WorldWideScience

Sample records for noxious stimulation effects

  1. Effects of noxious stimulation to the back or calf muscles on gait stability.

    Science.gov (United States)

    van den Hoorn, Wolbert; Hug, François; Hodges, Paul W; Bruijn, Sjoerd M; van Dieën, Jaap H

    2015-11-26

    Gait stability is the ability to deal with small perturbations that naturally occur during walking. Changes in motor control caused by pain could affect this ability. This study investigated whether nociceptive stimulation (hypertonic saline injection) in a low back (LBP) or calf (CalfP) muscle affects gait stability. Sixteen participants walked on a treadmill at 0.94ms(-1) and 1.67ms(-1), while thorax kinematics were recorded using 3D-motion capture. From 110 strides, stability (local divergence exponent, LDE), stride-to-stride variability and root mean squares (RMS) of thorax linear velocities were calculated along the three movement axes. At 0.94ms(-1), independent of movement axes, gait stability was lower (higher LDE) and stride-to-stride variability was higher, during LBP and CalfP than no pain. This was more pronounced during CalfP, likely explained by the biomechanical function of calf muscles in gait, as supported by greater mediolateral RMS and stance time asymmetry than in LBP and no pain. At 1.67ms(-1), independent of movement axes, gait stability was greater and stride-to-stride variability was smaller with LBP than no pain and CalfP, whereas CalfP was not different from no pain. Opposite effects of LBP on gait stability between speeds suggests a more protective strategy at the faster speed. Although mediolateral RMS was greater and participants had more asymmetric stance times with CalfP than LBP and no pain, limited effect of CalfP at the faster speed could relate to greater kinematic constraints and smaller effects of calf muscle activity on propulsion at this speed. In conclusion, pain effects on gait stability depend on pain location and walking speed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effects of noxious stimulation and pain expectations on neuromuscular control of the spine in patients with chronic low back pain.

    Science.gov (United States)

    Henchoz, Yves; Tétreau, Charles; Abboud, Jacques; Piché, Mathieu; Descarreaux, Martin

    2013-10-01

    Alterations of the neuromuscular control of the lumbar spine have been reported in patients with chronic low back pain (LBP). During trunk flexion and extension tasks, the reduced myoelectric activity of the low back extensor musculature observed during full trunk flexion is typically absent in patients with chronic LBP. To determine whether pain expectations could modulate neuromuscular responses to experimental LBP to a higher extent in patients with chronic LBP compared with controls. A cross-sectional, case-control study. Twenty-two patients with nonspecific chronic LBP and 22 age- and sex-matched control participants. Trunk flexion-extension tasks were performed under three experimental conditions: innocuous heat, noxious stimulation with low pain expectation, and noxious stimulation with high pain expectation. Noxious stimulations were delivered using a contact heat thermode applied on the skin of the lumbar region (L4-L5), whereas low or high pain expectations were induced by verbal and visual instructions. Surface electromyography of erector spinae at L2-L3 and L4-L5, as well as lumbopelvic kinematic variables were collected during the tasks. Pain was evaluated using a numerical rating scale. Pain catastrophizing, disability, anxiety, and fear-avoidance beliefs were measured using validated questionnaires. Two-way mixed analysis of variance revealed that pain was significantly different among the three experimental conditions (F2,84=317.5; plow back extensor musculature during full trunk flexion was observed in the high compared with low pain expectations condition at the L2-L3 level (F2,84=9.5; ppain catastrophizing in patients with chronic LBP (r=0.54; p=.012). Repeated exposure to pain appears to generate rigid and less variable patterns of muscle activation in patients with chronic LBP, which attenuate their response to pain expectations. Patients with high levels of pain catastrophizing show higher myoelectric activity of lumbar muscles in full flexion

  3. Fire effects on noxious weeds

    Science.gov (United States)

    Robin Innes

    2012-01-01

    The Fire Effects Information System (FEIS, www.fs.fed.us/database/feis/) has been providing reviews of scientific knowledge about fire effects since 1986. FEIS is an online collection of literature reviews on more than 1,100 species and their relationships with fire. Reviews cover plants and animals throughout the United States, providing a wealth of information for...

  4. The neurologic effects of noxious marine creatures.

    Science.gov (United States)

    Southcott, R V

    1975-01-01

    The concept of the sea as a source of noxious agents is perhaps not a familiar one to clinical neurologists, judging by the lack of reference to these agents in standard textbooks. Chemical, physiologic, and pharmacologic laboratories are increasingly investigating the properties of marine toxins, finding in them compounds with interesting and novel structures or unusual physiologic effects. Such substances are seen as possible agents for biologic and, more particularly, physiologic research, and as possible sources of new pharmaceuticals. These include hormone-like substances and antiviral or antitumor agents. Despite these specialized developments, which are in large measure a consequence of the technological advances of the present century, the clinician is at times directly concerned with the effects of marine toxic substances. For example, in Japan, puffer fish or tetrodotoxic poisoning is one of the major causes of deaths from food poisoning. Another marine toxin that has caused many explosive outbreaks of food poisoning. with many deaths in various parts of the world, comes from clams or mussels. This toxin, saxitoxin, is produced by species of marine protozoa including Gonyaulax, and is concentrated in filter-feeding molluscs. These two examples were of significant interest in medicine long before the technologic developments of the twentieth century. In the last few decades, entirely new problems of marine intoxication have arisen as a result of marine pollution from the disposal of industrial wastes in the sea. The most striking example of a man-made marine intoxication has been the outbreak of Minamata disease. In Minamata, Japan, the disposal of mercury-contaminated industrial wastes from a plastics factory into an enclosed bay, followed by human consumption of the contaminated fishes, crabs, or shellfish, led to many instances of acute cerebral degeneration. With the increasing exploration of the sea for both pleasure and economic exploitation, which

  5. Dorsal root ganglion stimulation attenuates the BOLD signal response to noxious sensory input in specific brain regions: Insights into a possible mechanism for analgesia.

    Science.gov (United States)

    Pawela, Christopher P; Kramer, Jeffery M; Hogan, Quinn H

    2017-02-15

    Targeted dorsal root ganglion (DRG) electrical stimulation (i.e. ganglionic field stimulation - GFS) is an emerging therapeutic approach to alleviate chronic pain. Here we describe blood oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to noxious hind-limb stimulation in a rat model that replicates clinical GFS using an electrode implanted adjacent to the DRG. Acute noxious sensory stimulation in the absence of GFS caused robust BOLD fMRI response in brain regions previously associated with sensory and pain-related response, such as primary/secondary somatosensory cortex, retrosplenial granular cortex, thalamus, caudate putamen, nucleus accumbens, globus pallidus, and amygdala. These regions differentially demonstrated either positive or negative correlation to the acute noxious stimulation paradigm, in agreement with previous rat fMRI studies. Therapeutic-level GFS significantly attenuated the global BOLD response to noxious stimulation in these regions. This BOLD signal attenuation persisted for 20minutes after the GFS was discontinued. Control experiments in sham-operated animals showed that the attenuation was not due to the effect of repetitive noxious stimulation. Additional control experiments also revealed minimal BOLD fMRI response to GFS at therapeutic intensity when presented in a standard block-design paradigm. High intensity GFS produced a BOLD signal map similar to acute noxious stimulation when presented in a block-design. These findings are the first to identify the specific brain region responses to neuromodulation at the DRG level and suggest possible mechanisms for GFS-induced treatment of chronic pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Brain mediators of the effects of noxious heat on pain.

    Science.gov (United States)

    Atlas, Lauren Y; Lindquist, Martin A; Bolger, Niall; Wager, Tor D

    2014-08-01

    Recent human neuroimaging studies have investigated the neural correlates of either noxious stimulus intensity or reported pain. Although useful, analyzing brain relationships with stimulus intensity and behavior separately does not address how sensation and pain are linked in the central nervous system. In this study, we used multi-level mediation analysis to identify brain mediators of pain--regions in which trial-by-trial responses to heat explained variability in the relationship between noxious stimulus intensity (across 4 levels) and pain. This approach has the potential to identify multiple circuits with complementary roles in pain genesis. Brain mediators of noxious heat effects on pain included targets of ascending nociceptive pathways (anterior cingulate, insula, SII, and medial thalamus) and also prefrontal and subcortical regions not associated with nociceptive pathways per se. Cluster analysis revealed that mediators were grouped into several distinct functional networks, including the following: somatosensory, paralimbic, and striatal-cerebellar networks that increased with stimulus intensity; and 2 networks co-localized with "default mode" regions in which stimulus intensity-related decreases mediated increased pain. We also identified "thermosensory" regions that responded to increasing noxious heat but did not predict pain reports. Finally, several regions did not respond to noxious input, but their activity predicted pain; these included ventromedial prefrontal cortex, dorsolateral prefrontal cortex, cerebellar regions, and supplementary motor cortices. These regions likely underlie both nociceptive and non-nociceptive processes that contribute to pain, such as attention and decision-making processes. Overall, these results elucidate how multiple distinct brain systems jointly contribute to the central generation of pain. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  7. A Novel Cystometric Model of Pelvic Floor Dysfunction After Rabbit Pelvic Floor Noxious Electrical Stimulation.

    Science.gov (United States)

    Dobberfuhl, Amy D; Spettel, Sara; Schuler, Catherine; Dubin, Andrew H; Levin, Robert M; De, Elise J B

    2016-01-01

    Although a relationship between pelvic floor dysfunction and lower urinary tract symptoms is described in the literature, the mechanism and pathways need further characterization. We developed an animal model of pelvic floor dysfunction after noxious stimulation of the pubococcygeus (PC) muscle. Fifteen female adult rabbits were evaluated with cystometry (CMG) and electromyography (EMG) recordings from the PC muscle. Cystometry/EMG was performed before and after treatment animal (n = 11) received noxious pelvic floor electrical stimulation through the PC EMG electrode, and controls (n = 4) underwent sham needle placement. Two animals underwent S3 dorsal rhizotomy to demonstrate that the observed results required afferent innervation. Voiding changes were demonstrated in 9 of 11 rabbits after stimulation. Most of the rabbits (7/9) exhibited a prolonged-dysfunctional voiding pattern with larger capacity (mean, 17 mL [SEM, ±8 mL]), longer intercontractile interval (227% [SEM, ±76%]) and duration (163% [SEM, ±20%]), and increased postvoid residual (24 mL [SEM, ±6 mL]). The remaining dysfunctional rabbits (2/9) exhibited an overactive-dysfunctional voiding pattern with lower capacity (-26 mL [SEM, ±6 mL]), shortened intercontractile interval (16% [SEM, ±9%]) and duration (56% [SEM, ±30%]), and decreased postvoid residual (-27 mL [SEM, ±6 mL]). Nonresponder rabbits (2/11) were relatively unchanged in their micturition cycles after stimulation. Rhizotomy animals were acontractile and filled until overflow incontinence occurred. Using noxious electrical stimulation of the pelvic musculature, we were able to produce an animal model of pelvic floor dysfunction in most rabbits as hallmarked by a larger bladder capacity, an increased intercontractile interval, and prolonged contraction duration.

  8. Expression of Fos protein in the rat central nervous system in response to noxious stimulation: effects of chronic inflammation of the superior cervical ganglion

    Directory of Open Access Journals (Sweden)

    Laudanna A.

    1998-01-01

    Full Text Available The aim of this study was to investigate the possible interactions between the nociceptive system, the sympathetic system and the inflammatory process. Thus, the superior cervical ganglion of rats was submitted to chronic inflammation and Fos expression was used as a marker for neuronal activity throughout central neurons following painful peripheral stimulation. The painful stimulus consisted of subcutaneously injected formalin applied to the supra-ocular region. Fos-positive neurons were identified by conventional immunohistochemical techniques, and analyzed from the obex through the cervical levels of the spinal cord. In the caudal sub-nucleus of the spinal trigeminal nuclear complex, the number of Fos-positive neurons was much higher in rats with inflammation of the superior cervical ganglion than in control rats, either sham-operated or with saline applied to the ganglion. There was a highly significant difference in the density of Fos-positive neurons between the inflamed and control groups. No significant difference was found between control groups. These results suggest that the inflammation of the superior cervical ganglion generated an increased responsiveness to painful stimuli, which may have been due to a diminished sympathetic influence upon the sensory peripheral innervation.

  9. Noxious facility impact projection: Incorporating the effects of risk aversion

    International Nuclear Information System (INIS)

    Nieves, L.A.

    1993-01-01

    Developing new sites for noxious facilities has become a complex process with many potential pitfalls. In addition to the need to negotiate conditions acceptable to the host community, siting success may depend on the facility proposer's ability to identify a candidate site that not only meets technical requirements, but that is located in a community or region whose population is not highly averse to the risks associated with the type of facility being proposed. Success may also depend on the proposer accurately assessing potential impacts of the facility and offering an equitable compensation package to the people affected by it. Facility impact assessments, as typically performed, include only the effects of changes in population, employment and economic activity associated with facility construction and operation. Because of their scope, such assessments usually show a short-run, net economic benefit for the host region, making the intensely negative public reaction to some types and locations of facilities seem unreasonable. The impact component excluded from these assessments is the long-run economic effect of public perceptions of facility risk and nuisance characteristics. Recent developments in psychological and economic measurement techniques have opened the possibility of correcting this flaw by incorporating public perceptions in projections of economic impacts from noxious facilities

  10. Secondary hyperalgesia phenotypes exhibit differences in brain activation during noxious stimulation

    DEFF Research Database (Denmark)

    Asghar, Mohammad Sohail; Pereira, Manuel Pedro; Werner, Mads Utke

    2015-01-01

    . To study differences in the propensity to develop central sensitization we examined differences in brain activity and anatomy according to individual phenotypical expression of secondary hyperalgesia by magnetic resonance imaging. Forty healthy volunteers received a first-degree burn-injury (47 °C, 7 min...... hyperalgesia areas after burn-injury. In addition, T1-weighted images were used to measure differences in gray-matter density in cortical and subcortical regions of the brain. We found significant differences in neuronal activity between high- and low-sensitization responders at baseline (before application...... of the burn-injury) (p burn-injury, we found significant differences between responders during noxious stimulation of both primary (p

  11. La Alters the Response Properties of Neurons in the Mouse Primary Somatosensory Cortex to Low-Temperature Noxious Stimulation of the Dental Pulp

    Directory of Open Access Journals (Sweden)

    Yanjiao Jin

    2015-01-01

    Full Text Available Although dental pain is a serious health issue with high incidence among the human population, its cellular and molecular mechanisms are still unclear. Transient receptor potential (TRP channels are assumed to be involved in the generation of dental pain. However, most of the studies were conducted with molecular biological or histological methods. In vivo functional studies on the role of TRP channels in the mechanisms of dental pain are lacking. This study uses in vivo cellular electrophysiological and neuropharmacological method to directly disclose the effect of LaCl 3 , a broad spectrum TRP channel blocker, on the response properties of neurons in the mouse primary somatosensory cortex to low-temperature noxious stimulation of the dental pulp. It was found that LaCl 3 suppresses the high-firing-rate responses of all nociceptive neurons to noxious low-temperature stimulation and also inhibits the spontaneous activities in some nonnociceptive neurons. The effect of LaCl 3 is reversible. Furthermore, this effect is persistent and stable unless LaCl 3 is washed out. Washout of LaCl 3 quickly revitalized the responsiveness of neurons to low-temperature noxious stimulation. This study adds direct evidence for the hypothesis that TRP channels are involved in the generation of dental pain and sensation. Blockade of TRP channels may provide a novel therapeutic treatment for dental pain.

  12. Somatosympathetic vasoconstrictor reflexes in human spinal cord injury: responses to innocuous and noxious sensory stimulation below lesion

    Directory of Open Access Journals (Sweden)

    Vaughan G Macefield

    2012-06-01

    Full Text Available It is known that the sudden increases in blood pressure associated with autonomic dysreflexia in people with spinal cord injury (SCI is due to a spinally-mediated reflex activation of sympathetic vasoconstrictor neurones supplying skeletal muscle and the gut. Apart from visceral inputs, such as those originating from a distended bladder, there is a prevailing opinion that autonomic dysreflexia can be triggered by noxious stimulation below the lesion. However, do noxious inputs really cause an increase in blood pressure in SCI? Using microelectrodes inserted into a peripheral nerve to record sympathetic nerve activity we had previously shown that selective stimulation of small-diameter afferents in muscle or skin, induced by bolus injection of hypertonic saline into the tibialis anterior muscle or the overlying skin, evokes a sustained increase in muscle sympathetic nerve activity and blood pressure and a transient increase in skin sympathetic nerve activity and decrease in skin blood flow. We postulated that these sympathetic responses would be exaggerated in SCI, with a purely noxious stimulus causing long-lasting increases in blood pressure and long-lasting decreases in skin blood flow. Surprisingly, though, we found that intramuscular or subcutaneous injection of hypertonic saline into the leg caused negligible changes in these parameters. Conversely, weak electrical stimulation over the abdominal wall, which in able-bodied subjects is not painful and activates large-diameter cutaneous afferents, caused a marked increase in blood pressure in SCI but not in able-bodied subjects. This suggests that it is activation of large-diameter somatic afferents, not small-diameter afferents, that triggers increases in sympathetic outflow in SCI. Whether the responses to activation of large-diameter afferents reflect plastic changes in the spinal cord in SCI is unknown.

  13. Spatiotemporal Changes of Neuronal Responses in the Primary Somatosensory Cortex to Noxious Tail Stimulation in Awake and Pentobarbital-Anesthetized Rats.

    Science.gov (United States)

    Kuo, Chung-Chih; Lee, Jye-Chang; Chiou, Ruei-Jen; Tsai, Meng-Li; Yen, Chen-Tung

    2015-10-31

    Primary somatosensory cortex (SI) is a key area in the processing of nociceptor inputs to our consciousness. To clarify the columnar and laminar organization of SI for pain processing, we compared spatiotemporal changes in neuronal activities of the primary sensorimotor cortex (SmI) of the rat in response to noxious laser heat stimulation applied to the mid-tail. Longitudinal and vertical array microelectrodes were chronically implanted in the cerebral cortex. Evoked neuronal activities, including intracortical local field potentials (LFP) and ensemble single-unit activity (SU) around SmI were simultaneously recorded. The effect of pentobarbital on the neuronal responses was evaluated in comparison with the neuronal responses in conscious animals to explore the potential substrate of nociceptive processing in the conscious state. The results from the experiment with longitudinal microelectrode arrays indicated that noxious stimulation induced a neuronal response which was spread widely around the SmI of the conscious rat, and the range of neuronal responses was limited to the tail region of the SmI under anesthesia. The results from the experiment with vertical microelectrode arrays showed the universal neuronal responses through all cortical layers of the SmI in conscious rats, and sodium pentobarbital suppressed these neuronal responses in the supragranular layers significantly relative to the deeper layers and basal activity. These results imply that a wider range of cortical activation, both in the horizontal or vertical dimension, might be important for nociceptive processing in the conscious state.

  14. Does Acupuncture Needling Induce Analgesic Effects Comparable to Diffuse Noxious Inhibitory Controls?

    Directory of Open Access Journals (Sweden)

    Juerg Schliessbach

    2012-01-01

    Full Text Available Diffuse noxious inhibitory control (DNIC is described as one possible mechanism of acupuncture analgesia. This study investigated the analgesic effect of acupuncture without stimulation compared to nonpenetrating sham acupuncture (NPSA and cold-pressor-induced DNIC. Forty-five subjects received each of the three interventions in a randomized order. The analgesic effect was measured using pressure algometry at the second toe before and after each of the interventions. Pressure pain detection threshold (PPDT rose from 299 kPa (SD 112 kPa to 364 kPa (SD 144, 353 kPa (SD 135, and 467 kPa (SD 168 after acupuncture, NPSA, and DNIC test, respectively. There was no statistically significant difference between acupuncture and NPSA at any time, but a significantly higher increase of PPDT in the DNIC test compared to acupuncture and NPSA. PPDT decreased after the DNIC test, whereas it remained stable after acupuncture and NPSA. Acupuncture needling at low pain stimulus intensity showed a small analgesic effect which did not significantly differ from placebo response and was significantly less than a DNIC-like effect of a painful noninvasive stimulus.

  15. The Effects of Noxious Subliminal Suggestion upon Smoking Attitudes and Behavior.

    Science.gov (United States)

    Dutto, Franklin N.; Galli, Nicholas

    The efforts of smoking cessation programs have met with various degrees of success and fresh approaches to the problem are needed. An innovative technique that interrupts the psychogenic drives of smokers was employed to determine the effect of noxious subliminal suggestion on smoking attitudes and behavior. Adult smokers (N=60) were shown…

  16. Brain evoked potentials to noxious sural nerve stimulation in sciatalgic patients.

    Science.gov (United States)

    Willer, J C; De Broucker, T; Barranquero, A; Kahn, M F

    1987-07-01

    In sciatalgic patients and before any treatment, the goal of this work was to compare the amplitude of the late component (N150-P220) of the brain evoked potential (BEP) between resting pain-free conditions and a neurological induced pain produced by the Lasègue manoeuvre. The study was carried out with 8 inpatients affected with a unilateral sciatica resulting from an X-ray identified dorsal root compression from discal origin. The sural nerve was electrically stimulated at the ankle level while BEPs were recorded monopolarly from the vertex. The stimulus intensity eliciting a liminal nociceptive reflex response in a knee-flexor muscle associated with a liminal pain was selected for this study. Both normal and affected side were alternatively stimulated during several conditions of controls and of Lasègue's manoeuvres performed on the normal and on the affected side. Results show that the Lasègue manoeuvre performed on the affected side induced a significant increase in the amplitude of N150-P220; performed on the normal side, this same manoeuvre resulted in a significant decrease of the N150-P220 amplitude. These variations were observed whatever was the side (normal or affected) under sural nerve stimulation. The possible neural mechanisms of these changes and clinical implications of these data are then discussed.

  17. In vivo patch-clamp analysis of response properties of rat primary somatosensory cortical neurons responding to noxious stimulation of the facial skin

    Directory of Open Access Journals (Sweden)

    Nasu Masanori

    2010-05-01

    Full Text Available Abstract Background Although it has been widely accepted that the primary somatosensory (SI cortex plays an important role in pain perception, it still remains unclear how the nociceptive mechanisms of synaptic transmission occur at the single neuron level. The aim of the present study was to examine whether noxious stimulation applied to the orofacial area evokes the synaptic response of SI neurons in urethane-anesthetized rats using an in vivo patch-clamp technique. Results In vivo whole-cell current-clamp recordings were performed in rat SI neurons (layers III-IV. Twenty-seven out of 63 neurons were identified in the mechanical receptive field of the orofacial area (36 neurons showed no receptive field and they were classified as non-nociceptive (low-threshold mechanoreceptive; 6/27, 22% and nociceptive neurons. Nociceptive neurons were further divided into wide-dynamic range neurons (3/27, 11% and nociceptive-specific neurons (18/27, 67%. In the majority of these neurons, a proportion of the excitatory postsynaptic potentials (EPSPs reached the threshold, and then generated random discharges of action potentials. Noxious mechanical stimuli applied to the receptive field elicited a discharge of action potentials on the barrage of EPSPs. In the case of noxious chemical stimulation applied as mustard oil to the orofacial area, the membrane potential shifted depolarization and the rate of spontaneous discharges gradually increased as did the noxious pinch-evoked discharge rates, which were usually associated with potentiated EPSP amplitudes. Conclusions The present study provides evidence that SI neurons in deep layers III-V respond to the temporal summation of EPSPs due to noxious mechanical and chemical stimulation applied to the orofacial area and that these neurons may contribute to the processing of nociceptive information, including hyperalgesia.

  18. c-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury?

    Science.gov (United States)

    Gao, Yong-Jing; Ji, Ru-Rong

    2009-01-01

    c-Fos, the protein of the protooncogene c-fos, has been extensively used as a marker for the activation of nociceptive neurons in the spinal cord for more than twenty years since Hunt et al. first reported that peripheral noxious stimulation to a hind paw of rats leads to a marked induction of c-Fos in superficial and deep dorsal horn neurons in 1987. In 1999, Ji et al. reported that phosphorylated extracellular signal-regulated kinase (pERK) is specifically induced by noxious stimulation in superficial dorsal horn neurons. Accumulating evidence indicates that pERK induction or ERK activation in dorsal horn neurons is essential for the development of central sensitization, increased sensitivity of dorsal horn neurons that is responsible for the generation of persistent pain. Further, molecular mechanisms underlying ERK-mediated central sensitization have been revealed. In contrast, direct evidence for c-Fos-mediated central sensitization is not sufficient. After a noxious stimulus (e.g., capsaicin injection) or tissue injury, c-Fos begins to be induced after 30-60 minutes, whereas pERK can be induced within a minute, which can correlate well with the development of pain hypersensitivity. While c-Fos is often induced in the nuclei of neurons, pERK can be induced in different subcellular structures of neurons such as nuclei, cytoplasma, axons, and dendrites. pERK can even be induced in spinal cord microglia and astrocytes after nerve injury. In summary, both c-Fos and pERK can be used as markers for neuronal activation following noxious stimulation and tissue injury, but pERK is much more dynamic and appears to be a better marker for central sensitization.

  19. Noxious electrical stimulation of the pelvic floor and vagina induces transient voiding dysfunction in a rabbit survival model of pelvic floor dystonia.

    Science.gov (United States)

    Dobberfuhl, Amy D; Spettel, Sara; Schuler, Catherine; Levin, Robert M; Dubin, Andrew H; De, Elise J B

    2015-12-01

    Existing data supports a relationship between pelvic floor dysfunction and lower urinary tract symptoms. We developed a survival model of pelvic floor dysfunction in the rabbit and evaluated cystometric (CMG), electromyographic (EMG) and ambulatory voiding behavior. Twelve female adult virgin rabbits were housed in metabolic cages to record voiding and defecation. Anesthetized CMG/EMG was performed before and after treatment animals (n=9) received bilateral tetanizing needle stimulation to the pubococcygeous (PC) muscle and controls (n=3) sham needle placement. After 7 days all animals were subjected to tetanizing transvaginal stimulation and CMG/EMG. After 5 days a final CMG/EMG was performed. Of rabbits that underwent needle stimulation 7 of 9 (78%) demonstrated dysfunctional CMG micturition contractions versus 6 of 12 (50%) after transvaginal stimulation. Needle stimulation of the PC musculature resulted in significant changes in: basal CMG pressure, precontraction pressure change, contraction pressure, interval between contractions and postvoid residual; with time to 3rd contraction increased from 38 to 53 minutes (p=0.008 vs. prestimulation). Vaginal noxious stimulation resulted in significant changes in: basal CMG pressure and interval between contractions; with time to 3rd contraction increased from 37 to 46 minutes (p=0.008 vs. prestimulation). Changes in cage parameters were primarily seen after direct needle stimulation. In a majority of animals, tetanizing electrical stimulation of the rabbit pelvic floor resulted in voiding changes suggestive of pelvic floor dysfunction as characterized by a larger bladder capacity, longer interval between contractions and prolonged contraction duration.

  20. Sucrose and naltrexone prevent increased pain sensitivity and impaired long-term memory induced by repetitive neonatal noxious stimulation: Role of BDNF and β-endorphin.

    Science.gov (United States)

    Nuseir, Khawla Q; Alzoubi, Karem H; Alhusban, Ahmed; Bawaane, Areej; Al-Azzani, Mohammed; Khabour, Omar F

    2017-10-01

    Pain in neonates is associated with short and long-term adverse outcomes. Data demonstrated that long-term consequences of untreated pain are linked to the plasticity of the neonate's brain. Sucrose is effective and safe for reducing painful procedures from single events. However, the mechanism of sucrose-induced analgesia is not fully understood. The role of the opioid system in this analgesia using the opioid receptor antagonist Naltrexone was investigated, plus the long-term effects on learning and memory formation during adulthood. Pain was induced in rat pups via needle pricks of the paws. Sucrose solution and/or naltrexone were administered before the pricks. All treatments started on day one of birth and continued for two weeks. At the end of 8weeks, behavioral studies were conducted to test spatial learning and memory using radial arm water maze (RAWM), and pain threshold via foot-withdrawal response to a hot plate. The hippocampus was dissected; levels of brain derived neurotrophic factor (BDNF) and endorphins were assessed using ELISA. Acute repetitive neonatal pain increased pain sensitivity later in life, while naltrexone with sucrose decreased pain sensitivity. Naltrexone and/or sucrose prevented neonatal pain induced impairment of long-term memory, while neonatal pain decreased levels of BDNF in the hippocampus; this decrease was averted by sucrose and naltrexone. Sucrose with naltrexone significantly increased β-endorphin levels in noxiously stimulated rats. In conclusion, naltrexone and sucrose can reverse increased pain sensitivity and impaired long-term memory induced by acute repetitive neonatal pain probably by normalizing BDNF expression and increasing β-endorphin levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation.

    Science.gov (United States)

    Uvnäs-Moberg, Kerstin; Handlin, Linda; Petersson, Maria

    2014-01-01

    Oxytocin, a hypothalamic nonapeptide, is linked to increased levels of social interaction, well-being and anti-stress effects. The effects of oxytocin that is released by sensory stimulation during different kinds of interactive behaviors are often underestimated or even forgotten. In fact, many of the positive effects caused during interaction, such a wellbeing, stress reduction and even health promotion, are indeed linked to oxytocin released in response to activation of various types of sensory nerves. Oxytocin is released in response to activation of sensory nerves during labor, breastfeeding and sexual activity. In addition oxytocin is released in response to low intensity stimulation of the skin, e.g., in response to touch, stroking, warm temperature, etc. Consequently oxytocin is not only released during interaction between mothers and infants, but also during positive interaction between adults or between humans and animals. Finally oxytocin is also released in response to suckling and food intake. Oxytocin released in the brain in response to sensory stimulation as a consequence of these types of interactive behaviors, contributes to every day wellbeing and ability to handle stress. Food intake or sex may be used or even abused to achieve oxytocin-linked wellbeing and stress relief to compensate for lack of good relationships or when the levels of anxiety are high. The present review article will summarize the role played by oxytocin released by sensory (in particular somatosensory) stimulation, during various kinds of interactive behaviors. Also the fact that the anti-stress effects of oxytocin are particularly strong when oxytocin is released in response to "low intensity" stimulation of the skin will be highlighted.

  2. Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation

    Directory of Open Access Journals (Sweden)

    Kerstin eUvnäs-Moberg

    2015-01-01

    Full Text Available Oxytocin, a hypothalamic nonapeptide, is linked to increased levels of social interaction, well-being and anti-stress effects. The effects of oxytocin that is released by sensory stimulation during different kinds of interactive behaviors are often underestimated or even forgotten. In fact, many of the positive effects caused during interaction, such a wellbeing, stress reduction and even health promotion, are indeed linked to oxytocin released in response to activation of various types of sensory nerves. Oxytocin is released in response to activation of sensory nerves during labor, breastfeeding and sexual activity. In addition oxytocin is released in response to low intensity stimulation of the skin, e.g. in response to touch, stroking, warm temperature etc . Consequently oxytocin is not only released during interaction between mothers and infants, but also during positive interaction between adult or between humans and animals. Finally oxytocin is also released in response to suckling and food intake. Oxytocin released in the brain in response to sensory stimulation as a consequence of these types of interactive behaviors, contributes to every day wellbeing and ability to handle stress. Food intake or sex may be used or even abused to achieve oxytocin-linked wellbeing and stress relief to compensate for lack of good relationships or when the levels of anxiety are high. The present review article will summarize the role played by oxytocin released by sensory (in particular somatosensory stimulation, during various kinds of interactive behaviors. Also the fact that the anti-stress effects of oxytocin are particularly strong when oxytocin is released in response to low intensity stimulation of the skin will be highlighted.

  3. Noxious gases in rabbit housing systems: effects of cross and longitudinal ventilation

    Directory of Open Access Journals (Sweden)

    Francesco da Borso

    2016-12-01

    Full Text Available Animal welfare is a matter of increasing interest due to ethical and economical worries regarding animal rights and the sustainability of meat production. Ammonia, carbon dioxide, and methane can be produced in the livestock buildings and, if not adequately controlled by ventilation, can be dangerous for animals and farmers. The aim of the present paper is to study the effects of different ventilation systems in rabbit buildings based on the temporal patterns and the spatial distribution of these noxious gases. The experimental measurements were conducted in two rabbit farms with genetically homogeneous animals subjected to the same diet. Two buildings with different forced ventilation layouts (cross ventilation - building A and longitudinal ventilation - building B were subjected to the monitoring of indoor environmental conditions (temperature, relative humidity, ammonia, carbon dioxide, methane over a whole year. In both the buildings, ventilation was adjusted automatically by means of electronic control units, which were controlled by temperature sensors, located at the centre of the buildings. Gas concentrations inside the buildings followed clearly defined sinusoidal patterns on a daily basis with the highest values reached in winter during the morning hours for ammonia and during the night hours for carbon dioxide and methane. In particular, ammonia revealed a maximum concentration of 30.7 mg m–3 in building A (cross ventilation and 12.9 mg m–3 in building B (longitudinal ventilation, whereas the minimum values were 6.0 and 4.2 mg m–3, in building A and B, respectively. As a consequence, daily mean concentrations of noxious gases, solely could not be considered representative of the actual conditions of air quality in the buildings. The airflow direction clearly influenced the spatial concentration of ammonia, which showed different patterns in the two buildings. In building A, the highest ammonia concentration was in a diffuse

  4. Astaxanthin Protects Primary Hippocampal Neurons against Noxious Effects of Aβ-Oligomers

    Directory of Open Access Journals (Sweden)

    Pedro Lobos

    2016-01-01

    Full Text Available Increased reactive oxygen species (ROS generation and the ensuing oxidative stress contribute to Alzheimer’s disease pathology. We reported previously that amyloid-β peptide oligomers (AβOs produce aberrant Ca2+ signals at sublethal concentrations and decrease the expression of type-2 ryanodine receptors (RyR2, which are crucial for hippocampal synaptic plasticity and memory. Here, we investigated whether the antioxidant agent astaxanthin (ATX protects neurons from AβOs-induced excessive mitochondrial ROS generation, NFATc4 activation, and RyR2 mRNA downregulation. To determine mitochondrial H2O2 production or NFATc4 nuclear translocation, neurons were transfected with plasmids coding for HyperMito or NFATc4-eGFP, respectively. Primary hippocampal cultures were incubated with 0.1 μM ATX for 1.5 h prior to AβOs addition (500 nM. We found that incubation with ATX (≤10 μM for ≤24 h was nontoxic to neurons, evaluated by the live/dead assay. Preincubation with 0.1 μM ATX also prevented the neuronal mitochondrial H2O2 generation induced within minutes of AβOs addition. Longer exposures to AβOs (6 h promoted NFATc4-eGFP nuclear translocation and decreased RyR2 mRNA levels, evaluated by detection of the eGFP-tagged fluorescent plasmid and qPCR, respectively. Preincubation with 0.1 μM ATX prevented both effects. These results indicate that ATX protects neurons from the noxious effects of AβOs on mitochondrial ROS production, NFATc4 activation, and RyR2 gene expression downregulation.

  5. Phosphorylation of ERK in neurokinin 1 receptor-expressing neurons in laminae III and IV of the rat spinal dorsal horn following noxious stimulation

    Directory of Open Access Journals (Sweden)

    Watanabe Masahiko

    2007-02-01

    Full Text Available Abstract Background There is a population of large neurons with cell bodies in laminae III and IV of the spinal dorsal horn which express the neurokinin 1 receptor (NK1r and have dendrites that enter the superficial laminae. Although it has been shown that these are all projection neurons and that they are innervated by substance P-containing (nociceptive primary afferents, we know little about their responses to noxious stimuli. In this study we have looked for phosphorylation of extracellular signal-regulated kinases (ERKs in these neurons in response to different types of noxious stimulus applied to one hindlimb of anaesthetised rats. The stimuli were mechanical (repeated pinching, thermal (immersion in water at 52°C or chemical (injection of 2% formaldehyde. Results Five minutes after each type of stimulus we observed numerous cells with phosphorylated ERK (pERK in laminae I and IIo, together with scattered positive cells in deeper laminae. We found that virtually all of the lamina III/IV NK1r-immunoreactive neurons contained pERK after each of these stimuli and that in the great majority of cases there was internalisation of the NK1r on the dorsal dendrites of these cells. In addition, we also saw neurons in lamina III that were pERK-positive but lacked the NK1r, and these were particularly evident in animals that had had the pinch stimulus. Conclusion Our results demonstrate that lamina III/IV NK1r-immunoreactive neurons show receptor internalisation and ERK phosphorylation after mechanical, thermal or chemical noxious stimuli.

  6. Noxious newts and their natural enemies: Experimental effects of tetrodotoxin exposure on trematode parasites and aquatic macroinvertebrates.

    Science.gov (United States)

    Calhoun, Dana M; Bucciarelli, Gary M; Kats, Lee B; Zimmer, Richard K; Johnson, Pieter T J

    2017-10-01

    The dermal glands of many amphibian species secrete toxins or other noxious substances as a defense strategy against natural enemies. Newts in particular possess the potent neurotoxin tetrodotoxin (TTX), for which the highest concentrations are found in species within the genus Taricha. Adult Taricha are hypothesized to use TTX as a chemical defense against vertebrate predators such as garter snakes (Thamnophis spp.). However, less is known about how TTX functions to defend aquatic-developing newt larvae against natural enemies, including trematode parasites and aquatic macroinvertebrates. Here we experimentally investigated the effects of exogenous TTX exposure on survivorship of the infectious stages (cercariae) of five species of trematode parasites that infect larval amphibians. Specifically, we used dose-response curves to test the sensitivity of trematode cercariae to progressively increasing concentrations of TTX (0.0 [control], 0.63, 3.13, 6.26, 31.32, and 62.64 nmol L -1 ) and how this differed among parasite species. We further compared these results to the effects of TTX exposure (0 and 1000 nmolL -1 ) over 24 h on seven macroinvertebrate taxa commonly found in aquatic habitats with newt larvae. TTX significantly reduced the survivorship of trematode cercariae for all species, but the magnitude of such effects varied among species. Ribeiroia ondatrae - which causes mortality and limb malformations in amphibians - was the least sensitive to TTX, whereas the kidney-encysting Echinostoma trivolvis was the most sensitive. Among the macroinvertebrate taxa, only mayflies (Ephemeroptera) showed a significant increase in mortality following exogenous TTX exposure, despite the use of a concentration 16x higher than the maximum used for trematodes. Our results suggest that maternal investment of TTX into larval newts may provide protection against certain trematode infections and highlight the importance of future work assessing the effects of newt toxicity on

  7. 'Pseudofailure' of spinal cord stimulation for neuropathic pain following a new severe noxious stimulus: learning points from a case series of failed spinal cord stimulation for complex regional pain syndrome and failed back surgery syndrome.

    Science.gov (United States)

    Muquit, Samiul; Moussa, Ahmad Abdelhai; Basu, Surajit

    2016-05-01

    Failure of spinal cord stimulation (SCS) may be due to hardware problems, migration of electrodes and, in the long-term, plasticity in the spinal cord with habituation to the stimulation current. We describe a series of seven patients who experienced acute therapeutic loss of SCS effects following an acute nociceptive event unrelated to primary pathology. There were no hardware problems. We called this 'Pseudofailure', as the effective stimulation returned in all patients following a period off stimulation or reprogramming. This phenomenon has not been reported previously in the literature. Over a 4-year period, we managed seven patients with this feature: four had received SCS for complex regional pain syndrome and three for failed back surgery syndrome. In all seven cases, there was cessation of the pain relief afforded by SCS following an acute painful event: four patients had trauma, two patients had domestic electric shock and one patient suffered shingles (varicella zoster infection). We excluded hardware-related problems in all cases. In two patients, SCS effects could be regained by an initial attempt at reprogramming. In the remaining five cases reprogramming was unsuccessful, and stimulation was switched off for several months before recommencing, when we discovered a return of good therapeutic effect. We conclude that SCS may seem to fail following a separate strong nociceptive stimulus. Stimulation may be regained with reprogramming or following a period with stimulation switched off. We would, therefore, advise against removal of SCS hardware in the first instance.

  8. Effects of Bacillus amyloliquefaciens as a probiotic strain on growth performance, cecal microflora, and fecal noxious gas emissions of broiler chickens.

    Science.gov (United States)

    Ahmed, Sonia Tabasum; Islam, Manirul; Mun, Hong-Seok; Sim, Hyeon-Ju; Kim, Ye-Jin; Yang, Chul-Ju

    2014-08-01

    This experiment was conducted to investigate the effects of Bacillus amyloliquefaciens probiotic (BAP) as a direct-fed microbial on growth performance, cecal microflora, serum immunoglobulin levels, and fecal noxious gas emissions of broiler chickens. A total of 400 one-day-old broiler chicks (Ross 308) were randomly assigned to 1 of 5 treatment diets formulated to supply 0, 1, 5, 10, and 20 g/kg of BAP and were fed for 35 d. Each treatment had 8 replicate pens with 10 birds per replicate. On completion of the growth trial, fecal samples were collected, and ammonia (NH3) and hydrogen sulfide (H2S) emissions were measured. Increasing concentration of BAP had positive linear effect on the ADG of broilers (P Bacillus content, but exerted negative linear effect on cecal Escherichia coli (P Bacillus amyloliquefaciens could be suggested as a potential feed additive of broiler diets. © Poultry Science Association Inc.

  9. Effect of Fermented Supplementation on Growth Performance, Nutrient Digestibility, Blood Characteristics, Fecal Microbial and Fecal Noxious Gas Content in Growing Pigs

    Directory of Open Access Journals (Sweden)

    L. Yan

    2012-12-01

    Full Text Available A total of 96 growing pigs ((Landrace×Yorkshire×Duroc; BW = 26.58±1.41 kg were used in a 6-wk feeding trail to evaluate the effects of fermented chlorella (FC supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs. Pigs were randomly allotted into 1 of 4 dietary treatments with 6 replicate pens (2 barrows and 2 gilts per treatment. Dietary treatments were: i negative control (NC, basal diet (without antibiotics; ii positive control (PC, NC+0.05% tylosin; iii (fermented chlorella 01 FC01, NC+0.1% FC, and iv fermented chlorella 02 (FC02, NC+0.2% FC. In this study, feeding pigs PC or FC01 diets led to a higher average daily gain (ADG and dry matter (DM digestibility than those fed NC diet (p0.05 was observed on the body weight, average daily feed intake (ADFI, gain:feed (G:F ratio, the apparent total tract digestibility of N and energy throughout the experiment. The inclusion of PC or FC did not affect the blood characteristics (p>0.05. Moreover, dietary FC treatment led to a higher (p<0.05 lactobacillus concentration and lower E. coli concentration than the NC treatment, whereas the antibiotic supplementation only decreased the E. coli concentration. Pigs fed FC or PC diet had reduced (p<0.05 fecal NH3 and H2S content compared with those fed NC diet. In conclusion, our results indicated that the inclusion of FC01 treatment could improve the growth performance, nutrient digestibility, fecal microbial shedding (lower E. coli and higher lactobacillus, and decrease the fecal noxious gas emission in growing pigs when compared with the group fed the basal diet. In conclusion, dietary FC could be considered as a good source of supplementation in growing pigs because of its growth promoting effect.

  10. Effects of probiotic supplementation in different energy and nutrient density diets on performance, egg quality, excreta microflora, excreta noxious gas emission, and serum cholesterol concentrations in laying hens.

    Science.gov (United States)

    Zhang, Z F; Kim, I H

    2013-10-01

    This 6-wk study was conducted to determine the effects of probiotic (Enterococcus faecium DSM 7134) supplementation of different energy and nutrient density diets on performance, egg quality, excreta microflora, excreta noxious gas emission, and serum cholesterol concentrations in laying hens. A total of 432 Hy-Line brown layers (40 wk old) were allotted into 4 dietary treatments with 2 levels of probiotic supplementation (0 or 0.01%) and 2 levels of energy (2,700 or 2,800 kcal ME/kg) and nutrient density. Weekly feed intake, egg quality, and daily egg production were determined. Eighteen layers per treatment (2 layers/replication) were bled to determine serum cholesterol concentrations at wk 3 and 6. Excreta microbial shedding of Lactobacillus, Escherichia coli, and Salmonella and noxious gas emission were determined at the end of the experiment. Hens fed the high-energy and high-nutrient-density diets had less (P egg production, egg weight, and eggshell thickness than hens fed the diets without the probiotic. Dietary supplementation of the probiotic increased (P = 0.01) excreta Lactobacillus counts and decreased (P = 0.02) Escherichia coli counts compared with hens fed the diets without the probiotic. The excreta ammonia emission was decreased (P = 0.02) in hens fed the probiotic diets compared with hens fed the diets without the probiotic. Serum total cholesterol concentration was decreased (P cholesterol and lower (P = 0.03) low-density lipoprotein (LDL) cholesterol concentrations than hens fed the nonsupplemented diets at wk 6. Interactive effects (P cholesterol concentration were observed at wk 6. In conclusion, dietary supplementation of 0.01% probiotic improved egg production and egg quality and decreased excreta ammonia emission. The use of a probiotic in the high-energy and high-nutrient-density diets may be more favorable than the low-energy and low-nutrient-density diets in laying hens.

  11. Effect of a temperature increase in the non-noxious range on proton-evoked ASIC and TRPV1 activity.

    Science.gov (United States)

    Blanchard, Maxime G; Kellenberger, Stephan

    2011-01-01

    Acid-sensing ion channels (ASICs) are neuronal H(+)-gated cation channels, and the transient receptor potential vanilloid 1 channel (TRPV1) is a multimodal cation channel activated by low pH, noxious heat, capsaicin, and voltage. ASICs and TRPV1 are present in sensory neurons. It has been shown that raising the temperature increases TRPV1 and decreases ASIC H(+)-gated current amplitudes. To understand the underlying mechanisms, we have analyzed ASIC and TRPV1 function in a recombinant expression system and in dorsal root ganglion (DRG) neurons at room and physiological temperature. We show that temperature in the range studied does not affect the pH dependence of ASIC and TRPV1 activation. A temperature increase induces, however, a small alkaline shift of the pH dependence of steady-state inactivation of ASIC1a, ASIC1b, and ASIC2a. The decrease in ASIC peak current amplitudes at higher temperatures is likely in part due to the observed accelerated open channel inactivation kinetics and for some ASIC types to the changed pH dependence of steady-state inactivation. The increase in H(+)-activated TRPV1 current at the higher temperature is at least in part due to a hyperpolarizing shift in its voltage dependence. The contribution of TRPV1 relative to ASICs to H(+)-gated currents in DRG neurons increases with higher temperature and acidity. Still, ASICs remain the principal pH sensors of DRG neurons at 35°C in the pH range ≥6.

  12. Human Brain Stem Structures Respond Differentially to Noxious Heat

    Directory of Open Access Journals (Sweden)

    Alexander eRitter

    2013-09-01

    Full Text Available Concerning the physiological correlates of pain, the brain stem is considered to be one core region that is activated by noxious input. In animal studies, different slopes of skin heating (SSH with noxious heat led to activation in different columns of the midbrain periaqueductal grey (PAG. The present study aimed at finding a method for differentiating structures in PAG and other brain stem structures, which are associated with different qualities of pain in humans according to the structures that were associated with different behavioral significances to noxious thermal stimulation in animals. Brain activity was studied by fMRI in healthy subjects in response to steep and shallow SSH with noxious heat. We found differential activation to different SSH in the PAG and the rostral ventromedial medulla (RVM. In a second experiment we demonstrate that the different SSH were associated with different pain qualities. Our experiments provide evidence that brainstem structures, i.e. the PAG and the RVM, become differentially activated by different SSH. Therefore, different SSH can be utilized when brain stem structures are investigated and when it is aimed to activate these structures differentially. Moreover, percepts of first pain were elicited by shallow SSH whereas percepts of second pain were elicited by steep SSH. The stronger activation of these brain stem structures to SSH, eliciting percepts of second vs. first pain, might be of relevance for activating different coping strategies in response to the noxious input with the two types of SSH.

  13. Effects of Enterococcus faecium SLB 120 on growth performance, blood parameters, relative organ weight, breast muscle meat quality, excreta microbiota shedding, and noxious gas emission in broilers.

    Science.gov (United States)

    Lan, R X; Lee, S I; Kim, I H

    2017-09-01

    This 5-week study was conducted to determine the effects of Enterococcus faecium (SLB 120) on growth performance, blood parameters, relative organ weight, breast muscle meat quality, excreta microbiota shedding, and noxious gas emission in broilers. A total of 816 one-day-old male broilers were allocated to 4 groups with 12 replications (17 broilers/pen) according to body weight (43.2 ± 0.32 g). Dietary treatment groups were: (1) CON, basal diet, (2) T1, CON + 0.05% E. faecium, (3) T2, CON + 0.10% E. faecium, (4) T3, CON + 0.20% E. faecium. From day 1 to 21, dietary E. faecium supplementation showed linear increase (P faecium supplementation showed a linear increase (P faecium supplementation showed a linear increase (P faecium supplementation showed a linear decrease (P faecium supplementation linearly decreased (P faecium improved growth performance, the digestibility of dry matter and nitrogen, the relative weight of bursa of Fabricius, and shifted excreta microbiota by increasing Lactobacillus and decreasing E.coli counts, as well as decreased excreta NH3, H2S, and total mercaptans gas emission. © 2017 Poultry Science Association Inc.

  14. Differential induction of c-Fos and phosphorylated ERK by a noxious stimulus after peripheral nerve injury.

    Science.gov (United States)

    Tabata, Mitsuyasu; Terayama, Ryuji; Maruhama, Kotaro; Iida, Seiji; Sugimoto, Tomosada

    2018-03-01

    In this study, we compared induction of c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK) in the spinal dorsal horn after peripheral nerve injury. We examined the spinal dorsal horn for noxious heat-induced c-Fos and p-ERK protein-like immunoreactive (c-Fos- and p-ERK-IR) neuron profiles after tibial nerve injury. The effect of administration of a MEK 1/2 inhibitor (PD98059) on noxious heat-induced c-Fos expression was also examined after tibial nerve injury. A large number of c-Fos- and p-ERK-IR neuron profiles were induced by noxious heat stimulation to the hindpaw in sham-operated animals. A marked reduction in the number of c-Fos- and p-ERK-IR neuron profiles was observed in the medial 1/3 (tibial territory) of the dorsal horn at 3 and 7 days after nerve injury. Although c-Fos-IR neuron profiles had reappeared by 14 days after injury, the number of p-ERK-IR neuron profiles remained decreased in the tibial territory of the superficial dorsal horn. Double immunofluorescence labeling for c-Fos and p-ERK induced by noxious heat stimulation to the hindpaw at different time points revealed that a large number of c-Fos-IR, but not p-ERK-IR, neuron profiles were distributed in the tibial territory after injury. Although administration of a MEK 1/2 inhibitor to the spinal cord suppressed noxious heat-induced c-Fos expression in the peroneal territory, this treatment did not alter c-Fos induction in the tibial territory after nerve injury. ERK phosphorylation may be involved in c-Fos induction in normal nociceptive responses, but not in exaggerated c-Fos induction after nerve injury.

  15. Hemodynamic and Light-Scattering Changes of Rat Spinal Cord and Primary Somatosensory Cortex in Response to Innocuous and Noxious Stimuli

    Directory of Open Access Journals (Sweden)

    Ji-Wei He

    2015-09-01

    Full Text Available Neuroimaging technologies with an exceptional spatial resolution and noninvasiveness have become a powerful tool for assessing neural activity in both animals and humans. However, the effectiveness of neuroimaging for pain remains unclear partly because the neurovascular coupling during pain processing is not completely characterized. Our current work aims to unravel patterns of neurovascular parameters in pain processing. A novel fiber-optic method was used to acquire absolute values of regional oxy- (HbO and deoxy-hemoglobin concentrations, oxygen saturation rates (SO2, and the light-scattering coefficients from the spinal cord and primary somatosensory cortex (SI in 10 rats. Brief mechanical and electrical stimuli (ranging from innocuous to noxious intensities as well as a long-lasting noxious stimulus (formalin injection were applied to the hindlimb under pentobarbital anesthesia. Interhemispheric comparisons in the spinal cord and SI were used to confirm functional activation during sensory processing. We found that all neurovascular parameters showed stimulation-induced changes; however, patterns of changes varied with regions and stimuli. Particularly, transient increases in HbO and SO2 were more reliably attributed to brief stimuli, whereas a sustained decrease in SO2 was more reliably attributed to formalin. Only the ipsilateral SI showed delayed responses to brief stimuli. In conclusion, innocuous and noxious stimuli induced significant neurovascular responses at critical centers (e.g., the spinal cord and SI along the somatosensory pathway; however, there was no single response pattern (as measured by amplitude, duration, lateralization, decrease or increase that was able to consistently differentiate noxious stimuli. Our results strongly suggested that the neurovascular response patterns differ between brief and long-lasting noxious stimuli, and can also differ between the spinal cord and SI. Therefore, a use of multiple

  16. Burning Cold: Involvement of TRPA1 in Noxious Cold Sensation

    OpenAIRE

    Kwan, Kelvin Y.; Corey, David P.

    2009-01-01

    Soon after its discovery ten years ago, the ion channel TRPA1 was proposed as a sensor of noxious cold. Evidence for its activation by painfully cold temperatures (below ~15° C) has been mixed, however. Some groups found that cold elicits a nonselective conductance in cells expressing TRPA1; others found no activation, or argued that activation is an indirect effect of elevated \\(Ca^{ 2+}\\) . Sensory cells from the trigeminal and dorsal root ganglia that are activated by cold were sometimes c...

  17. Effects of Saccharomyces cerevisiae cell wall extract and poplar propolis ethanol extract supplementation on growth performance, digestibility, blood profile, fecal microbiota and fecal noxious gas emissions in growing pigs.

    Science.gov (United States)

    Li, Jian; Kim, In H

    2014-06-01

    A total of 105 growing pigs (24.91 ± 1.06 kg) were used in a 6-week trial to investigate the effects of including Saccharomyces cerevisiae cell wall extract and poplar propolis ethanol extract (SPE) in the diet on growth performance, digestibility, blood profiles, fecal microbiota and fecal noxious gas emissions. Pigs were randomly allocated to one of three dietary treatments (seven pens/treatment, five pigs/pen) according to initial body weight and sex (two gilts and three barrows). Treatments consisted of a corn soybean meal basal diet supplemented with 0, 0.05 or 0.10% SPE. There was a significant linear improvement (P  0.05) affected by SPE supplementation in the diets. In conclusion, results indicate that dietary SPE supplementation can improve growth performance, digestibility and fecal microbiota, and decrease fecal gas emissions in growing pigs. © 2014 Japanese Society of Animal Science.

  18. Identification of the visceral pain pathway activated by noxious colorectal distension in mice

    Directory of Open Access Journals (Sweden)

    Melinda eKyloh

    2011-02-01

    Full Text Available In patients with irritable bowel syndrome (IBS, visceral pain is evoked more readily following distension of the colorectum. However, the identity of extrinsic afferent nerve pathway that detects and transmits visceral pain from the colorectum to the spinal cord is unclear. In this study, we identified which extrinsic nerve pathway(s underlies nociception from the colorectum to the spinal cord of rodents. Electromyogram (EMG recordings were made from the transverse oblique abdominal muscles in anesthetized wild type (C57BL/6 mice and acute noxious intraluminal distension (100-120 mmHg applied to the terminal 15mm of rectum to activate visceromotor responses (VMRs. Cutting the lumbar colonic nerves in vivo had no detectable effect on the VMRs evoked by colorectal distension. Lesioning right or left hypogastric nerves also failed to reduce VMRs. However, lesioning left and right branches of the rectal nerves completely abolished the VMRs, regardless of whether the lumbar colonic or hypogastric nerves were severed. Electrical stimulation applied to either the lumbar colonic or hypogastric nerves in vivo, failed to elicit a VMR. In contrast, electrical stimulation (2-5Hz, 0.4ms, 60V applied to the rectum reliably elicited VMRs, which were abolished by selective lesioning of the rectal nerves. DiI retrograde labelling from the colorectum labelled sensory neurons only in dorsal root ganglia (DRG of the lumbosacral region of the spinal cord. In contrast, injection of DiI into the mid to proximal colon labelled sensory neurons in DRG primarily of the lower thoracic level (T8-L4 of the spinal cord. The visceral pain pathway activated by acute noxious distension of the terminal 15 mm of mouse rectum is transmitted predominantly, if not solely, through rectal/pelvic afferent nerve fibres to the spinal cord. The sensory neurons of this spinal afferent pathway lie in the lumbosacral region of the spinal cord, primarily at the level of S2 and S3.

  19. Stimulant and sedative effects of alcohol.

    Science.gov (United States)

    Hendler, Reuben A; Ramchandani, Vijay A; Gilman, Jodi; Hommer, Daniel W

    2013-01-01

    Alcohol produces both stimulant and sedating effects in humans. These two seemingly opposite effects are central to the understanding of much of the literature on alcohol use and misuse. In this chapter we review studies that describe and attempt to measure various aspects of alcohol's subjective, autonomic, motor, cognitive and behavioral effects from the perspective of stimulation and sedation. Although subjective sedative and stimulatory effects can be measured, it is not entirely clear if all motor, cognitive and behavioral effects can be unambiguously assigned to either one or the other category. Increased heart rate and aggression seem strongly associated with stimulation, but motor slowing and cognitive impairment can also show a similar time course to stimulation, making their relation to sedation problematic. There is good agreement that alcohol's ability to induce striatal dopamine release is the mechanism underlying alcohol's stimulatory effects; however, the change in brain function underlying sedation is less well understood. In general, stimulatory effects are thought to be more rewarding than sedative effects, but this may not be true for anxiolytic effects which seem more closely related to sedation than stimulation. The two major theories of how response to alcohol predicts risk for alcoholism both postulate that individuals at high risk for alcohol use disorders have a reduced sedative response to alcohol compared to individuals not at high risk. In addition one theory proposes that alcoholism risk is also associated with a larger stimulatory response to alcohol.

  20. 7 CFR 201.16 - Noxious-weed seeds.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Noxious-weed seeds. 201.16 Section 201.16 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.16 Noxious-weed seeds. (a) Except for those kinds of noxious-weed seeds shown in paragraph (b) of this section, the names of the kinds of noxious-weed seeds and the...

  1. 7 CFR 361.6 - Noxious weed seeds.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Noxious weed seeds. 361.6 Section 361.6 Agriculture..., DEPARTMENT OF AGRICULTURE IMPORTATION OF SEED AND SCREENINGS UNDER THE FEDERAL SEED ACT § 361.6 Noxious weed... considered noxious weed seeds. (1) Seeds with no tolerances applicable to their introduction: Aeginetia spp...

  2. 7 CFR 201.52 - Noxious-weed seeds.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Noxious-weed seeds. 201.52 Section 201.52 Agriculture... REGULATIONS Purity Analysis in the Administration of the Act § 201.52 Noxious-weed seeds. (a) The determination of the number of seeds, bulblets, or tubers of individual noxious weeds present per unit weight...

  3. Specific and somatotopic functional magnetic resonance imaging activation in the trigeminal ganglion by brush and noxious heat.

    Science.gov (United States)

    Borsook, David; DaSilva, Alexandre F M; Ploghaus, Alex; Becerra, Lino

    2003-08-27

    We used functional magnetic resonance imaging (fMRI) to assess activation in the trigeminal ganglion during innocuous mechanical (brush) and noxious thermal (46 degrees C) stimulation of the face within the receptive fields of each of the three divisions of the trigeminal nerve in healthy volunteers. For both stimulus types, we observed signal changes only in the ipsilateral ganglion, and activation occurred somatotopically, as predicted by the known anatomical segregation of the neurons comprising the ophthalmic (V1), maxillary (V2), and mandibular (V3) divisions of the nerve. Signal decreased after brush stimuli and increased after the application of noxious heat. The abilities to detect somatotopic activation within the ganglion and to segregate non-noxious mechanical from noxious thermal stimuli suggest that fMRI will be valuable for measuring changes in the trigeminal ganglion in human models of neuropathic pain and in the clinical condition itself and may also be useful in the evaluation of pain therapies.

  4. Effects of xylanase supplementation on growth performance, nutrient digestibility, blood parameters, fecal microbiota, fecal score and fecal noxious gas emission of weaning pigs fed corn-soybean meal-based diet.

    Science.gov (United States)

    Lan, Ruixia; Li, Tianshui; Kim, Inho

    2017-09-01

    This study was conducted to evaluate the effects of xylanase supplementation on nutrient digestibility, growth performance, blood parameters, fecal microflora shedding, fecal score and fecal noxious gas emission of weaning pigs fed corn-soybean meal based diet. A total of 150 weaning pigs with an average initial body weight (BW) of 7.85 ± 0.93 kg were randomly allocated to three treatments based on BW and sex (10 replicate pens with five pigs, two gilts and three barrows) were used in this 42-day trial. Dietary treatments were: (1) CON, basal diet; (2) X1, basal diet +0.005% xylanase; (2) X2, basal diet +0.01% xylanase. The xylanase supplementation linearly increased (P < 0.05) average daily gain (ADG), and gain : feed ratio (G:F) from days 29 to 42 and the in overall period, dry matter, nitrogen and energy digestibility, and fecal Lactobacilli counts, and linearly decreased (P < 0.05) blood urea nitrogen (BUN) concentration, fecal NH 3 and H 2 S emission. Additionally, at weeks 5 and 6, there was a linear decrease in fecal score with xylanase supplementation. In conclusion, dietary supplementation of xylanase improved growth performance, nutrient digestibility, shifted microbiota by increasing fecal Lactobacillus counts, decreased BUN concentration, fecal score, and fecal NH 3 and H 2 S emission in weaning pigs. © 2017 Japanese Society of Animal Science.

  5. Guidelines for management of noxious weeds at Hanford

    International Nuclear Information System (INIS)

    Roos, R.C.; Malady, M.B.

    1995-01-01

    Integrated Pest Management Services is responsible for management and control of noxious weeds on the Hanford Site. Weed species and populations are prioritized and objective defined, according to potential site and regional impact. Population controls are implemented according to priority. An integrated approach is planned for noxious weed control in which several management options are considered and implemented separately or in coordination to best meet management objectives. Noxious weeds are inventories and monitored to provide information for planning and program review

  6. The effect of transcutaneous vagus nerve stimulation on pain perception--an experimental study.

    Science.gov (United States)

    Busch, Volker; Zeman, Florian; Heckel, Andreas; Menne, Felix; Ellrich, Jens; Eichhammer, Peter

    2013-03-01

    Recent preclinical work strongly suggests that vagus nerve stimulation efficiently modulates nociception and pain processing in humans. Most recently, a medical device has offered a transcutaneous electrical stimulation of the auricular branch of the vagus nerve (t-VNS) without any surgery. Our study investigates whether t-VNS may have the potential to alter pain processing using a controlled design. Different submodalities of the somatosensory system were assessed with quantitative sensory testing (QST) including a tonic heat pain paradigm in 48 healthy volunteers. Each subject participated in two experimental sessions with active t-VNS (stimulation) or sham t-VNS (no stimulation) on different days in a randomized order (crossed-over). One session consisted of two QST measurements on the ipsi- and contralateral hand, each before and during 1 h of a continuous t-VNS on the left ear using rectangular pulses (250 μS, 25 Hz). We found an increase of mechanical and pressure pain threshold and a reduction of mechanical pain sensitivity. Moreover, active t-VNS significantly reduced pain ratings during sustained application of painful heat for 5 min compared to sham condition. No relevant alterations of cardiac or breathing activity or clinical relevant side effects were observed during t-VNS. Our findings of a reduced sensitivity of mechanically evoked pain and an inhibition of temporal summation of noxious tonic heat in healthy volunteers may pave the way for future studies on patients with chronic pain addressing the potential analgesic effects of t-VNS under clinical conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Effects of noxious environmental particulate matter on the immune response of monocyte cells; Wirkung von partikulaeren Umweltnoxen auf die Immunabwehr monozytaerer Zellen

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, T.

    2000-07-01

    The effects of ultrafine particles on the immune response of alveolar macrophages of mice was investigated. The findings are presented and discussed in this report. [German] In der vorliegenden Arbeit wurde die Wirkung ultrafeiner Partikel auf die Immunabwehr an Alveolarmakrophagen der Maus untersucht. Die Ergebnisse werden dargestellt und diskutiert. (orig/MG)

  8. The economic cost of noxious weeds on Montana grazing lands

    Science.gov (United States)

    We distributed a 16-question survey concerning noxious weed abundances, impacts and management to livestock producers grazing on privately-owned or leased grazing lands in Montana. The noxious weeds most commonly reported as being present on respondents’ grazing units were Canada thistle (64% of gra...

  9. 30 CFR 75.322 - Harmful quantities of noxious gases.

    Science.gov (United States)

    2010-07-01

    ... Section 75.322 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.322 Harmful quantities of noxious gases. Concentrations of noxious or poisonous gases, other than carbon dioxide, shall...

  10. Network effects of deep brain stimulation.

    Science.gov (United States)

    Alhourani, Ahmad; McDowell, Michael M; Randazzo, Michael J; Wozny, Thomas A; Kondylis, Efstathios D; Lipski, Witold J; Beck, Sarah; Karp, Jordan F; Ghuman, Avniel S; Richardson, R Mark

    2015-10-01

    The ability to differentially alter specific brain functions via deep brain stimulation (DBS) represents a monumental advance in clinical neuroscience, as well as within medicine as a whole. Despite the efficacy of DBS in the treatment of movement disorders, for which it is often the gold-standard therapy when medical management becomes inadequate, the mechanisms through which DBS in various brain targets produces therapeutic effects is still not well understood. This limited knowledge is a barrier to improving efficacy and reducing side effects in clinical brain stimulation. A field of study related to assessing the network effects of DBS is gradually emerging that promises to reveal aspects of the underlying pathophysiology of various brain disorders and their response to DBS that will be critical to advancing the field. This review summarizes the nascent literature related to network effects of DBS measured by cerebral blood flow and metabolic imaging, functional imaging, and electrophysiology (scalp and intracranial electroencephalography and magnetoencephalography) in order to establish a framework for future studies. Copyright © 2015 the American Physiological Society.

  11. Network effects of deep brain stimulation

    Science.gov (United States)

    Alhourani, Ahmad; McDowell, Michael M.; Randazzo, Michael J.; Wozny, Thomas A.; Kondylis, Efstathios D.; Lipski, Witold J.; Beck, Sarah; Karp, Jordan F.; Ghuman, Avniel S.

    2015-01-01

    The ability to differentially alter specific brain functions via deep brain stimulation (DBS) represents a monumental advance in clinical neuroscience, as well as within medicine as a whole. Despite the efficacy of DBS in the treatment of movement disorders, for which it is often the gold-standard therapy when medical management becomes inadequate, the mechanisms through which DBS in various brain targets produces therapeutic effects is still not well understood. This limited knowledge is a barrier to improving efficacy and reducing side effects in clinical brain stimulation. A field of study related to assessing the network effects of DBS is gradually emerging that promises to reveal aspects of the underlying pathophysiology of various brain disorders and their response to DBS that will be critical to advancing the field. This review summarizes the nascent literature related to network effects of DBS measured by cerebral blood flow and metabolic imaging, functional imaging, and electrophysiology (scalp and intracranial electroencephalography and magnetoencephalography) in order to establish a framework for future studies. PMID:26269552

  12. Effects of Vibrotactile Stimulation During Virtual Sandboarding

    DEFF Research Database (Denmark)

    Lind, Stine; Thomsen, Lui; Egebjerg, Mie

    2016-01-01

    underneath the board. The study compared three conditions: no vibration, constant vibration and dynamic vibration. The results suggest that constant vibrotactile feedback led to significantly more compelling self-motion illusions and a higher degree of perceived realism, than the condition devoid......This poster details a within-subjects study (n=17) investigating the effects of vibrotactile stimulation on illusory self-motion, presence and perceived realism during an interactive sandboarding simulation. Vibrotactile feedback was delivered using a low frequency audio transducer mounted...

