However, increasing the plant's loading level up to 8000 hours per year changes the ratio of electricity production costs to positive for NPP. Comparison of expenses for fuel and total expenses shows unchallenged priority of NPP against CCGT PP. Estimating the forthcoming inevitable growth of price for natural gas, economic advantage of nuclear energy production seems to be obvious. The future energy balance for Baltic states, NORDEL countries, Germany and Russia is also analysed. Deficit of electricity is foreseen in Baltic states and NORDEL countries already after 2007, in Russia - after 2010. Even Central and South European countries (especially those, which are planning to cancel usage of nuclear energy) are forecasting shortage of electricity in 2015 - 2020 years. Such situation in European energy market could be treated as additional argument for

  6. FPGA Design and Verification Procedure for Nuclear Power Plant MMIS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongil; Yoo, Kawnwoo; Ryoo, Kwangki [Hanbat National Univ., Daejeon (Korea, Republic of)

    2013-05-15

    In this paper, it is shown that it is possible to ensure reliability by performing the steps of the verification based on the FPGA development methodology, to ensure the safety of application to the NPP MMIS of the FPGA run along the step. Currently, the PLC (Programmable Logic Controller) which is being developed is composed of the FPGA (Field Programmable Gate Array) and CPU (Central Processing Unit). As the importance of the FPGA in the NPP (Nuclear Power Plant) MMIS (Man-Machine Interface System) has been increasing than before, the research on the verification of the FPGA has being more and more concentrated recently.

  7. Planning, conduct and principal features of NPP emergency exercises in Switzerland

    International Nuclear Information System (INIS)

    Baggenstos, M.

    1993-01-01

    Emergency exercises for each NPP are required on a regular basis by the Swiss Nuclear Safety Inspectorate. The purpose of such exercises is to train the NPP staff and the on-site emergency organization in the application of the emergency procedures and the cooperation with off-site emergency teams and public authorities. The paper discusses the purpose of the emergency exercises and experiences made especially with bilateral exercises. The responsibilities for the preparation and execution of the different emergency exercises in Switzerland are explained

  8. Some features of South-Ukrainian NPP information centre's interaction with mass media in post Chernobyl period

    International Nuclear Information System (INIS)

    Kiyashko, S.; Kurilchik, N.

    1995-01-01

    Using the above methods of interaction with the off-site media helped the South Ukraine NPP information centre achieve meaningful results in restoring the image of nuclear power ad making it more trustworthy. This is supported by a review of media Publications since 1989. Quantitative and qualitative modifications of the information flow to the media have yielded substantial changes of the structure of news releases about the South Ukraine NPP and nuclear power. Background information has increased from 1. 5 to 50 percent. Negative information is no longer dominating, and the Chernobyl topic is counterbalanced with diverse NucNet materials about nuclear from throughout the world. (author)

  9. Screening of external hazards for NPP with bank type reactor. Modeling of safety related systems and equipment for RBMK. Probabilistic assessment of NPP safety on aircraft impact. Progress report

    International Nuclear Information System (INIS)

    Kostarev, V.

    1999-01-01

    This progress report was produced within the frame of IAEA research project on screening the hazards for NPP with bank type reactor. It covers the following tasks; development of the model for the primary loop system of RBMK; developing the models for safety related equipment of RBMK; developing of models for safety related models of EGP-6 type reactor (Bilibinskaya Nuclear Co-generated heat and Power Plant); and probabilistic assessment of NPP safety on aircraft impact

  10. Decommissioning of Brennilis NPP

    International Nuclear Information System (INIS)

    Baize, Jean-Marc

    1998-01-01

    This EDF press communique give information related to the decommissioning of the Brennilis NPP. The following five items are developed in this report: 1. the level-2 decommissioning operations at the Brennilis NPP; 2. the Brennilis NPP, a pilot operation from the commissioning up to the decommissioning; 3. history of the Brennilis NPP decommissioning; 4. the types of radioactive wastes generated by the Brennilis NPP decommissioning; 5. the Brennilis NPP - a yard management as a function of the wastes. The document contains also seven appendices addressing the following subjects: 1. the share of decommissioning assigned to EDF and the decommissioning steps; 2. the EDF installations in course of decommissioning; 3. the CEA decommissioned installations or in course of decommissioning; 4. regulations; 5. costs; 6. waste management - principles; 7. data on the decommissioning yard

  11. Temporary storage in dry of the spent nuclear fuel in the Nuclear Power Plant of Laguna Verde; Almacenamiento temporal en seco del combustible nuclear gastado en la Central Nuclear Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, N.; Vargas A, A., E-mail: natividad.hernandez@cfe.gob.mx [Comision Federal de Electricidad, Gerencia de Centrales Nucleoelectricas, Carretera Veracruz-Medellin Km. 7.5, 94270 Dos Bocas, Veracruz (Mexico)

    2013-10-15

    To guarantee the continuity in the operation of the two nuclear reactors of the nuclear power plant of Laguna Verde (NPP-L V) is an activity of high priority of the Comision Federal de Electricidad (CFE) in Mexico. At the present time, the CFE is working in the storage project in dry of the spent fuel with the purpose of to liberate space of the pools and to have the enlarged capacity of storage of the spent fuel that is discharged of the reactors. This work presents the storage option in dry of the spent fuel, considering that the original capacity of the spent fuel pools of the NPP-L V was of 1242 spaces each one and that in 1991, through a modification of the original design, the storage capacity was increased to 3177 spaces by pool. At present, the cells occupied by unit are of 2165 (68%) for the Unit-I and 1839 (58%) for the Unit-2, however, in 2017 and 2022 the capacity to discharge the complete core will be limited by what is required of a retirement option of spent fuel assemblies to liberate spaces. (author)

  12. Developing a computerized aging management system for concrete structures in finnish nuclear power plants

    International Nuclear Information System (INIS)

    Al-Neshawy, F.; Piironen, J.; Sistonen, E.; Vesikari, E.; Tuomisto, M.; Hradil, P.; Ferreira, M.

    2013-01-01

    Finland has four nuclear reactors units in two power plants. The first unit started operation in 1977 and in the early 1980's all four units were in use. During the last few years the aging management of the Nuclear Power Plant's (NPP) concrete structures has grown an important issue because the existing structures are reaching the end of their licensed operating lifetime (about 40 years). Therefore the nuclear power companies are developing aging management systems to avoid premature degradation of NPP facilities and to be able to extend their operating lifetime. This paper is about the development of a computerized ageing management system for the nuclear power plants concrete structures. The computerized ageing management system is built upon central database and implementation applications. It will assist the personnel of power companies to implement the aging management activities at different phases of the lifetime of a power plant. It will provide systematic methods for planning, surveillance, inspection, monitoring, condition assessment, maintenance and repair of structures. (authors)

  13. Central Institute for Nuclear Research (1956 - 1979)

    International Nuclear Information System (INIS)

    Flach, G.; Bonitz, M.

    1979-12-01

    The Central Institute for Nuclear Research (ZfK) of the Academy of Sciences of the GDR is presented. This first overall survey covers the development of the ZfK since 1956, the main research activities and results, a description of the departments responsible for the complex implementation of nuclear research, the social services for staff and the activities of different organizations in the largest central institute of the Academy of Sciences of the GDR. (author)

  14. Barsebaeck NPP in Sweden - Decommissioning Project

    International Nuclear Information System (INIS)

    Hakan, Lorentz

    2009-01-01

    Barsebaeck 1 and 2, type BWR (Boiling Water Reactor) with a capacity of 615 MWe was closed down permanently on 30 November 1999 respective 31 May 2005 due to political decision. Both units together have been in Service operation (Care and maintenance) since 1 December 2006. Barsebaeck NPP will stay in Service operation until beginning of 2018 when Dismantling operation begins with the aim of a free-realized site in the beginning of 2025. That means that the remaining buildings, including equipment should be declared free-released or dismantled. It would then be up to the owner, E.ON Kaernkraft Sverige AB (EKS) to decide what is to be done with the site in the future. There was a re-organisation at Barsebaeck Kraft AB (BKAB) in 1 January 2007 and the company is organised in the following areas of function: site service operation, decommissioning planning, new business and BO replacement. The Organisation at BKAB has gone down from 450 during operation of Barsebaeck 1 and 2 to 50 employees (2009-01-01) involved in Service operation of both units. But still there are in total 250 persons placed at Barsebaeck NPP with different kinds of job assignments. A lot of activities have been carried out since 2000 and up to now for example: - All nuclear fuel has been transported away to interim storage at CLAB in Oskarshamn. - BKAB have built up contact nets and competence by taking part in different kinds of national and international organisations (SKB, IAEA, OECD/NEA TAG, WNA, ENISS, WANO, EPRI etc) commissions. - The Electrical and operational systems have been rebuilt for the actual demands and requirements for the Service operation. - The central control room is unattended since 17 December 2007 and the supervision of the Service operation is handled by a system of VDI (duty engineers) and LOP (alarm operators). - Full system decontamination on unit 1 and 2. Barsebaeck's approach today and for the future dismantling are: - Safer; - Faster; - Cost effective. BKAB

  15. Decommissioning of NPP A-1

    International Nuclear Information System (INIS)

    Anon

    2009-01-01

    In this presentation the Operation history of A1 NPP, Project 'Decommissioning of A1 NPP' - I stage, Project 'Decommissioning of A1 NPP ' - II stage and Next stages of Project 'Decommissioning of A1 NPP ' are discussed.

  16. NPP Evaluation, backfitting and life extension. An engineering viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Lopez, A [Empresarios Agrupados, A.I.E., Madrid (Spain)

    1993-12-15

    During the decade of the 80s, the Owners of the two oldest operating plants in Spain designed and built during the 60s - namely, Jose Cabrera NPP, a Westinghouse PWR, and Santa Maria de Garona NPP, a GE BWR- undertook the following important programs: 1. A far-reaching Systematic Evaluation Program (SEP) for the Jose Cabrera NPP consisting in the systematic safety review of the plant design, followed by the necessary hardware modifications, to upgrade it and make it comply with current safety criteria, and a Plant Upgrading Program for the Garona Nuclear Station focusing on specific topics affecting GE BWR Mark-I type plants of the same vintage. 2. A Remaining Life Management Program to ensure that the units, after extensive backfittings and high capital investment, would complete their design life, leaving open the option for plant life extension. These two units are today considered by the Spanish nuclear industry as the pilot plants for Plant Life Extension (PLEX) programs for PWRs and BWRs in our country The purpose of this paper is to summarize the principal lessons learned from EMPRESARIOS AGRUPADOS' participation as an architect-engineering organization in the engineering, design and implementation of these Programs. They are practical examples of positive experience which could be considered as a reference when carrying out similar programs for other plants. (author)

  17. NPP Evaluation, backfitting and life extension. An engineering viewpoint

    International Nuclear Information System (INIS)

    Gonzalez Lopez, A.

    1993-01-01

    During the decade of the 80s, the Owners of the two oldest operating plants in Spain designed and built during the 60s - namely, Jose Cabrera NPP, a Westinghouse PWR, and Santa Maria de Garona NPP, a GE BWR- undertook the following important programs: 1. A far-reaching Systematic Evaluation Program (SEP) for the Jose Cabrera NPP consisting in the systematic safety review of the plant design, followed by the necessary hardware modifications, to upgrade it and make it comply with current safety criteria, and a Plant Upgrading Program for the Garona Nuclear Station focusing on specific topics affecting GE BWR Mark-I type plants of the same vintage. 2. A Remaining Life Management Program to ensure that the units, after extensive backfittings and high capital investment, would complete their design life, leaving open the option for plant life extension. These two units are today considered by the Spanish nuclear industry as the pilot plants for Plant Life Extension (PLEX) programs for PWRs and BWRs in our country The purpose of this paper is to summarize the principal lessons learned from EMPRESARIOS AGRUPADOS' participation as an architect-engineering organization in the engineering, design and implementation of these Programs. They are practical examples of positive experience which could be considered as a reference when carrying out similar programs for other plants. (author)

  18. Development of NPP Safety Requirements into Kenya's Grid Codes

    Energy Technology Data Exchange (ETDEWEB)

    Ndirangu, Nguni James; Koo, Chang Choong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    As presently drafted, Kenya's grid codes do not contain any NPP requirements. Through case studies of selected grid codes, this paper will study frequency, voltage and fault ride through requirements for NPP connection and operation, and offer recommendation of how these requirements can be incorporated in the Kenya's grid codes. Voltage and frequency excursions in Kenya's grid are notably frequently outside the generic requirement and the values observed by the German and UK grid codes. Kenya's grid codes require continuous operation for ±10% of nominal voltage and 45.0 to 52Hz on the grid which poses safety issues for an NPP. Considering stringent NPP connection to grid and operational safety requirements, and the importance of the TSO to NPP safety, more elaborate requirements need to be documented in the Kenya's grid codes. UK and Germany have a history of meeting high standards of nuclear safety and it is therefore recommended that format like the one in Table 1 to 3 should be adopted. Kenya's Grid code considering NPP should have: • Strict rules for voltage variation, that is, -5% to +10% of the nominal voltage • Strict rules for frequency variation, that is, 48Hz to 52Hz of the nominal frequencyand.

  19. Development of NPP Safety Requirements into Kenya's Grid Codes

    International Nuclear Information System (INIS)

    Ndirangu, Nguni James; Koo, Chang Choong

    2015-01-01

    As presently drafted, Kenya's grid codes do not contain any NPP requirements. Through case studies of selected grid codes, this paper will study frequency, voltage and fault ride through requirements for NPP connection and operation, and offer recommendation of how these requirements can be incorporated in the Kenya's grid codes. Voltage and frequency excursions in Kenya's grid are notably frequently outside the generic requirement and the values observed by the German and UK grid codes. Kenya's grid codes require continuous operation for ±10% of nominal voltage and 45.0 to 52Hz on the grid which poses safety issues for an NPP. Considering stringent NPP connection to grid and operational safety requirements, and the importance of the TSO to NPP safety, more elaborate requirements need to be documented in the Kenya's grid codes. UK and Germany have a history of meeting high standards of nuclear safety and it is therefore recommended that format like the one in Table 1 to 3 should be adopted. Kenya's Grid code considering NPP should have: • Strict rules for voltage variation, that is, -5% to +10% of the nominal voltage • Strict rules for frequency variation, that is, 48Hz to 52Hz of the nominal frequencyand

  20. Report of the consultant meeting for review of procedure for NPP operational events reporting and investigation for the nuclear regulatory administration of Ukraine in Vienna, Austria 18-20 December 1995

    International Nuclear Information System (INIS)

    Lipar, M.; Koltakov, V.; Rodionov, A.; Razzell, R.; Tolstykh, V.; Kriz, Z.

    1995-12-01

    In response to a request from the Nuclear Regulatory Administration of Ukraine, the IAEA carried out an expert review of the Procedure for NPP Operational Events Reporting and Investigation developed by the Scientific and Technical Centre on Nuclear and Radiation Safety of the Nuclear Regulatory Administration. This report contains the recommendations and suggestions made by experts as a result of the Consultants Meeting held in Vienna between 18-20 December 1995

  1. Search of an optimal and safe trends for nuclear power engineering development

    International Nuclear Information System (INIS)

    Takibaev, Zh.S.

    2001-01-01

    The project of constructing of underground nuclear power plant (NPP) in Kazakhstan is suggested. By the author opinion, the underground NPP construction have the following advantages, (1) decrease the NPP cost because of absence of efforts and expenses for NPP decommissioning; (2) the problem of nuclear waste disposal is solving per se so nuclear wastes are under ground; (3) the environment exposure from radiation risk is appreciably less than from surface NPP; (4) remained underground uranium fission and over-uranium elements products are valuable raw which will be claimed in the future. It is noted, that a many variants for selection of underground NPP site in Kazakhstan are considered. It was proposed the site adjoining to the Chu railway terminal for underground NPP construction

  2. Modernization of the oldest Swedish NPP

    International Nuclear Information System (INIS)

    Hagberth, Ronald

    1998-01-01

    OKG operates three BWR units of ABB design: Oskarshamn 1 with a net capacity of 440' MW, Oskarshamn 2 of 600 MW and Oskarshamn 3 of 1160 MW. Oskarshamn 1 NPP was commissioned in 1972 as the first commercial nuclear unit in Sweden. After more than twenty years of successful operation, the unit is now also the first reactor in Sweden to undergo a large safety modernization program. In the year 2000 the Oskarshamn 1 NPP will be modernized to a high level of safety standard and ready for operation for another period of at least 20 years. Experience gained can be used when modernizing other NPPs. The investment program for life extension is reasonable and shows that NPPs can be operated with an expected life span of more than 40 years at an ever-increasing safety level and still be very competitive in a deregulated market. (author)

  3. Simulator experiments: effects of NPP operator experience on performance

    International Nuclear Information System (INIS)

    Beare, A.N.; Gray, L.H.

    1985-01-01

    Experiments are being conducted on nuclear power plant (NPP) control room training simulators by the Oak Ridge National Laboratory, its subcontractor, General Physics Corporation, and participating utilities. The experiments are sponsored by the Nuclear Regulatory Commission's (NRC) Human Factors and Safeguards Branch, Division of Risk Analysis and Operations, and are a continuation of prior research using simulators, supported by field data collection, to provide a technical basis for NRC human factors regulatory issues concerned with the operational safety of nuclear power plants. During the FY83 research, a simulator experiment was conducted at the control room simulator for a GE boiling water reactor (BWR) NPP. The research subjects were licensed operators undergoing requalification training and shift technical advisors (STAs). This experiment was designed to investigate the effects of (a) senior reactor operator (SRO) experience, (b) operating crew augmentation with an STA and (c) practice, as a crew, upon crew and individual operator performance, in response to anticipated plant transients. The FY84 experiments are a partial replication and extension of the FY83 experiment, but with PWR operators and simulator. Methodology and results to date are reported

  4. Pre feasibility assesment of smart off shore NPP (ONPP) of gravity based-structure type for Indonesia

    International Nuclear Information System (INIS)

    Sahala M Lumbanraja; Dharu Dewi

    2017-01-01

    The SMART ONPP GBS-type is a small power (100 MWe) pressurized water reactor, and located at offshore site. This technology was developed based on existing SMART nuclear technology & offshore drilling technology with a gravity-based type of structure. This is a response to the post-Fukushima accident, Japan (2011), to improve the safety system, overcome the land limitations, and minimize the public resistance to NPP cases in the inland. The purpose of this paper is to assess the pre-feasibility of the implementation of GBS NPP in Indonesia both in terms of technological feasibility and regulation. The method used is literature review and continued with descriptive analysis. The result shows that SMART ONPP are worth considering because they offer improved aspects of safety, offshore tread availability, and better public acceptance. So far, this NPP can not be implemented in Indonesia because it is hampered by Government Regulation No. 2 year 2014 regarding Licensing of Nuclear Installation Safety and Security which stipulates that site is an inland location and NPP built in Indonesia should be proven. (author)

  5. Questions to the reactors power upgrade of the Nuclear Power Plant of Laguna Verde; Cuestionamientos al aumento de potencia de los reactores de la Central Nuclear de Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Salas M, B., E-mail: salasmarb@yahoo.com.mx [UNAM, Facultad de Ciencias, Departamento de Fisica, Circuito exterior s/n, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2014-08-15

    The two reactors of the Nuclear Power Plant of Laguna Verde (NPP-L V) were subjected to power upgrade labors with the purpose of achieving 20% upgrade on the original power; these labors concluded in August 24, 2010 for the Reactor 1 and in January 16, 2011 for the Reactor 2, however in January of 2014, the NNP-L V has not received by part of the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) the new Operation License to be able to work with the new power, because it does not fulfill all the necessary requirements of safety. In this work is presented and analyzed the information obtained in this respect, with data provided by the Instituto Federal de Acceso a la Informacion Publica y Proteccion de Datos (IFAI) and the Comision Federal de Electricidad (CFE) in Mexico, as well as the opinion of some workers of the NPP-L V. The Governing Board of the CFE announcement that will give special continuation to the behavior on the operation and reliability of the NPP-L V, because the frequency of not announced interruptions was increased 7 times more in the last three years. (Author)

  6. The modernization of the process computer of the Trillo Nuclear Power Plant; Modernizacion del ordenador de proceso de la Central Nuclear de Trillo

    Energy Technology Data Exchange (ETDEWEB)

    Martin Aparicio, J.; Atanasio, J.

    2011-07-01

    The paper describes the modernization of the Process computer of the Trillo Nuclear Power Plant. The process computer functions, have been incorporated in the non Safety I and C platform selected in Trillo NPP: the Siemens SPPA-T2000 OM690 (formerly known as Teleperm XP). The upgrade of the Human Machine Interface of the control room has been included in the project. The modernization project has followed the same development process used in the upgrade of the process computer of PWR German nuclear power plants. (Author)

  7. Activities of Nuclear Regulatory Authority and safety of nuclear facilities in the Slovak Republic in 1993

    International Nuclear Information System (INIS)

    1994-04-01

    A brief account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (NRA SR) in 1993 is presented. These activities are reported under the headings: (1) Introduction; (2) Regulatory activities at nuclear power plants units in operation; (2.1) Nuclear power plant SEP-EBO V-1; (4) Selected operation events and safety assessment in NPP SEP-EBO V-1; (2.2) Safety assessment of NPP SEP-EBO V-2; (3) Results of regulatory activities at the decommissioning of NPP A-1; (4) Regulatory activities at units under construction SEP-EMO - NPP Mochovce; (5) Further regulatory activities. (5.1) Preparation of designated personnel; (5.2) Inspection and accountancy of nuclear material; (5.3) Security provisions; (5.4) Accounted items and double use items; (5.5) Problem of radioactive wastes; (6.1) International co-operation activities of NRA; (6.2) Emergency planning; (6.3) International activities for quality enhancement of national supervision; (7) Conclusion [sk

  8. Corrective action program at Krsko NPP

    International Nuclear Information System (INIS)

    Skaler, F.; Divjak, G.; Kavsek, D.

    2004-01-01

    The Krsko NPP develops software that enables electronic reporting of all kind of deviations and suggestions for improvement at the plant. All the employees and permanent subcontractors have the access to the system and can report deviations. NPP has centralized decision process for the distribution of reported deviation. At this point all direct actions are electronically tracked. The immediate benefits of this new tool were: Reporting threshold has been lowered; Number of reporting people has increased; One computerized form for all processes; Decision, which process will solve the deviation, is centralized; All types of deviation are in the same environment; Our experiences of the processes are incorporated in the program; Control of work that has been done; Archiving is electronic only. Software basic data: Application system Corrective action program is a WEB application. Data is stored in Oracle 8.1.7 i database. Users access application through PL/SQL gateway on Oracle 9i Application Server 1.0.2. using Microsoft Internet Explorer browsers(Version 5 or later). Reports are implemented by Oracle Reports 6i. Menus are designed by Apycom Java Menus and Buttons v4.23. Our Presentation will include: Basic idea; Implementation change management; Demonstration of the program.(author)

  9. Corrective action program at Krsko NPP

    Energy Technology Data Exchange (ETDEWEB)

    Skaler, F; Divjak, G; Kavsek, D [NPP Krsko, Krsko (Slovenia)

    2004-07-01

    The Krsko NPP develops software that enables electronic reporting of all kind of deviations and suggestions for improvement at the plant. All the employees and permanent subcontractors have the access to the system and can report deviations. NPP has centralized decision process for the distribution of reported deviation. At this point all direct actions are electronically tracked. The immediate benefits of this new tool were: Reporting threshold has been lowered; Number of reporting people has increased; One computerized form for all processes; Decision, which process will solve the deviation, is centralized; All types of deviation are in the same environment; Our experiences of the processes are incorporated in the program; Control of work that has been done; Archiving is electronic only. Software basic data: Application system Corrective action program is a WEB application. Data is stored in Oracle 8.1.7 i database. Users access application through PL/SQL gateway on Oracle 9i Application Server 1.0.2. using Microsoft Internet Explorer browsers(Version 5 or later). Reports are implemented by Oracle Reports 6i. Menus are designed by Apycom Java Menus and Buttons v4.23. Our Presentation will include: Basic idea; Implementation change management; Demonstration of the program.(author)

  10. Application of reliability centered maintenance to Embalse NPP

    International Nuclear Information System (INIS)

    Torres, Antonio; Perdomo, Manuel; Fornero, Damian; Corchera, Roberto

    2010-01-01

    One of the most recent applications of Probabilistic Safety Analysis to Embalse NPP is the Safety Oriented Maintenance Program developed through the Reliability Centered Maintenance (RCM) methodology. Such an application was carried out by a cooperated effort between the staff of nuclear safety department of NPP and experts from Instituto Superior de Tecnologias y Ciencias Aplicadas of Cuba. So far 6 technological systems have been analyzed with important results regarding the optimization of preventive and predictive maintenance program of those systems. Any tasks of RCM were automated via MOSEG code. The results of this study were focused on the elaboration and modification of the Preventive Program, prioritization of stocks, reorientation of predictive techniques and modification in the time parameters of maintenance. (author)

  11. Conformation of an evaluation process for a license renovation solicitude of a nuclear power plant in Mexico; Conformacion de un proceso de evaluacion para una solicitud de renovacion de licencia de una central nuclear en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Serrano R, M. L., E-mail: mlserrano@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2012-10-15

    So that the construction stages, of operation, closing, dismantlement and the radioactive waste disposal of a nuclear power plant (NPP) are carried out in Mexico, is necessary that the operator has a license, permission or authorization for each stage. In Mexico, these licenses, permissions or authorizations are granted by the Energy Secretariat with base in the verdict of the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). The operation licenses ar the moment effective for the reactors of the Nuclear Power Plant of Laguna Verde (NPP-L V) they will expire respectively in the year 2020 and 2025 for the Unit 1 and Unit 2, for what the CNSNS has begun its preparation before a potential solicitude of the licensee to continue the operation of the NPP-L V. Defining the process to continue and to generate the documents that would help in this phase as normalization, guides, procedures, regulations, controls, etc., is the task that intends to be carried out the regulator body so that the evaluation process is effective and efficient, so much for the same regulator body as for the licensee. This work exposes the advance that the CNSNS has in this aspect and is centered specifically in the conformation of an evaluation process of license renovation solicitude, taking as base what the regulator body of the United States of North America (US NRC) established and following to the IAEA. Also, this work includes statistical of electric power production in Mexico, licensing antecedents for the NPP-L V, a world perspective of the license renovations and the regulation of the US NRC related to the license renovation of a NPP. (Author)

  12. Using bentonite for NPP liquid waste treatment

    International Nuclear Information System (INIS)

    Bui Dang Hanh

    2015-01-01

    During operation, nuclear power plants (NPPs) release a large quantity of water waste containing radionuclides required treatment for protection of the radiation workers and the environment. This paper introduces processes used to treat water waste from Paks NPP in Hungary and it also presents the results of a study on the use of Vietnamese bentonite to remove radioactive Caesium from a simulated water waste containing Cs. (author)

  13. Training in fundamentals of radiological coverage in Laguna Verde NPP

    International Nuclear Information System (INIS)

    Lara H, M. A.

    2014-10-01

    In 2010, the Institute of Nuclear Power Operations (INPO) celebrates the Knowledge Transfer and Retention Workshop, an event where nuclear regulators and operators presented the strategies that various NPP to worldwide were implemented to mitigate the consequences of this generational change and take advantage of it, the trend in the presented works was the same: the generational change occurs in a faster way that the transfer of knowledge, the future was already here and many NPP had not been adequately prepared to train its nuclear technicians and engineers in the tasks demanded by the industry of them, so in addition to preparing these workers to forced marches was necessary to establish strategies to retain at more experienced staff in the industry. The Laguna Verde NPP has not been exempt to this process; the preparation of personnel squares to replace those that reaching retirement age in the Comision Federal de Electricidad (CFE) has become extensive in the last five years, sometimes leading to have personnel covering functions without an alternate to the next lower position, the cause? Not enough staff. In the specific case of radiation protection (Rp) the time required for obtaining the status of Rp technician according to the ANSI/ANS 3.1 standard is 2 years, one of the tasks that most occupies part of these two years is training in radiological coverage, this training requires a mix of knowledge and experience, recently one of the concepts used for training in Rp is the evaluation and management of the radiological risk, topic that is considered in this technical work. (Author)

  14. Activities of the Nuclear Regulatory Authority of the Slovak Republic and safety of nuclear facilities in the Slovak Republic in 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The report summarizes activities of the Nuclear Regulatory Authority of the Slovak Republic (NRA SR) in 1994 and briefly presents results of the national expert supervision over nuclear safety facilities in the SR in 1994. In 1994, the NRA SR have performed a national supervision of following organizations: SE, a.s. - Jaslovske Bohunice Nuclear Power Plant (V-1 Nuclear Power Plant (V-1 NPP), V-2 Nuclear Power Plant (V-2 NPP), A-1 Nuclear Power Plant (A-1 NPP)); Mochovce Nuclear Power Plant; Radioactive waste repository, Mochovce); Organizations providing a specialized training of NPP personnel; Organizations providing specific deliveries and activities for the nuclear power industry; Organizations having an owner of nuclear materials; Organizations providing activities related to import of radioactive sources; Organizations using radioactive sources. Organization structure of the NRA SR is explained. In the presented Chapter 1 - Safety of nuclear power plants in the Slovak Republic - safety aspects of the Slovak NPPs are reported. The next activities are reported: nuclear materials and safeguards; radioactive waste; emergency planning and NRA SR's control and crisis centre; international activities to improve the national surveillance quality; other activities

  15. NPP Krsko Lifetime Extension - Business Impact for Hrvatska Elektroprivreda

    International Nuclear Information System (INIS)

    Vrankic, K.; Krejci, M.; Lebegner, J.