  13. Postural stability is altered by the stimulation of pain but not warm receptors in humans

    Directory of Open Access Journals (Sweden)

    Corbeil Philippe

    2003-10-01

    Full Text Available Abstract Background It is now recognized that large diameter myelinated afferents provide the primary source of lower limb proprioceptive information for maintaining an upright standing position. Small diameter afferents transmitting noxious stimuli, however, can also influence motor behaviors. Despite the possible influence of pain on motor behaviors, the effects of pain on the postural control system have not been well documented. Methods Two cutaneous heat stimulations (experiment 1: non-noxious 40 degrees C; experiment 2: noxious 45 degrees C were applied bilaterally on the calves of the subject with two thermal grills to stimulate A delta and C warm receptors and nociceptors in order to examine their effects on postural stability. The non-noxious stimulation induced a gentle sensation of warmth and the noxious stimulation induced a perception of heat pain (visual analogue scores of 0 and 46 mm, respectively. For both experiments, ten healthy young adults were tested with and without heat stimulations of the lower limbs while standing upright on a force platform with eyes open, eyes closed and eyes closed with tendon co-vibration of tibialis anterior and triceps surae muscles. The center of pressure displacements were analyzed to examine how both stimulations affected the regulation of quiet standing and if the effects were exacerbated when vision was removed or ankle proprioception perturbed. Results The stimulation of the warm receptors (40 degrees C did not induce any postural deterioration. With pain (45 degrees C, subjects showed a significant increase in standard deviation, range and mean velocity of postural oscillations as well as standard deviation of the center of pressure velocity. The effects of heat pain were exacerbated when subjects had both their eyes closed and ankle tendons vibrated (increased standard deviation of the center of pressure velocity and mean velocity of the center of pressure. Conclusions A non-noxious

  14. [Effect of cognitive stimulation in elderly community].

    Science.gov (United States)

    Apóstolo, João Luís Alves; Cardoso, Daniela Filipa Batista; Paúl, Constança; Rodrigues, Manuel Alves; Macedo, Marinha Sofia

    2016-01-01

    To demonstrate that the implementation of the Cognitive Stimulation (CS) program 'Making a Difference' (MD) improves cognition and depressive symptoms in retired community elders. This was a multicenter quasi-experimental study of 45 community dwelling elders (38 women and 7 men), with a mean age of 75.29, from 3 day-care centers in rural, semi-rural and urban environments in the central region of Portugal. Participants attended 14 sessions twice a week over seven weeks. The Montreal Cognitive Assessment (MoCA) and the Geriatric Depression Scale (GDS-15) were administered at the following three time points: baseline, post-test, and follow-up. From baseline to post-test, there is a statistically significant difference in depressive symptoms (F=7.494; P=.010) explaining 21% of the variance (partial eta squared [ηp(2)]=.21), power=.75, but there is no statistically significant difference in cognition. From post-test to follow-up, there is no difference in both cognition and depression outcomes. Our results showed improvement in elders' depressive symptoms after a seven weeks intervention program but it did not have a protective effect after the three months follow-up. No evidence was found for its efficacy in improving cognition. Cognitive stimulation may be a useful in preventing elder's depressive symptoms when included in their health promotion care plan. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  15. Initial activation state, stimulation intensity and timing of stimulation interact in producing behavioral effects of TMS

    OpenAIRE

    Silvanto, Juha; Bona, Silvia; Cattaneo, Zaira

    2017-01-01

    Behavioral effects of transcranial magnetic stimulation (TMS) have been shown to depend on various factors, such as neural activation state, stimulation intensity, and timing of stimulation. Here we examined whether these factors interact, by applying TMS at either sub- or suprathreshold intensity (relative to phosphene threshold, PT) and at different time points during a state-dependent TMS paradigm. The state manipulation involved a behavioral task in which a visual prime (color grating) wa...

  16. Early postnatal nociceptive stimulation results in deficits of spatial memory in male rats.

    Science.gov (United States)

    Amaral, Cristiane; Antonio, Bruno; Oliveira, Maria Gabriela Menezes; Hamani, Clement; Guinsburg, Ruth; Covolan, Luciene

    2015-11-01

    Prematurely-born infants are exposed to multiple invasive procedures while in the intensive care unit. Newborn rats and humans have similar behavioral responses to noxious stimulation. Previous studies have shown that early noxious stimuli may alter dentate gyrus neurogenesis and the behavioral repertoire of adult rats. We evaluated the late effects of noxious stimulation administered during different phases of development on two spatial memory tests; object recognition (OR) and Morris water maze (WM) tests. Noxious stimulation was induced by an intra-plantar injection of complete Freund's adjuvant (CFA) on postnatal (P) day 1 (group P1) or 8 (P8). Control animals were not stimulated. Behavioral tests were conducted on P60 in both male and female animals. In the WM, three domains were evaluated: acquisition, probe trial performance and reversal re-acquisition. The number of Nissl stained cells in the dentate granule cell layer was assessed by stereological counting. The OR test revealed that P1 male rats had poor long-term memory compared to the control and P8 groups. In the WM, no short- or long-term memory differences were detected between early postnatal-stimulated male and female rats and their respective controls. However, the ability to find the hidden platform in a new position was reduced in P1 male rats. The number of dentate granule cells in P8 males was higher than in all other groups. This study demonstrates that noxious stimulation on P1 results in spatial learning deficits in male animals, but does not disrupt the development of the hippocampus-dependent strategies of learning and memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Immediate effect of laryngeal surface electrical stimulation on swallowing performance.

    Science.gov (United States)

    Takahashi, Keizo; Hori, Kazuhiro; Hayashi, Hirokazu; Fujiu-Kurachi, Masako; Ono, Takahiro; Tsujimura, Takanori; Magara, Jin; Inoue, Makoto

    2018-01-01

    Surface electrical stimulation of the laryngeal region is used to improve swallowing in dysphagic patients. However, little is known about how electrical stimulation affects tongue movements and related functions. We investigated the effect of electrical stimulation on tongue pressure and hyoid movement, as well as suprahyoid and infrahyoid muscle activity, in 18 healthy young participants. Electrical stimulation (0.2-ms duration, 80 Hz, 80% of each participant's maximal tolerance) of the laryngeal region was applied. Each subject swallowed 5 ml of barium sulfate liquid 36 times at 10-s intervals. During the middle 2 min, electrical stimulation was delivered. Tongue pressure, electromyographic activity of the suprahyoid and infrahyoid muscles, and videofluorographic images were simultaneously recorded. Tongue pressure during stimulation was significantly lower than before or after stimulation and was significantly greater after stimulation than at baseline. Suprahyoid activity after stimulation was larger than at baseline, while infrahyoid muscle activity did not change. During stimulation, the position of the hyoid at rest was descended, the highest hyoid position was significantly inferior, and the vertical movement was greater than before or after stimulation. After stimulation, the positions of the hyoid at rest and at the maximum elevation were more superior than before stimulation. The deviation of the highest positions of the hyoid before and after stimulation corresponded to the differences in tongue pressures at those times. These results suggest that surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. NEW & NOTEWORTHY Surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. Tongue muscles may contribute to overshot recovery

  18. Transient effects on stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Faris, G.W.; Dyer, M.J.; Hickman, A.P.

    1992-01-01

    We present a detailed comparison of theory and experiment for transient stimulated Brillouin scattering for a pump pulse with Gaussian temporal profile. A new approach for measuring Brillouin linewidths is demonstrated, and an unexplained asymmetry is observed

  19. On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation

    Directory of Open Access Journals (Sweden)

    Daniel eStrüber

    2015-08-01

    Full Text Available Transcranial alternating current stimulation is a novel method that allows application of sinusoidal currents to modulate brain oscillations and cognitive processes. Studies in humans have demonstrated tACS after-effects following stimulation durations in the range of minutes. However, such after-effects are absent in animal studies using much shorter stimulation protocols in the range of seconds. Thus, stimulation duration might be a critical parameter for after-effects to occur. To test this hypothesis, we repeated a recent human tACS experiment with a short duration. We applied alpha tACS intermittently for one second duration while keeping other parameters identical. The results demonstrate that this very short intermittent protocol did not produce after-effects on amplitude or phase of the electroencephalogram. Since synaptic plasticity has been suggested as a possible mechanism for after-effects, our results indicate that a stimulation duration of one second is too short to induce synaptic plasticity. Future studies in animals are required that use extended stimulation durations to reveal the neuronal underpinnings. A better understanding of the mechanisms of tACS after-effects is crucial for potential clinical applications.

  20. Side effects of vagus nerve stimulation during physical exercise

    NARCIS (Netherlands)

    Mulders, D.M.; de Vos, Cecilia Cecilia Clementine; Vosman, I.; Driesse, M.J.; van Putten, Michel Johannes Antonius Maria

    2012-01-01

    RATIONALE: Vagus nerve stimulation (VNS) is a treatment option in the case of refractory epilepsy. However, several side effects have been reported, including dyspnea, coughing and bradycardias [JCA 2010: 22;213-222]. Although some patients experience hardly any side effects from the stimulation

  1. Stimulant alcohol effects prime within session drinking behavior.

    Science.gov (United States)

    Corbin, William R; Gearhardt, Ashley; Fromme, Kim

    2008-04-01

    Individual differences in subjective alcohol effects have been shown to differ by risk status (e.g., family history of alcoholism) and to predict future risk for alcohol-related problems. Presumably, individual differences in both stimulant and sedative responses affect the rewarding value of drinking which, in turn, impacts future drinking behavior. Although plausible, this theoretical model is largely untested. The current study attempted to provide experimental evidence for the impact of subjective alcohol responses on within session drinking behavior. Using a placebo-controlled between-subjects alcohol administration paradigm, experiences and evaluations of stimulant and sedative alcohol effects (after a target dose of 0.06 g%) were assessed as predictors of ad-libitum consumption in the context of anticipatory stress. Analyses indicated that an initial dose of alcohol increased experiences of both stimulation and sedation although stimulant effects were evaluated much more positively. In addition, stimulant effects after a priming dose predicted further consumption, whereas sedative effects did not. At least among moderate to heavy drinking college students, stimulant alcohol effects are more reinforcing and predict within session drinking behavior under social stress. Increased attention should be given to stimulant alcohol effects as a risk factor for excessive consumption in this population. Incorporating information about stimulant alcohol effects in prevention and intervention programs may also be important if additional research supports the current results.

  2. Memory and convulsive stimulation: effects of stimulus waveform.

    Science.gov (United States)

    Spanis, C W; Squire, L R

    1981-09-01

    Electrical stimulation with brief pulses can produce a seizure requiring less energy than conventional sine-wave stimulation, and it has been suggested that brief-pulse stimulation might reduce the memory loss associated with electroconvulsive therapy (ECT). The authors evaluated the effects of electroconvulsive shock (ECS) on memory in mice by using various waveforms, current intensities, training-ECS intervals, pulse widths, and stimulus durations. When equated for ability to produce seizures, low-energy, brief-pulse stimulation caused as much amnesia as sine-wave stimulation and sometimes more. In the absence of comparisons of the amnesic effects of brief-pulse and sine-wave stimulation in humans, the use of brief pulses for administering ECT is unwarranted.

  3. Individual differences in the effects of music engagement on responses to painful stimulation.

    Science.gov (United States)

    Bradshaw, David H; Donaldson, Gary W; Jacobson, Robert C; Nakamura, Yoshio; Chapman, C Richard

    2011-12-01

    Engaged attention, including music listening, has shown mixed results when used as a method for reducing pain. Applying the framework of constructivism, we extend the concept of engagement beyond attention/distraction to include all cognitive and emotional/motivational processes that may be recruited in order to construct an alternative experience to pain and thus reduce pain. Using a music-listening task varying in task demand, we collected stimulus-evoked potentials, pupil dilation, and skin conductance responses to noxious electrocutaneous stimulations as indicators of central and peripheral arousal, respectively. Trait anxiety (Spielberger State-Trait Anxiety Inventory) and absorption (Tellegen Absorption Scale) provided indicators of individual differences. One hundred and fifty-three healthy, normal volunteers participated in a test session in which they received 3 stimulus intensity levels while listening to background tones (No Task) or performing a music-listening task. Linear slopes indicating net engagement (change in stimulus arousal relative to task performance) decreased with increasing task demand and stimulus level for stimulus-evoked potentials. Slopes for pupil dilation response and skin conductance response varied with task demand, anxiety, and absorption, with the largest engagement effect occurring for high anxiety/high absorption participants. Music engagement reduces pain responses, but personality factors like anxiety and absorption modulate the magnitude of effect. Engaging in music listening can reduce responses to pain, depending on the person: people who are anxious and can become absorbed in activities easily may find music listening especially effective for relieving pain. Clinicians should consider patients' personality characteristics when recommending behavioral interventions like music listening for pain relief. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  4. Allelopathic potential of a noxious weed on mung bean

    Directory of Open Access Journals (Sweden)

    Parthapratim Maiti

    2013-10-01

    Full Text Available Eupatorium odoratum have invaded the waste lands of South West Bengal, India. A field study indicated a gradual and also significant increase in Eupatorium odoratum accompanied with significant decrease in other coexisting species. Considering the above in mind, a study was undertaken to evaluate the existence of inhibitory effect of leaf extracts and leaf leachates noxious weed Eupatorium odoratum using fully viable seeds of mung bean (Vigna radiata as the bioassay material. The study showed the reduced the percentage germination and TTC stainability along with extended T50 values of mung bean seeds. The levels of protein, DNA and RNA, activities of dehydrogenase and catalase enzymes were significantly retarded in pretreated seed samples. Amino acid and sugar levels were increased in the leachates of seeds pretreated with leaf extracts and leaf leachates. Thus, from the overall results it can be concluded that various inhibitors present in E. odoratum can impart strong inhibitory effect on mung bean. The study suggests that the leaves of E. odoratum possess phytotoxic or allelopathic chemicals which potentially rendered the inhibitory action on mung bean seeds.

  5. Optimising the Effect of Stimulants on Citric Acid Production from ...

    African Journals Online (AJOL)

    Additives such as low molecular weight alcohols, trace metals, phytate, lipids etc have been reported to stimulate citric acid production. Hence the objective of this study was to investigate the effect of stimulating the metabolic activity of Aspergillus niger for the purpose of improved citric acid production from cocoyam starch.

  6. Beneficial Effects of Tactile Stimulation on Early Development.

    Science.gov (United States)

    Caulfield, Rick

    2000-01-01

    Reviews selected research on the beneficial effects of tactile stimulation on infants. Examines the results of studies with animals, preterm infants, cocaine- and HIV-exposed preterm infants, and normal full-term infants. Briefly discusses caregiving implications and offers suggestions on how caregivers can incorporate tactile stimulation in…

  7. AIR POLLUTION FROM ANIMAL AND MUNICIPAL WASTEWATER: ASSESSMENT OF PRODUCTION AND RELEASE OF NOXIOUS GASES

    DEFF Research Database (Denmark)

    Dai, Xiaorong

    Airborne contaminants and odor from animal manure and municipal wastewater can affect human physical and psychological health, and the environment. The estimation of gas emission rates and development of technologies to reduce the release of noxious gases from wastewater is limited by current...... knowledge on the production pathways of gases and the release mechanisms from various sources. The overall objective of this PhD project was to assess the production and release of noxious gases from animal manure and municipal wastewater by giving emphasis on the effects of waste management (such as......, surface disturbances during storage, acidification and aeration), the hydrolysis of urea by bacteria, the waste types and wastes physicochemical characteristics. Animal wastewater stored in under-floor deep pit is characterized by the frequent occurrence of surface liquid disturbances caused by the urine...

  8. Effects of Navigated Repetitive Transcranial Magnetic Stimulation After Stroke.

    Science.gov (United States)

    Chervyakov, Alexander V; Poydasheva, Alexandra G; Lyukmanov, Roman H; Suponeva, Natalia A; Chernikova, Ludmila A; Piradov, Michael A; Ustinova, Ksenia I

    2018-03-01

    The purpose of this study was to test the effects of navigated repetitive transcranial magnetic stimulation, delivered in different modes, on motor impairments and functional limitations after stroke. The study sample included 42 patients (58.5 ± 10.7 years; 26 males) who experienced a single unilateral stroke (1-12 months previously) in the area of the middle cerebral artery. Patients completed a course of conventional rehabilitation, together with 10 sessions of navigated repetitive transcranial magnetic stimulation or sham stimulation. Stimulation was scheduled five times a week over two consecutive weeks in an inpatient clinical setting. Patients were randomly assigned to one of four groups and received sham stimulation (n = 10), low-frequency (1-Hz) stimulation of the nonaffected hemisphere (n = 11), high-frequency (10-Hz) stimulation of the affected hemisphere (n = 13), or sequential combination of low- and high-frequency stimulations (n = 8). Participants were evaluated before and after stimulation with clinical tests, including the arm and hand section of the Fugl-Meyer Assessment Scale, modified Ashworth Scale of Muscle Spasticity, and Barthel Index of Activities of Daily Living. Participants in the three groups receiving navigated repetitive transcranial magnetic stimulation showed improvements in arm and hand functions on the Fugl-Meyer Stroke Assessment Scale. Ashworth Scale of Muscle Spasticity and Barthel Index scores were significantly reduced in groups receiving low- or high-frequency stimulation alone. Including navigated repetitive transcranial magnetic stimulation in a conventional rehabilitation program positively influenced motor and functional recovery in study participants, demonstrating the clinical potential of the method. The results of this study will be used for designing a large-scale clinical trial.

  9. Optogenetic stimulation effectively enhances intrinsically generated network synchrony

    Directory of Open Access Journals (Sweden)

    Ahmed eEl Hady

    2013-10-01

    Full Text Available Synchronized bursting is found in many brain areas and has also been implicated in the pathophysiology of neuropsychiatric disorders such as epilepsy, Parkinson’s disease and schizophrenia. Despite extensive studies of network burst synchronization, it is insufficiently understood how this type of network wide synchronization can be strengthened, reduced or even abolished. We combined electrical recording using multi-electrode array with optical stimulation of cultured channelrhodopsin-2 transducted hippocampal neurons to study and manipulate network burst synchronization. We found low frequency photo-stimulation protocols that are sufficient to induce potentiation of network bursting, modifying bursting dynamics and increasing interneuronal synchronization. Surprisingly, slowly fading-in light stimulation, which substantially delayed and reduced light driven spiking, was at least as effective in reorganizing network dynamics as much stronger pulsed light stimulation. Our study shows that mild stimulation protocols that do not enforce particular activity patterns onto the network can be highly effective inducers of network-level plasticity.

  10. Optogenetic stimulation effectively enhances intrinsically generated network synchrony

    Science.gov (United States)

    El Hady, Ahmed; Afshar, Ghazaleh; Bröking, Kai; Schlüter, Oliver M.; Geisel, Theo; Stühmer, Walter; Wolf, Fred

    2013-01-01

    Synchronized bursting is found in many brain areas and has also been implicated in the pathophysiology of neuropsychiatric disorders such as epilepsy, Parkinson’s disease, and schizophrenia. Despite extensive studies of network burst synchronization, it is insufficiently understood how this type of network wide synchronization can be strengthened, reduced, or even abolished. We combined electrical recording using multi-electrode array with optical stimulation of cultured channelrhodopsin-2 transducted hippocampal neurons to study and manipulate network burst synchronization. We found low frequency photo-stimulation protocols that are sufficient to induce potentiation of network bursting, modifying bursting dynamics, and increasing interneuronal synchronization. Surprisingly, slowly fading-in light stimulation, which substantially delayed and reduced light-driven spiking, was at least as effective in reorganizing network dynamics as much stronger pulsed light stimulation. Our study shows that mild stimulation protocols that do not enforce particular activity patterns onto the network can be highly effective inducers of network-level plasticity. PMID:24155695

  11. Transcriptional repressor DREAM regulates trigeminal noxious perception.

    Science.gov (United States)

    Benedet, Tomaso; Gonzalez, Paz; Oliveros, Juan C; Dopazo, Jose M; Ghimire, Kedar; Palczewska, Malgorzata; Mellstrom, Britt; Naranjo, Jose R

    2017-05-01

    Expression of the downstream regulatory element antagonist modulator (DREAM) protein in dorsal root ganglia and spinal cord is related to endogenous control mechanisms of acute and chronic pain. In primary sensory trigeminal neurons, high levels of endogenous DREAM protein are preferentially localized in the nucleus, suggesting a major transcriptional role. Here, we show that transgenic mice expressing a dominant active mutant of DREAM in trigeminal neurons show increased responses following orofacial sensory stimulation, which correlates with a decreased expression of prodynorphin and brain-derived neurotrophic factor in trigeminal ganglia. Genome-wide analysis of trigeminal neurons in daDREAM transgenic mice identified cathepsin L and the monoglyceride lipase as two new DREAM transcriptional targets related to pain. Our results suggest a role for DREAM in the regulation of trigeminal nociception. This article is part of the special article series "Pain". © 2016 International Society for Neurochemistry.

  12. Effects of autonomic nerve stimulation on colorectal motility in rats

    Science.gov (United States)

    Tong, Wei Dong; Ridolfi, Timothy J.; Kosinski, Lauren; Ludwig, Kirk; Takahashi, Toku

    2010-01-01

    Background Several disease processes of the colon and rectum, including constipation and incontinence, have been associated with abnormalities of the autonomic nervous system. However, the autonomic innervation to the colon and rectum are not fully understood. The aims of this study were to investigate the effect of stimulation of vagus nerves, pelvic nerves (PN) and hypogastric nerves (HGN) on colorectal motility in rats. Methods Four strain gauge transducers were implanted on the proximal colon, mid colon, distal colon and rectum to record circular muscle contractions in rats. Electrical stimulation was administered to the efferent distal ends of the cervical vagus nerve, PN and HGN. Motility index (MI) was evaluated before and during stimulation. Key Results Electrical stimulation (5–20 Hz) of the cervical vagus elicited significant contractions in the mid colon and distal colon, whereas less pronounced contractions were observed in the proximal colon. PN stimulation elicited significant contractions in the rectum as well as the mid colon and distal colon. Atropine treatment almost completely abolished the contractions induced by vagus nerve and PN stimulation. HGN stimulation caused relaxations in the rectum, mid colon and distal colon. The relaxations in response to HGN stimulation were abolished by propranolol. Conclusions & Inferences Vagal innervation extends to the distal colon, while the PN has projections in the distribution of the rectum through the mid colon. This suggests a pattern of dual parasympathetic innervation in the left colon. Parasympathetic fibers regulate colorectal contractions via muscarinic receptors. The HGN mainly regulates colorectal relaxations via beta-adrenoceptors. PMID:20067587

  13. Effect of Low-Level Laser Stimulation on EEG

    Directory of Open Access Journals (Sweden)

    Jih-Huah Wu

    2012-01-01

    Full Text Available Conventional laser stimulation at the acupoint can induce significant brain activation, and the activation is theoretically conveyed by the sensory afferents. Whether the insensible low-level Laser stimulation outside the acupoint could also evoke electroencephalographic (EEG changes is not known. We designed a low-level laser array stimulator (6 pcs laser diode, wavelength 830 nm, output power 7 mW, and operation frequency 10 Hz to deliver insensible laser stimulations to the palm. EEG activities before, during, and after the laser stimulation were collected. The amplitude powers of each EEG frequency band were analyzed. We found that the low-level laser stimulation was able to increase the power of alpha rhythms and theta waves, mainly in the posterior head regions. These effects lasted at least 15 minutes after cessation of the laser stimulation. The amplitude power of beta activities in the anterior head regions decreased after laser stimulation. We thought these EEG changes comparable to those in meditation.

  14. The effect of Hegu acupoint stimulation in dental acupuncture analgesia

    Directory of Open Access Journals (Sweden)

    Fransiskus Andrianto

    2007-03-01

    Full Text Available In daily life, dental treatments are often related with oral pain sensation which needs anesthesia procedures. Sometimes local anesthetics can not be used because patients have hypersensitive reaction or systemic diseases which may lead to complications. Stimulating acupoint, such as Hegu activates hypothalamus and pituitary gland to release endogenous opioid peptide substances that reduce pain sensitivity. The aim of the study was to determine Hegu acupoint stimulation effect on the pain sensitivity reduction in maxillary central incisor gingiva. The laboratory experimental research was conducted on 12 healthy male Wistar rats (3 months old, weights 150–200 grams. All rat samples received the same treatments and adapted within 1 month. The research was done in pre and post test control group design. 40-Volt electro-stimulation was done once on the maxillary central incisor gingiva prior to the bilateral Hegu acupoint stimulation, then followed by 3 times electro-stimulation with 3 minutes intervals. The pain scores were obtained based on the samples’ contraction in each electro-stimulation. The responses were categorized into 5 pain scores and statistically analyzed using Wilcoxon Test. The results showed that Hegu acupoint stimulation lowered the pain scores significantly (p < 0.05. Hegu acupoint stimulation could reduce the pain sensitivity in maxillary central incisor gingiva. Therefore, the use of acupuncture analgesia in dental pain management can be considered in the future.

  15. Labor stimulation with oxytocin: effects on obstetrical and neonatal outcomes

    Science.gov (United States)

    Hidalgo-Lopezosa, Pedro; Hidalgo-Maestre, María; Rodríguez-Borrego, María Aurora

    2016-01-01

    Abstract Objective: to evaluate the effects of labor stimulation with oxytocin on maternal and neonatal outcomes. Method: descriptive and analytical study with 338 women who gave birth at a tertiary hospital. Obstetric and neonatal variables were measured and compared in women submitted and non-submitted to stimulation with oxytocin. Statistics were performed using Chi-square test, Fisher exact test, Student t-test; and crude Odds Ratio with 95% confidence interval were calculated. A p labor in primiparous women. However, it did not affect the rates of 3rd and 4th degree perineal lacerations, episiotomies, advanced neonatal resuscitation, 5-minute Apgar scores and meconium. Conclusion: stimulation with oxytocin should not be used systematically, but only in specific cases. These findings provide further evidence to health professionals and midwives on the use of oxytocin during labor. Under normal conditions, women should be informed of the possible effects of labor stimulation with oxytocin. PMID:27463109

  16. 7 CFR 201.17 - Noxious-weed seeds in the District of Columbia.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Noxious-weed seeds in the District of Columbia. 201.17... ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.17 Noxious-weed seeds in the District of Columbia. (a) Noxious-weed seeds in the District of Columbia are: Quackgrass (Elytrigia repens...

  17. 7 CFR 201.65 - Noxious weed seeds in interstate commerce.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Noxious weed seeds in interstate commerce. 201.65... ACT FEDERAL SEED ACT REGULATIONS Tolerances § 201.65 Noxious weed seeds in interstate commerce. Tolerances for rates of occurrence of noxious-weed seeds shall be recognized and shall be applied to the...

  18. Effect of seed stimulation on germination and sugar beet yield

    Science.gov (United States)

    Prośba-Białczyk, U.; Szajsner, H.; Grzyś, E.; Demczuk, A.; Sacała, E.; Bąk, K.

    2013-03-01

    Germination and sugar beet yield after seed stimulation were investigated. The seeds came from the energ'hill technology and were subject to laser irradiation. The experiments were conducted in the laboratory and field conditions. Lengthening of germinal roots and hypocotyls was observed. A positive effect of the stimulation on the morphological features was observed for the Eh seeds and laser irradiation applied in a three-fold dose. The energ'hill seeds exhibited a significantly higher content of carotenoids in seedlings and an increase in the content of chlorophylls. Laser light irradiation favourably modified the ratio of chlorophyll a to b. The leaves and roots of plants developed from the energ'hill and irradiated seeds were characterized by higher dry matter content thanin non-stimulated seeds. Seed stimulation had a positive influence on yielding and the saccharose content.

  19. The stimulated social brain: effects of transcranial direct current stimulation on social cognition.

    Science.gov (United States)

    Sellaro, Roberta; Nitsche, Michael A; Colzato, Lorenza S

    2016-04-01

    Transcranial direct current stimulation (tDCS) is an increasingly popular noninvasive neuromodulatory tool in the fields of cognitive and clinical neuroscience and psychiatry. It is an inexpensive, painless, and safe brain-stimulation technique that has proven to be effective in modulating cognitive and sensory-perceptual functioning in healthy individuals and clinical populations. Importantly, recent findings have shown that tDCS may also be an effective and promising tool for probing the neural mechanisms of social cognition. In this review, we present the state-of-the-art of the field of tDCS research in social cognition. By doing so, we aim to gather knowledge of the potential of tDCS to modulate social functioning and social decision making in healthy humans, and to inspire future research investigations. © 2016 New York Academy of Sciences.

  20. The inhibitory effects of pudendal nerve stimulation on bladder overactivity in spinal cord injury dogs: is early stimulation necessary?

    Science.gov (United States)

    Chen, Guoqing; Liao, Limin; Dong, Qian; Ju, Yanhe

    2012-01-01

    To determine the inhibitory effects of pudendal nerve stimulation (5 Hz) on bladder overactivity at early and late stages of spinal cord injury in dogs. The study was performed in eight dogs with chronic spinal cord transection at the T9-T10 level. Group 1 (four dogs) underwent electrical stimulation of pudendal nerve one month after spinal cord transection. Group 2 (four dogs) underwent stimulation six months after spinal cord transection. The bladders were removed for histological examination of fibrosis after the stimulation. The bladder capacity and the compliance were significantly increased (p stimulation in group 1, but not in group 2. The nonvoiding contractions were inhibited in both groups by electrical stimulation. Collagen fiber was increased, while elastic fiber was significantly decreased (p stimulation can increase the bladder capacity and compliance only during the early period before the bladder wall becomes fibrosit and can inhibit the nonvoiding contraction during two stages. © 2012 International Neuromodulation Society.

  1. Labor stimulation with oxytocin: effects on obstetrical and neonatal outcomes

    Directory of Open Access Journals (Sweden)

    Pedro Hidalgo-Lopezosa

    Full Text Available Abstract Objective: to evaluate the effects of labor stimulation with oxytocin on maternal and neonatal outcomes. Method: descriptive and analytical study with 338 women who gave birth at a tertiary hospital. Obstetric and neonatal variables were measured and compared in women submitted and non-submitted to stimulation with oxytocin. Statistics were performed using Chi-square test, Fisher exact test, Student t-test; and crude Odds Ratio with 95% confidence interval were calculated. A p < 0.05 was considered statistically significant. Results: stimulation with oxytocin increases the rates of cesarean sections, epidural anesthesia and intrapartum maternal fever in primiparous and multiparous women. It has also been associated with low pH values of umbilical cord blood and with a shorter duration of the first stage of labor in primiparous women. However, it did not affect the rates of 3rd and 4th degree perineal lacerations, episiotomies, advanced neonatal resuscitation, 5-minute Apgar scores and meconium. Conclusion: stimulation with oxytocin should not be used systematically, but only in specific cases. These findings provide further evidence to health professionals and midwives on the use of oxytocin during labor. Under normal conditions, women should be informed of the possible effects of labor stimulation with oxytocin.

  2. Effects of a multi-strainBacillusspp. direct-fed microbial and a protease enzyme on growth performance, nutrient digestibility, blood characteristics, fecal microbiota, and noxious gas emissions of grower pigs fed corn-soybean-meal-based diets-A meta-analysis.

    Science.gov (United States)

    Payling, L; Kim, I H; Walsh, M C; Kiarie, E

    2017-09-01

    Three studies involving 352 grower pigs were conducted to determine the effects of dietary supplementation with multistrain spp. direct-fed microbial (DFM) and protease, alone or in combination, on growth performance, nutrient digestibility, blood characteristics, fecal microbiota, and noxious gas emissions, and to use a meta-analysis to increase the reliability of the findings. Treatments ( = 4) were set up as a 2 × 2 factorial design with 2 levels of protease (0 and 5.000/6.000 units/kilogram of feed [U/KG]) and 2 levels of DFM (0 and 1.5 × 10 colony forming units/gram of feed [CFU/G]), plus a protease + DFM combination. Pigs were housed in groups of 3 or 4/pen with 8 replicate pens/treatment. Experimental diets were fed for 42 d and feed intake and BW were measured weekly. Fecal samples were collected at d 42 and analyzed to determine apparent total tract digestibility (ATTD). Fecal counts of and coliforms, and noxious gas emissions were measured. Blood samples were taken by anterior vena cava puncture to measure blood urea nitrogen (BUN) and creatinine. Data from the 3 studies were pooled and analyzed as a 2 × 2 factorial using the Fit Model platform of JMP 11 (SAS Inst. Inc., Cary, NC). Means separation was determined using Tukey's honest significant difference test. The main effect of protease and DFM increased: BW at 42 d, overall ADG, and overall G:F compared to the control ( 0.05); however, the protease + DFM combination was the only treatment to improve ADG and G:F in all phases compared to the control. The main effect of protease increased ATTD of DM, nitrogen (N), and ADF ( < 0.04). The main effect of DFM increased ATTD of DM, N, GE, DE, ADF, and fat ( < 0.02). There was a trend for an interaction between protease and DFM for ATTD of GE and DE ( < 0.08) because the protease + DFM combination increased energy digestibility more than the additive effects of the protease and DFM alone. The main effects of protease and DFM decreased fecal ammonia

  3. Effects of Electrical Vagal Stimulation and Bilateral Vagotomy on ...

    African Journals Online (AJOL)

    Effect of electrical vagal stimulation and bilateral vagotomy on the flow and electrolyte composition of bile was studied in fasted and anaesthetized male albino Wistar Rats. Entero-hepatic circulation was maintained artificially by continuous infusion of 1% sodium teurocholate. In each experiment, bile was collected at 15 ...

  4. Generation of ultrafast pulse via combined effects of stimulated ...

    Indian Academy of Sciences (India)

    A project of ultrafast pulse generation has been presented and demonstrated by utilizing the combined nonlinear effects of stimulated Raman scattering (SRS) and non-degenerate two-photon absorption (TPA) based on silicon nanophotonic chip, in which a continuous wave (CW) and an ultrafast dark pulse are ...

  5. Generation of ultrafast pulse via combined effects of stimulated

    Indian Academy of Sciences (India)

    A project of ultrafast pulse generation has been presented and demonstrated by utilizing the combined nonlinear effects of stimulated Raman scattering (SRS) and non-degenerate two-photon absorption (TPA) based on silicon nanophotonic chip, in which a continuous wave (CW) and an ultrafast dark pulse are ...

  6. Comparison of the Effect of Neuromuscular Electrical Stimulation ...

    African Journals Online (AJOL)

    Children with cerebral palsy (CP) often demonstrate poor hand function due to spasticity. Thus spasticity in the wrist and finger flexors poses a great deal of functional limitations. This study was therefore designed to compare the effectiveness of Cryotherapy and Neuromuscular Electrical Stimulation (NMES) on spasticity ...

  7. Stimulated-emission effects in particle creation near black holes

    Energy Technology Data Exchange (ETDEWEB)

    Wald, R.M.

    1976-06-15

    It has recently been shown that if a black hole is formed by gravitational collapse, spontaneous particle creation will occur and a thermal spectrum of all species of particles will be emitted to infinity if the quantum matter was initially in the vacuum state. In this paper we investigate the stimulated-emission effects which occur if particles are present initially. We show in general that for a Hermitian scalar field in an external potential or in curved, asymptotically flat spacetime, stimulated-emission effects can occur precisely in those modes for which there is spontaneous particle creation from the vacuum. For the case of a Schwarzschild black hole, this result appears paradoxical, since spontaneous emission occurs at late times but there is no classical analog of stimulated emission at late times. The resolution of this paradox is that in order to induce emission of particles which emerge at late times one must send in particles at early times, so that they reach the black hole very near the instant of its formation. However, enormous energy is required of these incoming particles in order to stimulate emission of particles which emerge at late times. Thus, for a Schwarzschild black hole, even if particles are initially present (with limited energy) they will induce emission only at early times; at late times one will see only the spontaneously emitted blackbody thermal radiation. For the case of a Kerr black hole stimulated emission can be induced by particles sent in at late times with the appropriate frequencies and angular dependence. If the number of incoming particles is large, this quantum stimulated emission just gives the classical superradiant scattering. (AIP)

  8. Stimulated-emission effects in particle creation near black holes

    International Nuclear Information System (INIS)

    Wald, R.M.

    1976-01-01

    It has recently been shown that if a black hole is formed by gravitational collapse, spontaneous particle creation will occur and a thermal spectrum of all species of particles will be emitted to infinity if the quantum matter was initially in the vacuum state. In this paper we investigate the stimulated-emission effects which occur if particles are present initially. We show in general that for a Hermitian scalar field in an external potential or in curved, asymptotically flat spacetime, stimulated-emission effects can occur precisely in those modes for which there is spontaneous particle creation from the vacuum. For the case of a Schwarzschild black hole, this result appears paradoxical, since spontaneous emission occurs at late times but there is no classical analog of stimulated emission at late times. The resolution of this paradox is that in order to induce emission of particles which emerge at late times one must send in particles at early times, so that they reach the black hole very near the instant of its formation. However, enormous energy is required of these incoming particles in order to stimulate emission of particles which emerge at late times. Thus, for a Schwarzschild black hole, even if particles are initially present (with limited energy) they will induce emission only at early times; at late times one will see only the spontaneously emitted blackbody thermal radiation. For the case of a Kerr black hole stimulated emission can be induced by particles sent in at late times with the appropriate frequencies and angular dependence. If the number of incoming particles is large, this quantum stimulated emission just gives the classical superradiant scattering

  9. The differential effect of trigeminal vs. peripheral pain stimulation on visual processing and memory encoding is influenced by pain-related fear.

    Science.gov (United States)

    Schmidt, K; Forkmann, K; Sinke, C; Gratz, M; Bitz, A; Bingel, U

    2016-07-01

    Compared to peripheral pain, trigeminal pain elicits higher levels of fear, which is assumed to enhance the interruptive effects of pain on concomitant cognitive processes. In this fMRI study we examined the behavioral and neural effects of trigeminal (forehead) and peripheral (hand) pain on visual processing and memory encoding. Cerebral activity was measured in 23 healthy subjects performing a visual categorization task that was immediately followed by a surprise recognition task. During the categorization task subjects received concomitant noxious electrical stimulation on the forehead or hand. Our data show that fear ratings were significantly higher for trigeminal pain. Categorization and recognition performance did not differ between pictures that were presented with trigeminal and peripheral pain. However, object categorization in the presence of trigeminal pain was associated with stronger activity in task-relevant visual areas (lateral occipital complex, LOC), memory encoding areas (hippocampus and parahippocampus) and areas implicated in emotional processing (amygdala) compared to peripheral pain. Further, individual differences in neural activation between the trigeminal and the peripheral condition were positively related to differences in fear ratings between both conditions. Functional connectivity between amygdala and LOC was increased during trigeminal compared to peripheral painful stimulation. Fear-driven compensatory resource activation seems to be enhanced for trigeminal stimuli, presumably due to their exceptional biological relevance. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Effects of viewed violence and aggression: stimulation and catharsis.

    Science.gov (United States)

    Manning, S A; Taylor, D A

    1975-01-01

    Tests of the catharsis hypothesis involving viewed violence have led to conflicting results. It was suggested that the inconsistencies were due in part to the use of two different types of response measures, aggressive responses and hostile responses. This study involved a direct comparison of the two types of responses under conditions of instigation versus no instigation and aggressive versus neutral film. It was hypothesized that viewing an aggressive film would lead to a decrease in hostile responses (catharsis) and an increase in aggressive responses (stimulation) when compared with a neutral film condition. It was also hypothesized that both stimulation and catharsis effects would be enhanced under instigation conditions. A main effect of instigation was found with subjects in the instigation condition having higher scores than those in the noninstigated condition. A main effect of film was found with subjects having lower scores in the aggressive film condition than in the neutral film condition. A significant Film times Response Outlet interaction was found which offered support for the predicted catharsis effect on the hostility measure. There was no support for the predicted stimulation effect on the aggression measure. The results of the study offer support for the main thesis that in examining the effects of viewed violence, separation of hostile responses and aggressive responses is necessary for full understanding.

  11. Race, ethnicity, and noxious facilities: Environmental racism re- examined

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, A.L. [Wheaton Coll., IL (United States)]|[Argonne National Lab., IL (United States); Nieves, L.A. [Argonne National Lab., IL (United States)

    1992-10-01

    The charge has been made that hazardous facilities tend to be located in proximity to minority populations. This study uses a facility density measure for three categories of noxious facilities to examine the relationship between facilities and minority population concentrations. County-level data are used in a correlation analysis for African Americans, Hispanics, and Asians in the four major regions of the US. Even controlling for income and housing value, and limiting the data set to urban areas, consistent patterns of moderate to strong association of facility densities with minority population percentages are found.

  12. Age-dependent effects of brain stimulation on network centrality.

    Science.gov (United States)

    Antonenko, Daria; Nierhaus, Till; Meinzer, Marcus; Prehn, Kristin; Thielscher, Axel; Ittermann, Bernd; Flöel, Agnes

    2018-04-18

    Functional magnetic resonance imaging (fMRI) studies have suggested that advanced age may mediate the effects of transcranial direct current stimulation (tDCS) on brain function. However, studies directly comparing neural tDCS effects between young and older adults are scarce and limited to task-related imaging paradigms. Resting-state (rs-) fMRI, that is independent of age-related differences in performance, is well suited to investigate age-associated differential neural tDCS effects. Three "online" tDCS conditions (anodal, cathodal, sham) were compared in a cross-over, within-subject design, in 30 young and 30 older adults. Active stimulation targeted the left sensorimotor network (active electrode over left sensorimotor cortex with right supraorbital reference electrode). A graph-based rs-fMRI data analysis approach (eigenvector centrality mapping) and complementary seed-based analyses characterized neural tDCS effects. An interaction between anodal tDCS and age group was observed. Specifically, centrality in bilateral paracentral and posterior regions (precuneus, superior parietal cortex) was increased in young, but decreased in older adults. Seed-based analyses revealed that these opposing patterns of tDCS-induced centrality modulation were explained from differential effects of tDCS on functional coupling of the stimulated left paracentral lobule. Cathodal tDCS did not show significant effects. Our study provides first evidence for differential tDCS effects on neural network organization in young and older adults. Anodal stimulation mainly affected coupling of sensorimotor with ventromedial prefrontal areas in young and decoupling with posteromedial areas in older adults. Copyright © 2018. Published by Elsevier Inc.

  13. Sources and effects of electrode impedance during deep brain stimulation.

    Science.gov (United States)

    Butson, Christopher R; Maks, Christopher B; McIntyre, Cameron C

    2006-02-01

    Clinical impedance measurements for deep brain stimulation (DBS) electrodes in human patients are normally in the range 500-1500 Omega. DBS devices utilize voltage-controlled stimulation; therefore, the current delivered to the tissue is inversely proportional to the impedance. The goals of this study were to evaluate the effects of various electrical properties of the tissue medium and electrode-tissue interface on the impedance and to determine the impact of clinically relevant impedance variability on the volume of tissue activated (VTA) during DBS. Axisymmetric finite-element models (FEM) of the DBS system were constructed with explicit representation of encapsulation layers around the electrode and implanted pulse generator. Impedance was calculated by dividing the stimulation voltage by the integrated current density along the active electrode contact. The models utilized a Fourier FEM solver that accounted for the capacitive components of the electrode-tissue interface during voltage-controlled stimulation. The resulting time- and space-dependent voltage waveforms generated in the tissue medium were superimposed onto cable model axons to calculate the VTA. The primary determinants of electrode impedance were the thickness and conductivity of the encapsulation layer around the electrode contact and the conductivity of the bulk tissue medium. The difference in the VTA between our low (790 Omega) and high (1244 Omega) impedance models with typical DBS settings (-3 V, 90 mus, 130 Hz pulse train) was 121 mm3, representing a 52% volume reduction. Electrode impedance has a substantial effect on the VTA and accurate representation of electrode impedance should be an explicit component of computational models of voltage-controlled DBS. Impedance is often used to identify broken leads (for values > 2000 Omega) or short circuits in the hardware (for values impedance values also represent an important parameter in defining the spread of stimulation during DBS.

  14. Recovery Effect of the Muscle Fatigue by the Magnetic Stimulation

    Science.gov (United States)

    Uchida, Kousuke; Nuruki, Atsuo; Tsujimura, Sei-Ichi; Tamari, Youzou; Yunokuchi, Kazutomo

    The purpose of this study is to investigate the effect of magnetic stimulation for muscle fatigue. The six healthy subjects participated in the experiment with the repetition grasp using a hand dynamometer. The measurement of EMG (electromyography) and MMG (mechanomyography) is performed on the left forearm. All subjects performed MVC (maximum voluntary contraction), and repeated exercise in 80%MVC after the MVC measurement. The repetition task was entered when display muscular strength deteriorated. We used an EMG and MMG for the measurement of the muscle fatigue. Provided EMG and MMG waves were calculated integral calculus value (iEMG, and iMMG). The result of iEMG and iMMG were divided by muscular strength, because we calculate integral calculus value per the unit display muscular strength. The result of our study, we found recovery effect by the magnetic stimulation in voluntarily muscular strength and iEMG. However, we can not found in a figure of iMMG.

  15. Effect of ethanol on potassium-stimulated and electrically stimulated acetylcholine release in vitro from rat cortical slices.

    Science.gov (United States)

    Sunahara, G I; Kalant, H

    1980-06-01

    The effects of ethanol (EtOH) on potassium and electrically stimulated acetylcholine (ACh) release were compared in rat cerebral cortical slices in vitro. ACh was measured by pyrolysis - gas-liquid chromatography (GLC). Paired samples were incubated with and without 0.11 M EtOH. In the potassium stimulation experiments, cortical slices were serially incubated for three 45-min periods in normal incubation medium followed by two periods in medium containing either 15 or 27 mM K+. In the electrical stimulation experiments, the cortical slices were similarly incubated for three 30-min periods without stimulation followed by two periods of electrical (10 HZ) stimulation. ACh output rose 20% at 15 mM K+ and 160% at 27 mM K+. Ethanol had no effect on spontaneous ACh release and did not influence the ACh response to high K+ stimulation. Electrical stimulation approximately doubled the ACh output but EtOH reduced electrically stimulated ACh relese by 50--80%. These findings are compatible with the view that EtOH acts primarily on Na+ influx during the action potential.

  16. The effectiveness of natural and gonadotropin stimulation of young gilts

    Directory of Open Access Journals (Sweden)

    Jan DYBAŁA

    2017-03-01

    Full Text Available The aim of the study was to compare the effectiveness of stimulation of gilts puberty by natural method and with gonadotropins. The results of reproduction parameters of gilts were also compared. Gilts were also supported by diet with easilly assimilated carbohydrates. The study was carried out on the group of 80 gilts which were divided into 2 groups (A and B according to the method of inducing puberty: by using mature boar or gonadotropins eCG and hCG. In each group were isolated two subgroups in which gilts were mated in first or second estrus (A1, A2 and B1, B2. The first estrus occured earlier in gilts induced naturally. More numerous litters were obtained from gilts mated in the second estrus independently of method of puberty stimulation. The highest effectiveness of mating was obtained in gilts induced by gonadotropins in second estrus and the lowest also in gilts stimulated by gonadotropins but mated in first estrus. More piglets for 21st day were reared by gilts mated in second estrus independently on puberty induction method.

  17. Effects of Deep Brain Stimulation on Autonomic Function

    Directory of Open Access Journals (Sweden)

    Adam Basiago

    2016-08-01

    Full Text Available Over the course of the development of deep brain stimulation (DBS into a well-established therapy for Parkinson’s disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target.

  18. Electrical stimulation vs thermal effects in a complex electromagnetic environment

    International Nuclear Information System (INIS)

    Paniagua, Jesus M.; Rufo, Montana; Jimenez, Antonio; Antolin, Alicia; Sanchez, Miguel

    2009-01-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10 -4 ) than that based on thermal considerations (exposure quotient 0.16 10 -4 ). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  19. Stimulation of Research in Biomedicine. Role of Effective Contract.

    Science.gov (United States)

    Aleksandrova, N V; Shkolnikova, M A; Dlin, V V; Yugay, M T

    Analysis of publication activity in the field of biomedicine shows insignificant input of Russia in the world scientific product. This is largely due to the lack of incentives for researchers. Article describes stimulation of researchers in Russia, compares it with foreign models, formulates main shortcomings of support and stimulation of research in Russia and introduces the concept of effective contract. Development of personnel motivation and stimulation of employees of scientific and research organizations in the field of health. As a successful experience the article describes the implementation of effective contract in Veltishev Research and Clinical Institute for Pediatrics where for years remuneration of researchers depended upon their positions without consideration of research results. Effective contract brought significant changes in the traditional system setting new performance and efficiency criteria. New evaluation system took into account publication activity, presentation activity, implementation of research results, raising scientific personnel, thesis work and income-generating activities. Introduction of effective contract already in the second year led to a rise in the number of foreign publications, publications in journals with impact factor of more than 2, the general increase in the number of articles in peer-reviewed journals with impact factor more than 0.3, the growth of the number of articles by 1 researcher, Hirsch index improving both by individual employees and the entire Institute, increase of grant activity and presentation activity at top-rated professional congresses. The growth of publication and presentation activities has been achieved at the reduction of research staff by 23%. From financial viewpoint effective contract resulted in the redistribution of resources in favour of more efficient researchers. The introduction of effective contract and increase of requirements for scientific output did not cause resistance of staff

  20. Repeated touch and needle-prick stimulation in the neonatal period increases the baseline mechanical sensitivity and postinjury hypersensitivity of adult spinal sensory neurons.

    Science.gov (United States)

    van den Hoogen, Nynke J; Patijn, Jacob; Tibboel, Dick; Joosten, Bert A; Fitzgerald, Maria; Kwok, Charlie H T

    2018-03-08

    Noxious stimulation at critical stages of development has long-term consequences on somatosensory processing in later life, but it is not known whether this developmental plasticity is restricted to nociceptive pathways. Here, we investigate the effect of repeated neonatal noxious or innocuous hind paw stimulation on adult spinal dorsal horn cutaneous mechanical sensitivity. Neonatal Sprague-Dawley rats of both sexes received 4 unilateral left hind paw needle pricks (NPs, n = 13) or 4 tactile (cotton swab touch) stimuli, per day (TC, n = 11) for the first 7 days of life. Control pups were left undisturbed (n = 17). When adult (6-8 weeks), lumbar wide-dynamic-range neuron activity in laminae III-V was recorded using in vivo extracellular single-unit electrophysiology. Spike activity evoked by cutaneous dynamic tactile (brush), pinch and punctate (von Frey hair) stimulation, and plantar receptive field areas were recorded, at baseline and 2 and 5 days after left plantar hind paw incision. Baseline brush receptive fields, von Frey hair, and pinch sensitivity were significantly enhanced in adult NP and TC animals compared with undisturbed controls, although effects were greatest in NP rats. After incision, injury sensitivity of adult wide-dynamic-range neurons to both noxious and dynamic tactile hypersensitivity was significantly greater in NP animals compared with TC and undisturbed controls. We conclude that both repeated touch and needle-prick stimulation in the neonatal period can alter adult spinal sensory neuron sensitivity to both innocuous and noxious mechanical stimulation. Thus, spinal sensory circuits underlying touch and pain processing are shaped by a range of early-life somatosensory experiences.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  1. Physiological Effects of Visual Stimulation with Forest Imagery

    Directory of Open Access Journals (Sweden)

    Chorong Song

    2018-01-01

    Full Text Available This study was aimed to clarify the physiological effects of visual stimulation using forest imagery on activity of the brain and autonomic nervous system. Seventeen female university students (mean age, 21.1 ± 1.0 years participated in the study. As an indicator of brain activity, oxyhemoglobin (oxy-Hb concentrations were measured in the left and right prefrontal cortex using near-infrared time-resolved spectroscopy. Heart rate variability (HRV was used as an indicator of autonomic nervous activity. The high-frequency (HF component of HRV, which reflected parasympathetic nervous activity, and the ratio of low-frequency (LF and high-frequency components (LF/HF, which reflected sympathetic nervous activity, were measured. Forest and city (control images were used as visual stimuli using a large plasma display window. After sitting at rest viewing a gray background for 60 s, participants viewed two images for 90 s. During rest and visual stimulation, HRV and oxy-Hb concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of feelings was performed using a modified semantic differential (SD method. The results showed that visual stimulation with forest imagery induced (1 a significant decrease in oxy-Hb concentrations in the right prefrontal cortex and (2 a significant increase in perceptions of feeling “comfortable,” “relaxed,” and “natural.”

  2. Encoding noxious heat by spike bursts of antennal bimodal hygroreceptor (dry) neurons in the carabid Pterostichus oblongopunctatus.

    Science.gov (United States)

    Must, Anne; Merivee, Enno; Nurme, Karin; Sibul, Ivar; Muzzi, Maurizio; Di Giulio, Andrea; Williams, Ingrid; Tooming, Ene

    2017-04-01

    Despite thermosensation being crucial in effective thermoregulation behaviour, it is poorly studied in insects. Very little is known about encoding of noxious high temperatures by peripheral thermoreceptor neurons. In carabids, thermo- and hygrosensitive neurons innervate antennal dome-shaped sensilla (DSS). In this study, we demonstrate that several essential fine structural features of dendritic outer segments of the sensory neurons in the DSS and the classical model of insect thermo- and hygrosensitive sensilla differ fundamentally. Here, we show that spike bursts produced by the bimodal dry neurons in the antennal DSS may contribute to the sensation of noxious heat in P. oblongopunctatus. Our electrophysiological experiments showed that, at temperatures above 25 °C, these neurons switch from humidity-dependent regular spiking to temperature-dependent spike bursting. Five out of seven measured parameters of the bursty spike trains, the percentage of bursty dry neurons, the CV of ISIs in a spike train, the percentage of bursty spikes, the number of spikes in a burst and the ISIs in a burst, are unambiguously dependent on temperature and thus may precisely encode both noxious high steady temperatures up to 45 °C as well as rapid step-changes in it. The cold neuron starts to produce temperature-dependent spike bursts at temperatures above 30-35 °C. Thus, the two neurons encode different but largely overlapping ranges in noxious heat. The extent of dendritic branching and lamellation of the neurons largely varies in different DSS, which might be the structural basis for their variation in threshold temperatures for spike bursting.

  3. THE USE OF BIOFILTERS FOR DEODORISATION OF THE NOXIOUS GASES

    Directory of Open Access Journals (Sweden)

    Monika Wierzbińska

    2015-01-01

    Full Text Available One of the methods of deodorization of noxious gases is biofiltration. This method consists of pollutants biodegradation by using micro-organisms, what leads to the formation of nontoxic and innoxious compounds. In comparison with conventional techniques, bio-filtration requires lower investments and exploitation costs, moreover it is nature friendly. This technique is still developing. Scientists have carried out research on the optimization of biofiltration process, biofilters and selecting parameters of purified gases or improving the method of efficiency. However, industrial application of biofilters is still difficult for many reasons. In this paper we present the mechanism of biofiltration process, the parameters and conditions which have to be fulfilled by purified gases, installation structure for gases biofiltration, application field of this method and specific example of exploited biofilters, including practical operational guidelines.

  4. 75 FR 23151 - Noxious Weeds; Old World Climbing Fern and Maidenhair Creeper

    Science.gov (United States)

    2010-05-03

    ... the importation and interstate movement of those plants that are designated as noxious weeds in Sec. 360.200. The PPA defines ``noxious weed'' as ``any plant or plant product that can directly or... Imports, Plants (Agriculture), Quarantine, Reporting and recordkeeping requirements, Transportation, Weeds...

  5. Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats

    Directory of Open Access Journals (Sweden)

    Dubner Ronald

    2005-09-01

    Full Text Available Abstract Neonatal noxious insult produces a long-term effect on pain processing in adults. Rats subjected to carrageenan (CAR injection in one hindpaw within the sensitive period develop bilateral hypoalgesia as adults. In the same rats, inflammation of the hindpaw, which was the site of the neonatal injury, induces a localized enhanced hyperalgesia limited to this paw. To gain an insight into the long-term molecular changes involved in the above-described long-term nociceptive effects of neonatal noxious insult at the spinal level, we performed DNA microarray analysis (using microarrays containing oligo-probes for 205 genes encoding receptors and transporters for glutamate, GABA, and amine neurotransmitters, precursors and receptors for neuropeptides, and neurotrophins, cytokines and their receptors to compare gene expression profiles in the lumbar spinal dorsal horn (LDH of adult (P60 male rats that received neonatal CAR treatment within (at postnatal day 3; P3 and outside (at postnatal 12; P12 of the sensitive period. The data were obtained both without inflammation (at baseline and during complete Freund's adjuvant induced inflammation of the neonatally injured paw. The observed changes were verified by real-time RT-PCR. This study revealed significant basal and inflammation-associated aberrations in the expression of multiple genes in the LDH of adult animals receiving CAR injection at P3 as compared to their expression levels in the LDH of animals receiving either no injections or CAR injection at P12. In particular, at baseline, twelve genes (representing GABA, serotonin, adenosine, neuropeptide Y, cholecystokinin, opioid, tachykinin and interleukin systems were up-regulated in the bilateral LDH of the former animals. The baseline condition in these animals was also characterized by up-regulation of seven genes (encoding members of GABA, cholecystokinin, histamine, serotonin, and neurotensin systems in the LDH ipsilateral to the

  6. Age-dependent effects of brain stimulation on network centrality

    DEFF Research Database (Denmark)

    Antonenko, Daria; Nierhaus, Till; Meinzer, Marcus

    2018-01-01

    Functional magnetic resonance imaging (fMRI) studies have suggested that advanced age may mediate the effects of transcranial direct current stimulation (tDCS) on brain function. However, studies directly comparing neural tDCS effects between young and older adults are scarce and limited to task......-related imaging paradigms. Resting-state (rs-) fMRI, that is independent of age-related differences in performance, is well suited to investigate age associated differential neural tDCS effects. Three “online” tDCS conditions (anodal, cathodal, sham) were compared in a cross-over, within-subject design, in 30...... characterized neural tDCS effects. An interaction between anodal tDCS and age group was observed. Specifically, centrality in bilateral paracentral and posterior regions (precuneus, superior parietal cortex) was increased in young, but decreased in older adults. Seed-based analyses revealed that these opposing...

  7. The effectiveness of natural and gonadotropin stimulation of young gilts

    OpenAIRE

    Jan DYBAŁA; Wojciech KAPELAŃSKI; JOANNA WIŚNIEWSKA; Aleksandra CEBULSKA

    2017-01-01

    The aim of the study was to compare the effectiveness of stimulation of gilts puberty by natural method and with gonadotropins. The results of reproduction parameters of gilts were also compared. Gilts were also supported by diet with easilly assimilated carbohydrates. The study was carried out on the group of 80 gilts which were divided into 2 groups (A and B) according to the method of inducing puberty: by using mature boar or gonadotropins eCG and hCG. In each group were isolated two subgr...

  8. Imaging sensory effects of occipital nerve stimulation: a new computer-based method in neuromodulation.

    Science.gov (United States)

    Göbel, Anna; Göbel, Carl H; Heinze, Axel; Heinze-Kuhn, Katja; Petersen, Inga; Meinecke, Christoph; Clasen, Svenja; Niederberger, Uwe; Rasche, Dirk; Mehdorn, Hubertus M; Göbel, Hartmut

    2015-01-01

    Within the last years, occipital nerve stimulation (ONS) has proven to be an important method in the treatment of severe therapy-resistant neurological pain disorders. The correspondence between lead placement as well as possible stimulation parameters and the resulting stimulation effects remains unclear. The method aims to directly relate the neuromodulatory mechanisms with the clinical treatment results, to achieve insight in the mode of action of neuromodulation, to identify the most effective stimulation sets and to optimize individual treatment effects. We describe a new computer-based imaging method for mapping the spatial, cognitive and affective sensory effects of ONS. The procedure allows a quantitative and qualitative analysis of the relationship between lead positioning, the stimulation settings as well as the sensory and clinical stimulation effects. A regular mapping of stimulation and sensory parameters allows a coordinated monitoring. The stimulation results can be reviewed and compared with regards to clinical effectiveness. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Kilohertz Electrical Stimulation Nerve Conduction Block: Effects of Electrode Material.

    Science.gov (United States)

    Patel, Yogi A; Kim, Brian S; Butera, Robert J

    2018-01-01

    Kilohertz electrical stimulation (KES) has enabled a novel new paradigm for spinal cord and peripheral nerve stimulation to treat a variety of neurological diseases. KES can excite or inhibit nerve activity and is used in many clinical devices today. However, the impact of different electrode materials on the efficacy of KES is unknown. We investigated the effect of different electrode materials and their respective charge injection mechanisms on KES nerve block thresholds using 20- and 40-kHz current-controlled sinusoidal KES waveforms. We evaluated the nerve block threshold and the power requirements for achieving an effective KES nerve block. In addition, we evaluated potential effects on the onset duration and recovery of normal conduction after delivery of KES. We found that thresholds and the onset and recovery of KES nerve block are not a function of the electrode material. In contrast, the power dissipation varies among electrode materials and is a function of the materials' properties at high frequencies. We conclude that materials with a proven track record of chronic stability, both for the tissue and electrode, are suitable for developing KES nerve block therapies.

  10. Is transcranial alternating current stimulation effective in modulating brain oscillations?

    Directory of Open Access Journals (Sweden)

    Debora Brignani

    Full Text Available Transcranial alternating current stimulation (tACS is a promising tool for modulating brain oscillations, as well as a possible therapeutic intervention. However, the lack of conclusive evidence on whether tACS is able to effectively affect cortical activity continues to limit its application. The present study aims to address this issue by exploiting the well-known inhibitory alpha rhythm in the posterior parietal cortex during visual perception and attention orientation. Four groups of healthy volunteers were tested with a Gabor patch detection and discrimination task. All participants were tested at the baseline and selective frequencies of tACS, including Sham, 6 Hz, 10 Hz, and 25 Hz. Stimulation at 6 Hz and 10 Hz over the occipito-parietal area impaired performance in the detection task compared to the baseline. The lack of a retinotopically organised effect and marginal frequency-specificity modulation in the detection task force us to be cautious about the effectiveness of tACS in modulating brain oscillations. Therefore, the present study does not provide significant evidence for tACS reliably inducing direct modulations of brain oscillations that can influence performance in a visual task.

  11. Analgesic effects of transcutaneous electrical nerve stimulation and interferential currents on heat pain in healthy subjects.

    Science.gov (United States)

    Cheing, Gladys L Y; Hui-Chan, Christina W Y

    2003-01-01

    This study examined whether transcutaneous electrical nerve stimulation or interferential current was more effective in reducing experimentally induced heat pain. Forty-eight young healthy subjects were randomly divided into the following groups: (i) transcutaneous electrical nerve stimulation; (ii) interferential current; and (iii) no stimulation. A multi-function electrical stimulator was used to generate the transcutaneous electrical nerve stimulation or interferential current. A thermal sensory analyser was used to record the heat pain threshold. The stimulation lasted for 30 minutes and the heat pain thresholds were measured before, during and after the stimulation. Transcutaneous electrical nerve stimulation (p = 0.003) and interferential current (p = 0.004) significantly elevated the heat pain threshold, but "no stimulation" did not. The thresholds of the transcutaneous electrical nerve stimulation and interferential current groups were significantly higher than that of the control group 30 minutes into the stimulation (p = 0.017). Both transcutaneous electrical nerve stimulation and interferential current increased the heat pain threshold to a similar extent during stimulation. However, the post-stimulation effect of interferential current lasted longer than that of transcutaneous electrical nerve stimulation.

  12. Potential Protective Effects of Chronic Anterior Thalamic Nucleus Stimulation on Hippocampal Neurons in Epileptic Monkeys.

    Science.gov (United States)

    Yang, An-Chao; Shi, Lin; Li, Lu-Ming; Li, Jun-Ju; Jiang, Yin; Meng, Da-Wei; Zhu, Guan-Yu; Chen, Ying-Chuan; Lu, De-Hong; Zhang, Jian-Guo

    2015-01-01

    Stimulation of the anterior nucleus of the thalamus (ANT) is effective in seizure reduction, but the mechanisms underlying the beneficial effects of ANT stimulation are unclear. To assess the beneficial effects of ANT stimulation on hippocampal neurons of epileptic monkeys. Chronic ANT stimulation was applied to kainic acid-induced epileptic monkeys. Behavioral seizures were continuously monitored. Immunohistochemical staining and western blot assays were performed to assess the hippocampal injury and the effects of ANT stimulation. The frequency of seizures was 42.8% lower in the stimulation group compared with the sham-stimulation group. Immunohistochemical staining and western blot analyses indicated that neuronal loss and apoptosis were less severe and that neurofilament synthesis was enhanced in the stimulation monkeys compared with the sham-stimulation group. These data showed that the hippocampal injury was less severe in monkeys in the stimulation group than in those in the sham-stimulation group. Our data suggest that chronic ANT stimulation may exert protective effects on hippocampal neurons and boost the regeneration of neuronal fibers. These effects may be closely related to the mechanisms of ANT stimulation in epilepsy treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Mechanisms and Effects of Transcranial Direct Current Stimulation

    Directory of Open Access Journals (Sweden)

    James Giordano

    2017-02-01

    Full Text Available The US Air Force Office of Scientific Research convened a meeting of researchers in the fields of neuroscience, psychology, engineering, and medicine to discuss most pressing issues facing ongoing research in the field of transcranial direct current stimulation (tDCS and related techniques. In this study, we present opinions prepared by participants of the meeting, focusing on the most promising areas of research, immediate and future goals for the field, and the potential for hormesis theory to inform tDCS research. Scientific, medical, and ethical considerations support the ongoing testing of tDCS in healthy and clinical populations, provided best protocols are used to maximize safety. Notwithstanding the need for ongoing research, promising applications include enhancing vigilance/attention in healthy volunteers, which can accelerate training and support learning. Commonly, tDCS is used as an adjunct to training/rehabilitation tasks with the goal of leftward shift in the learning/treatment effect curves. Although trials are encouraging, elucidating the basic mechanisms of tDCS will accelerate validation and adoption. To this end, biomarkers (eg, clinical neuroimaging and findings from animal models can support hypotheses linking neurobiological mechanisms and behavioral effects. Dosage can be optimized using computational models of current flow and understanding dose–response. Both biomarkers and dosimetry should guide individualized interventions with the goal of reducing variability. Insights from other applied energy domains, including ionizing radiation, transcranial magnetic stimulation, and low-level laser (light therapy, can be prudently leveraged.

  14. Effect of stimulation intensity on assessment of voluntary activation

    NARCIS (Netherlands)

    van Leeuwen, D.M.; de Ruiter, C.J.; de Haan, A.

    2012-01-01

    Introduction: The interpolated twitch technique is often used to assess voluntary activation (VA) of skeletal muscles. We investigated VA and the voluntary torque-superimposed torque relationship using either supramaximal nerve stimulation or better tolerated submaximal muscle stimulation, which is

  15. Effect of stimulation intensity on assessment of voluntary activation.

    NARCIS (Netherlands)

    Dr. D.M. van Leeuwen; C.J. de Ruiter; A.J. de Haan

    2012-01-01

    INTRODUCTION: The interpolated twitch technique is often used to assess voluntary activation (VA) of skeletal muscles. We investigated VA and the voluntary torque-superimposed torque relationship using either supramaximal nerve stimulation or better tolerated submaximal muscle stimulation, which is

  16. Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans

    NARCIS (Netherlands)

    Veldman, M. P.; Maffiuletti, N. A.; Hallett, M.; Zijdewind, I.; Hortobagyi, T.

    2014-01-01

    This analytic review reports how prolonged periods of somatosensory electric stimulation (SES) with repetitive transcutaneous nerve stimulation can have 'direct' and 'crossed' effects on brain activation, corticospinal excitability, and motor performance. A review of 26 studies involving 315 healthy

  17. Effect of bleeding method and low voltage electrical stimulation on ...

    African Journals Online (AJOL)

    An early post mortem low voltage electrical stimulation (ES) of the carcasses also had no influence on the cooking loss, drip loss and colour of these muscles. Electrical stimulation did result in a lower pH45 in both the fillet and big drum muscles. However, after 24 h the pH of the muscles did not differ. Electrical stimulation ...

  18. The System for Assessment of the Effectiveness of Personnel Stimulation on the Basis of Integral Index

    Directory of Open Access Journals (Sweden)

    O. K.

    2017-12-01

    Full Text Available The article’s objective is to construct the system for assessment ofpersonnel manage­ ment performance and its testing on a sample o f Ukrainian companies. Problems o f person­ nel stimulation at company level are highlighted. It is proposed to build the mechanism for company personnel stimulation by functional approach. Indicators to be used for assess­ ing the means o f personnel stimulation (material stimulation, organizational stimulation, social and psychological stimulation and personnel management modeling are given. The algorithm for estimating the integral index o f the personnel stimulation effectiveness is recommended. Estimation o f the index o f social and psychological stimulation of company personnel by the proposed method is illustrated. By use o f the proposed algorithm it is demonstrated that the material stimulation (salary rate is the most important determinant o f the highly effective personnel stimulation. The integral index o f the personnel stimulation effectiveness is estimated by correlation and regression analysis for a sample of Ukrainian companies over 2011-2015. On its basis, the companies under study are grouped by level of personnel stimulation. Corrective measures to increase the integral index o f the personnel stimulation effectiveness in each company under study are proposed. The matrix o f correc­ tive measures on personnel stimulation at these companies is constructed and used to find the range o f estimates o f the integral index o f the personnel stimulation effectiveness. The quality o f personnel stimulation mechanism at company level is assessed on the basis o f the estimated integral index o f the personnel stimulation effectiveness.

  19. Spinal autofluorescent flavoprotein imaging in a rat model of nerve injury-induced pain and the effect of spinal cord stimulation.

    Directory of Open Access Journals (Sweden)

    Joost L M Jongen

    Full Text Available Nerve injury may cause neuropathic pain, which involves hyperexcitability of spinal dorsal horn neurons. The mechanisms of action of spinal cord stimulation (SCS, an established treatment for intractable neuropathic pain, are only partially understood. We used Autofluorescent Flavoprotein Imaging (AFI to study changes in spinal dorsal horn metabolic activity. In the Seltzer model of nerve-injury induced pain, hypersensitivity was confirmed using the von Frey and hotplate test. 14 Days after nerve-injury, rats were anesthetized, a bipolar electrode was placed around the affected sciatic nerve and the spinal cord was exposed by a laminectomy at T13. AFI recordings were obtained in neuropathic rats and a control group of naïve rats following 10 seconds of electrical stimulation of the sciatic nerve at C-fiber strength, or following non-noxious palpation. Neuropathic rats were then treated with 30 minutes of SCS or sham stimulation and AFI recordings were obtained for up to 60 minutes after cessation of SCS/sham. Although AFI responses to noxious electrical stimulation were similar in neuropathic and naïve rats, only neuropathic rats demonstrated an AFI-response to palpation. Secondly, an immediate, short-lasting, but strong reduction in AFI intensity and area of excitation occurred following SCS, but not following sham stimulation. Our data confirm that AFI can be used to directly visualize changes in spinal metabolic activity following nerve injury and they imply that SCS acts through rapid modulation of nociceptive processing at the spinal level.

  20. The effects of combined repetitive transcranial magnetic stimulation and transcranial direct current stimulation on motor function in patients with stroke.

    Science.gov (United States)

    Kwon, Tae Gun; Park, Eunhee; Kang, Chung; Chang, Won Hyuk; Kim, Yun-Hee

    2016-11-22

    Both transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), when provided to stroke patients in combination with motor training, enhance therapeutic efficacy and motor function. However, the majority of previous studies have only examined a single treatment modality. The authors investigated the modulating influence of combination dual-mode brain stimulation upon bihemispheric stimulation with motor training in stroke patients. Twenty stroke patients with hemiparesis underwent five randomly arranged sessions of diverse combinations of rTMS and tDCS. We applied cathodal or anodal tDCS over the contralesional primary motor cortex (cM1) and 10 Hz rTMS over the ipsilesional primary motor cortex (iM1) in a simultaneous or preconditioning method including sham stimulation. Immediately after dual-mode stimulation, sequential hand motor training was performed for 5 minutes. The total pulses of rTMS and the duration of tDCS and motor training were the same for all sessions. Cortical excitability and sequential motor performance were evaluated before and after each session. Motor function and corticomotor excitability following simultaneous stimulation via cathodal tDCS over the cM1 combined with 10 Hz rTMS over the iM1 were significantly increased after the intervention, with significantly greater motor improvement than seen with other treatment conditions (P motor performance in stroke patients than other combination methods. This result seemed to be related to effective modulation of interhemispheric imbalance of cortical excitability by dual-mode stimulation.

  1. Effects of unilateral selective hypergravity stimulation on gait

    Science.gov (United States)

    Lazerges, M.; Bessou, P.

    The purpose of this work is to analyse the neural mechanisms of human motor perturbations induced by dynamic changes in gravity. A unilateral selective hypergravity stimulation (USHS) was produced by stretching an elastic band between the right shoulder and foot. The consequences of the extensor muscle tone change due to the positioning (increased muscular loading) and to its removal (decreased muscular loading) by the elastic band were observed on motor gait skill. Gait spatio-temporal parameters (horizontal displacement of both feet) and lower limb functional length variations (efficiency of flexion and extension movements of the lower limbs) were measured. The latter measure was performed using a device specially designed for that purpose. The main results were: (1) during and after USHS, gait perturbations appeared on the left—the body side not directly stimulated, (2) just after the end of USHS, perturbations were present on the right (homolateral) side evidencing a post treatment effect which caused a decrease in functional shortening of the lower limb during extension and an increase of functional shortening of the lower limb during stance (opposite in sense to the modification observed during swing). Such results afford evidence that, in addition to vestibular receptors, the mechanoreceptors of extensor muscles are involved in determining the changes in motor skills observed at the beginning and at the end of space flights.

  2. Effect of Ovariectomy on Stimulating Intracortical Remodeling in Rats

    Directory of Open Access Journals (Sweden)

    Chun Lei Li

    2014-01-01

    Full Text Available Objective. Technically primates and dogs represent ideal models to investigate diseases characterized by abnormal intracortical remodeling. High expenses and ethical issues, however, restrict the use of those animals in research. Rodent models have been used as alternatives instead, but their value is limited, if none, because these animals lack intracortical bone remodeling. This study aimed at investigating the effect of ovariectomy onto the stimulation of intracortical remodeling in rat mandibles. Materials and Methods. Sixteen 12-week-old Spraque-Dawly (SD female rats were randomly assigned into two groups, receiving either ovariectomy or sham operation. All the rats were sacrificed 18 weeks postoperatively. The entire mandibles were harvested for microcomputed tomography (micro-CT and histomorphometric assessments. Results. Micro-CT examination showed significantly decreased bone mineral density (0.95 ± 0.01 versus 1.01 ± 0.02 g/cm3, P<0.001 and bone volume (65.78 ± 5.45 versus 87.41 ± 4.12%, P<0.001 in ovariectomy group. Histomorphometric assessment detected a sixfold increased intracortical bone remodeling as well as an increased bone modeling in mandibles of ovariectomized rats. Conclusion. For the first time, to the authors’ knowledge, it was detected that ovariectomy stimulates intracortical remodeling in rat mandibles. This animal model might be of use to study various bone diseases associated with an abnormal intracortical remodeling process.

  3. POSSIBLE MECHANISMS UNDERLYING THE THERAPEUTIC EFFECTS OF TRANSCRANIAL MAGNETIC STIMULATION

    Directory of Open Access Journals (Sweden)

    Alexander eChervyakov

    2015-06-01

    Full Text Available Transcranial magnetic stimulation (TMS is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson's disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation (LTP and long-term depression (LTD. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor (BDNF concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals. It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.

  4. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans.

    Science.gov (United States)

    Batsikadze, G; Moliadze, V; Paulus, W; Kuo, M-F; Nitsche, M A

    2013-04-01

    Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA with an electrode size of 35 cm(2) has been shown to induce shifts of cortical excitability during and after stimulation. These shifts are polarity-specific with cathodal tDCS resulting in a decrease and anodal stimulation in an increase of cortical excitability. In clinical and cognitive studies, stronger stimulation intensities are used frequently, but their physiological effects on cortical excitability have not yet been explored. Therefore, here we aimed to explore the effects of 2 mA tDCS on cortical excitability. We applied 2 mA anodal or cathodal tDCS for 20 min on the left primary motor cortex of 14 healthy subjects. Cathodal tDCS at 1 mA and sham tDCS for 20 min was administered as control session in nine and eight healthy subjects, respectively. Motor cortical excitability was monitored by transcranial magnetic stimulation (TMS)-elicited motor-evoked potentials (MEPs) from the right first dorsal interosseous muscle. Global corticospinal excitability was explored via single TMS pulse-elicited MEP amplitudes, and motor thresholds. Intracortical effects of stimulation were obtained by cortical silent period (CSP), short latency intracortical inhibition (SICI) and facilitation (ICF), and I wave facilitation. The above-mentioned protocols were recorded both before and immediately after tDCS in randomized order. Additionally, single-pulse MEPs, motor thresholds, SICI and ICF were recorded every 30 min up to 2 h after stimulation end, evening of the same day, next morning, next noon and next evening. Anodal as well as cathodal tDCS at 2 mA resulted in a significant increase of MEP amplitudes, whereas 1 mA cathodal tDCS decreased corticospinal excitability. A significant shift of SICI and ICF towards excitability enhancement after both 2 mA cathodal and anodal tDCS was observed. At 1 mA, cathodal tDCS reduced single-pulse TMS-elicited MEP amplitudes and shifted SICI

  5. The effects of high-frequency transcranial magnetic stimulation combined with transcutaneous electrical stimulation in a severe stroke patient.

    Science.gov (United States)

    Koyama, Soichiro; Tanabe, Shigeo; Takeda, Kazuya; Warashina, Hiroaki; Sakurai, Hiroaki; Kanada, Yoshikiyo; Okumura, Ryuji; Shinoda, Jun; Nagata, Junji; Kanno, Tetsuo

    2012-10-12

    The case report describes the effects of 5 Hz repetitive transcranial magnetic stimulation (rTMS) combined with transcutaneous electrical stimulation (TES) in a patient with severe stroke. The patient was a 69-year-old male who was affected by a left middle cerebral artery infarction. The patient had no movement in his right hand. To assess the effects, cerebral blood flow and motor function were measured before and after treatment. This treatment delivered rTMS over the affected M1 with TES at the paretic wrist extensor muscles for 10 days. The regional cerebral blood flow (rCBF) in the entire brain was measured by positronemission tomography. To evaluate the motor function, the Fugl-Meyer assessment (FMA) was used. After treatment, the rCBF was increased (except for the stimulated region), and the FMA score was slightly improved. These results suggest the potential therapeutic use of rTMS combined with TES for recovery in severe stroke.

  6. Vibrotactile stimulation of the upper leg : Effects of location, stimulation method and habituation

    NARCIS (Netherlands)

    Wentink, E.C.; Mulder, A.; Rietman, Johan Swanik; Veltink, Petrus H.

    In this study vibrotactile stimulation of the upper leg and its usability for feedback was tested. Three experiments were performed on ten healthy subjects using pager motors. The first experiment was to test the perception of the vibration at different frequencies and at different locations of the

  7. Boosting the LTP-like plasticity effect of intermittent theta-burst stimulation using gamma transcranial alternating current stimulation.

    Science.gov (United States)

    Guerra, Andrea; Suppa, Antonio; Bologna, Matteo; D'Onofrio, Valentina; Bianchini, Edoardo; Brown, Peter; Di Lazzaro, Vincenzo; Berardelli, Alfredo

    2018-03-24

    Transcranial Alternating Current Stimulation (tACS) consists in delivering electric current to the brain using an oscillatory pattern that may entrain the rhythmic activity of cortical neurons. When delivered at gamma frequency, tACS modulates motor performance and GABA-A-ergic interneuron activity. Since interneuronal discharges play a crucial role in brain plasticity phenomena, here we co-stimulated the primary motor cortex (M1) in healthy subjects by means of tACS during intermittent theta-burst stimulation (iTBS), a transcranial magnetic stimulation paradigm known to induce long-term potentiation (LTP)-like plasticity. We measured and compared motor evoked potentials before and after gamma, beta and sham tACS-iTBS. While we delivered gamma-tACS, we also measured short-interval intracortical inhibition (SICI) to detect any changes in GABA-A-ergic neurotransmission. Gamma, but not beta and sham tACS, significantly boosted and prolonged the iTBS-induced after-effects. Interestingly, the extent of the gamma tACS-iTBS after-effects correlated directly with SICI changes. Overall, our findings point to a link between gamma oscillations, interneuronal GABA-A-ergic activity and LTP-like plasticity in the human M1. Gamma tACS-iTBS co-stimulation might represent a new strategy to enhance and prolong responses to plasticity-inducing protocols, thereby lending itself to future applications in the neurorehabilitation setting. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Puncturevine (Tribulus terrestris L.: noxious weed or powerful medical herb

    Directory of Open Access Journals (Sweden)

    Zvonko Pacanoski

    2014-03-01

    Full Text Available Tribulus terrestris L., an annual dicot species of the family Zygophyllaceae, is a common herb that is often found in disturbed habitats and agricultural areas in many parts of the temperate, tropical and desert regions of the world. T. terrestris is an aggressive species that has the potential to injure livestock, reduce hay and wool values, detour recreationists and reduces plant biodivesity. The species may become troublesome because of its weedy potential. It has been declared a weed in at least 37 countries and in at least 21 crops (cotton, maize, vineyards, orchards, etc.. It is adapted to a wide range of climatic conditions and grows on a wide variety of soil types. The management of T. terrestris can be achieved by herbicide application, mechanical (hand pulling, hoeing, mulching and biological control methods. Beside its invasive potential as a noxious and troublesome weed, T. terrestris is considered highly useful herb which is used for various purposes in folk and modern medicine and sport, as well.

  9. The effect of auditory stimulation on autobiographical recall in dementia.

    Science.gov (United States)

    Foster, N A; Valentine, E R

    2001-01-01

    Elderly individuals with mild-moderate ("high ability") or moderate ("low ability") dementia, answered autobiographical memory questions drawn from three life eras (remote, medium-remote, and recent), in familiar music, novel music, cafeteria noise or quiet. Recall was significantly better in the high-ability than the low-ability group, in sound than in quiet, and in music than in noise. Recall was significantly related to life era, declining from remote to recent memory. The superiority of recall in music compared with noise was apparent for recall from remote and medium-remote but not recent eras. The results are interpreted as favoring an explanation of the beneficial effect of auditory stimulation, predominantly in terms of enhanced arousal or attention deployment, with a possible subsidiary role for associative facilitation.

  10. Effects of electrical stimulation of the neurohypophysis on labour in the rat

    NARCIS (Netherlands)

    Boer, K.; Lincoln, D. W.; Swaab, D. F.

    1975-01-01

    Labour was studied in 69 primiparous and multiparous rats by continuous observation and by the recording of intra-uterine activity. The effect of electrical stimulation of the neurohypophysis with stimulation parameters selected to create a pulsatile release of oxytocin was investigated. Stimulation

  11. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.

    Science.gov (United States)

    Maier, Hannes; Salcher, Rolf; Schwab, Burkard; Lenarz, Thomas

    2013-07-01

    The Direct Acoustic Cochlea Stimulator Partial Implant (DACS PI, Phonak Acoustic Implants SA, Switzerland) is intended to stimulate the cochlea by a conventional stapedotomy piston that is crimped onto the DACS PI artificial incus. An alternative approach to the round window (RW) is successfully done with other devices, having the advantage of being also independent of the existence of middle ear structure (e.g. ossicles). Here the possibility of stimulating the RW with the DACS actuator is investigated including the impact of static force on sound transmission to the cochlea. The maximum equivalent sound pressure output with RW stimulation was determined experimentally in fresh human temporal bones. Experiments were performed in analogy to the ASTM standard (F2504.24930-1) method for the output determination of implantable middle ear hearing devices (IMEHDs) in human cadaveric temporal bones (TBs). ASTM compliant temporal bones were stimulated with a prosthesis having a spherical tip (∅0.5 mm) attached to the actuator. The stimulation was performed perpendicular to the round window membrane (RWM) at varying position relative to the RW and the resulting static force on the RW membrane was determined. At each position the displacement output of the DACS PI actuator and the stapes footplate (SFP) vibration in response to actuator stimulation was measured with a Laser Doppler Velocimeter (LDV). By comparison of the achieved output at the stapes footplate in response to sound and transducer stimulation the equivalent sound pressure level at the tympanic membrane at 1Vrms input voltage was calculated assuming that the SFP displacement in both conditions is a measure of perceived loudness, as it is done in the ASTM standard. Ten TB preparations within the acceptance range of the ASTM standard were used for analysis. The actuator driven stapes footplate displacement amplitude as well as the resulting equivalent sound pressure level was highly dependent on the static

  12. Effect of transcutaneous electrical nerve stimulation induced parotid stimulation on salivary flow

    Directory of Open Access Journals (Sweden)

    Sreenivasulu Pattipati

    2013-01-01

    Full Text Available Aims and Objectives: The main objective of this study was to evaluate the duration of stimulation over the parotid salivary flow following the use of transcutaneous electric nerve stimulation (TENS in different age groups. Materials and Methods: The study was carried out in three different age groups. Under group A individuals from 21 to 35 years of age, group B 36-50 years and group C above 51 years were considered. In each group 30 subjects were taken of whom 15 were males and 15 were females. The placement of pads was approximated bilaterally over the parotid glands. The working parameters of TENS unit were fixed at 50 Hz and the unit was in normal mode. Results: Subjects belonging to group B were showing statistically significant increases in the duration of stimulated parotid salivary flow following the use of TENS. Conclusion: TENS can be considered as a non-pharmacological alternative to improve salivation for longer period in xerostomia patients.

  13. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.

    Science.gov (United States)

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter

    2017-04-01

    Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could

  14. Faraday effect on stimulated Raman scattering in the linear region

    Science.gov (United States)

    Liu, Z. J.; Li, B.; Xiang, J.; Cao, L. H.; Zheng, C. Y.; Hao, L.

    2018-04-01

    The paper presents the effect of Faraday rotation on stimulated Raman scattering (SRS). When light propagates along the magnetic field upon plasma, Faraday rotation occurs. The rotation angle can be expressed as {{d}}θ /{{d}}{s}=2.93× {10}-4B\\tfrac{{n}e/{n}c}{\\sqrt{1-{n}e/{n}c}} {cm}}-1 approximately, where θ is the rotation angle and s is distance, n e is the electron density, n c is the critical density and B is magnetic field in unit of Gauss. Both the incident light and Raman light have Faraday effects. The angle between the polarization directions of incident light and Raman light changes with position. The driven force of electron plasma wave also reduces, and then SRS scattering level is reduced. Faraday rotation effect can increase the laser intensity threshold of Raman scattering, even if the magnetic field strength is small. The circularly polarized light incident case is also compared with that of the linearly polarized light incident. The Raman scattering level of linearly polarized light is much smaller than that of circularly polarized light in the magnetized plasma. The difference between linearly and circularly polarized lights is also discussed.

  15. Effect of Parkinson's Disease in Transcranial Magnetic Stimulation Treatment

    Science.gov (United States)

    Syeda, Farheen; Magsood, Hamzah; Lee, Erik; El-Gendy, Ahmed; Jiles, David; Hadimani, Ravi

    Transcranial Magnetic Stimulation is a non-invasive clinical therapy used to treat depression and migraine, and shows further promise as treatment for Parkinson's disease, Alzheimer's disease, and other neurological disorders. However, it is yet unclear as to how anatomical differences may affect stimulation from this treatment. We use finite element analysis to model and analyze the results of Transcranial Magnetic Stimulation in various head models. A number of heterogeneous head models have been developed using MRI data of real patients, including healthy individuals as well as patients of Parkinson's disease. Simulations of Transcranial Magnetic Stimulation performed on 22 anatomically different models highlight the differences in induced stimulation. A standard Figure of 8 coil is used with frequency 2.5 kHz, placed 5 mm above the head. We compare cortical stimulation, volume of brain tissue stimulated, specificity, and maximum E-field induced in the brain for models ranging from ages 20 to 60. Results show that stimulation varies drastically between patients of the same age and health status depending upon brain-scalp distance, which is not necessarily a linear progression with age.

  16. Effect of vagus nerve stimulation on creativity and cognitive flexibility.

    Science.gov (United States)

    Ghacibeh, Georges A; Shenker, Joel I; Shenal, Brian; Uthman, Basim M; Heilman, Kenneth M

    2006-06-01

    The purpose of this study was to determine whether vagus nerve stimulation influences cognitive flexibility and creativity. Ten subjects, in whom vagus nerve stimulators had been implanted for the treatment of intractable seizures, performed tasks that assessed cognitive flexibility (solving anagrams), creativity (Torrance Test), and memory (Hopkins Verbal Learning Test) during actual and sham vagus nerve stimulation. Vagus nerve stimulation impaired cognitive flexibility and creativity, but these results could not be explained by the induction of a general encephalopathy because VNS did not impair learning and improved retention. The means by which vagus nerve stimulation impairs cognitive flexibility and creative thinking is probably related to increased activity of the locus coeruleus-central adrenergic system that increases the signal-to-noise ratio and improves the brain's ability to attend to sensory input, but decreases its ability to recruit large-scale networks.

  17. Effectiveness of Functional Electrical Stimulation (FES) versus Conventional Electrical Stimulation in Gait Rehabilitation of Patients with Stroke.

    Science.gov (United States)

    Sharif, Freeha; Ghulam, Samina; Malik, Arshad Nawaz; Saeed, Quratulain

    2017-11-01

    To compare the effectiveness of functional electrical stimulation (FES) versus conventional electrical stimulation in gait rehabilitation of patients with stroke for finding the most appropriate problem-oriented treatment for foot drop patients in a shorter time period. Randomized controlled trial. Armed Forces Institute of Rehabilitation Medicine, Rawalpindi, from July to December 2016. Subjects with foot drop due to stroke were allotted randomly into 1 of 2 groups receiving standard rehabilitation with Functional Electrical Stimulation (FES) or Electrical Muscle Stimulation (EMS). FES was applied on tibialis anterior 30 minutes/day, five days/week for six weeks. EMS was also applied on the tibialis anterior five days/week for six weeks. Outcome measures included Fugl-Meyer Assessment Scale, Modified Ashworth Scale, Berg Balance Scale (BBS), Time Up and Go Test (TUG) and Gait Dynamic Index (GDI). They were recorded at baseline, after 3 and 6 weeks. Pre- and post-treatment scores were analyzed between two groups on SPSS-20. After six weeks of intervention, significant improvement was recorded in Fugl-Meyer Assessment score (pAshworth Scale score (p=0.027), Berg Balance Scale score (p<0.001), Time Up and Go Test (p<0.001) and Gait Dynamic Index (p=0.012) of the group subjected to FES. Gait training with FES is more effective than EMS in improving mobility, balance, gait performance and reducing spasticity in stroke patients. The research will help clinicians to select appropriate treatment of foot drop in stroke patients.

  18. Effect of Transcranial Magnetic Stimulation on Neuronal Networks

    Science.gov (United States)

    Unsal, Ahmet; Hadimani, Ravi; Jiles, David

    2013-03-01

    The human brain contains around 100 billion nerve cells controlling our day to day activities. Consequently, brain disorders often result in impairments such as paralysis, loss of coordination and seizure. It has been said that 1 in 5 Americans suffer some diagnosable mental disorder. There is an urgent need to understand the disorders, prevent them and if possible, develop permanent cure for them. As a result, a significant amount of research activities is being directed towards brain research. Transcranial Magnetic Stimulation (TMS) is a promising tool for diagnosing and treating brain disorders. It is a non-invasive treatment method that produces a current flow in the brain which excites the neurons. Even though TMS has been verified to have advantageous effects on various brain related disorders, there have not been enough studies on the impact of TMS on cells. In this study, we are investigating the electrophysiological effects of TMS on one dimensional neuronal culture grown in a circular pathway. Electrical currents are produced on the neuronal networks depending on the directionality of the applied field. This aids in understanding how neuronal networks react under TMS treatment.

  19. Modeling the effects of transcranial magnetic stimulation on cortical circuits.

    Science.gov (United States)

    Esser, Steve K; Hill, Sean L; Tononi, Giulio

    2005-07-01

    Transcranial magnetic stimulation (TMS) is commonly used to activate or inactivate specific cortical areas in a noninvasive manner. Because of technical constraints, the precise effects of TMS on cortical circuits are difficult to assess experimentally. Here, this issue is investigated by constructing a detailed model of a portion of the thalamocortical system and examining the effects of the simulated delivery of a TMS pulse. The model, which incorporates a large number of physiological and anatomical constraints, includes 33,000 spiking neurons arranged in a 3-layered motor cortex and over 5 million intra- and interlayer synaptic connections. The model was validated by reproducing several results from the experimental literature. These include the frequency, timing, dose response, and pharmacological modulation of epidurally recorded responses to TMS (the so-called I-waves), as well as paired-pulse response curves consistent with data from several experimental studies. The modeled responses to simulated TMS pulses in different experimental paradigms provide a detailed, self-consistent account of the neural and synaptic activities evoked by TMS within prototypical cortical circuits.

  20. A comparison of noxious facilities' impacts for home owners versus renters

    International Nuclear Information System (INIS)

    Clark, D.E.; Nieves, L.A.

    1995-01-01

    The siting of noxious facilities, such as hazardous waste facilities, is often vigorously opposed by local residents, and thus it is now common for local residents to be compensated for the presence of the facility. One technique that has been employed to implicitly value noxious facilities is the intercity hedonic approach, which examines the wage and land rent premia between cities that result from the presence of the facility. However, most of the focus has been on the behavior of home owners as opposed to renters. Since these two groups of residents vary on numerous dimensions such as marital status, age, sex, and personal mobility, it would not be surprising to find different marginal valuations of local site characteristics. The authors use 1980 Census data to derive separate estimates for owners and renters of the implicit value placed on eight different types of noxious facilities. They find that renters and owners differ in their response to noxious facilities, although the differences are not systematic. Furthermore, the differences between owners and renters are not primarily due to differential mobility or socio-demographic factors. Controlling those factors decreases the differences between renters' and owners' implicit valuations of noxious facilities by less than 10%. Unmeasured differences between the two groups, such as tastes, risk aversion, or commitment to the community, must account for the remaining difference in valuations. These findings suggest that policymakers should separately consider the responses of owners and renters when estimating noxious facility impacts

  1. Effects of intranasal kinetic oscillation stimulation on heart rate variability.

    Science.gov (United States)

    Jerling, Markus; Cygankiewicz, Iwona; Al-Tawil, Nabil; Darpo, Borje; Ljungström, Anders; Zareba, Wojciech

    2018-01-01

    Kinetic oscillation stimulation in the nasal cavity (KOS) has been shown to have positive symptomatic effects in subjects with non-allergic rhinitis and in patients with migraine. To evaluate the effect of KOS on autonomic function, we assessed heart rate variability (HRV) in this small exploratory study in 12 healthy subjects. KOS treatment was performed using a minimally invasive system with a single-use catheter inserted into the nasal cavity. During treatment, the tip was inflated and oscillated with a mean pressure of 95 millibar and amplitude of the oscillations of 100 millibar at a frequency of 68 Hz. Treatment was given for 15 minutes sequentially on each side. Heart rate variability was assessed during five 30-minutes periods before, during and immediately after KOS treatment and 3.5 hours thereafter. KOS resulted in a substantial reduction of HRV. As compared to baseline recorded during 30 minutes preceding treatment, VLF was reduced by 65%, LF by 55%, the ratio LF/HF by 44%, with somewhat smaller observed effects in the time domain; SDNN and RMSDD were reduced by of 36% and 18%, respectively. Heart rate remained stable during treatment with minimal mean changes from 68 ± 7 bpm before to 68 ± 9 and 69 ± 9 bpm during and after treatment. Reduction of HRV parameters was consistently seen in all subjects, with rapid onset and return towards baseline values during post-treatment observation periods. KOS has an effect on the autonomic balance with pronounced heart-rate independent reduction on HRV. © 2017 The Authors Annals of Noninvasive Electrocardiology Published by Wiley Periodicals, Inc.

  2. Effect of ionizing radiation on macrophage stimulating property of Vibrio parahaemolyticus lipopolysaccharide

    International Nuclear Information System (INIS)

    Bandekar, J.R.; Nene, S.P.; Nerkar, D.P.

    1988-01-01

    Effect of gamma radiation on the macrophage stimulating ability of Vibrio parahaemolyticus lipopolysaccharide (LPS) was examined. Radiodetoxified LPS (RLPS) when injected (ip) in mice stimulated peritoneal macrophages as was evident from the enhancement of their acid hydrolases and cellular RNA contents. RLPS also stimulated the phagocytic activities of macrophages. The stimulation of macrophages was slightly less as compared to that observed with n ative LPS. Thus, treatment of LPS with 15 kGy dose of gamma radiation results in a slight reduction in its macrophage stimulating ability. (author). 3 tabs., 22 refs

  3. Vestibular stimulation after head injury: effect on reaction times and motor speech parameters

    DEFF Research Database (Denmark)

    Engberg, A

    1989-01-01

    Earlier studies by other authors indicate that vestibular stimulation may improve attention and dysarthria in head injured patients. In the present study of five severely head injured patients and five controls, the effect of vestibular stimulation on reaction times (reflecting attention) and some...... motor speech parameters (reflecting dysarthria) was investigated. After eight weeks with regular stimulation, it was concluded that reaction time changes were individual and consistent for a given subject. Only occasionally were they shortened after stimulation. However, reaction time was lengthened...... stimulation induced changes of reaction times or motor speech parameters, the changes were more pronounced in patients than in controls....

  4. Evaluation of the effectiveness of transcranial direct current stimulation (tDCS) and psychosensory stimulation through DOCS scale in a minimally conscious subject.

    Science.gov (United States)

    Dimitri, Danilo; De Filippis, Daniela; Galetto, Valentina; Zettin, Marina

    2017-04-01

    The aim of our study was to assess the effectiveness of transcranial direct current stimulation (tDCS) on alertness improvement in a patient in a minimally conscious state (MCS) by means of disorders of consciousness scale combined with psycho-sensory stimulation. The effects of tDCS on muscle hypertonia through the Ashworth scale were also examined. tDCS was performed through a two-channel intra-cephalic stimulator. After stimulation, the patient followed a psychosensory stimulation training. Results pointed out an increase in DOCunit score, as well as an increase in alertness maintenance and an improvement in muscle hypertonia, although a MCS state persisted.

  5. The Effect of Deep Brain Stimulation on the Speech Motor System

    Science.gov (United States)

    Mücke, Doris; Becker, Johannes; Barbe, Michael T.; Meister, Ingo; Liebhart, Lena; Roettger, Timo B.; Dembek, Till; Timmermann, Lars; Grice, Martine

    2014-01-01

    Purpose: Chronic deep brain stimulation of the nucleus ventralis intermedius is an effective treatment for individuals with medication-resistant essential tremor. However, these individuals report that stimulation has a deleterious effect on their speech. The present study investigates one important factor leading to these effects: the…

  6. Effects of thalamic deep brain stimulation on spontaneous language production.

    Science.gov (United States)

    Ehlen, Felicitas; Vonberg, Isabelle; Kühn, Andrea A; Klostermann, Fabian

    2016-08-01

    The thalamus is thought to contribute to language-related processing, but specifications of this notion remain vague. An assessment of potential effects of thalamic deep brain stimulation (DBS) on spontaneous language may help to delineate respective functions. For this purpose, we analyzed spontaneous language samples from thirteen (six female / seven male) patients with essential tremor treated with DBS of the thalamic ventral intermediate nucleus (VIM) in their respective ON vs. OFF conditions. Samples were obtained from semi-structured interviews and examined on multidimensional linguistic levels. In the VIM-DBS ON condition, participants used a significantly higher proportion of paratactic as opposed to hypotactic sentence structures. This increase correlated negatively with the change in the more global cognitive score, which in itself did not change significantly. In conclusion, VIM-DBS appears to induce the use of a simplified syntactic structure. The findings are discussed in relation to concepts of thalamic roles in language-related cognitive behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Enhanced Modiolar Stimulation Effects in the Inferior Colliculus

    National Research Council Canada - National Science Library

    Lithgow, Brian

    2001-01-01

    This preliminary study quantifies and provides one explanation for the extent of modiolar stimulation observed as a function of current level as recorded in a population of Inferior Colliculus units...

  8. Effect of Erythropoiesis-Stimulating Agent Policy Decisions

    Data.gov (United States)

    U.S. Department of Health & Human Services — Erythropoiesis-stimulating agents (ESAs) are used as a treatment for anemia in myelodysplastic syndromes (MDS) patients. In early 2007, the U.S. Food and Drug...

  9. Effect Of Cognitive Stimulation On Hippocampal Ripples In Epileptic Patients

    Czech Academy of Sciences Publication Activity Database

    Brázdil, M.; Cimbálník, J.; Roman, R.; Stead, M.; Daniel, P.; Halámek, Josef; Jurák, Pavel

    2013-01-01

    Roč. 54, S3 (2013), s. 268-268 ISSN 0013-9580. [International Epilepsy Congress /30./. 23.06.2013-27.06.2013, Montreal] Institutional support: RVO:68081731 Keywords : Cognitive Stimulation * Epileptic Patients Subject RIV: FH - Neurology

  10. Effect of two follicle stimulating hormone (FSH) preparations and ...

    African Journals Online (AJOL)

    wool sheep to superovulation with two follicles stimulating hormone (FSH) preparations and simplified superovulatory treatments. In Experiment I, 22 adult Xinji fine-wool sheep were randomly allocated in equal number (n = 11) to two groups ...

  11. An investigation into the inhibitory function of serotonin in diffuse noxious inhibitory controls in the neuropathic rat.

    Science.gov (United States)

    Bannister, K; Lockwood, S; Goncalves, L; Patel, R; Dickenson, A H

    2017-04-01

    Following neuropathy α2-adrenoceptor-mediated diffuse noxious inhibitory controls (DNIC), whereby a noxious conditioning stimulus inhibits the activity of spinal wide dynamic range (WDR) neurons, are abolished, and spinal 5-HT7 receptor densities are increased. Here, we manipulate spinal 5-HT content in spinal nerve ligated (SNL) animals and investigate which 5-HT receptor mediated actions predominate. Using in vivo electrophysiology we recorded WDR neuronal responses to von frey filaments applied to the hind paw before, and concurrent to, a noxious ear pinch (the conditioning stimulus) in isoflurane-anaesthetised rats. The expression of DNIC was quantified as a reduction in WDR neuronal firing in the presence of conditioning stimulus and was investigated in SNL rats following spinal application of (1) selective serotonin reuptake inhibitors (SSRIs) citalopram or fluoxetine, or dual application of (2) SSRI plus 5-HT7 receptor antagonist SB269970, or (3) SSRI plus α2 adrenoceptor antagonist atipamezole. DNIC were revealed in SNL animals following spinal application of SSRI, but this effect was abolished upon joint application of SSRI plus SB269970 or atipamezole. We propose that in SNL animals the inhibitory actions (quantified as the presence of DNIC) of excess spinal 5-HT (presumed present following application of SSRI) were mediated via 5-HT7 receptors. The anti-nociception depends upon an underlying tonic noradrenergic inhibitory tone via the α2-adrenoceptor. Following neuropathy enhanced spinal serotonin availability switches the predominant spinal 5-HT receptor-mediated actions but also alters noradrenergic signalling. We highlight the therapeutic complexity of SSRIs and monoamine modulators for the treatment of neuropathic pain. © 2016 European Pain Federation - EFIC®.

  12. Effectiveness of percutaneous tibial nerve stimulation in managing refractory constipation.

    Science.gov (United States)

    Kumar, L; Liwanag, J; Athanasakos, E; Raeburn, A; Zarate-Lopez, N; Emmanuel, A V

    2017-01-01

    Chronic constipation can be aetiopathogenically classified into slow transit constipation (STC), rectal evacuation difficulty (RED) or a combination (BOTH). Although the efficacy of percutaneous tibial nerve stimulation (PTNS) in faecal incontinence has been well proved, a current literature search identifies only one study which assessed its effect on constipation. We aimed to evaluate the effectiveness of PTNS in patients with different causes of constipation. Thirty-four patients [30 women, median age 50 (20-79) years] with constipation who had previously failed maximal laxative and biofeedback therapy participated in the study. All patients underwent a baseline radio-opaque marker transit study and anorectal physiology examination. All had 12 sessions of PTNS of 30 min per session. A fall in the Wexner constipation score to ≤15 or by ≥5 points was taken as the primary outcome. Secondary outcomes included the results of pre- and post- PTNS transit and anorectal physiology studies. Eleven patients had STC, 14 had RED and nine had BOTH. A response was seen in four patients (1/11 STC, 2/14 RED and 1/9 BOTH). Comparing pre- and post- PTNS, there was no significant change in the mean Wexner score (P = 0.10). There was no change in colonic transit time among the whole population (P = 0.56) or among those with STC (P = 0.47). There was no improvement in balloon expulsion in the whole group (P = 0.73) or in patients with RED (P = 0.69). PTNS is of no benefit to patients with constipation, whatever aetiopathogenic mechanism is responsible for the symptoms. Colorectal Disease © 2016 The Association of Coloproctology of Great Britain and Ireland.

  13. Effect of erythropoietin-stimulating agent on uremic inflammation

    Directory of Open Access Journals (Sweden)

    Tanaka Yuri

    2012-05-01

    Full Text Available Abstract Background The goal of the present study was to explore the effect of medications that are commonly prescribed for CKD patients on uremic state. Methods This was a cross-sectional study. From January 2006 to October 2009, 1,623 patients with end-stage kidney disease (ESKD commenced hemodialysis (HD at the 9 participating hospitals. The criteria for exclusion from the database were 1 serum C-reactive protein (CRP > 3 mg/dL, 2 WBC count > 9,000/mm3 or 3, and 3 patients with cancer, immune complex disease, or vasculitis. A total of 900 patients were entered into the final database. We explored the association of serum CRP just before the first HD session with clinical characteristics, laboratory data, and medications for CKD in the predialysis period. Results On univariate analysis, age, CTR, eGFR, and WBC were significantly correlated with CRP. Systolic and diastolic blood pressure, serum albumin, LDL-C, HDL-C, Hb, Cr, and Ca were inversely associated with CRP. Use of erythropoietin-stimulating agents (ESA using (r = −0.111, p = 0.0015, renin-angiotensin-aldosterone system inhibitors (r = −0.083, p = 0.0154, and calcium channel blockers (r = −0.1, p = 0.0039 was also negatively correlated with CRP. However, only use of ESA showed a significant negative correlation with CRP that was independent of other clinical factors and CKD medications on multiple regression analysis. Conclusion ESA may strongly reduce uremic inflammation in addition to improving anemia. To confirm this potential effect, a large-scale longitudinal study would be required.

  14. Stimulating Effect of Elvitegravir on Suicidal Erythrocyte Death

    Directory of Open Access Journals (Sweden)

    Rosi Bissinger

    2016-03-01

    Full Text Available Background/Aims: The antiviral drug Elvitegravir is used for the treatment of Human Immunodeficiency Virus (HIV infections. The present study explored whether the drug is able to trigger eryptosis, the suicidal death of erythrocytes. Eryptosis is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress, ceramide, activated p38 kinase and activated caspases. The present study explored, whether Elvitegravir induces eryptosis and, if so, to shed light on the mechanisms involved. Methods: Phosphatidylserine abundance at the erythrocyte surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species (ROS from DCFDA dependent fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to Elvitegravir (≥ 1.5 µg/ml significantly increased the percentage of annexin-V-binding cells, and significantly decreased forward scatter. Elvitegravir (2.5 µg/ml significantly increased Fluo3-fluorescence, but did not significantly modify DCFDA fluorescence or ceramide abundance. The effect of Elvitegravir on annexin-V-binding was significantly blunted by removal of extracellular Ca2+, but not in the presence of p38 kinase inhibitor SB203580 (2 µM or in the presence of pancaspase inhibitor zVAD (10 µM. Conclusions: Elvitegravir triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to entry of extracellular Ca2+.

  15. Effects of sympathetic stimulation on the rhythmical jaw movements produced by electrical stimulation of the cortical masticatory areas of rabbits.

    Science.gov (United States)

    Roatta, S; Windhorst, U; Djupsjöbacka, M; Lytvynenko, S; Passatore, M

    2005-03-01

    The somatomotor and sympathetic nervous systems are intimately linked. One example is the influence of peripheral sympathetic fibers on the discharge characteristics of muscle spindles. Since muscle spindles play important roles in various motor behaviors, including rhythmic movements, the working hypothesis of this research was that changes in sympathetic outflow to muscle spindles can change rhythmic movement patterns. We tested this hypothesis in the masticatory system of rabbits. Rhythmic jaw movements and EMG activity induced by long-lasting electrical cortical stimulation were powerfully modulated by electrical stimulation of the peripheral stump of the cervical sympathetic nerve (CSN). This modulation manifested itself as a consistent and marked reduction in the excursion of the mandibular movements (often preceded by a transient modest enhancement), which could be attributed mainly to corresponding changes in masseter muscle activity. These changes outlasted the duration of CSN stimulation. In some of the cortically evoked rhythmic jaw movements (CRJMs) changes in masticatory frequency were also observed. When the jaw-closing muscles were subjected to repetitive ramp-and-hold force pulses, the CRMJs changed characteristics. Masseter EMG activity was strongly enhanced and digastric EMG slightly decreased. This change was considerably depressed during CSN stimulation. These effects of CSN stimulation are similar in sign and time course to the depression exerted by sympathetic activity on the jaw-closing muscle spindle discharge. It is suggested that the change in proprioceptive information induced by an increase in sympathetic outflow (a) has important implications even under normal conditions for the control of motor function in states of high sympathetic activity, and (b) is one of the mechanisms responsible for motor impairment under certain pathological conditions such as chronic musculoskeletal head-neck disorders, associated with stress conditions.

  16. Effects of lithium on stimulated metabolic parameters in dog thyroid slices

    International Nuclear Information System (INIS)

    Fen-Yu Tseng; Pasquali, D.; Field, J.B.

    1989-01-01

    Thyroid abnormalities may develop during chronic lithium therapy for affective disorders. Lithium, like iodide, inhibits TSH stimulation of adenylate cyclase and thyroid hormone release. The present study examined the effect of lithium on stimulation of intrathyroidal intermediary metabolism by several agonists, LiCl (5 mmol l) did not inhibit basal cAMP, glucose oxidation or 32 P incorporation into phospholipids in dog thyroid slices. Although LiCl inhibited TSH stimulation of cAMP, it did not abolish the hormone's effect on cAMP-dependent protein kinase. The stimulation of iodide organification, glucose oxidation or 32 P incorporation into phospholipids by TSH, carbachol and phorbol esters was not inhibited by lithium. This is in contrast to the effects of iodide, which inhibited stimulation of glucose oxidation and 32 P incorporation into phospholipids by various agonists. Thus, although both lithium and iodide inhibited TSH-stimulated cAMP formation, they act differently on intrahyriodal intermediary metabolism. (author)

  17. Effect of polarization on population transfer in H2 by stim-ulated ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 54; Issue 6. Effect of polarization on population transfer in H2 by stimulated Raman transition with partially overlapping laser pulses. Swaralipi Ghosh Sanjay Sen S S Bhattacharyya ... Keywords. Population transfer; polarization effects; stimulated Raman transition.

  18. The effects of high-frequency transcranial magnetic stimulation combined with transcutaneous electrical stimulation in a severe stroke patient

    Directory of Open Access Journals (Sweden)

    Soichiro Koyama

    2012-12-01

    Full Text Available The case report describes the effects of 5 Hz repetitive transcranial magnetic stimulation (rTMS combined with transcutaneous electrical stimulation (TES in a patient with severe stroke. The patient was a 69-year-old male who was affected by a left middle cerebral artery infarction. The patient had no movement in his right hand. To assess the effects, cerebral blood flow and motor function were measured before and after treatment. This treatment delivered rTMS over the affected M1 with TES at the paretic wrist extensor muscles for 10 days. The regional cerebral blood flow (rCBF in the entire brain was measured by positronemission tomography. To evaluate the motor function, the Fugl-Meyer assessment (FMA was used. After treatment, the rCBF was increased (except for the stimulated region, and the FMA score was slightly improved. These results suggest the potential therapeutic use of rTMS combined with TES for recovery in severe stroke.

  19. Effects of transcranial direct current stimulation on the recognition of bodily emotions from point light displays.

    Directory of Open Access Journals (Sweden)

    Sharona eVonck

    2015-08-01

    Full Text Available Perceiving human motion, recognizing actions and interpreting emotional body language are tasks we perform daily and which are supported by a network of brain areas including the human posterior superior temporal sulcus (pSTS. Here, we applied transcranial direct current stimulation with anodal (excitatory or cathodal (inhibitory electrodes mounted over right pSTS (target and orbito-frontal cortex (reference while healthy participants performed a bodily emotion recognition task using biological motion point light displays (PLDs. Performance (accuracy and reaction times was also assessed on a control task which was matched to the emotion recognition task in terms of cognitive and motor demands. Each subject participated in two experimental sessions, receiving either anodal or cathodal stimulation, which were separated by one week to avoid residual effects of previous stimulations.Overall, tDCS brain stimulation did not affect the recognition of emotional states from PLDs. However, when emotions with a negative or positive-neutral emotional valence were analyzed separately, effects of stimulation were shown for recognizing emotions with a negative emotional valence (sadness & anger, indicating increased recognition performance when receiving anodal (excitatory stimulation compared to cathodal (inhibitory stimulation over pSTS. No stimulation effects were shown for the recognition of emotions with positive-neutral emotional valences. These findings extend previous studies showing structure-function relationships between STS and biological motion processing from PLDs and provide indications that stimulation effects may be modulated by the emotional valence of the stimuli.

  20. Light-Emitting Diode Phototherapy Reduces Nocifensive Behavior Induced by Thermal and Chemical Noxious Stimuli in Mice: Evidence for the Involvement of Capsaicin-Sensitive Central Afferent Fibers.

    Science.gov (United States)

    Pigatto, Glauce Regina; Coelho, Igor Santos; Aquino, Rosane Schenkel; Bauermann, Liliane Freitas; Santos, Adair Roberto Soares

    2017-07-01

    Low-intensity phototherapy using light fonts, like light-emitting diode (LED), in the red to infrared spectrum is a promising alternative for the treatment of pain. However, the underlying mechanisms by which LED phototherapy reduces acute pain are not yet well understood. This study investigated the analgesic effect of multisource LED phototherapy on the acute nocifensive behavior of mice induced by thermal and chemical noxious stimuli. The involvement of central afferent C fibers sensitive to capsaicin in this effect was also investigated. Mice exposed to multisource LED (output power 234, 390, or 780 mW and power density 10.4, 17.3, and 34.6 mW/cm 2 , respectively, from 10 to 30 min of stimulation with a wavelength of 890 nm) showed rapid and significant reductions in formalin- and acetic acid-induced nocifensive behavior. This effect gradually reduced but remained significant for up to 7 h after LED treatment in the last model used. Moreover, LED (390 mW, 17.3 mW/cm 2 /20 min) irradiation also reduced nocifensive behavior in mice due to chemical [endogenous (i.e., glutamate, prostaglandins, and bradykinin) or exogenous (i.e., formalin, acetic acid, TRPs and ASIC agonist, and protein kinase A and C activators)] and thermal (hot plate test) stimuli. Finally, ablating central afferent C fibers abolished LED analgesia. These experimental results indicate that LED phototherapy reduces the acute painful behavior of animals caused by chemical and thermal stimuli and that LED analgesia depends on the integrity of central afferent C fibers sensitive to capsaicin. These findings provide new information regarding the underlying mechanism by which LED phototherapy reduces acute pain. Thus, LED phototherapy may be an important tool for the management of acute pain.

  1. Effectiveness of functional electrical stimulation (fes) versus conventional electrical stimulation in gait rehabilitation of patients with stroke

    International Nuclear Information System (INIS)

    Sharif, F.; Ghulam, S.; Malik, A.N.

    2017-01-01

    To compare the effectiveness of functional electrical stimulation (FES) versus conventional electrical stimulation in gait rehabilitation of patients with stroke for finding the most appropriate problem-oriented treatment for foot drop patients in a shorter time period. Study Design: Randomized controlled trial. Place and Duration of Study:Armed Forces Institute of Rehabilitation Medicine, Rawalpindi, from July to December 2016. Methodology: Subjects with foot drop due to stroke were allotted randomly into 1 of 2 groups receiving standard rehabilitation with Functional Electrical Stimulation (FES) or Electrical Muscle Stimulation (EMS). FES was applied on tibialis anterior 30 minutes/day, five days/week for six weeks. EMS was also applied on the tibialis anterior five days/week for six weeks. Outcome measures included Fugl-Meyer Assessment Scale, Modified Ashworth Scale, Berg Balance Scale (BBS), Time Up and Go Test (TUG) and Gait Dynamic Index (GDI). They were recorded at baseline, after 3 and 6 weeks. Pre- and post-treatment scores were analyzed between two groups on SPSS-20. Results: After six weeks of intervention, significant improvement was recorded in Fugl-Meyer Assessment score (p<0.001), modified Ashworth Scale score (p=0.027), Berg Balance Scale score (p<0.001), Time Up and Go Test (p<0.001) and Gait Dynamic Index (p=0.012) of the group subjected to FES. Conclusion: Gait training with FES is more effective than EMS in improving mobility, balance, gait performance and reducing spasticity in stroke patients. The research will help clinicians to select appropriate treatment of foot drop in stroke patients. (author)

  2. Effects of Intralaminar Thalamic Stimulation on Language Functions

    Science.gov (United States)

    Bhatnagar, Subhash C.; Mandybur, George T.

    2005-01-01

    Fifteen neurosurgical subjects, who were undergoing thalamic chronic electrode implants as a treatment for dyskinesia and chronic pain, were evaluated on a series of neurolinguistic functions to determine if the stimulation of the centromedianum nucleus of the thalamus affected language and cognitive processing. Analysis of the data revealed that…

  3. Effect of electrical stimulation of carcasses from Dorper sheep with ...

    African Journals Online (AJOL)

    Three consumer sensory tests, namely the hedonic rating of the acceptability of each sensory attribute, a preference test and a food action rating test, were conducted in sequence. The acceptability of the juiciness, tenderness, flavour and overall acceptability were not significantly influenced by the electrical stimulation of ...

  4. Electron Gyro-Harmonic Effects on Ionospheric Stimulated Brillouin Scatter

    Science.gov (United States)

    2014-08-21

    SECURITY CLASSIFICATION OF: Stimulated Brillouin scattering (SBS) and resonant phenomena are well known in the context of laser fusion, fiber optics ... fiber optics , and piezoelectric semiconductor plasmas, as well as in various biological applications. Due to recent advances, active space experiments... fiber optics , and piezoelectric semiconductor plasmas, as well as in various biological applications. Due to recent advances, active space

  5. Effect of electrical muscle stimulation on prevention of ICU acquired ...

    African Journals Online (AJOL)

    Hassan Abdelaziz Abu-Khaber

    2013-04-19

    Apr 19, 2013 ... possible relation between the limb and respiratory neuromuscular involvement. There is no preven- tive tool and ... electrical muscle stimulation; MRCS, medical research council scale. * Corresponding author. Tel. .... Diseases with systemic vascular involvement such as sys- temic lupus erythematosus. 7.

  6. The Mediating Effects of Generative Cognition on Imagination Stimulation

    Science.gov (United States)

    Hsu, Yuling; Liang, Chaoyun; Chang, Chi-Cheng

    2014-01-01

    This study, based in Taiwan, aims to explore what psychological factors influence imagination stimulation of education major students, and what the relationship is between these factors and imagination. Both principal component analysis and confirmatory factor analysis were employed to determine the most appropriate structure of the developed…

  7. Effect Of Crude Protein Levels And Follicle Stimulation On Egg ...

    African Journals Online (AJOL)

    Two groups received 16% crude protein (CP) level diets and the other two groups, 32%. One each of the two groups received follicle stimulation, induced by administration of Clomifene citrate (1.5mg/kg) via cathetered 5ml syringe through the 10week experimental period, with feed and water offered ad libitum.

  8. Differential effects of bifrontal and occipital nerve stimulation on pain and fatigue using transcranial direct current stimulation in fibromyalgia patients.

    Science.gov (United States)

    To, Wing Ting; James, Evan; Ost, Jan; Hart, John; De Ridder, Dirk; Vanneste, Sven

    2017-07-01

    Fibromyalgia is a disorder characterized by widespread musculoskeletal pain frequently accompanied by other symptoms such as fatigue. Moderate improvement from pharmacological and non-pharmacological treatments have proposed non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) to the occipital nerve (more specifically the C2 area) or to the dorsolateral prefrontal cortex (DLPFC) as potential treatments. We aimed to explore the effectiveness of repeated sessions of tDCS (eight sessions) targeting the C2 area and DLPFC in reducing fibromyalgia symptoms, more specifically pain and fatigue. Forty-two fibromyalgia patients received either C2 tDCS, DLPFC tDCS or sham procedure (15 C2 tDCS-11 DLPFC tDCS-16 sham). All groups were treated with eight sessions (two times a week for 4 weeks). Our results show that repeated sessions of C2 tDCS significantly improved pain, but not fatigue, in fibromyalgia patients, whereas repeated sessions of DLPFC tDCS significantly improved pain as well as fatigue. This study shows that eight sessions of tDCS targeting the DLPFC have a more general relief in fibromyalgia patients than when targeting the C2 area, suggesting that stimulating different targets with eight sessions of tDCS can lead to benefits on different symptom dimensions of fibromyalgia.

  9. Effects of a multichannel dynamic functional electrical stimulation system on hemiplegic gait and muscle forces.

    Science.gov (United States)

    Qian, Jing-Guang; Rong, Ke; Qian, Zhenyun; Wen, Chen; Zhang, Songning

    2015-11-01

    [Purpose] The purpose of the study was to design and implement a multichannel dynamic functional electrical stimulation system and investigate acute effects of functional electrical stimulation of the tibialis anterior and rectus femoris on ankle and knee sagittal-plane kinematics and related muscle forces of hemiplegic gait. [Subjects and Methods] A multichannel dynamic electrical stimulation system was developed with 8-channel low frequency current generators. Eight male hemiplegic patients were trained for 4 weeks with electric stimulation of the tibia anterior and rectus femoris muscles during walking, which was coupled with active contraction. Kinematic data were collected, and muscle forces of the tibialis anterior and rectus femoris of the affected limbs were analyzed using a musculoskelatal modeling approach before and after training. A paired sample t-test was used to detect the differences between before and after training. [Results] The step length of the affected limb significantly increased after the stimulation was applied. The maximum dorsiflexion angle and maximum knee flexion angle of the affected limb were both increased significantly during stimulation. The maximum muscle forces of both the tibia anterior and rectus femoris increased significantly during stimulation compared with before functional electrical stimulation was applied. [Conclusion] This study established a functional electrical stimulation strategy based on hemiplegic gait analysis and musculoskeletal modeling. The multichannel functional electrical stimulation system successfully corrected foot drop and altered circumduction hemiplegic gait pattern.

  10. Antinociception induced by stimulating amygdaloid nuclei in rats: changes produced by systemically administered antagonists

    Directory of Open Access Journals (Sweden)

    M.A. Oliveira

    1998-05-01

    Full Text Available The antinociceptive effects of stimulating the medial (ME and central (CE nuclei of the amygdala in rats were evaluated by the changes in the latency for the tail withdrawal reflex to noxious heating of the skin. A 30-s period of sine-wave stimulation of the ME or CE produced a significant and short increase in the duration of tail flick latency. A 15-s period of stimulation was ineffective. Repeated stimulation of these nuclei at 48-h intervals produced progressively smaller effects. The antinociception evoked from the ME was significantly reduced by the previous systemic administration of naloxone, methysergide, atropine, phenoxybenzamine, and propranolol, but not by mecamylamine, all given at the dose of 1.0 mg/kg. Previous systemic administration of naloxone, atropine, and propranolol, but not methysergide, phenoxybenzamine, or mecamylamine, was effective against the effects of stimulating the CE. We conclude that the antinociceptive effects of stimulating the ME involve at least opioid, serotonergic, adrenergic, and muscarinic cholinergic descending mechanisms. The effects of stimulating the CE involve at least opioid, ß-adrenergic, and muscarinic cholinergic descending mechanisms.

  11. Effect of Tactile Stimulation on Termination and Prevention of Apnea of Prematurity: A Systematic Review.

    Science.gov (United States)

    Cramer, Sophie J E; Dekker, Janneke; Dankelman, Jenny; Pauws, Steffen C; Hooper, Stuart B; Te Pas, Arjan B

    2018-01-01

    Apnea of prematurity (AOP) is one of the most common diagnoses in preterm infants. Severe and recurrent apneas are associated with cerebral injury and adverse neurodevelopmental outcome. Despite pharmacotherapy and respiratory support to prevent apneas, a proportion of infants continue to have apneas and often need tactile stimulation, mask, and bag ventilation and/or extra oxygen. The duration of the apnea and the concomitant hypoxia and bradycardia depends on the response time of the nurse. We systematically reviewed the literature with the aim of providing an overview of what is known about the effect of manual and mechanical tactile stimulation on AOP. Tactile stimulation, manual or mechanical, has been shown to shorten the duration of apnea, hypoxia, and or bradycardia or even prevent an apnea. Automated stimulation, using closed-loop pulsating or vibrating systems, has been shown to be effective in terminating apneas, but data are scarce. Several studies used continuous mechanical stimulation, with pulsating, vibrating, or oscillating stimuli, to prevent apneas, but the reported effect varied. More studies are needed to confirm whether automated stimulation using a closed loop is more effective than manual stimulation, how and where the automated stimulation should be performed and the potential side effects.

  12. Effect of Tactile Stimulation on Termination and Prevention of Apnea of Prematurity: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Sophie J. E. Cramer

    2018-03-01

    Full Text Available Apnea of prematurity (AOP is one of the most common diagnoses in preterm infants. Severe and recurrent apneas are associated with cerebral injury and adverse neurodevelopmental outcome. Despite pharmacotherapy and respiratory support to prevent apneas, a proportion of infants continue to have apneas and often need tactile stimulation, mask, and bag ventilation and/or extra oxygen. The duration of the apnea and the concomitant hypoxia and bradycardia depends on the response time of the nurse. We systematically reviewed the literature with the aim of providing an overview of what is known about the effect of manual and mechanical tactile stimulation on AOP. Tactile stimulation, manual or mechanical, has been shown to shorten the duration of apnea, hypoxia, and or bradycardia or even prevent an apnea. Automated stimulation, using closed-loop pulsating or vibrating systems, has been shown to be effective in terminating apneas, but data are scarce. Several studies used continuous mechanical stimulation, with pulsating, vibrating, or oscillating stimuli, to prevent apneas, but the reported effect varied. More studies are needed to confirm whether automated stimulation using a closed loop is more effective than manual stimulation, how and where the automated stimulation should be performed and the potential side effects.

  13. Effect of Tactile Stimulation on Termination and Prevention of Apnea of Prematurity: A Systematic Review

    Science.gov (United States)

    Cramer, Sophie J. E.; Dekker, Janneke; Dankelman, Jenny; Pauws, Steffen C.; Hooper, Stuart B.; te Pas, Arjan B.

    2018-01-01

    Apnea of prematurity (AOP) is one of the most common diagnoses in preterm infants. Severe and recurrent apneas are associated with cerebral injury and adverse neurodevelopmental outcome. Despite pharmacotherapy and respiratory support to prevent apneas, a proportion of infants continue to have apneas and often need tactile stimulation, mask, and bag ventilation and/or extra oxygen. The duration of the apnea and the concomitant hypoxia and bradycardia depends on the response time of the nurse. We systematically reviewed the literature with the aim of providing an overview of what is known about the effect of manual and mechanical tactile stimulation on AOP. Tactile stimulation, manual or mechanical, has been shown to shorten the duration of apnea, hypoxia, and or bradycardia or even prevent an apnea. Automated stimulation, using closed-loop pulsating or vibrating systems, has been shown to be effective in terminating apneas, but data are scarce. Several studies used continuous mechanical stimulation, with pulsating, vibrating, or oscillating stimuli, to prevent apneas, but the reported effect varied. More studies are needed to confirm whether automated stimulation using a closed loop is more effective than manual stimulation, how and where the automated stimulation should be performed and the potential side effects. PMID:29552548

  14. Impaired endocannabinoid signalling in the rostral ventromedial medulla underpins genotype-dependent hyper-responsivity to noxious stimuli.

    Science.gov (United States)

    Rea, Kieran; Olango, Weredeselam M; Okine, Bright N; Madasu, Manish K; McGuire, Iseult C; Coyle, Kathleen; Harhen, Brendan; Roche, Michelle; Finn, David P

    2014-01-01

    Pain is both a sensory and an emotional experience, and is subject to modulation by a number of factors including genetic background modulating stress/affect. The Wistar-Kyoto (WKY) rat exhibits a stress-hyper-responsive and depressive-like phenotype and increased sensitivity to noxious stimuli, compared with other rat strains. Here, we show that this genotype-dependent hyperalgesia is associated with impaired pain-related mobilisation of endocannabinoids and transcription of their synthesising enzymes in the rostral ventromedial medulla (RVM). Pharmacological blockade of the Cannabinoid1 (CB1) receptor potentiates the hyperalgesia in WKY rats, whereas inhibition of the endocannabinoid catabolising enzyme, fatty acid amide hydrolase, attenuates the hyperalgesia. The latter effect is mediated by CB1 receptors in the RVM. Together, these behavioural, neurochemical, and molecular data indicate that impaired endocannabinoid signalling in the RVM underpins hyper-responsivity to noxious stimuli in a genetic background prone to heightened stress/affect. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  15. The effects of auditory stimulation on the arithmetic performance of children with ADHD and nondisabled children.

    Science.gov (United States)

    Abikoff, H; Courtney, M E; Szeibel, P J; Koplewicz, H S

    1996-05-01

    This study evaluated the impact of extra-task stimulation on the academic task performance of children with attention-deficit/hyperactivity disorder (ADHD). Twenty boys with ADHD and 20 nondisabled boys worked on an arithmetic task during high stimulation (music), low stimulation (speech), and no stimulation (silence). The music "distractors" were individualized for each child, and the arithmetic problems were at each child's ability level. A significant Group x Condition interaction was found for number of correct answers. Specifically, the nondisabled youngsters performed similarly under all three auditory conditions. In contrast, the children with ADHD did significantly better under the music condition than speech or silence conditions. However, a significant Group x Order interaction indicated that arithmetic performance was enhanced only for those children with ADHD who received music as the first condition. The facilitative effects of salient auditory stimulation on the arithmetic performance of the children with ADHD provide some support for the underarousal/optimal stimulation theory of ADHD.

  16. The economic impacts of noxious facilities on wages and property values: An exploratory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Hemphill, R.C.; Clark, D.E.

    1991-05-01

    Recent assessments of socioeconomic impacts resulting from the location of potentially hazardous facilities have concentrated on the issue of negative public perceptions and their resulting economic consequences. This report presents an analysis designed to answer the question: Can economic impacts resulting from negative perceptions of noxious facilities'' be identified and measured To identify the impacts of negative perceptions, data on noxious facilities sited throughout the United States were compiled, and secondary economic and demographic data sufficient to analyze the economic impacts on the surrounding study areas were assembled. This study uses wage rate and property value differentials to measure impacts on social welfare so that the extent to which noxious facilities and their associated activities have affected surrounding areas can be determined.

  17. The economic impacts of noxious facilities on wages and property values: An exploratory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Hemphill, R.C.; Clark, D.E.

    1991-05-01

    Recent assessments of socioeconomic impacts resulting from the location of potentially hazardous facilities have concentrated on the issue of negative public perceptions and their resulting economic consequences. This report presents an analysis designed to answer the question: Can economic impacts resulting from negative perceptions of ``noxious facilities`` be identified and measured? To identify the impacts of negative perceptions, data on noxious facilities sited throughout the United States were compiled, and secondary economic and demographic data sufficient to analyze the economic impacts on the surrounding study areas were assembled. This study uses wage rate and property value differentials to measure impacts on social welfare so that the extent to which noxious facilities and their associated activities have affected surrounding areas can be determined.

  18. Possibilities of utilizing zeolites for the reduction of toxical noxious gases of combustion engines

    Directory of Open Access Journals (Sweden)

    Pandová Iveta

    2001-12-01

    Full Text Available Combustion engines produce exhalations that contribute by 50% to the contamination of the environment. The subject of this work is the research of zeolites´ as the adsorbent of toxical gases. The decisive influence on the adsorbing power has the capacity of porous in unit of volume of the sorbent and dimensions of canals. The active component of zeolite from the deposit Bystré is mineral clinoptilolite. Recently, there is an increased interest to utilize zeolites in the partial reduction of NOx, CO and hydrocarbons in the combustion products. The catalysts used to detoxication of exhalation combustion engines are less effective during periods of relatively low temperature operation, such as the initial cold-start period of engine operation. Some European, American and Japones patents are directed to the use of a zeolite catalyst for the reduction of hydrocarbons, CO and NOx. The noble metals and acid zeolites are used as a catalyst of noxious components. The adsorbent material, which may be a zeolite is part treatment system in order to adsorb gaseous pollutants during of cold start period of engine operation.

  19. Effectiveness of repetitive trancranial or peripheral magnetic stimulation in neuropathic pain.

    Science.gov (United States)

    Kumru, Hatice; Albu, Sergiu; Vidal, Joan; Tormos, Josep Maria

    2017-05-01

    Maladaptive plasticity in the sensorimotor system, following neurological lesions or diseases, plays a central role in the generation and maintenance of neuropathic pain. Repetitive magnetic stimulation of the central and peripheral nervous system has gained relevance as noninvasive approach for neuromodulation and pain relief. Systematic reviews that evaluate the effectiveness and specificity of different protocols of repetitive magnetic stimulation to control neuropathic pain in clinical populations have the potential to improve the therapeutic applicability of this technique. Studies whose primary goal was to evaluate the effectiveness of repetitive magnetic stimulation for the treatment of various types of neuropathic pain published in PubMed until August 2015 have been included in this systematic review. A total of 39 articles fulfilling the inclusion criteria were analyzed of which 37 studies investigated pain modulation using repetitive magnetic stimulation over the motor or non-motor cortices and two studies evaluated pain modulation using repetitive peripheral magnetic stimulation protocols. Repetitive transcranial magnetic stimulation of the primary motor cortex using high frequency stimulation protocols can effectively reduce neuropathic pain, particularly in individuals with pain related to non-cerebral lesions. The application of multiple sessions can lead to long-lasting pain modulation and cumulative effects. Implications for Rehabilitation Maladaptive plasticity plays a central role in sensitization of nociceptive pathways, generation and maintainance of neuropathic pain; Most neuropathic pain conditions are refractory to pharmacological therapies; Repetitive magnetic stimulation of the central and peripheral nervous system has gained relevance as noninvasive approach for neuromodulation and pain relief.

  20. Children's Self-Reports on Perceived Effects on Taking Stimulant Medication for ADHD

    Science.gov (United States)

    Thorell, Lisa B.; Dahlstrom, Kerstin

    2009-01-01

    Objective: This study investigates children's views on positive and negative effects of stimulant medication for ADHD and the children's willingness to stop taking medication. Method: Questionnaire data were collected from 79 children with ADHD and one of each child's parents. Results/Conclusion: Swedish children treated with stimulants generally…

  1. The effect of a stimulation pattern on force and fatigue of paralyzed human quadriceps

    NARCIS (Netherlands)

    Franken, Henry M.; Franken, H.M.; van Harn, Andre; Veltink, Petrus H.; Thomsen, M.; Thomsen, Morten; Boom, H.B.K.

    1993-01-01

    The effects of several stimulation patterns at constant duty cycle on isometric and isokinetic knee torque development and fatigue-induced torque decline in electrically stimulated paralyzed human quadriceps were studied. The benefit of optimizing the interpulse intervals (PISi)n comparison to a

  2. The Effect of Vibroacoustic Stimulation and Music on Fetal Movement

    Directory of Open Access Journals (Sweden)

    Masoume Pirhadi

    2015-09-01

    Full Text Available Introduction Fetal movement started at the 7th weeks of pregnancy and by the end of pregnancy will gradually be perfect and harmonious. Near-term fetuses can discriminate acoustic features, such as frequencies and spectra, and process complex auditory streams. In this study, we aimed to evaluate fatal movement in response to music and vibration stimulation. Materials and Methods This study is a clinical trial that was conducted in two groups and two-steps. Participants were pregnant women (primigravida who have referring to the Shahid Beheshti Hospital in Isfahan during 2013 to receive routine prenatal care. The 64 pregnant women (32-36 weeks were randomly assigned to the groups of Vibroacoustic stimulation (n= 32 and Music (n=32. They were stimulated immediately after the first non stress test and before the second test. The researchers’ evaluated and analyzed possible changes in non-stress test results using SPSS software version 20. Results Mean age of the subjects in vibroacoustic group and in music group were (25.5±2.6 (24.9±4.4 respectively. Paired t-test showed there was no relationship between the average number of acceleration of the fetal heart rate before and after the intervention (P>0.05.On the other hand, there was a significant correlation between the average number of fetal movements in the music group before and after the intervention (P

  3. Effect of subthalamic nucleus deep brain stimulation on balance in Parkinson's disease: A static posturographic analysis.

    Science.gov (United States)

    De la Casa-Fages, Beatriz; Alonso-Frech, Fernando; Grandas, Francisco

    2017-02-01

    The effect of subthalamic deep brain stimulation on balance in Parkinson's disease remains unclear. To evaluate the effect of subthalamic nucleus stimulation on balance in Parkinson's disease using posturography. 16 patients (9 women) who underwent subthalamic deep brain stimulation [mean age 59.6 years (46-70); mean disease duration 15.6 years (7-25); mean duration of subthalamic stimulation 32.1 months (3.0-69.6)] and 13 healthy age-matched controls were evaluated using a static posturography analysis. Patients were assessed under four conditions: 1) off medication/off stimulation; 2) off medication/on stimulation; 3) on medication/off stimulation and 4) on medication/on stimulation in ten experimental paradigms, some reproducing common situations of daily living. The displacement of the centre of pressure was analyzed using 14 posturographic parameters. The Mann-Whitney test was used to compare patients with controls. The Wilcoxon signed rank test was used to compare patients under different clinical conditions. Patients off medication/off stimulation showed larger and more rapid displacements of the centre of pressure than controls in most paradigms (pstimulation alone reduced the lateral excursion and anterior-posterior velocity of the centre of pressure in quite stance paradigms (pstimulation combined with antiparkinsonian medication did not induce statistically significant changes in posturagraphic measures in any experimental paradigm. Although subthalamic stimulation alone may induce some positive effect on balance, subthalamic stimulation in addition to antiparkinsonian medication, which is the usual treatment in clinical practice, did not modify balance as assessed by static posturography in patients with Parkinson's disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effects of visual information regarding tactile stimulation on the somatosensory cortical activation: a functional MRI study.