    2006-01-01

    This paper deals with the analysis of possible business impacts for HEP in the case of NPP Krsko life extension. Due to numerous reasons nuclear power plant life extension of ten to twenty years is a common procedure abroad. Having this practise in mind as well as other circumstances in Croatian and Slovenian electric power system, the extension of NPP Krsko lifetime is considered to be a possible scenario. Foreseeable impacts of this decision are evaluated primarily with consideration of its effect on HEPs projected cash flows, though other aspects will be addressed as well. Preserving a well maintained production facility with an extraordinary operational record and stable, or possibly falling overall production costs seems as a very rational choice. This is particularly true having in mind expected rise of electricity demand and energy prices in the region. Having NPP Krsko in operation beyond 2023 implies that no replacement source for NPP Krsko capacity needs to be built. This means avoiding all costs connected with the construction and operation of the replacement plant, assuming it will be fossil fuelled. Due to the high uncertainty of the future fossil fuel prices, the avoidance of replacement plant operational cost is likely to prove as highly rewarding. It should be kept in mind that avoided costs also include the replacement plant greenhouse gases emission costs, thus further enlarging the list of value adding impacts. The latter is valid anticipating the ratification of the Kyoto protocol and joining the European emission trading scheme. In addition to that, the extension of NPP Krsko lifetime would mean that the majority of costs connected with the decommissioning and final waste disposal can be postponed further down the time line. This will have very positive financial and possibly technological impact. Other value creating effects for HEP that are foreseeable as a consequence of the plant lifetime extension include: maintaining the knowledge of

  16. Students education and training for Slovak NPP

    International Nuclear Information System (INIS)

    Lipka, J.; Slugen, V.; Hascik, J.; Miglierini, M.

    2004-01-01

    Slovak University of Technology is the largest and also the oldest university of technology in Slovakia. Surely more than 50% of high-educated technicians who work nowadays in nuclear industry have graduated from this university. The Department of Nuclear Physics and Technology of the Faculty of Electrical Engineering and Information Technology as a one of seven faculties of this University feels responsibility for proper engineering education and training for Slovak NPP operating staff. The education process is realised via undergraduate (Bc.), graduate (MSc.) and postgraduate (PhD.) study as well as via specialised training courses in a frame of continuous education system. (author)

  17. Kenya National Presentation on Nuclear Power Infrastructure Evaluation

    International Nuclear Information System (INIS)

    Kinyanjui, B

    2010-01-01

    Kenya will factored 1200MW of nuclear energy in the period 2022-2023 of the national Least Cost Power Development Plan and 4200MW by 2030. A national nuclear power programme is now at inception. The National Economic and Social Council endorsed adoption of the nuclear programme in April 2010. Electricity demand is expected to rise from the current 1200 MW to over 15000 MW by 2030. The achievement of the Vision 2030 requires affordable and stable electricity tariffs. Formation of a Nuclear Power Committee to study and initially promote the development of the nuclear power program will be established e.g. Nuclear Power Committee - Kenyan version of Nuclear Energy Programme Implementing Organization formed. The Nuclear Power Committee is expected to precede formation of the NEPIO. There was proposal to review of current laws –e.g. Energy Act, Radiation Protection Act, Environmental Management and Control Act, Penal Code, etc. Potential sites proposed along the Indian Ocean Coastal areas, near Lake Victoria and the central region near the main national hydropower plants, based on power grid layout and water bodies. Kenya is in Phase 1 of milestones- Consideration before a decision is taken to start a NPP. Capacity Building towards Development of a Nuclear Power Programme (NPP) in Kenya is underway. To implement the national least cost power development plan so as to increase the capacity from current 1,300MW to 18,000MW by 2030 to support achievement of the ‘Vision 2030’

  18. Reliability analysis of protection systems in NPP applying fault-tree analysis method

    International Nuclear Information System (INIS)

    Bokor, J.; Gaspar, P.; Hetthessy, J.; Szabo, G.

    1998-01-01

    This paper demonstrates the applicability and limits of dependability analysis in nuclear power plants (NPPS) based on the reactor protection refurbishment project (RRP) in NPP Paks. This paper illustrates case studies from the reliability analysis for NPP Paks. It also investigates the solutions for the connection between the data acquisition and subsystem control units (TSs) and the voter units (VTs), it analyzes the influence of the voting in the VT computer level, it studies the effects of the testing procedures to the dependability parameters. (author)

  19. Low level radioactive waste disposal in Kozloduy NPP in Bulgaria

    International Nuclear Information System (INIS)

    Stanchev, V.

    2001-01-01

    Kozloduy NPP is the biggest power plant in the Republic of Bulgaria. It is in operation since 1974 and for the past 25 years it has generated over 263 billion kWh electric power. The NPP share in the total electric production in 1998 was about 50%. It has six units in operation - four WWER 440 B-230 and two WWER 1000 B-320. In the nuclear reactor operation the generation of radioactive waste (RAW) is an inevitable process. The waste must be conditioned, stored and disposed of in a safe manner. There are no national radioactive waste disposal facilities, for waste generated by an NPP, in Bulgaria to the moment. This situation necessitates the storage of operational RAW to be carried out on site for a long period of time (30 to 50 years). Following the principle for protection of human health and environment now and in the future, Kozloduy NPP adopted the concept for conditioning the RAW to a stable solid form and placing the waste in a package which should keep its features for a sufficiently long term so that the package can be safely transported to the disposal site. (author)

  20. Survey of public participation potential regarding the Muria NPP program

    International Nuclear Information System (INIS)

    Yarianto-SBS; Sri Hariani Syarif; Heni Susiati; Imam Hamzah; Fepriadi

    2003-01-01

    Socio-culture aspect is a part of site feasibility evaluation of Nuclear Power Plant (NPP)program. Indonesia is under going democratization, therefore the paradigm of development has also been changed where the people have freedom or liberty and they can express their opinion independently. The people are significant factor that involving in the decision making of regional development.Even the socio-culture, such as social riot can reject the site. Therefore socio-culture aspect should be considered in the NPP site evaluation. The first step of the study,mapping of public participation potential should be conducted by field survey. The method used in there search is quantitative approach with field survey guided by questioner without any treatment of object sampled. Qualitative approach was also conducted by in-depth interview technique to collect more detailed information. Information were collected from general public without any stratification in the 10 km radius from NPP site. Sampling method used was full random sampling technique. The results of survey show that the most of the people have significant potential for participating in the NPP Program. Conducive atmosphere should be maintained by social setting, therefore the present good momentum will not be lost. (author)

  1. Mochovce NPP simulator

    International Nuclear Information System (INIS)

    Ziakova, M.

    1998-01-01

    Mochovce NPP simulator basic features and detailed description of its characteristics are presented with its performance, certification and application for training of NPP operators as well as the training scenario

  2. Perceived environmental and health risks of nuclear energy in Taiwan after Fukushima nuclear disaster.

    Science.gov (United States)

    Ho, Jung-Chun; Lee, Chiao-Tzu Patricia; Kao, Shu-Fen; Chen, Ruey-Yu; Ieong, Marco C F; Chang, Hung-Lun; Hsieh, Wan-Hua; Tzeng, Chun-Chiao; Lu, Cheng-Fung; Lin, Suei-Loong; Chang, Peter Wushou

    2014-12-01

    After the nuclear disaster in Fukushima in Japan in 2011, a nation-wide survey using a standardized self-administered questionnaire was conducted in Taiwan, with a sample size of 2,742 individuals including the residents who live within and beyond 30 km from a nuclear power plant (NPP), to evaluate the participants' perceived nuclear risk in comparison with their perceived risks from selected environmental hazards and human behaviors. The three leading concerns of nuclear energy were "nuclear accidents (82.2%)," "radioactive nuclear waste disposal (76.9%)" and "potential health effects (73.3%)." Respondents (77.6%) perceived a higher relative risk of cancer incidence for those who live within 30 km from an NPP than those who live outside 30 km from an NPP. All the participants had a higher risk perception of death related to "nuclear power operation and nuclear waste" than cigarette smoking, motorcycling, food poisoning, plasticizer poisoning and traveling by air. Moreover, the residents in Gongliao where the planned fourth NPP is located had a significantly higher perceived risk ratio (PRR) of cancer incidence (adjusted odd ratio (aOR)=1.84, p value=0.017) and perceived risk of death (aOR=4.03, p valuenuclear energy. The other factors such as female gender (aOR/p value, 1.25/0.026 and 1.34/0.001 respectively), lower education levels (aOR/p value: 1.31/0.032; 2.03/nuclear accidents (aOR/p value: 1.33/0.022; 1.51/nuclear energy, respectively. In addition, the respondents' concerns about nuclear waste disposal and possible eco-environmental damage made significant contributions (aOR/ p value: 1.39/ 0.001; 1.40/nuclear power. These factors are considered as important indicators and they can be used for suggesting future policy amendments and public referendum on the decision of the operation of the planned NPP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Simulator training and human factor reliability in Kozloduy NPP, Bulgaria

    International Nuclear Information System (INIS)

    Stoychev, Kosta

    2007-01-01

    This is a PowerPoint presentation. Situated in North Bulgaria, in the vicinity of the town of Kozloduy, near the Danube River bank, there is the Bulgarian Kozloduy Nuclear Power plant operating four WWER-440 and two WWER-1000 units. Units 1 and 2 were commissioned in July, 1974 and November, 1975, respectively. These were shut down at the end of 2003. Units 3 and 4 were commissioned in December, 1980 and May, 1982. They were shut down at the end of 2006 as a precondition for Bulgaria's accession to the European Union. The 1000 MW units 5 and 6 of Kozloduy NPP were commissioned in September, 1988 and December, 1993, respectively. Large-scale modernization have been implemented and now the units meet all international safety standards. The paper describes the multifunctional simulator Kozloduy NPP for the operational staff training. The training stages are as follows: - Preparatory; -Theoretical studies; - Training at the Training Centre by means of technical devices; - Preparation and sitting for an exam before a Kozloduy NPP expert commission; - Simulator training ; - Preparation to obtain a permit for a license, corresponding to the position to begin work at the NPP; - Exams before the Nuclear Regulatory Agency (NRA) and licensing; - Shadow training at the working place; - Permission for unaided operation. The following positions are addressed by the simulator training: - Chief Plant Supervisor; - Shift Unit Supervisor; - Senior Reactor Operator; - Simulator Instructor; - Controller physicist; -Senior Turbine Operator; - Senior Operator of Turbine Feedwater Pumps of Kozloduy NPP. Improving of training method led to a reduction of number of significant events while worldwide practice proves that improvement of engineering resulted in an increase in the percentage of events, related to human factor. Analysis of human reliability in 2005 and 2006 in cooperation with representatives from Great Britain and the Technical University in Sofia were worked on the DTI NSP B

  4. ATUCHA I NPP - Emergency drill practice

    International Nuclear Information System (INIS)

    Sanda, Alejandro; Rosales, Gabriel

    2008-01-01

    Full text: Atucha I NPP performs an Emergency Drill Practice once a year. Its main goals are: -) Fulfill the requirements of the Argentine Nuclear Regulatory Authority (ARN) regarding Atucha I NPP's Operating License; -) Fulfill the commitment with the community regarding the safe and reliable operation Atucha I NPP; -) Verify the response of the Civil Organizations, Security Forces, and Armed Forces, as well as the correct application of the Emergency Plan; -) Perform the 'General Alarm Drill' periodic control; -) Perform a re-training of the members of the Security Advisor Internal Committee (CIAS) on the Internal and External Aspects of the Emergency Plan and on the related procedures; -) Test the Emergency Communications System. New goals are added every year, considering the Drill's scope. This drill comprises two different kinds of practices: Internal practices (practices in the station, with our personnel) and external practices (practices outside the station with governmental organizations). Internal practices comprise: -) Internal and external communications practices; -) Acoustic alarms; -) Personnel gathering in the Meeting Points; -) Safety of selected Meeting Points; -) Personnel count, selective evacuation; -) Iodide Potassium pills distribution; -) CICE (Internal Group for Emergency Control) Coordination. External practices comprise: -) Nuclear Regulatory Authority; -) Argentine Navy, Comando Area Naval Fluvial, Base Naval Zarate; -) Lima firemen; -) Zarate firemen; -) Municipal Civil Defense (Zarate and Lima); -) National Guard, Escuadron Atucha; -) Zarate Regional Hospital; -) Lima Police Department; -) Zarate Police Department; -) Argentine Coast Guard, Zarate; -) Local radios: Radio FM Libre, FM El Sitio; -) First Aid clinic. The following activities are performed together with the aforementioned organizations: -) Formation of an 'Operative committee'; -) Evacuation of citizens in a 3 km radio; -) Control of every access to Lima; -) Control of

  5. Improved Nuclear Power Plant maintenance. Application to Cofrentes NPP

    International Nuclear Information System (INIS)

    Serradell, V.

    2002-01-01

    The Industrial Safety and Environment Group (MEDASEGI) of the Valencia Polytechnic University (UPV) develops its activities in the fields of environmental radioactivity metrology and risk analysis and management aimed at improving industrial safety. The different lines of research developed by this group include collaboration with Cofrentes NPP. This collaboration began in 1993 and has primarily focused on issues related to improved maintenance and currently on life management. (Author)

  6. Fusion of eastern and western technology in VVER 1000 NPP upgrade

    International Nuclear Information System (INIS)

    Ubra, O.; Fleischhans, J.; Kveton, M.

    1997-01-01

    An extensive modernization program upgrading two units of VVER 1000 type of the Czech nuclear power plant (NPP) Temelin to meet the latest international standards is presented. The program is based primarily on combination of eastern and western technology and it has been implemented during plant construction. The NPP Temelin was originally designed according to the standards of the former Soviet Union. After a series of reviews in the 1990s, a decision was made by the Temelin management of upgrade the design of the plant, including the supply of fuel and instrumentation and control system by a western company. The adoption of western technology and practices has helped to solve a large number of IAEA safety issues related to design and operation of VVER 1000 NPP. Details on the current Temelin design and other related safety matters are presented

  7. Multimedia system for the visitors' centre at the Ignalina NPP

    International Nuclear Information System (INIS)

    Alvers, Margareta

    1999-01-01

    The contents illustrated with video clips, animations, photographs, show the follwing: History of Ignalina NPP (INPP) growing; Visaginas - how the town came into being; Lake Druksiai; Development of nuclear power; Technical data of INPP; Description of INPP; Characteristic features of RBMK reactors; Reactor design; Technical parametres of RBMK-1500 reactor; Nuclear reaction and nuclear fission; Types of nuclear reactors; Circuits and systems; Radiation safety; Safety systems at the INPP; Upgrading nuclear safety at INPP following the Chernobyl accident; Safety problems at MP; Radioactive waste management in the world; RW Management at MP; Energy in Lithuania (thermal power stations, cogeneration plants, producing biogas from organic waste)

  8. Proceedings of the International Conference Nuclear Energy for New Europe 2002

    International Nuclear Information System (INIS)

    Jencic, I.; Tkavc, M.

    2002-01-01

    International Conference Nuclear Energy for New Europe is an annual meeting of the Nuclear Society of Slovenia. This CD-ROM is the collection of the 79 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region presented at the title conference. Topics are: innovative and alternative reactor concepts, thermal hydraulics and computational fluid dynamics, reactor and neutron physics, core and fuel management, severe accidents, policy issues and public information, nuclear power plant operation, probabilistic safety analysis, NPP accident analysis and support tools, accident analysis - integrated test facilities and research reactors, radioactive waste management and environmental impact

  9. Selection of suitable sites for NPP in Slovenia (stage 3)

    International Nuclear Information System (INIS)

    Grgic, M.; Fabjan, L.; Premru, U.

    1977-01-01

    Selection of suitable sites for nuclear power plants in Slovenia is considered. This includes the studies of available data on regional and local characteristics specified in general site suitability criteria for NPP. The most suitable selected sites will be included into land use urbanistic planning of Slovenia

  10. Introducing advanced ISI requirements at Paks NPP for supporting the LTO

    International Nuclear Information System (INIS)

    Trampus, P.; Ratkai, S.

    2012-01-01

    The four VVER-440 model 213 units in operation at Paks NPP, Hungary, are facing to approach their licensed term of operation, which is 30 years. To extend the safe operation of the units beyond the original licensed term by additional 20 years belongs to the highest priorities of the owners/operator of MVM Paks NPP. According to the nuclear legislation, a formal license renewal application for the extended period has to be submitted to the Hungarian Atomic Energy Authority. A significant feature of the license renewal process is the demonstration of the effectiveness of the currently applied ageing management program. ISI is an essential part of the ageing management program thus the adequate ISI techniques and the tailor made requirements have to be incorporated in it. To cope with the expectations originating from the LTO at Paks NPP, it was decided to replace the original Soviet based ISI system by the widely applied ASME BPVC Section XI requirements. Additionally, in 2011 a new nuclear regulation was issued in Hungary, in which the ISI requirements have also been changed. This paper intends to present the entire structure of the new Hungarian regulation related to the ISI but mainly focusing on the deviation to the ASME Section XI with the perspective of the licence renewal. (author)

  11. Report on nuclear energy in SR Slovenia

    International Nuclear Information System (INIS)

    1987-01-01

    Currently Yugoslavia has one 632 MWe nuclear power plant (NPP) of PWR design, located at Krsko in the Socialist Republic (SR) of Slovenia. Krsko NPP, which is a two-loop plant, started power operation in 1981. In general, reactor safety activities in the SR of Slovenia are mostly related to upgrading the safety of our Krsko NPP and to developing capabilities for use in future units. This report presents the nuclear safety related legislation and organization of the corresponding regulatory body, and the activities related to nuclear safety of the participating organizations in the SR of Slovenia in 1987.

  12. Irradiation Embrittlement Monitoring Programs of RPV's in the Slovak Republic NPP's

    International Nuclear Information System (INIS)

    Kupca, Ludovik

    2006-01-01

    Four types of surveillance programs were (are) realized in Slovak NPP's: 'Standard Surveillance Specimen Program' (SSSP) was finished in Jaslovske Bohunice V-2 Nuclear Power Plant (NPP) Units 3 and 4, 'Extended Surveillance Specimen Program' (ESSP), was prepared for Jaslovske Bohunice NPP V-2 with aim to validate the SSSP results, For the Mochovce NPP Unit 1 and 2 was prepared completely new surveillance program 'Modern Surveillance Specimen Program' (MSSP), based on the philosophy that the results of MSSP must be available during all NPP service life, For the Bohunice V-1 NPP was finished 'New Surveillance Specimen Program' (NSSP) coordinated by IAEA, which gave arguments for prolongation of service life these units for minimum 20 years, New Advanced Surveillance Specimen Program (ASSP) for Bohunice V-2 NPP (units 3 and 4) and Mochovce NPP (units 1, 2) is approved now. ASSP is dealing with the irradiation embrittlement of heat affected zone (HAZ) and RPV's austenitic cladding, which were not evaluated till this time in surveillance programs. SSSP started in 1979 and was finished in 1990. ESSP program started in 1995 and will be finished in 2007, was prepared with aim of: increasing of neutron fluence measurement accuracy, substantial improvement the irradiation temperature measurement, fixed orientation of samples to the centre of the reactor core, minimum differences of neutron dose for all the Charpy-V notch and COD specimens, the dose rate effect evaluation. In the year 1996 was started the new surveillance specimen program for the Mochovce RPV's unit-1 and 2, based on the fundamental postulate - to provide the irradiation embrittlement monitoring till the end of units operation. The 'New Surveillance Specimen Program' (NSSP) prepared in the year 1999 for the Bohunice V-1 NPP was finished in the year 2004. Main goal of this program was to evaluate the weld material properties degradation due to the irradiation and recovery efficiency by annealing too. The

  13. An intelligent and integrated V and V environment design for NPP I and C software systems

    International Nuclear Information System (INIS)

    Koo, Seo Ryong; Son Han Seong; Seong, Poong Hyun

    2001-01-01

    Nuclear Power Plant (NPP) is the safety critical system. Since, nuclear instrumentation and control (I and C) systems including the plant protection system play the brain part of human, nuclear I and C systems have an influence on safety and operation of NPP. Essentially, software V and V should be performed for the safety critical systems based on software. It is very important in the technical aspect because of the problems concerning license acquisitions. In this work, an intelligent and integrated V and V environment supporting the automation of V and V was designed. The intelligent and integrated V and V environment consists of the intelligent controller part, components part, interface part, and GUI part. These parts were integrated systematically, while taking their own independent functions

  14. Introduction to nuclear engineering

    International Nuclear Information System (INIS)

    Gylys, J.

    1997-01-01

    The textbook, which is the first book in Lithuanian on this subject generalises information on key aspects of nuclear engineering. Specialists in nuclear power for Ignalina NPP and for the infrastructure of nuclear energy sector of Lithuania are prepared at Kaunas University of Technology. The textbooks the students and lecturers have been using to-date were mostly in other languages than Lithuanian and they have not been adapted for teaching in Lithuania's higher educational establishments. This textbook is useful also to anyone who is interested in the issues and future prospects of nuclear power. It contains the chapters on nuclear reactions, theory of nuclear reactors, nuclear reactors kinetics, neutronic analysis, thermalhydraulic calculations of nuclear reactors operation and description of the construction of Ignalina NPP. (author)

  15. Nuclear materials

    International Nuclear Information System (INIS)

    1996-01-01

    In 1998, Nuclear Regulatory Authority of the Slovak Republic (NRA SR) performed 38 inspections, 25 of them were performed in co-operation with IAEA inspectors. There is no fresh nuclear fuel at Bohunice A-1 NPP at present. Fresh fuel of Bohunice V-1 and V-2 NPPs is inspected in the fresh fuel storage.There are 327 fresh fuel assemblies in Mochovce NPP fresh fuel storage. In addition to that, are also 71 small users of nuclear materials in Slovakia. In most cases they use: covers made of depleted uranium for non-destructive works, detection of level in production plants, covers for therapeutical sources at medical facilities. In. 1995, NRA SR issued 4 new licences for nuclear material withdrawal. In the next part manipulation with nuclear materials, spent fuel stores and illegal trafficking in nuclear materials are reported

  16. Atomic energy in Lithuania: Nuclear safety in 1997

    International Nuclear Information System (INIS)

    Kutas, S.; Krenevichius, R.; Chiuchelis, R.; Demchenko, M.

    1998-01-01

    Annual report of VATESI - Lithuanian Nuclear Safety Authority's activity in 1997 is presented. According to the prescribed responsibilities by the Law on Nuclear Energy and by the statute, VATESI's main fields of activities in 1997 were evaluation of the safety of Ignalina NPP, supervision of Ignalina NPP's operational safety, control of the implementation of safety improvement program SIP-2 in Ignalina NPP, preparation for the licensing of the unit No.1 of Ignalina NPP, accountancy and control of nuclear materials, regulation of radioactive waste management. Detailed description of all these activities is provided in the report. Important role of international assistance and cooperation is emphasized also. Year 1997 was safe for the operation of Ignalina NPP: there were no safety significant events according to the INES scale, only three events received qualification as level 1 events. In 1997 there was completed SAR of Ignalina NPP, its review report RSR and those were presented to the authorities. Taking into account all recommendations of SAR and RSR a new safety improvement program SIP-2 was made and started implemented

  17. Preparation for Early Termination of Ignalina NPP Operation

    International Nuclear Information System (INIS)

    Poskas, P.; Poskas, R.

    2003-01-01

    Seimas (Parliament of Lithuania) approved updated National Energy strategy where it is indicated that first Unit will be shutdown before the year 2005 and second Unit in 2009 if funding for decommissioning is available from EU and other donors. In accordance to Ignalina NPP Unit 1 Closure Law the Government of Lithuania approved the Ignalina NPP Unit 1 Decommissioning Program until year 2005. For enforcement of this program, the plan of measures for implementation of the program was prepared and approved by the Minister of Economy. The plan consists of two parts, namely technical- environmental and social-economic. Technical-environmental measures are mostly oriented to the safe management of spent nuclear fuel and operational radioactive waste stored at the plant and preparation of licensing documents for Unit 1 decommissioning. Social-economic measures are oriented to mitigate negative social and economic impact on Lithuania, inhabitants of the region, and, particularly, o n the staff of Ignalina NPP by means of creating favorable conditions for a balanced social and economic development of the region. In this paper analysis of planned activities, licensing requirements for decommissioning, progress in preparation of the Final Decommissioning Plan is discussed

  18. Co-ordinated research programme on benchmark study for the seismic analysis and testing of WWER-type nuclear power plants. V. 4B. Paks NPP: Analysis/testing. Working material

    International Nuclear Information System (INIS)

    1995-01-01

    The Co-ordinated research programme on the benchmark study for the seismic analysis and testing of WWER-type nuclear power plants was initiated subsequent to the request from representatives of Member States. The conclusions adopted at the Technical Committee Meeting on Seismic Issues related to existing nuclear power plants held in Tokyo in 1991 called for the harmonization of methods and criteria used in Member States in issues related to seismic safety. The Consulltants' Meeting which followed resulted in producing a working document for CRP. It was decided that a benchmark study is the most effective way to achieve the principal objective. Two types of WWER reactors (WWER-440/213 and WWER-1000) were selected as prototypes for the benchmark exercise to be tested on a full scale using explosions and/or vibration generators. The two prototypes are Kozloduy Units 5/6 for WWER-1000 and Paks for WWER-440/213 nuclear power plants. This volume of Working material contains reports on dynamic study of the main building of the Paks NPP; shake table investigation at Paks NPP and the Final report of the Co-ordinated Research Programme

  19. Calculation of economic and financing of NPP and conventional power plant using spreadsheet innovation

    International Nuclear Information System (INIS)

    Moch Djoko Birmano; Imam Bastori

    2008-01-01

    The study for calculating the economic and financing of Nuclear Power Plant (NPP) and conventional power plant using spreadsheet Innovation has been done. As case study, the NPP of PWR type of class 1050 MWe is represented by OPR-1000 (Optimized Power Reactor, 1000 MWe) and the conventional plant of class 600 MWe, is coal power plant (Coal PP). The purpose of the study is to assess the economic and financial feasibility level of OPR-1000 and Coal PP. The study result concludes that economically, OPR-1000 is more feasible compared to Coal PP because its generation cost is cheaper. Whereas financially, OPR-1000 is more beneficial compared to Coal PP because the higher benefit at the end of economic lifetime (NPV) and the higher ratio of benefit and cost (B/C Ratio). For NPP and Coal PP, the higher Discount Rate (%) is not beneficial. NPP is more sensitive to the change of discount rate compared to coal PP, whereas Coal PP is more sensitive to the change of power purchasing price than NPP. (author)

  20. Changing NPP consumption patterns in the Holocene: from Megafauna "liberated" NPP to "ecological bankruptcy"

    Science.gov (United States)

    Doughty, C.

    2015-12-01

    There have been vast changes in how net primary production (NPP) is consumed by humans and animals during the Holocene beginning with a potential increase in availability following the Pleistocene megafauna extinctions. This was followed by the development of agriculture which began to gradually restrict availability of NPP for wild animals. Finally, humans entered the industrial era using non-plant based energies to power societies. Here I ask the following questions about these three energy transitions: 1. How much NPP energy may have become available following the megafauna extinctions? 2. When did humans, through agriculture and domestic animals, consume more NPP than wild mammals in each country? 3. When did humans and wild mammals use more energy than was available in total NPP in each country? To answer this last question I calculate NPP consumed by wild animals, crops, livestock, and energy use (all converted to units of MJ) and compare this with the total potential NPP (also in MJ) for each country. We develop the term "ecological bankruptcy" to refer to the level of consumption where not all energy needs can be met by the country's NPP. Currently, 82 countries and a net population of 5.4 billion are in the state of ecologically bankruptcy, crossing this threshold at various times over the past 40 years. By contrast, only 52 countries with a net population of 1.2 billion remain ecologically solvent. Overall, the Holocene has seen remarkable changes in consumption patterns of NPP, passing through three distinct phases. Humans began in a world where there was 1.6-4.1% unclaimed NPP to consume. From 1700-1850, humans began to consume more than wild animals (globally averaged). At present, >82% of people live in countries where not even all available plant matter could satisfy our energy demands.

  1. Scientific management of the commissioning of the Temelin NPP

    International Nuclear Information System (INIS)

    Pazdera, F.; Vasa, I.; Svoboda, C.

    2002-01-01

    A Scientific Supervisory Group (SSG) for the commissioning of the Temelin nuclear power plant was set up by the statutory body of CEZ, a.s. (utility which holds responsibility for the start-up of the plant pursuant to Act No. 18/1997). The SSG provides support to the operator through expertise in nuclear safety assurance and nuclear power plant commissioning. Nuclear Research Institute Rez plc was appointed to this function. The article gives the definition and explains the statute of the SSG, highlights its main tasks and responsibilities, and presents the main results of activities of the SSG. The mission of the International Scientific Council for the Commissioning of the Temelin NPP is also briefly outlined. (author)

  2. AGNES - safety reassessment of Paks NPP

    International Nuclear Information System (INIS)

    Gado, J.

    1995-01-01

    The main goal of the AGNES (Advanced General and New Evaluation of Safety) project for the reassessment of the safety of Paks Nuclear Power Plant, Hungary, was to improve the safety culture of the technology at Paks. A report was prepared on the reassessment of the Paks NPP safety. The analysis was divided into four groups: systems analysis, analysis of design basis accidents, severe accident analysis, and level 1 probabilistic safety analysis. Proposed safety enhancement measures are discussed. (N.T.)