    Science.gov (United States)

    Kwon, Hyeok Gyu; Jang, Sung Ho; Lee, Mi Young

    2017-07-01

    Many studies have investigated the evidence for tactile and visual interactive responses to activation of various brain regions. However, few studies have reported on the effects of visuo-tactile multisensory integration on the amount of brain activation on the somatosensory cortical regions. The aim of this study was to examine whether coincidental information obtained by tactile stimulation can affect the somatosensory cortical activation using functional MRI. Ten right-handed healthy subjects were recruited for this study. Two tasks (tactile stimulation and visuotactile stimulation) were performed using a block paradigm during fMRI scanning. In the tactile stimulation task, in subjects with eyes closed, tactile stimulation was applied on the dorsum of the right hand, corresponding to the proximal to distal directions, using a rubber brush. In the visuotactile stimulation task, tactile stimulation was applied to observe the attached mirror in the MRI chamber reflecting their hands being touched with the brush. In the result of SPM group analysis, we found brain activation on the somatosensory cortical area. Tactile stimulation task induced brain activations in the left primary sensory-motor cortex (SM1) and secondary somatosensory cortex (S2). In the visuo-tactile stimulation task, brain activations were observed in the both SM1, both S2, and right posterior parietal cortex. In all tasks, the peak activation was detected in the contralateral SM1. We examined the effects of visuo-tactile multisensory integration on the SM1 and found that visual information during tactile stimulation could enhance activations on SM1 compared to the tactile unisensory stimulation.

  5. Effects of visual information regarding tactile stimulation on the somatosensory cortical activation: a functional MRI study

    Directory of Open Access Journals (Sweden)

    Hyeok Gyu Kwon

    2017-01-01

    Full Text Available Many studies have investigated the evidence for tactile and visual interactive responses to activation of various brain regions. However, few studies have reported on the effects of visuo-tactile multisensory integration on the amount of brain activation on the somatosensory cortical regions. The aim of this study was to examine whether coincidental information obtained by tactile stimulation can affect the somatosensory cortical activation using functional MRI. Ten right-handed healthy subjects were recruited for this study. Two tasks (tactile stimulation and visuotactile stimulation were performed using a block paradigm during fMRI scanning. In the tactile stimulation task, in subjects with eyes closed, tactile stimulation was applied on the dorsum of the right hand, corresponding to the proximal to distal directions, using a rubber brush. In the visuotactile stimulation task, tactile stimulation was applied to observe the attached mirror in the MRI chamber reflecting their hands being touched with the brush. In the result of SPM group analysis, we found brain activation on the somatosensory cortical area. Tactile stimulation task induced brain activations in the left primary sensory-motor cortex (SM1 and secondary somatosensory cortex (S2. In the visuo-tactile stimulation task, brain activations were observed in the both SM1, both S2, and right posterior parietal cortex. In all tasks, the peak activation was detected in the contralateral SM1. We examined the effects of visuo-tactile multisensory integration on the SM1 and found that visual information during tactile stimulation could enhance activations on SM1 compared to the tactile unisensory stimulation.

  6. Parenting Supports for Early Vocabulary Development: Specific Effects of Sensitivity and Stimulation through Infancy.

    Science.gov (United States)

    Vallotton, Claire; Mastergeorge, Ann; Foster, Tricia; Decker, Kalli B; Ayoub, Catherine

    2017-01-01

    Growing recognition of disparities in early childhood language environments prompt examination of parent-child interactions which support vocabulary. Research links parental sensitivity and cognitive stimulation to child language, but has not explicitly contrasted their effects, nor examined how effects may change over time. We examined maternal sensitivity and stimulation throughout infancy using two observational methods - ratings of parents' interaction qualities, and coding of discrete parenting behaviors - to assess the relative importance of these qualities to child vocabulary over time, and determine whether mothers make related changes in response to children's development. Participants were 146 infants and mothers, assessed when infants were 14, 24, and 36 months. At 14 months, sensitivity had a stronger effect on vocabulary than did stimulation, but the effect of stimulation grew throughout toddlerhood. Mothers' cognitive stimulation grew over time, whereas sensitivity remained stable. While discrete parenting behaviors changed with child age, there was no evidence of trade-offs between sensitive and stimulating behaviors, and no evidence that sensitivity moderated the effect of stimulation on child vocabulary. Findings demonstrate specificity of timing in the link between parenting qualities and child vocabulary which could inform early parent interventions, and supports a reconceptualization of the nature and measurement of parental sensitivity.

  7. [Effect of electric acupoint stimulation on shivering in cesarean section].

    Science.gov (United States)

    Yang, Dai-He; Zhu, Yu-Ling; Huang, Wen; Tang, Lin-Feng; Sun, Yi-Hua

    2013-11-01

    To explore the efficacy of electric acupoint stimulation on shivering in cesarean section. Eighty cases of parturients, under the America Society of Anesthesiologists (ASA) physical status II , were randomized into a transcutaneous electrical acupoint stimulation (TEAS) assisted anesthesia group (group A) and an anesthesia group (group B). Spinal-epidural anesthesia(CSEA) puncture was applied to both groups and 8 mg of 0. 75% bubivacaine was given by spinal injection, the block level was T4 T8. In group A, TEAS was applied before CSEA at paired acupoints-ipsilateral Hegu (LI 4)-Laogong (PC 8) and Sanyinjiao (SP 6)-Zusanli (ST 36) till ending the surgery. The 4 pair of bilateral acupoints were fixed with self-adhesive electrodes and connected with Han's acupoint and nerve stimulator (HANS, LH402H), the frequency was 2 Hz/ 15 Hz, the intensity was 10- 30 mA and the form was densedisperse wave within the patients' tolarance. The heart rate (HR), mean arterial pressure (MAP), oxyhemoglobin saturation (SPO) and shivering degree were recorded before anesthesia (To), 1 min after anesthesia puncture (Ti), 1 min after the delivery (Tz), during abdomen closure (T3) and at the end of surgery (T4). The occurrence rate of shivering was 35. 0% (14/40) in group A, which was lower to 67. 5% (27/40, Pshivering was lighter in group A than that in group B at T2, T3 and T4 (all P0. 05). In group B, the HR was faster at T1, T2, T3 and T4 compared to that at T0 (P0.05); there was no statistical significance of SPO2 in both groups (all P>0.05). TEAS can reduce the occurrence rate of shivering and steady the heart rate in cesarean section.

  8. Effects of Functional Electrical Stimulation in Rehabilitation with Hemiparesis Patients

    Directory of Open Access Journals (Sweden)

    Edina Tanović

    2009-02-01

    Full Text Available Cerebrovascular accident is a focal neurological deficiency occurring suddenly and lasting for more than 24 hours. The purpose of our work is to determine the role of the functional electrical simulation (FES in the rehabilitation of patients with hemiparesis, which occurred as a consequence of a cerebrovascular accident. This study includes the analysis of two groups of 40 patients with hemiparesis (20 patients with deep hemiparesis and 20 patients with light hemi- paresis, a control group which was only treated with kinesiotherapy and a tested group which was treated with kinesiotherapy and functional electrical stimulation. Both groups of patients were analyzed in respect to their sex and age. Additional analysis of the walking function was completed in accordance with the BI and RAP index. The analysis of the basic demographical data demonstrated that there is no significant difference between the control and tested group. The patients of both groups are equal in respect of age and sex. After 4 weeks of rehabilitation of patients with deep and light hemiparesis there were no statistically significant differences between the groups after evaluation by the BI index. However, a statistically significant difference was noted between the groups by the RAP index among patients with deep hemiparesis. After 8 weeks of rehabilitation the group of patients who were treated with kinesiotherapy and functional electrical stimulation showed better statistically significant results of rehabilitation in respect to the control group with both the BI index and the RAP index (p<0,001.In conclusion, we can state that the patients in rehabilitation after a cerebrovascular accident require rehabilitation longer than 4 weeks. Walking rehabilitation after stroke is faster and more successful if we used functional electrical stimulation, in combination with kinesiotherapy, in patients with disabled extremities.

  9. Hazardous and Noxious Substances (HNS) in the marine environment: prioritizing HNS that pose major risk in a European context.

    Science.gov (United States)

    Neuparth, T; Moreira, S; Santos, M M; Reis-Henriques, M A

    2011-01-01

    Increases in the maritime transportation of Hazardous and Noxious Substances (HNS), alongside the need for an effective response to HNS spills have led environmental managers and the scientific community to focus attention on HNS spill preparedness and responsiveness. In the context of the ARCOPOL project, a weight-of-evidence approach was developed aimed at prioritizing HNS that pose major environmental risks to European waters. This approach takes into consideration the occurrence probability of HNS spills in European Atlantic waters and the severity of exposure associated with their physico-chemical properties and toxicity to marine organisms. Additionally, a screening analysis of the toxicological information available for the prioritization of HNS was performed. Here we discuss the need for a prioritization methodology to select HNS that are likely to cause severe marine environmental effects as an essential step towards the establishment of a more effective preparedness and response to HNS incidents. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. 36 CFR 222.8 - Cooperation in control of estray or unbranded livestock, animal diseases, noxious farm weeds, and...

    Science.gov (United States)

    2010-07-01

    ... estray or unbranded livestock, animal diseases, noxious farm weeds, and use of pesticides. 222.8 Section... unbranded livestock, animal diseases, noxious farm weeds, and use of pesticides. (a) Insofar as it involves... farm weeds. (2) The Animal and Plant Health Inspection Service and other Federal or State agencies and...

  11. Effects of Cobalt-60 on Electrical Self-Stimulation of the Brain and Blood Pressure

    National Research Council Canada - National Science Library

    Bruner, Alfred

    1974-01-01

    The effects of 1000 and 2000 rad Cobalt-60 on electrical self- stimulation of subcortical brain areas and blood pressure were investigated to determine whether radiation-induced performance decrement...

  12. Effects of prenatal visual stimulation on growth and heart rate in bobwhite quail (Colinus virginianus).

    Science.gov (United States)

    Sleigh, Merry J; Birchard, Geoffrey

    2006-05-01

    This study examined the effects of prenatal visual stimulation on bobwhite quail embryos' growth and heart rate. No differences in growth rate were found between embryos exposed to visual stimulation during the late prenatal period and control embryos. Embryos exposed to visual stimulation throughout incubation maintained lower heart rates in response to visual stimulation than did naïve embryos. In a subsequent experiment, naïve embryos that underwent an egg-opening procedure exhibited heart rates that were lower than embryos measured in intact eggshells. Embryos in opened eggs maintained lower heart rates than comparison embryos across time; however, a less invasive egg-opening procedure led to a quicker heart rate recovery than did a more invasive egg-opening procedure. These findings indicate that prenatal heart rate responses may be mediated by multiple features of the organism's developmental context, including intensity and duration of sensory stimulation. (c) 2006 Wiley Periodicals, Inc.

  13. Modulatory Effect of Association of Brain Stimulation by Light and Binaural Beats in Specific Brain Waves

    OpenAIRE

    Calomeni, Mauricio Rocha; Furtado da Silva, Vernon; Velasques, Bruna Brandão; Feijó, Olavo Guimarães; Bittencourt, Juliana Marques; Ribeiro de Souza e Silva, Alair Pedro

    2017-01-01

    Introduction: One of the positive effects of brain stimulation is interhemispheric modulation as shown in some scientific studies. This study examined if a type of noninvasive stimulation using binaural beats with led-lights and sound would show different modulatory effects upon Alfa and SMR brain waves of elderlies and children with some disease types. Subjects: The sample included 75 individuals of both genders, being, randomly, divided in 6 groups. Groups were named elderly without dementi...

  14. 76 FR 39811 - International Center for Technology Assessment and the Center for Food Safety; Noxious Weed...

    Science.gov (United States)

    2011-07-07

    ... dated July 18, 2002, the International Center for Technology Assessment and the Center for Food Safety... Inspection Service [Docket No. APHIS-2011-0081] International Center for Technology Assessment and the Center for Food Safety; Noxious Weed Status of Kentucky Bluegrass Genetically Engineered for Herbicide...

  15. Early Detection Rapid Response Program Targets New Noxious Weed Species in Washington State

    Science.gov (United States)

    Andreas, Jennifer E.; Halpern, Alison D.; DesCamp, Wendy C.; Miller, Timothy W.

    2015-01-01

    Early detection, rapid response is a critical component of invasive plant management. It can be challenging, however, to detect new invaders before they become established if landowners cannot identify species of concern. In order to increase awareness, eye-catching postcards were developed in Washington State as part of a noxious weed educational…

  16. Occupational hazards in hospitals: accidents, radiation, exposure to noxious chemicals, drug addiction and psychic problems, and assault

    International Nuclear Information System (INIS)

    Gestal, J.J.

    1987-01-01

    Except for infectious diseases all the main occupational hazards affecting health workers are reviewed: accidents (explosions, fires, electrical accidents, and other sources of injury); radiation (stochastic and non-stochastic effects, protective measures, and personnel most at risk); exposure to noxious chemicals, whose effects may be either local (allergic eczema) or generalised (cancer, mutations), particular attention being paid to the hazards presented by formol, ethylene oxide, cytostatics, and anaesthetic gases; drug addiction (which is more common among health workers than the general population) and psychic problems associated with promotion, shift work, and emotional stress; and assault (various types of assault suffered by health workers, its causes, and the characterisation of the most aggressive patients). (author)

  17. Effect of Cathodal Transcranial Direct Current Stimulation on a Child with Involuntary Movement after Hypoxic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Mayumi Nagai

    2018-01-01

    Full Text Available The aim of the study was to investigate the effect of cathodal transcranial direct current stimulation to the supplementary motor area to inhibit involuntary movements of a child. An 8-year-old boy who developed hypoxic encephalopathy after asphyxia at the age of 2 had difficulty in remaining standing without support because of involuntary movements. He was instructed to remain standing with his plastic ankle-foot orthosis for 10 s at three time points by leaning forward with his forearms on a desk. He received cathodal or sham transcranial direct current stimulation to the supplementary motor area at 1 mA for 10 min. Involuntary movements during standing were measured using an accelerometer attached to his forehead. The low-frequency power of involuntary movements during cathodal transcranial direct current stimulation significantly decreased compared with that during sham stimulation. No adverse effects were observed. Involuntary movement reduction by cathodal stimulation to supplementary motor areas suggests that stimulations modulated the corticobasal ganglia motor circuit. Cathodal stimulation to supplementary motor areas may be effective for reducing involuntary movements and may be safely applied to children with movement disorders.

  18. Effect of surface spinal stimulation on autonomic nervous system in the patients with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Bhavkiran Kaur

    2014-01-01

    Full Text Available Background: The Autonomic Nervous System (ANS plays a key role in the regulation of many physiological processes, mediated by supraspinal control from centers in the central nervous system. Spinal cord injury (SCI decreases the ability to sympathetically control blood pressure and to regulate body temperature. Bladder dysfunction has been reported as a serious medical complication following SCI. The purpose of study is to find the effect of surface spinal stimulation on autonomic nervous system i.e., bladder function, skin resistance, and skin temperature. Materials and Methods: Five traumatic spinal cord injury subjects were selected for experimental pilot study; surface spinal stimulation for 45 minute period applied to the skin in T11-L2 area, with a carrier frequency of 2500Hz and modulated to beats frequency of 20Hz. Stimulation amplitude was raised to cause sensory stimulation. The pre- and post-stimulation values using the values of urodynamics testing, galvanic skin response, and infra-red thermometer compared in same patients and results were obtained. Results: Result of the present study indicates that four of five subjects demonstrate a decrease in the infused fluid volume, improved bladder sensation, but shown no effect over the bladder capacity. The skin resistance of the right lower limb was increased post-stimulation, but the improvement was not significant, and skin temperature of thigh and foreleg improved significantly. Conclusion: According to our results, surface spinal stimulation was effective to improve non-reflexive bladder, skin resistance and skin temperature, but further research is needed.

  19. Effect of massage stimulation on weight gain in full term infants

    Directory of Open Access Journals (Sweden)

    Nyoman Nursari Dewi

    2011-08-01

    Full Text Available Background Massage is a tactile/kinesthetic stimulation with biochemical and physiological effects on the body. Newborn infant massage stimulation given by mothers may promote maternal-infant bonding and attachment, enhance infant weight gain and stimulate the production of breast milk. There have been few studies on the effect of massage stimulation on weight gain in full term infants, and this topic remains controversial. Objective To examine the effect of massage stimulation on weight gain in full term infants. Methods This quasi-experimental study was held in Sanglah Hospital and Bunda Setia Maternity Clinic. Massage stimulation was performed by mothers once daily for a four week period. Massage stimulation was given to 30 full term infants and their weight gain was compared to 31 control infants who did not receive massages. Results There were no differences in subject characteristics between the massage and control groups. Median weight gain in the massage group was 1230 grams, while that in the control group was 830 grams (P=0.028. Conclusion Weight gain in full term infants in the massage group was significantly greater than that in the control group after 4 weeks.

  20. Effects of Dual-Channel Functional Electrical Stimulation on Gait Performance in Patients with Hemiparesis

    Directory of Open Access Journals (Sweden)

    Shmuel Springer

    2012-01-01

    Full Text Available The study objective was to assess the effect of functional electrical stimulation (FES applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years with hemiparesis (5.37 ± 5.43 years since diagnosis demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced gait velocity measures at the initial and second evaluation. Gait symmetry was enhanced by the dual-channel stimulation only at the initial evaluation, and single-limb stance percentage only at the second assessment. For example, after six weeks, the two-minute gait speed with peroneal stimulation and with the dual channel was 0.66 ± 0.30 m/sec and 0.70 ± 0.31 m/sec, respectively (. In conclusion, dual-channel FES may enhance gait performance in subjects with hemiparesis more than peroneal FES alone.

  1. Long-term effects of stimulant treatment on ADHD symptoms, social-emotional functioning, and cognition.

    Science.gov (United States)

    Schweren, Lizanne; Hoekstra, Pieter; van Lieshout, Marloes; Oosterlaan, Jaap; Lambregts-Rommelse, Nanda; Buitelaar, Jan; Franke, Barbara; Hartman, Catharina

    2018-03-13

    Methodological and ethical constraints have hampered studies into long-term lasting outcomes of stimulant treatment in individuals with attention-deficit/hyperactivity disorder (ADHD). Lasting effects may be beneficial (i.e. improved functioning even when treatment is temporarily ceased) or detrimental (i.e. worse functioning while off medication), but both hypotheses currently lack empirical support. Here we investigate whether stimulant treatment history predicts long-term development of ADHD symptoms, social-emotional functioning or cognition, measured after medication wash-out. ADHD symptoms, social-emotional functioning and cognitive test performance were measured twice, 6 years apart, in two ADHD groups (stimulant-treated versus not stimulant-treated between baseline and follow-up). Groups were closely matched on baseline clinical and demographic variables (n = 148, 58% male, age = 11.1). A matched healthy control group was included for reference. All but two outcome measures (emotional problems and prosocial behaviour) improved between baseline and follow-up. Improvement over time in the stimulant-treated group did not differ from improvement in the not stimulant-treated group on any outcome measure. Stimulant treatment is not associated with the long-term developmental course of ADHD symptoms, social-emotional functioning, motor control, timing or verbal working memory. Adolescence is characterised by clinical improvement regardless of stimulant treatment during that time. These findings are an important source to inform the scientific and public debate.

  2. THE EFFECTS OF NATURAL STIMULANTS ON THE HUMAN ORGANISM

    Directory of Open Access Journals (Sweden)

    Jovica Petković

    2012-09-01

    Full Text Available The modern lifestyle of today's man imposes the need to return to nature, which is the primordial and evolutionary related. Man's desire for an increase of leisure timespent in an environment that suits their biological characteristics, is in part genetically determined, while is strongly related to the existence of awareness of the importance of staying active in nature. It has long been known that physical activity in nature is one of the best ways to preserve and promote health. Through regular stimulation and guiding the natural environment one can produce positive changes in structure and function of the organism. The collective life of camping and outdoor activities significantly affect the formation of personality. It develops comradeship, solidarity,self-sacrifice. The constant activities and obligations arising from them accountable to their colleagues, result in forming solid personalities.

  3. Polarity Specific Suppression Effects of Transcranial Direct Current Stimulation for Tinnitus

    Directory of Open Access Journals (Sweden)

    Kathleen Joos

    2014-01-01

    Full Text Available Tinnitus is the perception of a sound in the absence of an external auditory stimulus and affects 10–15% of the Western population. Previous studies have demonstrated the therapeutic effect of anodal transcranial direct current stimulation (tDCS over the left auditory cortex on tinnitus loudness, but the effect of this presumed excitatory stimulation contradicts with the underlying pathophysiological model of tinnitus. Therefore, we included 175 patients with chronic tinnitus to study polarity specific effects of a single tDCS session over the auditory cortex (39 anodal, 136 cathodal. To assess the effect of treatment, we used the numeric rating scale for tinnitus loudness and annoyance. Statistical analysis demonstrated a significant main effect for tinnitus loudness and annoyance, but for tinnitus annoyance anodal stimulation has a significantly more pronounced effect than cathodal stimulation. We hypothesize that the suppressive effect of tDCS on tinnitus loudness may be attributed to a disrupting effect of ongoing neural hyperactivity, independent of the inhibitory or excitatory effects and that the reduction of annoyance may be induced by influencing adjacent or functionally connected brain areas involved in the tinnitus related distress network. Further research is required to explain why only anodal stimulation has a suppressive effect on tinnitus annoyance.

  4. Light spectrum regulates cell accumulation during daytime in the raphidophyte Chattonella antiqua causing noxious red tides.

    Science.gov (United States)

    Shikata, Tomoyuki; Matsunaga, Shigeru; Kuwahara, Yusuke; Iwahori, Sho; Nishiyama, Yoshitaka

    2016-07-01

    Most marine raphidophyte species cause noxious red tides in temperate coastal areas around the world. It is known that swimming abilities enable raphidophytes to accumulation of cells and to actively acquire light at surface layers and nutrients over a wide depth range. However, it remains unclear how the swimming behavior is affected by environmental conditions, especially light condition. In the present study, we observed the accumulation of the harmful red-tide raphidophyte Chattonella antiqua under various light conditions during the daytime in the laboratory. When exposed to ultraviolet-A/blue light (320-480nm) or red light (640-680nm) from above, cells moved downward. In the case of blue light (455nm), cells started to swim downward after 5-15min of irradiation at a photon flux density≥10μmolm(-2)s(-1). When exposed to monochromatic lights (400-680nm) from the side, cells moved away from the blue light source and then descended, but just moved downward under red light. However, mixing of green/orange light (520-630nm) diminished the effects of blue light. When exposed to a mixture of 30μmolm(-2)s(-1) of blue light (440nm) and ≥6μmolm(-2)s(-1) of yellow light (560nm) from above, cells did not move downward. These results indicate that blue light induces negative phototaxis and ultraviolet-A/blue and red lights induce descending, and green/orange light cancels out their effects in C. antiqua. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity.

    Science.gov (United States)

    Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl; Foltynie, Tom

    2014-04-01

    Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the 'effective' connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network-disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.

  6. Effectiveness of Prescription-Based CNS Stimulants on Hospitalization in Patients With Schizophrenia

    DEFF Research Database (Denmark)

    Rohde, Christopher; Polcwiartek, Christoffer; Asztalos, Marton

    2018-01-01

    OBJECTIVE: Negative symptoms and cognitive deficits are main features of schizophrenia but with limited treatment options. Earlier studies have suggested that central nervous system (CNS) stimulants have a small effect on these domains, but with inconclusive results. As the first study to date, we...... aimed to investigate whether CNS stimulants improve naturalistic outcomes (psychiatric admissions and antipsychotic use) in patients with schizophrenia. METHODS: By using extensive health registers all patients with schizophrenia and their use of CNS stimulants in Denmark were identified. Two models...... were used to investigate the effectiveness of CNS stimulants in patients with schizophrenia between 1995 and 2014; a mirror-image model with 605 individuals, using paired t tests and Wilcoxon signed rank tests, and a follow-up study with 789 individuals, using a conditional risk-set model. RESULTS: CNS...

  7. Effects of sustained electrical stimulation on spasticity assessed by the pendulum test

    Directory of Open Access Journals (Sweden)

    Vargas Luna José L.

    2016-09-01

    Full Text Available Neuromodulation using electrical stimulation is able to enhance motor control of individuals suffering an upper motor neuron disorder. This work examined the effect of sustained electrical stimulation to modify spasticity in the leg muscles. We applied transcutaneous spinal cord stimulation with a pulse rate of 50 Hz for 30 min. The subjects were assessed before and after the intervention using in a pendulum test setup. The motion of the free swinging leg was acquired through video tracking and goniometer measurements. The quantification was done through the R2n index which shows consistency identifying the spasticity levels. In all incomplete SCI subjects having severe spasticity, the results show that electrical stimulation is effective to modify the increased muscle tone.

  8. Effects of biofeedback versus switch-triggered functional electrical stimulation on sciatica-related foot drop.

    Science.gov (United States)

    Sardaru, Dragos Petrica; Matei, Daniela; Zaharia-Kezdi, Dan; Pendefunda, Liviu

    2018-01-01

    Sciatica-related Foot Drop is a peripheral nervous condition that produces a loss of power in the ankle dorsiflexion muscles. Functional electrical stimulation is a modality of electrical stimulation that produces muscle contraction in a functional movement of the limb. This technique was utilized with positive effects in central nervous afflictions but it is not known whether or not it has any influence in motor recovery following peripheral nervous system problems. This study aims to clarify the effects of functional electrical stimulation on foot drop caused by peripheral nerve compression resulting from lumbar disc herniation. Fifty patients were enrolled in our study; of whom 25 were treated with EMG triggered electrical stimulation (EMG-FES) and 25 with heel-floor sensor triggered electrical stimulation (SWITCH-FES) during normal gait cycle. Patients received functional electrical stimulation (with a pulse of 60 Hz and phase duration of 200 ms) once a day, for 30 minutes during 5 consecutive days, over a period of 4 weeks. Electrical diagnostic tests (nerve conduction velocity/NCV and the amplitude of compound muscle action potential/CMAP), dynamometry and Osvestry Disability Index scores were measured at baseline and after treatment. We found that axonal loss was lower in the EMG-FES group than in the SWITCH-FES group (pelectrical stimulation technique had a higher influence on the quality of the muscle action control. For patients who cannot yet produce minimal muscle active contraction we recommend switch triggered stimulation first and then, immediately after the recovery of the motor control, to change to EMG triggered functional electrical stimulation.

  9. Effects of prefrontal anodal transcranial direct current stimulation on working-memory and reaction time.

    Science.gov (United States)

    Verissimo, Ines S; Barradas, Isabel M; Santos, Tiago T; Miranda, Pedro C; Ferreira, Hugo A

    2016-08-01

    Transcranial direct current stimulation (tDCS) has proven to be a useful tool in the scientific research community, particularly for clinical investigation purposes. Neuroimaging studies indicate that there is a connection between the prefrontal cortex (PFC) and working memory (WM), as well as between the primary motor cortex and reaction time (RT). Thus, our goal was to evaluate the effect of anodal stimulation of the PFC, with respect to WM and RT. We tested 20 healthy subjects randomized into two groups - half received active stimulation and the other half sham stimulation. Participants underwent two stimulation sessions of 10 minutes each, separated by a 10-minute interval for rest. The task was performed during the stimulation periods, and consisted in the display of a list of words for the subject to read and memorize. Afterwards, a new list was shown and the subject was asked to to press a key when a repeated word appeared. A current of 1 mA was delivered via a foc.us gamer headset. After both stimulations, the participants answered an Adverse Effects Questionnaire. Statistical tests were performed to compare the accuracy, error rate, and reaction time values for active vs. sham and first vs. second stimulations. The results obtained led us to infer that there were no significant improvements in the performance of the active group in comparison with the sham group, in terms of WM and overall RT values. However, RT data analysis indicated that active simulation subjects showed significantly lower values when compared to the sham group, only for the first stimulation period. Due to emerging technological advances, the videogame industry has started to invest in the commercialization of products that promise to enhance neural functions and, thus, improve gamers' performance. The results obtained provide evidence of the importance of testing such commercial devices. The scientific community should have an active role in the validation of these claims.

  10. Understanding the biophysical effects of transcranial magnetic stimulation on brain tissue: the bridge between brain stimulation and cognition.

    Science.gov (United States)

    Neggers, Sebastiaan F W; Petrov, Petar I; Mandija, Stefano; Sommer, Iris E C; van den Berg, Nico A T

    2015-01-01

    Transcranial magnetic stimulation (TMS) is rapidly being adopted in neuroscience, medicine, psychology, and biology, for basic research purposes, diagnosis, and therapy. However, a coherent picture of how TMS affects neuronal processing, and especially how this in turn influences behavior, is still largely unavailable despite several studies that investigated aspects of the underlying neurophysiological effects of TMS. Perhaps as a result from this "black box approach," TMS studies show a large interindividual variability in applied paradigms and TMS treatment outcome can be quite variable, hampering its general efficacy and introduction into the clinic. A better insight into the biophysical, neuronal, and cognitive mechanisms underlying TMS is crucial in order to apply it effectively in the clinic and to increase our understanding of brain-behavior relationship. Therefore, computational and experimental efforts have been started recently to understand and control the effect TMS has on neuronal functioning. Especially, how the brain shapes magnetic fields induced by a TMS coil, how currents are generated locally in the cortical surface, and how they interact with complex functional neuronal circuits within and between brain areas are crucial to understand the observed behavioral changes and potential therapeutic effects resulting from TMS. Here, we review the current knowledge about the biophysical underpinnings of single-pulse TMS and argue how to move forward to fully understand and exploit the powerful technique that TMS can be. © 2015 Elsevier B.V. All rights reserved.

  11. Fetus Sound Stimulation: Cilia Memristor Effect of Signal Transduction

    Directory of Open Access Journals (Sweden)

    Svetlana Jankovic-Raznatovic

    2014-01-01

    Full Text Available Background. This experimental study evaluates fetal middle cerebral artery (MCA circulation after the defined prenatal acoustical stimulation (PAS and the role of cilia in hearing and memory and could explain signal transduction and memory according to cilia optical-acoustical properties. Methods. PAS was performed twice on 119 no-risk term pregnancies. We analyzed fetal MCA circulation before, after first and second PAS. Results. Analysis of the Pulsatility index basic (PIB and before PAS and Pulsatility index reactive after the first PAS (PIR 1 shows high statistical difference, representing high influence on the brain circulation. Analysis of PIB and Pulsatility index reactive after the second PAS (PIR 2 shows no statistical difference. Cilia as nanoscale structure possess magnetic flux linkage that depends on the amount of charge that has passed between two-terminal variable resistors of cilia. Microtubule resistance, as a function of the current through and voltage across the structure, leads to appearance of cilia memory with the “memristor” property. Conclusion. Acoustical and optical cilia properties play crucial role in hearing and memory processes. We suggest that fetuses are getting used to sound, developing a kind of memory patterns, considering acoustical and electromagnetically waves and involving cilia and microtubules and try to explain signal transduction.

  12. Effect of extradural morphine on somatosensory evoked potentials to dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Selmar, P; Hansen, O B

    1987-01-01

    The effect of the extradural (L2-3) administration of morphine 6 mg on early (less than 0.5 s) somatosensory evoked cortical potentials (SEP) to electrical stimulation of the L1- and S1-dermatomes was examined in eight patients. Extradural morphine did not influence SEP amplitude. SEP latency did...... not change, except for a minor increase in the latencies of the onset and the P2 components following S1 stimulation....

  13. Effect of nocardia rubra species as stimulant drugs on growth of bacteria

    Directory of Open Access Journals (Sweden)

    Алия Агасаф кызы Агаева

    2015-09-01

    Full Text Available The article presents the results of the study about stimulating properties of Nocardia rubra. It is found that the microorganism on Sabouraud agar medium allocates water-soluble red pigment. It easily extracted from the nutrient agar. It is completely harmless and has a strong stimulating effect on the growth of bacteria, particularly gram negative. As the dye it can be used in the food industry

  14. Effect of gabazine on sensory stimulation train evoked response in mouse cerebellar Purkinje cells.

    Science.gov (United States)

    Bing, Yan-Hua; Jin, Wen-Zhe; Sun, Lei; Chu, Chun-Ping; Qiu, De-Lai

    2015-02-01

    Cerebellar Purkinje cells (PCs) respond to sensory stimulation via climbing fiber and mossy fiber-granule cell pathways, and generate motor-related outputs according to internal rules of integration and computation. However, the dynamic properties of sensory information processed by PC in mouse cerebellar cortex are currently unclear. In the present study, we examined the effects of the gamma-aminobutyric acid receptor A (GABA(A)) antagonist, gabazine, on the stimulation train on the simple spike firing of PCs by electrophysiological recordings method. Our data showed that the output of cerebellar PCs could be significantly affected by all pulses of the low-frequency (0.25 -2 Hz) sensory stimulation train, but only by the 1st and 2nd pulses of the high-frequency (≥ 4 Hz) sensory stimulation train. In the presence of gabazine (20 μM), each pulse of 1 Hz facial stimulation evoked simple spike firing in the PCs, but only the 1st and 2nd pulses of 4 Hz stimulation induced an increase in simple spike firing of the PCs. These results indicated that GABAA receptor-mediated inhibition did not significantly affect the frequency properties of sensory stimulation evoked responses in the mouse cerebellar PCs.

  15. Effects of omega-3 fatty acids on progestin stimulation of invasive properties in breast cancer.

    Science.gov (United States)

    Moore, Michael R; King, Rebecca A

    2012-12-01

    Clinical studies have shown that progestins increase breast cancer risk in hormone replacement therapy, while we and others have previously reported that progestins stimulate invasive properties in progesterone receptor (PR)-rich human breast cancer cell lines. Based on others' reports that omega-3 fatty acids inhibit metastatic properties of breast cancer, we have reviewed the literature for possible connections between omega-3 fatty-acid-driven pathways and progestin-stimulated pathways in an attempt to suggest theoretical mechanisms for possible omega-3 fatty acid inhibition of progestin stimulation of breast cancer invasion. We also present some data suggesting that fatty acids regulate progestin stimulation of invasive properties in PR-rich T47D human breast cancer cells, and that an appropriate concentration of the omega-3 fatty acid eicosapentaenoic acid inhibits progestin stimulation of invasive properties. It is hoped that focus on the inter-relationship between pathways by which omega-3 fatty acids inhibit and progestins stimulate breast cancer invasive properties will lead to further in vitro, in vivo, and clinical studies testing the hypothesis that omega-3 fatty acids can inhibit progestin stimulation of invasive properties in breast cancer, and ameliorate harmful effects of progestins which occur in combined progestin-estrogen hormone replacement therapy.

  16. Effect of electrical stimulation on motor nerve regeneration in sciatic nerve ligated-mice.

    Science.gov (United States)

    Samiee, Farzaneh; Zarrindast, Mohammad-Reza

    2017-06-27

    The purpose of this study was to investigate the effect of electrical stimulation on sciatic nerve regeneration and functional recovery of target muscles. Mice were randomly divided into 3 groups: ligated without electrical stimulation, ligated with electrical stimulation and control (non-ligated). The unilateral peripheral mononeuropathy was produced on the right hind limb. Sciatic nerve was then electrically stimulated daily for a period of 2 weeks (duration: 0.2 msec, frequency: 100Hz, amplitude: 15mA). Evoked surface EMG was recorded from biceps femoris (BF) and gluteus maximus (GM) muscles on the 3rd, 7th, 10th and 14th day after sciatic nerve ligation. Muscle force and sensitivity was determined by processing of the recorded EMG signals in time and frequency domains respectively. The results showed electrical stimulation (ES) produced a significant increase in the EMG response of BF, and muscle force significantly increased on the 14th day (pelectrical stimulation of sciatic nerve accelerates nerve repair and indirectly improves BF muscle force to a comparable level with control without effect on muscle sensitivity. However, ES had no effect on GM muscle force and sensitivity.

  17. The effect of subthreshold continuous electrical stimulation on the facial function of patients with Bell's palsy.

    Science.gov (United States)

    Kim, Jin; Choi, Jae Young

    2016-01-01

    The drug regimen plus electrical stimulation was more effective in treating Bell's palsy than the conventional drug treatment alone. The effectiveness of such a sub-threshold, continuous, low frequency electrical stimulation suggests a new therapeutic approach to accelerate nerve regeneration and improve functional recovery after injury. The purpose of this study was to determine whether sub-threshold, continuous electrical stimulation at 20 Hz facilitates functional recovery of patients with Bell's palsy. The authors performed a prospective randomized study that included 60 patients with mild-to-moderate grade Bell's palsy (HB grade ≤4, SB grade ≥40), to evaluate the effect of developed electrical stimulation on the resolution of symptoms. Thirty patients were treated with prednisolone or/and acyclovir plus electrical stimulation within 7 days of the onset of symptoms. The other 30 patients were treated with only prednisolone or/and acyclovir as a control group. The overall rate of patient recovery among those treated with prednisolone or/and acyclovir plus electrical stimulation (96%) was significantly better (p < 0.05) than the rate among those treated with only prednisolone or/and acyclovir (88%).

  18. Electrified emotions: Modulatory effects of transcranial direct stimulation on negative emotional reactions to social exclusion.

    Science.gov (United States)

    Riva, Paolo; Romero Lauro, Leonor J; Vergallito, Alessandra; DeWall, C Nathan; Bushman, Brad J

    2015-01-01

    Social exclusion, ostracism, and rejection can be emotionally painful because they thwart the need to belong. Building on studies suggesting that the right ventrolateral prefrontal cortex (rVLPFC) is associated with regulation of negative emotions, the present experiment tests the hypothesis that decreasing the cortical excitability of the rVLPFC may increase negative emotional reactions to social exclusion. Specifically, we applied cathodal transcranial direct current stimulation (tDCS) over the rVLPFC and predicted an increment of negative emotional reactions to social exclusion. In Study 1, participants were either socially excluded or included, while cathodal tDCS or sham stimulation was applied over the rVLPFC. Cathodal stimulation of rVLPFC boosted the typical negative emotional reaction caused by social exclusion. No effects emerged from participants in the inclusion condition. To test the specificity of tDCS effects over rVLPFC, in Study 2, participants were socially excluded and received cathodal tDCS or sham stimulation over a control region (i.e., the right posterior parietal cortex). No effects of tDCS stimulation were found. Our results showed that the rVLPFC is specifically involved in emotion regulation and suggest that cathodal stimulation can increase negative emotional responses to social exclusion.

  19. Painful tonic heat stimulation induces GABA accumulation in the prefrontal cortex in man

    DEFF Research Database (Denmark)

    Kupers, Ron; Danielsen, Else R; Kehlet, Henrik

    2009-01-01

    upper leg via a fMRI-compatible Peltier element. Compared to non-painful stimulation, painful tonic heat was associated with a significant increase in GABA concentrations in the rACC. No changes in glutamate concentrations were detected during noxious stimulation. This study provides the first evidence...

  20. Effect and safety of spinal cord stimulation for treatment of chronic pain caused by diabetic neuropathy

    NARCIS (Netherlands)

    de Vos, C.; de Vos, Cecile C.; Rajan, Vinayakrishnan; Steenbergen, Wiendelt; van der Aa, Hans E.; Buschman, H.P.J.

    2009-01-01

    Aim: Spinal cord stimulation (SCS) has been shown effective as a therapy for different chronic painful conditions, but the effectiveness of this treatment for pain as a result of peripheral diabetic neuropathy is not well established. The primary objectives of this study were to evaluate the effect

  1. Assessment of the Therapeutic Effectiveness of Deep Electromagnetic Stimulation in Patients with Chronic Low Back Pain.

    Science.gov (United States)

    Przedborska, Agnieszka; Misztal, Małgorzata; Raczkowski, Jan W

    2015-10-01

    The study presents the results of the application of deep electromagnetic stimulation (DEMS) therapy in the treatment of low back pain. The study aimed to evaluate and compare pain severity before and after deep electromagnetic stimulation sessions and to assess persistence of the analgesic effect and identify factors which influenced it significantly. The study enrolled a series of 105 consecutive patients with chronic low back pain who underwent a series of 10 sessions of deep electromagnetic stimulation. The effectiveness of the therapy was assessed according to VAS and Laitinen scores. Risk factors significantly affecting the stability of analgesic effect after DEMS therapy were identified using the Cox regression model. Statistically significant pain relief was observed after deep electromagnetic therapy. Both the Laitinen and VAS scales demonstrated the reduction in pain intensity by half (Me (IQR): 6 (5-9) before the therapy vs. 3 (24) afterwards, ppain recurred in 84 (80%) patients. Pain recurrence within a year after the therapy was stimulated in a statistically significant manner by pain duration (HR=1.032, 95% CI: 0.988-1.078; p=0.032) and the co-occurrence of degenerative joint disease (HR=5.521, 95%CI: 2.905-10.493; p=0.001). 1. Deep electromagnetic stimulation is an effective treatment in patients with chronic low back pain. 2. The degree of effectiveness of this modality in the longer term depends on the cause and duration of pain.

  2. Effects of oculo-motor exercise, functional electrical stimulation and proprioceptive neuromuscular stimulation on visual perception of spatial neglect patients.

    Science.gov (United States)

    Park, Si-Eun; Oh, Dae-Sik; Moon, Sang-Hyun

    2016-04-01

    [Purpose] The purpose of this study was to identify the effects of oculo-motor exercise, functional electrical stimulation (FES), and proprioceptive neuromuscular facilitation (PNF) on the visual perception of spatial neglect patients. [Subjects and Methods] The subjects were randomly allocated to 3 groups: an oculo-motor exercise (OME) group, a FES with oculo-motor exercise (FOME) group, and a PNF with oculo-motor exercise (POME) group. The line bisection test (LBT), motor free visual test (MVPT), and Catherine Bergego Scale (CBS) were used to measure visual perception. These were performed 5 times per week for 6 weeks. [Results] The OME group and POME group showed significant improvements according to the LBT and MVPT results, but the FOME group showed no significant improvement. According to the CBS, all 3 groups showed significant improvements. The OME and POME groups showed improvement over the FOME group in the LBT and MVPT. However, there was no significant difference among the three groups according to the CBS. [Conclusion] These results indicate that oculo-motor exercise and PNF with oculo-motor exercise had more positive effects than FES with oculo-motor exercise on the visual perception of spatial neglect patients.

  3. Clonal relationships between thyroid-stimulating hormone receptor-stimulating antibodies illustrate the effect of hypermutation on antibody function

    DEFF Research Database (Denmark)

    Padoa, Carolyn J; Larsen, Sanne L; Hampe, Christiane S

    2009-01-01

    Summary Graves' disease is characterized by production of agonist antibodies to the thyroid-stimulating hormone receptor (TSHR), but knowledge of the genetic and somatic events leading to their aberrant production is limited. We describe the genetic analysis of two monoclonal antibodies (mAbs) wi......, in experimentally immunized mice, multiple pathogenic antibodies to TSHR can arise from a single clone by a series of somatic mutations in the V-region genes and may give an insight into how such antibodies develop spontaneously in autoimmune Graves' disease....... relationship and derivation from a single precursor B-cell clone. The IGHV-region genes of the two mAbs underwent high degrees of somatic hypermutation by sharing numerous mutations before diverging, while the IGLV genes evolved separately. Interestingly, the mutations were present in both the complementarity...... that the chimeras retained TSAb activities, confirming the close functional relatedness of the V-region genes. Importantly, the IGLV genes in chimeric rFabs had a dominant stimulatory effect at low concentrations, while the IGHV genes had a dominant effect at higher concentrations. Our findings demonstrate that...

  4. Specific neuroprotective effects of manual stimulation of real ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the effectiveness and specific effects of acupuncture on ischemic-induced damage in rats after permanent middle cerebral artery occlusion. Cerebral ischemia was induced by middle cerebral artery occlusion in male Wistar rats. The rats were divided into the following 4 groups: ...

  5. Sex differences in cognitive estimation during sleep deprivation: effects of stimulant countermeasures.

    Science.gov (United States)

    Killgore, William D S; Muckle, Alison E; Grugle, Nancy L; Killgore, Desiree B; Balkin, Thomas J

    2008-11-01

    Stimulant medications restore simple alertness during sleep loss, but it is not clear how they affect complex executive functions, particularly in light of sex differences in cerebral organization. The effectiveness of caffeine, modafinil, dextroamphetamine, or placebo for sustaining performance on the Biber Cognitive Estimation Test (BCET) was compared in 29 men and 25 women following 46 hr of sleep deprivation. Stimulants had differential effects on BCET performance as a function of the sex of the subjects. Women receiving placebo or caffeine scored significantly worse than males, while modafinil and dextroamphetamine were effective at sustaining BCET performance of men and women.

  6. Deep brain stimulation for people with Alzheimer's disease: Anticipating potential effects on the tripartite self.

    Science.gov (United States)

    Viaña, John Noel M; Gilbert, Frederic

    2018-01-01

    Memory dysfunction and cognitive impairments due to Alzheimer's disease can affect the selfhood and identity of afflicted individuals, causing distress to both people with Alzheimer's disease and their caregivers. Recently, a number of case studies and clinical trials have been conducted to determine the potential of deep brain stimulation as a therapeutic modality for people with Alzheimer's disease. Some of these studies have shown that deep brain stimulation could induce flashbacks and stabilize or even improve memory. However, deep brain stimulation itself has also been attributed as a potential threat to identity and selfhood, especially when procedure-related adverse events arise. We anticipate potential effects of deep brain stimulation for people with Alzheimer's disease on selfhood, reconciling information from medical reports, psychological, and sociological investigations on the impacts of deep brain stimulation or Alzheimer's disease on selfhood. A tripartite model of the self that extends the scope of Rom Harré's and Steve Sabat's social constructionist framework was used. In this model, potential effects of deep brain stimulation for Alzheimer's disease on Self 1 or singularity through use of first-person indexicals, and gestures of self-reference, attribution, and recognition; Self 2 or past and present attributes, knowledge of these characteristics, and continuity of narrative identity; and Self 3 or the relational and social self are explored. The ethical implications of potential effects of deep brain stimulation for Alzheimer's disease on the tripartite self are then highlighted, focusing on adapting informed consent procedures and care provided throughout the trial to account for both positive and negative plausible effects on Self 1, Self 2, and Self 3.

  7. The effects of theta-burst stimulation on vigilance in humans

    Directory of Open Access Journals (Sweden)

    Armand eMensen

    2014-06-01

    Full Text Available Repetitive transcranial magnetic stimulation has become a popular tool to modulate neuronal networks and associated brain functions in both clinical and basic research. Yet few studies have examined the potential effects of cortical stimulation on general levels of vigilance. In this exploratory study, we used theta-burst protocols, both continuous (cTBS and intermittent (iTBS patterns, to examine whether inhibition or excitation of the left dorso-lateral prefrontal cortex (dlPFC was able to induce reliable and acute changes to vigilance measures, compared to the left dorso-lateral associative visual cortex (dlAVC as a control site in line with previous work. Partially sleep restricted participants underwent four separate sessions in a single day, in a between subjects design for TBS stimulation type and within subjects for locaton, each consisting of maintenance of wakefulness test, a sleep latency test, and a psychomotor vigilance task. TBS significantly affected measures of sleep consolidation, namely latency to sleep stage 2 and sleep efficiency, but had no effects on sleep drive or psychomotor vigilance levels for either TBS type or location. Contrary to our initial hypothesis of the dlAVC as a control site, stimulation to this region resulted in the largest differential effects between stimulation types. Moreover, the effect of TBS was found to be consistent throughout the day. These data may provide the basis for further investigation into therapeutic applications of TBS in sleep disorders.

  8. Effect of vestibular stimulation on auditory and visual reaction time in relation to stress

    Directory of Open Access Journals (Sweden)

    Archana Rajagopalan

    2017-01-01

    Full Text Available The present study was undertaken to provide scientific evidence and for beneficial effects of vestibular stimulation for the management of stress-induced changes in auditory and visual reaction time (RT. A total of 240 healthy college students of the age group of 18-24 of either gender were a part of this research after obtaining written consent from them. RT for right and left response was measured for two auditory stimuli (low and high pitch and visual stimuli (red and green were recorded. A significant decrease in the visual RT for green light and red light was observed and stress-induced changes was effectively prevented followed by vestibular stimulation. Auditory RT for high pitch right and left response was significantly decreased and stress-induced changes was effectively prevented followed by vestibular stimulation. Vestibular stimulation is effective in boosting auditory and visual RT and preventing stress-induced changes in RT in males and females. We recommend incorporation of vestibular stimulation by swinging in our lifestyle for improving cognitive functions.

  9. Actions of Ethanol on Voltage-Sensitive Sodium Channels. Effects on Neurotoxin-Stimulated Sodium Uptake in Synaptosomes

    Science.gov (United States)

    1985-01-01

    scorpion venom-induced enhancement of batrachotoxin - Seffect of ethanol on rotoxin-stimulated sodium uptake was stimulated sodium uptake. The inhibitory...Ethanol reduced rate of batrachotoxin -stimulated sodium ethanol has an inhibitory effect on neurotoxin-stimulated sodium CC uptake whenq sjjred at 3, 5 and...potential were due to a transient increased ) . AUUBROREVTIONS CNS, central nervous system; TTX, tetrodotoxin; BTX, batrachotoxin ; VER, veratitdne; ScV

  10. Analysis of biological effects in human endothelial cells after stimulated microgravity

    Science.gov (United States)

    Min, Zhang; Sun, Yeqing; Xu, Dan

    Space environment is characterized by strong radiation, ultra-high vacuum, weak magnetic field and microgravity. Among them, microgravity (10-4-10-6g) in space is different from gravity (1g) on earth, possibly causing visual disorders, muscle alterations, bone loss and dysfunction of cardiovascular systems. To study about microgravity environment, the most advanced rotary cell culture system (RCCS-1) was used to do stimulated microgravity (SMG) experiments in the ground. Up to now, most of studies focus on the biological effects under stimulated microgravity, but it is less known about the cellular response after stimulated microgravity. In the present study, we explored the subsequent effects of stimulated microgravity on human endothelial cells (HUVEC-C) after these cells were cultured on RCCS-1 for 48 hours. We co-cultured HUVEC-C cells with Hillex-microcarriers in 60-mm culture dishes for 24h, followed by transferring them to RCCS-1 so that cells remain to be the state of SMG. In parallel, HUVEC-C cells were co-cultured with microcarriers in the ground condition. We found that stimulated microgravity induced cytoskeleton remodeling, cell cycle G2/M arrest and cellular senescence, consistent with previous reports. To study the subsequent effects of stimulated microgravity, we make cells detach from microcarriers and observed various effects including cell growth, cell adhesion, cytoskeleton, cell cycle, apoptosis and senescence. The results showed that those cells undergoing stimulated microgravity appeared obvious growth inhibition, a transition from the decrease in cell adhesion ability and cytoskeleton remodeling within 24h to induction of apoptosis and senescence-like phenotype in the later time with slight changes in cell cycle. Analysis of protein expression in western blot demonstrated that apoptosis-related protein PTEN was up-regulated on the time-dependent pattern after stimulated microgravity, indicating that PTEN-PI3K-Akt pathway might play an

  11. The Cost-Effectiveness of Spinal Cord Stimulation for Complex Regional Pain Syndrome

    NARCIS (Netherlands)

    Kemler, Marius A.; Raphael, Jon H.; Bentley, Anthony; Taylor, Rod S.

    2010-01-01

    Objectives: Health-care policymakers and payers require cost-effectiveness evidence to inform their treatment funding decisions. The aims of this study were to assess the cost-effectiveness of the addition of spinal cord stimulation (SCS) compared with conventional management alone (CMM) in patients

  12. Evidence-Based Systematic Review: Effects of Neuromuscular Electrical Stimulation on Swallowing and Neural Activation

    Science.gov (United States)

    Clark, Heather; Lazarus, Cathy; Arvedson, Joan; Schooling, Tracy; Frymark, Tobi

    2009-01-01

    Purpose: To systematically review the literature examining the effects of neuromuscular electrical stimulation (NMES) on swallowing and neural activation. The review was conducted as part of a series examining the effects of oral motor exercises (OMEs) on speech, swallowing, and neural activation. Method: A systematic search was conducted to…

  13. Rat pancreatic islet function during prolonged glucose stimulation in vitro : Effect of sex and reproductive state

    NARCIS (Netherlands)

    Moes, H; Koiter, TR

    Prolonged stimulation with glucose may induce desensitisation of pancreatic beta-cell function in male rats. The effects of such a treatment on pancreatic islets of pregnant (P) rats, in which beta-cell function is enhanced, were studied in a perifusion design and compared with the effects on islets

  14. Effects of hydrodynamics on Stimulated Brillouin Scattering in multiple plasma interaction

    International Nuclear Information System (INIS)

    Yahia, V.; Depierreux, S.; Goyon, C.; Loisel, G.; Borisenko, N. G.; Masson-Laborde, P. E.; Orekhov, A.; Rienecker, T.; Rosmej, O.; Labaune, C.

    2013-01-01

    In this paper, an experiment carried out on LULI2000 facility is presented. It was designed to investigate how two successive plasmas interact through hydrodynamic coupling and electromagnetic radiations. Contributions of both effects have been successfully identified and the effects of hydrodynamic coupling on Stimulated Brillouin Scattering has been observed. (authors)

  15. Effects of transcutaneous electrical nerve stimulation (TENS) on memory in elderly with mild cognitive impairment

    NARCIS (Netherlands)

    Luijpen, M.W.; Swaab, D.F.; Sergeant, J.A.; van Dijk, K.R.A.; Scherder, E.J.A.

    2005-01-01

    In previous studies, transcutaneous electrical nerve stimulation (TENS) was shown to have a positive effect on memory in Alzheimer's disease (AD) patients. Moreover, the reported effects appeared to be more beneficial in early stages of Alzheimer's disease compared to later stage intervention. Based

  16. Effects of transcutaneous electrical nerve stimulation (TENS) on memory in elderly with mild cognitive impairment.

    NARCIS (Netherlands)

    Luijpen, M.W.; Swaab, D.F.; Sergeant, J.A.; Dijk, K.R.A.; Scherder, E.J.

    2005-01-01

    In previous studies, transcutaneous electrical nerve stimulation (TENS) was shown to have a positive effect on memory in Alzheimer's disease (AD) patients. Moreover, the reported effects appeared to be more beneficial in early stages of Alzheimer's disease compared to later stage intervention. Based

  17. Effect of ischemia and cooling on the response to high frequency stimulation in rat tail nerves

    DEFF Research Database (Denmark)

    Andersen, Henning; Feldbæk Nielsen, Jørgen; Sørensen, Bodil

    2000-01-01

    In normal rat tail nerves the effect of temperature and ischemia on the response to long-term high frequency stimulation (HFS) (143 Hz) was studied. The effect of temperature was studied in two consecutive tests at 14 degrees C and 35 degrees C. Prior to the HFS the peak-to-peak amplitude (PP...

  18. Effects of repetition and temperature on Contingent Electrical Stimulation

    DEFF Research Database (Denmark)

    Castrillon, Eduardo E.; Zhou, Xinwen; Svensson, Peter

    ) activity associated with bruxism. Repetition of the electrical stimulus and skin surface temperature (ST) may affect the perception of CES and possibly also the inhibitory EMG effects.Objectives: To determine the effects of stimulus repetition and skin ST on the perception of CES.  Methods: Healthy...... participants (n=14, 7 males, 7 females) were included. CES was applied to the anterior temporalis muscle with a surface electrode using a portable EMG device (GrindCare®). The participants rated the perceived sensation using a 0-50-100 numerical rating scale (NRS) immediately after the stimulus. NRS = “0......” represented “no sensation at all”, “50” “just barely painful” and “100” “the worst pain imaginable”. All the participants were scheduled for one single session in which the effects of A) repetition and B) temperature were tested. A: A total of 30 consecutive electrical stimuli were divided into 3 series. Each...

  19. Excitatory and inhibitory effects of prolactin release activated by nerve stimulation in rat anterior pituitary

    Directory of Open Access Journals (Sweden)

    Gao Li-Zhi

    2009-12-01

    Full Text Available Abstract Background A series of studies showed the presence of substantial amount of nerve fibers and their close relationship with the anterior pituitary gland cells. Our previous studies have suggested that aside from the classical theory of humoral regulation, the rat anterior pituitary has direct neural regulation on adrenocorticotropic hormone release. In rat anterior pituitary, typical synapses are found on every type of the hormone-secreting cells, many on lactotrophs. The present study was aimed at investigating the physiological significance of this synaptic relationship on prolactin release. Methods The anterior pituitary of rat was sliced and stimulated with electrical field in a self-designed perfusion chamber. The perfusate was continuously collected in aliquots and measured by radioimmunoassay for prolactin levels. After statistic analysis, differences of prolactin concentrations within and between groups were outlined. Results The results showed that stimulation at frequency of 2 Hz caused a quick enhancement of prolactin release, when stimulated at 10 Hz, prolactin release was found to be inhibited which came slower and lasted longer. The effect of nerve stimulation on prolactin release is diphasic and frequency dependent. Conclusions The present in vitro study offers the first physiological evidence that stimulation of nerve fibers can affect prolactin release in rat anterior pituitary. Low frequency stimulation enhances prolactin release and high frequency mainly inhibits it.

  20. Effect of Neuromuscular Electrical Muscle Stimulation on Energy Expenditure in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Ya-Ju Chang

    2011-02-01

    Full Text Available Weight loss/weight control is a major concern in prevention of cardiovascular disease and the realm of health promotion. The primary aim of this study was to investigate the effect of neuromuscular electrical stimulation (NMES at different intensities on energy expenditure (oxygen and calories in healthy adults. The secondary aim was to develop a generalized linear regression (GEE model to predict the increase of energy expenditure facilitated by NMES and identify factors (NMES stimulation intensity level, age, body mass index, weight, body fat percentage, waist/hip ratio, and gender associated with this NMES-induced increase of energy expenditure. Forty sedentary healthy adults (18 males and 22 females participated. NMES was given at the following stimulation intensities for 10 minutes each: sensory level (E1, motor threshold (E2, and maximal intensity comfortably tolerated (E3. Cardiopulmonary gas exchange was evaluated during rest, NMES, and recovery stage. The results revealed that NMES at E2 and E3 significantly increased energy expenditure and the energy expenditure at recovery stage was still significantly higher than baseline. The GEE model demonstrated that a linear dose-response relationship existed between the stimulation intensity and the increase of energy expenditure. No subject’s demographic or anthropometric characteristics tested were significantly associated with the increase of energy expenditure. This study suggested NMES may be used to serve as an additional intervention for weight loss programs. Future studies to develop electrical stimulators or stimulation electrodes to maximize the comfort of NMES are recommended.

  1. Effects of Transcranial Direct Current Stimulation on episodic memory related to emotional visual stimuli.

    Science.gov (United States)

    Penolazzi, Barbara; Di Domenico, Alberto; Marzoli, Daniele; Mammarella, Nicola; Fairfield, Beth; Franciotti, Raffaella; Brancucci, Alfredo; Tommasi, Luca

    2010-05-13

    The present study investigated emotional memory following bilateral transcranial electrical stimulation (direct current of 1 mA, for 20 minutes) over fronto-temporal cortical areas of healthy participants during the encoding of images that differed in affective arousal and valence. The main result was a significant interaction between the side of anodal stimulation and image emotional valence. Specifically, right anodal/left cathodal stimulation selectively facilitated the recall of pleasant images with respect to both unpleasant and neutral images whereas left anodal/right cathodal stimulation selectively facilitated the recall of unpleasant images with respect to both pleasant and neutral images. From a theoretical perspective, this double dissociation between the side of anodal stimulation and the advantage in the memory performance for a specific type of stimulus depending on its pleasantness supported the specific-valence hypothesis of emotional processes, which assumes a specialization of the right hemisphere in processing unpleasant stimuli and a specialization of the left hemisphere in processing pleasant stimuli. From a methodological point of view, first we found tDCS effects strictly dependent on the stimulus category, and second a pattern of results in line with an interfering and inhibitory account of anodal stimulation on memory performance. These findings need to be carefully considered in applied contexts, such as the rehabilitation of altered emotional processing or eye-witness memory, and deserve to be further investigated in order to understand their underlying mechanisms of action.

  2. Effects of Transcranial Direct Current Stimulation on episodic memory related to emotional visual stimuli.

    Directory of Open Access Journals (Sweden)

    Barbara Penolazzi

    2010-05-01

    Full Text Available The present study investigated emotional memory following bilateral transcranial electrical stimulation (direct current of 1 mA, for 20 minutes over fronto-temporal cortical areas of healthy participants during the encoding of images that differed in affective arousal and valence. The main result was a significant interaction between the side of anodal stimulation and image emotional valence. Specifically, right anodal/left cathodal stimulation selectively facilitated the recall of pleasant images with respect to both unpleasant and neutral images whereas left anodal/right cathodal stimulation selectively facilitated the recall of unpleasant images with respect to both pleasant and neutral images. From a theoretical perspective, this double dissociation between the side of anodal stimulation and the advantage in the memory performance for a specific type of stimulus depending on its pleasantness supported the specific-valence hypothesis of emotional processes, which assumes a specialization of the right hemisphere in processing unpleasant stimuli and a specialization of the left hemisphere in processing pleasant stimuli. From a methodological point of view, first we found tDCS effects strictly dependent on the stimulus category, and second a pattern of results in line with an interfering and inhibitory account of anodal stimulation on memory performance. These findings need to be carefully considered in applied contexts, such as the rehabilitation of altered emotional processing or eye-witness memory, and deserve to be further investigated in order to understand their underlying mechanisms of action.

  3. Effects of cocaine on norepinephrine stimulated phosphoinositide hydrolysis and locomotor activity in rat

    International Nuclear Information System (INIS)

    Mosaddeghi, M.

    1989-01-01

    The function of α 1 -adrenoceptors was determined by stimulating cortical tissue slices, which were pre-labeled with [ 3 H]inositol, with norepinephrine (NE) in the presence of 8 mM LiCl. Results of in vitro studies showed that cocaine 10 μM potentiated maximal NE-stimulated PI hydrolysis by 30%. In addition, the EC 50 was decreased from 3.93 ± 0.42 to 1.91 ± 0.31 μM NE. Concentrations of 0.1-100 μM and 0.1-10 μM cocaine enhanced PI hydrolysis stimulated by 0.3 and 3 μM NE, respectively. The concentration-effect curves for NE-stimulated PI hydrolysis were shifted to the right 100-fold in the presence of 0.1 μM prazosin. Cocaine (10 μM) did not potentiate NE-stimulated PI hydrolysis in the presence of 0.1 μM prazosin. [ 3 H]Prazosin saturation and NE [ 3 H]prazosin competition binding studies using crude membrane preparations showed that 10 μM cocaine did not alter binding parameters B max , K d , Hill slope, and IC 50 . Together, these results implied that cocaine in vitro potentiated NE-stimulated PI hydrolysis by blocking NE reuptake. For in vivo studies, the locomotor activity was determined after an acute or chronic injections of either cocaine or saline. Cocaine or saline-treated rats were killed after measurement of the locomotor activity, and NE-stimulated PI hydrolysis was measured. Acute administration of cocaine 3.2-42 mg/kg (i.p.) produced an inverted U shaped dose-response curve on locomotor activity. The peak increase in locomotor activity was at 32 mg/kg cocaine. A dose of 42 mg/kg cocaine produced a significant depression of maximal NE-stimulated PI hydrolysis

  4. Effects of transcranial direct current stimulation (tDCS) on pain distress tolerance: a preliminary study

    Science.gov (United States)

    Mariano, Timothy Y.; Wout, Mascha van’t; Jacobson, Benjamin L.; Garnaat, Sarah L.; Kirschner, Jason L.; Rasmussen, Steven A.; Greenberg, Benjamin D.

    2015-01-01

    Objective Pain remains a critical medical challenge. Current treatments target nociception without addressing affective symptoms. Medically intractable pain is sometimes treated with cingulotomy or deep brain stimulation to increase tolerance of pain-related distress. Transcranial direct current stimulation (tDCS) may noninvasively modulate cortical areas related to sensation and pain representations. The present study aimed to test the hypothesis that cathodal (“inhibitory”) stimulation targeting left dorsal anterior cingulate cortex (dACC) would increase tolerance to distress from acute painful stimuli versus anodal stimulation. Methods Forty healthy volunteers received both anodal and cathodal stimulation. During stimulation, we measured pain distress tolerance with three tasks: pressure algometer, cold pressor, and breath holding. We measured pain intensity with a visual-analog scale before and after each task. Results Mixed ANOVA revealed that mean cold pressor tolerance tended to be higher with cathodal versus anodal stimulation (p = 0.055) for participants self-completing the task. Pressure algometer (p = 0.81) and breath holding tolerance (p = 0.19) did not significantly differ. The pressure algometer exhibited a statistically significant order effect irrespective of stimulation polarity (all p Pain intensity ratings increased acutely after cold pressor and pressure algometer tasks (both p pain ratings tended to rise less after cathodal versus anodal tDCS (p = 0.072). Conclusions Although our primary results were nonsignificant, there is a preliminary suggestion that cathodal tDCS targeting left dACC may increase pain distress tolerance to cold pressor. Pressure algometer results are consistent with task-related sensitization. Future studies are needed to refine this novel approach for pain neuromodulation. PMID:26115372

  5. Novel methods to optimize the effects of transcranial direct current stimulation: a systematic review of transcranial direct current stimulation patents.

    Science.gov (United States)

    Malavera, Alejandra; Vasquez, Alejandra; Fregni, Felipe

    2015-01-01

    Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that has been extensively studied. While there have been initial positive results in some clinical trials, there is still variability in tDCS results. The aim of this article is to review and discuss patents assessing novel methods to optimize the use of tDCS. A systematic review was performed using Google patents database with tDCS as the main technique, with patents filling date between 2010 and 2015. Twenty-two patents met our inclusion criteria. These patents attempt to address current tDCS limitations. Only a few of them have been investigated in clinical trials (i.e., high-definition tDCS), and indeed most of them have not been tested before in human trials. Further clinical testing is required to assess which patents are more likely to optimize the effects of tDCS. We discuss the potential optimization of tDCS based on these patents and the current experience with standard tDCS.

  6. Cognitive and Neurophysiological Effects of Non-invasive Brain Stimulation in Stroke Patients after Motor Rehabilitation.

    Science.gov (United States)

    D'Agata, Federico; Peila, Elena; Cicerale, Alessandro; Caglio, Marcella M; Caroppo, Paola; Vighetti, Sergio; Piedimonte, Alessandro; Minuto, Alice; Campagnoli, Marcello; Salatino, Adriana; Molo, Maria T; Mortara, Paolo; Pinessi, Lorenzo; Massazza, Giuseppe

    2016-01-01

    The primary aim of this study was to evaluate and compare the effectiveness of two specific Non-Invasive Brain Stimulation (NIBS) paradigms, the repetitive Transcranial Magnetic Stimulation (rTMS), and transcranial Direct Current Stimulation (tDCS), in the upper limb rehabilitation of patients with stroke. Short and long term outcomes (after 3 and 6 months, respectively) were evaluated. We measured, at multiple time points, the manual dexterity using a validated clinical scale (ARAT), electroencephalography auditory event related potentials, and neuropsychological performances in patients with chronic stroke of middle severity. Thirty four patients were enrolled and randomized. The intervention group was treated with a NIBS protocol longer than usual, applying a second cycle of stimulation, after a washout period, using different techniques in the two cycles (rTMS/tDCS). We compared the results with a control group treated with sham stimulation. We split the data analysis into three studies. In this first study we examined if a cumulative effect was clinically visible. In the second study we compared the effects of the two techniques. In the third study we explored if patients with minor cognitive impairment have most benefit from the treatment and if cognitive and motor outcomes were correlated. We found that the impairment in some cognitive domains cannot be considered an exclusion criterion for rehabilitation with NIBS. ERP improved, related to cognitive and attentional processes after stimulation on the motor cortex, but transitorily. This effect could be linked to the restoration of hemispheric balance or by the effects of distant connections. In our study the effects of the two NIBS were comparable, with some advantages using tDCS vs. rTMS in stroke rehabilitation. Finally we found that more than one cycle (2-4 weeks), spaced out by washout periods, should be used, only in responder patients, to obtain clinical relevant results.

  7. Generation of ultrafast pulse via combined effects of stimulated ...

    Indian Academy of Sciences (India)

    A project of ultrafast pulse generation has been presented and demonstrated by utilizing the combined ... length tunable ultrafast pulse generation is very attractive based on the SRS effect in single mode fibres (SMF) ..... [11] L Liao, A Liu, D Rubin, J Basak, Y Chetrit, H Nguyen, R Cohen, N Izhaky and. M Paniccia, Electron.

  8. Stimulating Effect of Terfenadine on Erythrocyte Cell Membrane Scrambling

    Directory of Open Access Journals (Sweden)

    Elena Signoretto

    2016-04-01

    Full Text Available Background/Aims: The antihistaminic drug Terfenadine may trigger apoptosis of tumor cells, an effect unrelated to its effect on histamine receptors. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling triggering eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress, and ceramide. The present study explored, whether Terfenadine is capable to trigger eryptosis. Methods: Flow cytometry was employed to estimate phosphatidylserine abundance at the erythrocyte surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species (ROS from 2′,7′-dichlorodihydrofluorescein (DCF diacetate dependent fluorescence, and ceramide abundance at the human erythrocyte surface utilizing specific antibodies. Hemolysis was quantified from haemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to Terfenadine (≥ 5 µM significantly increased the percentage of annexin-V-binding cells and triggered hemolysis without significantly modifying the average forward scatter. Terfenadine (7.5 µM significantly increased Fluo3-fluorescence, but did not significantly modify DCF fluorescence or ceramide abundance. The effect of Terfenadine on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. Exposure of human erythrocytes to Ca2+ ionophore ionomycin (1 µM, 15 min triggered annexin-V-binding, an effect augmented by Terfenadine pretreatment (10 µM, 48 hours. Conclusions: Terfenadine triggers phospholipid scrambling of the human erythrocyte cell membrane, an effect in part due to entry of extracellular Ca2+ and in part due to sensitizing human erythrocyte cell membrane scrambling to Ca2+.

  9. Effect of Spinal Cord Stimulation on Gait in a Patient with Thalamic Pain

    Directory of Open Access Journals (Sweden)

    Arito Yozu

    2016-01-01

    Full Text Available Thalamic pain is a central neuropathic pain disorder which occurs after stroke. Its severe chronic pain is often intractable to pharmacotherapies and affects the patients’ activities of daily living (ADL and quality of life (QOL. Recently, spinal cord stimulation (SCS has been reported to be effective in relieving the pain of thalamic pain; however, the effect of SCS on gait performance in patients is unknown. Therefore, we evaluated the gait performance before and after SCS in a case with thalamic pain. A 73-year-old male with thalamic pain participated in this study. We evaluated the gait of the patient two times: before SCS insertion and after 6 days of SCS. At the second evaluation, we measured the gait in three conditions: stimulation off, comfortable stimulation, and strong stimulation. SCS succeeded in improving the pain from 7 to 2 on an 11-point numerical rating scale. Step frequency and the velocity of gait tended to increase between pre- and poststimulation periods. There were no apparent differences in gait among the three stimulation conditions (off, comfortable, and strong at the poststimulation period. SCS may be effective on gait in patients with thalamic pain.

  10. Effects of anti-inflammatory vagus nerve stimulation on the cerebral microcirculation in endotoxinemic rats

    Directory of Open Access Journals (Sweden)

    Mihaylova Stanka

    2012-07-01

    Full Text Available Abstract Background In sepsis syndromes the severity of the inflammation triggers microvascular dysfunction and early organ failure. We studied the effects of anti-inflammatory vagus nerve stimulation on the cerebral microcirculatory integrity in an endotoxinemic rat model. Methods In both control and endotoxinemic (5 mg/kg lipopolysaccharide i.v. rats, the effect of cervical bilateral vagotomy with or without left-sided distal vagus nerve stimulation were compared to non-vagotomized, nonstimulated group (sham. Neurovascular coupling was analyzed by electrical forepaw stimulation, EEG, and cortical laser-Doppler flow recording. Resting cerebral blood flow, evoked potentials and hemodynamic responses, were obtained over a period of 4.5 hours. Regulation of the nitric oxide system (iNOS expression and nitrite/nitrate measurements, cytokines (IFN-γ, TNF-α, IL-6, IL-10, hypoxic and apoptosis signaling molecules (HIF-2α, Bax were measured at the end of experiments. Results In endotoxinemic rats, vagus nerve stimulation tended to increase anti-inflammatory cytokine levels and resulted in a stabile hemodynamic response (28 ± 13%; versus baseline. Vagotomized animals incurred a pro-inflammatory response (7 ± 4%; P P  Conclusions Vagus nerve stimulation in endotoxinemic rats had a positive effect on neurovascular coupling and stabilized evoked potentials.

  11. [Effects of MAPK antagonist on TPO stimulated UT2 cells proliferation and differentiation].

    Science.gov (United States)

    Li, Wen-lin; Shi, Xiao-yu; Li, Rong; Tang, Hong-lin

    2005-05-01

    To explore the effects of MAPK antagonist on TPO stimulated UT7 cell proliferation and differentiation, and to elucidate the mechanism of TPO functioning on UT7 cells. EGFP pMSCV and MEK 1 pMSCV MEK 1 plasmids were transferred into UT7 cells. Phosphorylated MEK1 of UT7 cells was examined by Western blot. The proliferation and CD41 expression of UT7 cells transfected with mutant (ser222A) MEK1 or exposed to PD98059 were examined. (1) 60.73% EGFP positive cells were obtained in retroviral vector MEK1 pMSCV transfected UT7cells. (2) In different time of TPO stimulating UT7 cells, the level of phosphorylated MEK1 was lower in experiment group than in control group. In experiment group, the level of phosphorylated MEK1 was decreased after stimulated by TPO for 1 hour, and almost disappeared after stimulated for 3 hours. (3) The effect of TPO on UT7 cell proliferation was inhibited by PD98059 and the transfected mutation MEK1 gene. The proliferation rate was 98.58% in DMSO control group, 39.00% in PD98059 group (P TPO. There was a relationship between the TPO stimulating time and phosphorylation of MEK1. The effects of TPO on UT7 cell proliferation and CD41 expression is mediated by MAPK signal transduction pathway.

  12. Effect of rhythmic auditory stimulation on gait in Parkinsonian patients with and without freezing of gait.

    Directory of Open Access Journals (Sweden)

    Pablo Arias

    Full Text Available Freezing of gait (FOG in Parkinson's disease (PD rises in prevalence when the effect of medications decays. It is known that auditory rhythmic stimulation improves gait in patients without FOG (PD-FOG, but its putative effect on patients with FOG (PD+FOG at the end of dose has not been evaluated yet. This work evaluates the effect of auditory rhythmic stimulation on PD+FOG at the end of dose. 10 PD+FOG and 9 PD-FOG patients both at the end of dose periods, and 10 healthy controls were asked to perform several walking tasks. Tasks were performed in the presence and absence of auditory sensory stimulation. All PD+FOG suffered FOG during the task. The presence of auditory rhythmic stimulation (10% above preferred walking cadence led PD+FOG to significantly reduce FOG. Velocity and cadence were increased, and turn time reduced in all groups. We conclude that auditory stimulation at the frequency proposed may be useful to avoid freezing episodes in PD+FOG.

  13. Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects

    OpenAIRE

    De Couck, Marijke; Cserjesi, Renata; Caers, Ralf; Zijlstra, W.-P.; Widjaja, Devy; Wolf, Nicole; Luminet, Olivier; Ellrich, Jens; Gidron, Yori

    2017-01-01

    The vagus nerve is strategically located in the body, and has multiple homeostatic and health-promoting effects. Low vagal activity predicts onset and progression of diseases. These are the reasons to activate this nerve. This study examined the effects of transcutaneous vagus nerve stimulation (t-VNS) on a main index of vagal activity, namely heart rate variability (HRV). In Study 1, we compared short (10 min) left versus right ear t-VNS versus sham (no stimulation) in a within-subjects expe...

  14. Perceptual and cerebro-spinal responses to graded innocuous and noxious stimuli following aerobic exercise.

    Science.gov (United States)

    Micalos, P S; Harris, J; Drinkwater, E J; Cannon, J; Marino, F E

    2015-11-01

    The aim of this study was to evaluate the effect of aerobic exercise on perceptual and cerebro-spinal responses to graded electrocutaneous stimuli. The design comprised 2 x 30 min of cycling exercise at 30% and 70% of peak oxygen consumption (VO2 peak) on separate occasions in a counter-balanced order in 10 healthy participants. Assessment of nociceptive withdrawal reflex threshold (NWR-T), pain threshold (PT), and somatosensory evoked potentials (SEPs) to graded electrocutaneous stimuli were performed before and after exercise. Perceptual magnitude ratings and SEPs were compared at 30%PT, 60%PT, 100%PT before (Pre), 5 min after (Post1), and 15 min after (Post2) aerobic exercise. There was no difference in the NWR-T and the PT following exercise at 30% and 70% of VO2 peak. ANOVA for the perceptual response within pooled electrocutaneous stimuli show a significant main effect for time (F2,18=5.41, P=0.01) but no difference for exercise intensity (F1,9=0.02, P=0.88). Within-subject contrasts reveal trend differences between 30%PT and 100%PT for Pre-Post1 (P=0.09) and Pre-Post2 (P=0.02). ANOVA for the SEPs peak-to-peak signal amplitude (N1-P1) show significant main effect for time (F2,18=4.04, P=0.04) but no difference for exercise intensity (F1,9=1.83, P=0.21). Pairwise comparisons for time reveal differences between Pre-Post1 (P=0.06) and Pre-Post2 (P=0.01). There was a significant interaction for SEPs N1-P1 between exercise intensity and stimulus intensity (F2,18=3.56, P=0.05). These results indicate that aerobic exercise did not increase the electrocutaneous threshold for pain and the NWR-T. Aerobic exercise attenuated perceptual responses to innocuous stimuli and SEPs N1-P1 response to noxious stimuli.

  15. Effects of Bilateral Repetitive Transcranial Magnetic Stimulation on Post-Stroke Dysphagia.

    Science.gov (United States)

    Park, Eunhee; Kim, Min Su; Chang, Won Hyuk; Oh, Su Mi; Kim, Yun Kwan; Lee, Ahee; Kim, Yun-Hee

    Optimal protocol of repetitive transcranial magnetic stimulation (rTMS) on post-stroke dysphagia remains uncertain with regard to its clinical efficacy. The aim of the present study is to investigate the effects of high-frequency rTMS at the bilateral motor cortices over the cortical representation of the mylohyoid muscles in the patients with post-stroke dysphagia. This study was a single-blind, randomized controlled study with a blinded observer. Thirty-five stroke patients were randomly divided into three intervention groups: the bilateral stimulation group, the unilateral stimulation group, and the sham stimulation group. For the bilateral stimulation group, 500 pulses of 10 Hz rTMS over the ipsilesional and 500 pulses of 10 Hz rTMS over the contralesional motor cortices over the cortical areas that project to the mylohyoid muscles were administered daily for 2 consecutive weeks. For the unilateral stimulation group, 500 pulses of 10 Hz rTMS over the ipsilesional motor cortex over the cortical representation of the mylohyoid muscle and the same amount of sham rTMS over the contralesional hemisphere were applied. For the sham stimulation group, sham rTMS was applied at the bilateral motor cortices. Clinical swallowing function and videofluoroscopic swallowing studies were assessed before the intervention (T0), immediately after the intervention (T1) and 3 weeks after the intervention (T2) using Clinical Dysphagia Scale (CDS), Dysphagia Outcome and Severity Scale (DOSS), Penetration Aspiration Scale (PAS), and Videofluoroscopic Dysphagia Scale (VDS). There were significant time and intervention interaction effects in the CDS, DOSS, PAS, and VDS scores (p dysphagia therapies. Copyright © 2016. Published by Elsevier Inc.

  16. Effect of electrical vs. chemical deep brain stimulation at midbrain sites on micturition in anaesthetized rats.

    Science.gov (United States)

    Stone, E; Coote, J H; Lovick, T A

    2015-05-01

    To understand how deep brain stimulation of the midbrain influences control of the urinary bladder. In urethane-anaesthetized male rats, saline was infused continuously into the bladder to evoke cycles of filling and voiding. The effect of electrical (0.1-2.0 ms pulses, 5-180 Hz, 0.5-2.5 V) compared to chemical stimulation (microinjection of D,L-homocysteic acid, 50 nL 0.1 M solution) at the same midbrain sites was tested. Electrical stimulation of the periaqueductal grey matter and surrounding midbrain disrupted normal coordinated voiding activity in detrusor and sphincters muscles and suppressed urine output. The effect occurred within seconds was reversible and not secondary to cardiorespiratory changes. Bladder compliance remained unchanged. Chemical stimulation over the same area using microinjection of D,L-homocysteic acid (DLH) to preferentially activate somatodendritic receptors decreased the frequency of micturition but did not disrupt the coordinated pattern of voiding. In contrast, chemical stimulation within the caudal ventrolateral periaqueductal grey, in the area where critical synapses in the micturition reflex pathway are located, increased the frequency of micturition. Electrical deep brain stimulation within the midbrain can inhibit reflex micturition. We suggest that the applied stimulus entrained activity in the neural circuitry locally, thereby imposing an unphysiological pattern of activity. In a way similar to the use of electrical signals to 'jam' radio transmission, this may prevent a synchronized pattern of efferent activity being transmitted to the spinal outflows to orchestrate a coordinated voiding response. Further experiments to record neuronal firing in the midbrain during the deep brain stimulation will be necessary to test this hypothesis. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  17. Relationship between Sensory Stimulation and Side Effects in Percutaneous Radiofrequency Treatment of the Trigeminal Ganglion.

    Science.gov (United States)

    Koning, Mark V; Koning, Nick J; Koning, Henk M; van Kleef, Maarten

    2014-09-01

    The objective of this study was to determine the efficacy of percutaneous radiofrequency (RF) treatment of the trigeminal ganglion for treating patients with trigeminal neuralgia, to determine which patients have a long-term benefit, and to evaluate the effect of RF parameters. A retrospective study in 28 consecutive patients in combination with a follow-up questionnaire (n = 26, 93% response). An initial treatment effect of 89% was observed, 60% sustained at 12-month follow-up. Major side effects were hypesthesia (56%), dry eye (20%), and masseter muscle weakness (12%). A lower sensory stimulation threshold during treatment was associated with better patient satisfaction (P = 0.016), improved pain relief (P = 0.039), and trended toward more hypesthesia (P = 0.077). This low-volume study reported treatment effects in an older population that were similar to previous studies. Only a higher incidence of hypesthesia was detected by long-term follow-up. This study supported the high efficiency of RF treatment, but there was a high level of side effects. Most notable, low sensory stimulation was associated with increased hypesthesia, whereas higher stimulation levels yielded less effectiveness. Further investigation of an optimal sensory stimulation range for percutaneous RF treatment of the trigeminal ganglion was found to be warranted. © 2013 World Institute of Pain.

  18. The effects of vestibular stimulation and fatigue on postural control in classical ballet dancers.

    Science.gov (United States)

    Hopper, Diana M; Grisbrook, Tiffany L; Newnham, Prudence J; Edwards, Dylan J

    2014-01-01

    This study aimed to investigate the effects of ballet-specific vestibular stimulation and fatigue on static postural control in ballet dancers and to establish whether these effects differ across varying levels of ballet training. Dancers were divided into three groups: professional, pre-professional, and recreational. Static postural control of 23 dancers was measured on a force platform at baseline and then immediately, 30 seconds, and 60 seconds after vestibular stimulation (pirouettes) and induction of fatigue (repetitive jumps). The professional dancers' balance was unaffected by both the vestibular stimulation and the fatigue task. The pre-professional and recreational dancers' static sway increased following both perturbations. It is concluded that professional dancers are able to compensate for vestibular and fatiguing perturbations due to a higher level of skill-specific motor training.

  19. Diseases and pests noxious to Pleurotus spp. mushroom crops.

    Science.gov (United States)

    Bellettini, Marcelo B; Bellettini, Sebastião; Fiorda, Fernanda A; Pedro, Alessandra C; Bach, Fabiane; Fabela-Morón, Miriam F; Hoffmann-Ribani, Rosemary

    2017-12-27

    The Pleurotus genus is one of most extensively studied white-rot fungi due to its exceptional ligninolytic properties. It is an edible mushroom that possesses biological effects, as it contains important bioactive molecules. It is a rich source of nutrients, particularly proteins, minerals as well as vitamins B, C and D. In basidiomycete fungi, intensive cultivations of edible mushrooms can often be affected by some bacterial, mold and virus diseases that rather frequently cause dramatic production loss. These infections are facilitated by the particular conditions under which mushroom cultivation is commonly carried out such as warm temperatures, humidity, carbon dioxide (CO 2 ) levels and presence of pests. There is not much bibliographic information related to pests of mushrooms and their substrates. The updated review presents a practical checklist of diseases and pests of the Pleurotus genus, providing useful information that may help different users. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Effects of BAY K 8644 on the responses of rabbit ear artery to electrical stimulation

    International Nuclear Information System (INIS)

    Pan, M.; Scriabine, A.; Steinsland, O.S.

    1988-01-01

    BAY K 8644 at 6.25 nM to 1 microM enhanced, in a concentration-dependent manner, both phases of the vasoconstrictor response of the isolated perfused rabbit ear artery to electrical stimulation. At 1 microM, BAY K 8644 enhanced the constrictor response by more than 250%. To study possible involvement of neurotransmitter release in the enhancement of the vasoconstrictor response by BAY K 8644, rabbit ear arteries were preincubated with [ 3 H]norepinephrine and stimulated either electrically (for 1 or 5 min) or by 60 mM K+. BAY K 8644 (1 microM) had no effect on tritium release caused by 1-min periods of electrical stimulation. However, tritium release caused by 5-min periods of electrical stimulation or by 60 mM K+ was enhanced in the presence of BAY K 8644. It was concluded that BAY K 8644 enhances vasoconstrictor effects of electrical stimulation of rabbit ear artery by primarily a direct agonist action on Ca2+ channels in vascular smooth muscle cells. Following sustained depolarization, however, the drug may also enhance the release of neurotransmitter from sympathetic nerve endings. Under certain conditions, this release may contribute to the overall action of BAY K 8644

  1. Computational Study of Subdural Cortical Stimulation: Effects of Simulating Anisotropic Conductivity on Activation of Cortical Neurons.

    Directory of Open Access Journals (Sweden)

    Hyeon Seo

    Full Text Available Subdural cortical stimulation (SuCS is an appealing method in the treatment of neurological disorders, and computational modeling studies of SuCS have been applied to determine the optimal design for electrotherapy. To achieve a better understanding of computational modeling on the stimulation effects of SuCS, the influence of anisotropic white matter conductivity on the activation of cortical neurons was investigated in a realistic head model. In this paper, we constructed pyramidal neuronal models (layers 3 and 5 that showed primary excitation of the corticospinal tract, and an anatomically realistic head model reflecting complex brain geometry. The anisotropic information was acquired from diffusion tensor magnetic resonance imaging (DT-MRI and then applied to the white matter at various ratios of anisotropic conductivity. First, we compared the isotropic and anisotropic models; compared to the isotropic model, the anisotropic model showed that neurons were activated in the deeper bank during cathodal stimulation and in the wider crown during anodal stimulation. Second, several popular anisotropic principles were adapted to investigate the effects of variations in anisotropic information. We observed that excitation thresholds varied with anisotropic principles, especially with anodal stimulation. Overall, incorporating anisotropic conductivity into the anatomically realistic head model is critical for accurate estimation of neuronal responses; however, caution should be used in the selection of anisotropic information.

  2. Antiepileptic effects of electroacupuncture vs vagus nerve stimulation on cortical epileptiform activities.

    Science.gov (United States)

    Zhang, Jian-Liang; Zhang, Shi-Ping; Zhang, Hong-Qi

    2008-07-15

    Introduced about two decades ago, vagus nerve stimulation (VNS) therapy has been increasingly used for the treatment of refractory epilepsy recently. This study was set out to compare the effects between VNS and electroacupuncture (EA) on pentylenetetrazole (PTZ) induced epileptiform activities in the rat cerebral cortex. Under general anesthesia, the parietal cortex of the rat (n=20) was exposed to record the cortical epileptiform activities. The left vagus nerve was stimulated at 30 Hz, 1 mA or 3 mA for 5 min. For EA, "Dazhui" acupoint (GV14) was stimulated with a pair of acupuncture needles with the same parameters. The results show that both VNS and EA at either 1 mA or 3 mA could inhibit the PTZ-induced cortical epileptiform activities, and higher stimulation (3 mA) was not associated with a greater inhibition. In the cases that showed inhibitory responses, there were no statistically significant differences between the two modalities, implying that EA could be comparable to VNS in the treatment of epilepsy. Thus, under current experimental settings, the antiepileptic effect induced by electrical stimulation appeared not vagal specific, and EA could be a good alternative to VNS in the management of epilepsy.

  3. Distinct effects of dopamine vs STN stimulation therapies in associative learning and retention in Parkinson disease.

    Science.gov (United States)

    Ventre-Dominey, Jocelyne; Mollion, Hélène; Thobois, Stephane; Broussolle, Emmanuel

    2016-04-01

    Evidence has been provided in Parkinson's disease patients of cognitive impairments including visual memory and learning which can be partially compensated by dopamine medication or subthalamic nucleus stimulation. The effects of these two therapies can differ according to the learning processes involving the dorsal vs ventral part of the striatum. Here we aimed to investigate and compare the outcomes of dopamine vs stimulation treatment in Parkinson patient's ability to acquire and maintain over successive days their performance in visual working memory. Parkinson patients performed conditional associative learning embedded in visual (spatial and non spatial) working memory tasks over two consecutive days either ON or OFF dopaminergic drugs or STN stimulation depending on the group of patients studied. While Parkinson patients were more accurate and faster in memory tasks ON vs OFF stimulation independent of the day of testing, performance in medicated patients differed depending on the medication status during the initial task acquisition. Patients who learnt the task ON medication the first day were able to maintain or even improve their memory performance both OFF and ON medication on the second day after consolidation. These effects were observed only in patients with dopamine replacement with or without motor fluctuations. This enhancement in memory performance after having learnt under dopamine medication and not under STN stimulation was mostly significant in visuo-spatial working memory tasks suggesting that dopamine replacement in the depleted dorsal striatum is essential for retention and consolidation of learnt skill. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The effect of intra-operative transcutaneous electrical nerve stimulation on posterior neck pain following thyroidectomy.

    Science.gov (United States)

    Park, C; Choi, J B; Lee, Y-S; Chang, H-S; Shin, C S; Kim, S; Han, D W

    2015-04-01

    Posterior neck pain following thyroidectomy is common because full neck extension is required during the procedure. We evaluated the effect of intra-operative transcutaneous electrical nerve stimulation on postoperative neck pain in patients undergoing total thyroidectomy under general anaesthesia. One hundred patients were randomly assigned to one of two groups; 50 patients received transcutaneous electrical nerve stimulation applied to the trapezius muscle and 50 patients acted as controls. Postoperative posterior neck pain and anterior wound pain were evaluated using an 11-point numerical rating scale at 30 min, 6 h, 24 h and 48 h following surgery. The numerical rating scale for posterior neck pain was significantly lower in the transcutaneous electrical nerve stimulation group compared with the control group at all time points (p < 0.05). There were no significant differences in the numerical rating scale for anterior wound pain at any time point. No adverse effects related to transcutaneous electrical nerve stimulation were observed. We conclude that intra-operative transcutaneous electrical nerve stimulation applied to the trapezius muscle reduced posterior neck pain following thyroidectomy. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  5. Effects of transcranial direct current stimulation (tDCS on consolidation of fear memory

    Directory of Open Access Journals (Sweden)

    Manish eAsthana

    2013-09-01

    Full Text Available It has been shown that applying transcranial direct current stimulation (tDCS over the dorsolateral prefrontal cortex (DLPFC influences declarative memory processes. This study investigates the efficacy of tDCS on emotional memory consolidation, especially experimental fear conditioning. We applied an auditory fear-conditioning paradigm; in which two differently colored squares (blue and yellow were presented as conditioned stimuli (CS and an auditory stimulus as unconditioned stimulus (UCS. Sixty-nine participants were randomly assigned into three groups: anodal, cathodal and sham stimulation. The participants of the two active groups (i.e., anodal and cathodal received tDCS over the left DLPFC for 12 minutes after fear conditioning. The effect of fear conditioning and consolidation (24 hours later was measured by assessing the skin conductance response (SCR to the CS. The results provide evidence that cathodal stimulation of the left DLPFC leads to an inhibitory effect on fear memory consolidation compared to anodal and sham stimulation, as indicated by decreased SCRs to CS+ presentation during extinction training at day 2. In conclusion, current work suggests that cathodal stimulation interferes with processes of fear memory consolidation.

  6. Caffeine and other sympathomimetic stimulants: modes of action and effects on sports performance.

    Science.gov (United States)

    Jones, Gareth

    2008-01-01

    Stimulants, illegal and legal, continue to be used in competitive sport. The evidence for the ergogenic properties of the most potent stimulants, amphetamines, cocaine and ephedrine, is mostly insubstantial. Low doses of amphetamines may aid performance where effects of fatigue adversely affect higher psychomotor activity. Pseudoephedrine, at high doses, has been suggested to improve high intensity and endurance exercise but phenylpropanolamine has not been proven to be ergogenic. Only caffeine has substantial experimental backing for being ergogenic in exercise. The mode of action of these stimulants centres on their ability to cause persistence of catecholamine neurotransmitters, with the exception of caffeine which is an adenosine receptor antagonist. By these actions, the stimulants are able to influence the activity of neuronal control pathways in the central (and peripheral) nervous system. Rodent models suggest that amphetamines and cocaine interact with different pathways to that affected by caffeine. Caffeine has a variety of pharmacological effects but its affinity for adenosine receptors is comparable with the levels expected to exist in the body after moderate caffeine intake, thus making adenosine receptor blockade the favoured mode of ergogenic action. However, alternative modes of action to account for the ergogenic properties of caffeine have been supported in the literature. Biochemical mechanisms that are consistent with more recent research findings, involving proteins such as DARPP-32 (dopamine and cAMP-regulated phosphoprotein), are helping to rationalize the molecular details of stimulant action in the central nervous system.

  7. Effect of noisy galvanic vestibular stimulation on center of pressure sway of static standing posture.

    Science.gov (United States)

    Inukai, Yasuto; Otsuru, Naofumi; Masaki, Mitsuhiro; Saito, Kei; Miyaguchi, Shota; Kojima, Sho; Onishi, Hideaki

    The vestibular system is involved in the control of standing balance. Galvanic vestibular stimulation (GVS) is a noninvasive technique that can stimulate the vestibular system. In recent years, noisy GVS (nGVS) using noise current stimulation has been attempted, but it has not been clarified whether it affects postural sway in open-eye standing. The purpose of this study was to clarify the influence of nGVS on the center of pressure (COP) sway measurement in open-eye standing postural control and identify the responders of nGVS. nGVS (0.1-640 Hz) was delivered at 0.4 and 1.0 mA over the bipolar mastoid. COP sway root mean square area, sway path length, medio-lateral (ML) mean velocity, and antero-posterior (AP) mean velocity before and during nGVS in an open-eye standing posture was measured. nGVS at 0.4 and 1.0 mA significantly reduced sway path length, mean velocity. The stimulation effect of nGVS was also large in subjects with a long sway path. For subjects with high COP sway of Baseline, nGVS was effective even with stimulation for a short duration (5 s). These findings suggest that nGVS improves postural sway in an open-eye standing posture among young subjects. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effects of different lower-limb sensory stimulation strategies on postural regulation?A systematic review and meta-analysis

    OpenAIRE

    Woo, Mei Teng; Davids, Keith; Liukkonen, Jarmo; Orth, Dominic; Chow, Jia Yi; Jaakkola, Timo

    2017-01-01

    Systematic reviews of balance control have tended to only focus on the effects of single lower-limb stimulation strategies, and a current limitation is the lack of comparison between different relevant stimulation strategies. The aim of this systematic review and meta-analysis was to examine evidence of effects of different lower-limb sensory stimulation strategies on postural regulation and stability. Moderate- to high- pooled effect sizes (Unbiased (Hedges’ g) standardized mean differences ...

  9. Time-dependent effects of neuromuscular electrical stimulation on changes in spinal excitability are dependent on stimulation frequency: a preliminary study in healthy adults.

    Science.gov (United States)

    Koyama, Soichiro; Tanabe, Shigeo; Ishikawa, Takuma; Itoh, Syunpei; Kubota, Shinji; Sakurai, Hiroaki; Kanada, Yoshikiyo

    2014-12-01

    Neuromuscular electrical stimulation (NMES) can be used as treatment for spasticity. The present study examined differences in time-dependent effects of NMES depending on stimulation frequency. Forty healthy subjects were separated into four groups (no-stim, NMES of 50, 100, and 200 Hz). The un-conditioned H-reflex amplitude and the H-reflex conditioning-test paradigm were used to measure the effectiveness on monosynaptic Ia excitation of motoneurons in the soleus (SOL) muscle, disynaptic reciprocal Ia inhibition from tibialis anterior (TA) to SOL, and presynaptic inhibition of SOL Ia afferents. Each trial consisted of a 30-min period of NMES applied to the deep peroneal nerve followed by a 30-min period with no stimulation to measure prolonged effects. Measurements were performed periodically. Stimulation applied at all frequencies produced a significant reduction in monosynaptic Ia excitation of motoneurons in the SOL muscle, however, only stimulation with 50 Hz showed prolonged reduction after NMES. NMES frequency did not affect the amount of disynaptic reciprocal Ia inhibition and presynaptic inhibition of Ia afferents. The results show a frequency-dependent effect of NMES on the monosynaptic Ia excitation of motoneurons. This result has implications for selecting the optimal NMES frequency for treatment in patients with spasticity.

  10. Cost effectiveness of responsive stimulation and nutrition interventions on early child development outcomes in Pakistan.

    Science.gov (United States)

    Gowani, Saima; Yousafzai, Aisha K; Armstrong, Robert; Bhutta, Zulfiqar A

    2014-01-01

    Early childhood programs are heralded as a way to improve children's health and educational outcomes. However, few studies in developing countries calculate the effectiveness of quality early childhood interventions. Even fewer estimate the associated costs of such interventions. The study here looks at the costs and effectiveness of a cluster-randomized effectiveness trial on children from birth to 24 months in rural Sindh, Pakistan. Responsive stimulation and/or enhanced nutrition interventions were integrated in the Lady Health Worker program in Pakistan. Outcomes suggest that children who receive responsive stimulation had significantly better development outcomes at 24 months than those who only received enhanced nutrition intervention. A cost-effectiveness analysis of the results verifies that early childhood interventions that include responsive stimulation are more cost effective than a nutrition intervention alone in promoting children's early development. Costs of a responsive stimulation intervention integrated in an existing community-based service providing basic health and nutrition care is approximately US$4 per month per child. We discuss these findings and make recommendations about scaling up and costs for future early child development programs. © 2014 New York Academy of Sciences.

  11. Quinine enhances the behavioral stimulant effect of cocaine in mice.

    Science.gov (United States)

    Huertas, Adriana; Wessinger, William D; Kucheryavykh, Yuri V; Sanabria, Priscila; Eaton, Misty J; Skatchkov, Serguei N; Rojas, Legier V; Maldonado-Martínez, Gerónimo; Inyushin, Mikhail Y

    2015-02-01

    The Na(+)-dependent dopamine transporter (DAT) is primarily responsible for regulating free dopamine (DA) concentrations in the brain by participating in the majority of DA uptake; however, other DA transporters may also participate, especially if cocaine or other drugs of abuse compromise DAT. Recently, such cocaine-insensitive low-affinity mono- and poly-amine OCT transporters were described in astrocytes which use DA as a substrate. These transporters are from a different transporter family and while insensitive to cocaine, they are specifically blocked by quinine and some steroids. Quinine is inexpensive and is often found in injected street drugs as an "adulterant". The present study was designed to determine the participation of OCTs in cocaine dependent behavioral and physiological changes in mice. Using FVB mice we showed, that daily single injections of quinine (10 mg/kg, i.p.) co-administered with cocaine (15 mg/kg, i.p.) for 10 days significantly enhanced cocaine-induced locomotor behavioral sensitization. Quinine had no significant effect on the time course of behavioral activation. In astrocytes from the ventral tegmental area of mice, transporter currents of quinine-sensitive monoamine transporters were also augmented after two weeks of cocaine administration. The importance of low-affinity high-capacity transporters for DA clearance is discussed, explaining the known ability of systemically administered DAT inhibitors to anomalously increase DA clearance. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Effects of strobe light stimulation on postnatal developing rat retina.

    Science.gov (United States)

    Shin, Jung-A; Jeong, Eojin; Kim, In-Beom; Lee, Hwa-Young

    2014-03-01

    The nature and intensity of visual stimuli have changed in recent years because of television and other dynamic light sources. Although light stimuli accompanied by contrast and strength changes are thought to have an influence on visual system development, little information is available on the effects of dynamic light stimuli such as a strobe light on visual system development. Thus, this study was designed to evaluate changes caused by dynamic light stimuli during retinal development. This study used 80 Sprague-Dawley rats. From eye opening (postnatal day 14), half of the rats were maintained on a daily 12-h light/dark cycle (control group) and the remaining animals were raised under a 12-h strobe light (2 Hz)/dark cycle (strobe light-reared group). Morphological analyses and electroretinogram (ERG) were performed at postnatal weeks 3, 4, 6, 8, and 10. Among retinal neurons, tyrosine hydroxylase-immunoreactive (TH-IR, dopaminergic amacrine cells) cells showed marked plastic changes, such as variations in numbers and soma sizes. In whole-mount preparations at 6, 8, and 10 weeks, type I TH-IR cells showed a decreased number and larger somata, while type II TH-IR cells showed an increased number in strobe-reared animals. Functional assessment by scotopic ERG showed that a-wave and b-wave amplitudes increased at 6 and 8 weeks in strobe-reared animals. These results show that exposure to a strobe light during development causes changes in TH-IR cell number and morphology, leading to a disturbance in normal visual functions.

  13. EFFECTIVE STIMULATION WORKERS – BASIS OF ECONOMIC GROWTH COMPANIES

    Directory of Open Access Journals (Sweden)

    V. G. Drobyshev

    2014-01-01

    Full Text Available Summary. At the present stage of development of domestic agricultural production is a key strategic direction of the innovative development of the industry. Tasked by the government to effectively modernize the economy reflect the latest scientific and technological progress, innovation, positive perception of new ideas and breakthrough technologies. In this regard, the decisive role played by the information network , computer systems, high production technology and intellectual resources of society, innovative organization of various spheres of human activity , as well as a new level of relations to knowledge. The main driving force of innovation development of agro-industrial production in Russia at the present stage is the human potential to carry out the restructuring of the agricultural sector with the latest achievements of scientific and technical progress. Famous slogan - "cadres decide everything" under the innovation paradigm of reforming the economy is of particular relevance. One of the important reasons for the low level of innovative development of agricultural production is the lack of motivation of creative work in the agricultural workers business organizations. For the development of advanced technologies for improving the quality and reducing the material cost per unit of cash - produ Dima products they do not receive adequate material compensation. This is largely inhibits the activity of employees in the development of advanced low-cost and resource-saving technologies in agricultural production. We propose an original model for innovative employee incentiveing activity and a real contribution to improving the efficiency of the enterprise. To take into account the personal contribution of the employee in additional economic benefit through innovative component and determining bonuses, proposed to use the "coefficient of innovation activity employee" (CIAE. The value of this coefficient is defined as the ratio of profits

  14. Online effects of transcranial direct current stimulation on prefrontal metabolites in gambling disorder.

    Science.gov (United States)

    Dickler, Maya; Lenglos, Christophe; Renauld, Emmanuelle; Ferland, Francine; Edden, Richard A; Leblond, Jean; Fecteau, Shirley

    2018-03-15

    Gambling disorder is characterized by persistent maladaptive gambling behaviors and is now considered among substance-related and addictive disorders. There is still unmet therapeutic need for these clinical populations, however recent advances indicate that interventions targeting the Glutamatergic/GABAergic system hold promise in reducing symptoms in substance-related and addictive disorders, including gambling disorder. There is some data indicating that transcranial direct current stimulation may hold clinical benefits in substance use disorders and modulate levels of brain metabolites including glutamate and GABA. The goal of the present work was to test whether this non-invasive neurostimulation method modulates key metabolites in gambling disorder. We conducted a sham-controlled, crossover, randomized study, blinded at two levels in order to characterize the effects of transcranial direct current stimulation over the dorsolateral prefrontal cortex on neural metabolites levels in sixteen patients with gambling disorder. Metabolite levels were measured with magnetic resonance spectroscopy from the right dorsolateral prefrontal cortex and the right striatum during active and sham stimulation. Active as compared to sham stimulation elevated prefrontal GABA levels. There were no significant changes between stimulation conditions in prefrontal glutamate + glutamine and N-acetyl Aspartate, or in striatal metabolite levels. Results also indicated positive correlations between metabolite levels during active, but not sham, stimulation and levels of risk taking, impulsivity and craving. Our findings suggest that transcranial direct current stimulation can modulate GABA levels in patients with gambling disorder which may represent an interesting future therapeutic avenue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effectiveness of functional magnetic versus electrical stimulation in women with urinary incontinence.

    Science.gov (United States)

    Bölükbaş, N; Vural, M; Karan, A; Yalçin, O; Eskiyurt, N

    2005-12-01

    Urinary incontinence is one of the most common medical complaints in women. We here propose to evaluate and compare the effects of 2 conservative treatment modalities, functional electrical stimulation (FES) and functional magnetic stimulation (FMS). We studied 22 female patients with urinary incontinence and divided them into 2 treatment groups (14 patients in the FES and 8 in the FMS group). The mean age of the patients in the FES group was 51.14+/-11.9 and in the FMS group 42.25+/-6.9 years. Functional electrical stimulation was applied continuously at 10 Hz and 30-50 Hz in urge and stress urinary incontinence respectively. In mixed urinary incontinence stimulation was applied at 10 Hz for 15 min and at 50 Hz for 15 min. The treatment sessions were for 20 min, 3 times a week for 6-8 weeks (12 with mixed, 2 with stress incontinence). FMS was applied by a magnetic chair, twice weekly for 6 weeks (6 with mixed, 1 with stress urinary and 1 with urge urinary incontinence). The efficacy of the treatment was judged from patient impressions, records in urinary diaries, results of 1 h pad test, perineometry value and digital palpation score. The perineometry value, digital palpation score increased significantly during stimulation compared with prestimulation levels in both groups (Purinary diaries and frequency of micturition were significantly more cured or improved in the FES group (P0.05). Both FES and FMS treatments were effective. FMS does not involve intravaginal stimulation and it is twice a week. Although FMS is not often used it is more cost effective than FES. In order to have exact knowledge of this issue; more research than has been done in a greater number of subjects is required.

  16. Effect of electrical stimulation on motor nerve regeneration in sciatic nerve ligated-mice

    Directory of Open Access Journals (Sweden)

    Farzaneh Samiee

    2017-09-01

    Full Text Available The purpose of this study was to investigate the effect of electrical stimulation on sciatic nerve regeneration and functional recovery of target muscles. Mice were randomly divided into 3 groups: ligated without electrical stimulation, ligated with electrical stimulation and control (non-ligated. The unilateral peripheral mononeuropathy was produced on the right hind limb. Sciatic nerve was then electrically stimulated daily for a period of 2 weeks (duration: 0.2 msec, frequency: 100Hz, amplitude: 15mA. Evoked surface EMG was recorded from biceps femoris (BF and gluteus maximus (GM muscles on the 3rd, 7th, 10th and 14th day after sciatic nerve ligation. Muscle force and sensitivity was determined by processing of the recorded EMG signals in time and frequency domains respectively. The results showed electrical stimulation (ES produced a significant increase in the EMG response of BF, and muscle force significantly increased on the 14th day (p<0.001, however no significant difference was found in GM muscle force between experimental groups. This may be due to possible innervation by inferior gluteal nerve. Frequency analysis of BF signals indicates that hyperalgesia remained after 14 days in both ligated groups. On the 14th day no difference in GM muscle sensitivity was found between groups. In conclusion, the results of this study have shown that the electrical stimulation of sciatic nerve accelerates nerve repair and indirectly improves BF muscle force to a comparable level with control without effect on muscle sensitivity. However, ES had no effect on GM muscle force and sensitivity.

  17. Effect of electrical stimulation on motor nerve regeneration in sciatic nerve ligated-mice

    Science.gov (United States)

    Samiee, Farzaneh; Zarrindast, Mohammad-Reza

    2017-01-01

    The purpose of this study was to investigate the effect of electrical stimulation on sciatic nerve regeneration and functional recovery of target muscles. Mice were randomly divided into 3 groups: ligated without electrical stimulation, ligated with electrical stimulation and control (non-ligated). The unilateral peripheral mononeuropathy was produced on the right hind limb. Sciatic nerve was then electrically stimulated daily for a period of 2 weeks (duration: 0.2 msec, frequency: 100Hz, amplitude: 15mA). Evoked surface EMG was recorded from biceps femoris (BF) and gluteus maximus (GM) muscles on the 3rd, 7th, 10th and 14th day after sciatic nerve ligation. Muscle force and sensitivity was determined by processing of the recorded EMG signals in time and frequency domains respectively. The results showed electrical stimulation (ES) produced a significant increase in the EMG response of BF, and muscle force significantly increased on the 14th day (p<0.001), however no significant difference was found in GM muscle force between experimental groups. This may be due to possible innervation by inferior gluteal nerve. Frequency analysis of BF signals indicates that hyperalgesia remained after 14 days in both ligated groups. On the 14th day no difference in GM muscle sensitivity was found between groups. In conclusion, the results of this study have shown that the electrical stimulation of sciatic nerve accelerates nerve repair and indirectly improves BF muscle force to a comparable level with control without effect on muscle sensitivity. However, ES had no effect on GM muscle force and sensitivity. PMID:29118955

  18. Image-guided preoperative prediction of pyramidal tract side effect in deep brain stimulation

    Science.gov (United States)

    Baumgarten, C.; Zhao, Y.; Sauleau, P.; Malrain, C.; Jannin, P.; Haegelen, C.

    2016-03-01

    Deep brain stimulation of the medial globus pallidus is a surgical procedure for treating patients suffering from Parkinson's disease. Its therapeutic effect may be limited by the presence of pyramidal tract side effect (PTSE). PTSE is a contraction time-locked to the stimulation when the current spreading reaches the motor fibers of the pyramidal tract within the internal capsule. The lack of side-effect predictive model leads the neurologist to secure an optimal electrode placement by iterating clinical testing on an awake patient during the surgical procedure. The objective of the study was to propose a preoperative predictive model of PTSE. A machine learning based method called PyMAN (for Pyramidal tract side effect Model based on Artificial Neural network) that accounted for the current of the stimulation, the 3D electrode coordinates and the angle of the trajectory, was designed to predict the occurrence of PTSE. Ten patients implanted in the medial globus pallidus have been tested by a clinician to create a labeled dataset of the stimulation parameters that trigger PTSE. The kappa index value between the data predicted by PyMAN and the labeled data was .78. Further evaluation studies are desirable to confirm whether PyMAN could be a reliable tool for assisting the surgeon to prevent PTSE during the preoperative planning.

  19. Prefrontal Cortex and Neostriatum Self-Stimulation In the Rat : Differential Effects Produced by Apomorphine

    NARCIS (Netherlands)

    Mora, F.; Phillips, A.G.; Koolhaas, J.M.; Rolls, E.T.

    1976-01-01

    In a dose-response experiment, the effects of intraperitoneal injections of the dopamine receptor agonist, apomorphine (0.075, 0.15, 0.3, 0.6 and 1.2 mg/kg) were studied on self-stimulation elicited from electrodes implanted in the medial and sulcal prefrontal cortex and caudate-putamen in the rat.

  20. Anxiolytic and antidepressive effects of electric stimulation of the paleocerebellar cortex in pentylenetetrazol kindled rats

    NARCIS (Netherlands)

    Godlevsky, L.S.; Muratova, T.N.; Kresyun, N.V.; Luijtelaar, E.L.J.M. van; Coenen, A.M.L.

    2014-01-01

    Anxiety and depression are component of interictal behavioral deteriorations that occur as a consequence of kindling, a procedure to induce chronic epilepsy. The aim of this study was to evaluate the possible effects of electrical stimulation (ES) of paleocerebellar cortex on anxiety and

  1. Effect of surgery on sensory threshold and somatosensory evoked potentials after skin stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1990-01-01

    We have studied the effect of surgical injury on cutaneous sensitivity and somatosensory evoked potentials (SSEP) to dermatomal electrical stimulation in 10 patients undergoing hysterectomy. Forty-eight hours after surgery, sensory threshold increased from 2.2 (SEM 0.3) mA to 4.4 (1.1) mA (P less...

  2. Neuropsychological effects of bilateral STN stimulation in Parkinson disease - A controlled study

    NARCIS (Netherlands)

    Smeding, HMM; Koning-Haanstra, M; Schuurman, PR; Nijssen, P; van Laar, T; Schmand, B; Speelman, J.D.

    2006-01-01

    Objective: To evaluate the cognitive and behavioral effects of bilateral subthalamic nucleus (STN) stimulation in patients with Parkinson disease (PD). Methods: The authors included 103 patients; 99 patients were evaluated 6 months after surgery. A control group of 39 patients with PD was formed and

  3. The Effect of Galvanic Vestibular Stimulation on Postural Response of Down Syndrome Individuals on the Seesaw

    Science.gov (United States)

    Carvalho, R. L.; Almeida, G. L.

    2011-01-01

    In order to better understand the role of the vestibular system in postural adjustments on unstable surfaces, we analyzed the effects of galvanic vestibular stimulation (GVS) on the pattern of muscle activity and joint displacements (ankle knee and hip) of eight intellectually normal participants (control group--CG) and eight control group…

  4. Effect of epidural 0.25% bupivacaine on somatosensory evoked potentials to dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1989-01-01

    The effect of lumbar epidural analgesia with similar volumes (about 25 ml) of 0.25% and 0.5% bupivacaine on early (less than 0.5 seconds) somatosensory evoked potentials (SEPs) to electrical stimulation of the S1, L1, and T10 dermatomes was examined in two groups of ten patients. Level of sensory...

  5. Early assessment of cost-effectiveness of gastric electrical stimulation for diabetic nausea and vomiting

    DEFF Research Database (Denmark)

    Klinge, Mette; Rask, Peter; Ejskjaer, Niels

    2017-01-01

    stimulation (GES) may be offered in selected cases, as a minimally invasive, but expensive, therapeutic option. Our aims are to evaluate the clinical effect and the cost-utility of GES as a treatment for severe diabetic recurrent nausea and/or vomiting. Methods Among 33 diabetes patients implanted with GES...

  6. Effects of etidocaine administered epidurally on changes in somatosensory evoked potentials after dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1991-01-01

    The effect of lumbar epidural anesthesia with similar volumes (approximately 20 ml) of 1% and 1.5% etidocaine on early (less than 0.5 seconds) somatosensory evoked potentials (SEPs) to electrical stimulation of the S1, L1, and T10 dermatomes was examined in two groups of ten patients...

  7. Cognitive effects of deep brain stimulation in patients with obsessive-compulsive disorder

    NARCIS (Netherlands)

    Mantione, Mariska; Nieman, Dorien; Figee, Martijn; van den Munckhof, Pepijn; Schuurman, Rick; Denys, Damiaan

    2015-01-01

    Deep brain stimulation (DBS) is a promising treatment for treatment-refractory obsessive-compulsive disorder (OCD). However, the effects of DBS on cognitive functioning remain unclear. Therefore, we aimed to assess cognitive safety of DBS for treatment-refractory OCD and the association between

  8. Cognitive effects of deep brain stimulation in patients with obsessive-compulsive disorder

    NARCIS (Netherlands)

    Mantione, Mariska; Nieman, Dorien; Figee, Martijn; van den Munckhof, Pepijn; Schuurman, Rick; Denys, D.

    2015-01-01

    BACKGROUND: Deep brain stimulation (DBS) is a promising treatment for treatment-refractory obsessive-compulsive disorder (OCD). However, the effects of DBS on cognitive functioning remain unclear. Therefore, we aimed to assess cognitive safety of DBS for treatment-refractory OCD and the association

  9. Clinical efficacy of electrical stimulation exercise training : Effects on health, fitness, and function

    NARCIS (Netherlands)

    Janssen, T. W J; Glaser, R. M.; Shuster, D. B.

    1998-01-01

    The purpose of this article is to summarize research findings pertaining to the effects of functional electrical stimulation (FES) lower limb exercise training on health, fitness, and function in individuals with spinal cord injury. This lays the foundation for defining the potential clinical

  10. The effect of altitude on breaking seed dormancy and stimulation of ...

    African Journals Online (AJOL)

    Persian hogweed is a perennial herb and aromatic plant which has pharmaceutical and fodder values, and the main propagation method of this species is seed. The goal of this study was to investigate the effect of altitude on breaking dormancy and stimulate seed germination of this species. The study was designed and ...

  11. 76 FR 48062 - Effective Date of Requirement for Premarket Approval for Cranial Electrotherapy Stimulator

    Science.gov (United States)

    2011-08-08

    ... Investigation of the Effectiveness of Cranial Electrotherapy Stimulation in the Treatment of Anxiety Disorders... * * * is sufficient time for manufacturers and importers to develop the data and conduct the investigations... involved observational baseline versus post- treatment without a control and therefore provided...

  12. The Joint Effects of Spatial Cueing and Transcranial Direct Current Stimulation on Visual Acuity

    Directory of Open Access Journals (Sweden)

    Taly Bonder

    2018-02-01

    Full Text Available The present study examined the mutual influence of cortical neuroenhancement and allocation of spatial attention on perception. Specifically, it explored the effects of transcranial Direct Current Stimulation (tDCS on visual acuity measured with a Landolt gap task and attentional precues. The exogenous cues were used to draw attention either to the location of the target or away from it, generating significant performance benefits and costs. Anodal tDCS applied to posterior occipital area for 15 min improved performance during stimulation, reflecting heightened visual acuity. Reaction times were lower, and accuracy was higher in the tDCS group, compared to a sham control group. Additionally, in post-stimulation trials tDCS significantly interacted with the effect of precuing. Reaction times were lower in valid cued trials (benefit and higher in invalid trials (cost compared to neutrally cued trials, the effect which was pronounced stronger in tDCS group than in sham control group. The increase of cost and benefit effects in the tDCS group was of a similar magnitude, suggesting that anodal tDCS influenced the overall process of attention orienting. The observed interaction between the stimulation of the visual cortex and precueing indicates a magnification of attention modulation.

  13. Acceptability and Potential Effectiveness of a Foot Drop Stimulator in Children and Adolescents with Cerebral Palsy

    Science.gov (United States)

    Prosser, Laura A.; Curatalo, Lindsey A.; Alter, Katharine E.; Damiano, Diane L.

    2012-01-01

    Aim: Ankle-foot orthoses are the standard of care for foot drop in cerebral palsy (CP), but may overly constrain ankle movement and limit function in those with mild CP. Functional electrical stimulation (FES) may be a less restrictive and more effective alternative, but has rarely been used in CP. The primary objective of this study was to…

  14. Effectiveness of diaphragmatic stimulation with single-channel electrodes in rabbits

    Directory of Open Access Journals (Sweden)

    Rodrigo Guellner Ghedini

    2013-06-01

    Full Text Available Every year, a large number of individuals become dependent on mechanical ventilation because of a loss of diaphragm function. The most common causes are cervical spinal trauma and neuromuscular diseases. We have developed an experimental model to evaluate the performance of electrical stimulation of the diaphragm in rabbits using single-channel electrodes implanted directly into the muscle. Various current intensities (10, 16, 20, and 26 mA produced tidal volumes above the baseline value, showing that this model is effective for the study of diaphragm performance at different levels of electrical stimulation

  15. Neural Stimulation Has a Long-Term Effect on Foreign Vocabulary Acquisition.

    Science.gov (United States)

    Pasqualotto, Achille; Kobanbay, Begüm; Proulx, Michael J

    2015-01-01

    Acquisition of a foreign language is a challenging task that is becoming increasingly more important in the world nowadays. There is evidence suggesting that the frontal and temporal cortices are involved in language processing and comprehension, but it is still unknown whether foreign language acquisition recruits additional cortical areas in a causal manner. For the first time, we used transcranial random noise stimulation on the frontal and parietal brain areas, in order to compare its effect on the acquisition of unknown foreign words and a sham, or placebo, condition was also included. This type of noninvasive neural stimulation enhances cortical activity by boosting the spontaneous activity of neurons. Foreign vocabulary acquisition was tested both immediately and seven days after the stimulation. We found that stimulation on the posterior parietal, but not the dorsolateral prefrontal cortex or sham stimulation, significantly improved the memory performance in the long term. These results suggest that the posterior parietal cortex is directly involved in acquisition of foreign vocabulary, thus extending the "linguistic network" to this area.

  16. The Effect of High-Frequency Stimulation on Sensory Thresholds in Chronic Pain Patients.

    Science.gov (United States)

    Youn, Youngwon; Smith, Heather; Morris, Brian; Argoff, Charles; Pilitsis, Julie G

    2015-01-01

    High-frequency stimulation (HFS) has recently gained attention as an alternative to parameters used in traditional spinal cord stimulation (SCS). Because HFS is paresthesia free, the gate theory of pain control as a basis of SCS has been called into question. The mechanism of action of HFS remains unclear. We compare the effects of HFS and traditional SCS on quantitative sensory testing parameters to provide insight into how HFS modulates the nervous system. Using quantitative sensory testing, we measured thermal detection and pain thresholds and mechanical detection and pressure pain thresholds, as well as vibratory detection, in 20 SCS patients off stimulation (OFF), on traditional stimulation (ON) and on HFS in a randomized order. HFS significantly increased the mechanical detection threshold compared to OFF stimulation (p < 0.001) and traditional SCS (p = 0.01). Pressure pain detection and vibratory detection thresholds also significantly increased with HFS compared to ON states (p = 0.04 and p = 0.01, respectively). In addition, HFS significantly decreased 10- and 40-gram pinprick detection compared to OFF states (both p = 0.01). No significant differences between OFF, ON and HFS states were seen in thermal and thermal pain detection. HFS is a new means of modulating chronic pain. The mechanism by which HFS works seems to differ from that of traditional SCS, offering a new platform for innovative advancements in treatment and a greater potential to treat patients by customizing waveforms. © 2015 S. Karger AG, Basel.

  17. Effect of subthalamic deep brain stimulation on non-motor fluctuations in Parkinson's disease.

    Science.gov (United States)

    Azulay, Jean-Philippe; Witjas, Tatiana; Eusebio, Alexandre

    2013-04-01

    The non-motor consequences of subthalamic stimulation are largely questioned. Cognition, motivation, anxiety, depression and even occurrence of suicides have been considered as a potential consequence of the surgical intervention. Non-motor fluctuations are present in all the patients with motor fluctuations and may sometimes be even more invalidating. Interestingly, subthalamic deep brain stimulation alleviates non-motor fluctuations allowing strikingly successful effects on sensory, dysautonomic and cognitive fluctuations while psychic fluctuations respond less consistently to this treatment. Nevertheless, severe mood fluctuations, oscillating from Off dysphoria to ON hypomania, are frequently associated with addictive behaviors and improve dramatically after subthalamic stimulation. This may be a further argument to support the indication of surgery for these patients.

  18. Effectiveness of percutaneous tibial nerve stimulation in the treatment of overactive bladder syndrome

    Directory of Open Access Journals (Sweden)

    de Wall LL

    2017-08-01

    Full Text Available Liesbeth L de Wall, John PFA Heesakkers Department of Urology, Radboud University Medical Centre, Nijmegen, The NetherlandsAbstract: Overactive bladder syndrome (OAB is a common condition affecting adults and children worldwide, resulting in a substantial economic and psychological burden. Percutaneous tibial nerve stimulation (PTNS is derived from acupuncture used in Chinese traditional medicine and was first described in the early 1980s. It is a neuromodulation technique used to modulate bladder function and facilitate storage. Being a minimally invasive, easily applicable, but time-consuming treatment, future developments with implantable devices might be the solution for the logistical problems and economic burden associated with PTNS on the long term. This nonsystematic review provides a current overview on PTNS and its effectiveness in the treatment of OAB for both adults and children. Keywords: overactive bladder, percutaneous tibial nerve stimulation, neuromodulation, electrical stimulation 

  19. Effects of pulse current stimulation on the thermal fatigue crack propagation behavior of CHWD steel

    International Nuclear Information System (INIS)

    Lin, H.Q.; Zhao, Y.G.; Gao, Z.M.; Han, L.G.

    2008-01-01

    The fatigue crack propagating behaviors of cast hot working die (CHWD) steel untreated and treated by an electric current in the intermediate stage of thermal fatigue were investigated in the present study. The circle/elliptical heating affected zone (HAZ) was formed ahead of the notch tip on the fatigued specimens after pulse electric current stimulation. Both SEM observation and X-ray diffraction analysis revealed that pulse electric current stimulation refined grains/subgrains in the HAZs. With the prolonging of discharging duration, the grains/subgrains decreased in size and the dislocation density and microhardness increased gradually. The grain refinement and dislocation density increase played an important role in the material strengthening, which inevitably enhanced the propagation resistance and delayed the propagation of thermal fatigue cracks. Therefore, the pulse electric current stimulation was an effective method to improve the service lifetime of die material

  20. Effects of stimulation of the feeding and satiety centres on gastric motility after irradiation in rats

    International Nuclear Information System (INIS)

    Chen Guozhi; Liu Zhihong

    1989-01-01

    The effects of the feeding and satiety centres on gastric motility were studied in anesthetized rats by electrically stimulating these centres and recording the intragastric pressure. The results were as follow: (1) There was no difference in the discharges of the feeding and satiety centres between 8 Gy irradiated rats and the controls. (2) Stimulation of the satiety centre elicited chiefly inhibition, whereas that of the feeding centre excitation of gastric motility in normal rats; (3) On the 2nd to 4th day after 8 Gy irradiation stimulation of both the feeding and satiety centres usually revealed inhibition of gastric motility. The above results indicate that the inhibition of gastric motility after irradiation is independent of the activities of feeding and satiety centres

  1. Prolactin-stimulated mitogenesis in the Nb2 rat lymphoma cell: Lack of protoporphyrin IX effects

    International Nuclear Information System (INIS)

    Gerrish, K.E.; Putnam, C.W.; Laird, H.E. II

    1990-01-01

    Pharmacological characterization of the Nb2 cell peripheral-type benzodiazepine receptor (PBR) was determined using selected 1,4-benzodiazepines, PK 11195, and protoporphyrin IX (PPIX) to compete for specific [ 3 H] Ro5-4864 binding. These data suggest that PPIX possesses an affinity for the Nb2 cell PBR. We have previously reported that the peripheral benzodiazepine ligands, Ro5-4864 and PK 11195, modulate prolactin-stimulated mitogenesis in the Nb2 cell. In contrast, PPIX, a putative endogenous ligand for the PBR had no effect on prolactin-stimulated mitogenesis in the Nb2 cell over the concentration range from 10 -15 M to 10 -6 M. Taken together these data show that PPIX has an affinity for the Nb2 cell PBR but does not modulate prolactin-stimulated mitogenesis at concentrations which should bind to the Nb2 cell PBR

  2. Prolactin-stimulated mitogenesis in the Nb2 rat lymphoma cell: Lack of protoporphyrin IX effects

    Energy Technology Data Exchange (ETDEWEB)

    Gerrish, K.E.; Putnam, C.W.; Laird, H.E. II (Univ. of Arizona, Tucson (USA))

    1990-01-01

    Pharmacological characterization of the Nb2 cell peripheral-type benzodiazepine receptor (PBR) was determined using selected 1,4-benzodiazepines, PK 11195, and protoporphyrin IX (PPIX) to compete for specific ({sup 3}H) Ro5-4864 binding. These data suggest that PPIX possesses an affinity for the Nb2 cell PBR. We have previously reported that the peripheral benzodiazepine ligands, Ro5-4864 and PK 11195, modulate prolactin-stimulated mitogenesis in the Nb2 cell. In contrast, PPIX, a putative endogenous ligand for the PBR had no effect on prolactin-stimulated mitogenesis in the Nb2 cell over the concentration range from 10{sup {minus}15} M to 10{sup {minus}6} M. Taken together these data show that PPIX has an affinity for the Nb2 cell PBR but does not modulate prolactin-stimulated mitogenesis at concentrations which should bind to the Nb2 cell PBR.

  3. Dyspnea as a side effect of subthalamic nucleus deep brain stimulation for Parkinson's disease.

    Science.gov (United States)

    Chalif, Joshua I; Sitsapesan, Holly A; Pattinson, Kyle T S; Herigstad, Mari; Aziz, Tipu Z; Green, Alexander L

    2014-02-01

    Bilateral subthalamic nucleus deep brain stimulation for Parkinson's disease improves limb function. Unpublished observations from our clinic noted that some subthalamic nucleus deep brain stimulation patients complain of post-operative dyspnea. Therefore, we designed a prospective, longitudinal study to characterize this in greater depth. We used specific questionnaires to assess dyspnea in patients with electrodes in the subthalamic nucleus (n=13) or ventral intermediate thalamus (n=7). St. George's Hospital Respiratory Questionnaire symptom subscale scores were greater in subthalamic nucleus patients (median=18.60, interquartile range=40.80) than ventral intermediate thalamus patients (median = 0.00, interquartile range=15.38) at greater than 6 months post-operatively (pdyspnea severity. We have shown, for the first time, that dyspnea can be a side effect of subthalamic nucleus deep brain stimulation, and that this dyspnea may be highly disabling. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Modelling the effect of electrode displacement on transcranial direct current stimulation (tDCS)

    Science.gov (United States)

    Ramaraju, Sriharsha; Roula, Mohammed A.; McCarthy, Peter W.

    2018-02-01

    Objective. Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers a low-intensity, direct current to cortical areas with the purpose of modulating underlying brain activity. Recent studies have reported inconsistencies in tDCS outcomes. The underlying assumption of many tDCS studies has been that replication of electrode montage equates to replicating stimulation conditions. It is possible however that anatomical difference between subjects, as well as inherent inaccuracies in montage placement, could affect current flow to targeted areas. The hypothesis that stimulation of a defined brain region will be stable under small displacements was tested. Approach. Initially, we compared the total simulated current flowing through ten specific brain areas for four commonly used tDCS montages: F3-Fp2, C3-Fp2, Fp1-F4, and P3-P4 using the software tool COMETS. The effect of a slight (~1 cm in each of four directions) anode displacement on the simulated regional current density for each of the four tDCS montages was then determined. Current flow was calculated and compared through ten segmented brain areas to determine the effect of montage type and displacement. The regional currents, as well as the localised current densities, were compared with the original electrode location, for each of these new positions. Main results. Recommendations for montages that maximise stimulation current for the ten brain regions are considered. We noted that the extent to which stimulation is affected by electrode displacement varies depending on both area and montage type. The F3-Fp2 montage was found to be the least stable with up to 38% change in average current density in the left frontal lobe while the Fp1-F4 montage was found to the most stable exhibiting only 1% change when electrodes were displaced. Significance. These results indicate that even relatively small changes in stimulation electrode placement appear to result in surprisingly large

  5. Effects of Anodal Transcranial Direct Current Stimulation on Visually Guided Learning of Grip Force Control

    Directory of Open Access Journals (Sweden)

    Tamas Minarik

    2015-03-01

    Full Text Available Anodal transcranial Direct Current Stimulation (tDCS has been shown to be an effective non-invasive brain stimulation method for improving cognitive and motor functioning in patients with neurological deficits. tDCS over motor cortex (M1, for instance, facilitates motor learning in stroke patients. However, the literature on anodal tDCS effects on motor learning in healthy participants is inconclusive, and the effects of tDCS on visuo-motor integration are not well understood. In the present study we examined whether tDCS over the contralateral motor cortex enhances learning of grip-force output in a visually guided feedback task in young and neurologically healthy volunteers. Twenty minutes of 1 mA anodal tDCS were applied over the primary motor cortex (M1 contralateral to the dominant (right hand, during the first half of a 40 min power-grip task. This task required the control of a visual signal by modulating the strength of the power-grip for six seconds per trial. Each participant completed a two-session sham-controlled crossover protocol. The stimulation conditions were counterbalanced across participants and the sessions were one week apart. Performance measures comprised time-on-target and target-deviation, and were calculated for the periods of stimulation (or sham and during the afterphase respectively. Statistical analyses revealed significant performance improvements over the stimulation and the afterphase, but this learning effect was not modulated by tDCS condition. This suggests that the form of visuomotor learning taking place in the present task was not sensitive to neurostimulation. These null effects, together with similar reports for other types of motor tasks, lead to the proposition that tDCS facilitation of motor learning might be restricted to cases or situations where the motor system is challenged, such as motor deficits, advanced age, or very high task demand.

  6. Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation.

    Science.gov (United States)

    Nanduri, Devyani; Fine, Ione; Horsager, Alan; Boynton, Geoffrey M; Humayun, Mark S; Greenberg, Robert J; Weiland, James D

    2012-01-20

    In an effort to restore functional form vision, epiretinal prostheses that elicit percepts by directly stimulating remaining retinal circuitry were implanted in human subjects with advanced retinitis pigmentosa RP). In this study, manipulating pulse train frequency and amplitude had different effects on the size and brightness of phosphene appearance. Experiments were performed on a single subject with severe RP (implanted with a 16-channel epiretinal prosthesis in 2004) on nine individual electrodes. Psychophysical techniques were used to measure both the brightness and size of phosphenes when the biphasic pulse train was varied by either modulating the current amplitude (with constant frequency) or the stimulating frequency (with constant current amplitude). Increasing stimulation frequency always increased brightness, while having a smaller effect on the size of elicited phosphenes. In contrast, increasing stimulation amplitude generally increased both the size and brightness of phosphenes. These experimental findings can be explained by using a simple computational model based on previous psychophysical work and the expected spatial spread of current from a disc electrode. Given that amplitude and frequency have separable effects on percept size, these findings suggest that frequency modulation improves the encoding of a wide range of brightness levels without a loss of spatial resolution. Future retinal prosthesis designs could benefit from having the flexibility to manipulate pulse train amplitude and frequency independently (clinicaltrials.gov number, NCT00279500).

  7. The effect of surface electrical stimulation on swallowing in dysphagic Parkinson patients.

    Science.gov (United States)

    Baijens, Laura W J; Speyer, Renée; Passos, Valeria Lima; Pilz, Walmari; Roodenburg, Nel; Clavé, Père

    2012-12-01

    Surface electrical stimulation has been applied on a large scale to treat oropharyngeal dysphagia. Patients suffering from oropharyngeal dysphagia in the presence of Parkinson's disease have been treated with surface electrical stimulation. Because of controversial reports on this treatment, a pilot study was set up. This study describes the effects of a single session of surface electrical stimulation using different electrode positions in ten patients with idiopathic Parkinson's disease (median Hoehn and Yahr score: II) and oropharyngeal dysphagia compared to ten age- and gender-matched healthy control subjects during videofluoroscopy of swallowing. Three different electrode positions were applied in random order per subject. For each electrode position, the electrical current was respectively turned "on" and "off" in random order. Temporal, spatial, and visuoperceptual variables were scored by experienced raters who were blinded to the group, electrode position, and status (on/off) of the electrical current. Interrater and interrater reliabilities were calculated. Only a few significant effects of a single session of surface electrical stimulation using different electrode positions in dysphagic Parkinson patients could be observed in this study. Furthermore, significant results for temporal and spatial variables were found regardless of the status of the electrical current in both groups suggesting placebo effects. Following adjustment for electrical current status as well as electrode positions (both not significant, P > 0.05) in the statistical model, significant group differences between Parkinson patients and healthy control subjects emerged. Further studies are necessary to evaluate the potential therapeutic effect and mechanism of electrical stimulation in dysphagic patients with Parkinson's disease.

  8. The effects of temporary spinal cord stimulation (or spinal nerve root stimulation) on the management of early postherpetic neuralgia from one to six months of its onset.