  3. Quality of Industry Support to NPP Krsko

    International Nuclear Information System (INIS)

    Nemcic, K.

    2008-01-01

    NPP Krsko developed program for Supplier evaluation and performance. During the regular control of suppliers and evaluation of industry support to NPP Krsko quality problems were reported. Different quality systems were evaluated and different suppliers as: design organizations, equipment manufacturers, material vendors were audited or surveillance was performed. This paper discuss and report various cases where quality issues were problems based on audit results and present actions and efforts undertaken by the NE Krsko Quality Assurance Department to improve performance of the contractors, vendors, suppliers. New and different quality standards as approach in numerous articles are described as improvement or quality changes but also 'different opinion exist'. This paper also presents the author view and approach how to solve the possible future problems with different quality systems and organisations used by industry who support daily operation of NE Krsko and give recommendations for future nuclear projects.(author)

  4. Feature extraction and sensor selection for NPP initiating event identification

    International Nuclear Information System (INIS)

    Lin, Ting-Han; Wu, Shun-Chi; Chen, Kuang-You; Chou, Hwai-Pwu

    2017-01-01

    Highlights: • A two-stage feature extraction scheme for NPP initiating event identification. • With stBP, interrelations among the sensors can be retained for identification. • With dSFS, sensors that are crucial for identification can be efficiently selected. • Efficacy of the scheme is illustrated with data from the Maanshan NPP simulator. - Abstract: Initiating event identification is essential in managing nuclear power plant (NPP) severe accidents. In this paper, a novel two-stage feature extraction scheme that incorporates the proposed sensor type-wise block projection (stBP) and deflatable sequential forward selection (dSFS) is used to elicit the discriminant information in the data obtained from various NPP sensors to facilitate event identification. With the stBP, the primal features can be extracted without eliminating the interrelations among the sensors of the same type. The extracted features are then subjected to a further dimensionality reduction by selecting the sensors that are most relevant to the events under consideration. This selection is not easy, and a combinatorial optimization technique is normally required. With the dSFS, an optimal sensor set can be found with less computational load. Moreover, its sensor deflation stage allows sensors in the preselected set to be iteratively refined to avoid being trapped into a local optimum. Results from detailed experiments containing data of 12 event categories and a total of 112 events generated with a Taiwan’s Maanshan NPP simulator are presented to illustrate the efficacy of the proposed scheme.

  5. The reactor core configuration and important systems related to physics tests of Daya Bay NPP

    International Nuclear Information System (INIS)

    Tao Shaoping

    1995-06-01

    A brief introduction to reactor core configuration and important systems related to physics tests of Daya Bay NPP is given. These systems involve the reactor core system (COR), the full length rod control system (RGL), the in-core instrumentation system (RIC), the out-of-core nuclear instrumentation system (RPN), and the LOCA surveillance system (LSS), the centralized data processing system (KIT) and the test data acquisition system (KDO). In addition, that the adjustment and evaluation of boron concentration related to other systems, for example the reactor coolant system (RCP), the chemical and volume control system (RCV), the reactor boron and water makeup system (REA), the nuclear sampling system (REN) and the reactor control system (RRC), etc. is also described. Analysis of these systems helps not only to familiarize their functions and acquires a deepen understanding for the principle procedure, points for attention and technical key of the core physics tests, but also to further analyze the test results. (3 refs., 11 figs., 1 tab.)

  6. Cernavoda NPP: The contribution of ANSALDO ENERGIA to the development of the Nuclear Program in Romania

    International Nuclear Information System (INIS)

    Graziosi, G.; Benvenuto, F.

    2005-01-01

    Full text: The development of east European countries has been very slow during the second part of the 20th century, but, with the end of the cold war, they are recovering through a continuous improvement of their economy. The continuous improvement of the countries is usually accompanied by an increase of the energy demand and, as consequence, a rapid increase of their energy production is taking place. It is strategic that the energy production of these countries be based on earliest technologies available today, in order to avoid the worsening of the problems deriving from the energy policies adopted by the western countries: one for all the CO 2 emission in the atmosphere. Clearly to promote the use of new technologies in the growing east European countries, a tied collaboration between western and eastern European countries is essential. This is the case of Romania. The agreement reached by Romania with the Italian and Canadian industries (Ansaldo Energia and AECL) has permitted: - The construction and commissioning of Cernavoda Unit 1 NPP, realized adopting CANDU technology and in operation since 1996; - The continuous maintenance / surveillance / improvement (through a specific service agreement) that assures the safe production of the energy; - The realization of a new Nuclear Power Station: Cernavoda Unit 2, adopting the last technology available for the CANDU type. Its operation is expected to start in 2007. Furthermore, benefit/cost evaluation is under analysis in order to verify the possibility to realize Cernavoda Unit 3 NPP. (authors)

  7. Cernavoda NPP: The contribution of ANSALDO ENERGIA to the development of the Nuclear Program in Romania

    International Nuclear Information System (INIS)

    Graziosi, G.; Benvenuto, F.

    2005-01-01

    The development of east European countries has been very slow during the second part of the 20th century, but, with the end of the cold war, they are recovering through a continuous improvement of their economy. The continuous improvement of the countries is usually accompanied by an increase of the energy demand and, as consequence, a rapid increase of their energy production is taking place. It is strategic that the energy production of these countries be based on earliest technologies available today, in order to avoid the worsening of the problems deriving from the energy policies adopted by the western countries: one for all the CO 2 emission in the atmosphere. Clearly to promote the use of new technologies in the growing east European countries, a tied collaboration between western and eastern European countries is essential. This is the case of Romania. The agreement reached by Romania with the Italian and Canadian industries (ANSALDO ENERGIA and AECL) has permitted: - The construction and commissioning of Cernavoda Unit 1 NPP, realized adopting CANDU technology and in operation since 1996; - The continuous maintenance / surveillance / improvement (through a specific service agreement) that assures the safe production of the energy; - The realization of a new Nuclear Power Station: Cernavoda Unit 2, adopting the last technology available for the CANDU type. Its operation is expected to start in 2007. Furthermore, benefit/cost evaluation is under analysis in order to verify the possibility to realize Cernavoda Unit 3 NPP. (authors)

  8. Contamination control by laundry monitor at NPP

    International Nuclear Information System (INIS)

    Singh, Vishwanath P.; Rana, P.K.; Lokeshwar Rao, S.; Managanvi, S.S.

    2010-01-01

    The operation of nuclear power reactor produces electricity as well as small quantity of radioactive waste as gaseous, liquid and solid. The waste contains radionuclides produced by fission and activation in reactor systems with wide spectrum of energy and half life. The long-lived nuclides Sr, Cs, Ba, Iodine and Co etc compared to short-lived are important in view of radiation protection. The radioactive contamination on the materials, human body or other places where it is undesirable is enormously harmful to workers at Nuclear Power Plant (NPP). The spread of radioactive from controlled areas is very complex problem for power reactor plant management

  9. Development of a hardware-in- loop simulation platform for NPP main control systems

    Directory of Open Access Journals (Sweden)

    Liu Pengfei

    2017-01-01

    Full Text Available The simulation technology of the nuclear power plant are gradually applying to the nuclear power industry. However, most of the research on nuclear power plant simulation system only focus on pure computerized simulation at present, and it is difficult to fully display the characteristics of the simulating objects. In order to simulate the response characteristics of control system more really, a hardware-in-loop simulation platform of main control systems in the nuclear power plant has been developed in this paper. This simulation platform consists of thermal-hydraulic model, control and protection system model, physical DCS system and real-time interactive database. A physical industrial DCS system has been coupled to this platform to simulate the main control systems in the NPP, which makes the simulation result much closer to the actual control systems. The devoloped simulation platform has been validated by some steady and transient cases in this paper. This hardware-in-loop simulation platform can be used in the simulation and optimal design of NPP control systems. Furthermore, it can be used in the failure mode and effect analysis of the instrumentation and control systems in the nuclear power plant.

  10. Computer security of NPP instrumentation and control systems: categorization

    International Nuclear Information System (INIS)

    Klevtsov, A.L.; Simonov, A.A.; Trubchaninov, S.A.

    2016-01-01

    The paper is devoted to studying categorization of NPP instrumentation and control (I&C) systems from the point of view of computer security and to consideration of the computer security levels and zones used by the International Atomic Energy Agency (IAEA). The paper also describes the computer security degrees and zones regulated by the International Electrotechnical Commission (IEC) standard. The computer security categorization of the systems used by the U.S. Nuclear Regulatory Commission (NRC) is presented. The experts analyzed the main differences in I&C systems computer security categorization accepted by the IAEA, IEC and U.S. NRC. The approaches to categorization that should be advisably used in Ukraine during the development of regulation on NPP I&C systems computer security are proposed in the paper

  11. Risks for marine coastal ecosystems from anthropogenic loading in the Leningrad NPP environs

    International Nuclear Information System (INIS)

    Zimina, L.; Zimin, V.; Shchukina, T.; Pomiluiko, G.; Ryabova, V.

    1998-01-01

    Data on conditions and variations in phytoplankton, zooplankton and fish communities, chlorophyll 'a' and hydrochemical parameters in the coastal waters of Koporskaya Bay (cooling water body of the Leningrad NPP) were analyzed. The most significant anthropogenic factors issued from the Leningrad nuclear power plant activity are of non-radioactive character, as it was recognized during long-time (20 years) ecological monitoring. Main factors influenced ecosystem of the NPP cooling water body are thermal water discharge and nutrient outflows from the bay catchment area. (authors)

  12. Study on mid and long-term strategic plan formulation for newly-constructed NPP

    International Nuclear Information System (INIS)

    Song Lin

    2014-01-01

    Mid and Long-term strategic plan plays a key role for the management of a newly constructed nuclear power company. Among others, process, goals, and risk management, are the primary concerns during plan preparing. The article analyzed these three areas for Fuqing NPP, including the formulating process for the plan, the mid and long-term goal setting of the company, the major risk analysis and countermeasure selection therefore. Through that solutions and suggestions for strategic plan formulation were concluded for newly-constructed NPP. (author)

  13. Baltic nuclear projects

    International Nuclear Information System (INIS)

    Adlys, Gediminas; Adliene, Diana

    2009-01-01

    The Authors discuss the Baltic energy policy with respect to new nuclear power plants for Lithuania, Belarus and the Kaliningrad region. The construction of a new nuclear power plant in Lithuania would threaten Russian interests in the region. Therefore Lithuania is looking to Russian plans to build a new nuclear power plant in the Kaliningrad region as an attempt to subvert Lithuania's foreign partners and potential investors from participating in the Visaginas NPP project. However, the authors conclude, that the Visaginas NPP project is and must be the preferential project for the EU and NATO member states.

  14. Nuclear insurance in Central and Eastern Europe

    International Nuclear Information System (INIS)

    Warren, G.

    1998-01-01

    In the world outside the former Soviet Union, insurance industries in their respective domestic markets have pooled their resources so as to provide a secure and cost-effective conduit for the transaction of insurance business on behalf of the nuclear industry. These are the so-called nuclear pools. This paper explains the four main principles behind nuclear liability insurance and discusses their application to Central Europe and in particular to the problems facing the nuclear industry in Eastern Europe. (author)

  15. Design Basis Threat (DBT) Approach for the First NPP Security System in Indonesia

    International Nuclear Information System (INIS)

    Ign Djoko Irianto

    2004-01-01

    Design Basis Threat (DBT) is one of the main factors to be taken into account in the design of physical protection system of nuclear facility. In accordance with IAEA's recommendations outlined in INFCIRC/225/Rev.4 (Corrected), DBT is defined as: attributes and characteristics of potential insider and/or external adversaries, who might attempt unauthorized removal of nuclear material or sabotage against the nuclear facilities. There are three types of adversary that must be considered in DBT, such as adversary who comes from the outside (external adversary), adversary who comes from the inside (internal adversary), and adversary who comes from outside and colludes with insiders. Current situation in Indonesia, where many bomb attacks occurred, requires serious attention on DBT in the physical protection design of NPP which is to be built in Indonesia. This paper is intended to describe the methodology on how to create and implement a Design Basis Threat in the design process of NPP physical protection in Indonesia. (author)

  16. Increase nuclear safety of WWER-440

    International Nuclear Information System (INIS)

    Nochev, T.; Sabinov, S.

    2000-01-01

    A complete program for increasing nuclear safety has been made at NPP Kozloduy with the participation of German, French, Russian and American specialists. This effort cost greater than 100 mil $. This report includes the methods of increasing nuclear safety. The style of management in NPP Kozloduy has been changed for the last seven years. (authors)

  17. Nuclear Electric's central dose record service

    International Nuclear Information System (INIS)

    Goldfinch, E.P.; Mullarkey, D.T.; McWhan, A.W.; Risk, G.; Vaughan, L.

    1991-01-01

    This paper describes the conception, development and operation of the Nuclear Electric Central Dose Record Service, including the initial philosophy considered necessary for a database for a large multi-site organisation, the setting up of the data and current routine operation. Lessons learned are briefly described. CDRS holds 35,000 records in a high security environment. The database includes records of radiation doses received by contractor's employees working at Nuclear Electric sites as well as dose records and dose histories for classified and non classified Nuclear Electric employees. (Author)

  18. Nuclear Issues in a Non-nuclear Country Media

    International Nuclear Information System (INIS)

    Latek, S.

    2002-01-01

    The absence of nuclear power program in a given country does not mean that the nuclear option is not discussed. Greenhouse effect is a global phenomenon, thus each and every factor enabling the reduction of CO 2 emissions has to be examined. Not a single NPP is in operation in Poland and this will be so for the nearest dozen years. But the discussion over political decisions to delay the possible NPP construction beyond 2020 continues. In the country whose electricity in 95% comes from coal, the clean (from the greenhouse effect viewpoint) nuclear power makes an attractive solution for many experts. This paper presents Polish debates on the electricity production environmental impacts, which are followed by the media. Unfortunately, a favorite subject of Polish media is still Chernobyl accident, but presented in an exaggerated and often untrue way. This one-sided fear campaign has been interrupted recently by a publication calling the reports on Chernobyl victims a biggest bluff of XX century. This paper presents some examples of nuclear campaigns in the media, e.g. the issues of depleted uranium ammunition, Temelin NPP commissioning and the transit of fresh nuclear fuel for this facility through Poland, radiation accident in one of Polish hospitals, possible terrorist attacks on nuclear facilities, UNSCEAR report on Chernobyl accident health impacts. It remains to be seen how the hundreds of publications appearing each week will shape public attitudes towards nuclear power in Poland. (author)

  19. Crack resistance increasing in epoxide-rubber coatings of NPP room floors

    International Nuclear Information System (INIS)

    Khorenzhenko, V.I.

    1986-01-01

    Problems of crack resistance increasing in epoxide-rubber coatings for the floors are considered. Exploitation experience of the floors in the special rooms of NPP is given. Perspectivity of application of the compositions described as the building materials for nuclear power stations is pointed out

  20. International inventory of training facilities in nuclear power and its fuel cycle 1978

    International Nuclear Information System (INIS)

    1979-01-01

    The revised inventory is arranged according to the following subject areas: nuclear power plant (NPP) engineering, nuclear safety, quality assurance, NPP operation and maintenance, NPP instrumentation and control, nuclear fuel management, nuclear materials control. Training in each subject area is classified into five groups depending on the type of organization offering the training courses. Each course is briefly described by its name or purpose, institution and location, duration, frequency, language, and content

  1. NPOESS Preparatory Project (NPP) Science Overview

    Science.gov (United States)

    Butler, James J.

    2011-01-01

    NPP Instruments are: (1) well understood thanks to instrument comprehensive test, characterization and calibration programs. (2) Government team ready for October 25 launch followed by instrument activation and Intensive Calibration/Validation (ICV). NPP Data Products preliminary work includes: (1) JPSS Center for Satellite Applications and Research (STAR) team ready to support NPP ICV and operational data products. (2) NASA NPP science team ready to support NPP ICV and EOS data continuity.

  2. U.S.-NPAR approach to managing aging in operating nuclear power plants

    International Nuclear Information System (INIS)

    Bosnak, R.; Vagins, M.; Vora, J.

    1991-01-01

    Aging degradation in operating nuclear power plants must be managed to prevent safety margins from eroding below the levels provided in plant design bases. The NPAR program and other aging-related programs conducted under the auspices of the US NRC Office of Nuclear Regulatory Research are developing needed technical bases and guidance for understanding and managing aging in operating nuclear power plants (NPP) of all ages. Results from these programs, together with relevant information developed by industry are implemented through various ongoing NRC and industry programs. The aging management process central to these efforts consists of three key element: 1) selection and prioritization of components, systems, and structures (CSS) in which aging must be managed, 2) understanding of the relevant aging mechanisms and rates of degradation processes in these CSS, and 3) managing degradation through effective inspection, surveillance, condition monitoring, trending, preventive and corrective maintenance, and mitigation. This paper provides a historical perspective on the aging related research programs sponsored by the Office of U.S. Nuclear Regulatory Research. Also, briefly described are the major element of the NPAR program and its status and results or accomplishments. In the process the authors emphasize the need for total industry commitment and participation in implementing programs for understanding and managing aging in operating nuclear power plants. 'Aging' is universal in nature. No industrial complex including NPP should be considered immune from its effects. For NPP aging is manageable its ti symptoms are recognized and predicted, if it is monitored and appropriate steps are taken for timely mitigation of age-related degradation. (author)

  3. Financial feasibility analysis on small medium reactor nuclear power plant (SMR NPP) project in Indonesia under uncertainty

    International Nuclear Information System (INIS)

    Nuryanti; Suparman; Mochamad Nasrullah; Elok Satiti Amitayani; Wiku Lulus Widodo

    2015-01-01

    NPP SMR is one alternative to overcome the Outside Java Bali region's dependence on diesel power plant. One crucial issue in the NPP project (including SMR) would be financing, associated with the capital-intensive nature of the project. In addition, the SMR NPP project also be vulnerable in occurrence of some uncertainties. Therefore, this study aimed to analyze the financial feasibility of SMR NPP project by accommodating the possibility of the uncertainties. The methodology used is probabilistic analysis which was performed by Monte Carlo technique. This technique simulates the relationship between the uncertainty variables with financial feasibility indicators. The results showed that in probabilistic approach, SMR NPP project is considered feasible on the 'most probable value' of electricity selling price of 15 cents/kWh, indicated by positive average value of NPV (US$ 135,324,004) and the average value of both of IRRs are bigger than MARR (IRR project = 10.65 %, IRR Equity = 14.29 %, while MARR = 10 %). The probability of rejection of the SMR project was about 20 %. The three main variables that are most influential in the project were: selling price of electricity, investment cost and inflation rate. (author)

  4. Atomic energy in Lithuania: Nuclear safety in 1996

    International Nuclear Information System (INIS)

    Vaishnys, P.; Krenevichius, R.; Alejev, A.; Demchenko, M.

    1997-01-01

    The first annual report of VATESI - Lithuanian Nuclear Safety Authority's activity is presented and cover description of the main results in 1996. VATESI was established in 1991 recently after regaining of independence when Ignalina NPP come into jurisdiction of Republic of Lithuania. Since the establishment in six year period of operation VATESI developed its activities considerably and now is able to perform the functions of independent regulator of nuclear safety in Lithuania. The main fields of VATESI activities in 1996 were evaluation of the safety of Ignalina NPP, supervision of Ignalina NPP's operational safety, control of the implementation of safety improvement program SIP-1 in Ignalina NPP, development of new regulatory legislation according to IAEA standards and practices, accountancy and control of nuclear materials, regulation of radioactive waste management. Detailed description of all these activities is provided in the report. In 1996 there were no safety significant events in Ignalina NPP according to the INES scale, only five events received qualification as level 1 events

  5. Bohunice Nuclear Power Plant Safety Upgrading Program

    International Nuclear Information System (INIS)

    Toth, A.; Fagula, L.

    1996-01-01

    Bohunice nuclear Power Plant generation represents almost 50% of the Slovak republic electric power production. Due to such high level of commitment to nuclear power in the power generation system, a special attention is given to safe and reliable operation of NPPs. Safety upgrading and operational reliability improvement of Bohunice V-1 NPP was carried out by the Bohunice staff continuously since the plant commissioning. In the 1990 - 1993 period extensive projects were realised. As a result of 'Small Reconstruction of the Bohunice V-1 NPP', the standards of both the nuclear safety and operational reliability have been significantly improved. The implementation of another modifications that will take place gradually during extended refuelling outages and overhauls in the course of 1996 through 1999, is referred to as the Gradual Reconstruction of the Bohunice V-1 Plant. The general goal of the V-1 NPP safety upgrading is the achievement of internationally acceptable level of nuclear safety. Extensive and financially demanding modification process of Bohunice V-2 NPP is likely to be implemented after a completion of the Gradual Reconstruction of the Bohunice V-1 NPP, since the year 1999. With this in mind, a first draft of the strategy of the Bohunice V-2 NPP upgrading program based on Probabilistic Safety assessment consideration was developed. A number of actions with a general effect on Bohunice site safety is evident. All these activities are aimed at reaching the essential objective of Bohunice NPP Management - to ensure a safe, reliable and effective electric energy and heat generation at the Bohunice site. (author)

  6. Analysis of transients for NPP with VVER-440 using the code SiTAP

    International Nuclear Information System (INIS)

    Kalinenko, V.

    1994-06-01

    The report contains analysis of transients ''Loop connection'' and ''Steam generator tube rupture'' for nuclear power plants (NPP) with VVER-440. To obtain more detailed information about NPP's dynamic characteristics, various variants of initial and boundary conditions are considerd. Calculation of these transients was performed using the SiTAP code developed at the Nuclear Safety Institute of the Russian Research Centre ''Kurchatov Institute''. SiTAP code is a multifunctional computer tool for fast analysis of transient and accidental processes of VVER type reactors for engineers working in the field of NPP dynamics. SiTAP can be used form comparative analysis of several variants of accident scenarios to find out the conditions leading to most serious consequences from a safety point of view. In such cases, additional analyses using best-estimate codes should be carried out. The results of SiTAP for a faulty loop connection leading to a boron dilution accident are intended to be used as boundary conditions for a more detailed anlaysis with the aid of the three-dimensional reactor core model DYN3D, developed in the Research Centre Rossendorf for the simulation of reactivity initiated accidents. (orig.)

  7. 'Kozloduy' NPP geological environment as a barrier against radionuclide migration

    International Nuclear Information System (INIS)

    Antonov, D.

    2000-01-01

    The aim of this report is to present an analysis of the geological settings along Kozloduy NPP area from the viewpoint of a natural, protective barrier against unacceptable radionuclides migration in the environment. Possible sources of such migration could be an eventual accident in an active nuclear plant; radioactive releases from decommissioned Power Units or from temporary or permanent radioactive waste repositories. The report is directed mainly to the last case, and especially to the site selection for near surface short lived low and intermediate level (LILW) radioactive repository. The main conclusion of the geological settings assessment and of the many years monitoring is that the Kozloduy NPP area offers good possibilities for site selection of LILW repository. (author)

  8. Seismic qualification tests of fans of the NPP of Laguna Verde U-1 and U-2

    International Nuclear Information System (INIS)

    Jarvio C, G.; Garcia H, E. E.; Arguelles F, R.; Vela H, A.; Naranjo U, J. L.

    2013-10-01

    This work presents the results of the seismic qualification tests applied to the fans that will be installed in the control panels of the three divisions of the diesel generators of the nuclear power plant (NPP) of Laguna Verde, Unit-1 and Unit-2. This seismic qualification process of the fans was carried out using two specimens that were tested in the seismic table (vibrating) of the Engineering Institute of Universidad Nacional Autonoma de Mexico (UNAM), in accordance with the requirements of the standard IEEE 344-1975, to satisfy the established requirements of seismic qualification in the technical specifications and normative documents required by the nuclear standards, in order to demonstrate its application in the diesel generators Divisions I, II and III of the NPP. The seismic qualification tests were developed on specimens that were retired of the NPP of Laguna Verde recently with a service life of 7.75 years. (Author)

  9. Satellite infrared imagery for thermal plume contamination monitoring in coastal ecosystem of Cernavoda NPP

    Science.gov (United States)

    Zoran, M. A.; Zoran, Liviu Florin V.; Dida, Adrian I.

    2017-10-01

    Satellite remote sensing is an important tool for spatio-temporal analysis and surveillance of NPP environment, thermal heat waste of waters being a major concern in many coastal ecosystems involving nuclear power plants. As a test case the adopted methodology was applied for 700x2 MW Cernavoda nuclear power plant (NPP) located in the South-Eastern part of Romania, which discharges warm water affecting coastal ecology. The thermal plume signatures in the NPP hydrological system have been investigated based on TIR (Thermal Infrared) spectral bands of NOAA AVHRR, Landsat TM/ETM+/OLI, and MODIS Terra/Aqua time series satellite data during 1990-2016 period. If NOAA AVHRR data proved the general pattern and extension of the thermal plume signature in Danube river and Black Sea coastal areas, Landsat TM/ETM and MODIS data used for WST (Water Surface Temperature) change detection, mapping and monitoring provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. Thermal discharge from two nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Channel and Danube River. From time-series analysis of satellite data during period 1990-2016 was found that during the winter season thermal plume was localized to an area of a few km of NPP, and the mean temperature difference between the plume and non-plume areas was about 1.7 oC. During summer and fall, derived mean temperature difference between the plume and non-plume areas was of about 1.3°C and thermal plume area was extended up to 5- 10 km far along Danube Black Sea Channel.

  10. Application of Robotic System for Emergency Response in NPP

    International Nuclear Information System (INIS)

    Jeong, Kyung Min; Seo, Yong Chil; Shin, Ho Chul; Lee, Sung Uk; Cho, Jae Wan; Choi, Young Soo; Kim, Chang Hoi; Kim, Seung Ho

    2010-01-01

    Increasing energy demand and concerns over climate change make increasing use of nuclear power plant in worldwide. Even though the probability of accident is greatly reduced, safety is the highest priority issue in the nuclear energy industry. Applying highly reliable and conservative 'defense in depth' concepts with the design and construction of NPP, there are very little possibilities with which accidents are occur and radioactive materials are released to environments in NPP. But NPP have prepared with the emergency response procedures and conduct exercises for post-accident circumstance according to the procedures. The application of robots for emergency response task for post-accident in nuclear facilities is not a new concept. Robots have been sent to recover the damaged reactor at Chernobyl where human workers could receive a lifetime dose of radiation in minutes. Based on NRC's TMI-2 Cleanup Program, several robots were built in the 1980s to help gather information and remove debris from a reactor at the Three Mile Island nuclear power plant that partially melted down in 1979. The first robot was lowered into the basement through a hatch and human operators monitoring in a control room drove it through mud, water and debris, capturing the initial post-accident images of the reactor's basement. It was used for several years equipped with various tools allowing it to scour surfaces, scoop samples and vacuum sludge. A second version carried a core sampler to determine the intensity and depth of the radiation that had permeated into the walls. To perform cleanup tasks, they built Workhorse that featured system redundancy and had a boom extendable to reach high places, but it was never used because it had too many complexities and to clean and fix. While remote robotics technology has proven to remove the human from the radioactive environment, it is also difficult to make it useful because it may requires skill about remote control and obtaining remote

  11. Application of Robotic System for Emergency Response in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyung Min; Seo, Yong Chil; Shin, Ho Chul; Lee, Sung Uk; Cho, Jae Wan; Choi, Young Soo; Kim, Chang Hoi; Kim, Seung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Increasing energy demand and concerns over climate change make increasing use of nuclear power plant in worldwide. Even though the probability of accident is greatly reduced, safety is the highest priority issue in the nuclear energy industry. Applying highly reliable and conservative 'defense in depth' concepts with the design and construction of NPP, there are very little possibilities with which accidents are occur and radioactive materials are released to environments in NPP. But NPP have prepared with the emergency response procedures and conduct exercises for post-accident circumstance according to the procedures. The application of robots for emergency response task for post-accident in nuclear facilities is not a new concept. Robots have been sent to recover the damaged reactor at Chernobyl where human workers could receive a lifetime dose of radiation in minutes. Based on NRC's TMI-2 Cleanup Program, several robots were built in the 1980s to help gather information and remove debris from a reactor at the Three Mile Island nuclear power plant that partially melted down in 1979. The first robot was lowered into the basement through a hatch and human operators monitoring in a control room drove it through mud, water and debris, capturing the initial post-accident images of the reactor's basement. It was used for several years equipped with various tools allowing it to scour surfaces, scoop samples and vacuum sludge. A second version carried a core sampler to determine the intensity and depth of the radiation that had permeated into the walls. To perform cleanup tasks, they built Workhorse that featured system redundancy and had a boom extendable to reach high places, but it was never used because it had too many complexities and to clean and fix. While remote robotics technology has proven to remove the human from the radioactive environment, it is also difficult to make it useful because it may requires skill about remote control and

  12. Operation of Nuclear Fuel Based on Reprocessed Uranium for VVER-type Reactors in Competitive Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, V.; Molchanov, V.; Tuzov, A. [TVEL Corporation, 49 Kashirskoe shosse, Moscow 115409 (Russian Federation); Semchenkov, Yu.; Lizorkin, M. [RRC ' Kurchatov Institute' (Russian Federation); Vasilchenko, I.; Lushin, V. [OKB ' Gidropress' (Russian Federation)

    2009-06-15

    Current nuclear fuel cycle of Russian nuclear power involves reprocessed low-enriched uranium in nuclear fuel production for some NPP units with VVER-type LWR. This paper discusses design and performance characteristics of commercial nuclear fuel based on natural and reprocessed uranium. It presents the review of results of commercial operation of nuclear fuel based on reprocessed uranium on Russian NPPs-unit No.2 of Kola NPP and unit No.2 of Kalinin NPP. The results of calculation and experimental validation of safe fuel operation including necessary isotope composition conformed to regulation requirements and results of pilot fuel operation are also considered. Meeting the customer requirements the possibility of high burn-up achieving was demonstrated. In addition the paper compares the characteristics of nuclear fuel cycles with maximum length based on reprocessed and natural uranium considering relevant 5% enrichment limitation and necessity of {sup 236}U compensation. The expedience of uranium-235 enrichment increasing over 5% is discussed with the aim to implement longer fuel cycles. (authors)

  13. Industry Operating Experience Process at Krsko NPP

    International Nuclear Information System (INIS)

    Bach, B.; Bozin, B.; Cizmek, R.

    2012-01-01

    Experience has shown that number of minor events and near misses, usually without immediate or significant impact to plant safety and reliability, are precursors of significant or severe events due to the same or similar root or apparent cause(s). It is therefore desirable to identify and analyze weaknesses of the precursor problems (events) in order to prevent occurrence of significant events. Theoretically, significant events could be prevented from occurring if the root cause(s) of these precursor problems could be identified and eliminated. The Operating Experience Program identifies such event precursors and by reporting them to the industry, plant specific corrective actions can be taken to prevent events at other operational plants. The intent of the Operating Experience Program is therefore to improve nuclear power plant safety and reliability of the operating nuclear power plants. Each plant develops its own Operating Experience Program in order to learn from the in-house operating experience as well as from the world community of nuclear plants. The effective use of operating experience includes analyzing both plant and industry events in order to identify fundamental weaknesses and then determining appropriate plant-specific actions that will minimize the likelihood of similar events. Learning and applying the lessons from operating experience is an integral part of station safety culture and is encouraged by managers throughout the top plant administrative programs and procedures. Krsko NPP is developed it own Operating Experience Program by using the most relevant INPO/WANO/IAEA guidelines as well as its own knowledge, skills an operating practice. The Operating Experience Program is a part of the Corrective Action Program, which is among top management programs, thus program is strongly encouraged by top management. The purpose of Operating Experience Program is to provide guidance for using, sharing, and evaluating operating experience information

  14. Qualitative Knowledge Representations for Intelligent Nuclear Power Plants

    International Nuclear Information System (INIS)

    Cha, Kyoungho; Huh, Young H.

    1993-01-01

    Qualitative Physics(QP) has systematically been approached to qualitative modeling of physical systems for recent two decades. Designing intelligent systems for NPP requires an efficient representation of qualitative knowledge about the behavior and structure of NPP or its components. A novel representation of qualitative knowledge also enables intelligent systems to derive meaningful conclusions from incomplete or uncertain knowledge of a plant behavior. We look mainly into representative QP works on nuclear applications and the representation of qualitative knowledge for the diagnostic model, the qualitative simulation of a mental model of NPP operator, and the qualitative interpretation of the measured raw data from NPP. We present the challenging areas for QP applications in nuclear industry. QP technology will make NPP more intelligent

  15. Ignalina NPP its environment, safety and future, prospects of the energetic, ethnic and cultural situation: expert evaluation

    International Nuclear Information System (INIS)

    Morkunas, Z. V.; Ciuzas, A.; Jonaitis, V.; Sutiniene, I.

    1995-01-01

    According to the tasks defined in the 'Atomic Energy and the Environment' program an expert evaluative survey was done for the first time in Lithuania concerning the Ignalina NPP and its consequences and perspectives according to the concept which was prepared. The results of survey analysis, done by Lithuanian experts, are presented. Investigation involved these problems: evolution of the technical state safety, use and prospects of the nuclear power plant; evaluation of the activities of governmental and social institutions in connection with the nuclear power plant; Ignalina NPP and the environment; the effect of the nuclear power plant on agricultural activities and development; evolution of the ethnic and cultural situation; conclusions and recommendations for regulations of those areas. (author). 2 refs., 11 figs

  16. Supercompaction of radioactive waste at NPP Krsko

    International Nuclear Information System (INIS)

    Fink, K.; Sirola, P.

    1996-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as a political tool, brought the final radioactive repository siting effort to a stop. Although small amounts of radioactive waste are produced in research institutes, hospitals and industry, major source of radioactive waste in Slovenia is the Nuclear Power Plant Krsko. When Krsko NPP was originally built, plans were made to construct a permanent radioactive waste disposal facility. This facility was supposed to be available to receive waste from the plant long before the on site storage facility was full. However, the permanent disposal facility is not yet available, and it became necessary to retain the wastes produced at the plant in the on-site storage facility for an extended period of time. Temporary radioactive storage capacity at the plant site has limited capacity and having no other options available NPP Krsko is undertaking major efforts to reduce waste volume generated to allow normal operation. This article describes the Radioactive Waste Compaction Campaign performed from November, 1994 through November, 1995 at Krsko NPP, to enhance the efficiency and safety of storage of radioactive waste. The campaign involved the retrieval, segmented gamma-spectrum measurement, dose rate measurement, compaction, re-packaging, and systematic storage of radioactive wastes which had been stored in the NPP radioactive waste storage building since plant commissioning. (author)

  17. Perspectives of Living PSA in NPP Krsko

    International Nuclear Information System (INIS)

    Vrbanic, I.; Kastelan, M.

    1996-01-01

    Nuclear power plant Krsko has completed the Level 1/Level 2 Probabilistic Safety Analysis (PSA) for internal initiating events and is in the process of completing the same for the external initiators. The analysis completed up to now has provided a valuable insight into a plant risk profile. In NPP Krsko there is a plan to use the PSA model as a permanent tool for the risk based applications and incorporate it into a decision making process. In order to achieve this there is a need to permanently maintain the PSA model in a manner that it reflects both the plan configuration/design at a time point and the operational experience up to the time point. All the activities aimed toward keeping the PSA model up-to-dated in this sense are usually referred to as a Living PSA (LPSA) program. NPP Krsko is in the process of defining and proceduralizing a LPSA program that would be plant specific and based on known world practices. Further, in order to be suitable for risk based applications the PSA model must be flexible in a sense that modifications to the base case model may be done easily and requantifications performed quickly as to evaluate various conditions imposed by real or hypothetical situations. NPP Krsko PSA model has been based on licensing type software. The requirements specified above dictate the transfer of the overall model to an application oriented software of newer generation with larger capabilities. The transfer becomes a part of a mentioned ongoing effort aimed at establishing LPSA model and concept. The paper present this effort and the perspectives of LPSA concept and risk based applications in NPP Krsko. (author)

  18. The NPPR Trnava participation in the NPP V-2 modernisation and safety improvement project

    International Nuclear Information System (INIS)

    Michal, V.; Losonsky, B.; Magdolen, J.

    1999-01-01

    The presented contribution deals with form, present state and results of Nuclear Power Plants Research Inst.e participation in the NPP V-2 Jaslovske Bohunice Modernization and Safety Improvement Project.(author)

  19. Fission product source from Ignalina NPP in case of loss-of-coolant accidents

    International Nuclear Information System (INIS)

    Ubonavicius, E.; Rimkevicius, S.

    2001-01-01

    The release of radioactive materials to the environment is of special importance in the case of any accident at Nuclear Power Plants (NPP). The integrated analysis of thermal-hydraulic parameters behavior and radioactive fission products (FP) transport and deposition in the compartments play an important role in the evaluation of FP release to the environment and determines the irradiation dozes of personnel and public. In this report the transport and the deposition of radioactive material in the Ignalina NPP unit 1 compartments as well as the FP source term to the environment in the case of design basis loss-of-coolant accidents are discussed. The calculation models for the evaluation of FP transport and deposition as well as the results of performed calculations of several accidents at Ignalina NPP are presented. (author)

  20. The Improved Methods of Critical Component Classification for the SSCs of New NPP

    International Nuclear Information System (INIS)

    Lee, Sang Dae; Yeom, Dong Un; Hyun, Jin Woo

    2010-01-01

    Functional Importance Determination (FID) process classifies the components of a plant into four groups: Critical A, Critical B, Minor and No Impact. The output of FID can be used as the decision-making tool for maintenance work priority and the input data for preventive maintenance implementation. FID applied to new Nuclear Power Plant (NPP) can be accomplished by utilizing the function analysis results and safety significance determination results of Maintenance Rule (MR) program. Using Shin-Kori NPP as an example, this paper proposes the advanced critical component classification methods for FID utilizing MR scoping results

  1. International cooperation for nuclear science and energy development- A win win perspective

    International Nuclear Information System (INIS)

    Sheriffah Noor Khamseah Al-Idid Syed Ahmad Idid

    2013-01-01

    Full-text: International and regional cooperation is fundamental for the safe and effective introduction and expansion of nuclear power programme (NPP). A win-win situation can be harnessed as experienced countries in NPP are able to offer a myriad of benefits to new comer countries as well as countries planning for NPP whilst new comer countries are able to offer education and training opportunities and business opportunities to advanced countries in NPP. Countries with long experience in nuclear power programme (NPP) are able to offer experience, knowledge, advisory as well as sharing of resources and facilities with new comer countries. As skilled and competent personnel in the entire nuclear value-chain are critical to support NPP, this paper will provide an overview of some of the experience and resources of advanced countries in NPP that could be shared with new comer countries, with a focus in the area of education and training, as well as in industrial development. The paper will conclude by offering some recommendations as a way forward for establishing international cooperation in Nuclear Education and Training, as well as for industrial development. (author)

  2. 75 FR 5355 - Notice of Extension of Comment Period for NUREG-1934, Nuclear Power Plant Fire Modeling...

    Science.gov (United States)

    2010-02-02

    ..., Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Draft Report for Comment AGENCY... 1019195), Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Draft Report for Comment... exists in both the general fire protection and the nuclear power plant (NPP) fire protection communities...

  3. Assistance of Foreign Countries and International Organizations to Support Safety Improvements at Ignalina NPP

    International Nuclear Information System (INIS)

    Shevaldin, V.

    1997-01-01

    International cooperation and assistance for the improving safety of Ignalina NPP is described. Sweden was among the first countries which supported safety improvements at Ignalina NPP. The first project in the cooperation was BARSELINA, Probabilistic Safety Analysis of Ignalina NPP. The cooperation is still bringing significant support to the plant, including improvements in the fire protection, communications system, physical protection, and many other areas. Another one very important source of assistance was Nuclear Safety Account, administered by the EBRD. In 1993 experts of the plant, together with representatives of VATESI and SKI (Sweden) have worked out a short-term safety improvement program SIP-1, which was financed by the EBRD . Eighteen safety related projects were selected, expensive and reliable equipment was procured and installed

  4. The development of stochastic process modeling through risk analysis derived from scheduling of NPP project

    International Nuclear Information System (INIS)

    Lee, Kwang Ho; Roh, Myung Sub

    2013-01-01

    There are so many different factors to consider when constructing a nuclear power plant successfully from planning to decommissioning. According to PMBOK, all projects have nine domains from a holistic project management perspective. They are equally important to all projects, however, this study focuses mostly on the processes required to manage timely completion of the project and conduct risk management. The overall objective of this study is to let you know what the risk analysis derived from scheduling of NPP project is, and understand how to implement the stochastic process modeling through risk management. Building the Nuclear Power Plant is required a great deal of time and fundamental knowledge related to all engineering. That means that integrated project scheduling management with so many activities is necessary and very important. Simulation techniques for scheduling of NPP project using Open Plan program, Crystal Ball program, and Minitab program can be useful tools for designing optimal schedule planning. Thus far, Open Plan and Monte Carlo programs have been used to calculate the critical path for scheduling network analysis. And also, Minitab program has been applied to monitor the scheduling risk. This approach to stochastic modeling through risk analysis of project activities is very useful for optimizing the schedules of activities using Critical Path Method and managing the scheduling control of NPP project. This study has shown new approach to optimal scheduling of NPP project, however, this does not consider the characteristic of activities according to the NPP site conditions. Hence, this study needs more research considering those factors

  5. The development of stochastic process modeling through risk analysis derived from scheduling of NPP project

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Ho; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    There are so many different factors to consider when constructing a nuclear power plant successfully from planning to decommissioning. According to PMBOK, all projects have nine domains from a holistic project management perspective. They are equally important to all projects, however, this study focuses mostly on the processes required to manage timely completion of the project and conduct risk management. The overall objective of this study is to let you know what the risk analysis derived from scheduling of NPP project is, and understand how to implement the stochastic process modeling through risk management. Building the Nuclear Power Plant is required a great deal of time and fundamental knowledge related to all engineering. That means that integrated project scheduling management with so many activities is necessary and very important. Simulation techniques for scheduling of NPP project using Open Plan program, Crystal Ball program, and Minitab program can be useful tools for designing optimal schedule planning. Thus far, Open Plan and Monte Carlo programs have been used to calculate the critical path for scheduling network analysis. And also, Minitab program has been applied to monitor the scheduling risk. This approach to stochastic modeling through risk analysis of project activities is very useful for optimizing the schedules of activities using Critical Path Method and managing the scheduling control of NPP project. This study has shown new approach to optimal scheduling of NPP project, however, this does not consider the characteristic of activities according to the NPP site conditions. Hence, this study needs more research considering those factors.

  6. Experience with Periodic Safety Review (PSR) at Kozloduy NPP after 20 years of operation

    International Nuclear Information System (INIS)

    Popov, V.

    2011-01-01

    Conclusion: Measures in the long-term Programs for improving safety and radiation protection of unit 5&6, based on PSR outcome and addressed on the units’ operation licence renewal are under way. • NPP Kozloduy intends to fulfils requirements on modern nuclear power plants which occasionally exceeds limits of the effective national nuclear legislation

  7. Brief Assessment of Krsko NPP Decommissioning Costs

    International Nuclear Information System (INIS)

    Skanata, D.; Medakovic, S.; Debrecin, N.

    2000-01-01

    The first part of the paper gives a brief description of decommissioning scenarios and models of financing the decommissioning of NPPs. The second part contains a review of decommissioning costs for certain PWR plants with a brief description of methods used for that purpose. The third part of the paper the authors dedicated to the assessment of decommissioning costs for Krsko NPP. It does not deal with ownership relations and obligations ensuing from them. It starts from the simple point that decommissioning is an structure of the decommissioning fund is composed of three basic cost items of which the first refers to radioactive waste management, the second to storage and disposal of the spent nuclear fuel and the third to decommissioning itself. The assessment belongs to the category of preliminary activities and as such has a limited scope and meaning. Nevertheless, the authors believe that it offers a useful insight into the basic costs that will burden the decommissioning fund of Krsko NPP. (author)

  8. Electrical Grid Conditioning For First NPP Integration, a Systems Engineering Approach Incorporating Quality Function Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Pwani, Henry; James, J. [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    Nuclear power plant has a high potential to cause serious harm to environment as evidenced by effects of Fukushima and Chernobyl accidents. A reliable electrical power is required for a NPP to facilitate cooling after a shutdown. Failure of electrical power supply during shutdown increases core damage probability. Research shows that a total of 39% of LOOP related events in US are electrical grid centered. In Korea, 38% and 29% of all events that led to NPP shutdown at Hanul units 3-6 and at Hanbit units 3-6 respectively were electrical related. Electric grids for both operating and new NPPs must therefore be examined and upgraded for reliability improvement in order to enhance NPP safety.

  9. IAEA activities and main achievements on human resource management and training of nuclear power plant personnel

    International Nuclear Information System (INIS)

    Kossilov, A.

    2002-01-01

    The Nuclear Power Engineering Section is responsible for implementation of the Agency's sub-programme on Engineering and Management Support for Competitive Nuclear Power. The objectives of the sub-programme is to increase Member State capabilities in utilizing the best engineering and management practices for improving NPP performance and competitiveness, optimizing plant service life and decommissioning and strengthening nuclear power infrastructure. NPES' main activities cover: Nuclear power infrastructure, Knowledge management, Personal training and qualification, Quality Management and QA, NPP life management including databases, Modern NPP control and instrumentation, and NPP performance management

  10. Deriving human resource requirements for new nuclear plants

    International Nuclear Information System (INIS)

    Goodnight, Ch.T.

    2007-01-01

    For those contemplating the deployment of a new nuclear plant, critical issues include the development of the operational staff and its organization. This paper will discuss the key elements of deriving an appropriate staff plan for steady state operations. There are five areas that must be analyzed, and each area has unique requirements. These key areas are 1) Operations, 2) Engineering, 3) Maintenance, 4) Regulatory/Oversight, and 5) Site Support. After the analysis for each area is complete, and the human resource requirements are identified, an organizational structure must be developed to support the necessary management, potential centralization, and appropriate functional alignments for effective and safe plant operation. Four organizational design principals have been defined. The first design principal relates to the organizational structure: no more than 7 layers of management between an individual contributor and the senior nuclear manager in the NPP. The second design principal relates to the grouping of activities in order to ensure appropriate management of related or supporting activities. The third design principal relates to out-sourcing support activities when these activities comply with particular conditions for instance when they are not mission critical to day-to day plant operations. The fourth design principal relates to the centralization of some activities when there is more than one NPP operated by the same parent company

  11. The NPP Isar comprehensive Aging Management Program

    International Nuclear Information System (INIS)

    Zander, Andre; Ertl, Stefan

    2012-01-01

    The majority of System, Structure and Components (SSC) in a nuclear power plants are designed to experience a service life, which is far above the intended design life. In most cases, only a small percentage of SSCs are subject to significant aging effects, which may affect the integrity or the function of the component. The process of aging management (AM) has the objective to monitor and control degradation effects which may compromise safety functions of the plant. And furthermore, to ensure, that testing and maintenance programs sufficiently provide preventive measures to control degradation effects. Safety-related aspects and the targeted high availability of the power plant as well as the requirements stipulated by German regulatory authorities prompted the operator of NPP ISAR to introduce an aging surveillance program. The NPP Isar as well as the German NPPs has to be following in the scope of aging management the KTA 1403 guideline. The NPP Isar surveillance program based on the KTA 1403 guideline covers the following aspects: - Scoping and screening of safety relevant Systems, Structures and Components (SSC); - Identification of possible degradation mechanisms for safety relevant SSC; - Ensure, that testing and maintenance programs sufficiently provide preventive measures to control degradation effects; - Transferability check of industry experience (internal and external events); - Annual preparation of an AM status report. (author)

  12. Nonlinear modal analysis in NPP dynamics: a proposal

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2005-07-01

    We propose and briefly suggest how to apply the analytical tools of nonlinear modal analysis (NMA) to problems of nuclear reactor kinetics, NPP dynamics, and NPP instrumentation and control. The proposed method is closely related with recent approaches by modal analysis using the reactivity matrix with feedbacks to couple neutron kinetics with thermal hydraulics in the reactors core. A nonlinear system of ordinary differential equations for mode amplitudes is obtained, projecting the dynamic equations of a model of NPP onto the eigenfunctions of a suitable adjoint operator. A steady state solution of the equations is taken as a reference, and the behaviour of transient solutions in some neighbourhood of the steady state solution is studied by an extension of Liapunov's First Method that enables to cope directly with the non-linear terms in the dynamics. In NPP dynamics these differential equations for the mode amplitudes are of polynomial type of low degree A few dominant modes can usually be identified. These mode amplitudes evolve almost independently of the other modes, more slowly and tending to slave the other mode amplitudes. Using asymptotic methods, it is possible to calculate a closed form analytical approximation to the response to finite amplitude perturbations from the given steady spatial pattern (the origin of the space of mode amplitudes).When there is finite amplitude instability, the method allows us to calculate the threshold amplitude as a well defined function of system's parameters. This is a most significant accomplishment that the other methods cannot afford

  13. Requirements on mechanistic NPP models used in CSS for diagnostics and predictions

    International Nuclear Information System (INIS)

    Juslin, K.

    1996-01-01

    Mechanistic models have for several years with good experience been used for operators' support in electric power dispatching centres. Some models of limited scope have already been in use at nuclear power plants. It is considered that also advanced mechanistic models in combination with present computer technology with preference could be used in Computerized Support Systems (CSS) for the assistance of Nuclear Power Plant (NPP) operators. Requirements with respect to accuracy, validity range, speed flexibility and level of detail on the models used for such purposes are discussed. Quality Assurance, Verification and Validation efforts are considered. A long term commitment in the field of mechanistic modelling and real time simulation is considered as the key to successful implementations. The Advanced PROcess Simulation (APROS) code system and simulation environment developed at the Technical Research Centre of Finland (VTT) is intended also for CSS applications in NPP control rooms. (author). 4 refs

  14. Prospects for the NPP Krsko Radioactive Waste Management

    International Nuclear Information System (INIS)

    Knapp, A.; Levanat, I.; Saponja-Milutinovic, D.

    2016-01-01

    Croatia adopted Strategy of radioactive waste, used sources and spent fuel management in 2014, and its Law on radiological and nuclear safety was accordingly modified in 2015. The Strategy foresees (though with some flexibility) and the Law declares decidedly that Croatia will establish a Center for radioactive waste management, in which all necessary facilities for storage and subsequent disposal of the Croatian share of the NPP Krsko radioactive waste and spent fuel will be developed. However, Slovenia and Croatia have recently agreed that a long-term dry storage for spent fuel will be established on the NPP premises by the year 2019. Therefore, only the issues of low and intermediate level waste (LILW) are addressed here. In Slovenia, the LILW repository site Vrbina in Krsko municipality was officially confirmed in 2009. Based on the 2013 investment program for a silo-type disposal facility, preparation of the repository project documentation was contracted with a national engineering company in 2014. Slovenian repository concept has been developed in two variants: one for the Slovenian LILW only, and the other intended to accept the Croatian share of LILW from the NPP as well. In the summer of 2015 Slovenia for the first time made an official offer to Croatia to use Vrbina repository for that purpose. However, the Croatian Strategy also does not preclude the option of management of all LILW from the NPP in Croatia. Therefore, present plan of activities for the third revision of the NPP radioactive waste and spent fuel management program outlines hypothetically symmetrical LILW management options: all in Slovenia, or all in Croatia, or one half in each country. So, what shall it be? This paper discusses the prospects for each of the three above mentioned options. The major problem of the Slovenian disposal plan is its high cost, mostly due to high compensations to the local community, which will be hard to finance without Croatian participation. The simplest

  15. Slovak Electric, plc, Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    2000-01-01

    In this popular scientific brochure a brief description of history construction of Bohunice Nuclear Power Plant is presented. The chart of electricity generation in WWER 440/V-213 nuclear power plant is described. Operation and safety improvements at Mochovce NPP as well as environment protection are presented. Basic data of Mochovce NPP are included

  16. An assessment of the fire protection requirements throughout a NPP life related to current IAEA regulations and American, Canadian and UE regulations

    International Nuclear Information System (INIS)

    Branzeu, N.; Necula, D.; Badea, M.; Teodorescu, D.; Peteu, M.

    2006-01-01

    Statistics on fires has surprisingly shown that the frequency of fires in a nuclear power plant are as high as in the conventional industrial units. The analyses on fires occurred in a NPP need to consider both their well-known severe damages and the nuclear consequences. In 1975 a severe fire occurred in BROWNS FERRY NPP due to the ignition of the polyurethane foam used in the electric cable penetration sealings. The fire propagated to the cable channels and damaged over 1600 cables. The fire event revealed important shortcomings in the fire protection design and procedures. The fire represented a crucial event that changed fundamentally the fire protection regulation in the United States nuclear industry. The fire protection programs, standards and guides currently applied, have been developed on basis of this fire analysis and gained conclusions/experience. The purpose of the article is to be a short presentation of the fire protection requirements for all NPP life stages (i.e. design, construction, commissioning, operation and decommissioning), including the most recent issues of the standards, codes, guides and regulations in US, Canada, IAEA and some European countries. Such documentation represented the main technical support in establishing the national fire protection standard design regarding all the stages of a CANDU-6 NPP life, all the types of operational NPPs, particularly for Cernavoda NPP Unit 1 and Unit 2 (now in an advanced stage of construction). In order to satisfy the requirements provided by this documentation, as practically as possible, a list of analyses and fire protection improvement measures for Cernavoda NPP is presented. (authors)

  17. Students education and training for Slovak NPP

    International Nuclear Information System (INIS)

    Slugen, V.; Lipka, J.; Hascik, J.; Miglierini, M.

    2005-01-01

    Slovak University of Technology is the largest and also the oldest university of technology in Slovakia. It is certain that more than 50% of the highly-educated technicians who are currently working in the nuclear industry have graduated from this university. The Department of Nuclear Physics and Technology of the Faculty of Electrical Engineering and Information Technology as one of the seven faculties of this University feels the responsibility to impart proper engineering education and training for Slovak NPP operating staff. The education process is realised via undergraduate (BSc), graduate (MSc) and postgraduate (PhD) study as well as via specialised training courses within the framework of a continuous education system. (author)

  18. Features of the Kozloduy NPP management system

    International Nuclear Information System (INIS)

    2016-01-01

    The Kozloduy NPP management system was built taking into account the specifics of the organizational structure and management of the Company, actual processes and practices, and is oriented towards future development, with the participation of all staff. Additional requirements integrated in the system that distinguish it from general industrial requirements of management systems are: priority of nuclear safety; safety culture; knowledge management including extraction and storage of 'hidden knowledge'; periodic self-assessments; use of graded response to the products and activities; use of 'conservative approach' in decision making;; possibilities for self learning and creating of a vision of 'leaders' and 'professional workers in nuclear energy

  19. Investigation of Chernobyl NPP and recovery of environment and medical service in Ukraine

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Hamamoto, Kazuko; Mizumachi, Wataru; Okamoto, Koji

    2013-01-01

    Fukushima Daiichi NPP accident will be terminated, if sufficient care of recovery for heart of people, economy and environment leads to happy Fukushima. It might be taken more than 20 years or more. The overseas NPP investigation group in the study committee for safety regulatory of NPP in PES division in JSME visited Chernobyl NPP, Ministry of Emergencies, National Institute for Strategic Studies under the President of Ukraine, Chernobyl Center, Slavutych, Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, National University of Life and Environmental Science of Ukraine, Institute for Safety Problems of Nuclear Power Plants and Chernobyl Museum. The investigation of bases of their new technology for deep LRW cleaning of Fukushima genesis from the whole range of radionuclides, including uranium and transuranic elements, organic impurities and simultaneous concentration of radioactive components in a small volume. The recovery of environment and care of heart of people were good in Ukraine. The lessons derived from the accident, we can decide what we should do. (author)

  20. Characterization of design ground motion for the central and eastern United States: licensing implications

    International Nuclear Information System (INIS)

    Litehiser, J.; Carrato, P.

    2005-01-01

    For the first time in decades several US utilities are exploring the possibility of building new Nuclear Power Plant (NPP) generating capacity in the Central and Eastern United States (CEUS). Among the many topics that must be considered to license a nuclear plant (NPP) is appropriate design to mitigate the potential effects of vibratory ground motion from earthquakes. Agreement on seismic design ground motion was not always easy during licensing of the last generation of NPPs. Therefore, over the last few decades both industry and the United States Nuclear Regulatory Commission (USNRC) have worked to find ground motion criteria that recognize and overcome earlier licensing difficulties. Such criteria should be stable and easily implemented. Important and complementary programs under the direction of the Lawrence Livermore National Laboratory (LLNL) and the Electric Power Research Institute (EPRI) were part of this effort, and these studies resulted in probabilistic seismic hazard assessments (PSHAs) for a number of CEUS NPP sites. These results and the concepts underlying them are now incorporated into both USNRC regulation and regulatory guidance. Nevertheless, as the utilities and the NRC begin a renewed licensing dialog, issues of regulatory interpretation of earthquake ground motion design criteria have emerged. These issues are as fundamental as the shape and amplitude of ground motion design response spectra and as significant as the impact of these spectra on structural design. Successful and timely resolution of these issues will significantly impact the future of nuclear power in the US. The purpose of this paper is to briefly describe some of these issues and the approaches that have been proposed for their resolution. (authors)

  1. Safe 15 Terawatt of Temelin NPP

    International Nuclear Information System (INIS)

    Sula, M.

    2010-01-01

    In this work author presents a project Safe 15 Terawatt realised on the Temelin NPP. This project is one of the eight key projects of the CEZ group, associated in the 'Programme of efficiency'. The project started in June 2007 with long-term goals for horizon of year 2012. The safety indicators will be reached of the first quarter level of world's nuclear power plant - by the end of the first decade. By the end of year 2012 we will have achieved annual production of 15 billion kWh - in the Czech Republic: 15 Terawatt.

  2. Virtual reality technology in nuclear power plant operation and maintenance

    International Nuclear Information System (INIS)

    Chen Sen

    2005-01-01

    In this paper a generic virtual reality comprehensive system focusing on the operation and maintenance in Nuclear Power Plant (NPP) is proposed. Under this layout, some key topics and means of the system are discussed. As example 'Virtual Nuclear Island' comprehensive system and its typical applications in NPP are set up. In the end, it prospects the applications of virtual reality technology in NPP operation, training and maintenance. (author)

  3. Slovakian-Russian partnership as a part of the supply chain for nuclear power plants and advanced Russian technology for nuclear power plants

    International Nuclear Information System (INIS)

    Ivanov, T.; Chernyakhovskaya, Y.