    Science.gov (United States)

    Yanamoto, Fujio; Murakawa, Kazushige

    2012-01-01

    We examined the efficacy of temporary spinal cord stimulation involving the insertion of only a needle and quadripolar lead into the epidural space and applied using an extracorporeal stimulation generator for a few weeks of early postherpetic neuralgia from one to six months of its onset. Temporary spinal cord stimulation was applied in 33 patients with postherpetic neuralgia and in whom epidural block was effective. Temporary spinal cord stimulation was applied over seven days, and analgesic effects was evaluated based on visual analog scale (VAS) values before and after one, three, and six months following treatment. An analgesic effect was defined as a decrease of over 50% in the VAS value compared with before treatment. VAS values decreased significantly from 68.1 mm (standard deviation [SD]± 15.2) before treatment to 37.5 mm (SD ± 20.4) after one month, to 38.0 mm (SD ± 18.7) after three months, and to 35.0 mm (SD ± 21.3) after six months. In 21/33 (63.6%) cases, an analgesic effect, defined as a decrease in the VAS value of greater than 50%, was observed one month after treatment, in 20/33 (60.6%) cases such an effect was observed three months after treatment, and in 21/33 (63.6%) cases the effect was still observed six months after treatment. Temporary spinal cord stimulation is an effective analgesic method for early postherpetic neuralgia from one to six months of its onset. © 2012 International Neuromodulation Society.

  9. Static Standing Trunk Sway Assessment in Amputees – Effects of Sub-Threshold Stimulation

    Directory of Open Access Journals (Sweden)

    L. Ming-Yih

    2007-01-01

    Full Text Available Sub-threshold electrical stimulation can enhance the sensitivity of the human somatosensory system to improve the balance control capability of elderly was shown in recent rehabilitation articles. The purpose of this study was to evaluate the postural sway of trans-tibial amputees when performing single leg quiet standing on firm surface. Four unilateral trans-tibial amputees who consecutively wore prosthetics over 2 years were recruited in this study. Subjects performed single leg quiet standing trails with sub-threshold electrical stimulation applied at the quadriceps muscle during the trails. Spatial co-ordinates for the determination kinematic data (sway distance of the center of mass (COM on second sacral (S2 were collected using an ultrasound-based Zebris CMS-HS system. The single leg quiet standing test is measure considered to assess postural steadiness in a static position by a spatial measurement. The common notion is that a better postural steadiness, i.e. less postural sway, allows for longer time single leg quiet standing. However, there is lack of evidence how postural steadiness during single leg quiet standing changes over time. In this article, we hypothesized that the static balance of single leg quiet standing could be improved for providing proprioceptive neuromuscular facilitation using sub-sensory stimulation in amputees. To test this hypothesis, a computerized sub-threshold low-level electrical stimulation device was developed and proposed for clinical study. Experimental results show that reduction in all of the postural sway indices (constant time sway length, max sway distance and average sway distance and increase in single leg support time index during single leg quiet standing by applying sub-sensory stimulation. The single leg quiet standing test findings suggest that sub-threshold electrical stimulation rehabilitation strategies may be effective in improving static balance performance for amputees.

  10. Recreational stimulants, herbal, and spice cannabis: The core psychobiological processes that underlie their damaging effects.

    Science.gov (United States)

    Parrott, Andrew C; Hayley, Amie C; Downey, Luke A

    2017-05-01

    Recreational drugs are taken for their positive mood effects, yet their regular usage damages well-being. The psychobiological mechanisms underlying these damaging effects will be debated. The empirical literature on recreational cannabinoids and stimulant drugs is reviewed. A theoretical explanation for how they cause similar types of damage is outlined. All psychoactive drugs cause moods and psychological states to fluctuate. The acute mood gains underlie their recreational usage, while the mood deficits on withdrawal explain their addictiveness. Cyclical mood changes are found with every central nervous system stimulant and also occur with cannabis. These mood state changes provide a surface index for more profound psychobiological fluctuations. Homeostatic balance is altered, with repetitive disturbances of the hypothalamic-pituitary-adrenal axis, and disrupted cortisol-neurohormonal secretions. Hence, these drugs cause increased stress, disturbed sleep, neurocognitive impairments, altered brain activity, and psychiatric vulnerability. Equivalent deficits occur with novel psychoactive stimulants such as mephedrone and artificial "spice" cannabinoids. These psychobiological fluctuations underlie drug dependency and make cessation difficult. Psychobiological stability and homeostatic balance are optimally restored by quitting psychoactive drugs. Recreational stimulants such as cocaine or MDMA (3.4-methylenedioxymethamphetamine) and sedative drugs such as cannabis damage human homeostasis and well-being through similar core psychobiological mechanisms. Copyright © 2017 John Wiley & Sons, Ltd.

  11. The effects of acylation stimulating protein supplementation VS antibody neutralization on energy expenditure in wildtype mice

    Directory of Open Access Journals (Sweden)

    Gao Ying

    2010-04-01

    Full Text Available Abstract Background Acylation stimulating protein (ASP is an adipogenic hormone that stimulates triglyceride (TG synthesis and glucose transport in adipocytes. Previous studies have shown that ASP-deficient C3 knockout mice are hyperphagic yet lean, as they display increased oxygen consumption and fatty acid oxidation compared to wildtype mice. In the present study, antibodies against ASP (Anti-ASP and human recombinant ASP (rASP were tested in vitro and in vivo. Continuous administration for 4 weeks via osmotic mini-pump of Anti-ASP or rASP was evaluated in wildtype mice on a high-fat diet (HFD to examine their effects on body weight, food intake and energy expenditure. Results In mature murine adipocytes, rASP significantly stimulated fatty acid uptake (+243% vs PBS, P Conclusion In vitro, Anti-ASP effectively neutralized ASP stimulated fatty acid uptake. In vivo, Anti-ASP treatment increased whole body energy utilization while rASP increased energy storage. Therefore, ASP is a potent anabolic hormone that may also be a mediator of energy expenditure.

  12. The effects of acupuncture, electroneedling and transcutaneous electrical stimulation therapies on peripheral haemodynamic functioning.

    Science.gov (United States)

    Balogun, J A; Biasci, S; Han, L

    1998-02-01

    For decades, acupuncture and electroneedling treatments have been used, predominately in the Eastern countries, in the management of patients with compromised cardiovascular and digestive functions. Similarly, neuromuscular electrical stimulation is commonly employed in Western countries to modulate pain, augment muscle strength and enhance blood flow in patients with peripheral vascular disease. Many rehabilitation specialists believe that electrical stimulation of acupuncture points with surface electrodes can elicit the same physiological and therapeutic effects as those produced by acupuncture and electroneedling techniques. Electrical stimulation of acupuncture points with surface electrodes is a relatively new and non-invasive treatment with potential clinical application in the management of patients with peripheral vascular disease. Presently, there are controversies in the literature as to the effects of traditional acupuncture, electroneedling and neuromuscular electrical stimulation treatments on peripheral haemodynamic functioning. This paper provides a detailed review of published studies on the above promising therapies. An attempt was made to clarify the pitfalls in the extant literature and delineate the fact from the fiction. Areas for further research were proposed.

  13. Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood.

    Science.gov (United States)

    Pascual-Leone, A; Catalá, M D; Pascual-Leone Pascual, A

    1996-02-01

    We studied the effects of rapid-rate transcranial magnetic stimulation (rTMS) of different scalp positions on mood. Ten normal volunteers rated themselves before and after rTMS on five analog scales labeled "Tristeza" (Sadness), "Ansiedad" (Anxiety), "Alegria" (Happiness), "Cansancio" (Tiredness), and "Dolor/Malestar" (Pain/Discomfort). rTMS was applied to the right lateral prefrontal, left prefrontal, or midline frontal cortex in trains of 5 seconds' duration at 10 Hz and 110% of the subject's motor threshold intensity. Each stimulation position received 10 trains separated by a 25-second pause. No clinically apparent mood changes were evoked by rTMS to any of the scalp positions in any subject. However, left prefrontal rTMS resulted in a significant increase in the Sadness ratings (Tristeza) and a significant decrease in the Happiness ratings ("Alegria") as compared with right prefrontal and midfrontal cortex stimulation. These results show differential effects of rTMS of left and right prefrontal cortex stimulation on mood and illustrate the lateralized control of mood in normal volunteers.

  14. Effect of Vestibulo-Proprioceptive Stimulations in a Child with Agenesis of the Corpus Callosum

    Directory of Open Access Journals (Sweden)

    Hamid Dalvand

    2010-06-01

    Full Text Available Background and Aim: The purpose of the present study was to investigate the effect of vestibulo-proprioceptive stimulations of sensory integration theory on the development of gross and fine motor, language and personal-social functions in a child with agenesis of the corpus callosum.Case: We report a 10.5 month old boy with agenesis of the corpus callosum. The intervention was administered based on sensory integration theory an hour a week for 20 weeks. The exercise intervention consisted of proprioceptive and linear, sustained and low frequency vestibular stimulations on suspension device and physio roll. A Denver Developmental Screening- II and milestones skill testing was completed pre-intervention and monthly. Post-intervention, age of gross motor, fine motor adaptive, language, and personal-social functions significantly improved. Based on milestones skills, maintenance of gross motor functions (e.g. sitting and quadruped position improved. The child could roll from side to side and released objects voluntarily. The reaction time to auditory stimulations became less than 2 seconds.Conclusion: vestibulo-proprioceptive stimulations using the neuroplasticity ability of the central nervous system is effective for development of gross and fine motor, language, and personal-social functions. These exercises can be administered for a child with agenesis of the corpus callosum.

  15. Effect of ultrasonic stimulation on particle transport and fate over different lengths of porous media

    Science.gov (United States)

    Chen, Xingxin; Wu, Zhonghan; Cai, Qipeng; Cao, Wei

    2018-04-01

    It is well established that seismic waves traveling through porous media stimulate fluid flow and accelerate particle transport. However, the mechanism remains poorly understood. To quantify the coupling effect of hydrodynamic force, transportation distance, and ultrasonic stimulation on particle transport and fate in porous media, laboratory experiments were conducted using custom-built ultrasonic-controlled soil column equipment. Three column lengths (23 cm, 33 cm, and 43 cm) were selected to examine the influence of transportation distance. Transport experiments were performed with 0 W, 600 W, 1000 W, 1400 W, and 1800 W of applied ultrasound, and flow rates of 0.065 cm/s, 0.130 cm/s, and 0.195 cm/s, to establish the roles of ultrasonic stimulation and hydrodynamic force. The laboratory results suggest that whilst ultrasonic stimulation does inhibit suspended-particle deposition and accelerate deposited-particle release, both hydrodynamic force and transportation distance are the principal controlling factors. The median particle diameter for the peak concentration was approximately 50% of that retained in the soil column. Simulated particle-breakthrough curves using extended traditional filtration theory effectively described the experimental curves, particularly the curves that exhibited a higher tailing concentration.

  16. Cytotoxic Effects of Re-Activated Lunar Dust Stimulant on Human Lung Cells

    Science.gov (United States)

    Upadhyaya, Krishna

    2009-01-01

    Lunar dust has been of significant concern due to various problems observed on the Apollo missions. Reports from astronauts have shown that the dust may have caused eye and nasal irritation as well as possible hay fever like symptoms. As NASA hopes to go to the Moon within the next few years, we hope to understand the possible toxic effects the dust might have. In these studies, we are looking at the effect of "re-activated" lunar dust stimulant on human bronchial cells. A simple grinding analog as a method of simulating micrometeorite crushing on the moon is used to "activate" the dust stimulant, i.e. capable of producing hydroxyl radicals. These radicals could then interact with human cells and may lead to a loss in membrane integrity and cell death. (Castranova, 1994) Cells are exposed to the dust for 6 and 24 hour intervals to assess cytotoxicity. Cytotoxicity is measured by looking at the production of inflammatory cytokines. Cells are exposed to ground and unground stimulant and compared to cytokine production from cells exposed to quartz which have a known toxicity. Here we look at the cytotoxicity of the lunar dust stimulant relative to quartz by measuring the production of inflammatory cytokines.

  17. Chromogranin A and cortisol at intraoperative repeated noxious stimuli: Surgical stress in a dog model

    Directory of Open Access Journals (Sweden)

    Odd Viking Höglund

    2015-03-01

    Full Text Available Objectives: Biomarkers representing sympathetic tone and the surgical stress response are measured to objectively evaluate surgical techniques and anaesthetic protocols. If a part of the intraoperative procedure is repeated on the contralateral organ, one animal may potentially serve as its own control and, if so, may minimize the problem of individual differences of the stress response to anaesthesia and surgery. This study aimed to investigate the use of chromogranin A for measurement of the intraoperative sympathetic tone. Additional aims were to investigate chromogranin A and cortisol as indicators of the intraoperative surgical stress response caused by repeated noxious stimuli in dogs subjected to ovariohysterectomy and thereby to investigate the possibility of one dog serving as its own control. Methods: Experiments were carried out on 10 dogs subjected to ovariohysterectomy. Perioperative blood samples (0–6 were collected after premedication, immediately before induction of anaesthesia (0, after induction of anaesthesia and before incision (1, before (2 and after (3 removal of the first ovary, after a 15-min pause before removal of the second ovary (4, after removal of the second ovary (5 and after closing the abdomen (6. Plasma chromogranin A and cortisol were analysed. Results: Plasma chromogranin A did not change. Plasma cortisol concentration did not change between before anaesthesia and opening of the abdomen. Plasma cortisol increased at removal of the first ovary. Cortisol did not change at removal of the second ovary but remained increased compared to initial sample. Conclusion: The results suggest chromogranin A is a poor indicator of intraoperative sympathetic tone during elective surgery in dogs. Cortisol measurement was useful for assessment of intraoperative noxious stimuli. However, at these test conditions, neither plasma chromogranin A nor plasma cortisol was useful for assessment of repeated intraoperative noxious

  18. Follicle stimulating hormone receptor in mesenchymal stem cells integrates effects of glycoprotein reproductive hormones.

    Science.gov (United States)

    Tourkova, Irina L; Witt, Michelle R; Li, La; Larrouture, Quitterie; Liu, Li; Luo, Jianhua; Robinson, Lisa J; Blair, Harry C

    2015-01-01

    Previously we reported that follicle stimulating hormone (FSH) affects bone degradation in human cells and in follicle stimulating hormone receptor (FSH-R) null mice. Here we describe a FSH-R knockout bone-formation phenotype. We used mesenchymal stem cells (MSCs), osteoblast precursors that express FSH-R, to determine whether FSH regulates bone formation. FSH stimulates MSC cell adhesion 1-3 h and proliferation at 24 h after addition. On the basis of phylogenetic and clinical precedents, we also examined effects of pregnant levels of human chorionic gonadotropin (hCG) on MSCs. We found effects similar to those of FSH, and RNAi knockdown of FSH-R abrogated both FSH and hCG effects on MSCs. In contrast to effects on MSCs, neither FSH nor hCG had significant effects on osteoblast maturation. Also in MSCs, short-term treatment by FSH and hCG altered signaling pathways for proliferation, including Erk1/2 phosphorylation. Our results show augmentation of MSC proliferation by either FSH at menopausal levels or hCG at normal pregnant levels. We conclude that FSH-R participates in regulation of MSC precursor pools in response to either FSH or hCG, integrating the effects of these two glycoprotein hormones. © 2014 New York Academy of Sciences.

  19. Prescription Stimulants' Effects on Healthy Inhibitory Control, Working Memory, and Episodic Memory: A Meta-analysis.

    Science.gov (United States)

    Ilieva, Irena P; Hook, Cayce J; Farah, Martha J

    2015-06-01

    The use of prescription stimulants to enhance healthy cognition has significant social, ethical, and public health implications. The large number of enhancement users across various ages and occupations emphasizes the importance of examining these drugs' efficacy in a nonclinical sample. The present meta-analysis was conducted to estimate the magnitude of the effects of methylphenidate and amphetamine on cognitive functions central to academic and occupational functioning, including inhibitory control, working memory, short-term episodic memory, and delayed episodic memory. In addition, we examined the evidence for publication bias. Forty-eight studies (total of 1,409 participants) were included in the analyses. We found evidence for small but significant stimulant enhancement effects on inhibitory control and short-term episodic memory. Small effects on working memory reached significance, based on one of our two analytical approaches. Effects on delayed episodic memory were medium in size. However, because the effects on long-term and working memory were qualified by evidence for publication bias, we conclude that the effect of amphetamine and methylphenidate on the examined facets of healthy cognition is probably modest overall. In some situations, a small advantage may be valuable, although it is also possible that healthy users resort to stimulants to enhance their energy and motivation more than their cognition.

  20. The effects of MDMA on socio-emotional processing: Does MDMA differ from other stimulants?

    Science.gov (United States)

    Bershad, Anya K; Miller, Melissa A; Baggott, Matthew J; de Wit, Harriet

    2016-12-01

    ±3,4-Methylenedioxymethamphetamine (MDMA) is a popular recreational drug that enhances sociability and feelings of closeness with others. These "prosocial" effects appear to motivate the recreational use of MDMA and may also form the basis of its potential as an adjunct to psychotherapy. However, the extent to which MDMA differs from prototypic stimulant drugs, such as dextroamphetamine, methamphetamine, and methylphenidate, in either its behavioral effects or mechanisms of action, is not fully known. The purpose of this review is to evaluate human laboratory findings of the social effects of MDMA compared to other stimulants, ranging from simple subjective ratings of sociability to more complex elements of social processing and behavior. We also review the neurochemical mechanisms by which these drugs may impact sociability. Together, the findings reviewed here lay the groundwork for better understanding the socially enhancing effects of MDMA that distinguish it from other stimulant drugs, especially as these effects relate to the reinforcing and potentially therapeutic effects of the drug. © The Author(s) 2016.

  1. Sacral rhizotomies and electrical bladder stimulation in spinal cord injury. 2. Cost-effectiveness and quality of life analysis. Dutch Study Group on Sacral Anterior Root Stimulation

    NARCIS (Netherlands)

    Wielink, G.; Essink-Bot, M. L.; van Kerrebroeck, P. E.; Rutten, F. F.

    1997-01-01

    OBJECTIVES: To present a cost-effectiveness analysis of sacral rhizotomies and electrical bladder stimulation compared with conventional care of neurogenic bladder dysfunction in patients with spinal cord injury. METHODS: During a 3-year inclusion period, data on costs and quality of life before the

  2. Modulatory Effect of Association of Brain Stimulation by Light and Binaural Beats in Specific Brain Waves.

    Science.gov (United States)

    Calomeni, Mauricio Rocha; Furtado da Silva, Vernon; Velasques, Bruna Brandão; Feijó, Olavo Guimarães; Bittencourt, Juliana Marques; Ribeiro de Souza E Silva, Alair Pedro

    2017-01-01

    One of the positive effects of brain stimulation is interhemispheric modulation as shown in some scientific studies. This study examined if a type of noninvasive stimulation using binaural beats with led-lights and sound would show different modulatory effects upon Alfa and SMR brain waves of elderlies and children with some disease types. The sample included 75 individuals of both genders, being, randomly, divided in 6 groups. Groups were named elderly without dementia diagnosis (EWD), n=15, 76±8 years, elderly diagnosed with Parkinson's disease (EDP), n=15, 72±7 years, elderly diagnosed with Alzheimer's disease (EDA), n=15, 81±6 years. The other groups were named children with Autism (CA), n=10, 11±4 years, children with Intellectual Impairment (CII), n=10, 12 ±5 years and children with normal cognitive development (CND), n=10, 11±4 years. Instruments were the Mini Mental State Examination Test (MMSE), EEG-Neurocomputer instrument for brain waves registration, brain stimulator, Digit Span Test and a Protocol for working memory training. Data collection followed a pre and post-conjugated stimulation version. The results of the inferential statistics showed that the stimulation protocol had different effects on Alpha and SMR brain waves of the patients. Also, indicated gains in memory functions, for both, children and elderlies as related to gains in brain waves modulation. The results may receive and provide support to a range of studies examining brain modulation and synaptic plasticity. Also, it was emphasized in the results discussion that there was the possibility of the technique serving as an accessory instrument to alternative brain therapies.

  3. Tactile stimulation of dairy heifers: effects on behavior and milk production after calving

    Directory of Open Access Journals (Sweden)

    N. R. M. Néri

    2016-09-01

    Full Text Available The positive management of primiparous heifers before calving through tactile stimulation may have beneficial effects on behavior during routine milking. The objective of this study was to evaluate the use of tactile stimulation in dairy heifers and its effects on behavior and milk production after calving. Ten primiparous Holstein heifers were used. Half the group received training with tactile stimulation of all body regions, while the other group did not receive stimulation (control group. The training period was divided into three phases: early, days 1 to 6 of training; intermediate: days 7 to 12, and final, days 13 to 23. During training, movement and displacement scores were obtained over a period of 5 minutes. Physiological parameters were also recorded [respiratory rate (FR and minimum eye temperature (ETmin measured with a thermal imaging camera]. After calving, the heifers were submitted to first milking when the evaluations were started for the first 10 days of milking (20 consecutive milkings. The behavior of the animals was evaluated by attributing a reactivity score of 1 (desirable behaviors or 2 (undesirable behaviors: entry into the pen, teat disinfection, milking one or two jets of milk for mastitis testing, attachment of teat cups, and removal of milk, as well as the amount of milk produced. Mean ETmin and FR decreased over the training period. A significant difference was observed for displacement score (P=0.019, with a reduction in displacement from the early to the final period (from 60.0% to 25.7%. During the attachment of teat cups, stimulated heifers were less reactive (P=0.002, characterized by a lower frequency of undesirable behaviors (12.0%, than unstimulated heifers (30.2%. The average milk yield during the first 60 days of lactation was higher for the group of stimulated heifers (Ln y=2.20–0.0102t+0.331lnt, R2=0.76 compared to unstimulated heifers (Ln y=1.54–0.0191x+0.578lnx, R2=0.79, with this difference being

  4. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation.

    Science.gov (United States)

    Chen, Jun; Joshi, Shailen K; DiDomenico, Stanley; Perner, Richard J; Mikusa, Joe P; Gauvin, Donna M; Segreti, Jason A; Han, Ping; Zhang, Xu-Feng; Niforatos, Wende; Bianchi, Bruce R; Baker, Scott J; Zhong, Chengmin; Simler, Gricelda H; McDonald, Heath A; Schmidt, Robert G; McGaraughty, Steve P; Chu, Katharine L; Faltynek, Connie R; Kort, Michael E; Reilly, Regina M; Kym, Philip R

    2011-05-01

    Despite the increasing interest in TRPA1 channel as a pain target, its role in cold sensation and body temperature regulation is not clear; the efficacy and particularly side effects resulting from channel blockade remain poorly understood. Here we use a potent, selective, and bioavailable antagonist to address these issues. A-967079 potently blocks human (IC(50): 51 nmol/L, electrophysiology, 67 nmol/L, Ca(2+) assay) and rat TRPA1 (IC(50): 101 nmol/L, electrophysiology, 289 nmol/L, Ca(2+) assay). It is >1000-fold selective over other TRP channels, and is >150-fold selective over 75 other ion channels, enzymes, and G-protein-coupled receptors. Oral dosing of A-967079 produces robust drug exposure in rodents, and exhibits analgesic efficacy in allyl isothiocyanate-induced nocifensive response and osteoarthritic pain in rats (ED(50): 23.2 mg/kg, p.o.). A-967079 attenuates cold allodynia produced by nerve injury but does not alter noxious cold sensation in naive animals, suggesting distinct roles of TRPA1 in physiological and pathological states. Unlike TRPV1 antagonists, A-967079 does not alter body temperature. It also does not produce locomotor or cardiovascular side effects. Collectively, these data provide novel insights into TRPA1 function and suggest that the selective TRPA1 blockade may present a viable strategy for alleviating pain without untoward side effects. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  5. Effect of subthalamic nucleus or globus pallidus interna stimulation on oculomotor function in patients with Parkinson's disease.

    Science.gov (United States)

    Fridley, Jared; Adams, Gareth; Sun, Ping; York, Michelle; Atassi, Farah; Lai, Eugene; Simpson, Richard; Viswanathan, Ashwin; Yoshor, Daniel

    2013-01-01

    Deep brain stimulation (DBS) of either the globus pallidus interna (GPi) or subthalamic nucleus (STN) is similarly effective for treating somatomotor manifestations of Parkinson's disease (PD), but differences in how stimulation of each target affects oculomotor function are poorly understood. We sought to determine if stimulation of the STN, but not the GPi, affects oculomotor function in PD patients. Nineteen PD patients with DBS implants (8 bilateral GPi, 9 bilateral STN and 2 unilateral STN) were studied. Testing was performed with stimulation on, then off. Somatomotor function was tested using the Unified Parkinson's Disease Rating Scale (UPDRS) motor exam. For oculomotor testing, patients performed pro- and antisaccade tasks while monitored with an infrared eye tracker. Saccadic latency, saccadic intrusions, and square-wave jerks (SWJs) were measured for each trial. As expected, UPDRS motor scores improved with both GPi and STN stimulation. With GPi stimulation, there was no significant difference in oculomotor function with stimulation on or off. However, with STN stimulation on, there was a significant increase in the mean number of SWJs/s, as well as a significant decrease in latency for both pro- and antisaccade tasks. Stimulation of either GPi or STN had similar effects on somatomotor function, but only STN stimulation significantly altered oculomotor function. Copyright © 2013 S. Karger AG, Basel.

  6. The Effect of Transcutaneous Electrical Nerve Stimulation of Sympathetic Ganglions and Acupuncture Points on Distal Blood Flow

    Directory of Open Access Journals (Sweden)

    Fahimeh Kamali

    2017-04-01

    Full Text Available Transcutaneous electrical nerve stimulation (TENS is a widely-practiced method to increase blood flow in clinical practice. The best location for stimulation to achieve optimal blood flow has not yet been determined. We compared the effect of TENS application at sympathetic ganglions and acupuncture points on blood flow in the foot of healthy individuals. Seventy-five healthy individuals were randomly assigned to three groups. The first group received cutaneous electrical stimulation at the thoracolumbar sympathetic ganglions. The second group received stimulation at acupuncture points. The third group received stimulation in the mid-calf area as a control group. Blood flow was recorded at time zero as baseline and every 3 minutes after baseline during stimulation, with a laser Doppler flow-meter. Individuals who received sympathetic ganglion stimulation showed significantly greater blood flow than those receiving acupuncture point stimulation or those in the control group (p<0.001. Data analysis revealed that blood flow at different times during stimulation increased significantly from time zero in each group. Therefore, the application of low-frequency TENS at the thoracolumbar sympathetic ganglions was more effective in increasing peripheral blood circulation than stimulation at acupuncture points.

  7. Effect of low frequency transcutaneous magnetic stimulation on sensory and motor transmission.

    Science.gov (United States)

    Leung, Albert; Shukla, Shivshil; Lee, Jacquelyn; Metzger-Smith, Valerie; He, Yifan; Chen, Jeffrey; Golshan, Shahrokh

    2015-09-01

    Peripheral nerve injury diminishes fast conducting large myelinated afferent fibers transmission but enhances smaller pain transmitting fibers firing. This aberrant afferent neuronal behavior contributes to development of chronic post-traumatic peripheral neuropathic pain (PTP-NP). Non-invasive dynamic magnetic flux stimulation has been implicated in treating PTP-NP, a condition currently not adequately addressed by other therapies including transcutaneous electrical nerve stimulation (TENS). The current study assessed the effect of low frequency transcutaneous magnetic stimulation (LFTMS) on peripheral sensory thresholds, nerve conduction properties, and TENS induced fast afferent slowing effect as measured by motor and sensory conduction studies in the ulnar nerve. Results indicated sham LFTMS with TENS (Sham + TENS) significantly (P = 0.02 and 0.007, respectively) reduces sensory conduction velocity (CV) and increases sensory onset latency (OL), and motor peak latency (PL) whereas, real LFTMS with TENS (Real + TENS) reverses effects of TENS on sensory CV and OL, and significantly (P = 0.036) increases the sensory PL. LFTMS alone significantly (P sensory PL and onset-to-peak latency. LFTMS appears to reverse TENS slowing effect on fast conducting fibers and casts a selective peripheral modulatory effect on slow conducting pain afferent fibers. © 2015 Wiley Periodicals, Inc.

  8. No modulatory effects by transcranial static magnetic field stimulation of human motor and somatosensory cortex.

    Science.gov (United States)

    Kufner, Marco; Brückner, Sabrina; Kammer, Thomas

    Recently, it was reported that the application of a static magnetic field by placing a strong permanent magnet over the scalp for 10 min led to an inhibition of motor cortex excitability for at least 6 min after removing the magnet. When placing the magnet over the somatosensory cortex, a similar inhibitory after effect could be observed as well. Our aim was to replicate the inhibitory effects of transcranial static magnetic field stimulation in the motor and somatosensory system. The modulatory effect of static magnetic field stimulation was investigated in three experiments. In two experiments motor cortex excitability was measured before and after 10 or 15 min of magnet application, respectively. The second experiment included a sham condition and was designed in a double-blinded manner. In a third experiment, paired-pulse SSEPs were measured pre and four times post positioning the magnet over the somatosensory cortex for 10 min on both hemispheres, respectively. The SSEPs of the non stimulated hemisphere served as control condition. We did not observe any systematic effect of the static magnetic field neither on motor cortex excitability nor on SSEPs. Moreover, no SSEP paired-pulse suppression was found. We provide a detailed analysis of possible confounding factors and differences to previous studies on tSMS. After all, our results could not confirm the static magnetic field effect. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Effectiveness of transcutaneous electrical nerve stimulation and interferential current in primary dysmenorrhea.

    Science.gov (United States)

    Tugay, Nazan; Akbayrak, Türkan; Demirtürk, Funda; Karakaya, Ilkim Citak; Kocaacar, Ozge; Tugay, Umut; Karakaya, Mehmet Gürhan; Demirtürk, Fazli

    2007-01-01

    To compare the effectiveness of transcutaneous electrical nerve stimulation and interferential current in primary dysmenorrhea. A prospective, randomized, and controlled study. Hacettepe University School of Physical Therapy and Rehabilitation. Thirty-four volunteer subjects with primary dysmenorrhea (mean age: 21.35 +/- 1.70 years) were included. Statistical analyses were performed in 32 subjects who completed all measures. Fifteen subjects received interferential current application for 20 minutes and 17 subjects received transcutaneous electrical nerve stimulation for 20 minutes when they were experiencing dysmenorrhea. Physical characteristics, years since menarche, length of menstrual cycle (days), and duration of menstruation (days) were recorded. Visual analog scale ( VAS) intensities of menstrual pain, referred lower limb pain, and low back pain were recorded before treatment, and immediately, 8 hours, and 24 hours after treatment. Intensities of the evaluated parameters decreased beginning from just after the applications in both groups (P0.05). Both transcutaneous electrical nerve stimulation and interferential current appear to be effective in primary dysmenorrhea. As they are free from the potentially adverse effects of analgesics, and no adverse effects are reported in the literature nor observed in this study, a clinical trial of their effectiveness in comparison with untreated and placebo-treated control groups is warranted.

  10. Alteration of interferential current and transcutaneous electrical nerve stimulation frequency: effects on nerve excitation.

    Science.gov (United States)

    Palmer, S T; Martin, D J; Steedman, W M; Ravey, J

    1999-09-01

    To investigate the effects of different interferential current (IC) and transcutaneous electrical nerve stimulation (TENS) frequencies on sensory, motor, and pain thresholds. Single blind, repeated measures design. Laboratory. Women students 18 to 30 years old (n = 24). Premodulated IC and square-wave TENS pulses (125micros phase duration) were applied over the median nerve at a range of frequencies in all subjects. The peak current (in milliamperes) was recorded twice at each threshold for each frequency, and averaged. Both IC and TENS displayed a statistically significant effect of frequency for each threshold. However, frequency effects with IC were not well defined and were of small magnitude. Pure 4kHz current (0Hz amplitude modulated frequency) with IC did not produce effects different from those produced when an amplitude modulated frequency was included. With TENS, frequency effects were very clearly observed, with a distinct increase in the current intensity at each threshold as frequency decreased. It is postulated that the medium frequency component of IC is the main parameter in stimulation, contrary to traditional claims of the amplitude modulated frequency being important. TENS was shown to be a more adaptable method of stimulating these nerve pathways than IC.

  11. Effect of functional electrical stimulation on cardiovascular outcomes in patients with chronic heart failure.

    Science.gov (United States)

    Kadoglou, Nikolaos Pe; Mandila, Christina; Karavidas, Apostolos; Farmakis, Dimitrios; Matzaraki, Vasiliki; Varounis, Christos; Arapi, Sofia; Perpinia, Anastasia; Parissis, John

    2017-05-01

    Background/design Functional electrical stimulation of lower limb muscles is an alternative method of training in patients with chronic heart failure (CHF). Although it improves exercise capacity in CHF, we performed a randomised, placebo-controlled study to investigate its effects on long-term clinical outcomes. Methods We randomly assigned 120 patients, aged 71 ± 8 years, with stable CHF (New York Heart Association (NYHA) class II/III (63%/37%), mean left ventricular ejection fraction 28 ± 5%), to either a 6-week functional electrical stimulation training programme or placebo. Patients were followed for up to 19 months for death and/or hospitalisation due to CHF decompensation. Results At baseline, there were no significant differences in demographic parameters, CHF severity and medications between groups. During a median follow-up of 383 days, 14 patients died (11 cardiac, three non-cardiac deaths), while 40 patients were hospitalised for CHF decompensation. Mortality did not differ between groups (log rank test P = 0.680), while the heart failure-related hospitalisation rate was significantly lower in the functional electrical stimulation group (hazard ratio (HR) 0.40, 95% confidence interval (CI) 0.21-0.78, P = 0.007). The latter difference remained significant after adjustment for prognostic factors: age, gender, baseline NYHA class and left ventricular ejection fraction (HR 0.22, 95% CI 0.10-0.46, P electrical stimulation training was associated with a lower occurrence of the composite endpoint (death or heart failure-related hospitalisation) after adjustment for the above-mentioned prognostic factors (HR 0.21, 95% CI 0.103-0.435, P electrical stimulation training reduced the risk of heart failure-related hospitalisations, without affecting the mortality rate. The beneficial long-term effects of this alternative method of training require further investigation.

  12. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function

    Energy Technology Data Exchange (ETDEWEB)

    Reinis, S.; Landolt, J.P.; Weiss, D.S.; Money, K.E.

    1984-03-01

    The spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique. Data were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease over time after D2O injection. In pilot studies, the cats were injected with D2O. Within 8-10 min afterward, signs of positional nystagmus commenced; and within 30 min, problems in maintaining balance were noted. This continued for 7-8 h before disappearing. In the labyrinthectomized animals, such effects were not observed.

  13. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function

    International Nuclear Information System (INIS)

    Reinis, S.; Landolt, J.P.; Weiss, D.S.; Money, K.E.

    1984-01-01

    The spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique. Data were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease over time after D2O injection. In pilot studies, the cats were injected with D2O. Within 8-10 min afterward, signs of positional nystagmus commenced; and within 30 min, problems in maintaining balance were noted. This continued for 7-8 h before disappearing. In the labyrinthectomized animals, such effects were not observed

  14. [The effect of passive tactile stimulation in the brain activity of children with attention deficit].

    Science.gov (United States)

    Soria-Claros, M; Serrano-Marugan, I; Quintero, J; Ortiz, T

    2016-01-01

    The N200 and P300 evoked potentials have proved a useful tool in monitoring children with attention deficit disorder (ADD). To assess brain information processing by the N200 and P300 in touch modality in children with ADD. The P300 and N200 components to oddball tactile stimulation paradigm were recorded in an experimental group of 17 children with ADD at the beginning and the end of the daily training tactile stimulation, another 12 children with ADD and 21 control children without ADD who no received tactile stimulation. Three groups aged between 7 and 11 years. Results show a significant decrease in latency of N200 and P300 waves in the experimental group at the study end. N200 significant differences in the experimental group temporal parietal and occipital areas were found, while the differences in the P300 are located in postcentral and parietal areas. Systematic, orderly and organized tactile stimulation in children with ADD can be effective to improve N200-P300 latencies providing greater parietal brain plasticity, associated to perceptive attention.

  15. Effects of two types of neuromuscular electrical stimulation training on vertical jump performance.

    Science.gov (United States)

    Paillard, Thierry; Noe, Frederic; Bernard, Nicolas; Dupui, Philippe; Hazard, Clement

    2008-07-01

    This study examined the effects of different types of neuromuscular electrical stimulation (NMES) programs on vertical jump performance. Twenty seven healthy trained male students in sports-sciences were recruited and randomized into three groups. The control group (C group, n = 8) did not perform NMES training. Two other groups underwent 3 training sessions a week over 5 weeks on the quadriceps femoris muscle [F group (n = 9): stimulation with an 80 Hz current for 15 min for improving muscle strength; E group (n = 10): stimulation with a 25 Hz current for 60 min for improving muscle endurance]. The height of the vertical jump was measured before NMES training (test 1), one week (test 2) and five weeks (test 3) after the end of the programs. The results showed that the height of the vertical jump significantly increased in both the F and E groups between tests 1 and 2 (5 cm and 3 cm respectively). Results of test 3 showed that both groups preserved their gains. A NMES training program destined to improve muscle endurance does not interfere on vertical jump performance. It can even durably enhance it in the same way as a NMES training program destined to improve muscle strength. Thus, to improve muscle endurance without deteriorating muscle power, sportsmen can use electrical stimulation.

  16. Is effect of transcranial direct current stimulation on visuomotor coordination dependent on task difficulty?

    Directory of Open Access Journals (Sweden)

    Yong Hyun Kwon

    2015-01-01

    Full Text Available Transcranial direct current stimulation (tDCS, an emerging technique for non-invasive brain stimulation, is increasingly used to induce changes in cortical excitability and modulate motor behavior, especially for upper limbs. The purpose of this study was to investigate the effects of tDCS of the primary motor cortex on visuomotor coordination based on three levels of task difficulty in healthy subjects. Thirty-eight healthy participants underwent real tDCS or sham tDCS. Using a single-blind, sham-controlled crossover design, tDCS was applied to the primary motor cortex. For real tDCS conditions, tDCS intensity was 1 mA while stimulation was applied for 15 minutes. For the sham tDCS, electrodes were placed in the same position, but the stimulator was turned off after 5 seconds. Visuomotor tracking task, consisting of three levels (levels 1, 2, 3 of difficulty with higher level indicating greater difficulty, was performed before and after tDCS application. At level 2, real tDCS of the primary motor cortex improved the accurate index compared to the sham tDCS. However, at levels 1 and 3, the accurate index was not significantly increased after real tDCS compared to the sham tDCS. These findings suggest that tasks of moderate difficulty may improve visuomotor coordination in healthy subjects when tDCS is applied compared with easier or more difficult tasks.

  17. Effects of deep brain stimulation in dyskinetic cerebral palsy: a meta-analysis.

    Science.gov (United States)

    Koy, Anne; Hellmich, Martin; Pauls, K Amande M; Marks, Warren; Lin, Jean-Pierre; Fricke, Oliver; Timmermann, Lars

    2013-05-01

    Secondary dystonia encompasses a heterogeneous group with different etiologies. Cerebral palsy is the most common cause. Pharmacological treatment is often unsatisfactory. There are only limited data on the therapeutic outcomes of deep brain stimulation in dyskinetic cerebral palsy. The published literature regarding deep brain stimulation and secondary dystonia was reviewed in a meta-analysis to reevaluate the effect on cerebral palsy. The Burke-Fahn-Marsden Dystonia Rating Scale movement score was chosen as the primary outcome measure. Outcome over time was evaluated and summarized by mixed-model repeated-measures analysis, paired Student t test, and Pearson's correlation coefficient. Twenty articles comprising 68 patients with cerebral palsy undergoing deep brain stimulation assessed by the Burke-Fahn-Marsden Dystonia Rating Scale were identified. Most articles were case reports reflecting great variability in the score and duration of follow-up. The mean Burke-Fahn-Marsden Dystonia Rating Scale movement score was 64.94 ± 25.40 preoperatively and dropped to 50.5 ± 26.77 postoperatively, with a mean improvement of 23.6% (P cerebral palsy. In view of the heterogeneous data, a prospective study with a large cohort of patients in a standardized setting with a multidisciplinary approach would be helpful in further evaluating the role of deep brain stimulation in cerebral palsy. © 2013 Movement Disorder Society. Copyright © 2013 Movement Disorder Society.

  18. Augmented visual feedback counteracts the effects of surface muscular functional electrical stimulation on physiological tremor

    Science.gov (United States)

    2013-01-01

    Background Recent studies suggest that surface muscular functional electrical stimulation (FES) might suppress neurological upper limb tremor. We assessed its effects on upper limb physiological tremor, which is mainly driven by mechanical-reflex oscillations. We investigated the interaction between FES and augmented visual feedback, since (a) most daily activities are performed using visual cues, and (b) augmented visual feedback exacerbates upper limb tremor. Methods 10 healthy subjects (23.4 ± 7.7 years) performed 2 postural tasks with combinations of FES (4 sites; frequency of stimulation: 30 Hz; pulse width: 300 microsec; range of current delivered 10–34 mAmp) and augmented visual feedback. Results Spectral analysis of tremor showed a decrease of power spectral density to 62.18% (p = 0.01), of the integral in the 8-12 Hz frequency band to 57.67% (p = 0.003), and of tremor root mean square (RMS) to 57.16% (p = 0.002) during FES, without any changes in tremor frequency. Augmented visual feedback blocked the beneficial effect of FES, as confirmed by power spectral analysis (p = 0.01). We found a statistically significant interaction between augmented visual feedback and electrical stimulation (p = 0.039). Conclusions Augmented visual feedback antagonizes the effects of FES on physiological tremor. The absence of changes of peak frequency argues against an effect of FES on mechanical properties of the upper limb. PMID:24063436

  19. Assessing the Effect of Early Visual Cortex Transcranial Magnetic Stimulation on Working Memory Consolidation.

    Science.gov (United States)

    van Lamsweerde, Amanda E; Johnson, Jeffrey S

    2017-07-01

    Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.

  20. Low-level radiation effects on plants. Biochemical aspects of radiation stimulation

    International Nuclear Information System (INIS)

    Niemann, E.G.; Baboth, E.; Zelles, L.; Fendrik, I.

    1976-01-01

    Low-dose irradiation of seeds or seedlings of crop plants often results in biopositive effects, such as earliness and higher yield on better plant constituents. Though this effect is being used in large-scale field experiments, only little is known of the underlying metabolic and biochemical processes of plant stimulation by irradiation. Experiments have therefore been performed on plant and bacterial model systems to elucidate some basic mechanisms of early radiation effects. Studies on the stimulation of pine pollen tube growth by u.v. and X rays showed that the effect is strongly dose-rate dependent, indicating the participation of repair mechanisms. It could be shown that after irradiation the production of hydroxyproline is increased as well as the rate of RNA synthesis, while the action of long-life RNA is slightly reduced. In bacteria, a radiation-produced stimulation of RNA production could also be proved, possibly triggered by initiating the hexose-monophosphate shunt for additional production of ribose-5-phosphate as precursor. Ultra-violet difference spectra between alcoholic extracts of radiated and unirradiated leaves and roots of barley seedlings showed a significant reduction in NADH content caused by radiation, which corresponds well with the increased need of NADH for hydroxyproline production and with the requirement of a NADH sink for operating the hexosemonophosphate shunt. (author)

  1. The effects of individualized gastric electrical stimulation on food craving and gastrointestinal peptides in dogs.

    Science.gov (United States)

    Guo, Xiaojuan; Li, Yanmei; Yao, Shukun; Chen, Shaoxuan; Du, Yuhui; Wang, Zhihua

    2014-07-01

    Using an adjustable stimulator with a wide range of stimulation parameters, the aims of this study were 1) to investigate the effects of long-term gastric electrical stimulation (GES) on appetite and differential food cravings for three different foods and 2) to investigate the effects of GES on plasma gastrointestinal peptide concentrations. The study was performed in eight Beagle dogs implanted with one pair of serosal electrodes. They were followed during GES and sham GES sessions in a crossover design. GES was conducted using a series of individualized parameters. Food intake and food cravings were observed to evaluate the effects of long-term GES. Enzyme-linked immunosorbent assay was used to measure the plasma concentrations of gastrointestinal peptides. Dogs on GES for three months ate significantly less food than those on sham GES for three months (p food cravings was induced by GES. Dogs with GES ate significantly less high-fat food. However, there was no significant difference in consumption of high-carbohydrate food or balanced food between the periods of GES and sham GES. The plasma concentrations of ghrelin, peptide YY3-36, and glucagon-like peptide 1 did not differ significantly between the periods of GES and sham GES. Food intake and food craving were changed significantly by adjustable GES. GES may be used for treating obesity by changing food preferences. Further clinical studies are necessary to highlight the effect of adjustable GES on eating behavior. © 2014 International Neuromodulation Society.

  2. Effects of prenatal sensory stimulation on heart rate and behavioral measures of arousal in bobwhite quail embryos.

    Science.gov (United States)

    Reynolds, Greg D; Lickliter, Robert

    2002-09-01

    Although a number of studies have demonstrated the effects of altered prenatal experience on subsequent behavioral development, how these effects are achieved remains a topic of enduring interest. The present study examined the immediate effects of unimodal and multimodal prenatal sensory stimulation on physiological and behavioral arousal in bobwhite quail embryos. Embryos were videotaped and their heart rate was monitored during a 4-min exposure period to (a) no supplemental sensory stimulation, (b) unimodal auditory stimulation, (c) unimodal visual stimulation, (d) two sources of concurrent auditory stimulation, or (e) concurrent auditory/visual stimulation. Results indicated that quail embryos' overall activity levels and heart rate can be significantly affected by the type of prenatal sensory stimulation provided during the period prior to hatching. In particular, multimodal stimulation increased both behavioral activity levels and heart rate compared to controls. Across the unimodal and intramodal groups, however, behavioral and physiological measures revealed different patterns of activity in response to supplemental sensory stimulation, highlighting the value of using multiple levels of analysis in exploring arousal mechanisms involved in prenatal perceptual responsiveness. Copyright 2002 Wiley Periodicals, Inc. Dev Psychobiol 41: 112-122, 2002. Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/dev.10058

  3. The effect of transcranial direct current stimulation on social cognition in schizophrenia: A preliminary study.

    Science.gov (United States)

    Rassovsky, Yuri; Dunn, Walter; Wynn, Jonathan; Wu, Allan D; Iacoboni, Marco; Hellemann, Gerhard; Green, Michael F

    2015-07-01

    In this preliminary study, we examined the effect of transcranial direct current stimulation (tDCS) on social cognition in 36 individuals with schizophrenia. Participants received a baseline assessment and one week later received either anodal, cathodal, or sham tDCS, with 12 participants randomized to each condition. A single 20-minute session tDCS was administered bilaterally over the dorsolateral prefrontal cortex (centered at positions Fp1 and Fp2) at 2 mA. Among the 4 social cognitive tasks, participants showed a significant improvement on one of them, emotion identification, following anodal stimulation. Findings demonstrate the safety of this procedure and suggest potential therapeutic effects on one aspect of social cognition in schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Stimulating effect of space flight factors on Artemia cysts: comparison with irradiation by gamma rays

    International Nuclear Information System (INIS)

    Gaubin, Y.; Pianezzi, B.; Gasset, G.; Plannel, H.; Kovalev, E.E.

    1986-01-01

    The Artemia cyst, a gastrula in dormant state, is a very suitable material to investigate the individual effects of HZE cosmic particles. Monolayers of Artemia cysts, sandwiched with nuclear emulsions, flew aboard the Soviet biosatellite Cosmos 1129. The space flight stimulated the developmental capacity expressed by higher percentages of emergence, hatching, and alive nauplii at day 4-5. A greater mean life span was reported in Artemias developed from Artemia cysts hit by the cosmic heavy ions. On Earth, Artemia cysts were exposed to 1, 10, 100, 200 and 400 Gy of gamma (gamma) rays. A stimulating effect on developmental capacity was observed for 10 Gy; the mean life span was significantly increased for this dose. These results are discussed in comparison with previous investigations performed on Earth and in space

  5. Effect of Deep Brain Stimulation on Speech Performance in Parkinson's Disease

    OpenAIRE

    Skodda, Sabine

    2012-01-01

    Deep brain stimulation (DBS) has been reported to be successful in relieving the core motor symptoms of Parkinson's disease (PD) and motor fluctuations in the more advanced stages of the disease. However, data on the effects of DBS on speech performance are inconsistent. While there are some series of patients documenting that speech function was relatively unaffected by DBS of the nucleus subthalamicus (STN), other investigators reported on improvements of distinct parameters of oral control...

  6. Effectiveness of neuromuscular electrical stimulation in the functional knee rehabilitation in soldiers

    OpenAIRE

    R. Castillo-Lozano

    2015-01-01

    Background: The versatility of military physical therapist practice enables them not only to diagnose knee injuries but also to provide a wide range of definitive care and rehabilitation, reducing the need for costly evacuation. The aim this study was to evaluate the effectiveness of interventions by Neuromuscular Electrical Stimulation (NMES) in the functional knee rehabilitation in soldiers and describe the main predictors and determinants in each intervention. Methods: A systematic search ...

  7. Effect of transcranial direct current stimulation on neuroplasticity in corticomotor pathways of the tongue muscles

    DEFF Research Database (Denmark)

    Kothari, Mohit; Stubbs, Peter William; Figlewski, Krystian

    2017-01-01

    To investigate effects of transcranial direct current stimulation (tDCS) on neuroplasticity in corticomotor pathways related to tongue muscles evoked by a training task using the Tongue Drive System (TDS). Using a cross-over design, 13 healthy participants completed two sessions of tDCS while...... amplitudes appear to be sensitive to training with the tongue using TDS; however anodal tDCS does not have an impact on training-evoked neuroplasticity of tongue corticomotor pathways....

  8. Opposite Effects of Stimulant and Antipsychotic Drugs on Striatal Fast-Spiking Interneurons

    OpenAIRE

    Wiltschko, Alexander B; Pettibone, Jeffrey R; Berke, Joshua D

    2010-01-01

    Psychomotor stimulants and typical antipsychotic drugs have powerful but opposite effects on mood and behavior, largely through alterations in striatal dopamine signaling. Exactly how these drug actions lead to behavioral change is not well understood, as previous electrophysiological studies have found highly heterogeneous changes in striatal neuron firing. In this study, we examined whether part of this heterogeneity reflects the mixture of distinct cell types present in the striatum, by di...

  9. Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition

    OpenAIRE

    Mansouri, Farshad Alizadeh; Acevedo, Nicola; Illipparampil, Rosin; Fehring, Daniel J.; Fitzgerald, Paul B.; Jaberzadeh, Shapour

    2017-01-01

    Influential hypotheses propose that alterations in emotional state influence decision processes and executive control of behavior. Both music and transcranial direct current stimulation (tDCS) of prefrontal cortex affect emotional state, however interactive effects of music and tDCS on executive functions remain unknown. Learning to inhibit inappropriate responses is an important aspect of executive control which is guided by assessing the decision outcomes such as errors. We found that high-...

  10. Investigation of electrical responses to acupuncture stimulation: the effect of electrical grounding and insulation conditions.

    Science.gov (United States)

    Lee, Yong-Heum; Ryu, Yeon-Hang; Jung, Byungjo

    2009-03-01

    Acupuncture in Oriental medicine has been widely used as a core therapeutic method due to its minimal side-effects and therapeutic efficacy. However, the electrical response to acupuncture stimulation (ERAS) has not been clearly studied under acupuncture conditions that might affect the efficacy of acupuncture therapy. In this study, the ERAS was objectively investigated by measuring meridian electric potentials (MEPs) when the electrical grounding conditions of the operator and subject were varied, and when the insulation conditions of acupuncture needle were varied. MEPs between Sang-geoheo (ST37) and Ha-geoheo (ST39) of the Stomach Meridian (ST) were measured by stimulating Jok-samni (ST36) with an acupuncture needle. For non-insulated acupuncture stimulation (NIAS), the average MEP peak was 148.6 +/- 20.6 when neither the operator nor the subject were electrically grounded, 23.1 +/- 8.8 when the subject only was electrically grounded, 348 +/- 76.8 when the operator only was electrically grounded, and 19.9 +/- 4.7 when both the operator and the subject were electrically grounded. The MEPs presented various magnitudes and patterns depending on the electrical grounding conditions. The MEP pattern was very similar to that of the charge and discharge of a capacitor. For insulated acupuncture stimulation (IAS), the average MEP peak was 20 +/- 4 in all electrical grounding conditions, which is not a significant electric response for acupuncture stimulation. In terms of electricity, this study verified that acupuncture therapy might be affected by acupuncture conditions such as (1) the electrical grounding condition of the operator and the subject and (2) the insulation condition of the acupuncture needle.

  11. Differential effects of subcutaneous electrical stimulation (SQS) and transcutaneous electrical nerve stimulation (TENS) in rodent models of chronic neuropathic or inflammatory pain.

    Science.gov (United States)

    Vera-Portocarrero, Louis P; Cordero, Toni; Billstrom, Tina; Swearingen, Kim; Wacnik, Paul W; Johanek, Lisa M

    2013-01-01

    Electrical stimulation has been used for many years for the treatment of pain. Present-day research demonstrates that stimulation targets and parameters impact the induction of specific pain-modulating mechanisms. New targets are increasingly being investigated clinically, but the scientific rationale for a particular target is often not well established. This present study compares the behavioral effects of targeting peripheral axons by electrode placement in the subcutaneous space vs. electrode placement on the surface of the skin in a rodent model. Rodent models of inflammatory and neuropathic pain were used to investigate subcutaneous electrical stimulation (SQS) vs. transcutaneous electrical nerve stimulation (TENS). Electrical parameters and relative location of the leads were held constant under each condition. SQS had cumulative antihypersensitivity effects in both inflammatory and neuropathic pain rodent models, with significant inhibition of mechanical hypersensitivity observed on days 3-4 of treatment. In contrast, reduction of thermal hyperalgesia in the inflammatory model was observed during the first four days of treatment with SQS, and reduction of cold allodynia in the neuropathic pain model was seen only on the first day with SQS. TENS was effective in the inflammation model, and in agreement with previous studies, tolerance developed to the antihypersensitivity effects of TENS. With the exception of a reversal of cold hypersensitivity on day 1 of testing, TENS did not reveal significant analgesic effects in the neuropathic pain rodent model. The results presented show that TENS and SQS have different effects that could point to unique biologic mechanisms underlying the analgesic effect of each therapy. Furthermore, this study is the first to demonstrate in an animal model that SQS attenuates neuropathic and inflammatory-induced pain behaviors. © 2013 Medtronic, Inc.

  12. Sex Mediates the Effects of High-Definition Transcranial Direct Current Stimulation on "Mind-Reading".

    Science.gov (United States)

    Martin, A K; Huang, J; Hunold, A; Meinzer, M

    2017-12-16

    Sex differences in social cognitive ability are well established, including measures of Theory of Mind (ToM). The aim of this study was to investigate if sex mediates the effects of high-definition transcranial direct current stimulation (HD-tDCS) administered to a key hub of the social brain (i.e., the dorsomedial prefrontal cortex, dmPFC) on the Reading the Mind in the Eyes Test (RMET). Forty healthy young adults (18-35 years) were randomly allocated to receive either anodal or cathodal HD-tDCS in sham HD-tDCS controlled, double blind designs. In each of the two sessions, subjects completed the RMET. Anodal stimulation to the dmPFC increased accuracy on the RMET in females only. To assure regional specificity we performed a follow-up study stimulating the right temporoparietal junction and found no effect in either sex. The current study is the first to show improved performance on the RMET after tDCS to the dmPFC in females only. The polarity-specific effects and use of focal HD-tDCS provide evidence for sex-dependent differences in dmPFC function in relation to the RMET. Future studies using tDCS to study or improve ToM, need to consider sex. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Synthetic Cancer-Targeting Innate Immune Stimulators Give Insights into Avidity Effects.

    Science.gov (United States)

    Conibear, Anne C; Pötgens, André J G; Thewes, Karine; Altdorf, Claudia; Hilzendeger, Clarissa; Becker, Christian F W

    2018-03-02

    Multispecific and multivalent antibodies are seen as promising cancer therapeutics, and numerous antibody fragments and derivatives have been developed to exploit avidity effects that result in increased selectivity. Most of these multispecific and multivalent antibody strategies make use of recombinant expression of antigen-binding modules. In contrast, chemical synthesis and chemoselective ligations can be used to generate a variety of molecules with different numbers and combinations of binding moieties in a modular and homogeneous fashion. In this study we synthesized a series of targeted immune system engagers (ISErs) by using solid-phase peptide synthesis and chemoselective ligations. To explore avidity effects, we constructed molecules bearing different numbers and combinations of two "binder" peptides that target ephrin A2 and integrin α 3 receptors and an "effector" peptide that binds to formyl peptide receptors and stimulates an immune response. We investigated various strategies for generating multivalent and multispecific targeted innate immune stimulators and studied their activities in terms of binding to cancer cells and stimulation of immune cells. This study gives insights into the influence that multivalency and receptor density have on avidity effects and is useful for the design of potential anticancer therapeutics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of epidural clonidine on somatosensory evoked potentials to dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1989-01-01

    The effect of lumbar epidural clonidine 150 micrograms on early (less than 0.5 s) somatosensory evoked potentials (SEP) to electrical stimulation of the L1 and S1 dermatomes was examined in twelve cancer patients. Epidural clonidine led to a minor but significant decrease in amplitude of two...... systolic and diastolic blood pressures decreased from 118 +/- 4/72 +/- 5 mmHg to 99 +/- 5/60 +/- 3 mmHg (P less than 0.01), respectively. It is concluded that epidural clonidine has a minor effect on the early SEPs to electrical dermatomal stimulation. Additionally, a pronounced effect on cancer pain...... components (N1 and N3) following S1 stimulation while SEP latency was prolonged only in the P1 and P3 components (P less than 0.05). In all patients the pain score decreased, mean score at rest from 4.9 +/- 0.5 to 0.6 +/- 0.2 and during mobilization from 7.4 +/- 0.6 to 1.3 +/- 0.5 (P less than 0.01). Mean...

  15. Effects of transcranial direct current stimulation on motor learning in healthy individuals: a systematic review

    Directory of Open Access Journals (Sweden)

    Águida Foerster

    Full Text Available Introduction Transcranial direct current stimulation (tDCS has been used to modify cortical excitability and promote motor learning. Objective To systematically review published data to investigate the effects of transcranial direct current stimulation on motor learning in healthy individuals. Methods Randomized or quasi-randomized studies that evaluated the tDCS effects on motor learning were included and the risk of bias was examined by Cochrane Collaboration’s tool. The following electronic databases were used: PubMed, Scopus, Web of Science, LILACS, CINAHL with no language restriction. Results It was found 160 studies; after reading the title and abstract, 17 of those were selected, but just 4 were included. All studies involved healthy, right-handed adults. All studies assessed motor learning by the Jebsen Taylor Test or by the Serial Finger Tapping Task (SFTT. Almost all studies were randomized and all were blinding for participants. Some studies presented differences at SFTT protocol. Conclusion The result is insufficient to draw conclusions if tDCS influences the motor learning. Furthermore, there was significant heterogeneity of the stimulation parameters used. Further researches are needed to investigate the parameters that are more important for motor learning improvement and measure whether the effects are long-lasting or limited in time.

  16. Effects of frontal transcranial direct current stimulation on emotional processing and mood in healthy humans

    Directory of Open Access Journals (Sweden)

    Michael A. Nitsche

    2012-06-01

    Full Text Available The prefrontal cortex is involved in mood and emotional processing. In patients suffering from depression, the left dorsolateral prefrontal cortex is hypoactive, while activity of the right dorsolateral prefrontal cortex is enhanced. Counterbalancing these pathological excitability alterations by repetitive transcranial magnetic stimulation (rTMS or transcranial direct current stimulation (tDCS improves mood in these patients. In healthy subjects, however, rTMS of the same areas has no major effect, and the effects of tDCS are mixed. We aimed to evaluate the effects of prefrontal tDCS on mood and mood-related cognitive processing in healthy humans. In a first study, we administered excitability-enhancing anodal, excitability-diminishing cathodal and placebo tDCS to the left dorsolateral prefrontal cortex, combined with antagonistic stimulation of the right frontopolar cortex, and tested acute mood changes by an adjective checklist. Subjective mood was not influenced by tDCS. Emotional face identification, however, which was explored in a second experiment, was subtly improved by a tDCS-driven excitability modulation of the prefrontal cortex, markedly by anodal tDCS of the left dorsolateral prefrontal cortex for positive emotional content. We conclude that tDCS of the prefrontal cortex improves mood processing in healthy subjects, but does not influence subjective mood state.

  17. Adrenergic Effect on Cytokine Release After Ex Vivo Healthy Volunteers' Whole Blood LPS Stimulation.

    Science.gov (United States)

    Papandreou, Vasiliki; Kavrochorianou, Nadia; Katsoulas, Theodoros; Myrianthefs, Pavlos; Venetsanou, Kyriaki; Baltopoulos, George

    2016-06-01

    Catecholamines are molecules with immunomodulatory properties in health and disease. Several studies showed the effect of catecholamines when administered to restore hemodynamic stability in septic patients. This study investigates the effect of norepinephrine and dobutamine on whole blood cytokine release after ex vivo lipopolysaccharide (LPS) stimulation. Whole blood collected from healthy individuals was stimulated with LPS, in the presence of norepinephrine or dobutamine at different concentrations, with or without metoprolol, a β1 receptor antagonist. Cytokine measurement was performed in isolated cell culture supernatants with ELISA. Results are expressed as mean ± SEM and compared with Mann-Whitney rank-sum test. Both norepinephrine and dobutamine significantly reduced TNF-α and IL-6 production after ex vivo LPS stimulation of whole blood in a dose-dependent manner, and this effect was partially reversed by the presence of metoprolol. Norepinephrine and dobutamine reduce the LPS-induced production of pro-inflammatory cytokines, thus possibly contributing to altered balance between the inflammatory and anti-inflammatory responses, which are vital for a successful host response to severe disease, shock, and sepsis.

  18. Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson's disease.

    Science.gov (United States)

    Eusebio, Alexandre; Chen, Chiung Chu; Lu, Chin Song; Lee, Shih Tseng; Tsai, Chon Haw; Limousin, Patricia; Hariz, Marwan; Brown, Peter

    2008-01-01

    Excessive synchronization of basal ganglia neural activity at low frequencies is considered a hallmark of Parkinson's disease (PD). However, few studies have unambiguously linked this activity to movement impairment through direct stimulation of basal ganglia targets at low frequency. Furthermore, these studies have varied in their methodology and findings, so it remains unclear whether stimulation at any or all frequencies < or = 20 Hz impairs movement and if so, whether effects are identical across this broad frequency band. To address these issues, 18 PD patients chronically implanted with deep brain stimulation (DBS) electrodes in both subthalamic nuclei were stimulated bilaterally at 5, 10 and 20 Hz after overnight withdrawal of their medication and the effects of the DBS on a finger tapping task were compared to performance without DBS (0 Hz). Tapping rate decreased at 5 and 20 Hz compared to 0 Hz (by 11.8+/-4.9%, p=0.022 and 7.4+/-2.6%, p=0.009, respectively) on those sides with relatively preserved baseline task performance. Moreover, the coefficient of variation of tap intervals increased at 5 and 10 Hz compared to 0 Hz (by 70.4+/-35.8%, p=0.038 and 81.5+/-48.2%, p=0.043, respectively). These data suggest that the susceptibility of basal ganglia networks to the effects of excessive synchronization may be elevated across a broad low-frequency band in parkinsonian patients, although the nature of the consequent motor impairment may depend on the precise frequencies at which synchronization occurs.

  19. The effects of transcranial direct current stimulation in patients with neuropathic pain from spinal cord injury.

    Science.gov (United States)

    Ngernyam, Niran; Jensen, Mark P; Arayawichanon, Preeda; Auvichayapat, Narong; Tiamkao, Somsak; Janjarasjitt, Suparerk; Punjaruk, Wiyada; Amatachaya, Anuwat; Aree-uea, Benchaporn; Auvichayapat, Paradee

    2015-02-01

    Transcranial direct current stimulation (tDCS) has demonstrated efficacy for reducing neuropathic pain, but the respective mechanisms remain largely unknown. The current study tested the hypothesis that pain reduction with tDCS is associated with an increase in the peak frequency spectrum density in the theta-alpha range. Twenty patients with spinal cord injury and bilateral neuropathic pain received single sessions of both sham and anodal tDCS (2 mA) over the left primary motor area (M1) for 20 min. Treatment order was randomly assigned. Pre- to post-procedure changes in pain intensity and peak frequency of electroencephalogram spectral analysis were compared between treatment conditions. The active treatment condition (anodal tDCS over M1) but not sham treatment resulted in significant decreases in pain intensity. In addition, consistent with the study hypothesis, peak theta-alpha frequency (PTAF) assessed from an electrode placed over the site of stimulation increased more from pre- to post-session among participants in the active tDCS condition, relative to those in the sham tDCS condition. Moreover, we found a significant association between a decrease in pain intensity and an increase in PTAF at the stimulation site. The findings are consistent with the possibility that anodal tDCS over the left M1 may be effective, at least in part, because it results in an increase in M1 cortical excitability, perhaps due to a pain inhibitory effect of motor cortex stimulation that may influence the descending pain modulation system. Future research is needed to determine if there is a causal association between increased left anterior activity and pain reduction. The results provide new findings regarding the effects of tDCS on neuropathic pain and brain oscillation changes. Copyright © 2014 International Federation of Clinical Neurophysiology. All rights reserved.

  20. Effect of early treatment with transcutaneous electrical diaphragmatic stimulation (TEDS on pulmonary inflammation induced by bleomycin

    Directory of Open Access Journals (Sweden)

    Laisa A. Santos

    2013-12-01

    Full Text Available BACKGROUND : Bleomycin (B is an antineoplastic drug that has pulmonary fibrosis as a side effect. There are few experimental studies about the effects of physical therapy treatment in this case. OBJECTIVE: The objective was to study rat lungs treated with B and precocious intervention by transcutaneous electrical diaphragmatic stimulation (TEDS. METHOD : Wistar rats were divided into 4 groups (n=5: a control group (C; a stimulated group (TEDS; a group treated with a single dose of B (intratracheally, 2.5 mg/kg (B; and a group treated with B and electric stimulation (B + TEDS. After the B instillation, the electrical stimulation was applied for 7 days, for a duration of 20 minutes. Lung fragments were histologically processed with hematoxylin and eosin (HE and 8-isoprostane-PGF2α (8-iso-PGF2α. The density of the alveolar area was determined by planimetry, the inflammatory profile was defined by the number of cells, and the level of oxidative stress in the pulmonary tissue was evaluated by 8-iso-PGF2α. For statistical analysis of the data, the Shapiro-Wilk test was used, followed by a one-way ANOVA with the post-hoc Bonferroni test (p≤0.05. RESULTS : The B group exhibited a significant reduction in the area density, and the acute treatment with B + TEDS prevented this reduction. There were increased numbers of fibroblasts, leukocytes, and macrophages in the B group, as well as increased lipid peroxidation, which was observed only in this group. CONCLUSION : B promoted a reduction in the alveolar density area, thereby inducing the inflammatory process and increasing the production of free radicals. These effects were minimized by the application of TEDS at the initial treatment stage.

  1. Civil liability and compensation for damages caused by certain hazardous and noxious substances during their carriage by sea

    International Nuclear Information System (INIS)

    Bievre, A. de.