    2009-01-01

    The first nuclear power project in the Slovak Republic was launched in 1958 through close cooperation with the Russian nuclear industry. Since then the Slovak and Russian nuclear branches were never separated. Technical and economic performances of the NPP units constructed with participation of Russian specialists were and continue being one of the best globally. The culture of business and competence of ASE is based on about 40 years of experience in construction of 29 NPP power units abroad with 20 GW total capacity. ASE strives to present to the Customers line of NPP designs ready for implementation and well-developed network of the multi-functional alliances and JVs. Currently, large-scale NPP projects involve public-private partnership (PPP) more and more. ASE development vision is to flexibly conform to Customers' requirements and needs and to diversify in related segments of EPC-business, namely designing, manufacturing, electric power trade, etc. Systematical approach to the fostering of mutual relations under the new economic conditions and nuclear renaissance, the Slovak-Russian cooperation in NPP engineering, manufacturing and construction are once again promising and long-term oriented. (authors)

  4. Engineering Center contribution to the Russian NPP aging management

    International Nuclear Information System (INIS)

    Bougaenko, S.

    1993-01-01

    The Engineering Center of strength, reliability and life of the nuclear equipment of the Minatom, Russia, has been set up by the decision of the management of the Russian Federation Ministry on the nuclear power (Russia Minatom) within the framework of the Research and Development Institute of Power Engineering (RDIPE). The Engineering Center is responsible for fulfilling the functions of the leading Institution of the Ministry concerning these issues and it is in charge of the development of the appropriate rules and standards package as well as their compliance with analogous international regulating documents. To put forward the national program on NPP aging management, and to implement it is one of the crucial tasks of the Engineering Center. This activity is conducted by both the cooperation between Russian Institution and experts and within the framework of the international collaboration. In the latter case it is worthy of noting the activity with respect to the American-Russian Working Group 12 ''NPP Aging and Life Extension'' and participation in appropriate programs of the IAEA. The major trends of the above activity are considered in this paper

  5. Distributed system for acquisition and analysis of NPP systems noise data

    International Nuclear Information System (INIS)

    Oprea, F.; Gruia, L.

    2001-01-01

    Since years '90 the noise analysis for nuclear stations is more frequently used because: - the data can be acquired by making use of the NPP instrumentation; - acquisition may be performed in a steady-state regime, at rated capacity; - reactor dynamical regime data are obtainable although steady-state regime data are used. The signal noise analysis is based on the dynamical information about the reactor operation obtained from instrumentation signal fluctuations as determined in steady-system regime. The small fluctuations are due to the stochastic effects inherent to physical processes such as heat transfer, boiling, turbulences in coolant flow, moderator collective motions, fission process, structural vibrations and pressure oscillations. Specifically, for CANDU type reactors, the results may be applied for: - surveillance of the functioning characteristics of detectors and transducers; - signaling or predicting misfunctioning of detectors and transducers, what implies establishment of optimal time rate for macro-sampling; - signaling or prediction of misfunctioning of reactor core components, what implies setting up methods and procedures for detecting vibrations inside the fuel channels, based mainly on the signals from the ROPT adjacent detectors and on the flow rate transducers. The system of signal acquisition is a distributed, fixed-data acquisition system provided with a limited number of inputs, based on a number of modules of local analog signal processing and conversion to digital representation. The signal, local processing implies noise removal out of signal through continuous current component elimination, an amplification of the signal, low-pass filtering for alias frequency removal, 16 bit analog-to-digital conversion and digital value serial way transmission. The local processing is based on the characteristics of the acquired signal (noise), namely: - the frequency band, 0.01 Hz - 200 Hz; - the signal amplitude level, 16 - 32 MeV superimposed

  6. Tendencies in human factor influence on initiating events occurrence in NPP Kozloduy

    International Nuclear Information System (INIS)

    Hristova, R.

    2001-01-01

    Overview of the methods and documents concerning human factor in nuclear safety and selection of the most appropriate methods and concept for human factor assessment in the reported events in Kozloduy NPP are presented. List of human error types and statistical data (the mean time between similar errors, the human rate λ, the number of occurrences ect.) is given. Some general results from the human error behavior investigation for all units of Kozloduy NPP related to the 4 personnel categories: Management personnel, Designers, Operating personnel, Maintenance personnel are also shown. At the end the following conclusion are made:18 % operating personnel errors (for comparison for the same category personnel in similar NPPs abroad this value is between 10 % and 30%); Human errors in Kozloduy NPP tend to increase after year 1990; only for the operating personnel a maximum near year 1997 was observed, after which the error values was decreased; at the beginning of year 2000 the reliability characteristics for all units have similar values; it is necessary to be taken into account the observed tendencies to take measurements for reducing of the most important error types for Kozloduy NPP personnel

  7. Report on nuclear safety on the operation of nuclear facilities in 1989; Porocilo o jedrski varnosti pri obratovanju jedrskih objektov v letu 1989

    Energy Technology Data Exchange (ETDEWEB)

    Gregoric, M; Levstek, M F; Horvat, D; Kocuvan, M; Cresnar, N [Slovenian Nuclear Safety Administration, Ljubljana (Slovenia)

    1990-07-01

    Currently Yugoslavia has one 632 MWe nuclear power plant (NPP) of PWR design, located at Krsko in the Socialist Republic (SR) of Slovenia. Krsko NPP, which is a two-loop plant, started power operation in 1981. In general, reactor safety activities in the SR of Slovenia are mostly related to upgrading the safety of our Krsko NPP and to developing capabilities for use in future units. This report presents the nuclear safety related legislation and organization of the corresponding regulatory body, and the activities related to nuclear safety of the participating organizations in the SR of Slovenia in 1989.

  8. Automated personal dosimetry monitoring system for NPP

    International Nuclear Information System (INIS)

    Chanyshev, E.; Chechyotkin, N.; Kondratev, A.; Plyshevskaya, D.

    2006-01-01

    Full text: Radiation safety of personnel at nuclear power plants (NPP) is a priority aim. Degree of radiation exposure of personnel is defined by many factors: NPP design, operation of equipment, organizational management of radiation hazardous works and, certainly, safety culture of every employee. Automated Personal Dosimetry Monitoring System (A.P.D.M.S.) is applied at all nuclear power plants nowadays in Russia to eliminate the possibility of occupational radiation exposure beyond regulated level under different modes of NPP operation. A.P.D.M.S. provides individual radiation dose registration. In the paper the efforts of Design Bureau 'Promengineering' in construction of software and hardware complex of A.P.D.M.S. (S.H.W. A.P.D.M.S.) for NPP with PWR are presented. The developed complex is intended to automatize activities of radiation safety department when caring out individual dosimetry control. The complex covers all main processes concerning individual monitoring of external and internal radiation exposure as well as dose recording, management, and planning. S.H.W. A.P.D.M.S. is a multi-purpose system which software was designed on the modular approach. This approach presumes modification and extension of software using new components (modules) without changes in other components. Such structure makes the system flexible and allows modifying it in case of implementation a new radiation safety requirements and extending the scope of dosimetry monitoring. That gives the possibility to include with time new kinds of dosimetry control for Russian NPP in compliance with IAEA recommendations, for instance, control of the equivalent dose rate to the skin and the equivalent dose rate to the lens of the eye S.H.W. A.P.D.M.S. provides dosimetry control as follows: Current monitoring of external radiation exposure: - Gamma radiation dose measurement using radio-photoluminescent personal dosimeters. - Neutron radiation dose measurement using thermoluminescent

  9. NPP Cernavoda Unit 2 Financing Completion Works

    International Nuclear Information System (INIS)

    Chirica, T.; Stefanescu, A.; Constantin, C.; Dobrin, M.

    2002-01-01

    NPP Cernavoda Unit 2 completion is the highest priority of the Romanian power sector strategy. The nuclear energy represents, through its technological features of adopted solution (a CANDU nuclear power plant) and also through technological and economical performance indicators, the best solution to fulfill the demands concerning the sustainable development and the electricity request. The guidelines of energy strategy regarding the nuclear sector development in Romania are framing in the general policy for energy system development at least costs and they are responding to requests concerning the environment and people protection. The paper presents the financing alternatives for Unit 2 completion works taking into consideration the financing market conditions. The paper presents the impact of the financing conditions on the project efficiency, as well as the facilities offered by the Romanian Government in order to support this project. (author)

  10. Maintaining staff competence-a NPP operator viewpoint

    International Nuclear Information System (INIS)

    Patrakka, E.

    2000-01-01

    For a nuclear power plant operator, it is crucial to guarantee the safe and economic operation of the power plant as well as to look after the general acceptability of nuclear power. As to human resources management, this requires continuous maintenance and enhancement of the performance of the individuals and organisation. To this end, several development projects have recently been implemented by Teollisuuden Voima Oy (TVO) at the Olkiluoto nuclear power plant, which consists of twin 840 MWe BWR units that commenced their operation in 1978 and 1980. Systematic initial and continuing training programmes are needed to maintain the technical and managerial skills and know-how at a high level. The present stabile state of nuclear power, i.e. operation of ageing plants with personnel ageing as well, requires a variety of actions to reinforce the training efforts. At Olkiluoto NPP, we have carried out an extensive modernization programme that allowed the personnel to strengthen their knowledge and supplement it with the most recent results of development. We have also closely monitored the NPP development projects of the vendors, which has added to the preservation of know-how and understanding of advanced nuclear power technology. We have close contacts to the research institutes and universities, and have performed R and D activities to limited extent. In addition to the projects mentioned above, a co-ordinated development programme, 'TVO 2002', was initiated last year. The main objective of this programme is to ensure the functional preconditions and the competitiveness of the company in a changing environment. The management and operational procedures will be developed in such a way that the goals set for year 2002 will be achieved. The programme is organised as ten projects, which cover a variety of development subjects. One of the focal areas includes projects that can be characterised with the words 'Survey of competencies' and 'Preservation of know

  11. Probability estimation of potential harm to human health and life caused by a hypothetical nuclear accident at the nuclear power plant

    International Nuclear Information System (INIS)

    Soloviov, Vladyslav; Pysmenniy, Yevgen

    2015-01-01

    This paper describes some general methodological aspects of the assessment of the damage to human life and health caused by a hypothetical nuclear accident at the nuclear power plant (NPP). Probability estimation of death (due to cancer and non-cancer effects of radiation injury), disability and incapacity of individuals were made by taking into account the regulations of Ukraine. According to the assessment, the probability of death due to cancer and non-cancer effects of radiation damage to individuals who received radiation dose of 1 Sv is equal to 0.09. Probability of disability of 1, 2 or 3 group regardless of the radiation dose is 0.009, 0.0054, 0.027, respectively. Probability of temporary disability of the individual who received dose equal to 33 mSv (the level of potential exposure in a hypothetical nuclear accident at the NPP) is equal 0.16. This probability estimation of potential harm to human health and life caused by a hypothetical nuclear accident can be used for NPP in different countries using requirements of regulations in these countries. And also to estimate the amount of insurance payments due to the nuclear damage in the event of a nuclear accident at the NPP or other nuclear industry enterprise. (author)

  12. Current evolutionary stage of L/ILW management at operating NPP in the USA

    International Nuclear Information System (INIS)

    Miller, C.C.

    2001-01-01

    The volume of Low and Intermediate Level Waste (L/ILW) from commercial nuclear power plants (NPP) buried annually in the USA has decreased dramatically over the last two decades. The reduction in disposal volume has occurred for both dry active wastes (DAW) and wet wastes (e.g., resins, filters and sludges). Decreased disposal volume has occurred at both Pressurized Water Reactors (PWRs) and Boiling Water Reactors (BWRs). The reduction in disposal volume occurred in stages. The major driver to reduce disposal volume in the commercial sector of the USA has been increasing burial costs. The current drive to further reduce overall NPP operating costs to meet a deregulated electric market in the USA has unexpectedly resulted in further waste reductions. This paper will review the stages of waste reduction and describe the current stage for NPP in the USA. (author)

  13. Civil emergency preparedness at the Ignalina nuclear power plant

    International Nuclear Information System (INIS)

    1998-12-01

    Workshop was held in the frame of Lithuania's cooperation with NATO on disasters management subject and was concentrated on the preparation of management of nuclear accident at Ignalina NPP. The following topics were covered: emergency preparedness inside Ignalina NPP, preparedness for nuclear accidents at national level, experience in Nordic countries and IAEA activities in harmonization of nuclear emergency preparedness in different countries

  14. Review on Cyber Security Programs for NPP Application

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Eung Se [KEPRI, Daejeon (Korea, Republic of)

    2010-10-15

    Increased history records of cyber security (CS) attacks and concerns for computers and networks technical mishaps pull out cyber security to open places. In spite of secrete nature of security, transparent and shared knowledge of many security features are more required at modern plant floors. Korea Institute of Nuclear Safety (KINS), US Government and Nuclear Regulatory Commission (NRC) requested to develop cyber security plans and enforce their implementing to the NPPs. [KINS; CFR; RG 5.71] This paper reviews various cyber security guidelines and suggests an applicable cyber security program development models during the life cycle of NPP's Instrumentation and Control (I and C) systems

  15. Review on Cyber Security Programs for NPP Application

    International Nuclear Information System (INIS)

    Oh, Eung Se

    2010-01-01

    Increased history records of cyber security (CS) attacks and concerns for computers and networks technical mishaps pull out cyber security to open places. In spite of secrete nature of security, transparent and shared knowledge of many security features are more required at modern plant floors. Korea Institute of Nuclear Safety (KINS), US Government and Nuclear Regulatory Commission (NRC) requested to develop cyber security plans and enforce their implementing to the NPPs. [KINS] [CFR] [RG 5.71] This paper reviews various cyber security guidelines and suggests an applicable cyber security program development models during the life cycle of NPP's Instrumentation and Control (I and C) systems

  16. Training, education and qualification of NPP operating personnel in the Netherlands

    International Nuclear Information System (INIS)

    de Vrey, G.A.

    1987-01-01

    This paper outlines the organization and the requirements of the training, education and qualification of NPP operating personnel in the Netherlands. It describes the implementation of a formally required scheme of personnel qualification after TMI, and the current practice as developed by the training staff of both Dutch nuclear power plants. Attention is given to the specific circumstances and problems in the Netherlands, and the resulting program. The licensing criteria for control room operating personnel are discussed, including the level of government involvement. Measures are described to improve the approach to training of NPP personnel involved in safety relevant activities. Finally, some ideas are given for strategies to cope with adverse stress situations

  17. System, economy and ecology viewpoints of the Krsko NPP lifetime extension

    International Nuclear Information System (INIS)

    Novsak, M.; Spiler, J.; Zagar, T.; Pirs, B.; Bole, A.; Bregar, Z.; Cuhalev, I.; Derganc, B.; Ivanjko, S.; Matvoz, D.; Sustersic, A.; Valencic, L.; Zabric, I.; Zlatarev, G.; Babuder, M.

    2007-01-01

    Krsko NPP plant life extension was analysed and evaluated with respect to system, economy and ecology viewpoints. From the system perspective it was established that also in the extended lifetime the plant will remain in operation as a base load electricity supplier. The systematic review was performed to determine its overall competitiveness against advanced coal, gas and new nuclear units. The analysis considered also hydro and renewable sources. Analysis and evaluations resulted in the conclusion that the Krsko NPP lifetime extension is the most effective alternative for base load production due to small additional capital investments, low fuel costs, no new siting requirements, lowest climate and environmental impact, and reliable and safe operation. (author)

  18. Experience of Bohunice V-1 NPP

    International Nuclear Information System (INIS)

    Dobik, Dobroslav

    2000-01-01

    Slovakia remains significantly dependent on imports of primary energy sources, which represent as much as 80% of the demand. Of the total consumption of electricity in Slovakia, 40% was generated in nuclear power plant units in 1998. Slovakia operates 6 units with WWER 440 nuclear reactors. Slovakia is the signatory of all important international agreements and conventions in the field of nuclear energy, and its legislation is in an advanced stage of approximation to European Union law. This is a very important aspect, showing Slovakia's approach to nuclear safety. In 1993 Slovakia accepted the commitments of the UN Convention on Climate Changes, including a reduction of greenhouse gases to 1990 levels by the year 2000. Moreover, as an internal target Slovakia has set the reaching of the 'Toronto Objective', i.e. 20% reduction in CO x , emissions through the year 2005 as compared to 1988. In our opinion, this is not possible without nuclear energy. Time has shown, that the political aspects are more powerful, especially if you underestimate their importance over the than the technical ones. In the case of Bohunice V-1 NPP the political aspects were on the following levels: 1. Slovak republic (Czechoslovakia), political changes, decisions of the government; 2. European Union - Agenda 2000, Accession criteria, nuclear safety criteria, EBRD; 3. Austria as a neighbouring country. Starting with year 1990, 23 expert missions took place at Bohunice V-1 NPP by now. The only criteria for further operation should have been Nuclear safety, which is supervised by NRA SR. It was fully in compliance with EU policy, each country is solely responsible for its energy sector and for nuclear energy use. Our satisfaction lasted not too long. Following negotiation with EU on the highest political level, driven by willingness to be invited for negotiation of accession on the Helsinki Summit, the Slovak government decided on September 14th, on Bohunice V-1 Units shutdown in 2006 and 2008

  19. NPP component maintenance and life management in Russia

    International Nuclear Information System (INIS)

    Tutnov, I.; Lyssakov, V.

    2002-01-01

    This report represents the conceptual strategies (ideas) on life management programs for nuclear power plants. Use of the optimum programs for NPP's NDE, maintenance service, operation and service life can provide the best economic benefit for the utilities. The paper presents general approaches to life management, maintenance service, and risks of operating and service life of NPPs in Russia. The report offers some optimized ways for the solution of these important tasks

  20. Application of ant colony optimization in NPP classification fault location

    International Nuclear Information System (INIS)

    Xie Chunli; Liu Yongkuo; Xia Hong

    2009-01-01

    Nuclear Power Plant is a highly complex structural system with high safety requirements. Fault location appears to be particularly important to enhance its safety. Ant Colony Optimization is a new type of optimization algorithm, which is used in the fault location and classification of nuclear power plants in this paper. Taking the main coolant system of the first loop as the study object, using VB6.0 programming technology, the NPP fault location system is designed, and is tested against the related data in the literature. Test results show that the ant colony optimization can be used in the accurate classification fault location in the nuclear power plants. (authors)

  1. Human resource issues related to an expanding nuclear power programme

    International Nuclear Information System (INIS)

    2006-05-01

    The IAEA Technical Working Group on Training and Qualification of Nuclear Power Plant Personnel recommended that the IAEA develop guidelines on human resource management (including staffing) and training/education programmes for new nuclear power plant (NPP) designs. This recommendation was made in recognition that these future NPPs may have significantly different needs in this area compared to operating plants, and if so, NPP operating organizations should integrate these needs into their planning for future NPP projects. This report is primarily intended for use by NPP operating organizations that already have units in operation and that are considering adding to their fleet. Therefore, the addition of both new and current designs are addressed in this report. However, it should also be of value to those organizations that are considering the initial implementation of nuclear power, as well as decision makers in government, and in other nuclear industry organizations

  2. Management of operators' competence and change of generation at NPP; Osaamisen hallinta ydinvoimalaitoksessa operaattoreiden sukupolvenvaihdostilanteessa

    Energy Technology Data Exchange (ETDEWEB)

    Nuutinen, M.; Reiman, T.; Oedewald, P. [VTT Industrial Systems, Espoo (Finland)

    2003-05-01

    The change of personnel generation is an important challenge faced in the nuclear power production. This study focused on the competence management and the change of the operators' generation in a Finnish nuclear power plant (NPP). The competence management was examined in two different ways. First, it was studied from a knowledge management point of view, and secondly, from a learning in work point of view. The first aim of the study was clarify mechanisms and factors, which were assumed to affect the development of the operators' expertise. The considered mechanisms were emotional and cultural control of behavior. The second aim of the study was to develop a general model for analyzing operators' possibilities to learning in work. In addition, this study discussed the applicability of two current learning theories for the development of practical training. A result of the study was the model of learning process, which defines factors and mechanisms interacting in the development of operator trainees into skilful operators in high reliability organizations. The central mechanisms were earning the trust of social group and constructing self-confidence. Based on the results of the study there is a challenge to develop common tools and practices for the trainees' goal-oriented, question-directed and gradually deepening learning and the legitimate participation in the social group in NPP. The study also produced new information of the operators' core task. A demand of the core task is developing and maintaining the competence in a daily work. (orig.)

  3. Development of Tsunami PSA method for Korean NPP site

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Choi, In Kil; Park, Jin Hee

    2010-01-01

    A methodology of tsunami PSA was developed in this study. A tsunami PSA consists of tsunami hazard analysis, tsunami fragility analysis and system analysis. In the case of tsunami hazard analysis, evaluation of tsunami return period is major task. For the evaluation of tsunami return period, numerical analysis and empirical method can be applied. The application of this method was applied to a nuclear power plant, Ulchin 56 NPP, which is located in the east coast of Korean peninsula. Through this study, whole tsunami PSA working procedure was established and example calculation was performed for one of real nuclear power plant in Korea

  4. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1999-01-01

    In this leaflet the short history of commissioning of Bohunice V-1 NPP is reviewed (beginning of construction 24 April 1972; First controlled reactor power, Reactor Unit 1 (RU1): 27 November 1978, Reactor Unit 2 (RU2): 15 March 1980; Connection to the grid: RU1 17 December 1978, RU2 26 March 1980; Commercial operation: RU1 1 April 1980, RU2 7 January 1981. The scheme of the nuclear reactor WWER 440/V230 is depicted. The major technological equipment (primary circuit, nuclear reactor, steam generators, reactor coolant pumps, primary circuit auxiliary systems, secondary circuit, turbine generators, NPP electrical equipment, and power plant control) are described. Technical data of the Bohunice V-1 NPP are presented

  5. Interim nuclear spent fuel storage facility - From complete refusal to public acceptance

    International Nuclear Information System (INIS)

    Kacena, Michal

    1998-01-01

    Full text: As usual in P.R., there was a complicated, politically sensitive situation we had to face at the beginning and it wasn't easy to create the right P.R. programme with the right targets: CEZ needed a new storage facility for the nuclear spent fuel from its two NPPs - Dukovany and Temelin. Firstly, CEZ preferred to build an on-site facility for the Dukovany NPP to last until the year 2004; secondly, a facility for the Temelin NPP several years later. But the Czech Government decided to limit Dukovany's storage capacity during a public discussion in 1992. Therefore, at the end of 1993, CEZ started the site selection process for a central storage facility targeted at ten regions in the country. In P.R. we decided on two main goals: 1. To gain public acceptance of a central storage facility at least at one site, and hopefully at more. 2. To change public opinion (especially around the Dukovany NPP) in order to create the proper atmosphere for changing the government's decision to limit storage capacity. We wanted to prove that we could choose the fight technical and economical solution without political limits. This obviously presented a challenge as it would be problematic for CEZ to be very visible in the campaign: We wanted people to know that the government had made a bad decision, but we also had to make it clear that our objections were based not on questions of momentary corporate advantage but instead on solid technical grounds. Most would only see self interest. We wanted to show them the facts. Of course, some times it wasn't easy to hit both targets at the same time. There was a lot of hard work in the middle. We gained new experience and we learned a lot trying to get public confidence in nuclear safety, in our company's reliability and in some local profits for a storage site: Firstly none of those regions was excited by the idea o a storage facility in its backyard. Most of them were very strongly and actively against it and did not want to

  6. Nuclear safety. Improvement programme

    International Nuclear Information System (INIS)

    2000-01-01

    In this brochure the improvement programme of nuclear safety of the Mochovce NPP is presented in detail. In 1996, a 'Mochovce NPP Nuclear Safety Improvement Programme' was developed in the frame of unit 1 and 2 completion project. The programme has been compiled as a continuous one, with the aim to reach the highest possible safety level at the time of commissioning and to establish good preconditions for permanent safety improvement in future. Such an approach is in compliance with the world's trends of safety improvement, life-time extension, modernisation and nuclear station power increase. The basic document for development of the 'Programme' is the one titled 'Safety Issues and their Ranking for WWER 440/213 NPP' developed by a group of IAEA experts. The following organisations were selected for solution of the safety measures: EUCOM (Consortium of FRAMATOME, France, and SIEMENS, Germany); SKODA Prague, a.s.; ENERGOPROJEKT Prague, a.s. (EGP); Russian organisations associated in ATOMENERGOEXPORT; VUJE Trnava, a.s

  7. Optimalisation of national industry participation in nuclear power plant construction

    International Nuclear Information System (INIS)

    Sriyana

    2008-01-01

    A study of national industry participation based on recent data has already been conducted. The current industry data is used to estimate the optimum level of national industry participation in nuclear power plant (NPP) construction based on the prior study. The purpose of the study is to give a figure of the optimum level of national industry participation in NPP construction. The scope of the study is the NPP construction project in related to the potency of national industry to participate in the project. The methodology used in the study are literature study, web surfing for industrial data, and on-the-spot industry survey that are potential to participate in NPP construction. In addition to that, discussion with expertise of industrial practitioner was also conducted. The study concludes that (1) based on the recent national industry capability provided and compared to prior similar study, it is estimated that the level of national industry participation in the first NPP construction with the capacity of 1000 MWe PWR is about 40%. (2) to accelerate NPP technology transfer, we need to build a small size NPP. The nuclear island will be developed by BATAN in cooperation with national industry and the non-nuclear island will be developed by national industry. Universities and other academicians should be involved to support and keep the sustainability of man power availability in developing the NPP technology. (author)

  8. Application of fieldbus techniques in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Xu; Chen Hang; Yu Shuxin; Zhang Xinli

    2012-01-01

    The successful application experience of fieldbus techniques in thermal power plants and nuclear power plants are outlined first. And then, the application of fieldbus techniques in domestic 3rd-generation nuclear power plant (NPP) project is discussed. After that, the solution to the potential problems of fieldbus techniques application in NPP is provided. (authors)

  9. Future needs in radiation protection training for NPP workers of Slovenia

    International Nuclear Information System (INIS)

    Kozelj, M.; Bogovic, T.

    1999-01-01

    Short review of history of radiation protection training for NPP workers in Slovenia and legal requirements regarding this field are presented. Courses developed in co-operation between Milan Copic Nuclear Training Centre and Krsko Nuclear Power Plant are briefly described and their implementation presented. Using available data we have predicted probable number of courses and participants in forthcoming years. Some results from inquiry on courses for regularly exposed workers are presented, enabling us to modify courses according to participants' needs.(author)

  10. Low-dose effects hypothesis and observations on NPP personal

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, R.; Acheva, A.; Boteva, R.; Chobanova, N.; Djounova, J.; Gyuleva, I.; Ivanova, K.; Kurchatova, G.; Milchev, A.; Negoicheva, K.; Nikolov, V.; Panova, D.; Pejankov, I.; Rupova, I.; Stankova, K.; Zacharieva, E. [Radiobiology Department, National Centre of Radiobiology and Radiation Protection, Sofia (Bulgaria)

    2013-07-01

    In the modern world the use of various sources of ionizing radiation is nearly ubiquitous. They have numerous applications in industry, medicine, science, agriculture, etc. Radiation doses to workers nevertheless are commensurable to the natural background exposure. Published data on the health effects of occupational radiation exposure are often contradictory. Addressing the issue of „negative” (bystander effects, genomic instability) and „positive” (adaptive response, radiation hormesis) effects of low doses is important and has a significant social and economic impact. In this paper we summarize the results of our extensive monitoring of nuclear power plant (NPP) staff. We believe it is a cohort suitable for analysis of health effects at low doses, because of their good medical and dosimetric control. Our results rather support the idea of absence of adverse health effects in NPP workers. (author)

  11. NPP Decommissioning: the concept; state of activities

    International Nuclear Information System (INIS)

    Nemytov, S.; Zimin, V.

    2001-01-01

    The main principles of NPP decommissioning concept in Russia are given. The conditions with fulfillment of works on NPP unit pre-decommissioning and decommissioning including: development of the normative documentation, creation of special fund for financing NPP decommissioning activities, deriving the Gosatomnadzor license for decommissioning of shut down NPP units, development of the equipment and technologies for waste and spent fuel management are presented. The decommissioning cost and labour intensity of one WWER-440 unit are shown. The practical works, executed on shut down units at Beloyarsk NPP (Unit1 and 2) and Novo Voronezh NPP (Unit 1 and 2) are outlined

  12. ESTE EMO and ESTE EBO - emergency response system for NPP Mochovce and NPP Bohunice V-2

    International Nuclear Information System (INIS)

    Caeny, P.; Chyly, M.; Suchon, D.; Smejkalova, E.; Fabova, V.; Mancikova, M.; Muller, P.

    2009-01-01

    Programs ESTE EMO and ESTE EBO are emergency response systems that help the crisis staff of the NPP in assessing the source term (predicted possible release of radionuclides to the atmosphere ), in assessing the urgent protective measures and sectors under threat, in assessing real release (symptoms of release really detected and observed), in calculating radiological impacts of real release, averted or avertable doses, potential doses and doses during transport or evacuation on specified routes. Both systems serve as instruments in case of severe accident (DBA or BDBA) at NPP Mochovce or NPP Bohunice, accidents with threat of release of radioactivity to the atmosphere. Systems are implemented at emergency centre of Mochovce NPP and Bohunice NPP and connected online to the sources of technological and radiological data from the reactor, primary circuit, confinement, secondary circuit, ventilation stack, from the area of NPP (TDS 1) and from the emergency planning zone (TDS 11). Systems are connected online to the sources of meteorological data, too. (authors)

  13. ESTE EMO and ESTE EBO - emergency response system for NPP Mochovce and NPP Bohunice V-2

    International Nuclear Information System (INIS)

    Caeny, P.; Chyly, M.; Suchon, D.; Smejkalova, E.; Fabova, V.; Mancikova, M.; Muller, P.

    2008-01-01

    Programs ESTE EMO and ESTE EBO are emergency response systems that help the crisis staff of the NPP in assessing the source term (predicted possible release of radionuclides to the atmosphere ), in assessing the urgent protective measures and sectors under threat, in assessing real release (symptoms of release really detected and observed), in calculating radiological impacts of real release, averted or avertable doses, potential doses and doses during transport or evacuation on specified routes. Both systems serve as instruments in case of severe accident (DBA or BDBA) at NPP Mochovce or NPP Bohunice, accidents with threat of release of radioactivity to the atmosphere. Systems are implemented at emergency centre of Mochovce NPP and Bohunice NPP and connected online to the sources of technological and radiological data from the reactor, primary circuit, confinement, secondary circuit, ventilation stack, from the area of NPP (TDS 1) and from the emergency planning zone (TDS 11). Systems are connected online to the sources of meteorological data, too. (authors)

  14. Proceedings of the 2000 International Conference on Nuclear Energy in Central Europe

    International Nuclear Information System (INIS)

    Mavko, B.; Cizelj, L.; Kovac, M.

    2000-01-01

    International Conference Nuclear Energy in Central Europe is an annual meeting of the Nuclear Society of Slovenia. The proceedings contain 108 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region. Topics are: thermal hydraulics, severe accidents, probabilistic safety assessment (PSA), nuclear waste, safety analyses, nuclear power plant operation, structural integrity and aging, nuclear energy and public, other related topics, research reactors, education and training and Monte Carlo transport calculations

  15. Application of the combined cycle LWR-gas turbine to PWR for NPP life extension, safety upgrade and improving economy

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.N.; Gabaraev, B.A.

    2002-01-01

    Full text: The unconventional technology to extend the lifetime for the NPPs now in operation and make a construction of new NPPs cheaper - erection of steam-gas toppings to the nuclear power units - is considered in the paper. Application of the steam-gas toppings permits through reducing power of ageing reactors to extend lifetime of nuclear power unit, enhance its safety and at the same time to keep full load operation of NPP turbine and other balance-of-plant equipment. Proposed technology is examined for Russian VVER-440 reactor as an example and, also, as a pilot project, for Russian boiling VK-50 reactor now in operation Application of the steam-gas topping permits: extend the service life of ageing VVER-440 reactor by 10...15 years; use the turbine and other NPP balance-of-plant equipment at full power; increase the efficiency of combined cycle up to 48% and more; enhance the safety of NPP operation; utilize NPP balance-of-plant equipment after reactor decommissioning; perform the cost-effective operation in maneuvering modes; increase capacity factor of the plant. The construction of pilot project on the basis of the VK-50 reactor will allow not only to demonstrate new technology but also to attain appreciable economic effect including that obtained due to using the available reserves of the NPP turbine. (author)

  16. Nuclear safety activities in the SR of Slovenia in 1986

    Energy Technology Data Exchange (ETDEWEB)

    Susnik, J [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1987-06-15

    Currently Yugoslavia has one 632 MWe nuclear power plant (NPP) of PWR design, located at Krsko in the Socialist Republic (SR) of Slovenia. Krsko NPP, which is a two-loop plant, started power operation in 1981. In general, reactor safety activities in the SR of Slovenia are mostly related to upgrading the safety of our Krsko NPP and to developing capabilities for use in future units. This report presents the nuclear safety related legislation and organization of the corresponding regulatory body, and the activities related to nuclear safety of the participating organizations in the SR of Slovenia in 1986. (author)

  17. Nuclear safety activities in the SR of Slovenia in 1986

    International Nuclear Information System (INIS)

    Susnik, J.

    1987-06-01

    Currently Yugoslavia has one 632 MWe nuclear power plant (NPP) of PWR design, located at Krsko in the Socialist Republic (SR) of Slovenia. Krsko NPP, which is a two-loop plant, started power operation in 1981. In general, reactor safety activities in the SR of Slovenia are mostly related to upgrading the safety of our Krsko NPP and to developing capabilities for use in future units. This report presents the nuclear safety related legislation and organization of the corresponding regulatory body, and the activities related to nuclear safety of the participating organizations in the SR of Slovenia in 1986. (author)

  18. Biking our way to public acceptance: Doel NPP reorients communication policy

    International Nuclear Information System (INIS)

    Souwer, Corinne

    1998-01-01

    Full text: In these days, the existence of a nuclear power station is no longer entirely evident. Especially in Belgium where operating licence is subject to ten-yearly re-evaluations by the authorities. Therefore, the management has to orient its policy not only towards safety and economic operation but also to public acceptance. The Doel NPP management therefore makes use of the equilateral triangle here above, as all three sides are equally important. Although economic operation demands great efforts in cost control, new activities are developed in order to enhance public acceptance - which consequently lead to new investments. Top priority in our external communication policy is the environment. This is quite logical, as the environment is also one of the top priorities in the overall management policy. Thus, Doel NPP is working hard in order to obtain the EMAS certificate(Eco Management and Audit Scheme acknowledged by the European Commission) next spring. External communication is therefore very much oriented towards environmental education projects, which we develop as much as possible in close cooperation with environmental groups. We offer these projects to schools and other public groups by means of a centralized dispatching centre. They include amongst others an eco bicycle tour in the surroundings of the power plant, with information on the typical plant and animal life of the area. We supply well-documented nature brochure and even free bikes to the public. We have also installed an ecological laboratory, specially developed in cooperation with teachers so as to correspond with the learning programmes of secondary schools. The laboratory is manned by a qualified biology teacher. The examined samples for soil and water research come from our own nature reserve (6ha) located on the site of the power plant. Another module consists of guided tours in the power plant. Each visitor ran take a guided bus tour on site. and take a look at the control room, the

  19. Wireless Power System Design for Mobile Robots used in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, S. Y.; Yoo, S. J.; Lee, Kun J.; Rim, C. T.

    2012-01-01

    The robots used in nuclear power plants (NPP) have received much attention in recent years due to the Fukushima nuclear accident, which is considered as one of the worst nuclear disasters. In general, the NPP robots can play important roles in fuel exchange, repair work, radiation monitoring, rescue, and scouting out NPP. Under these conditions, human access to NPP during normal and emergency operations is strictly restricted due to the risks of high level radiation and contamination. However, in practice, robots have not been widely used in NPP because of the following limitations. First, the NPP robots cannot be of multi-purpose use because of their mission complexity and uniqueness. Second, the demand of the NPP robots is low due to the limited number of NPP over the world. Third, the NPP robots developed so far have no enough confidence in spite of the improvement of robot technology. Lastly, the NPP robots cannot carry on their mission continuously due to the limited energy capacity of the battery: mobile robots should stop working every two hours to recharge their batteries and spend least twenty minutes. As the solutions for this 'energy hungry' problem, high capacity batteries, quick battery chargers, power cables, and internal combustion engines were proposed; however, they still have the problems such as limited mission time and range, frequent recharging, or exhausting emission and noise. In this paper, the wireless power transfer systems (WPTS) for NPP robots are proposed. This technology can let NPP robots free from mission time and range limits, and exhausting emission. The requirements for the NPP robots are newly proposed, and two types of WPTS, roaming and railway, are suggested in this paper

  20. R and D status for NPP life management in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ryong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2009-04-15

    The economical benefits may be achieved by the plant life management (PLiM) as well as structural integrity of the critical components of NPP. Systems, structures and components (SSC) of NPP are designed to have safety margins in design stage, and being operated with operational margins. As the plant gets older and older, however, aging of SSC occurs and some of SSC may be sometimes failed due to the unexpected aging mechanisms in design stage. Most countries which have operated NPP have their own R and D programs to establish proper countermeasures against the aging and degradation of SSC, The well known program are materials reliability program (MRP) and steam generator management program (SGMP) of EPRI. In Korea, we also have our own R and D programs for the plant life management. In this paper, the present status of the R and D programs will be introduced. Long term operation of a nuclear power plant is one of the goals that the plant wants to achieve, which may be possible as long as the plant safety is maintained and the economical benefits is expected. The economical benefits may be achieved by the plant life management (PLiM) activities. Many R and D activities related to PLiM have been carried out and implemented to Korean NPP, Kori Unit 1 and Wolsong Unit 1 in particular, for the long term operation beyond their original design lives. Those activities include PLiM study, PSR, SGMP, MRP, thinned pipe management program, study on dissimilar metal welds, aging monitor etc. With the results of R and D activities, continued operation of Kori Unit 1 was successfully started from January 17, 2008 for next 10 years beyond its design life. It must be a landmark of 30 years history of nuclear power generation in Korea. Subsequently Wolsong Unit 1 is also expected to start its continued operation when the replacement of pressure tubes and feeders are completed in 2009. Many countries have plans to build new reactors or to extend the life of operating plants.

  1. R and D status for NPP life management in Korea

    International Nuclear Information System (INIS)

    Kim, Tae Ryong

    2009-01-01

    The economical benefits may be achieved by the plant life management (PLiM) as well as structural integrity of the critical components of NPP. Systems, structures and components (SSC) of NPP are designed to have safety margins in design stage, and being operated with operational margins. As the plant gets older and older, however, aging of SSC occurs and some of SSC may be sometimes failed due to the unexpected aging mechanisms in design stage. Most countries which have operated NPP have their own R and D programs to establish proper countermeasures against the aging and degradation of SSC, The well known program are materials reliability program (MRP) and steam generator management program (SGMP) of EPRI. In Korea, we also have our own R and D programs for the plant life management. In this paper, the present status of the R and D programs will be introduced. Long term operation of a nuclear power plant is one of the goals that the plant wants to achieve, which may be possible as long as the plant safety is maintained and the economical benefits is expected. The economical benefits may be achieved by the plant life management (PLiM) activities. Many R and D activities related to PLiM have been carried out and implemented to Korean NPP, Kori Unit 1 and Wolsong Unit 1 in particular, for the long term operation beyond their original design lives. Those activities include PLiM study, PSR, SGMP, MRP, thinned pipe management program, study on dissimilar metal welds, aging monitor etc. With the results of R and D activities, continued operation of Kori Unit 1 was successfully started from January 17, 2008 for next 10 years beyond its design life. It must be a landmark of 30 years history of nuclear power generation in Korea. Subsequently Wolsong Unit 1 is also expected to start its continued operation when the replacement of pressure tubes and feeders are completed in 2009. Many countries have plans to build new reactors or to extend the life of operating plants.

  2. Accident localization system with jet condensers for VVER 440-V 230 NPP at Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Murani, J.

    1995-01-01

    The operational safety of the V1 nuclear power plant (NPP) is unsatisfactory and does not correspond to present requirements as to nuclear safety. Further NPP operation after 1995 is conditional on nuclear safety enhancement to a level comparable with that in West European countries. This aim should be achieved by a principal reconstruction involving in addition to others also backfitting the V1 NPP with technical facilities aimed at coping with a design basis accident (DBA).To cope with such an accident the Power Equipment Research Institute (VUEZ) designed an accident localization system with jet condensers. This system consists of (a) an air trap (one for each unit, mutually interconnected) with an expansion bell enclosed within, placed on a plate with 200 pipes of jet condensers passing through, and (b) a connecting duct between the hermetic zone and the air trap. The vertical jet condenser is an essential element of the system designed for steam condensation. Apart from condensation it serves as a water seal separating units 1 and 2.Demonstration tests of the jet condenser (model 1:1) condensing function were carried out at the testing unit of the All-Union Research Institute for NPP Operation (VNIIAES), Moscow in Kashir, 11-22 September 1992. These experiments proved the jet condenser ability to ensure complete condensation of the steam produced. Experimental verification of the sealing function (model 1:1) was carried out at the testing unit of the VUEZ Tlmace. These experiments concerning the dynamics and overpressure in the free space above the pool were close to the conditions in the air trap during DBA. The jet condenser height was proved to be sufficient to ensure the sealing function. Design and experimental work has been implemented in close cooperation with Russian experts Mr. V.N. Bulynin from the VNIIAES, Moscow, and Mr. M.V. Kuznecov from the Scientific and Engineering Center for Nuclear and Radiological Safety, Moscow. (orig.)

  3. Main directions of works on radioactive waste management at 30-km zone near the Chernobyl' NPP

    International Nuclear Information System (INIS)

    Grushinskij, B.Ya.; Komarov, V.I.; Proskuryakov, A.N.; Kham'yanov, L.N.; Khubizov, S.B.; Ignatenko, E.I.; Ryzhkova, V.N.; Luppov, V.A.; Matskevich, G.V.; Frolov, V.N.

    1989-01-01

    Main points and stages of creating an specialized enterprise for centralized reprocessing and radioactive waste disposal are considered. The enterprise is intended for collection conditioning and burial of all types of radioactive wastes, formed during liquidation of accident effect at the Chernobyl' NPP as well as forming in operation of NPP. The enterprise is also used to decontaminate equipment and constructions, for reprocessing of secondary radioactive wastes forming during decontamination process of equipment constructions, transport and work clothes

  4. The environmental constraint needs for design improvements to the Saligny I/LLW-repository near Cernavoda NPP

    International Nuclear Information System (INIS)

    Barariu, Gheorghe

    2007-01-01

    The paper presents the new perspectives on the development of the L/ILW Final Repository Project which will be built near Cernavoda NPP. The Repository is designed to satisfy the main performance objectives in accordance to IAEA recommendation. Starting in October 1996, Romania became a country with an operating nuclear power plant. Reactor 2 reached the criticality on May 6, 2007 and it will be put in commercial operation in September 2007. The Ministry of Economy and Finance has decided to proceed with the commissioning of Units 3 and 4 of Cernavoda NPP till 2014. The Strategy for radioactive waste management was elaborated by National Agency for Radioactive Waste (ANDRAD), the jurisdictional authority for definitive disposal and the coordination of nuclear spent fuel and radioactive waste management (Order 844/2004) with attributions established by Governmental Decision (GO) 31/2006. The Strategy specifies the commissioning of the Saligny L/IL Radwaste Repository near Cernavoda NPP in 2014. When designing the L/IL Radwaste Repository, the following prerequisites have been taken into account: 1) Cernavoda NPP will be equipped with 4 Candu 6 units. 2) National Legislation in radwaste management will be reviewed and/or completed to harmonize with UE standards 3) The selected site is now in process of confirmation after a comprehensive set of interdisciplinary investigations. (author)

  5. Central eastern Europe approach to the security over nuclear materials

    International Nuclear Information System (INIS)

    Smagala, G.

    2002-01-01

    Full text: This paper presents an overview of the national approaches to physical protection of nuclear materials in Central Eastern Europe (CEE), with an emphasis on Poland. Soviet influence in the past led to inadequate safety culture in nuclear activities and insufficient security of nuclear materials and facilities in the region. In the centralized economies all aspects of nuclear activities, including ownership of the nuclear facilities, were the responsibility of the state with no clear separation between regulating and promoting functions. During the last decade a significant progress has been made in the region to clean up the legacy of the past and to improve practices in physical protection of nuclear materials. The countries of Central Eastern Europe have had many similar deficiencies in nuclear field and problems to overcome, but cannot be viewed as a uniform block. There are local variations within the region in a size of nuclear activities, formulated respective regulations and adopted measures to secure nuclear materials and facilities. Nevertheless, all twelve nations, with nuclear reactors and without nuclear facilities, have joined the convention on the physical protection of nuclear material and most of them declare that they have followed the IAEA recommendations INFCIRC/225/Rev.4 to elaborate and implement their physical protection systems of nuclear materials and facilities. The largest request for an international advisory mission (IPPAS) to review states' physical protection systems and to address needs for improvement was received from the countries of Central Eastern Europe. Poland belongs to the beneficiaries where the IPPAS mission and later follow-up consultations resulted in physical protection upgrade of the research reactor under the IAEA/US/UK technical assistance project. A powerful incentive to the progress made in a number of CEE countries was the goal of accession to the European Union. The physical protection of nuclear

  6. Axial blanket enrichment optimization of the NPP Krsko fuel

    International Nuclear Information System (INIS)

    Kromar, M.; Kurincic, B.

    2001-01-01

    In this paper optimal axial blanket enrichment of the NPP Krsko fuel is investigated. Since the optimization is dictated by economic categories that can significantly vary in time, two step approach is applied. In the first step simple relationship between the equivalent change in enrichment of axial blankets and central fuel region is established. The relationship is afterwards processed with economic criteria and constraints to obtain optimal axial blanket enrichment. In the analysis realistic NPP Krsko conditions are considered. Except for the fuel enrichment all other fuel characteristics are the same as in the fuel used in the few most recent cycles. A typical reload cycle after the plant power uprate is examined. Analysis has shown that the current blanket enrichment is close to the optimal. Blanket enrichment reduction results in an approximately 100 000 US$ savings per fuel cycle.(author)

  7. On application of the systematic approach to training in Qinshan NPP

    International Nuclear Information System (INIS)

    Wang Riqing

    1997-01-01

    The author describes the feature of systematic approach to training and introduces the situation about using the approach for training operation and maintenance personnel in Qinshan NPP. The final part of paper shows that there are still some problems worthy of serious consideration in application of the systematic approach to training in nuclear power plant

  8. Nondestructive testing of nuclear reactor components integrity

    International Nuclear Information System (INIS)

    Mala, M.; Miklos, M.

    2011-01-01

    Nuclear energy must respond to current challenges in the energy market. The significant parameters are increase of the nuclear fuel price, closed fuel cycle, reduction and safe and the final disposal of high level radioactive waste. Nowadays, the discussions on suitable energy mix are taking place not only here in Czech Republic, but also in many other European countries. It is necessary to establish an appropriate ratio among the production of electricity from conventional, nuclear and renewable energy sources. Also, it is necessary to find ways how to streamline the economy, central part of the nuclear fuel cycle and thereby to increase the competitiveness of nuclear energy. This streamlining can be carried out by improving utilization of existing nuclear fuel with maintaining a high degree of nuclear facilities safety. Increasing operational reliability and safety together with increasing utilization of nuclear fuel place increasing demands on monitoring of changes during fuel burnup. The potential fuel assembly damages in light water reactors are prevented by the introduction of new procedures and programs of the fuel assembly monitoring. One of them is the Post Irradiation Inspection Program (PIIP) which is a good tool for monitoring of chemical regime impact on the fuel assembly cladding behavior. Main nondestructive techniques that are used at nuclear power plants for the fuel assembly integrity evaluation are ultrasonic measurements, eddy current measurements, radiographic testing, acoustic techniques and others. Ultrasonic system is usual tool for leak fuel rod evaluation and it is also used at Temelin NPP. Since 2009, Temelin NPP has cooperated with Research Center Rez Ltd in frame of PIIP program at both units WWER 1000. This program was established for US VVantage6 fuel assemblies and also it continues for Russian TVSA-T fuel assemblies. (author)

  9. RAAN Conference. Support of Nuclear Power. Opening talk

    International Nuclear Information System (INIS)

    Valeca, Serban

    2002-01-01

    Nuclear power in Romania was initiated on the basis of CANDU reactor type technology, an option found to fulfill the requirements for a sustainable economic development, to support the electric energy demand of the country and to ensure the population and environment protection. The construction of the Cernavoda NPP was heavily based on the Romanian industry participation and basic and applied nuclear research national resources. The experience acquired from Cernavoda NPP Unit 1 will be fructified in the construction of Units 2-5 to be built. The Romanian Ministry of Education and Research implemented a nuclear national program for research and development taking into account the European Union requirements and recommendations, the cooperation with the IAEA - Vienna and the Romanian government policy on short and medium terms in the nuclear field. The research-development program targeted: the reactor physics and nuclear fuel management; the operation safety of Cernavoda NPP Unit 1; improvement of technological solutions for Cernavoda NPP; improvement of nuclear fuel cycle technology; risk assesment and evaluation of the radiological impact upon the environment; behavior of the materials submitted to operational conditions in the reactor and nuclear facilities; radiation safeguards; application of nuclear technologies and methods in industry, agriculture, health and other sectors of social life. The author highlights also relating topics concerning legislation, financing and international cooperation. He stresses the important role of the Romanian Agency for nuclear activities, R.A.A.N. through the Institute of Nuclear Research at Pitesti, the Center for Technological Engineering for Nuclear Objectives at Bucharest and the Heavy Water Plant at Drobeta Turnu Severin

  10. Central Institute of Nuclear Research Rossendorf 25 years old

    International Nuclear Information System (INIS)

    Hohmuth, K.; Kaun, K.H.; Schmidt, A.; Hennig, K.; Brinckmann, H.F.; Lehmann, E.; Rossbander, W.; Bitterlich, H.; Weibrecht, R.; Fuelle, R.; Nebel, D.; Reetz, T.; Beyer, G.J.; Muenze, R.

    1981-12-01

    A colloquium dedicated the 25th anniversary of the foundation of the Central Institute for Nuclear Research of the GDR Academy of Sciences was held on January, 21st, '81. 13 papers were given which dealt with aspects of the institute's history as well as with modern trends in nuclear and solid state physics, nuclear energy and chemistry, radioisotope production, radiation protection and nuclear information. (author)

  11. Framework of the NPP I and C Security for Regulatory Guidance

    International Nuclear Information System (INIS)

    Kim, Young Mi; Jeong, Choong Heui

    2013-01-01

    I and C (Instrumentation and control) systems which have computers are a critical part of the safety and security at nuclear facilities. As the use of computers in I and C continue to grow, so does the target for cyber-attack. They include desktop computers, mainframe systems, servers, network devices, embedded systems and programmable logic controllers (PLSs) and other digital computer systems. As the Stuxnet malware shows, I and C systems of the NPPs are no longer safe from the threat of cyber-attacks. These digital I and C systems must be protected from the cyber-attacks. This paper presents framework of the NPP I and C security for regulatory guidance. KINS regulatory guideline 8.22 has been applied to new and operation nuclear power plants. This guideline refers the applicable scope of the cyber security activities, cyber security policies and security plans, and assessments of cyber security and execution of the cyber security activities. Newly developed guideline will be helpful for implement security control to ensure safe operation of NPP I and C systems

  12. Framework of the NPP I and C Security for Regulatory Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Mi; Jeong, Choong Heui [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    I and C (Instrumentation and control) systems which have computers are a critical part of the safety and security at nuclear facilities. As the use of computers in I and C continue to grow, so does the target for cyber-attack. They include desktop computers, mainframe systems, servers, network devices, embedded systems and programmable logic controllers (PLSs) and other digital computer systems. As the Stuxnet malware shows, I and C systems of the NPPs are no longer safe from the threat of cyber-attacks. These digital I and C systems must be protected from the cyber-attacks. This paper presents framework of the NPP I and C security for regulatory guidance. KINS regulatory guideline 8.22 has been applied to new and operation nuclear power plants. This guideline refers the applicable scope of the cyber security activities, cyber security policies and security plans, and assessments of cyber security and execution of the cyber security activities. Newly developed guideline will be helpful for implement security control to ensure safe operation of NPP I and C systems.

  13. Specific problems in Kozloduy municipality, concerning NPP operation and decommissioning

    International Nuclear Information System (INIS)

    Pironkova, L.

    2000-01-01

    The only nuclear power plant in Bulgaria, which operates for 25 years is located in Kozloduy. Kozloduy municipality is situated in the northern part of Danube plane, includes the administrative center and four villages. It is 200 km far from Sofia and 80 km from the regional center Vratza. The Kozloduy NPP operates 6 units of total capacity 3760 MW, producing more than 40% of the electricity needs in Bulgaria. Settled and recurring problems of the municipality are related to economic, geographical, demographic and administration issues. Future problems will be related to forthcoming reactor shutdown and decommissioning. This involves economic problems, possible bankruptcies of local firms servicing the NPP, decreasing budget and living standard, expected restrictions of social programs, increasing unemployment, possible changes in demographic structure of population

  14. Safety critical FPGA-based NPP instrumentation and control systems: assessment, development and implementation

    International Nuclear Information System (INIS)

    Bakhmach, E. S.; Siora, A. A.; Tokarev, V. I.; Kharchenko, V. S.; Sklyar, V. V.; Andrashov, A. A.

    2010-10-01

    The stages of development, production, verification, licensing and implementation methods and technologies of safety critical instrumentation and control systems for nuclear power plants (NPP) based on FPGA (Field Programmable Gates Arrays) technologies are described. A life cycle model and multi-version technologies of dependability and safety assurance of FPGA-based instrumentation and control systems are discussed. An analysis of NPP instrumentation and control systems construction principles developed by Research and Production Corporation Radiy using FPGA-technologies and results of these systems implementation and operation at Ukrainian and Bulgarian NPP are presented. The RADIY TM platform has been designed and developed by Research and Production Corporation Radiy, Ukraine. The main peculiarity of the RADIY TM platform is the use of FPGA as programmable components for logic control operation. The FPGA-based RADIY TM platform used for NPP instrumentation and control systems development ensures sca lability of system functions types, volume and peculiarities (by changing quantity and quality of sensors, actuators, input/output signals and control algorithms); sca lability of dependability (safety integrity) (by changing a number of redundant channel, tiers, diagnostic and reconfiguration procedures); sca lability of diversity (by changing types, depth and method of diversity selection). (Author)

  15. Experience in development and implementation of Control Room continuing training programme at Ignalina NPP

    International Nuclear Information System (INIS)

    Peradze, K.

    2002-01-01

    Based on the same SAT principles each NPP (or operating organisation) goes by its own way, which is defined by available resources, assistance, NPP operational conditions, including policy, economics and public opinion. There were several groups of factors, which are very important to provide quality of training- Time, Human Resources and material resources. We pay especial attention to simulator training. In different conditions personnel behaviour is defined by knowledge, rule or skills. It is very difficult to develop unknown to personnel scenarios. But sometimes- real events not described in plant procedures take place at Nuclear Power Plants. Therefore during NPP events analysis we pay a especial attention searching for situation when knowledge or rule defines personnel behaviour. To provide analysis and statistics of Control Room Personnel training at INPP simulator we developed 'INPP events computer data base'. (author)

  16. Transposition of the SQUG methodology to the Belgian NPP(nuclear power station)

    International Nuclear Information System (INIS)

    Detroux, P.; Aelbrecht, D.; Naisse, J.C.; Greer, J.L.