    1985-01-01

    In this paper current international efforts directed at the establishment of a special legal regime for civil liability and compensation for damages caused by hazardous and noxious substances during their transport by sea, specifically chemicals and liquid gas products, are described and analysed. Special attention is given to the way in which concern with the development of an 'environment oriented' regime which provides full recovery for victims in a reliable manner, on the one hand, and, on the other, considerations relating to cost effectiveness complement or conflict with each other. Another important area of investigation concerns the potential role of the marine insurance industry in accident prevention through the provision of incentives for careful (i.e. safe and environmentally sound) behaviour. There is a distinct regulatory trend in favour of strict liability (i.e. liability without fault) and compulsory insurance. There is also a growing perception of the need to depart from the traditional pattern of maritime liability which channels liability automatically to the person exercizing operational control during transport by sea (i.e. the carrier), and to additionally impose liability on those responsible for the risks attached to the inherently harmful characteristics of the cargoes carried. (orig.) [de

  2. Effects of Early Sensory Stimulation on the Premature Infant as Measured by the Bayley Scales of Infant Development.

    Science.gov (United States)

    Stone, Kathy Kees; And Others

    Looking beyond the overall effectiveness of sensory stimulation, this study aimed to identify specific aspects of infant behavior most responsive to early stimulation. Subjects were 65 premature infants with a birth weight of less than 5 pounds, 8 ounces and a gestational age under 37 weeks. Experimental group members had completed a multimodal…

  3. Transient Beneficial Effects of Excitatory Theta Burst Stimulation in a Patient with Phonological Agraphia after Left Supramarginal Gyrus Infarction

    Science.gov (United States)

    Nardone, Raffaele; De Blasi, Pierpaolo; Zuccoli, Giulio; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2012-01-01

    We report a patient showing isolated phonological agraphia after an ischemic stroke involving the left supramarginal gyrus (SMG). In this patient, we investigated the effects of focal repetitive transcranial magnetic stimulation (rTMS) given as theta burst stimulation (TBS) over the left SMG, corresponding to the Brodmann area (BA) 40. The patient…

  4. Effect of electrical stimulation of hamstrings and L3/4 dermatome on gait in spinal cord injury

    NARCIS (Netherlands)

    van der Salm, Arjan; Veltink, Petrus H.; Hermens, Hermanus J.; Nene, A.V.; IJzerman, Maarten Joost

    2006-01-01

    Objective. To determine the effect of electrical stimulation of hamstrings and L3/4 dermatome on the swing phase of gait. Materials and Methods. Five subjects with incomplete spinal cord injury (SCI) with spasticity were included. Two electrical stimulation methods were investigated, i.e.,

  5. Effects of different lower-limb sensory stimulation strategies on postural regulation-a Systematic review and metaanalysis

    NARCIS (Netherlands)

    Woo, Mei Teng; Davids, Keith; Liukkonen, Jarmo; Orth, Dominic; Chow, Jia Yi; Jaakkola, Timo

    2017-01-01

    Systematic reviews of balance control have tended to only focus on the effects of single lower-limb stimulation strategies, and a current limitation is the lack of comparison between different relevant stimulation strategies. The aim of this systematic review and meta-analysis was to examine

  6. Preservation of the positive lusitropic effect of beta-adrenoceptors stimulation in diabetic cardiomyopathy.

    Science.gov (United States)

    Amour, Julien; Loyer, Xavier; Michelet, Pierre; Birenbaum, Aurélie; Riou, Bruno; Heymes, Christophe

    2008-10-01

    In diabetic cardiomyopathy, diastolic dysfunction results in part from sarcoplasmic reticulum abnormalities affecting both phospholamban and sarcoplasmic reticulum Ca2+ uptake (SERCA2a). Consequently, the positive lusitropic effect of beta-adrenoceptors stimulation could be altered, and beta3-adrenoceptor over-expression may play a role, as previously demonstrated with an altered positive inotropic effect. In this study, we tested the hypothesis that the beta-adrenergic positive lusitropic effect is altered in diabetic cardiomyopathy, and that beta3-adrenoceptor over-expression is involved. beta-adrenergic responses were investigated in vivo (dobutamine-echocardiography) and in vitro (papillary muscle preparation) in healthy and diabetic rats killed 4 (4W) and 12 (12W) wk after IV streptozotocin injection. The effect of beta3-adrenoceptor pathway inhibition by S-cyanopindolol (selective beta3-adrenoceptor antagonist) or by NG-nitro-L-arginine-methyl-ester (nonselective nitric oxide synthase inhibitor) on the lusitropic response to isoproterenol (nonselective beta-adrenoceptors agonist) was studied in vitro. Western blots were performed to quantify the protein expressions of beta1- and beta3-adrenoceptors, phospholamban, and SERCA2a. Data are presented as mean percentages of baseline+/-sd. Despite the increased phospholamban/SERCA2a protein ratio and documented diastolic dysfunction, the positive lusitropic effect of beta-adrenoceptors stimulation was preserved in vivo (dobutamine) and in vitro (isoproterenol) in 4W and 12W diabetic, compared with healthy, rats. The beta3-adrenoceptor was up-regulated whereas beta1-adrenoceptor was down-regulated in 4W and 12W diabetic, compared with healthy, rats. Nevertheless, S-cyanopindolol or NG-nitro-L-arginine-methyl-ester had no lusitropic effect. The positive lusitropic effect of beta-adrenoceptor stimulation was preserved in diabetic cardiomyopathy. beta3-adrenoceptor over-expression does not seem to affect this process.

  7. Effect of iodide on glucose oxidation and 32P incorporation into phospholipids stimulated by different agents in dog thyroid slices

    International Nuclear Information System (INIS)

    Tseng, F.Y.; Rani, C.S.; Field, J.B.

    1989-01-01

    Since iodide (I-) inhibits TSH stimulation of cAMP formation, which mediates most of the effects of the hormone, it has been assumed that this accounts for the inhibitory action of iodide on the thyroid. However, TSH stimulation of 32P incorporation into phospholipids and stimulation of thyroid metabolism by other agonists, such as carbachol, phorbol esters, and ionophore A23187, is not cAMP mediated. The present studies examined the effect of iodide on stimulation of glucose oxidation and 32P incorporation into phospholipids by TSH and other agonists to determine if the inhibition of cAMP formation was responsible for the action of iodide. Preincubation of dog thyroid slices for 1 h with iodide (10(-4) M) inhibited TSH-, (Bu)2cAMP-, carbachol-, methylene blue-, 12-O-tetradecanoyl phorbol-13-acetate-, ionophore A23187-, prostaglandin E1-, and cholera toxin-stimulated glucose oxidation. I- also inhibited the stimulation by TSH, 12-O-tetradecanoyl phorbol-13-acetate, carbachol, and ionophore A23187 of 32P incorporation into phospholipids. The inhibition was similar whether iodide was added 2 h before or simultaneously with the agonist. I- itself sometimes stimulated basal glucose oxidation, but had no effect on basal 32P incorporation into phospholipids. The effects of iodide on basal and agonist-stimulated thyroid metabolism were blocked by methimazole (10(-3) M). When dog thyroid slices were preloaded with 32PO4 or [1-14C]glucose, the iodide inhibition of agonist stimulation disappeared, suggesting that the effect of iodide involves the transport process. In conclusion, I- inhibited stimulation of glucose oxidation and 32P incorporation into phospholipids by all agonists, indicating that the effect is independent of the cAMP system and that iodide autoregulation does not only involve this system. Oxidation and organification of iodide are necessary for the inhibition

  8. Maternal scaffolding and home stimulation: Key mediators of early intervention effects on children's cognitive development.

    Science.gov (United States)

    Obradović, Jelena; Yousafzai, Aisha K; Finch, Jenna E; Rasheed, Muneera A

    2016-09-01

    This study contributes to the understanding of how early parenting interventions implemented in low- and middle-income countries during the first 2 years of children's lives are sustained longitudinally to promote cognitive skills in preschoolers. We employed path analytic procedures to examine 2 family processes-the quality of home stimulation and maternal scaffolding behaviors-as underlying mechanisms through which a responsive stimulation intervention uniquely predicted children's verbal intelligence, performance intelligence, and executive functioning. The sample included 1,302 highly disadvantaged children and their mothers living in rural Pakistan, who from birth participated in a 2-year, community-based, cluster-randomized, controlled trial designed to promote sensitive and responsive caregiving. Family processes were assessed at 2 developmental time points using parent reports, ratings of home environments, and observed parent-child interactions. Cognitive skills at age 4 were assessed using standardized tests. Controlling for socioeconomic risk (e.g., wealth, maternal education, food insecurity) and individual factors (e.g., gender, growth status), the quality of current home stimulation as well as both earlier and concurrent measures of maternal scaffolding independently mediated the intervention effects on cognitive skills at age 4. In addition, the intervention had a significant direct effect on executive functioning and performance intelligence over and above significant family processes and other covariates. We highlight implications for future program design and evaluation studies. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. The effect of calf neuromuscular electrical stimulation and intermittent pneumatic compression on thigh microcirculation.

    Science.gov (United States)

    Bahadori, Shayan; Immins, Tikki; Wainwright, Thomas W

    2017-05-01

    This study compares the effectiveness of a neuromuscular electrical stimulation (NMES) device and an intermittent pneumatic compression (IPC) device on enhancing microcirculatory blood flow in the thigh of healthy individuals, when stimulation is carried out peripherally at the calf. Blood microcirculation of ten healthy individuals was recorded using laser speckle contrast imaging (LSCI) technique. A region of interest (ROI) was marked on each participant thigh. The mean flux within the ROI was calculated at four states: rest, NMES device with visible muscle actuation (VMA), NMES device with no visible muscle actuation (NVMA) and IPC device. Both NMES and IPC devices increased blood flow in the thigh when stimulation was carried out peripherally at the calf. The NMES device increased mean blood perfusion from baseline by 399.8% at the VMA state and 150.6% at the NVMA state, IPC device increased the mean blood perfusion by 117.3% from baseline. The NMES device at VMA state increased microcirculation by more than a factor of 3 in contrast to the IPC device. Even at the NVMA state, the NMES device increased blood flow by 23% more than the IPC device. Given the association between increased microcirculation and reduced oedema, NMES may be a more effective modality than IPC at reducing oedema, therefore further research is needed to explore this. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effective isolation of primo vessels in lymph using sound- and ultrasonic-wave stimulation.

    Science.gov (United States)

    Park, Do-Young; Lee, Hye-Rie; Rho, Min-Suk; Lee, Sang-Suk

    2014-12-01

    The effects of stimulation with sound and ultrasonic waves of a specific bandwidth on the microdissection of primo vessels in lymphatic vessels of rabbit were investigated. The primo vessels stained with alcian-blue dye injected in the lymph nodes were definitely visualized and more easily isolated by sound-wave vibration and ultrasonic stimulation applied to rabbits at various frequencies and intensities. With sound wave at 7 Hz and ultrasonic waves at 2 MHz, the probability of detecting the primo vessels was improved to 90%; however, without wave stimulation the probability of discovering primo vessels was about 50% only. Sound and ultrasonic waves at specific frequency bands should be effective for microdissection of the primo vessels in the abdominal lymph of rabbit. We suggest that oscillation of the primo vessels by sound and ultrasonic waves may be useful to visualize specific primo structure, and wave vibration can be a very supportive process for observation and isolation of the primo vessels of rabbits. Copyright © 2014. Published by Elsevier B.V.

  11. An undergraduate laboratory exercise examining the psychomotor stimulant effects of caffeine in laboratory rats.

    Science.gov (United States)

    Pham, Kara; Romeo, Russell D

    2012-01-01

    This paper describes an exercise in a Systems and Behavioral Neuroscience with Laboratory class, an introductory laboratory class taken by Barnard College students majoring in a wide range of academic topics. The study took place over three weeks, allowing students to assess the effects of caffeine on motor stimulation in laboratory rats. The within-subject design involved injecting rats with three different caffeine doses and measuring five different motor outputs in a standard open field. Students completed four different assignments related to this study, demonstrating acquisition of the stated learning goals. This lab exercise allowed students to learn about basal ganglia neural circuitry and stimulant pharmacology, to work directly with an animal model, and to generate enough data to perform statistical analyses. Course evaluations suggest that students liked learning about caffeine, a stimulant many of them have personal experience consuming. They also expressed appreciation for working with rats and for learning how to analyze data. This study can easily be implemented at most undergraduate institutions under minimal cost. The wide-ranging effects of caffeine also permit for flexibility in experimental design, allowing instructors and students options for different avenues of investigation.

  12. Effects of Visual Stimulation with Bonsai Trees on Adult Male Patients with Spinal Cord Injury.

    Science.gov (United States)

    Ochiai, Hiroko; Song, Chorong; Ikei, Harumi; Imai, Michiko; Miyazaki, Yoshifumi

    2017-09-05

    Nature therapy has been demonstrated to induce physiological relaxation. The psychophysiological effects of nature therapy (stimulation with bonsai trees) on adult male patients with spinal cord injury (SCI) were examined. Oxyhemoglobin concentration changes in the prefrontal cortex were measured using near-infrared spectroscopy, and heart rate variability was analyzed. Psychological responses were evaluated using the modified semantic differential method and Profile of Mood States (POMS) subscale scores. Visual stimulation of adult male patients with SCI elicited significantly decreased left prefrontal cortex activity, increased parasympathetic nervous activity, decreased sympathetic nervous activity, increased positive feelings, and resulted in lower negative POMS subscale scores. Nature therapy can lead to a state of physiological and psychological relaxation in patients with SCI.

  13. Modeling the effects of noninvasive transcranial brain stimulation at the biophysical, network, and cognitive Level

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Bergmann, Til Ole; Herz, Damian Marc

    2015-01-01

    Noninvasive transcranial brain stimulation (NTBS) is widely used to elucidate the contribution of different brain regions to various cognitive functions. Here we present three modeling approaches that are informed by functional or structural brain mapping or behavior profiling and discuss how...... these approaches advance the scientific potential of NTBS as an interventional tool in cognitive neuroscience. (i) Leveraging the anatomical information provided by structural imaging, the electric field distribution in the brain can be modeled and simulated. Biophysical modeling approaches generate testable...... predictions regarding the impact of interindividual variations in cortical anatomy on the injected electric fields or the influence of the orientation of current flow on the physiological stimulation effects. (ii) Functional brain mapping of the spatiotemporal neural dynamics during cognitive tasks can...

  14. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis

    International Nuclear Information System (INIS)

    Heidenreich, K.A.; Toledo, S.P.

    1989-01-01

    In this study we have examined the effects of insulin on protein synthesis in cultured fetal chick neurons. Protein synthesis was monitored by measuring the incorporation of [3H]leucine (3H-leu) into trichloroacetic acid (TCA)-precipitable protein. Upon addition of 3H-leu, there was a 5-min lag before radioactivity occurred in protein. During this period cell-associated radioactivity reached equilibrium and was totally recovered in the TCA-soluble fraction. After 5 min, the incorporation of 3H-leu into protein was linear for 2 h and was inhibited (98%) by the inclusion of 10 micrograms/ml cycloheximide. After 24 h of serum deprivation, insulin increased 3H-leu incorporation into protein by approximately 2-fold. The stimulation of protein synthesis by insulin was dose dependent (ED50 = 70 pM) and seen within 30 min. Proinsulin was approximately 10-fold less potent than insulin on a molar basis in stimulating neuronal protein synthesis. Insulin had no effect on the TCA-soluble fraction of 3H-leu at any time and did not influence the uptake of [3H]aminoisobutyric acid into neurons. The isotope ratio of 3H-leu/14C-leu in the leucyl tRNA pool was the same in control and insulin-treated neurons. Analysis of newly synthesized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that insulin uniformly increased the incorporation of 14C-leu into all of the resolved neuronal proteins. We conclude from these data that (1) insulin rapidly stimulates overall protein synthesis in fetal neurons independent of amino acid uptake and aminoacyl tRNA precursor pools; (2) stimulation of protein synthesis is mediated by the brain subtype of insulin receptor; and (3) insulin is potentially an important in vivo growth factor for fetal central nervous system neurons

  15. Effects of stimulus mode and ambient temperature on cerebral responses to local thermal stimulation: An EEG study.

    Science.gov (United States)

    Lv, Bin; Su, Chang; Yang, Lei; Wu, Tongning

    2017-03-01

    The physiological responses to human thermal stimulation have been widely investigated, but most of them are mainly concerned about the whole body thermal stimulation. In this study, we investigated the effects of stimulus mode and ambient temperature on cerebral responses during local thermal stimulation on hand. The left hands were stimulated by metal thermostat based and thermostatic water based stimulators at different stimulated temperatures (38°C, 40°C, 42°C and 44°C) and different ambient temperatures (25°C and 32°C). EEG data were recorded over the whole brain during the experiments. Then the statistical comparisons were conducted on the EEG relative power among different experimental sessions. We observed that EEG activities were alternated between thermal stimulated periods and the baseline in all four frequency bands. And there was a higher percentage of delta band power in the right temporal and parietal regions under the ambient temperature of 32°C while compared to 25°C. In addition, the theta band activity under the metal based stimulation showed significantly higher EEG relative power than that under the water based stimulation over the whole brain. Compared with the water based stimulation, there was a lower EEG relative power of the beta band activity during the metal based stimulation in the bilateral frontal and right temporal regions. The experimental results suggested that the neural physiological responses in different EEG frequency bands were sensitive to different influence factors during the local hand thermal stimulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Gastric electrical stimulation treatment of type 2 diabetes: effects of implantation versus meal-mediated stimulation. A randomized blinded cross-over trial.

    Science.gov (United States)

    Lebovitz, Harold E; Ludvik, Bernhard; Kozakowski, Jaroslaw; Tarnowski, Wieslaw; Zelewski, Mateusz; Yaniv, Irit; Schwartz, Tse'ela

    2015-07-14

    Gastric electrical stimulation with the implanted DIAMOND device has been shown to improve glycemic control and decrease weight and systolic blood pressure in patients with type 2 diabetes inadequately controlled with oral antidiabetic agents. The objective of this study was to determine if device implantation alone (placebo effect) contributes to the long-term metabolic benefits of DIAMOND(®) meal-mediated gastric electrical stimulation in patients with type 2 diabetes. The study was a 48 week randomized, blinded, cross-over trial in university centers comparing glycemic improvement of DIAMOND(®) implanted patients with type 2 diabetic with no activation of the electrical stimulation (placebo) versus meal-mediated activation of the electrical signal. The endpoint was improvement in glycemic control (HbA1c) from baseline to 24 and 48 weeks. In period 1 (0-24 weeks), equal improvement in HbA1c occurred independent of whether the meal-mediated electrical stimulation was turned on or left off (HbA1c -0.80% and -0.85% [-8.8 and -9.0 mmol/mol]). The device placebo improvement proved to be transient as it was lost in period 2 (25-48 weeks). With electrical stimulation turned off, HbA1c returned toward baseline values (8.06 compared to 8.32%; 64.2 to 67.4 mmol/mol, P = 0.465). In contrast, turning the electrical stimulation on in period 2 sustained the decrease in HbA1c from baseline (-0.93%, -10.1mmol/mol, P = 0.001) observed in period 1. The results indicate that implantation of the DIAMOND device causes a transient improvement in HbA1c which is not sustained beyond 24 weeks. Meal-mediated electrical stimulation accounts for the significant improvement in HbA1c beyond 24 weeks. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. A novel approach for evaluating the effects of odor stimulation on dynamic cardiorespiratory functions.

    Directory of Open Access Journals (Sweden)

    Eriko Kawai

    Full Text Available We aimed to develop a novel method to quantitatively evaluate the effects of odor stimulation on cardiorespiratory functions over time, and to examine the potential usefulness of clinical aromatherapy. Eighteen subjects participated. Nine people were assigned to each of the two resting protocols. Protocol 1: After resting for 2 min in a sitting position breathing room air, the subject inhaled either air or air containing sweet marjoram essential oil from the Douglas bag for 6 min, Protocol 2: After resting for 5 min in a supine position, the subject inhaled the essential oil for 10 min, and then recovered for 10 min breathing room air. All subjects inhaled the essential oil through a face mask attached to one-way valve, and beat-to-beat heart rate (HR and arterial blood pressure (BP as well as breath-by-breath respiratory variables were continuously recorded. In both protocols, during fragrance inhalation of the essential oil, time-dependent decrease in mean BP and HR were observed (P<0.05. During post-inhalation recovery, the significant fragrance-induced bradycardic effect lasted at least 5 min (- 3.1 ± 3.9% vs. pre-inhalation baseline value, p<0.05. The mean BP response at the start of odor stimulation was approximated by a first-order exponential model. However, such fragrance-induced changes were not observed in the respiratory variables. We established a novel approach to quantitatively and accurately evaluate the effects of quantitative odor stimulation on dynamic cardiorespiratory functions, and the duration of the effect. This methodological approach may be useful for scientific evaluation of aromatherapy as an approach to integrated medicine, and the mechanisms of action of physiological effects in fragrance compounds.

  18. Subthalamic deep brain stimulation modulates small fiber-dependent sensory thresholds in Parkinson's disease.

    Science.gov (United States)

    Ciampi de Andrade, Daniel; Lefaucheur, Jean-Pascal; Galhardoni, Ricardo; Ferreira, Karine S L; Brandão Paiva, Anderson Rodrigues; Bor-Seng-Shu, Edson; Alvarenga, Luciana; Myczkowski, Martin L; Marcolin, Marco Antonio; de Siqueira, Silvia R D T; Fonoff, Erich; Barbosa, Egberto Reis; Teixeira, Manoel Jacobsen

    2012-05-01

    The effects of deep brain stimulation of the subthalamic nucleus on nonmotor symptoms of Parkinson's disease (PD) rarely have been investigated. Among these, sensory disturbances, including chronic pain (CP), are frequent in these patients. The aim of this study was to evaluate the changes induced by deep brain stimulation in the perception of sensory stimuli, either noxious or innocuous, mediated by small or large nerve fibers. Sensory detection and pain thresholds were assessed in 25 PD patients all in the off-medication condition with the stimulator turned on or off (on- and off-stimulation conditions, respectively). The relationship between the changes induced by surgery on quantitative sensory testing, spontaneous CP, and motor abilities were studied. Quantitative sensory test results obtained in PD patients were compared with those of age-matched healthy subjects. Chronic pain was present in 72% of patients before vs 36% after surgery (P=.019). Compared with healthy subjects, PD patients had an increased sensitivity to innocuous thermal stimuli and mechanical pain, but a reduced sensitivity to innocuous mechanical stimuli. In addition, they had an increased pain rating when painful thermal stimuli were applied, particularly in the off-stimulation condition. In the on-stimulation condition, there was an increased sensitivity to innocuous thermal stimuli but a reduced sensitivity to mechanical or thermal pain. Pain provoked by thermal stimuli was reduced when the stimulator was turned on. Motor improvement positively correlated with changes in warm detection and heat pain thresholds. Subthalamic nucleus deep brain stimulation contributes to relieve pain associated with PD and specifically modulates small fiber-mediated sensations. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  19. Theoretical analysis of transcranial Hall-effect stimulation based on passive cable model

    International Nuclear Information System (INIS)

    Yuan Yi; Li Xiao-Li

    2015-01-01

    Transcranial Hall-effect stimulation (THS) is a new stimulation method in which an ultrasonic wave in a static magnetic field generates an electric field in an area of interest such as in the brain to modulate neuronal activities. However, the biophysical basis of simulating the neurons remains unknown. To address this problem, we perform a theoretical analysis based on a passive cable model to investigate the THS mechanism of neurons. Nerve tissues are conductive; an ultrasonic wave can move ions embedded in the tissue in a static magnetic field to generate an electric field (due to Lorentz force). In this study, a simulation model for an ultrasonically induced electric field in a static magnetic field is derived. Then, based on the passive cable model, the analytical solution for the voltage distribution in a nerve tissue is determined. The simulation results showthat THS can generate a voltage to stimulate neurons. Because the THS method possesses a higher spatial resolution and a deeper penetration depth, it shows promise as a tool for treating or rehabilitating neuropsychiatric disorders. (paper)

  20. Effectiveness of daily eccentric contractions induced via kilohertz frequency transcutaneous electrical stimulation on muscle atrophy.

    Science.gov (United States)

    Tanaka, Minoru; Nakanishi, Ryosuke; Murakami, Shinichiro; Fujita, Naoto; Kondo, Hiroyo; Ishihara, Akihiko; Roy, Roland R; Fujino, Hidemi

    2016-01-01

    The effects of daily repeated bouts of concentric, isometric, or eccentric contractions induced by high frequency (kilohertz) transcutaneous electrical stimulation in ameliorating atrophy of the soleus muscle in hindlimb unloaded rats were determined. Five groups of male rats were studied: control, hindlimb unloaded for 2 weeks (HU), or HU plus two daily bouts of concentric, isometric, or eccentric high-frequency electrical stimulation-induced contractions of the calf musculature. Soleus mass and fiber size were smaller, the levels of phosphorylated Akt1 and FoxO3a lower, and atrogin-1 and ubiquitinated proteins higher in the HU, and the HU plus concentric or isometric contraction groups than in the control group. In contrast, daily bouts of eccentric contractions maintained these values at near control levels and all measures were significantly different from all other HU groups. These results indicate that daily bouts of eccentric contractions induced by high-frequency stimulation inhibited the ubiquitin-proteasome catabolic pathway and enhanced the Akt1/FoxO3a anabolic pathway that resulted in a prevention of the atrophic response of the soleus muscle to chronic unloading. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Effects of involuntary eccentric contraction training by neuromuscular electrical stimulation on the enhancement of muscle strength.

    Science.gov (United States)

    Son, Jongsang; Lee, Dongyeop; Kim, Youngho

    2014-08-01

    Neuromuscular electrical stimulation is well-known as a modality to improve the performance of neuromuscular system, but its clinical value on muscle strengthening remains equivocal. In this study, we designed a system for an involuntary eccentric contraction of biceps brachii muscles using continuous passive movement and commercial neuromuscular electrical stimulation devices. To investigate the effects of involuntary eccentric contraction training by neuromuscular electrical stimulation on the enhancement of muscle strength, seven healthy men between the ages of 24 and 29 years participated in this study. Participants were trained two times per week for 12 weeks. Each exercise session was performed for 30 min with no rest intervals. Isometric elbow flexion torque and biceps brachii muscle thickness were chosen as evaluation indices, and were measured at pre-/post-training. After the 12-week training, the isometric elbow flexion torque of the trained side significantly increased by approximately 23% compared to the initial performance (Pcontraction (P<0.01). The developed system and the technique show promising results, suggesting that it has the potential to be used to increase the muscle strength in patients with neuromuscular disease and to be implemented in design rehabilitative protocols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation.

    Science.gov (United States)

    Yakunina, Natalia; Kang, Eun Kyoung; Kim, Tae Su; Min, Ji-Hoon; Kim, Sam Soo; Nam, Eui-Cheol

    2015-10-01

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads.

  3. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Yakunina, Natalia [Kangwon National University, Institute of Medical Science, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kang, Eun Kyoung [Kangwon National University Hospital, Department of Rehabilitation Medicine, Chuncheon (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Otolaryngology, Chuncheon (Korea, Republic of); Min, Ji-Hoon [University of Michigan, Department of Biopsychology, Cognition, and Neuroscience, Ann Arbor, MI (United States); Kim, Sam Soo [Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Radiology, Chuncheon (Korea, Republic of); Nam, Eui-Cheol [Kangwon National University Hospital, Neuroscience Research Institute, Chuncheon (Korea, Republic of); Kangwon National University, School of Medicine, Department of Otolaryngology, Chuncheon (Korea, Republic of)

    2015-10-15

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads. (orig.)

  4. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation

    International Nuclear Information System (INIS)

    Yakunina, Natalia; Kang, Eun Kyoung; Kim, Tae Su; Min, Ji-Hoon; Kim, Sam Soo; Nam, Eui-Cheol

    2015-01-01

    Although the effects of scanner background noise (SBN) during functional magnetic resonance imaging (fMRI) have been extensively investigated for the brain regions involved in auditory processing, its impact on other types of intrinsic brain activity has largely been neglected. The present study evaluated the influence of SBN on a number of intrinsic connectivity networks (ICNs) during auditory stimulation by comparing the results obtained using sparse temporal acquisition (STA) with those using continuous acquisition (CA). Fourteen healthy subjects were presented with classical music pieces in a block paradigm during two sessions of STA and CA. A volume-matched CA dataset (CAm) was generated by subsampling the CA dataset to temporally match it with the STA data. Independent component analysis was performed on the concatenated STA-CAm datasets, and voxel data, time courses, power spectra, and functional connectivity were compared. The ICA revealed 19 ICNs; the auditory, default mode, salience, and frontoparietal networks showed greater activity in the STA. The spectral peaks in 17 networks corresponded to the stimulation cycles in the STA, while only five networks displayed this correspondence in the CA. The dorsal default mode and salience networks exhibited stronger correlations with the stimulus waveform in the STA. SBN appeared to influence not only the areas of auditory response but also the majority of other ICNs, including attention and sensory networks. Therefore, SBN should be regarded as a serious nuisance factor during fMRI studies investigating intrinsic brain activity under external stimulation or task loads. (orig.)

  5. Effects of multisensory and motor stimulation on the behavior of people with dementia.

    Science.gov (United States)

    Sposito, Giovana; Barbosa, Ana; Figueiredo, Daniela; Yassuda, Mônica Sanches; Marques, Alda

    2017-04-01

    A quasi-experimental study using a pre-posttest design was conducted in four aged care facilities to assess the effects of a person-centred care (PCC) multisensory stimulation (MSS) and motor stimulation (MS) program, implemented by direct care workers, on the behaviors of residents with dementia. Data were collected at baseline and after the intervention through video recordings of morning care routines. Forty-five residents with moderate and severe dementia participated in the study. A total of 266 morning care routines were recorded. The frequency and duration of a list of behaviors were analyzed. The frequency of engagement in task decreased significantly ( p = .002) however, its duration increased ( p = .039). The duration of gaze directed at direct care workers improved significantly ( p = .014) and the frequency of closed eyes decreased ( p = .046). There was a significant decrease in the frequency of the expression of sadness. These results support the implementation of PCC-MSS and MS programs as they may stimulate residents' behaviors.

  6. [Anesthetic effect of preemptive analgesia of frequency acupoint electrical stimulation on painless-induced abortion].

    Science.gov (United States)

    Wang, Li-Hong; Zhu, Hong-Xia; Su, Xin-Jing; Hao, Wen-Bin

    2014-07-01

    To explore the anesthetic effect of preemptive analgesia of frequency acupoint electrical stimulation on painless-induced abortion as well as its effect on anesthetics dosage. Ninety cases of early pregnancy who selected painless-induced abortion were randomly divided into two groups, 45 cases in each group. Frequency acupoint electrical stimulation at Ciliao (BL 32) and Shenshu (BL 23), disperse-densewave, 2 Hz/100 Hz in frequency for 15 to 20 min, was applied in the group A, which was followed by intravenous anesthesia of propofol. The intravenous anesthesia of propofol was applied in the group B. The blood pressure (BP), heart rate (HR) and SpO2 before, during and after surgery, anesthetic effect and dosage, waking time and adverse events were observed in the two groups. The BP and HR during and after the surgery in the group A were not statistically different from those before the surgery (all P > 0.05). The BP was reduced and HR was slowed down during the surgery in the group B, which was significantly different from those before the surgery as well as those in the group A (all P effect, the incidence of Grade I in the group A was more than the group B (P effect of painless-induced abortion, reduce dosage of anesthetics, shorten waking time of surgery and guarantee the safety of surgery.

  7. Sulforaphane has opposing effects on TNF-alpha stimulated and unstimulated synoviocytes.

    Science.gov (United States)

    Fragoulis, Athanassios; Laufs, Jendrik; Müller, Susanna; Soppa, Ulf; Siegl, Stephanie; Reiss, Lucy Kathleen; Tohidnezhad, Mersedeh; Rosen, Christian; Tenbrock, Klaus; Varoga, Deike; Lippross, Sebastian; Pufe, Thomas; Wruck, Christoph Jan

    2012-10-27

    Rheumatoid arthritis (RA) is characterized by progressive inflammation associated with rampantly proliferating synoviocytes and joint destruction due to oxidative stress. Recently, we described nuclear factor erythroid 2-related factor 2 (Nrf2) as a major requirement for limiting cartilage destruction. NF-κB and AP-1 are the main transcription factors triggering the inflammatory progression in RA. We used sulforaphane, an isothiocyanate, which is both an Nrf2 inducer and a NF-κB and AP-1 inhibitor. Cultured synoviocytes were stimulated with sulforaphane (SFN) with or without TNF-α pre-treatment. NF-κB, AP-1, and Nrf2 activation was investigated via dual luciferase reporter gene assays. Matrix metalloproteinases (MMPs) were measured via zymography and luminex technique. Cytokine levels were detected using ELISA. Cell viability, apoptosis and caspase activity were studied. Cell proliferation was analysed by real-time cell analysis. SFN treatment decreased inflammation and proliferation dose-dependently in TNF-α-stimulated synoviocytes. SFN did not reduce MMP-3 and MMP-9 activity or expression significantly. Interestingly, we demonstrated that SFN has opposing effects on naïve and TNF-α-stimulated synoviocytes. In naïve cells, SFN activated the cytoprotective transcription factor Nrf2. In marked contrast to this, SFN induced apoptosis in TNF-α-pre-stimulated synoviocytes. We were able to show that SFN treatment acts contrary on naïve and inflammatory synoviocytes. SFN induces the cytoprotective transcription factor Nrf2 in naïve synoviocytes, whereas it induces apoptosis in inflamed synoviocytes. These findings indicate that the use of sulforaphane might be considered as an adjunctive therapeutic strategy to combat inflammation, pannus formation, and cartilage destruction in RA.

  8. Effect of low-frequency deep brain stimulation on sensory thresholds in Parkinson's disease.

    Science.gov (United States)

    Belasen, Abigail; Rizvi, Khizer; Gee, Lucy E; Yeung, Philip; Prusik, Julia; Ramirez-Zamora, Adolfo; Hanspal, Era; Paiva, Priscilla; Durphy, Jennifer; Argoff, Charles E; Pilitsis, Julie G

    2017-02-01

    OBJECTIVE Chronic pain is a major distressing symptom of Parkinson's disease (PD) that is often undertreated. Subthalamic nucleus (STN) deep brain stimulation (DBS) delivers high-frequency stimulation (HFS) to patients with PD and has been effective in pain relief in a subset of these patients. However, up to 74% of patients develop new pain concerns while receiving STN DBS. Here the authors explore whether altering the frequency of STN DBS changes pain perception as measured through quantitative sensory testing (QST). METHODS Using QST, the authors measured thermal and mechanical detection and pain thresholds in 19 patients undergoing DBS via HFS, low-frequency stimulation (LFS), and off conditions in a randomized order. Testing was performed in the region of the body with the most pain and in the lower back in patients without chronic pain. RESULTS In the patients with chronic pain, LFS significantly reduced heat detection thresholds as compared with thresholds following HFS (p = 0.029) and in the off state (p = 0.010). Moreover, LFS resulted in increased detection thresholds for mechanical pressure (p = 0.020) and vibration (p = 0.040) compared with these thresholds following HFS. Neither LFS nor HFS led to changes in other mechanical thresholds. In patients without chronic pain, LFS significantly increased mechanical pain thresholds in response to the 40-g pinprick compared with thresholds following HFS (p = 0.032). CONCLUSIONS Recent literature has suggested that STN LFS can be useful in treating nonmotor symptoms of PD. Here the authors demonstrated that LFS modulates thermal and mechanical detection to a greater extent than HFS. Low-frequency stimulation is an innovative means of modulating chronic pain in PD patients receiving STN DBS. The authors suggest that STN LFS may be a future option to consider when treating Parkinson's patients in whom pain remains the predominant complaint.

  9. Effects of Sustained Otolith-Only Stimulation on Post-Rotational Nystagmus.

    Science.gov (United States)

    Shaikh, Aasef G; Solomon, David

    2017-06-01

    Constant velocity rotations in darkness evoke vestibulo-ocular reflex in form of pre- and post-rotational nystagmus under cerebellar supervision. Reorientation of the head with respect to gravity, stimulating otolith and semicircular canal, during post-rotational phase rapidly suppresses the post-rotational nystagmus. We asked if pure otolith stimulation without semicircular canal signal is sufficient for the suppression of post-rotational nystagmus. The experimental paradigm comprised of on-axis rotations in the horizontal plane when the subject was sitting upright, followed by a novel stimulus that combined off-axis centrifugation in the horizontal plane with amplitude matched, yet out-of-phase, on-axis horizontal rotation-double centrifugation. The resultant effect of double centrifugation was pure otolith stimulation that constantly changed direction, yet completely canceled out angular velocity (no horizontal semicircular canal stimulation). Double centrifugation without pre-existing on-axis rotations evoked mixture of horizontal and vertical eye movements, latter reflected the known uncertainty of the vestibular system to differentiate whether the sensory signal is related to low-frequency translations in horizontal plane or head tilts relative to the gravity. Double centrifugation during post-rotational phase suppressed the peak slow phase eye velocity of the post-rotational nystagmus, hence affecting the vestibular ocular reflex gain (eye velocity/head velocity) matrix. The decay time constant, however, was unchanged. Amount of suppression of the peak slow phase eye velocity of the post-rotational nystagmus during double centrifugation correlated with the peak vertical eye velocity evoked by the pure otolith stimuli in the absence of pre-existing on axis rotations. In post-rotational phase, the pure otolith signal affects vestibular ocular reflex gain matrix but does not affect the time constant.

  10. Upper Airway Stimulation for Obstructive Sleep Apnea: Durability of the Treatment Effect at 18 Months.

    Science.gov (United States)

    Strollo, Patrick J; Gillespie, M Boyd; Soose, Ryan J; Maurer, Joachim T; de Vries, Nico; Cornelius, Jason; Hanson, Ronald D; Padhya, Tapan A; Steward, David L; Woodson, B Tucker; Verbraecken, Johan; Vanderveken, Olivier M; Goetting, Mark G; Feldman, Neil; Chabolle, Frédéric; Badr, M Safwan; Randerath, Winfried; Strohl, Kingman P

    2015-10-01

    To determine the stability of improvement in polysomnographic measures of sleep disordered breathing, patient reported outcomes, the durability of hypoglossal nerve recruitment and safety at 18 months in the Stimulation Treatment for Apnea Reduction (STAR) trial participants. Prospective multicenter single group trial with participants serving as their own controls. Twenty-two community and academic sleep medicine and otolaryngology practices. Primary outcome measures were the apnea-hypopnea index (AHI) and the 4% oxygen desaturation index (ODI). Secondary outcome measures were the Epworth Sleepiness Scale (ESS), the Functional Outcomes of Sleep Questionnaire (FOSQ), and oxygen saturation percent time sleep. Stimulation level for each participant was collected at three predefined thresholds during awake testing. Procedure- and/or device-related adverse events were reviewed and coded by the Clinical Events Committee. The median AHI was reduced by 67.4% from the baseline of 29.3 to 9.7/h at 18 mo. The median ODI was reduced by 67.5% from 25.4 to 8.6/h at 18 mo. The FOSQ and ESS improved significantly at 18 mo compared to baseline values. The functional threshold was unchanged from baseline at 18 mo. Two participants experienced a serious device-related adverse event requiring neurostimulator repositioning and fixation. No tongue weakness reported at 18 mo. Upper airway stimulation via the hypoglossal nerve maintained a durable effect of improving airway stability during sleep and improved patient reported outcomes (Epworth Sleepiness Scale and Functional Outcomes of Sleep Questionnaire) without an increase of the stimulation thresholds or tongue injury at 18 mo of follow-up. © 2015 Associated Professional Sleep Societies, LLC.

  11. Ascertaining Grain Scale Effects Of Seismic Or Aseismic Stimulation Upon Strength Of Near Surface Geological Materials

    Directory of Open Access Journals (Sweden)

    Bilal Hassan

    2017-02-01

    Full Text Available Certain peculiarities of inelastic nonlinearity of unconsolidated near surface periodically stressed granular media contributed at micro- scale are investigated to ascertain possible anomalous time dependent strength behavior macro-effects with geotechnicalgeo-environmental implications. Comparative examination of ultrasonic P- and S-wave repeatable displacement response wave-forms in time records and spectra of pulse stimulated both confined dry and fully saturated ceramic grains analogue endorsable by pertinent theory is performed. Examination is primarily aimed at both understanding connectivity of louder response generated by seemingly unobtrusive quieter seismic and aseismic events in granular sediments. Secondarily results impart an enhanced conceptual substantiation of some previously disseminated andor published results. The results hint certain persistive time and frequency restricted occurrences vouching vital insights. It could be unambiguously clarified that subtle acoustic emission andor stick-slip type micro events in stimulated i.e. seismic or aseismic unconsolidated granular sediments do occur. When spread over time andor space their cumulated effect may be capable of altering granular material macro strength behavior. It is clearly deducible from resonant type spectral results that material fragmentation or force chain formation type phenomenon occurs possibly due to macro-scale friction mobilization by grain-scale events. It is further speculated that invisible high frequency events may irreversibly alter grain-scale surface properties andor intergranular friction as pseudo enhanced elasticity type effect more elusive with saturation. An assessment of an examined temporal distribution of grain-scale stick-slip type events when stimulated by P- and S-wave modes is posited to be non-identical. The former as if is retardation associated while the latter relaxation type in a characteristic sense. Presented result forms combined not

  12. Multifrequency radar imagery and characterization of hazardous and noxious substances at sea

    Science.gov (United States)

    Angelliaume, S.; Minchew, B.; Chataing, S.; Martineau, Ph.; Miegebielle, V.

    2017-10-01

    Maritime pollution by chemical products occurs at much lower frequency than spills of oil, however the consequences of a chemical spill can be more wide-reaching than those of oil. While detection and characterization of hydrocarbons have been the subject of numerous studies, detection of other chemical products at sea using remote sensing has been little studied and is still an open subject of research. To address this knowledge gap, an experiment was conducted in May 2015 over the Mediterranean Sea during which controlled releases of hazardous and noxious substances were imaged by an airborne SAR sensor at X- and L-band simultaneously. In this paper we discuss the experimental procedure and report the main results from the airborne radar imaging campaign.

  13. The Correlation between Thermal and Noxious Gas Environments, Pig Productivity and Behavioral Responses of Growing Pigs

    Directory of Open Access Journals (Sweden)

    Won Kyung Chang

    2011-08-01

    Full Text Available Correlations between environmental parameters (thermal range and noxious gas levels and the status (productivity, physiological, and behavioral of growing pigs were examined for the benefit of pig welfare and precision farming. The livestock experiment was conducted at a Seoul National University station in South Korea. Many variations were applied and the physiological and behavioral responses of the growing pigs were closely observed. Thermal and gas environment parameters were different during the summer and winter seasons, and the environments in the treatments were controlled in different manners. In the end, this study finds that factors such as Average Daily Gain (ADG, Adrenocorticotropic Hormone (ACTH, stress, posture, and eating habits were all affected by the controlled environmental parameters and that appropriate control of the foregoing could contribute to the improvement of precision farming and pig welfare.

  14. Race, region and risk: An examination of minority proximity to noxious facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, A.L. [Wheaton Coll., IL (United States)]|[Argonne National Lab., IL (United States); Nieves, L.A. [Argonne National Lab., IL (United States)

    1996-04-01

    The past decade has given rise to terms like environmental racism, eco-racism, and environmental inequities to characterize a disproportional distribution of environmental disamenities among minority communities. Much of the literature supports the contention that racial and ethnic minorities and low-income groups bear a disproportionate burden of risk from hazardous activities and substances in the environment. This study expands the scope of prior studies by employing county-level data for the entire nation and including a broad range of facility types associated with environmental disamenities. In addition, it addresses the issue of the distribution of noxious facilities among white and non-white populations in an attempt to determine the relative exposure to risk among different racial and ethnic groups. In addition, the authors also explore the relative importance of nonurban versus urban residence.

  15. The Effects of Musical Auditory Stimulation of Different Intensities on Geometric Indices of Heart Rate Variability.

    Science.gov (United States)

    do Amaral, Joice Anaize Tonon; Guida, Heraldo Lorena; Vanderlei, Franciele Marques; Garner, David Matthew; de Abreu, Luiz Carlos; Valenti, Vitor Engracia

    2015-01-01

    Music has been proven to promote changes in cardiac autonomic modulation. However, it is not clear whether the effects of the auditory stimulation on heart rate variability (HRV) are dependent on its intensity. The study intended to investigate the acute effects on the geometric HRV indices of auditory stimulation with heavy metal and baroque music using different intensities of auditory stimulation. The study was a nonrandomized, clinical trial. The study was conducted at the facility of the Faculty of Sciences of the São Paulo State University, on the campus in Marilia, Brazil. Participants were 24 healthy women aged between 18 and 27 y. HRV was recorded for each participant for 10 min at rest. Subsequently, participants were exposed to baroque or heavy metal music through an earphone. They were exposed to 3 equivalent sound levels-60-70 decibels (dB), 70-80 dB, and 80-90 dB-for 5 min in each intensity range. After the first session of baroque or heavy metal music, participants rested for an additional 5 min. Then they were exposed to the other musical style. The first style played for each musical period was randomly selected for all individuals and then the other style would be played automatically for the second session. The HRV analysis was performed using the following geometrical methods: (1) the triangular index (RRtri), (2) the triangular interpolation of the RR interval histogram (TINN), and (3) the Poincaré plot, using SD1-the standard deviation of the instantaneous variability of the beat-to beat heart rate (HR), SD2-the standard deviation of the long-term, continuous, RR interval variability, and the SD1/SD2 ratio-the ratio between the short- and long-term variations among the RR intervals. The classic baroque music by Johann Pachelbel, "Canon in D Major," did not induce significant changes in the geometric indices of HRV at 60-70 dB, 70-80 dB, or 80-90 dB. However, auditory stimulation with heavy metal music, using "Heavy Metal Universe" by Gamma

  16. Modeling Self-Potential Effects During Reservoir Stimulation in Enhanced Geothermal Systems.

    Science.gov (United States)

    Troiano, Antonio; Giulia Di Giuseppe, Maria; Monetti, Alessio; Patella, Domenico; Troise, Claudia; De Natale, Giuseppe

    2015-04-01

    Geothermal systems represent a large resource that can provide, with a reasonable investment, a very high and cost-effective power generating capacity. Considering also the very low environmental impact, their development represents, in the next decades, an enormous perspective. Despite its unquestionable potential, geothermal exploitation has long been perceived as limited, mainly because of the dependence from strict site-related conditions, mainly related to the reservoir rock's permeability and to the high thermal gradient, implying the presence of large amounts of hot fluids at reasonable depth. Many of such limitations can be overcome using Enhanced Geothermal Systems technology (EGS), where massive fluid injection is performed to increase the rock permeability by fracturing. This is a powerful method to exploit hot rocks with low natural permeability, otherwise not exploitable. Numerical procedures have already been presented in literature reproducing thermodynamic evolution and stress changes of systems where fluids are injected. However, stimulated fluid flow in geothermal reservoirs can produce also surface Self-Potential (SP) anomalies of several mV. A commonly accepted interpretation involves the activation of electrokinetic processes. Since the induced seismicity risk is generally correlated to fluid circulation stimulated in an area exceeding the well of several hundreds of meters, the wellbore pressure values can be totally uncorrelated to seismic hazard. However, SP anomalies, being generated from pressure gradients in the whole area where fluids flow, has an interesting potential as induced earthquake precursor. In this work, SP anomalies observed above the Soultz-sous-Forets (Alsace, France) geothermal reservoir while injecting cold water have been modeled, considering a source related to the fluid flow induced by the well stimulation process. In particular, the retrieved changes of pressure due to well stimulation in the EGS system have been used

  17. Effects of electrical stimulation in early Bells palsy on facial disability index scores

    Directory of Open Access Journals (Sweden)

    P. Alakram

    2011-01-01

    Full Text Available Recovery following facial nerve palsy is variable. Physiotherapists try  to restore  function  in  patients  with  Bell’s  palsy.  The  choice  of treatment modality  depends  on  the  stage  of  the  condition.  Although limited  evidence  exists  for  the  use  of  electrical  stimulation  in  the acute  stage  of  Bell’s  palsy, some physiotherapists in South Africa have been applying this modality. This study examined the effects of electrical stimulation on functional recovery from  Bell’s palsy using the Facial Disability Index, a tool that documents recovery from the patients’ perspective. A two group pre-test post-test experimental design comprising of 16 patients with Bell’s Palsy of less than 30 days duration was utilized. Patients with a clinical diagnosis of Bell’s Palsy were systematically allocated to the control and experimental groups. Patients (n=16 were pre-tested and post-tested using the Facial Disability Index. Both groups were treated with heat, massage, exercises and given a home program. The experimental group also received electrical stimulation. The FDI of the control group improved between 17, 8% and 95, 4% with a mean of 52, 8%. The improvement in the experimental group ranged between 14, 8% and 126% with a mean of 49, 8%. Certain clinical residuals persisted in a mild form in both groups on discharge from the study.  The effects of electrical stimulation as used in this study during the acute phase of Bell’s palsy, quantified as the FDI was clinically but not statistically significant. A larger sample size, longer stimulation time or both should be investigated.

  18. Simultaneously Excitatory and Inhibitory Effects of Transcranial Alternating Current Stimulation Revealed Using Selective Pulse-Train Stimulation in the Rat Motor Cortex.

    Science.gov (United States)

    Khatoun, Ahmad; Asamoah, Boateng; Mc Laughlin, Myles

    2017-09-27

    Transcranial alternating current stimulation (tACS) uses sinusoidal, subthreshold, electric fields to modulate cortical processing. Cortical processing depends on a fine balance between excitation and inhibition and tACS acts on both excitatory and inhibitory cortical neurons. Given this, it is not clear whether tACS should increase or decrease cortical excitability. We investigated this using transcranial current stimulation of the rat (all males) motor cortex consisting of a continuous subthreshold sine wave with short bursts of suprathreshold pulse-trains inserted at different phases to probe cortical excitability. We found that when a low-rate, long-duration, suprathreshold pulse-train was used, subthreshold cathodal tACS decreased cortical excitability and anodal tACS increased excitability. However, when a high-rate, short-duration, suprathreshold pulse-train was used this pattern was inverted. An integrate-and-fire model incorporating biophysical differences between cortical excitatory and inhibitory neurons could predict the experimental data and helped interpret these results. The model indicated that low-rate suprathreshold pulse-trains preferentially stimulate excitatory cortical neurons, whereas high-rate suprathreshold pulse-trains stimulate both excitatory and inhibitory neurons. If correct, this indicates that suprathreshold pulse-train stimulation may be able to selectively control the excitation-inhibition balance within a cortical network. The excitation-inhibition balance then likely plays an important role in determining whether subthreshold tACS will increase or decrease cortical excitability. SIGNIFICANCE STATEMENT Transcranial alternating current stimulation (tACS) is a noninvasive neuromodulation method that uses weak sinusoidal electric fields to modulate cortical activity. In healthy volunteers tACS can modulate perception, cognition, and motor function but the underlying neural mechanism is poorly understood. In this study, using rat

  19. Effects of different lower-limb sensory stimulation strategies on postural regulation-A systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Mei Teng Woo

    Full Text Available Systematic reviews of balance control have tended to only focus on the effects of single lower-limb stimulation strategies, and a current limitation is the lack of comparison between different relevant stimulation strategies. The aim of this systematic review and meta-analysis was to examine evidence of effects of different lower-limb sensory stimulation strategies on postural regulation and stability. Moderate- to high- pooled effect sizes (Unbiased (Hedges' g standardized mean differences (SMD = 0.31-0.66 were observed with the addition of noise in a Stochastic Resonance Stimulation Strategy (SRSS, in three populations (i.e., healthy young adults, older adults, and individuals with lower-limb injuries, and under different task constraints (i.e., unipedal, bipedal, and eyes open. A Textured Material Stimulation Strategy (TMSS enhanced postural control in the most challenging condition-eyes-closed on a stable surface (SMD = 0.61, and in older adults (SMD = 0.30. The Wearable Garments Stimulation Strategy (WGSS showed no or adverse effects (SMD = -0.68-0.05 under all task constraints and in all populations, except in individuals with lower-limb injuries (SMD = 0.20. Results of our systematic review and meta-analysis revealed that future research could consider combining two or more stimulation strategies in intervention treatments for postural regulation and balance problems, depending on individual needs.

  20. Effects of different lower-limb sensory stimulation strategies on postural regulation-A systematic review and meta-analysis.

    Science.gov (United States)

    Woo, Mei Teng; Davids, Keith; Liukkonen, Jarmo; Orth, Dominic; Chow, Jia Yi; Jaakkola, Timo

    2017-01-01

    Systematic reviews of balance control have tended to only focus on the effects of single lower-limb stimulation strategies, and a current limitation is the lack of comparison between different relevant stimulation strategies. The aim of this systematic review and meta-analysis was to examine evidence of effects of different lower-limb sensory stimulation strategies on postural regulation and stability. Moderate- to high- pooled effect sizes (Unbiased (Hedges' g) standardized mean differences (SMD) = 0.31-0.66) were observed with the addition of noise in a Stochastic Resonance Stimulation Strategy (SRSS), in three populations (i.e., healthy young adults, older adults, and individuals with lower-limb injuries), and under different task constraints (i.e., unipedal, bipedal, and eyes open). A Textured Material Stimulation Strategy (TMSS) enhanced postural control in the most challenging condition-eyes-closed on a stable surface (SMD = 0.61), and in older adults (SMD = 0.30). The Wearable Garments Stimulation Strategy (WGSS) showed no or adverse effects (SMD = -0.68-0.05) under all task constraints and in all populations, except in individuals with lower-limb injuries (SMD = 0.20). Results of our systematic review and meta-analysis revealed that future research could consider combining two or more stimulation strategies in intervention treatments for postural regulation and balance problems, depending on individual needs.

  1. Effects of emotionally charged auditory stimulation on gait performance in the elderly: a preliminary study.

    Science.gov (United States)

    Rizzo, John-Ross; Raghavan, Preeti; McCrery, J R; Oh-Park, Mooyeon; Verghese, Joe

    2015-04-01

    To evaluate the effect of a novel divided attention task-walking under auditory constraints-on gait performance in older adults and to determine whether this effect was moderated by cognitive status. Validation cohort. General community. Ambulatory older adults without dementia (N=104). Not applicable. In this pilot study, we evaluated walking under auditory constraints in 104 older adults who completed 3 pairs of walking trials on a gait mat under 1 of 3 randomly assigned conditions: 1 pair without auditory stimulation and 2 pairs with emotionally charged auditory stimulation with happy or sad sounds. The mean age of subjects was 80.6±4.9 years, and 63% (n=66) were women. The mean velocity during normal walking was 97.9±20.6cm/s, and the mean cadence was 105.1±9.9 steps/min. The effect of walking under auditory constraints on gait characteristics was analyzed using a 2-factorial analysis of variance with a 1-between factor (cognitively intact and minimal cognitive impairment groups) and a 1-within factor (type of auditory stimuli). In both happy and sad auditory stimulation trials, cognitively intact older adults (n=96) showed an average increase of 2.68cm/s in gait velocity (F1.86,191.71=3.99; P=.02) and an average increase of 2.41 steps/min in cadence (F1.75,180.42=10.12; Pgait velocity (F1.87,190.83=5.62; P=.005) and an average reduction of 3.88 steps/min in cadence (F1.79,183.10=8.21; P=.001) under both auditory stimulation conditions. Neither baseline fall history nor performance of activities of daily living accounted for these differences. Our results provide preliminary evidence of the differentiating effect of emotionally charged auditory stimuli on gait performance in older individuals with minimal cognitive impairment compared with those without minimal cognitive impairment. A divided attention task using emotionally charged auditory stimuli might be able to elicit compensatory improvement in gait performance in cognitively intact older individuals

  2. Astroglial Control of the Antidepressant-Like Effects of Prefrontal Cortex Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    A. Etiévant

    2015-08-01

    Full Text Available Although deep brain stimulation (DBS shows promising efficacy as a therapy for intractable depression, the neurobiological bases underlying its therapeutic action remain largely unknown. The present study was aimed at characterizing the effects of infralimbic prefrontal cortex (IL-PFC DBS on several pre-clinical markers of the antidepressant-like response and at investigating putative non-neuronal mechanism underlying DBS action. We found that DBS induced an antidepressant-like response that was prevented by IL-PFC neuronal lesion and by adenosine A1 receptor antagonists including caffeine. Moreover, high frequency DBS induced a rapid increase of hippocampal mitosis and reversed the effects of stress on hippocampal synaptic metaplasticity. In addition, DBS increased spontaneous IL-PFC low-frequency oscillations and both raphe 5-HT firing activity and synaptogenesis. Unambiguously, a local glial lesion counteracted all these neurobiological effects of DBS. Further in vivo electrophysiological results revealed that this astrocytic modulation of DBS involved adenosine A1 receptors and K+ buffering system. Finally, a glial lesion within the site of stimulation failed to counteract the beneficial effects of low frequency (30 Hz DBS. It is proposed that an unaltered neuronal–glial system constitutes a major prerequisite to optimize antidepressant DBS efficacy. It is also suggested that decreasing frequency could heighten antidepressant response of partial responders.

  3. Effects of deep brain stimulation of the cerebellothalamic pathways on the sense of smell.

    Science.gov (United States)

    Kronenbuerger, M; Zobel, S; Ilgner, J; Finkelmeyer, A; Reinacher, P; Coenen, V A; Wilms, H; Kloss, M; Kiening, K; Daniels, C; Falk, D; Schulz, J B; Deuschl, G; Hummel, T

    2010-03-01

    The cerebellum and the motor thalamus, connected by cerebellothalamic pathways, are traditionally considered part of the motor-control system. Yet, functional imaging studies and clinical studies including patients with cerebellar disease suggest an involvement of the cerebellum in olfaction. Additionally, there are anecdotal clinical reports of olfactory disturbances elicited by electrical stimulation of the motor thalamus and its neighbouring subthalamic region. Deep brain stimulation (DBS) targeting the cerebellothalamic pathways is an effective treatment for essential tremor (ET), which also offers the possibility to explore the involvement of cerebellothalamic pathways in the sense of smell. This may be important for patient care given the increased use of DBS for the treatment of tremor disorders. Therefore, 21 none-medicated patients with ET treated with DBS (13 bilateral, 8 unilateral) were examined with "Sniffin' Sticks," an established and reliable method for olfactory testing. Patients were studied either with DBS switched on and then off or in reversed order. DBS impaired odor threshold and, to a lesser extent, odor discrimination. These effects were sub-clinical as none of the patients reported changes in olfactory function. The findings, however, demonstrate that olfaction can be modulated in a circumscribed area of the posterior (sub-) thalamic region. We propose that the impairment of the odor threshold with DBS is related to effects on an olfacto-motor loop, while disturbed odor discrimination may be related to effects of DBS on short-term memory. Copyright 2009 Elsevier Inc. All rights reserved.

  4. Task-specific effect of transcranial direct current stimulation on motor learning

    Directory of Open Access Journals (Sweden)

    Cinthia Maria Saucedo Marquez

    2013-07-01

    Full Text Available Transcranial direct current stimulation (tDCS is a relatively new non-invasive brain stimulation technique that modulates neural processes. When applied to the human primary motor cortex (M1, tDCS has beneficial effects on motor skill learning and consolidation in healthy controls and in patients. However, it remains unclear whether tDCS improves motor learning in a general manner or whether these effects depend on which motor task is acquired. Here we compare whether the effect of tDCS differs when the same individual acquires (1 a Sequential Finger Tapping Task (SEQTAP and (2 a Visual Isometric Pinch Force Task (FORCE. Both tasks have been shown to be sensitive to tDCS applied over M1, however, the underlying processes mediating learning and memory formation might benefit differently from anodal-tDCS. Thirty healthy subjects were randomly assigned to an anodal-tDCS group or sham-group. Using a double-blind, sham-controlled cross-over design, tDCS was applied over M1 while subjects acquired each of the motor tasks over 3 consecutive days, with the order being randomized across subjects. We found that anodal-tDCS affected each task differently: The SEQTAP task benefited from anodal-tDCS during learning, whereas the FORCE task showed improvements only at retention. These findings suggest that anodal tDCS applied over M1 appears to have a task-dependent effect on learning and memory formation.

  5. Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects.

    Science.gov (United States)

    De Couck, M; Cserjesi, R; Caers, R; Zijlstra, W P; Widjaja, D; Wolf, N; Luminet, O; Ellrich, J; Gidron, Y

    2017-03-01

    The vagus nerve is strategically located in the body, and has multiple homeostatic and health-promoting effects. Low vagal activity predicts onset and progression of diseases. These are the reasons to activate this nerve. This study examined the effects of transcutaneous vagus nerve stimulation (t-VNS) on a main index of vagal activity, namely heart rate variability (HRV). In Study 1, we compared short (10min) left versus right ear t-VNS versus sham (no stimulation) in a within-subjects experimental design. Results revealed significant increases in only one HRV parameter (standard deviation of the RR intervals (SDNN)) following right-ear t-VNS. Study 2 examined the prolonged effects of t-VNS (1h) in the right ear. Compared to baseline, right-t-VNS significantly increased the LF and LF/HF components of HRV, and SDNN in women, but not in men. These results show limited effects of t-VNS on HRV, and are discussed in light of neuroanatomical and statistical considerations and future directions are proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Optimizing a Rodent Model of Parkinson's Disease for Exploring the Effects and Mechanisms of Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Karl Nowak

    2011-01-01

    instrumented rats carrying a backpack stimulator and implanted platinum/iridium electrodes. This model is suitable for (1 elucidating the electrochemical processes at the electrode/tissue interface, (2 analyzing the molecular, cellular and behavioral stimulation effects, (3 testing new target regions for DBS, (4 screening for potential neuroprotective DBS effects, and (5 improving the efficacy and safety of the method. An outlook is given on further developments of experimental DBS, including the use of transgenic animals and the testing of closed-loop systems for the direct on-demand application of electric stimulation.

  7. Effects of sympathetic stimulation during cooling on hypothermic as well as posthypothermic hemodynamic function.

    Science.gov (United States)

    Kondratiev, T V; Tveita, T

    2006-10-01

    This experimental study was performed to explore hemodynamic effects of a moderate dose epinephrine (Epi) during hypothermia and to test the hypothesis whether sympathetic stimulation during cooling affects myocardial function following rewarming. Two groups of male Wistar rats (each, n=7) were cooled to 15 degrees C, maintained at this temperature for 1 h, and then rewarmed. Group 1 received 1 microg/min Epi, i.v., for 1 h during cooling to 28 degrees C, a dose known to elevate cardiac output (CO) by approximately 25% at 37 degrees C. Group 2 served a saline solution control. At 37 degrees C, Epi infusion elevated CO, left ventricular systolic pressure, maximum rate of left ventricle pressure rise, and mean arterial pressure. During cooling to 28 degrees C, these variables, with the exception of mean arterial pressure, decreased in parallel to those in the saline solution group. In contrast, in the Epi group, mean arterial pressure remained increased and total peripheral resistance was significantly elevated at 28 degrees C. Compared with corresponding prehypothermic values, most hemodynamic variables were lowered after 1 h at 15 degrees C in both groups (except for stroke volume). After rewarming, alterations in hemodynamic variables in the Epi-treated group were more prominent than in saline solution controls. Thus, before cooling, continuous Epi infusion predominantly stimulates myocardial mechanical function, materialized as elevation of CO, left ventricular systolic pressure, and maximum rate of left ventricle pressure rise. Cooling, on the other hand, apparently eradicates central hemodynamic effects of Epi and during stable hypothermia, elevation of peripheral vascular vasopressor effects seem to take over. In contrast to temperature-matched, non-Epi stimulated control rats, a significant depression of myocardial mechanical function occurs during rewarming following a moderate sympathetic stimulus during initial cooling.

  8. Anti-inflammatory effects of progesterone in lipopolysaccharide-stimulated BV-2 microglia.

    Directory of Open Access Journals (Sweden)

    Beilei Lei

    Full Text Available Female sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO and prostaglandin E2 (PGE2, mediated by inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2, respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone's effects on tumor necrosis factor alpha (TNF-α, iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB and mitogen activated protein kinase (MAPK pathways. LPS (30 ng/ml upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury.

  9. The Effects of 10 Hz Transcranial Alternating Current Stimulation on Audiovisual Task Switching

    Science.gov (United States)

    Clayton, Michael S.; Yeung, Nick; Cohen Kadosh, Roi

    2018-01-01

    Neural oscillations in the alpha band (7–13 Hz) are commonly associated with disengagement of visual attention. However, recent studies have also associated alpha with processes of attentional control and stability. We addressed this issue in previous experiments by delivering transcranial alternating current stimulation at 10 Hz over posterior cortex during visual tasks (alpha tACS). As this stimulation can induce reliable increases in EEG alpha power, and given that performance on each of our visual tasks was negatively associated with alpha power, we assumed that alpha tACS would reliably impair visual performance. However, alpha tACS was instead found to prevent both deteriorations and improvements in visual performance that otherwise occurred during sham & 50 Hz tACS. Alpha tACS therefore appeared to exert a stabilizing effect on visual attention. This hypothesis was tested in the current, pre-registered experiment by delivering alpha tACS during a task that required rapid switching of attention between motion, color, and auditory subtasks. We assumed that, if alpha tACS stabilizes visual attention, this stimulation should make it harder for people to switch between visual tasks, but should have little influence on transitions between auditory and visual subtasks. However, in contrast to this prediction, we observed no evidence of impairments in visuovisual vs. audiovisual switching during alpha vs. control tACS. Instead, we observed a trend-level reduction in visuoauditory switching accuracy during alpha tACS. Post-hoc analyses showed no effects of alpha tACS in response time variability, diffusion model parameters, or on performance of repeat trials. EEG analyses also showed no effects of alpha tACS on endogenous or stimulus-evoked alpha power. We discuss possible explanations for these results, as well as their broader implications for current efforts to study the roles of neural oscillations in cognition using tACS. PMID:29487500

  10. Speech disorders in Parkinson's disease: early diagnostics and effects of medication and brain stimulation.

    Science.gov (United States)

    Brabenec, L; Mekyska, J; Galaz, Z; Rektorova, Irena

    2017-03-01

    Hypokinetic dysarthria (HD) occurs in 90% of Parkinson's disease (PD) patients. It manifests specifically in the areas of articulation, phonation, prosody, speech fluency, and faciokinesis. We aimed to systematically review papers on HD in PD with a special focus on (1) early PD diagnosis and monitoring of the disease progression using acoustic voice and speech analysis, and (2) functional imaging studies exploring neural correlates of HD in PD, and (3) clinical studies using acoustic analysis to evaluate effects of dopaminergic medication and brain stimulation. A systematic literature search of articles written in English before March 2016 was conducted in the Web of Science, PubMed, SpringerLink, and IEEE Xplore databases using and combining specific relevant keywords. Articles were categorized into three groups: (1) articles focused on neural correlates of HD in PD using functional imaging (n = 13); (2) articles dealing with the acoustic analysis of HD in PD (n = 52); and (3) articles concerning specifically dopaminergic and brain stimulation-related effects as assessed by acoustic analysis (n = 31); the groups were then reviewed. We identified 14 combinations of speech tasks and acoustic features that can be recommended for use in describing the main features of HD in PD. While only a few acoustic parameters correlate with limb motor symptoms and can be partially relieved by dopaminergic medication, HD in PD seems to be mainly related to non-dopaminergic deficits and associated particularly with non-motor symptoms. Future studies should combine non-invasive brain stimulation with voice behavior approaches to achieve the best treatment effects by enhancing auditory-motor integration.

  11. Non-invasive brain stimulation enhances the effects of Melodic Intonation Therapy

    Directory of Open Access Journals (Sweden)

    Bradley W. Vines

    2011-09-01

    Full Text Available Research has suggested that a fronto-temporal network in the right hemisphere may be responsible for mediating Melodic Intonation Therapy’s positive effects on speech recovery. We investigated the potential for a non-invasive brain stimulation technique, transcranial direct current stimulation (tDCS, to augment the benefits of MIT in patients with non-fluent aphasia by modulating neural activity in the brain during treatment with MIT. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. We applied anodal tDCS to the posterior inferior frontal gyrus (IFG of the right hemisphere, an area that has been shown to both contribute to singing through the mapping of sounds to ariculatory actions and serve as a key region in the process of recovery from aphasia, particularly in patients with large left hemispheric lesions. The stimulation was applied while patients were treated with MIT by a trained therapist. Six patients with moderate to severe non-fluent aphasia underwent three consecutive days of anodal-tDCS+MIT, and an equivalent series of sham-tDCS+MIT. The two treatment series were separated by one week, and the order in which the treatments were administered was randomized. Compared to the effects of sham-tDCS+MIT, anodal-tDCS+MIT led to significant improvements in fluency of speech. These results support the hypothesis that, as the brain seeks to reorganize and compensate for damage to left-hemisphere language centers, combining anodal-tDCS with MIT may further recovery from post-stroke aphasia by enhancing activity in a right-hemisphere sensorimotor network for articulation.

  12. Non-invasive brain stimulation enhances the effects of melodic intonation therapy.

    Science.gov (United States)

    Vines, Bradley W; Norton, Andrea C; Schlaug, Gottfried

    2011-01-01

    Research has suggested that a fronto-temporal network in the right hemisphere may be responsible for mediating melodic intonation therapy's (MIT) positive effects on speech recovery. We investigated the potential for a non-invasive brain stimulation technique, transcranial direct current stimulation (tDCS), to augment the benefits of MIT in patients with non-fluent aphasia by modulating neural activity in the brain during treatment with MIT. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal-tDCS increases excitability, whereas cathodal tDCS decreases excitability. We applied anodal-tDCS to the posterior inferior frontal gyrus of the right hemisphere, an area that has been shown both to contribute to singing through the mapping of sounds to articulatory actions and to serve as a key region in the process of recovery from aphasia, particularly in patients with large left hemisphere lesions. The stimulation was applied while patients were treated with MIT by a trained therapist. Six patients with moderate to severe non-fluent aphasia underwent three consecutive days of anodal-tDCS + MIT, and an equivalent series of sham-tDCS + MIT. The two treatment series were separated by 1 week, and the order in which the treatments were administered was randomized. Compared to the effects of sham-tDCS + MIT, anodal-tDCS + MIT led to significant improvements in fluency of speech. These results support the hypothesis that, as the brain seeks to reorganize and compensate for damage to left hemisphere language centers, combining anodal-tDCS with MIT may further recovery from post-stroke aphasia by enhancing activity in a right hemisphere sensorimotor network for articulation.