    1991-01-01

    The units of a Belgian Nuclear PowerStation had to be seismically reassessed after ten years of operation because the seismic requirements were upgraded from 0.1g to 0.17g free field ground acceleration. Seismic requalification of the active equipment was a critical problem as the current classical methods were too conservative and their application would have lead to unacceptable replacement or reinforcement of a lot of equipment. The approach based on the use of past experience of seismic behavior of non nuclear equipment was chosen; this methodology was developed by the Seismic Qualification Utility Group (SQUG); a group of U.S. utilities and had to be transposed to the Belgian N.P.P. This transposition is described in this paper. It affects different aspects of the methodology. First, the impact of specific requests of the Safety Authorities on the elaboration of the Safe Shutdown Equipment List (SSEL) shall be examined. Then it is explained why the tedious work of specific relay screening was avoided by taking advantage of initial design features for both Instrumentation and Control (I and C) and Electrical power distribution system; the impact on the Electrical SSEL is also described. Afterwards, it is presented how it was possible to conduct a specific existing seismic qualification at 0.1 g free field ground acceleration. Finally, the resolution of specific important problems that arose from the application of the SQUG methodology, is presented such as the definition of the grade level and the conservatism of the classical Amplified Floor Spectra (criterion 1), the calculation of the nozzle loads on mechanical equipment connected to long unbraced piping and the transfer of these loads to the anchorage. (author)

  17. External hazards analysis approach to level 1 PSA of Mochovce NPP - Slovakia

    International Nuclear Information System (INIS)

    Stojka, Tibor

    2000-01-01

    Analyses of external events had been first time performed at the design stage of the Mochovce NPP showing sufficiently low contribution of external hazards to core damage frequency. But, based on IAEA document 'Safety problems of WWER-440/213 NPPs and the categorization' (IAEA-EBP-WWER-03, 1996), the need of new reassessment arose due to discrepancy of some origin recommendations in compare with present IAEA ones. Mochovce NPP Nuclear Safety Improvements Program elaborated at the same time included the IAEA recommendations and following improvements were proposed to perform in context of external events. 1. Seismic project and new locality seismic evaluation This safety improvement includes also some 'on site' technical improvements in seismic stability of structures and equipment. 2. Unit specific analyses of extreme meteorologic conditions. This safety improvement focuses on impact of feasible extreme conditions on NPP systems caused by rain, snow and hail storms, frost, winds, low and high temperatures. 3. Analyses of external hazards caused by humans. In this safety improvement were specified: feasible sources of explosions; analyses of hydrogen, gas and propane-calor gas depots; air crash risk. The results of these implemented safety improvements were considered in the PSA study. The External hazards analysis is also part of Level 1 PSA Mochovce NPP performed by PSA Department of VUJE Trnava Inc., Engineering, Design and Research Organization, Slovakia. Some partial analyses are performed in cooperation with following companies DS and S - SAIC, USA and Geophysical Institute Academy of Science, Slovakia Relko, Slovakia. Basic documents are: NUREG/CR-2300 'PRA Procedures Guide - A Guide to the Performance of Probabilistic Risk Assessments for Nuclear Power Plants' and IAEA SS No. 50-P-7 'Treatment of External Hazards in PSA for NPPs. The external hazards analysis consists of following parts: 1. Geography and plant locality; 2. Nearby industry; 3. Extreme

  18. Current status of Chinese nuclear power industry and technology

    International Nuclear Information System (INIS)

    Kim, Hyun Min; Kim, Min; Jeong, Hee Jong; Hwang, Jeong Ki; Cho, Chung Hee

    1996-10-01

    China has been carrying out active international cooperation aiming to be a country where is to be an economical super power and an advanced country in nuclear power technology by the year early 2000, and China also has begun to be recognized as the largest potential market for the construction of nuclear power plants(NPPs) expecting to construct more than thirty nuclear power units by the year 2020. China has advanced technology in the basic nuclear science including liquid metal breeder reactor technology, nuclear material, medium and small size power plants, and isotope production technology, and also China has complete nuclear fuel cycle technology. However, China still has low NPP technology. Therefore, it is expected that China may have complementary cooperative relationship with China, it is expected that Korea may have an access to the advanced Chinese nuclear science technology, and may have a good opportunity to explore the Chinese market actively exporting excellent Korean NPP technology, and further may have a good position to the neighboring Asian countries' NPP markets. From this perspective, general Chinese social status, major nuclear R and D activity status, and correct NPP and technology status have been analyzed in this report, and this report is expected to be a useful resource for cooperating with China in future. 10 tabs., 6 figs., 16 refs. (Author)

  19. Robot dispatching Scenario for Accident Condition Monitoring of NPP

    International Nuclear Information System (INIS)

    Kim, Jongseog

    2013-01-01

    In March of 2011, unanticipated big size of tsunami attacks Fukushima NPP, this accident results in explosion of containment building. Tokyo electric power of Japan couldn't dispatch a robot for monitoring of containment inside. USA Packbot robot used for desert war in Iraq was supplied to Fukushima NPP for monitoring of high radiation area. Packbot also couldn't reach deep inside of Fukushima NPP due to short length of power cable. Japanese robot 'Queens' also failed to complete a mission due to communication problem between robot and operator. I think major reason of these robot failures is absence of robot dispatching scenario. If there was a scenario and a rehearsal for monitoring during or after accident, these unanticipated obstacles could be overcome. Robot dispatching scenario studied for accident of nuclear power plant was described herein. Study on scenario of robot dispatching is performed. Flying robot is regarded as good choice for accident monitoring. Walking robot with arm equipped is good for emergency valve close. Short time work and shift work by several robots can be a solution for high radiation area. Thin and soft cable with rolling reel can be a good solution for long time work and good communication

  20. Professional adaptability of nuclear power plant operators

    International Nuclear Information System (INIS)

    He Xuhong; Huang Xiangrui

    2006-01-01

    The paper concerns in the results of analysis for nuclear power plant (NPP) operator job and analysis for human errors related NPP accidents. Based on the principle of ergonomics a full psychological selection system of the professional adaptability of NPP operators including cognitive ability, personality and psychological health was established. The application way and importance of the professional adaptability research are discussed. (authors)

  1. Education and Training of Safety Regulation for Nuclear Safety Infrastructure: Its Necessity and Unique Features

    International Nuclear Information System (INIS)

    Choi, Young Sung; Choi, Young Joon; Lee, Jae Cheon

    2009-01-01

    Faced with global warming and electricity demands, countries over the world recognize the comparative advantages of nuclear energy. It is estimated that about 300 nuclear power plants (NPPs) expect to be constructed until 2030 worldwide. In addition, according to the IAEA, approximately 20 new countries might have their first NPP in operation by 2030 in the high projection compared with bout 5 new countries in the low projection. When introducing nuclear power, the implementation of an appropriate infrastructure to address all of the relevant issues is a central concern of international community. In particular, nuclear power program requires, at an earlier stage than when construction starts, the development of a legal and regulatory framework and training of regulators and safety experts whose combined knowledge adequately covers all areas of nuclear safety and regulation applied at a NPP construction and operation. As an essential component of such human resource development, special attention was paid to the provision of education and training to regulators of which countries plan to introduce NPPs. In term of education theory, safety regulation has some unique features in learning and teaching, which are different from those of nuclear engineering or development. This paper overviews nuclear safety infrastructure, explores the roles of exporting countries, and presents features and components in education of nuclear safety regulation

  2. Dependence of adsorption quality of carbon in NPP air cleaning systems

    International Nuclear Information System (INIS)

    Vujisic, Lj.

    1994-01-01

    A relationship which describes the influence of aging, relative humidity and organic poisons on the adsorption quality of coconut charcoal has been established. The relationship is rearranged for easy calculation of the reliable operation time of the adsorbent media in charcoal filters of any single nuclear air-cleaning system during accidental and incidental situation of NPP (author)

  3. NPP Design Basis Handover and Knowledge Preservation from Subcontractors, Vendors and EPC

    International Nuclear Information System (INIS)

    Freeland, Kent

    2013-01-01

    Using PLM-based Workflow for Configuration Management (CM) in the Nuclear Power Industry Advantages – some work to do! • NPP’s must adapt to using PLM-based solutions to support CM and to synchronize design changes to asset or product changes, and reduce “slipstreaming”. In the NPP world, this often appears as events that circumvent CM – for example, non-approved parts substitutions and “temporary” plant modifications that are never removed. • PLM serves as the method for unifying the application of requirements to design changes, processes and workflow. In NPP’s, requirements are generally considered only relevant to designs – not process and workflow. • PLM supports Configuration Management and Design Basis in Regulator Action Tracking for NPP’s, and application of PLM-based CM to regulator action and compliance systems. This is a poorly-understood application of CM in NPP’s, yet these elements control large parts of the NPP design basis. • Suppliers, EPC’s and Technology Vendors must also understand the role of CM, SE and PLM in construction of new standards-driven NPP designs (like EPR and Westinghouse AP-1000 NPP designs), as well as understanding the role and handling of Knowledge Systems

  4. Innovative Approach to Implementation of FPGA-based NPP Instrumentation and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Andrashov, Anton; Kharchenko, Vyacheslav; Sklyar, Volodymir [Centre for Safety Infrastructure-Oriented Research and Analysis, Kharkov (Ukraine); SIORA Alexander [Research and Production Corporation Radiy, Kirovograd (Ukraine)

    2011-08-15

    Advantages of application of Field Programmable Gates Arrays (FPGA) technology for implementation of Instrumentation and Control (I and C) systems for Nuclear Power Plants (NPP) are outlined. Specific features of FPGA technology in the context of cyber security threats for NPPs I and C systems are analyzed. Description of FPGA-based platform used for implementation of different safety I and C systems for NPPs is presented. Typical architecture of NPPs safety I and C system based on the platform, as well as approach to implementation of I and C systems using FPGA-based platform are discussed. Data on implementation experience of application of the platform for NPP safety I and C systems modernization projects are finalizing the paper.

  5. Innovative approach to implementation of FPGA-based NPP instrumentation and control systems

    International Nuclear Information System (INIS)

    Andrashov, Anton; Kharchenko, Vyacheslav; Sklyar, Volodymir; Siora, Alexander

    2011-01-01

    Advantages of application of Field Programmable Gates Arrays (FPGA) technology for implementation of Instrumentation and Control (I and C) systems for Nuclear Power Plants (NPP) are outlined. Specific features of FPGA technology in the context of cyber security threats for NPPs I and C systems are analyzed. Description of FPGA-based platform used for implementation of different safety I and C systems for NPPs is presented. Typical architecture of NPPs safety I and C system based on the platform, as well as approach to implementation of I and C systems using FPGA-based platform are discussed. Data on implementation experience of application of the platform for NPP safety I and C systems modernization projects are finalizing the paper. (author)

  6. Innovative Approach to Implementation of FPGA-based NPP Instrumentation and Control Systems

    International Nuclear Information System (INIS)

    Andrashov, Anton; Kharchenko, Vyacheslav; Sklyar, Volodymir; SIORA Alexander

    2011-01-01

    Advantages of application of Field Programmable Gates Arrays (FPGA) technology for implementation of Instrumentation and Control (I and C) systems for Nuclear Power Plants (NPP) are outlined. Specific features of FPGA technology in the context of cyber security threats for NPPs I and C systems are analyzed. Description of FPGA-based platform used for implementation of different safety I and C systems for NPPs is presented. Typical architecture of NPPs safety I and C system based on the platform, as well as approach to implementation of I and C systems using FPGA-based platform are discussed. Data on implementation experience of application of the platform for NPP safety I and C systems modernization projects are finalizing the paper

  7. Spent fuel management and closed nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kudryavtsev, E.G.

    2012-01-01

    Strategic objectives set by Rosatom Corporation in the field of spent fuel management are given. By 2030, Russia is to create technological infrastructure for innovative nuclear energy development, including complete closure of the nuclear fuel cycle. A target model of the spent NPP nuclear fuel management system until 2030 is analyzed. The schedule for key stages of putting in place the infrastructure for spent NPP fuel management is given. The financial aspect of the problem is also discussed [ru

  8. Wireless Power System Design for Mobile Robots used in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. Y.; Yoo, S. J.; Lee, Kun J.; Rim, C. T. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    The robots used in nuclear power plants (NPP) have received much attention in recent years due to the Fukushima nuclear accident, which is considered as one of the worst nuclear disasters. In general, the NPP robots can play important roles in fuel exchange, repair work, radiation monitoring, rescue, and scouting out NPP. Under these conditions, human access to NPP during normal and emergency operations is strictly restricted due to the risks of high level radiation and contamination. However, in practice, robots have not been widely used in NPP because of the following limitations. First, the NPP robots cannot be of multi-purpose use because of their mission complexity and uniqueness. Second, the demand of the NPP robots is low due to the limited number of NPP over the world. Third, the NPP robots developed so far have no enough confidence in spite of the improvement of robot technology. Lastly, the NPP robots cannot carry on their mission continuously due to the limited energy capacity of the battery: mobile robots should stop working every two hours to recharge their batteries and spend least twenty minutes. As the solutions for this 'energy hungry' problem, high capacity batteries, quick battery chargers, power cables, and internal combustion engines were proposed; however, they still have the problems such as limited mission time and range, frequent recharging, or exhausting emission and noise. In this paper, the wireless power transfer systems (WPTS) for NPP robots are proposed. This technology can let NPP robots free from mission time and range limits, and exhausting emission. The requirements for the NPP robots are newly proposed, and two types of WPTS, roaming and railway, are suggested in this paper

  9. Some research results by risk-inform approaches for NPP safety and operational efficiency

    International Nuclear Information System (INIS)

    Komarov, Yu.A.

    2013-01-01

    Article is the presentation of the same name monograph, which is planned to be issued. In the article the perspective problems of further development risk-oriented approach (ROA) for the grounding and realization of measures on increase of safety and operational efficiency of NPP are considered. Unlike the traditional approach for the ROA, mean due the definition of probabilistic and/or deterministic methods of risk parameters, as criterion functions essence and the measure of the estimation are defined by the solution of specific problem in nuclear field. The ROA application allows essentially expanding opportunities of the substantiations and realizations of measures on safety and operational efficiency increase of NPP

  10. Proceedings of the Second Regional Meeting on Nuclear Energy in Central Europe

    International Nuclear Information System (INIS)

    Stritar, A.; Jencic, I.

    1995-01-01

    Second Regional Meeting for Nuclear Energy in Central Europe is an annual meeting of the Nuclear Society of Slovenia. The proceedings contains 75 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region

  11. Proceedings of the Second Regional Meeting on Nuclear Energy in Central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Stritar, A; Jencic, I [eds.; Nuclear Society of Slovenia (Slovenia)

    1996-12-31

    Second Regional Meeting for Nuclear Energy in Central Europe is an annual meeting of the Nuclear Society of Slovenia. The proceedings contains 75 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region

  12. Resent studies in nuclear energy at INRNE - BAS

    International Nuclear Information System (INIS)

    Tonev, D.

    2013-01-01

    Institute for Nuclear Research and Nuclear Energy performs research of its own and actively participates in European projects for the development and validation of the new generation software for reactor simulation and safety analysis. Current results and planned activities aim to improve the performance and safety of the Kozloduy NPP. The scientific and technical support of the nuclear industry and the education of young specialists contribute to the sustainable development of nuclear power in Bulgaria. In this paper the main research activities of the Institute for Nuclear Research and Nuclear Energy in nuclear energy like: Core physics; Reactor dynamics and safety; NPP safety analysis; Spent fuel analysis; Nuclear fuel performance; Reactor dosimetry are presented

  13. Nuclear knowledge management and preservation in Lithuania

    International Nuclear Information System (INIS)

    Karaliute, R.

    2005-01-01

    Problems of nuclear knowledge management and preservation in Lithuania are presented in the paper. The support provided through bilateral cooperation projects was very important for Lithuania. The main projects implemented in the last 14 years are described in this paper. Lithuania joined INIS (International Nuclear Information System) in 1994 and established its own INIS national centre in the premises of the Ministry of Economy. To educate the public about the processes going on in Ignalina NPP, the information centre of Ignalina NPP was founded. Nuclear and nuclear related education in Lithuania is provided in the Kaunas Technological University. (author)

  14. The virtual digital nuclear power plant: A modern tool for supporting the lifecycle of VVER-based nuclear power units

    Science.gov (United States)

    Arkadov, G. V.; Zhukavin, A. P.; Kroshilin, A. E.; Parshikov, I. A.; Solov'ev, S. L.; Shishov, A. V.

    2014-10-01

    The article describes the "Virtual Digital VVER-Based Nuclear Power Plant" computerized system comprising a totality of verified initial data (sets of input data for a model intended for describing the behavior of nuclear power plant (NPP) systems in design and emergency modes of their operation) and a unified system of new-generation computation codes intended for carrying out coordinated computation of the variety of physical processes in the reactor core and NPP equipment. Experiments with the demonstration version of the "Virtual Digital VVER-Based NPP" computerized system has shown that it is in principle possible to set up a unified system of computation codes in a common software environment for carrying out interconnected calculations of various physical phenomena at NPPs constructed according to the standard AES-2006 project. With the full-scale version of the "Virtual Digital VVER-Based NPP" computerized system put in operation, the concerned engineering, design, construction, and operating organizations will have access to all necessary information relating to the NPP power unit project throughout its entire lifecycle. The domestically developed commercial-grade software product set to operate as an independently operating application to the project will bring about additional competitive advantages in the modern market of nuclear power technologies.

  15. The development of nuclear power and nuclear manpower training in China

    International Nuclear Information System (INIS)

    Yang Lin; Xu Xiyue

    2000-01-01

    There are two nuclear power plants (NPP) in operation in China. The Qinshan NPP was the first that was constructed by China's own efforts and went into operation on 1991. The Daya Bay NPP was constructed using foreign funds, technology and went into operation on 1994. Four nuclear power projects with 8 units were initiated during the State Ninth Five-years Plan. The 8 units are expected for commercial operation between 2002 and 2005. China is preparing for the Tenth Five-Year Plan, in which China will develop the nuclear power at a moderate pace. The 13 universities and colleges were offering nuclear science educations. The students from these universities and college can meet the needs of nuclear institutes and enterprises. China National Nuclear Corporation (CNNC) owns the Graduated School of Nuclear Industry and the Nuclear Industry Administrative Cadre College, which will turn into the nuclear training center in future. Besides, CNNC also owns 4 institutions awarding Doctorate and 9 institutes awarding Master Degree. Many programs for education and training carried out by CNNC are presented, such as direct education supported by CNNC's finances, on job training, education for the second bachelor degree, training for senior economic professionals, research course for senior professionals, short time training course and training for license. China trained nuclear personnel by international cooperation with other countries both through multilateral and bilateral cooperation programs. CNNC has established scientific and economic ties with over 40 countries. CNNC has held diversified training for nuclear industry professionals with our own efforts and with the support from the State for many years. Today, the rapid development of nuclear industry needs more professionals. We must make greater efforts to enhance human resources development. Nuclear Safety is very important for nuclear energy development. Nuclear safety is closely related to each person who works in

  16. Assuring the competence of nuclear power plant contractor personnel

    International Nuclear Information System (INIS)

    2001-07-01

    This report was prepared in response to a recommendation by the IAEA International Working Group on Training and Qualification of NPP Personnel (JWG-T and Q) and supported by a number of IAEA meetings on NPP personnel training. IAEA publications on NPP training are the only international documents available to all Member States with nuclear programmes. This report complements the following IAEA publications on NPP personnel training: Technical Reports Series No. 380, Nuclear Power Plant Personnel Training and its Evaluation, A Guidebook; IAEA-TECDOC-1057, Experience in the Use of Systematic Approach to Training (SAT) for Nuclear Power Plant Personnel and IAEA-TECDOC-1063, IAEA World Survey on Nuclear Power Plant Personnel Training. This TECDOC also supplements the IAEA Safety Guide 50-SG-O1 (Rev. 1), Staffing of Nuclear Power Plants and the Recruitment Training and Authorization of Operating Personnel and Safety Standards Series No. NS-R-2, Safety of Nuclear Power Plants. Operation. Within the context of this report NPP contractors are defined as any personnel working for a nuclear power plant who are not directly employed by the nuclear power plant. Competence is the ability to perform to identified standards; it comprises skills, knowledge and attitudes and may be developed through education, experience and training. Qualification is a formal statement of achievement, resulting from an auditable assessment; if competence is assessed, the qualification becomes a formal statement of competence and may be shown on a certificate, diploma, etc. It is recognized that personnel are used to perform tasks that are of a specialised or temporary nature where it is not feasible to hire or maintain a full-time NPP employee. Accordingly, contractors may be used in a variety of situations to support NPPs. Typical situations include: supplies and services being delivered by the contractors that are subject to different quality standards based on a graded approach to assuring

  17. Assuring the competence of nuclear power plant contractor personnel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report was prepared in response to a recommendation by the IAEA International Working Group on Training and Qualification of NPP Personnel (JWG-T and Q) and supported by a number of IAEA meetings on NPP personnel training. IAEA publications on NPP training are the only international documents available to all Member States with nuclear programmes. This report complements the following IAEA publications on NPP personnel training: Technical Reports Series No. 380, Nuclear Power Plant Personnel Training and its Evaluation, A Guidebook; IAEA-TECDOC-1057, Experience in the Use of Systematic Approach to Training (SAT) for Nuclear Power Plant Personnel and IAEA-TECDOC-1063, IAEA World Survey on Nuclear Power Plant Personnel Training. This TECDOC also supplements the IAEA Safety Guide 50-SG-O1 (Rev. 1), Staffing of Nuclear Power Plants and the Recruitment Training and Authorization of Operating Personnel and Safety Standards Series No. NS-R-2, Safety of Nuclear Power Plants. Operation. Within the context of this report NPP contractors are defined as any personnel working for a nuclear power plant who are not directly employed by the nuclear power plant. Competence is the ability to perform to identified standards; it comprises skills, knowledge and attitudes and may be developed through education, experience and training. Qualification is a formal statement of achievement, resulting from an auditable assessment; if competence is assessed, the qualification becomes a formal statement of competence and may be shown on a certificate, diploma, etc. It is recognized that personnel are used to perform tasks that are of a specialised or temporary nature where it is not feasible to hire or maintain a full-time NPP employee. Accordingly, contractors may be used in a variety of situations to support NPPs. Typical situations include: supplies and services being delivered by the contractors that are subject to different quality standards based on a graded approach to assuring

  18. EPC projects for EPR Flamanville 3 NPP

    International Nuclear Information System (INIS)

    Diaz, J.I.; Polo, J.; Aymerich, E.; Cubian, B.

    2010-01-01

    IBERDROLA Ingenieria y Construccion is carrying out a handful of activities in the EPR Flamanville 3 -FA3 NPP- context since 2007 matching oriented to position the company in the emerging marketplace of new nuclear power plants Generation III+, whose expectation for the next years is highly promising. IBERDROLA Ingenieria y Construccion leads 5 EPC -Engineering, Procurement and Commissioning- projects for FA3 NPP from the Nuclear Island till Sea Water Pumping Station as follows: - Design, procurement. fabrication, installation and testing of 21 shell and tubes heat-exchangers for the nuclear island. 12 out of these 17 HXs are conventional and will be designed according to ASME BPV code Section VIII and have to comply with PED 97/23/CE and ESPN. The remaining 5 HXs are nuclear and will be designed according to ASME BPV code Section III and have also to comply with PED and ESPN. - Design, procurement, fabrication and assembly of 9 demineralizers for different plant systems. Three of these Important To Safety (IPS) equipments have been manufactured according with ASME VIII codes and six of them with EN 13445 code plus additional requirements to comply with PED and final client requirements for nuclear island. - Design, fabrication and installation of qualified travelling water screening filters. The equipments furnished will be two nuclear safety qualified filters and associated equipment (cleaning water system and control system). Additionally some auxiliary devices such as grids, automatic trash rakes and stop gates are included in the contract. - Engineering, procurement, fabrication, erection and commissioning for the condensate treatment plant. This system includes a demineralizer tank, 5 filters, reactive injection mixer, pneumatic and manual valves, piping and instrumentation and control systems. - Engineering, procurement erection and commissioning for the electro-chlorination plant to protect the IPS piping for Condensate Water System for FA3. This system

  19. EPC projects for EPR Flamanville 3 NPP

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, J.I.; Polo, J.; Aymerich, E.; Cubian, B. [Nuclear Generation Department, Iberdrola Ingenieria y Construccion, Avda. Manoteras 20, 28050 Madrid (Spain)

    2010-07-01

    IBERDROLA Ingenieria y Construccion is carrying out a handful of activities in the EPR Flamanville 3 -FA3 NPP- context since 2007 matching oriented to position the company in the emerging marketplace of new nuclear power plants Generation III+, whose expectation for the next years is highly promising. IBERDROLA Ingenieria y Construccion leads 5 EPC -Engineering, Procurement and Commissioning- projects for FA3 NPP from the Nuclear Island till Sea Water Pumping Station as follows: - Design, procurement. fabrication, installation and testing of 21 shell and tubes heat-exchangers for the nuclear island. 12 out of these 17 HXs are conventional and will be designed according to ASME BPV code Section VIII and have to comply with PED 97/23/CE and ESPN. The remaining 5 HXs are nuclear and will be designed according to ASME BPV code Section III and have also to comply with PED and ESPN. - Design, procurement, fabrication and assembly of 9 demineralizers for different plant systems. Three of these Important To Safety (IPS) equipments have been manufactured according with ASME VIII codes and six of them with EN 13445 code plus additional requirements to comply with PED and final client requirements for nuclear island. - Design, fabrication and installation of qualified travelling water screening filters. The equipments furnished will be two nuclear safety qualified filters and associated equipment (cleaning water system and control system). Additionally some auxiliary devices such as grids, automatic trash rakes and stop gates are included in the contract. - Engineering, procurement, fabrication, erection and commissioning for the condensate treatment plant. This system includes a demineralizer tank, 5 filters, reactive injection mixer, pneumatic and manual valves, piping and instrumentation and control systems. - Engineering, procurement erection and commissioning for the electro-chlorination plant to protect the IPS piping for Condensate Water System for FA3. This system

  20. Suspension of the NPP ''Zarnowiec'' erection in opinion of the Regulatory Body

    International Nuclear Information System (INIS)

    Jozefowicz, E.T.

    1990-01-01

    The author attempts to review on behalf of The Regulatory Body, the Government's decision to suspend erection of the NPP ''Zarnowiec'' for one year. The current state of the erection and abilities (under new conditions) of the investor being still legally responsible for nuclear safety of the future power plant are analysed

  1. Modernization programme at Dukovany NPP

    International Nuclear Information System (INIS)

    Trnka, M.

    2000-01-01

    The main goal of each NPP is to produce electricity safely, economically and without influence to environment. For Dukovany NPP it means to upgrade all documentation and perform the Equipment Upgrading Programme. All these activities are time and money consuming and therefore the determination of priority of all items was necessary. In the presentation there are mentioned some important changes in documentation, results of PSA studies and reason for Equipment Upgrading Programme performance. It was selected the most important item from the list of Equipment Upgrading Programme the I and C upgrading. Management has decided that Dukovany NPP will become among the best NPPs with WWER type of reactor. It seems this decision is the best way how to extend lifetime of the NPP. (author)

  2. Seismic response analysis of Wolsung NPP structure and equipment subjected to scenario earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon

    2005-03-15

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. However, it does not reflect the characteristic of seismological and geological of Korea. In this study, the seismic response analysis of Wolsung NPP structure and equipment were performed. Three types of input motions, artificial time histories that envelop the US NRC Regulatory Guide 1.60 spectrum and the probability based scenario earthquake spectra developed for the Korean NPP site and a typical near-fault earthquake recorded at thirty sites, were used as input motions. The acceleration, displacement and shear force responses of Wolsung containment structure due to the design earthquake were larger than those due to the other input earthquakes. But, considering displacement response increases abruptly as Wolsung NPP structure does nonlinear behavior, the reassessment of the seismic safety margin based on the displacement is necessary if the structure does nonlinear behavior; although it has adequate the seismic safety margin within elastic limit. Among the main safety-related devices, electrical cabinet and pump showed the large responses on the scenario earthquake which has the high frequency characteristic. This has great effects of the seismic capacity of the main devices installed inside of the building. This means that the design earthquake is not so conservative for the safety of the safety related nuclear power plant equipments.

  3. Seismic response analysis of Wolsung NPP structure and equipment subjected to scenario earthquakes

    International Nuclear Information System (INIS)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon

    2005-03-01

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. However, it does not reflect the characteristic of seismological and geological of Korea. In this study, the seismic response analysis of Wolsung NPP structure and equipment were performed. Three types of input motions, artificial time histories that envelop the US NRC Regulatory Guide 1.60 spectrum and the probability based scenario earthquake spectra developed for the Korean NPP site and a typical near-fault earthquake recorded at thirty sites, were used as input motions. The acceleration, displacement and shear force responses of Wolsung containment structure due to the design earthquake were larger than those due to the other input earthquakes. But, considering displacement response increases abruptly as Wolsung NPP structure does nonlinear behavior, the reassessment of the seismic safety margin based on the displacement is necessary if the structure does nonlinear behavior; although it has adequate the seismic safety margin within elastic limit. Among the main safety-related devices, electrical cabinet and pump showed the large responses on the scenario earthquake which has the high frequency characteristic. This has great effects of the seismic capacity of the main devices installed inside of the building. This means that the design earthquake is not so conservative for the safety of the safety related nuclear power plant equipments

  4. Plant performance monitoring program at Krsko NPP

    International Nuclear Information System (INIS)

    Bach, B.; Kavsek, D.

    2004-01-01

    A high level of nuclear safety and plant reliability results from the complex interaction of a good design, operational safety and human performance. This is the reason for establishing a set of operational plant safety performance indicators, to enable monitoring of both plant performance and progress. Performance indicators are also used for setting challenging targets and goals for improvement, to gain additional perspective on performance relative to other plants and to provide an indication of a potential need to adjust priorities and resources to achieve improved overall plant performance. A specific indicator trend over a certain period can provide an early warning to plant management to evaluate the causes behind the observed changes. In addition to monitoring the changes and trends, it is also necessary to compare the indicators with identified targets and goals to evaluate performance strengths and weaknesses. Plant Performance Monitoring Program at Krsko NPP defines and ensures consistent collection, processing, analysis and use of predefined relevant plant operational data, providing a quantitative indication of nuclear power plant performance. When the program was developed, the conceptual framework described in IAEA TECDOC-1141 Operational Safety Performance Indicators for Nuclear Power Plants was used as its basis in order to secure that a reasonable set of quantitative indications of operational safety performance would be established. Safe, conservative, cautious and reliable operation of the Krsko NPP is a common goal for all plant personnel. It is provided by continuous assurance of both health and safety of the public and employees according to the plant policy stated in program MD-1 Notranje usmeritve in cilji NEK, which is the top plant program. Establishing a program of monitoring and assessing operational plant safety performance indicators represents effective safety culture of plant personnel.(author)

  5. Projects of Modifications of design for mitigation of accidents outside the design Bases on nuclear Central PWR Siemens-KWU and Westinghouse; Proyectos de Modificaciones de Sieno para Mitigacion de Accidentes fuera de la Bases de Diseno en Centrales Nucleares PWR Siemens-KWU y Westinghouse

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez Gonzalez, G.; Cano Rodriguez, L. A.; Arguello Tara, A.

    2014-07-01

    Following the accident at the Japanese Fukushima-Daiichi NPP, the different regulators of nuclear power generation have required numerous reports regarding the evaluation and modification of the capacity of the plants to face accidents with severities beyond that established in their Design Bases. Under this new scenario, with multiple new demands and commitments, EA has carried out the required works for the implementation of strategies to mitigate the consequences of beyond Design Basis accidents for utilities owning Siemens-KWU and Westinghouse PWR nuclear power plants. (Author)

  6. Study on integrated design and analysis platform of NPP

    International Nuclear Information System (INIS)

    Lu Dongsen; Gao Zuying; Zhou Zhiwei

    2001-01-01

    Many calculation software have been developed to nuclear system's design and safety analysis, such as structure design software, fuel design and manage software, thermal hydraulic analysis software, severe accident simulation software, etc. This study integrates those software to a platform, develops visual modeling tool for Retran, NGFM90. And in this platform, a distribution calculation method is also provided for couple calculation between different software. The study will improve the design and analysis of NPP

  7. Nuclear and radiation safety of the centralized spent fuel storage facility in Ukraine

    International Nuclear Information System (INIS)

    Grigorash, O.V.; Dibach, O.M.; Panchenko, A.V.; Shugajlo, Ol-r P.; Kovbasenko, YU.P.; Vishemyirskij, M.P.; Bogorad, V.I.; Belykh, D.O.; Shendrovich, V.Ya.

    2017-01-01

    The paper presents the analysis of ensuring nuclear and radiation safety in the management of spent nuclear fuel at the Centralized SFSF and activities planned for Centralized SFSF life cycle stages. There are results of comparing requirements of U.S. regulatory documents used by the HOLTEC Company to design Centralized SFSF equipment staff with relevant requirements of Ukrainian regulations, results based on analysis of the most important factors of Centralized SFSF safety (strength and reliability, nuclear safety, thermal regimes and biological protection) and verified expert calculations of the SSTC NRS. The paper includes issues to be considered in further implementation of Centralized SFSF project.

  8. Emergency preparedness at Ignalina NPP

    International Nuclear Information System (INIS)

    Kairys, A.

    1998-01-01

    Brief review of Ignalina NPP safety upgrading and personnel preparedness to act in cases of accidents is presented. Though great activities are performed in enhancing the plant operation safety, the Ignalina NPP management pays a lot of attention to preparedness for emergency elimination and take measures to stop emergency spreading. A new Ignalina NPP emergency preparedness plan was drawn up and became operational. It is the main document to carry out organizational, technical, medical, evacuation and other activities to protect plant personnel, population, the plant and the environment from accident consequences. Great assistance was rendered by Swedish experts in drawing this new emergency preparedness plan. The plan consists of 3 parts: general part, operative part and appendixes. The plan is applied to the Ignalina NPP personnel, Special and Fire Brigade and also to other contractor organizations personnel carrying out works at Ignalina NPP. There are set the following emergency classes: incident, emergency situation, alert, local emergency, general emergency. Separate intervention level corresponds to each emergency class. Overview of personnel training to act in case of an emergency is also presented

  9. Does climate directly influence NPP globally?

    Science.gov (United States)

    Chu, Chengjin; Bartlett, Megan; Wang, Youshi; He, Fangliang; Weiner, Jacob; Chave, Jérôme; Sack, Lawren

    2016-01-01

    The need for rigorous analyses of climate impacts has never been more crucial. Current textbooks state that climate directly influences ecosystem annual net primary productivity (NPP), emphasizing the urgent need to monitor the impacts of climate change. A recent paper challenged this consensus, arguing, based on an analysis of NPP for 1247 woody plant communities across global climate gradients, that temperature and precipitation have negligible direct effects on NPP and only perhaps have indirect effects by constraining total stand biomass (Mtot ) and stand age (a). The authors of that study concluded that the length of the growing season (lgs ) might have a minor influence on NPP, an effect they considered not to be directly related to climate. In this article, we describe flaws that affected that study's conclusions and present novel analyses to disentangle the effects of stand variables and climate in determining NPP. We re-analyzed the same database to partition the direct and indirect effects of climate on NPP, using three approaches: maximum-likelihood model selection, independent-effects analysis, and structural equation modeling. These new analyses showed that about half of the global variation in NPP could be explained by Mtot combined with climate variables and supported strong and direct influences of climate independently of Mtot , both for NPP and for net biomass change averaged across the known lifetime of the stands (ABC = average biomass change). We show that lgs is an important climate variable, intrinsically correlated with, and contributing to mean annual temperature and precipitation (Tann and Pann ), all important climatic drivers of NPP. Our analyses provide guidance for statistical and mechanistic analyses of climate drivers of ecosystem processes for predictive modeling and provide novel evidence supporting the strong, direct role of climate in determining vegetation productivity at the global scale. © 2015 John Wiley & Sons Ltd.

  10. Romanian nuclear fuel cycle development

    International Nuclear Information System (INIS)

    Rapeanu, S.N.; Comsa, Olivia

    1998-01-01

    Romanian decision to introduce nuclear power was based on the evaluation of electricity demand and supply as well as a domestic resources assessment. The option was the introduction of CANDU-PHWR through a license agreement with AECL Canada. The major factors in this choice have been the need of diversifying the energy resources, the improvement the national industry and the independence of foreign suppliers. Romanian Nuclear Power Program envisaged a large national participation in Cernavoda NPP completion, in the development of nuclear fuel cycle facilities and horizontal industry, in R and D and human resources. As consequence, important support was being given to development of industries involved in Nuclear Fuel Cycle and manufacturing of equipment and nuclear materials based on technology transfer, implementation of advanced design execution standards, QA procedures and current nuclear safety requirements at international level. Unit 1 of the first Romanian nuclear power plant, Cernavoda NPP with a final profile 5x700 Mw e, is now in operation and its production represents 10% of all national electricity production. There were also developed all stages of FRONT END of Nuclear Fuel Cycle as well as programs for spent fuel and waste management. Industrial facilities for uranian production, U 3 O 8 concentrate, UO 2 powder and CANDU fuel bundles, as well as heavy water plant, supply the required fuel and heavy water for Cernavoda NPP. The paper presents the Romanian activities in Nuclear Fuel Cycle and waste management fields. (authors)

  11. Sensitivity Analysis of Evacuation Speed in Hypothetical NPP Accident by Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-yeop; Lim, Ho-Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Effective emergency response in emergency situation of nuclear power plant (NPP) can make consequences be different therefore it is regarded important when establishing an emergency response plan and assessing the risk of hypothetical NPP accident. Situation of emergency response can be totally changed when NPP accident caused by earthquake or tsunami is considered due to the failure of roads and buildings by the disaster. In this study evacuation speed has been focused among above various factors and reasonable evacuation speed in earthquake scenario has been investigated. Finally, sensitivity analysis of evacuation speed in hypothetical NPP accident by earthquake has been performed in this study. Evacuation scenario can be entirely different in the situation of seismic hazard and the sensitivity analysis of evacuation speed in hypothetical NPP accident by earthquake has been performed in this study. Various references were investigated and earthquake evacuation model has been developed considering that evacuees may convert their evacuation method from using a vehicle to walking when they face the difficulty of using a vehicle due to intense traffic jam, failure of buildings and roads, and etc. The population dose within 5 km / 30 km have been found to be increased in earthquake situation due to decreased evacuation speed and become 1.5 - 2 times in the severest earthquake evacuation scenario set up in this study. It is not agreed that using same emergency response model which is used for normal evacuation situations when performing level 3 probabilistic safety assessment for earthquake and tsunami event. Investigation of data and sensitivity analysis for constructing differentiated emergency response model in the event of seismic hazard has been carried out in this study.

  12. Sensitivity Analysis of Evacuation Speed in Hypothetical NPP Accident by Earthquake

    International Nuclear Information System (INIS)

    Kim, Sung-yeop; Lim, Ho-Gon

    2016-01-01

    Effective emergency response in emergency situation of nuclear power plant (NPP) can make consequences be different therefore it is regarded important when establishing an emergency response plan and assessing the risk of hypothetical NPP accident. Situation of emergency response can be totally changed when NPP accident caused by earthquake or tsunami is considered due to the failure of roads and buildings by the disaster. In this study evacuation speed has been focused among above various factors and reasonable evacuation speed in earthquake scenario has been investigated. Finally, sensitivity analysis of evacuation speed in hypothetical NPP accident by earthquake has been performed in this study. Evacuation scenario can be entirely different in the situation of seismic hazard and the sensitivity analysis of evacuation speed in hypothetical NPP accident by earthquake has been performed in this study. Various references were investigated and earthquake evacuation model has been developed considering that evacuees may convert their evacuation method from using a vehicle to walking when they face the difficulty of using a vehicle due to intense traffic jam, failure of buildings and roads, and etc. The population dose within 5 km / 30 km have been found to be increased in earthquake situation due to decreased evacuation speed and become 1.5 - 2 times in the severest earthquake evacuation scenario set up in this study. It is not agreed that using same emergency response model which is used for normal evacuation situations when performing level 3 probabilistic safety assessment for earthquake and tsunami event. Investigation of data and sensitivity analysis for constructing differentiated emergency response model in the event of seismic hazard has been carried out in this study

  13. Nuclear Power Plant Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Prabir [International Atomic Energy Agency (IAEA); Labbe, Pierre [Electricity of France (EDF); Naus, Dan [Oak Ridge National Laboratory (ORNL)

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  14. New approach of second Romanian NPP siting

    International Nuclear Information System (INIS)

    Mauna, Traian

    2010-01-01

    The NPP sitting studies in Romania began before 1975. The first Romanian NPP CANDU 6 type reactor gone to erection in 1980 on Cernavoda site planned to have 5 units. Gained the experience from Cernavoda NPP sitting, the first mission of new multi-branch of specialists team was to choose new NPP sites adapting the NPP Cernavoda project to the new parameters of close water cooling circuit and hard less and no rock foundation strata. The studies were carrying out in different stages on the inner rivers Olt, Mures, Somes in Transylvania historical region. This paper tries to reconsider shortly the old analysis according to the last IAEA Safety Standards, taking into account the new NPP generation requirement. Paper is focused on geological aspects and other local sites characteristics. (authors)

  15. Russian nuclear industry and the perspectives on the world market

    International Nuclear Information System (INIS)

    Nefedov, G. F.

    2008-01-01

    The development of the NPP capacities in Russia is presented. Federal Target Program 'Development of the Nuclear Power Industry of Russia in 2007-2010 and till 2015' (Government Decree of October 06 2006) is adopted. The scope of financing under the Program till 2015 is €41bill., of which budget financing is €19 bln. The goals are: to launch 10 new NPP units and to start 10 more projects by 2015; to actively promote the Russian nuclear fuel cycle organizations production on the world markets; to expand NPP construction and and operation outside Russia. The institutional reform to meet the goals is presented. NPP with russian VVER projects worldwide are presented

  16. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -1 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - 24 April 1972; first controlled reactor power - 27 November 1978, 15 March 1980; connection to the grid - 17 December 1978, 26 March 1980; commercial operation - 1 April 1980, 7 January 1981. This leaflet contains: NPP V-1 construction; Major technological equipment (Primary circuit: Nuclear reactor [WWER 440 V230 type reactor];Steam generator; Reactor Coolant Pumps; Primary Circuit Auxiliary Systems. Secondary circuit: Turbine generators, Nuclear power plant electrical equipment; power plant control) and technical data

  17. Regulatory aspects of NPP safety

    International Nuclear Information System (INIS)

    Stuller, J.; Brandejs, P.; Miasnikov, A.; Svab, M.

    1999-01-01

    In beginning, a history of legislative process regulating industrial utilisation of nuclear energy is given, including detailed list of decrees issued by the first regulatory body supervising Czech nuclear installations - Czechoslovak Atomic Energy Commission (CSKAE). Current status of nuclear regulations and radiation protection, especially in connection with Atomic Act (Act No 18/1997 Coll.), is described. The Atomic Act transfers into the Czech legal system a number of obligations following from the Vienna Convention on Civil Liability for Nuclear Damage and Joint Protocol relating to the Application of the Vienna and Paris Convention, to which the Czech Republic had acceded. Actual duties and competence of current nuclear regulatory body - State Office for Nuclear Safety (SUJB) - are given in detail. Execution of the State supervision of peaceful utilisation of nuclear energy and ionising radiation is laid out in several articles of the Act, which comprises: control activities of the SUJB, remedial measures, penalties. Material and human resources are sufficient for fulfilment of the basic functions for which SUJB is authorised by the law. For 1998, the SUJB allotted staff of 149, approximately 2/3 of that number are nuclear safety and radiation protection inspectors. The SUJB budget for 1998 is approximately 180 million Czech crowns (roughly 6 million US dollars). Inspection activity of SUJB is carried out in three different ways: routine inspections, planned specialised inspections, inspections as a response to a certain situation (ad-hoc inspections). Approach to the licensing of major plant upgrades and backfittings are mainly illustrated on the Temelin NPP licensing. Regulatory position and practices concerning review activities are presented. (author)

  18. The seismic reassessment Mochovce NPP

    International Nuclear Information System (INIS)

    Baumeister, P.

    2004-01-01

    The design of Mochovce NPP was based on the Novo-Voronez type WWER-440/213 reactor - twin units. Seismic characteristic of this region is characterized by very low activity. Mochovce NPP site is located on the rock soil with volcanic layer (andesit). Seismic reassessment of Mochovce NPP was done in two steps: deterministic approach up to commissioning confirmed value Horizontal Peak Ground Acceleration HPGA=0.1 g and activities after commissioning as a consequence of the IAEA mission indicate higher hazard values. (author)

  19. First-order effects of a nuclear moratorium in Central Europe

    International Nuclear Information System (INIS)

    Messner, S.; Strubegger, M.

    1986-12-01

    An energy supply model developed at IIASA previously is used to investigate the consequences of a hypothetical nuclear power phaseout in Central Europe. It is assumed that no new nuclear power plants will be built in Central Europe after 1990 but the existing ones will be used for a planned lifetime of 25 years. Energy-specific consequences, import dependence, emissions, energy prices and investments from the energy sector are considered. (G.Q.)

  20. The innovation of nuclear science and technology supporting for the central plains economic zone construction

    International Nuclear Information System (INIS)

    Yang Xiaowei

    2014-01-01

    This paper discusses the nuclear agronomy support for the central plains economic zone construction, radiation chemical new material support for the central plains economic zone construction, nuclear medical support for the central plains economic zone construction, nuclear instrument and meter industry support for the central plains economic zone construction and the development trend of related disciplines. (author)

  1. Manufacturer's part in NPP personnel training in the FRG

    International Nuclear Information System (INIS)

    Martin, H.D.

    1987-01-01

    This paper describes the regulatory guidelines and the training and retraining procedures and programs for NPP personnel in the Federal Republic of Germany. Reference is also made to the three years dual workshop/factory and classroom education of skilled workers in Germany. KWU as a turnkey manufacturer of Nuclear Power Plants holds the nuclear operating license towards the authority after first fuel loading of a new plant. In this respect it has extensive overall training obligations not only towards its customers but also with regards to its own shift personnel during nuclear power operation up to commercial operation and hand over of the plant. KWU's philosophy of training, its infrastructure, its various obligations and services are described for new plants as well as with regards to retraining for older plants

  2. Ignalina NPP: living and working conditions

    International Nuclear Information System (INIS)

    Chiuzhas, A.

    1998-01-01

    The conference was devoted to discuss the social problems related with the operation of Ignalina NPP. The main topics are the following: analysis of public opinion of surrounding region of Ignalina NPP including neighbouring Daugavpils district in Latvia, environment impact evaluation of Daugavpils district, assessment of the influence of Ignalina NPP operation to the development of business in the region, investigation of problems of Visaginas town - residence of Ignalina NPP personnel. The specificity of Visaginas (former Sniechkus) is defined by the majority of non-native Lithuanians living there. Cultural transformation and political organization of the region were surveyed as well

  3. Radionuclides distribution in internal organs of wild animals in alienation zone of Chernobyl NPP

    International Nuclear Information System (INIS)

    Gorbatova, T.A.; Kudryashov, V.P.; Mironov, V.P.

    2002-01-01

    Activities of caesium 137, strontium 90, plutonium isotopes and americium 241 are experimentally defined in the internal organs of bearer and wolf alienation zone of Chernobyl NPP. Radionuclides distribution in the internal organs of wild animals is defined by destruction of nuclear fuel particles

  4. Analysis of 14C level around Qinshan NPP base

    International Nuclear Information System (INIS)

    Huang Renjie; Liang Haiyan; Chen Qianyuan; Ni Shiying; He Jun; Zeng Guangjian; Ma Yongfu

    2012-01-01

    By using the method of alkaline solution absorption, the activity concentrations of Carbon-14 as well as its variation tendency in air and biological samples were analyzed. The air samples and biological samples were collected around the Qinshan nuclear power plant base (Qinshan NPP Base) in 2002 to 2009 and 2007 to 2009 respectively. The results showed that, since 2002, the annual average activity concentrations of Carbon-14 in air samples were in the range of 38.3 mBq/m 3 to 55.4 mBq/m 3 . Although the monitoring results of Xiajiawan village and Yanliucun village were comparatively higher than the reference site in Hangzhou City, the results were still at the same level. Meanwhile, monitoring results of Xiajiawan village and Yangliucun village in the summer of 2004 and 2005 are relatively high, with the peak value of 55.4 mBq/m 3 appeared in Xiajiawan village during the summer of 2005. Correspondingly the annual airborne Carbon-14 of 2004 and 2005 discharged from the Qinshan NPP 3 rd Phase were higher than normal as well, it can therefore be concluded that the activity concentration of Carbon-14 around the Qinshan NPP Base are related to the discharged source term. The activity concentration of Carbon-14 in rice and leaf vegetable samples from Xiajiawan village and Yangliucun village were slightly higher, but within the same level, than that of Hangzhou. The activity concentration of Carbon-14 in the mullet samples collected from the sea area around Qinshan NPP Base are approximately the same with the sea area of Zhoushan. (authors)

  5. Experiences in the implementation of the Coaching project in the nuclear power plant of Laguna Verde (NPP-L V); Experiencias en la implementacion del proyecto Coaching en la Central Nucleoelectrica Laguna Verde (CNLV)

    Energy Technology Data Exchange (ETDEWEB)

    Mendez M, H. I., E-mail: hugo.mendez01@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Departamento del Centro de Entrenamiento, Carretera Cardel-Nautla Km 42.5, Alto Lucero, Veracruz (Mexico)

    2012-10-15

    This document has the purpose of to share acquired experiences during the implementation of the Coaching project focused the training of supervisors and directive personnel of the nuclear power plant of Laguna Verde (NPP-L V). Derived of the improvement areas identified by the supervisor organization of the nuclear power stations WANO (World Association Nuclear of Operators) and of the auto-evaluations realized by the expert personnel of the same power station that based on external experiences carried out through the Benchmarking (comparison with other power stations) they have reflected the necessity to activate a training process in Coaching with a practical focus toward the directive and supervisor personnel in the power station. By means of the observation of the personnel's acting so much in the control rooms like in different areas, three focus areas have been identified for the training in Coaching, these are the personnel's motivation, the organizational communication so much in vertical form as horizontal and the perception of confidence lack among directive, supervisors, operators and technicians. The plan focused in the abilities training of Coaching with practical sense was development, supported with an evaluation of 360 grades as tool of competitions development through a computer application e-Coaching. The use of application and Coaching following techniques facilitated the conformation of the practical focus, same that are of continuous use starting from the training of the supervisor and directive personnel. (Author)

  6. Dose assessments in nuclear power plant siting

    International Nuclear Information System (INIS)

    1988-03-01

    This document is mainly intended to provide information on dose estimations and assessments for the purpose of nuclear power plant (NPP) siting. It is not aimed at giving radiation protection guidance, criteria or procedures to be applied during the process of NPP siting nor even to provide recommendations on this subject matter. The document may however be of help for implementing some of the Nuclear Safety Standards (NUSS) documents on siting. The document was prepared before April 26, 1986, when a severe accident at the Unit 4 of Chernobyl NPP in the USSR had occurred. It should be emphasized that this document does not bridge the gap which exists in the NUSS programme as far as radiation protection guidance for the specific case of siting of NPP is concerned. The Agency will continue to work on this subject with the aim to prepare a safety series document on radiation protection requirements for NPP siting. This document could serve as a working document for this purpose. Refs, figs and tabs

  7. NPP Mochovce nuclear safety enhancement program

    International Nuclear Information System (INIS)

    Cech, J.; Baumester, P.

    1997-01-01

    Nuclear power plant Mochovce is currently under construction and an extensive nuclear safety enhancement programme is under way. The upgrading and modifications are based on IAEA documents and on those of the Nuclear Regulatory Authority of the Slovak Republic. Based on a contract concluded with Riskaudit from the CEC, safety examinations of the Mochovce design were performed. An extensive list of technical specifications of safety measures is given. (M.D.)

  8. Demography and ecology of nuclear power plant location

    International Nuclear Information System (INIS)

    Stefanescu, P.; Ghitescu, P.

    1997-01-01

    To select and licence a NPP site, as well as, once built, to run it, both demography and ecology of the geographical zone are crucial factors to take into account. On the other side the location and running of a NPP is a major factor in the economic and social development of NPP site surroundings. Meanwhile the population distribution around the NPP site has a determining role on intervention and rehabilitation plans. Risk and danger studies should be done for initial situation as well as during NPP running. The character of radioactive risks and the importance of possible consequences of a hypothetical nuclear accident which could affect a big Nuclear Power Plant request a special attention to population distribution around the plant site and surroundings. Therefore safety studies to locate and licence a site should refer to demography and ecology. Available data examination will permit to locate NPP in less-populated and ecologically not-concerning zones. On-site investigation should identify the population groups to watch for in order to estimate the results of a normal evaluation. The inquires will give reference primary data before NPP construction starts. Also they evaluate the possibility of short term population retain on location in case of an accident. (authors)

  9. Conceptual basic and status of nuclear power plant decommissioning effort in the Russian Federation

    International Nuclear Information System (INIS)

    Glazounov, V.; Khamyanov, L.

    1998-01-01

    Decommissioning of nuclear power plants, although a usual phase in nuclear facility life cycle still has significant peculiarities due to radioactive contamination of NPP equipment and structural elements. This paper deals with the phases in decommissioning process, as follows: NPP shutdown, meaning end of commercial operation; NPP unit mothballing, radiation review of the unit to justify particular concept of decommissioning; extended hold-up, which means maintaining of contaminated equipment in the isolated zone under radiologically safe conditions; unit dismantling and burial. Status of NPP decommissioning effort in Russia is described

  10. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  11. An integrated approach for investigation of failed nuclear fuel used at NPP Cernavoda Unit 1

    International Nuclear Information System (INIS)

    Tuturici, I.L.; Parvan, M.; Popov, M.; Dobrin, R.; Staicu, C.

    1996-01-01

    At NPP Cernavoda-Unit 1 the fuel surveillance and the defect detection system in operation are based on monitoring the coolant activity concentration and on measuring the flux of delayed neutrons emitted by some short-lived fission products. In order to identify the failed fuel underwater non-destructive examination has to be performed. The major interest for the availability of underwater examination consists in the necessity of a speedy acquisition of the data on failed fuel in operation and of appropriate follow-up actions to be taken. Often the identification operation will be followed by more detailed examinations on selected fuel rods in the hot cells of the Post-irradiation Examination Laboratory of the Institute for Nuclear Research at Pitesti. Transfer of selected fuel rods will be done by the use of a type B(U) road transportation cask. Such an integrated approach will help to keep the level of activity concentration of the primary circuit well below the authorized limits. (author). 2 figs., 1 tab., 2 refs

  12. European clearinghouse on nuclear power plants operational experience feedback

    International Nuclear Information System (INIS)

    Ranguelova, Vesselina; Bruynooghe, Christiane; Noel, Marc

    2010-01-01

    Learning from operational experience and applying this knowledge promptly and intelligently is one of the ways to improve the safety of Nuclear Power Plant (NPP). Recent reviews of the effectiveness of Operational Experience Feedback (OEF) systems have pointed to the need for further improvement, with importance being placed on tailoring the information to the needs of the regulators. In 2007, at the request of a number of nuclear safety regulatory authorities in Europe, the Institute for Energy of the European Commission's Joint Research Centre (EC JRC) initiated a project on Nuclear Power Plant operational experience feedback, which adopts an integrated approach to the research needed to strengthen the European capabilities for assessment of NPP operational events and to promote the development of tools and mechanisms for the improved application of the lessons learned. Consequently, a so-called ''European Clearinghouse'' on NPP OEF was established, which includes scientific officers from the EC JRC, a number of European nuclear safety regulatory authorities and some of their Technical Support Organizations (TSOs). The paper discusses the activities implemented in 2008 within the framework of the European Clearinghouse on NPP OEF (hereinafter called the European NPP Clearinghouse) and provides an overview of the main conclusions drawn from the safety studies performed. Outlook of the activities carried out in 2009 are given. (orig.)

  13. Special aspects of implementing advanced fuel cycles at Kalinin NPP

    International Nuclear Information System (INIS)

    Tsvetkov, A.

    2015-01-01

    The presentation showed the experience of different TVSA modifications usage at Kalinin NPP. The strategy of 18 month fuel cycles implementation at uprated power (104%) was also presented. The transition and equilibrium fuel loadings features were discussed. The implementation of burn-up measurement installation MKS-01 was presented, in order to solve the spent nuclear fuel handling and transportation issues due to the increased fuel enrichment and heavy metal mass

  14. Full scope simulator commissioning and training experience at Cernavoda NPP

    International Nuclear Information System (INIS)

    Balan, M.

    2000-01-01

    The paper presents the experience gained during commissioning and the initial use of the CANDU training full-scope simulator for operation personnel at Cernavoda NPP. The full-scope simulator as an integral part of the training programs that take place in Cernavoda Nuclear Training Department (CNTD), is mainly used for the development of operational skills, knowledge and attitudes required to operate the plant in a safe and efficient manner. (author)

  15. Chernobyl NPP accident: a year later

    International Nuclear Information System (INIS)

    Asmolov, V.G.; Borovoj, A.A.; Demin, V.F.

    1988-01-01

    Consideration is being given to measures on liquidation of Chernobyl accident aftereffects, conducted since August, 1986. One of the most important measures lay in construction of the ''shelter'', which must provide long-term conservation of accidental unit. Works on decontamination of reactor area and contaminated populated regions were continued. Measures on providing safety of population and its health protection were performed. An attention was paid to long-term investigations on studying delayed aftereffects of the accident, monitoring of invironment, development and introduction of measures on improving NPP safety. Prospects of further development of nuclear power engeneering and possibilities of improving its safety are considered

  16. Remanent life management of nuclear power plants

    International Nuclear Information System (INIS)

    Pinedo, J.; Gomez Santamaria, J.

    1995-01-01

    The concept of life in the nuclear power plants is very special. The main aceptions are: design life, economic life and useful life. The good management of NPP will do the prolongation of the life in the NPP. The remanent of management life summarizes certain activities in order to prolong the lifetime of the NPP. This article presents the activities of the RML program, the technological program and its benefits

  17. IAEA activities on safety aspects of NPP ageing

    International Nuclear Information System (INIS)

    Pachner, J.

    1998-01-01

    A review of IAEA activities concerned with safety aspects of nuclear power plants ageing is given for the period from 1995 to 1998 with the prospects till year 2000. Coordinated Research programs were conducted on Management Ageing of Concrete Containment Buildings; Management of Ageing of In-Containment I and C cables. TECDOCs were published on Assessment and Management of Ageing of Major NPP Components Important for Safety of CANDU, PWR and BWR NPPs. Technical Committee Meetings and Interregional training courses concerned with the same subjects were held

  18. Safety critical FPGA-based NPP instrumentation and control systems: assessment, development and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Bakhmach, E. S.; Siora, A. A.; Tokarev, V. I. [Research and Production Corporation Radiy, 29 Geroev Stalingrada Str., Kirovograd 25006 (Ukraine); Kharchenko, V. S.; Sklyar, V. V.; Andrashov, A. A., E-mail: marketing@radiy.co [Center for Safety Infrastructure-Oriented Research and Analysis, 37 Astronomicheskaya Str., Kharkiv 61085 (Ukraine)

    2010-10-15

    The stages of development, production, verification, licensing and implementation methods and technologies of safety critical instrumentation and control systems for nuclear power plants (NPP) based on FPGA (Field Programmable Gates Arrays) technologies are described. A life cycle model and multi-version technologies of dependability and safety assurance of FPGA-based instrumentation and control systems are discussed. An analysis of NPP instrumentation and control systems construction principles developed by Research and Production Corporation Radiy using FPGA-technologies and results of these systems implementation and operation at Ukrainian and Bulgarian NPP are presented. The RADIY{sup TM} platform has been designed and developed by Research and Production Corporation Radiy, Ukraine. The main peculiarity of the RADIY{sup TM} platform is the use of FPGA as programmable components for logic control operation. The FPGA-based RADIY{sup TM} platform used for NPP instrumentation and control systems development ensures sca lability of system functions types, volume and peculiarities (by changing quantity and quality of sensors, actuators, input/output signals and control algorithms); sca lability of dependability (safety integrity) (by changing a number of redundant channel, tiers, diagnostic and reconfiguration procedures); sca lability of diversity (by changing types, depth and method of diversity selection). (Author)

  19. Domestic design and validation of natural circulation steam generator of China 1000 MWe PWR NPP

    International Nuclear Information System (INIS)

    Liu, H.Y.; Wang, X.Y.; Wu, G.; Qin, J.M.; Xiong, Ch.H.; Wang, W.; Chen, J.L.; Cheng, H.P.; Zuo, Ch.P.

    2005-01-01

    In order to meet the requirements of domestic design of China intending built NPP projects, Research Institute of Nuclear Power Operation (RINPO) has achieved design of 1000 MWe NPP steam generator, called RINSG-1000(means 1000MWe SG designed by RINPO), which is based on SG research ,experiments and service experience accumulated by RINPO in more 40 years. Testing validation of two steam generator key technologies, advanced moisture separate device and sludge collector, has been accomplished during the period of 2000 to 2002. This paper describes the design features of RINSG-1000, and provides some validation test results. (authors)

  20. Nuclear power and the problems of its development

    International Nuclear Information System (INIS)

    Nevskij, V.P.

    1979-01-01

    The state and prospects of nuclear power in the Soviet Union are considered. Problems of NPP exploitation are discussed, as well as ways of improving the organization of timely and qualitative putting NPP into operation. The main problem of a wide programme of NPP construction is to provide NPP security, reliability and effectiveness. This can be provided by exploiting highly reliable technological equipment and taking appropriate measures during NPP designing, construction and exploitation. One of the main ways to solve these problems is to increase the automation level, to improve control and to provide a gradual transfer from the automation of separate processes to the creation of automatic all-regime NPP control systems