  13. Evaluation of the effects of transcutaneous electrical nerve stimulation on whole saliva flow: A clinical study

    Directory of Open Access Journals (Sweden)

    Saraf Kedar Vilas

    2009-01-01

    Full Text Available Background and Objectives : Xerostomia and salivary gland hypofunction are associated with advancing age, autoimmune diseases such as Sjφgren′s syndrome, head and neck radiation, smoking and recreational drug usage. Palliative management of xerostomia includes topical agents such as ice chips, saliva substitutes, increasing water intake, paraffin and citric acid containing lozenges. Systemic agents have been used, but some drugs have been found to have unfavorable side effects. Therefore, this study was undertaken to evaluate the effect of transcutaneous electrical nerve stimulation (TENS on whole salivary flow rate in healthy adult subjects. Study Design : One hundred healthy adult subjects (50 males and 50 females, with no history of salivary gland disorder, were enrolled in this study. TENS electrode pads were placed externally on the skin overlying the parotid glands. Unstimulated whole saliva was collected for five minutes in a graduated tube, using a standardized collection technique. The TENS unit was then activated and stimulated saliva was collected for an additional five minutes. Results : Eighty five of the 100 subjects demonstrated increased whole salivary flow when stimulated via the TENS unit. Eleven experienced no change and four experienced a decrease in the salivary flow. The mean unstimulated salivary flow rate was 0.36 ml/min (SD 0.16 and there was a 21% increase in the salivary flow following TENS application. Statistical analysis of flow rates utilizing the paired ′t′ test showed the difference to be statistically significant (P< 0.001. Interpretation and Conclusion : The TENS unit was effective in increasing whole salivary flow in 85% of the healthy adult subjects. A further study in patients with xerostomia, secondary to various local and systemic causes, is required.

  14. Reconstructive Effects of Percutaneous Electrical Stimulation Combined with GGT Composite on Large Bone Defect in Rats

    Directory of Open Access Journals (Sweden)

    Bo-Yin Yang

    2013-01-01

    Full Text Available Previous studies have shown the electromagnetic stimulation improves bone remodeling and bone healing. However, the effect of percutaneous electrical stimulation (ES was not directly explored. The purpose of this study was to evaluate effect of ES on improvement of bone repair. Twenty-four adult male Sprague-Dawley rats were used for cranial implantation. We used a composite comprising genipin cross-linked gelatin mixed with tricalcium phosphate (GGT. Bone defects of all rats were filled with the GGT composites, and the rats were assigned into six groups after operation. The first three groups underwent 4, 8, and 12 weeks of ES, and the anode was connected to the backward of the defect on the neck; the cathode was connected to the front of the defect on the head. Rats were under inhalation anesthesia during the stimulation. The other three groups only received inhalation anesthesia without ES, as control groups. All the rats were examined afterward at 4, 8, and 12 weeks. Radiographic examinations including X-ray and micro-CT showed the progressive bone regeneration in the both ES and non-ES groups. The amount of the newly formed bone increased with the time between implantation and examination in the ES and non-ES groups and was higher in the ES groups. Besides, the new bone growth trended on bilateral sides in ES groups and accumulated in U-shape in non-ES groups. The results indicated that ES could improve bone repair, and the effect is higher around the cathode.

  15. Effect of transcutaneous electrical nerve stimulation on parotid saliva flow in patients with hyposalivation

    Directory of Open Access Journals (Sweden)

    P Venkatalakshmi Aparna

    2017-01-01

    Full Text Available Context: In recent days, we have come across an increase incidence of dry mouth as a side effects of drugs and in order to bring an awareness about a simple non- invasive method to increase the salivary flow, we have used TENS which in many way is beneficial to patients with metabolic disorders. Aims and Objectives: The aim is to assess the effectiveness of transcutaneous electrical nerve stimulation on salivary gland function in patients with hyposalivation. Subjects and Methods: The present study included total of 25 subjects with complaint of hyposalivation. Written informed consent was obtained from all the participants. Subjects with pacemakers, autoimmune diseases, pregnancy, and history of salivary gland pathology were excluded from the study. Subjects were asked to refrain from eating, drinking, chewing gum, smoking, and oral hygiene procedures for at least 1 h before the appointment. Unstimulated saliva was collected using modified Carlson Crittenden cup placed over the Stenson's duct bilaterally for 5 min and measured. TENS pads were placed over the parotid region and were activated. The intensity control switch was adjusted for patient's comfort. The intensity was turned up 1 increment at a time at 5 s intervals until the optimal intensity level was reached and stimulated saliva was then collected for 5 min using the modified Carlson Crittenden cup and measured. Any increase in parotid salivary flow (SF with electrostimulation was considered a positive finding. Statistical Analysis Used: A paired t-test, evaluating mean changes in stimulated versus unstimulated SF rates, was applied to look for statistically significant differences using PASW 18.0 for Windows. An independent sample t-test was performed to note difference between genders. Results: There was significant increase in parotid SF in 19 of 25 patients after transcutaneous electrical nerve stimulation. Males showed more salivary secretion when compared to females. Conclusions

  16. Olfactory Functioning in Parkinson's Disease: The Effects of Deep Brain Stimulation

    DEFF Research Database (Denmark)

    van Hartevelt, Tim Johannes

    2014-01-01

    of sense of smell is one of the most common and earliest symptoms, appearing approximately 5 years prior to any motor symptoms. Deep brain stimulation (DBS) has proven remarkably effective in alleviating the symptoms of PD including olfactory dysfunction. This remains a difficult area to research with many...... function in PD patients with DBS. The first two studies in this dissertation are reviews of the olfactory system and one of its most vital roles in eating behaviour. These studies indicate the extent of the olfactory system in terms of anatomy and implication in certain behaviours. In the third study...

  17. Modification of Radiosensitivity by the So-called Tissue Recovery Stimulator. I. Radiosensitizing Effects of Solcoseryl

    OpenAIRE

    木村, 博; 青山, 喬; 菅原, 努; ASHOK, KUMAR; HIROSHI, KIMURA; TAKASHI, AOYAMA; TSUTOMU, SUGAHARA; 滋賀医科大学放射線基礎医学講座; 滋賀医科大学放射線基礎医学講座; 滋賀医科大学放射線基礎医学講座; (財)体質研究会; Department of Experimental Rsdiology, Shiga University: (Present Address) Department of Zoology, University of Rajasthan; Department of Experimental Rsdiology, Shiga University; Department of Experimental Rsdiology, Shiga University; Health Research Foundation

    1992-01-01

    The effect of solcoseryl on the growth, radiosensitization and ability of V79 cells to recover from X-ray-induced damage has been observed. Solcoseryl at 0.8 mg/ml was the optimal concentration for the stimulation of cell growth. Increased sensitivity to X-irradiation was found in the shoulder region of V79 cells treated before and after irradiation with solcoseryl (0.8 mg/ml). The Dq and extrapolation number (n) decreased. Solcoseryl treatment apparently does not reduce split dose recovery o...

  18. 75 FR 57496 - Notice of Proposed Supplementary Rule To Require the Use of Certified Noxious-Weed-Free Forage...

    Science.gov (United States)

    2010-09-21

    ... supplementary rule that would require anyone bringing or anyone feeding or storing forage or straw on BLM... plans for noxious weeds. The proposed rules are intended to complement the existing regulatory framework... feeding, maintenance feeding, and emergency feeding on lands administered by the BLM. The stipulation...

  19. 76 FR 43706 - Final Supplementary Rules To Require the Use of Certified Noxious-Weed-Free Forage and Straw on...

    Science.gov (United States)

    2011-07-21

    ... that will require anyone using, feeding, or storing forage or straw on BLM-administered land in Idaho... noxious weeds. These supplementary rules are intended to complement the existing regulatory framework... supplemental feeding, maintenance feeding, and emergency feeding on lands administered by the BLM. The...

  20. A field guide for forest indicator plants, sensitive plants, and noxious weeds of the Shoshone National Forest, Wyoming

    Science.gov (United States)

    Kent E. Houston; Walter J. Hartung; Carol J. Hartung

    2001-01-01

    This field guide was designed for people with minimal botanical training. It is an identification aid to plant species that have ecological indicator value, are on sensitive species lists, or are considered noxious weeds. It contains illustrations and simplified taxonomic descriptions.

  1. Effects of auditory stimulation with music of different intensities on heart period

    Directory of Open Access Journals (Sweden)

    Joice A.T. do Amaral

    2016-01-01

    Full Text Available Various studies have indicated that music therapy with relaxant music improves cardiac function of patients treated with cardiotoxic medication and heavy-metal music acutely reduces heart rate variability (HRV. There is also evidence that white noise auditory stimulation above 50 dB causes cardiac autonomic responses. In this study, we aimed to evaluate the acute effects of musical auditory stimulation with different intensities on cardiac autonomic regulation. This study was performed on 24 healthy women between 18 and 25 years of age. We analyzed HRV in the time [standard deviation of normal-to-normal RR intervals (SDNN, percentage of adjacent RR intervals with a difference of duration >50 ms (pNN50, and root-mean square of differences between adjacent normal RR intervals in a time interval (RMSSD] and frequency [low frequency (LF, high frequency (HF, and LF/HF ratio] domains. HRV was recorded at rest for 10 minutes. Subsequently, the volunteers were exposed to baroque or heavy-metal music for 5 minutes through an earphone. The volunteers were exposed to three equivalent sound levels (60–70, 70–80, and 80–90 dB. After the first baroque or heavy-metal music, they remained at rest for 5 minutes and then they were exposed to the other music. The sequence of songs was randomized for each individual. Heavy-metal musical auditory stimulation at 80–90 dB reduced the SDNN index compared with control (44.39 ± 14.40 ms vs. 34.88 ± 8.69 ms, and stimulation at 60–70 dB decreased the LF (ms2 index compared with control (668.83 ± 648.74 ms2 vs. 392.5 ± 179.94 ms2. Baroque music at 60–70 dB reduced the LF (ms2 index (587.75 ± 318.44 ms2 vs. 376.21 ± 178.85 ms2. In conclusion, heavy-metal and baroque musical auditory stimulation at lower intensities acutely reduced global modulation of the heart and only heavy-metal music reduced HRV at higher intensities.

  2. Effect of Deep Brain Stimulation on Speech Performance in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Sabine Skodda

    2012-01-01

    Full Text Available Deep brain stimulation (DBS has been reported to be successful in relieving the core motor symptoms of Parkinson's disease (PD and motor fluctuations in the more advanced stages of the disease. However, data on the effects of DBS on speech performance are inconsistent. While there are some series of patients documenting that speech function was relatively unaffected by DBS of the nucleus subthalamicus (STN, other investigators reported on improvements of distinct parameters of oral control and voice. Though, these ameliorations of single speech modalities were not always accompanied by an improvement of overall speech intelligibility. On the other hand, there are also indications for an induction of dysarthria as an adverse effect of STN-DBS occurring at least in some patients with PD. Since a deterioration of speech function has more often been observed under high stimulation amplitudes, this phenomenon has been ascribed to a spread of current-to-adjacent pathways which might also be the reason for the sporadic observation of an onset of dysarthria under DBS of other basal ganglia targets (e.g., globus pallidus internus/GPi or thalamus/Vim. The aim of this paper is to review and evaluate reports in the literature on the effects of DBS on speech function in PD.

  3. Stimulative effects of Ulmus davidiana Planch (Ulmaceae) on osteoblastic MC3T3-E1 cells.

    Science.gov (United States)

    Suh, Seok-Jong; Yun, Woo-Sik; Kim, Kap-Sung; Jin, Un-Ho; Kim, June-Ki; Kim, Myung-Sunny; Kwon, Dae Young; Kim, Cheorl-Ho

    2007-02-12

    Ulmus davidiana Planch (Ulmaceae) has long been known to have anti-inflammatory and protective effects on damaged tissue, inflammation and bone among other functions. To treat rheumatoid arthritis (RA), a herbal medicine, Ulmus davidiana Planch (Ulmaceae) extract (UD) is being used in traditional oriental medicine. The effect of UD on the proliferation and osteoblastic differentiation in non-transformed osteoblastic cells (MC3T3-E1) was studied. UD dose-dependently increased DNA synthesis (significant at 5-20 microg/ml). UD increased alkaline phosphatase (ALP) activity and prolyl hydroxylase activity of MC3T3-E1 cells (5-20 microg/ml). Antiestrogen tamoxifen eliminated the stimulation of proliferation and ALP activity of MC3T3-E1, which was induced by UD. UD at concentrations ranged from 30 to 100 microg/ml inhibited prostaglandin E2 production in MC3T3-E1. These results indicate that UD directly stimulates cell proliferation and differentiation of osteoblasts. These results also suggest and UD is effective for bone anti-resorptive action in bone cells.

  4. Effect of tone-based sound stimulation on balance performance of normal subjects: preliminary investigation.

    Science.gov (United States)

    Pagnacco, Guido; Klotzek, Adam S; Carrick, Frederick R; Wright, Cameron H G; Oggero, Elena

    2015-01-01

    Sound is known to affect the human brain, hence sound or music therapy is sometimes used to improve a subject's physicaland mental health. In this study, the effects sound stimulation has on balance were investigated by means of computerizeddynamic posturography tests performed with eyes closed on an unstable surface using a CAPS® system, exceeding theInternational Society for Posture and Gait Research (ISPGR) recommended metrological performance standards. Subjectswere tested without listening to any music (baseline), listening to “pure music”, and listening to the same music with differenttones embedded into it (one for each key). We found that different subjects react differently to different tones. Music alonedid not have a statistically significant effect on balance compared to the baseline, but the “best” tone significantly improvedbalance compared to the baseline or the “pure music” conditions. Furthermore, the “worst” tone reduced the balancecompared to “pure music”, but the reduction was not statistically significant relative to the baseline. The results thereforeindicate that, at least relative to balance performance, the tone-based sound stimulation we investigated is effective andinherently safe, but that tone selection depends on the individual subject.

  5. The effectiveness of non-invasive brain stimulation in improving clinical signs of hyperkinetic movement disorders

    Directory of Open Access Journals (Sweden)

    Ignacio eObeso

    2016-01-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is a safe and non-invasive method for stimulating cortical neurons. In neurological realm, rTMS has prevalently been applied to understand pathophysiological mechanisms underlying movement disorders. However, this tool has also the potential to be translated into a clinically applicable therapeutic use. Several available studies supported this hypothesis, but differences in protocols, clinical enrollment and variability of rTMS effects across individuals complicate better understanding of efficient clinical protocols.The aim of this present review is to discuss to what extent the evidence provided by the therapeutic use of rTMS may be generalized. In particular, we attempted to define optimal cortical regions and stimulation protocols that have been demonstrated to maximize the effectiveness seen in the actual literature for the three most prevalent hyperkinetic movement disorders: Parkinson´s disease with levodopa-induced dyskinesias, essential tremor and dystonia. A total of 28 rTMS studies met our search criteria. Despite clinical and methodological differences, overall these studies demonstrated that therapeutic applications of rTMS to normalize pathologically decreased or increased levels of cortical activity have given moderate progress in patient´s quality of life. Moreover, the present literature suggests that altered pathophysiology in hyperkinetic movement disorders establishes motor, premotor or cerebellar structures as candidate regions to reset cortico-subcortical pathways back to normal. Although rTMS has the potential to become a powerful tool for ameliorating the clinical outcome of hyperkinetic neurological patients, until now there is not a clear consensus on optimal protocols for these motor disorders. Well-controlled multicenter randomized clinical trials with high numbers of patients are urgently required.

  6. Effects of swallowing training combined with low-frequency electrical stimulation on dysphagia after ischemic stroke

    Directory of Open Access Journals (Sweden)

    Zhi-zhong ZHU

    2015-04-01

    Full Text Available Objective To investigate the effects of swallowing training combined with low-frequency electrical stimulation on dysphagia after ischemic stroke.  Methods A total of 68 patients with dysphagia after ischemic stroke were divided into control group (N = 34, receiving swallowing training and feeding strategies and combined treatment group (N = 34, receiving swallowing training, feeding strategies and low-frequency electrical stimulation. Video Fluoroscopic Swallowing Study (VFSS and Standardized Swallowing Assessment (SSA were used to evaluate the swallowing function of patients in 2 groups before and after 15 d of treatment. Results According to Oxfordshire Community Stroke Project (OCSP classification, 34 patients in control group were classified into 12 cases with total anterior circulation infarct (TACI, 8 cases with partial anterior circulation infarct (PACI, 10 cases with posterior circulation infarct (POCI and 4 cases with lacunar infarct (LACI; 34 patients in combined treatment group were classified into 10 cases with TACI, 7 cases with PACI, 11 cases with POCI and 6 cases with LACI. Compared with before treatment, the VFSS score increased (P = 0.003, 0.000, while SSA score decreased (P = 0.003, 0.000 in both groups. Compared with control group, the VFSS score increased (P = 0.004, while SSA score decreased (P = 0.020 in combined treatment group.  Conclusions Swallowing training combined with low-frequency electrical stimulation can significantly improve the swallowing capacity of patients with acute ischemic stroke, and the effect is better than mere swallowing training. DOI: 10.3969/j.issn.1672-6731.2015.04.007

  7. Effect of transcranial direct current stimulation on swallowing apraxia and cortical excitability in stroke patients.

    Science.gov (United States)

    Yuan, Ying; Wang, Jie; Wu, Dongyu; Huang, Xiaobo; Song, Weiqun

    2017-10-01

    Swallowing apraxia is characterized by impaired volitional swallowing but relatively preserved reflexive swallowing. Few studies are available on the effectiveness of behavioral therapy and management of the condition. This study aimed to investigate the effect of transcranial direct current stimulation (tDCS) on swallowing apraxia and cortical activation in stroke patients. The study included three inpatients (age 48-70 years; 1 male, 2 females; duration of stroke, 35-55 d) with post-stroke swallowing apraxia and six age-matched healthy subjects (age 45-65 years; 3 males, 3 females). Treatments were divided into two phases: Phase A and Phase B. During Phase A, the inpatients received three weeks of sham tDCS and conventional treatments. During Phase B, these patients received three weeks of anodal tDCS over the bilateral primary sensorimotor cortex (S 1 M 1 ) of swallowing and conventional treatments. Swallowing apraxia assessments were measured in three inpatients before Phase A, before Phase B, and after Phase B. The electroencephalography (EEG) nonlinear index of approximate entropy (ApEn) was calculated for three patients and six healthy subjects. After tDCS, scores of swallowing apraxia assessments increased, and ApEn indices increased in both stimulated and non-stimulated areas. Anodal tDCS might provide a useful means for recovering swallowing apraxia, and the recovery could be related to increased excitability of the swallowing cortex. Further investigations should explore the relationship between lesion size and/or lesion site and the prognosis of swallowing apraxia. Clinical trial registry: http://www.chictr.org Registration Number: ChiCTR-TRC-14004955.

  8. Midodrine improves orgasm in spinal cord-injured men: the effects of autonomic stimulation.

    Science.gov (United States)

    Soler, Jean Marc; Previnaire, Jean Gabriel; Plante, Pierre; Denys, Pierre; Chartier-Kastler, Emmanuel

    2008-12-01

    Orgasm is less frequent in men with spinal cord injury (SCI) than in able-bodied subjects, and is poorly understood. To assess the effect of autonomic stimulation on orgasm in SCI men using midodrine, an alpha1-adrenergic agonist agent. Penile vibratory stimulation (PVS) was performed in 158 SCI men on midodrine as part of a treatment for anejaculation, after they failed a baseline PVS. A maximum of four trials were performed, weekly, with increasing doses of midodrine. The presence and type of ejaculation, orgasm experiences, and cardiovascular data were collected. Ejaculation either antegrade or retrograde was obtained in 102 SCI men (65%). Orgasm without ejaculation was reported by 14 patients (9%) on baseline PVS. Ninety-three patients (59%) experienced orgasm during PVS on midodrine. Orgasm was significantly related to the presence of ejaculation in 86 patients (84%), and more strikingly to antegrade ejaculation (pure or mixed with retrograde), i.e., in 98% of 70 patients. Orgasm was significantly more frequent in patients with upper motor neuron and incomplete lesions who present somatic responses during PVS. There was no effect of the presence of psychogenic erection. There was a significant increase in both systolic and diastolic blood pressure. Sixteen patients, mainly tetraplegics, developed intense autonomic dysreflexia (AD) that required an oral nicardipine chlorhydrate. Orgasm is the brain's cognitive interpretation of genital sensations and somatic responses, AD, and ejaculation. Intact sacral and T10-L2 cord segments are mandatory, allowing coordination between internal and external sphincters. Autonomic stimulation with midodrine enhances orgasm rate, mainly by creating antegrade ejaculation.

  9. Effect of transcranial magnetic stimulation on four types of pressure-programmable valves.

    Science.gov (United States)

    Lefranc, Michel; Ko, Julie Yeung Lam; Peltier, Johann; Fichten, Anthony; Desenclos, Christine; Macron, Jean-Michel; Toussaint, Patrick; Le Gars, Daniel; Petitjean, Michel

    2010-04-01

    Exposure to powerful magnetic fields may alter the settings of programmable ventriculoperitoneal shunt valves or even cause permanent damage to these devices. Transcranial magnetic stimulation (TMS) and magnetic resonance imaging both generate a high-intensity, focal magnetic field. To the best of our knowledge, there is no literature data on the compatibility of TMS with neurosurgical implants. The aim of the present in vitro study was to investigate the effects of TMS on four types of pressure-programmable valves (the Strata 2 from Medtronic, the Polaris from Sophysa, the ProGAV from Miethke, and a cylindrical valve from Codman-Hakim). We used a Magpro X100 stimulator (Medtronic) for monophasic or biphasic TMS via a circular or a figure-of-eight coil. Each valve setting was tested before and after exposure to TMS. Experiment 1: The effect of the coil-valve distance (10, 5, 2.5, and 1 cm) was assessed. Experiment 2: We mimicked in situ stimulation with a human mannequin by placing the valve in a retroauricular position, the TMS circular coil on the apex, and figure-of-eight coil centered over the primary motor area site. Temperature changes were monitored throughout the experiments. Experience 3: TMS-induced valve movements were assessed by using an in-house accelerometric setup. Our results primarily demonstrated that the Strata 2 and Codman-Hakim valves' settings were perturbed by TMS. There was no heating effect for any of the valves. However, TMS induced movements of the Strata 2, Polaris, and ProGAV valves. Experiment 1: The unsetting frequencies observed for the Strata 2 and the Codman-Hakim valve showed an influence of the distance, the coil model, and the magnetic field characteristics, whereas the Polaris and ProGAV's settings remained unchanged. Experiment 2: Unsetting occurred for Strata 2 valve with the circular coil only, whereas the Polaris, ProGAV, and Codman-Hakim valves' settings remained stable. Experiment 3: The Strata 2, Polaris, and Pro

  10. Comparison of the Effect of Low-Frequency Repetitive Transcranial Magnetic Stimulation with That of Theta Burst Stimulation on Upper Limb Motor Function in Poststroke Patients.

    Science.gov (United States)

    Kondo, Takahiro; Yamada, Naoki; Momosaki, Ryo; Shimizu, Masato; Abo, Masahiro

    2017-01-01

    The purpose of this study was to evaluate the difference between the therapeutic effect of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) and that of continuous theta burst stimulation (cTBS), when each is combined with intensive occupational therapy (OT), in poststroke patients with upper limb hemiparesis. The study subjects were 103 poststroke patients with upper limb hemiparesis, who were divided into two groups: the LF-rTMS group ( n = 71) and the cTBS group (three pulse bursts at 50 Hz) ( n = 32). Each subject received 12 sessions of repetitive transcranial magnetic stimulation of 2,400 pulses applied to the nonlesional hemisphere and 240-min intensive OT (two 60-min one-to-one training sessions and two 60-min self-training exercises) daily for 15 days. Motor function was evaluated using the Fugl-Meyer Assessment (FMA) and the performance time of the Wolf motor function test (WMFT) was determined on the days of admission and discharge. Both groups showed a significant increase in the FMA score and a short log performance time of the WMFT ( p < 0.001), but the increase in the FMA score was higher in the LF-rTMS group than the cTBS group ( p < 0.05). We recommend the use of 2400 pulses of LF-rTMS/OT for 2 weeks as treatment for hemiparetic patients.

  11. BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation.

    Science.gov (United States)

    Kraus, T; Hösl, K; Kiess, O; Schanze, A; Kornhuber, J; Forster, C

    2007-01-01

    Direct vagus nerve stimulation (VNS) has proved to be an effective treatment for seizure disorder and major depression. However, since this invasive technique implies surgery, with its side-effects and relatively high financial costs, a non-invasive method to stimulate vagal afferences would be a great step forward. We studied effects of non-invasive electrical stimulation of the nerves in the left outer auditory canal in healthy subjects (n = 22), aiming to activate vagal afferences transcutaneously (t-VNS). Short-term changes in brain activation and subjective well-being induced by t-VNS were investigated by functional magnetic resonance imaging (fMRI) and psychometric assessment using the Adjective Mood Scale (AMS), a self-rating scale for current subjective feeling. Stimulation of the ear lobe served as a sham control. fMRI showed that robust t-VNS induced BOLD-signal decreases in limbic brain areas, including the amygdala, hippocampus, parahippocampal gyrus and the middle and superior temporal gyrus. Increased activation was seen in the insula, precentral gyrus and the thalamus. Psychometric assessment revealed significant improvement of well-being after t-VNS. Ear lobe stimulation as a sham control intervention did not show similar effects in either fMRI or psychometric assessment. No significant effects on heart rate, blood pressure or peripheral microcirculation could be detected during the stimulation procedure. Our study shows the feasibility and beneficial effects of transcutaneous nerve stimulation in the left auditory canal of healthy subjects. Brain activation patterns clearly share features with changes observed during invasive vagus nerve stimulation.

  12. Effect of dopamine on pentagastrin-stimulated gastric antral motility in dogs with gastric fistula

    DEFF Research Database (Denmark)

    Bech, K; Hovendal, C P; Andersen, D

    1982-01-01

    The purpose of the present study was to evaluate the effect of dopamine on gastric antral motility in conscious dogs with gastric fistula by using miniature strain-gauge transducers. Infusion of pentagastrin changed the contractile activity to a digestive state. Dopamine, an endogenous...... catecholamine, was used alone and in conjunction with selective blockade or adrenergic and dopaminergic receptors. The stimulated antral motility was inhibited by dopamine. The effect was significantly blocked by the peripherally acting dopaminergic blocker domperidone and by cis-flupenthixol, which blocks both...... peripheral and central dopaminergic receptors. The effect of dopamine was not significantly altered by the beta 1-adrenoceptor blocker practolol, the alpha-adrenoceptor blocker phentolamine, or the alpha + beta-adrenoceptor blocker labetalol. Consequently, this study indicates that dopamine acts on gastric...

  13. Polarity-specific cortical effects of transcranial direct current stimulation in primary somatosensory cortex of healthy humans

    Directory of Open Access Journals (Sweden)

    Robert eRehmann

    2016-05-01

    Full Text Available Transcranial direct current stimulation (tDCS is a noninvasive stimulation method that has been shown to modulate the excitability of the motor and visual cortices in human subjects in a polarity dependent manner in previous studies. The aim of our study was to investigate whether anodal and cathodal tDCS can also be used to modulate the excitability of the human primary somatosensory cortex (S1. We measured paired-pulse suppression (PPS of somatosensory evoked potentials in 36 right-handed volunteers before and after anodal, cathodal or sham stimulation over the right non-dominant S1. Paired-pulse stimulation of the median nerve was performed at the dominant and non-dominant hand. After anodal tDCS, PPS was reduced in the ipsilateral S1 compared to sham stimulation, indicating an excitatory effect of anodal tDCS. In contrast, PPS in the stimulated left hemisphere was increased after cathodal tDCS, indicating an inhibitory effect of cathodal tDCS. Sham stimulation induced no pre-post differences. Thus, tDCS can be used to modulate the excitability of S1 in polarity-dependent manner, which can be assessed by paired-pulse suppression. An interesting topic for further studies could be the investigation of direct correlations between sensory changes and excitability changes induced by tDCS.

  14. Cardiovascular Effects of Stimulant and Non-Stimulant Medication for Children and Adolescents with ADHD: A Systematic Review and Meta-Analysis of Trials of Methylphenidate, Amphetamines and Atomoxetine

    NARCIS (Netherlands)

    Hennissen, L.; Bakker-Huvenaars, M.J.; Banaschewski, T.; Carucci, S.; Coghill, D.; Danckaerts, M.; Dittmann, R.W.; Hollis, C.; Kovshoff, H.; McCarthy, S.; Nagy, P.; Sonuga-Barke, E.; Wong, I.C.; Zuddas, A.; Rosenthal, E.; Buitelaar, J.K.

    2017-01-01

    BACKGROUND: Many children and adolescents with attention deficit/hyperactivity disorder (ADHD) are treated with stimulant and non-stimulant medication. ADHD medication may be associated with cardiovascular effects. It is important to identify whether mean group effects translate into clinically

  15. Effects of percutaneous tibial nerve stimulation on adult patients with overactive bladder syndrome: a systematic review.

    Science.gov (United States)

    Moossdorff-Steinhauser, Heidi F A; Berghmans, Bary

    2013-03-01

    To assess the effectiveness of percutaneous tibial nerve stimulation (PTNS) on adult patients with overactive bladder syndrome, using a systematic review of randomized controlled trials (RCTs), clinical controlled trials (CCTs), and prospective observational cohort studies. A computer-aided literature search was performed in: PubMed, EMBASE and CENTRAL (2000 to November 15, 2011) to identify RCTs, CCTs, and prospective observational cohort studies. The study had to investigate the effect of PTNS on overactive bladder syndrome. The methodological quality of each study was assessed and a qualitative analysis was performed to establish the levels of evidence. Four RCTs and six prospective observational cohort studies were identified. There is strong evidence for the efficacy of PTNS versus a sham treatment. There is limited evidence that the use of PTNS and tolterodine ER is equally effective. No additional effect of a combination of Stoller afferent nerve stimulation (SANS) and anticholinergic medication compared to SANS alone. Most cohort studies suggested decreased frequency and improvement of incontinence and nocturia. However, the level of evidence was insufficient to make any firm conclusions. Because the total duration of all included trials varied between 6 and 12 weeks, so far there is little information on treatment periods. PTNS is efficacious for frequency and urgency urinary incontinence. More high quality studies are needed to improve the level of evidence concerning the efficacy of PTNS with regard to urgency and nocturia, to specify patient selection criteria, optimal treatment modalities and long-term effects as well as the effectiveness in more pragmatic trials. Copyright © 2012 Wiley Periodicals, Inc.

  16. Acute effect of Vagus nerve stimulation parameters on cardiac chronotropic, inotropic, and dromotropic responses

    Science.gov (United States)

    Ojeda, David; Le Rolle, Virginie; Romero-Ugalde, Hector M.; Gallet, Clément; Bonnet, Jean-Luc; Henry, Christine; Bel, Alain; Mabo, Philippe; Carrault, Guy; Hernández, Alfredo I.

    2017-11-01

    Vagus nerve stimulation (VNS) is an established therapy for drug-resistant epilepsy and depression, and is considered as a potential therapy for other pathologies, including Heart Failure (HF) or inflammatory diseases. In the case of HF, several experimental studies on animals have shown an improvement in the cardiac function and a reverse remodeling of the cardiac cavity when VNS is applied. However, recent clinical trials have not been able to reproduce the same response in humans. One of the hypothesis to explain this lack of response is related to the way in which stimulation parameters are defined. The combined effect of VNS parameters is still poorly-known, especially in the case of VNS synchronously delivered with cardiac activity. In this paper, we propose a methodology to analyze the acute cardiovascular effects of VNS parameters individually, as well as their interactive effects. A Latin hypercube sampling method was applied to design a uniform experimental plan. Data gathered from this experimental plan was used to produce a Gaussian process regression (GPR) model in order to estimate unobserved VNS sequences. Finally, a Morris screening sensitivity analysis method was applied to each obtained GPR model. Results highlight dominant effects of pulse current, pulse width and number of pulses over frequency and delay and, more importantly, the degree of interactions between these parameters on the most important acute cardiovascular responses. In particular, high interacting effects between current and pulse width were found. Similar sensitivity profiles were observed for chronotropic, dromotropic and inotropic effects. These findings are of primary importance for the future development of closed-loop, personalized neuromodulator technologies.

  17. The effects of surface neuromuscular electrical stimulation on post-stroke dysphagia: a systemic review and meta-analysis.

    Science.gov (United States)

    Chen, Yi-Wen; Chang, Kwang-Hwa; Chen, Hung-Chou; Liang, Wen-Miin; Wang, Ya-Hui; Lin, Yen-Nung

    2016-01-01

    In this study, we intended to evaluate whether swallow treatment with neuromuscular electrical stimulation is superior to that without neuromuscular electrical stimulation, and whether neuromuscular electrical stimulation alone is superior to swallow therapy. We searched the PubMed and Scopus databases from their earliest record to 31 December 2014 for randomized and quasi-randomized controlled trials that used neuromuscular electrical stimulation to treat post-stroke dysphagia. The Jadad scale was used to assess the quality of the included studies. We extracted the mean differences and standard deviation (SD) between baseline and posttreatment or posttreatment mean and SD for selected outcomes measured in the experimental and control groups for subsequent meta-analyses. Eight studies were identified. For the comparison "swallow treatment with neuromuscular electrical stimulation vs. swallow treatment without neuromuscular electrical stimulation," we found a significant standardized mean difference (SMD) of 1.27 (95% confidence interval (CI) = 0.51-2.02, P = 0.001) with significant heterogeneity (I(2) = 85%). The meta-analysis for the comparison of neuromuscular electrical stimulation alone and swallow therapy demonstrated a non-significant SMD of 0.25 (95% CI = -0.16-0.65, P = 0.23) without significant heterogeneity (I(2) = 16%). Swallow treatment with neuromuscular electrical stimulation seems to be more effective than that without neuromuscular electrical stimulation for post-stroke dysphagia in the short term considering the limited number of studies available. Evidence was insufficient to indicate that neuromuscular electrical stimulation alone was superior to swallow therapy. © The Author(s) 2015.

  18. Beneficial effects of multisensory and cognitive stimulation on age-related cognitive decline in long-term-care institutions.

    Science.gov (United States)

    De Oliveira, Thaís Cristina Galdino; Soares, Fernanda Cabral; De Macedo, Liliane Dias E Dias; Diniz, Domingos Luiz Wanderley Picanço; Bento-Torres, Natáli Valim Oliver; Picanço-Diniz, Cristovam Wanderley

    2014-01-01

    The aim of the present report was to evaluate the effectiveness and impact of multisensory and cognitive stimulation on improving cognition in elderly persons living in long-term-care institutions (institutionalized [I]) or in communities with their families (noninstitutionalized [NI]). We compared neuropsychological performance using language and Mini-Mental State Examination (MMSE) test scores before and after 24 and 48 stimulation sessions. The two groups were matched by age and years of schooling. Small groups of ten or fewer volunteers underwent the stimulation program, twice a week, over 6 months (48 sessions in total). Sessions were based on language and memory exercises, as well as visual, olfactory, auditory, and ludic stimulation, including music, singing, and dance. Both groups were assessed at the beginning (before stimulation), in the middle (after 24 sessions), and at the end (after 48 sessions) of the stimulation program. Although the NI group showed higher performance in all tasks in all time windows compared with I subjects, both groups improved their performance after stimulation. In addition, the improvement was significantly higher in the I group than the NI group. Language tests seem to be more efficient than the MMSE to detect early changes in cognitive status. The results suggest the impoverished environment of long-term-care institutions may contribute to lower cognitive scores before stimulation and the higher improvement rate of this group after stimulation. In conclusion, language tests should be routinely adopted in the neuropsychological assessment of elderly subjects, and long-term-care institutions need to include regular sensorimotor, social, and cognitive stimulation as a public health policy for elderly persons.

  19. Study on the Antifibrotic Effects of Recombinant Shark Hepatical Stimulator Analogue (r-sHSA) in Vitro and in Vivo.

    Science.gov (United States)

    Wang, Ying; Zhang, Xiaoyuan; Yang, Yang; Yang, Xiaohong; Ye, Boping

    2015-08-18

    Hepatic fibrosis is an effusive wound healing process, characterized by an excessive deposition of extracellular matrix (ECM), as the consequence of chronic liver injury of any etiology. Current therapeutic repertoire for hepatic fibrosis is limited to withdrawal of the noxious agent, which is not always feasible. Hence, in this article, the antifibrotic effects and possible mechanisms of r-sHSA, a recombinant protein with hepatoprotection potential, were investigated. Using NIH/3T3 (mouse embro-fibroblast cell line), skin fibroblasts (human skin fibroblasts, SFBs) and HSC-T6 (rat hepatic stellate cell line), the in vitro effect of r-sHSA was evaluated by measuring the expression levels of alpha-1 Type I collagen (Col1A1) and α-smooth muscle actin (α-SMA). It turned out those fibrosis indicators were typically inhibited by r-sHSA, suggesting its capacity in HSCs inactivation. The antifibrotic activity of r-sHSA was further investigated in vivo on CCl4-induced hepatic fibrosis, in view of significant improvement of the biochemical and histological indicators. More specifically, CCl4-intoxication induced a significant increase in serological biomarkers, e.g., transaminase (AST, ALT), and alkaline phosphatase (ALP), as well as disturbed hepatic antioxidative status; most of the parameters were spontaneously ameliorated to a large extent by withdrawal of CCl4, although the fibrotic lesion was observed histologically. In contrast, r-sHSA treatment markedly eliminated fibrous deposits and restored architecture of the liver in a dose dependent manner, concomitantly with the phenomena of inflammation relief and HSCs deactivation. To sum up, these findings suggest a therapeutic potential for r-sHSA in hepatic fibrosis, though further studies are required.

  20. Study on the Antifibrotic Effects of Recombinant Shark Hepatical Stimulator Analogue (r-sHSA in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2015-08-01

    Full Text Available Hepatic fibrosis is an effusive wound healing process, characterized by an excessive deposition of extracellular matrix (ECM, as the consequence of chronic liver injury of any etiology. Current therapeutic repertoire for hepatic fibrosis is limited to withdrawal of the noxious agent, which is not always feasible. Hence, in this article, the antifibrotic effects and possible mechanisms of r-sHSA, a recombinant protein with hepatoprotection potential, were investigated. Using NIH/3T3 (mouse embro-fibroblast cell line, skin fibroblasts (human skin fibroblasts, SFBs and HSC-T6 (rat hepatic stellate cell line, the in vitro effect of r-sHSA was evaluated by measuring the expression levels of alpha-1 Type I collagen (Col1A1 and α-smooth muscle actin (α-SMA. It turned out those fibrosis indicators were typically inhibited by r-sHSA, suggesting its capacity in HSCs inactivation. The antifibrotic activity of r-sHSA was further investigated in vivo on CCl4-induced hepatic fibrosis, in view of significant improvement of the biochemical and histological indicators. More specifically, CCl4-intoxication induced a significant increase in serological biomarkers, e.g., transaminase (AST, ALT, and alkaline phosphatase (ALP, as well as disturbed hepatic antioxidative status; most of the parameters were spontaneously ameliorated to a large extent by withdrawal of CCl4, although the fibrotic lesion was observed histologically. In contrast, r-sHSA treatment markedly eliminated fibrous deposits and restored architecture of the liver in a dose dependent manner, concomitantly with the phenomena of inflammation relief and HSCs deactivation. To sum up, these findings suggest a therapeutic potential for r-sHSA in hepatic fibrosis, though further studies are required.

  1. Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy.

    Science.gov (United States)

    Cantarero, Gabriela; Spampinato, Danny; Reis, Janine; Ajagbe, Loni; Thompson, Tziporah; Kulkarni, Kopal; Celnik, Pablo

    2015-02-18

    The cerebellum is involved in the update of motor commands during error-dependent learning. Transcranial direct current stimulation (tDCS), a form of noninvasive brain stimulation, has been shown to increase cerebellar excitability and improve learning in motor adaptation tasks. Although cerebellar involvement has been clearly demonstrated in adaptation paradigms, a type of task that heavily relies on error-dependent motor learning mechanisms, its role during motor skill learning, a behavior that likely involves error-dependent as well as reinforcement and strategic mechanisms, is not completely understood. Here, in humans, we delivered cerebellar tDCS to modulate its activity during novel motor skill training over the course of 3 d and assessed gains during training (on-line effects), between days (off-line effects), and overall improvement. We found that excitatory anodal tDCS applied over the cerebellum increased skill learning relative to sham and cathodal tDCS specifically by increasing on-line rather than off-line learning. Moreover, the larger skill improvement in the anodal group was predominantly mediated by reductions in error rate rather than changes in movement time. These results have important implications for using cerebellar tDCS as an intervention to speed up motor skill acquisition and to improve motor skill accuracy, as well as to further our understanding of cerebellar function. Copyright © 2015 the authors 0270-6474/15/353285-06$15.00/0.

  2. Effectiveness of Therapeutic Community in Executive Functions and Autobiographical Memory in People with Addiction to Stimulants

    Directory of Open Access Journals (Sweden)

    F Alipoor

    2016-02-01

    Full Text Available Objective: The present study was an attempt to examine the effectiveness of therapeutic community in executive functions and autobiographical memory in people with addiction to stimulants. Method: This study was conducted based on a quasi-experimental research design along with pretest and posttest. From among the male stimulant users who had referred to Vardij medical center of Tehran therapeutic community, the number of 27 participants was selected via purposive sampling after the consideration of inclusion and exclusion criteria. From admission to end treatment stage of people in this center (4-month treatment, Wisconsin test, Stroop test, tower of London test, digit span, and autobiographical memory questionnaire were used for data collection. Results: The results of the study showed that therapeutic community significantly improved scores Wisconsin, Stroop, tower of London and digit span tests, as well as scores of specific autobiographical memories. Conclusion: Based on the effects of etiology, treatment and prevention of executive functions and autobiographical memory on addiction, it is recommended to use therapeutic community in treatment interventions and addiction relapse. 

  3. Study on Effect of Immune Stimulation of γ-Ray Irradiated β-Glucan on Tilapia

    International Nuclear Information System (INIS)

    Nguyen Ngoc Duy; Nguyen Quoc Hien; Dang Van Phu

    2013-01-01

    Low molecular weight β-glucan (LMWβG) and oligoβ-glucan solution were prepared by the hydrothermal steaming combination with γ-irradiation method. The efficiency of the degradation process was demonstrated by gel permeation chromatography (GPC) analysis of the average molecular weight (Mw) of β-glucan. Results showed that the Mw decreased with increasing steaming time, concentration of H 2 O 2 and doses. For LMWβG, Mw reduces from 296,600 Da to 44,400 Da when concentration of H 2 O 2 raises from 2.5% to 10% and for oligoβ-glucan Mw reduces to 7,100 Da at 16 kGy. Tilapia fish was fed with LMWβ and oligoβ-glucan of 100 ppm for 45 days, was challenged with Strep. Agalactidae bacterial to investigate immune stimulation. The results indicated that oligoβ-glucan has higher immune stimulation effect compared to LMWβG. The effect of oligoβ-glucan various concentrations of 50, 100, and 150 ppm was investigated. Results showed that survival rate was the highest for oligoβ-glucan of 150 ppm. (author)

  4. Effects of gonadotropins on in vitro maturation and of electrical stimulation on parthenogenesis of canine oocytes.

    Science.gov (United States)

    Kim, B S; Lee, S R; Hyun, B H; Shin, M J; Yoo, D H; Lee, S; Park, Y S; Ha, J H; Ryoo, Z Y

    2010-02-01

    The objective of this study was to determine the effects of gonadotropins on in vitro maturation (IVM) and electrical stimulation on the parthenogenesis of canine oocytes. In experiment I, cumulus oocyte complexes were collected from ovaries at a random phase of the oestrus cycle and cultured on maturation medium treated with hCG or eCG for 48 or 72 h. There were no significant differences in the effects on the metaphase II (MII) rate between the hCG and eCG treatment groups over 48 h (5.4% vs 5.5%). The MII rate in the co-treatment group of hCG and eCG for 48 h was higher than in each hormone treated group (15.5%, p parthenogenesis of canine oocytes. The results showed that the pronucleus formation rate, indicative of the parthenogenesis start point, could be increased by electrical stimulation. Therefore, these results can provide important data for the parthenogenesis of canine oocytes and suggest the probability of parthenogenesis in canines.

  5. Effects of transcranial direct current stimulation (tDCS) on binge eating disorder.

    Science.gov (United States)

    Burgess, Emilee E; Sylvester, Maria D; Morse, Kathryn E; Amthor, Frank R; Mrug, Sylvie; Lokken, Kristine L; Osborn, Mary K; Soleymani, Taraneh; Boggiano, Mary M

    2016-10-01

    To investigate the effect of transcranial direct current stimulation (tDCS) on food craving, intake, binge eating desire, and binge eating frequency in individuals with binge eating disorder (BED). N = 30 adults with BED or subthreshold BED received a 20-min 2 milliampere (mA) session of tDCS targeting the dorsolateral prefrontal cortex (DLPFC; anode right/cathode left) and a sham session. Food image ratings assessed food craving, a laboratory eating test assessed food intake, and an electronic diary recorded binge variables. tDCS versus sham decreased craving for sweets, savory proteins, and an all-foods category, with strongest reductions in men (p binge eat in men on the day of real tDCS administration (p eating less frequently for reward motives, and greater intent to restrict calories, respectively. This proof of concept study is the first to find ameliorating effects of tDCS in BED. Stimulation of the right DLPFC suggests that enhanced cognitive control and/or decreased need for reward may be possible functional mechanisms. The results support investigation of repeated tDCS as a safe and noninvasive treatment adjunct for BED. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2016; 49:930-936). © 2016 Wiley Periodicals, Inc.

  6. Effect of LED light stimulation on sleep latency in night shift people

    Science.gov (United States)

    Wu, Jih-Huah; Chang, Yang-Chyuan; Chiu, Hui-Ling; Fang, Wei; Shan, Yi-Chia; Chen, Ming-Jie; Chang, Yu-Ting

    2014-05-01

    Sleep problems are getting worse and worse in modern world. They have a severe impact on psychological and physical health, as well as social performances. From our previous study, the brainwave α rhythm, θ wave and β wave were affected by radiating the palm of the subjects with low-level laser array. In addition, from other study, the LED array stimulator (LEDAS) also has the similar effects. In the present study, LED light was used to radiate the left palm of the subjects too, and the effects were assessed with the multiple sleep latency test (MSLT) and heart-rate variability (HRV) analysis. The results revealed that it doesn't have significant meaning between these two groups. However, the tendency of the sleep latency (SL) in the LED group was shorter than that in the control group. In addition, the autonomic nervous system (ANS) analysis showed that the sympathetic nervous system was getting larger in the LED group than that in the control group, and total ANS activity were mainly getting larger in the LED group. We infer that this LED stimulation could reduce SL and balance ANS activity of the night-shift people. In the future, the further study will be conducted on normal subjects.

  7. Effect of Tactile-Kinesthetic Stimulation on Motor Development of Low Birth Weight Neonates

    Directory of Open Access Journals (Sweden)

    Reihaneh Askary Kachoosangy

    2011-04-01

    Full Text Available Objectives: Low Birth Weight neonates need complementary interventions (e.g. tactile kinesthetic stimulation to promote their development. This study was conducted to determine the effect of Tactile- Kinesthetic Stimulation (TKS on motor development of Low Birth Weight neonates. Methods: In this clinical trial study, sample was made out of 40 inborn LBW neonates who were divided into two groups randomly. TKS was provided for three 15-minute periods per day for 10 consecutive days to the test group, with the massages consisting of moderate of pressure strokes in prone position and kinesthetic exercises consisting of flexion and extension of limbs in supine position. All measurements were taken before and after completion of the study with the same equipment and by the same person. Results: Results indicated that motor behavior in the intervention group was significantly higher than the control group after the 10 days TKS (P-Value≤0.0001. Discussion: TKS could be an effective intervention in development of motor behavior of LBW neonates. Because very little is known about neonate's behavior, it seems to need more studies in other aspects of behavior in LBW neonates.

  8. Effects of cervical sympathetic nerve stimulation on the cerebral microcirculation: possible clinical implications.

    Science.gov (United States)

    Passatore, M; Deriu, F; Roatta, S; Grassi, C; Micieli, G

    1996-01-01

    The action of bilateral cervical sympathetic nerve (CSN) stimulation on mean cerebral blood flow (CBF) and on its rhythmical fluctuations was studied in normotensive rabbits by using laser-Doppler flowmetry (LDF). A reduction in mean CBF, mediated by alpha-adrenoceptors, was the predominant effect; it was more often present and larger in size in the vascular beds supplied by the carotid than in those supplied by the vertebro-basilar system. This suggests that the sympathetic action facilitates a redistribution of blood flow to the brain stem. The effect induced by CSN stimulation on CBF spontaneous oscillations was a consistent decrease in amplitude and an increase in frequency, irrespective of the changes produced on the mean level of CBF. The possible implications of the sympathetic action on the state of the blood-brain barrier (BBB) are discussed. Experimental and clinical data dealing with the influence of sympathetic activation on the cerebrovascular system have been compared. As a result the possibility of analysing the spontaneous oscillations of CBF for clinical purposes is suggested.

  9. Auditory beat stimulation and its effects on cognition and mood states

    Directory of Open Access Journals (Sweden)

    Leila eChaieb

    2015-05-01

    Full Text Available Auditory beat stimulation may be a promising new tool for the manipulation of cognitive processes and the modulation of mood-states. Here we aim to review the literature examining the most current applications of auditory beat stimulation and its targets. We give a brief overview of research on auditory steady-state responses and its relationship to auditory beat stimulation. We have summarized relevant studies investigating the neurophysiological changes related to auditory beat stimulation and how they impact upon the design of appropriate stimulation protocols. Focusing on binaural beat stimulation, we then discuss the role of monaural and binaural beat frequencies in cognition and mood-states, in addition to their efficacy in targeting disease symptoms. We aim to highlight important points concerning stimulation parameters and try to address why there are often contradictory findings with regard to the outcomes of auditory beat stimulation.

  10. Effects of patterned peripheral nerve stimulation on soleus spinal motor neuron excitability

    DEFF Research Database (Denmark)

    Jimenez, Samuel; Mordillo-Mateos, Laura; Dileone, Michele

    2018-01-01

    Spinal plasticity is thought to contribute to sensorimotor recovery of limb function in several neurological disorders and can be experimentally induced in animals and humans using different stimulation protocols. In healthy individuals, electrical continuous Theta Burst Stimulation (TBS) of the ...

  11. Effect of electrical stimulation on blood flow velocity and vessel size

    Directory of Open Access Journals (Sweden)

    Jin Hee-Kyung

    2017-03-01

    Full Text Available Interferential current electrical stimulation alters blood flow velocity and vessel size. We aimed to investigate the changes in the autonomic nervous system depending on electrical stimulation parameters.

  12. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    Science.gov (United States)

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (Pexercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (Pexercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise

  13. Effect of dopamine on bethanechol-stimulated gastric mucosal blood flow and gastric acid secretion in dogs with gastric fistula

    DEFF Research Database (Denmark)

    Hovendal, C P; Bech, K

    1982-01-01

    -dependent stimulation of gastric acid secretion was found for dopamine at 1, 5, and 10 micrograms/kg/min. A significant inhibition of gastric acid secretion was found with the highest dose of dopamine (40 micrograms/kg/min). the stimulatory effect seems to be mediated by more than one receptor, whereas the inhibition...... by high dopamine doses could be explained by a beta 1 stimulation. Dopamine (10 micrograms/kg/min) was found to increase the bethanechol-stimulated gastric mucosal blood flow. Phentolamine (alpha blackade) increased this dopamine-elevated blood flow further, with a significant increase in the ratio...

  14. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability.

    Science.gov (United States)

    Liebetanz, David; Nitsche, Michael A; Tergau, Frithjof; Paulus, Walter

    2002-10-01

    Weak transcranial direct current stimulation (tDCS) induces persisting excitability changes in the human motor cortex. These plastic excitability changes are selectively controlled by the polarity, duration and current strength of stimulation. To reveal the underlying mechanisms of direct current (DC)-induced neuroplasticity, we combined tDCS of the motor cortex with the application of Na(+)-channel-blocking carbamazepine (CBZ) and the N-methyl-D-aspartate (NMDA)-receptor antagonist dextromethorphan (DMO). Monitored by transcranial magnetic stimulation (TMS), motor cortical excitability changes of up to 40% were achieved in the drug-free condition. Increase of cortical excitability could be selected by anodal stimulation, and decrease by cathodal stimulation. Both types of excitability change lasted several minutes after cessation of current stimulation. DMO suppressed the post-stimulation effects of both anodal and cathodal DC stimulation, strongly suggesting the involvement of NMDA receptors in both types of DC-induced neuroplasticity. In contrast, CBZ selectively eliminated anodal effects. Since CBZ stabilizes the membrane potential voltage-dependently, the results reveal that after-effects of anodal tDCS require a depolarization of membrane potentials. Similar to the induction of established types of short- or long-term neuroplasticity, a combination of glutamatergic and membrane mechanisms is necessary to induce the after-effects of tDCS. On the basis of these results, we suggest that polarity-driven alterations of resting membrane potentials represent the crucial mechanisms of the DC-induced after-effects, leading to both an alteration of spontaneous discharge rates and to a change in NMDA-receptor activation.

  15. The combined effects of transcutaneous electrical nerve stimulation (TENS) and stretching on muscle hardness and pressure pain threshold.

    Science.gov (United States)

    Karasuno, Hiroshi; Ogihara, Hisayoshi; Morishita, Katsuyuki; Yokoi, Yuka; Fujiwara, Takayuki; Ogoma, Yoshiro; Abe, Koji

    2016-04-01

    [Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were collected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching (T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcutaneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle hardness, thus increasing range of motion.

  16. Multifaceted effects of noisy galvanic vestibular stimulation on manual tracking behavior in Parkinson’s disease

    Science.gov (United States)

    Lee, Soojin; Kim, Diana J.; Svenkeson, Daniel; Parras, Gabriel; Oishi, Meeko Mitsuko K.; McKeown, Martin J.

    2015-01-01

    Parkinson’s disease (PD) is a neurodegenerative movement disorder that is characterized clinically by slowness of movement, rigidity, tremor, postural instability, and often cognitive impairments. Recent studies have demonstrated altered cortico-basal ganglia rhythms in PD, which raises the possibility of a role for non-invasive stimulation therapies such as noisy galvanic vestibular stimulation (GVS). We applied noisy GVS to 12 mild-moderately affected PD subjects (Hoehn and Yahr 1.5–2.5) off medication while they performed a sinusoidal visuomotor joystick tracking task, which alternated between 2 task conditions depending on whether the displayed cursor position underestimated the actual error by 30% (‘Better’) or overestimated by 200% (‘Worse’). Either sham or subthreshold, noisy GVS (0.1–10 Hz, 1/f-type power spectrum) was applied in pseudorandom order. We used exploratory (linear discriminant analysis with bootstrapping) and confirmatory (robust multivariate linear regression) methods to determine if the presence of GVS significantly affected our ability to predict cursor position based on target variables. Variables related to displayed error were robustly seen to discriminate GVS in all subjects particularly in the Worse condition. If we considered higher frequency components of the cursor trajectory as “noise,” the signal-to-noise ratio of cursor trajectory was significantly increased during the GVS stimulation. The results suggest that noisy GVS influenced motor performance of the PD subjects, and we speculate that they were elicited through a combination of mechanisms: enhanced cingulate activity resulting in modulation of frontal midline theta rhythms, improved signal processing in neuromotor system via stochastic facilitation and/or enhanced “vigor” known to be deficient in PD subjects. Further work is required to determine if GVS has a selective effect on corrective submovements that could not be detected by the current analyses

  17. Cochlear Implant Electrode Effect on Sound Energy Transfer Within the Cochlea During Acoustic Stimulation.

    Science.gov (United States)

    Greene, Nathaniel T; Mattingly, Jameson K; Jenkins, Herman A; Tollin, Daniel J; Easter, James R; Cass, Stephen P

    2015-09-01

    Cochlear implants (CIs) designed for hearing preservation will not alter mechanical properties of the middle and inner ears as measured by intracochlear pressure (P(IC)) and stapes velocity (Vstap). CIs designed to provide combined electroacoustic stimulation are now available. To maintain functional acoustic hearing, it is important to know if a CI electrode can alter middle or inner ear mechanics because any alteration could contribute to elevated low-frequency thresholds in electroacoustic stimulation patients. Seven human cadaveric temporal bones were prepared, and pure-tone stimuli from 120 Hz to 10 kHz were presented at a range of intensities up to 110 dB sound pressure level. P(IC) in the scala vestibuli (P(SV)) and tympani (PST) were measured with fiber-optic pressure sensors concurrently with VStap using laser Doppler vibrometry. Five CI electrodes from two different manufacturers with varying dimensions were inserted via a round window approach at six different depths (16-25 mm). The responses of P(IC) and VStap to acoustic stimulation were assessed as a function of stimulus frequency, normalized to sound pressure level in the external auditory canal, at baseline and electrode-inserted conditions. Responses measured with electrodes inserted were generally within approximately 5 dB of baseline, indicating little effect of CI electrode insertion on P(IC) and VStap. Overall, mean differences across conditions were small for all responses, and no substantial differences were consistently visible across electrode types. Results suggest that the influence of a CI electrode on middle and inner ear mechanics is minimal despite variation in electrode lengths and configurations.

  18. Effects of STN and GPi deep brain stimulation on impulse control disorders and dopamine dysregulation syndrome.

    Directory of Open Access Journals (Sweden)

    Sarah J Moum

    Full Text Available Impulse control disorders (ICDs and dopamine dysregulation syndrome (DDS are important behavioral problems that affect a subpopulation of patients with Parkinson's disease (PD and typically result in markedly diminished quality of life for patients and their caregivers. We aimed to investigate the effects of subthalamic nucleus (STN and internal globus pallidus (GPi deep brain stimulation (DBS on ICD/DDS frequency and dopaminergic medication usage.A retrospective chart review was performed on 159 individuals who underwent unilateral or bilateral PD DBS surgery in either STN or GPi. According to published criteria, pre- and post-operative records were reviewed to categorize patients both pre- and post-operatively as having ICD, DDS, both ICD and DDS, or neither ICD nor DDS. Group differences in patient demographics, clinical presentations, levodopa equivalent dose (LED, and change in diagnosis following unilateral/bilateral by brain target (STN or GPi DBS placement were examined.28 patients met diagnostic criteria for ICD or DDS pre- or post-operatively. ICD or DDS classification did not differ by GPi or STN target stimulation. There was no change in DDS diagnosis after unilateral or bilateral stimulation. For ICD, diagnosis resolved in 2 of 7 individuals after unilateral or bilateral DBS. Post-operative development of these syndromes was significant; 17 patients developed ICD diagnoses post-operatively with 2 patients with pre-operative ICD developing DDS post-operatively.Unilateral or bilateral DBS did not significantly treat DDS or ICD in our sample, even though a few cases of ICD resolved post-operatively. Rather, our study provides preliminary evidence that DDS and ICD diagnoses may emerge following DBS surgery.

  19. The effect of diet on tumor necrosis factor stimulation of hepatic lipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Feingold, K.R.; Soued, M.; Serio, M.K.; Adi, S.; Moser, A.H.; Grunfeld, C. (Univ. of California, San Francisco (USA))

    1990-06-01

    In this study, we determined the effects of tumor necrosis factor (TNF) on serum lipid levels and hepatic lipid synthesis in animals whose diets and feeding conditions were varied to induce changes in baseline serum lipid levels and/or rates of hepatic lipid synthesis. In animals studied at both the nadir and peak of the diurnal cycle of hepatic lipid synthesis, TNF acutely increases serum triglyceride levels, stimulates hepatic fatty acid synthesis, and increases the quantity of newly synthesized fatty acids found in the serum. Similarly, in animals ingesting either high-sucrose or cholesterol-enriched diets, TNF induces the characteristic rapid increase in serum triglyceride levels, hepatic fatty acid synthesis, and quantity of labeled fatty acids in the serum. In animals fed a diet high in triglycerides, using either corn oil or lard, TNF stimulates hepatic fatty acid synthesis and increases the quantity of newly synthesized fatty acids in the serum, but serum triglyceride levels do not change. However, TNF inhibits gastric emptying, which results in a marked decrease in fat absorption in TNF-treated animals. It is likely that a decrease in the dietary contribution to serum triglyceride levels during high-triglyceride feeding counterbalances the increased hepatic contribution induced by TNF treatment. In animals fasted before TNF administration there was no acute change in either serum lipid levels, hepatic fatty acid synthesis, or the quantity of labeled fatty acids in the serum. Thus, TNF stimulates hepatic fatty acid synthesis and increases serum triglyceride levels under many diverse dietary conditions, suggesting that there is a strong linkage between the immune system and lipid metabolism that is independent of most dietary manipulations and may be of fundamental importance in the body's response to infection.

  20. The Effects of Transcranial Direct Current Stimulation (tDCS on Multitasking Throughput Capacity

    Directory of Open Access Journals (Sweden)

    Justin Nelson

    2016-11-01

    Full Text Available Background: Multitasking has become an integral attribute associated with military operations within the past several decades. As the amount of information that needs to be processed during these high level multitasking environments exceeds the human operators’ capabilities, the information throughput capacity reaches an asymptotic limit. At this point, the human operator can no longer effectively process and respond to the incoming information resulting in a plateau or decline in performance. The objective of the study was to evaluate the efficacy of a non-invasive brain stimulation technique known as transcranial direct current stimulation (tDCS applied to a scalp location over the left dorsolateral prefrontal cortex (lDLPFC to improve information processing capabilities during a multitasking environment. Methods: The study consisted of 20 participants from Wright-Patterson Air Force Base (16 male and 4 female with an average age of 31.1 (SD = 4.5. Participants were randomly assigned into two groups, each consisting of eight males and two females. Group one received 2mA of anodal tDCS and group two received sham tDCS over the lDLPFC on their testing day. Results: The findings indicate that anodal tDCS significantly improves the participants’ information processing capability resulting in improved performance compared to sham tDCS. For example, the multitasking throughput capacity for the sham tDCS group plateaued near 1.0 bits/s at the higher baud input (2.0 bits/s whereas the anodal tDCS group plateaued near 1.3 bits/s. Conclusion: The findings provided new evidence that tDCS has the ability to augment and enhance multitasking capability in a human operator. Future research should be conducted to determine the longevity of the enhancement of transcranial direct current stimulation on multitasking performance, which has yet to be accomplished.

  1. Multifaceted Effects of Noisy Galvanic Vestibular Stimulation on Manual Tracking Behavior in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Soojin eLee

    2015-02-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative movement disorder that is characterized clinically by slowness of movement, rigidity, tremor, postural instability, and often cognitive impairments. Recent studies have demonstrated altered cortico-basal ganglia rhythms in PD, which raises the possibility of a role for non-invasive stimulation therapies such as noisy galvanic vestibular stimulation (GVS. We applied noisy GVS to 12 mild-moderately affected PD subjects (Hoehn & Yahr 1.5-2.5 off medication while they performed a sinusoidal visuomotor joystick tracking task, which alternated between 2 task conditions depending on whether the displayed cursor position underestimated the actual error by 30% (‘Better’ or overestimated by 200% (‘Worse’. Either sham or subthreshold, noisy GVS (0.1-10 Hz, 1/f-type power spectrum was applied in pseudorandom order. We used exploratory (Linear Discriminant Analysis with bootstrapping and confirmatory (robust multivariate linear regression methods to determine if the presence of GVS significantly affected our ability to predict cursor position based on target variables. Variables related to displayed error were robustly seen to discriminate GVS in all subjects particularly in the Worse condition. If we considered higher frequency components of the cursor trajectory as noise, the signal-to-noise ratio of cursor trajectory was significantly increased during the GVS stimulation. The results suggest that noisy GVS influenced motor performance of the PD subjects, and we speculate that they were elicited through a combination of mechanisms: enhanced cingulate activity resulting in modulation of frontal midline theta rhythms, improved signal processing in neuromotor system via stochastic facilitation and/or enhanced vigor known to be deficient in PD subjects. Further work is required to determine if GVS has a selective effect on corrective submovements that could not be detected by the current analyses.

  2. Effects of mechanical stimulation on viscoelasticity of rabbit scleral fibroblasts after posterior scleral reinforcement.

    Science.gov (United States)

    Wang, Guohui; Chen, Weiyi

    2012-10-01

    To understand the effect of mechanical stimulation on posterior scleral reinforcement (PSR), rabbit scleral fibroblasts after PSR were subjected to stretch in vitro, and the viscoelastic behavior of scleral fibroblasts was evaluated. Three-week-old rabbits were monocularly treated by eyelid suturation randomly to prepare the experimental myopia eyes. After 60 days, the experimental myopia eyes were treated by PSR. After six months, the posterior pole scleral fibroblasts (normal sclera--group A, sclera after operation--B and fusion region of sclera and reinforcing band - group C) were isolated and cultured in vitro. The cells were subjected to cyclic stretch regimens (sine wave, 3% and 6% elongation amplitude, 0.1 Hz, 48-h duration) by an FX-4000 Tension System. The micropipette aspiration technique was used to investigate the viscoelasticity of scleral fibroblasts. The cellular viscoelasticity (E(0), E(∞) and μ) of group C was significantly lower than groups A and B (P 0.05). The results show that the viscoelasticity in different regions of sclera after PSR is different. Following a 48-h stretch, the cellular viscoelastic parameters were significantly decreased when compared with the respective static groups (P viscoelasticity of the stretch group was significantly higher than the static control group (P 0.05). The changes of viscoelasticity suggest that different regions of sclera have different responses to mechanical stimulation in the process of treating high myopia by PSR and that mechanical stimulation plays an important role in the treatment of axial myopia by regulating the viscoelasticity of scleral fibroblasts.

  3. The Effects of Transcranial Direct Current Stimulation (tDCS) on Multitasking Throughput Capacity.

    Science.gov (United States)

    Nelson, Justin; McKinley, Richard A; Phillips, Chandler; McIntire, Lindsey; Goodyear, Chuck; Kreiner, Aerial; Monforton, Lanie

    2016-01-01

    Background: Multitasking has become an integral attribute associated with military operations within the past several decades. As the amount of information that needs to be processed during these high level multitasking environments exceeds the human operators' capabilities, the information throughput capacity reaches an asymptotic limit. At this point, the human operator can no longer effectively process and respond to the incoming information resulting in a plateau or decline in performance. The objective of the study was to evaluate the efficacy of a non-invasive brain stimulation technique known as transcranial direct current stimulation (tDCS) applied to a scalp location over the left dorsolateral prefrontal cortex (lDLPFC) to improve information processing capabilities during a multitasking environment. Methods: The study consisted of 20 participants from Wright-Patterson Air Force Base (16 male and 4 female) with an average age of 31.1 (SD = 4.5). Participants were randomly assigned into two groups, each consisting of eight males and two females. Group one received 2 mA of anodal tDCS and group two received sham tDCS over the lDLPFC on their testing day. Results: The findings indicate that anodal tDCS significantly improves the participants' information processing capability resulting in improved performance compared to sham tDCS. For example, the multitasking throughput capacity for the sham tDCS group plateaued near 1.0 bits/s at the higher baud input (2.0 bits/s) whereas the anodal tDCS group plateaued near 1.3 bits/s. Conclusion: The findings provided new evidence that tDCS has the ability to augment and enhance multitasking capability in a human operator. Future research should be conducted to determine the longevity of the enhancement of transcranial direct current stimulation on multitasking performance, which has yet to be accomplished.

  4. The effect of diet on tumor necrosis factor stimulation of hepatic lipogenesis

    International Nuclear Information System (INIS)

    Feingold, K.R.; Soued, M.; Serio, M.K.; Adi, S.; Moser, A.H.; Grunfeld, C.

    1990-01-01

    In this study, we determined the effects of tumor necrosis factor (TNF) on serum lipid levels and hepatic lipid synthesis in animals whose diets and feeding conditions were varied to induce changes in baseline serum lipid levels and/or rates of hepatic lipid synthesis. In animals studied at both the nadir and peak of the diurnal cycle of hepatic lipid synthesis, TNF acutely increases serum triglyceride levels, stimulates hepatic fatty acid synthesis, and increases the quantity of newly synthesized fatty acids found in the serum. Similarly, in animals ingesting either high-sucrose or cholesterol-enriched diets, TNF induces the characteristic rapid increase in serum triglyceride levels, hepatic fatty acid synthesis, and quantity of labeled fatty acids in the serum. In animals fed a diet high in triglycerides, using either corn oil or lard, TNF stimulates hepatic fatty acid synthesis and increases the quantity of newly synthesized fatty acids in the serum, but serum triglyceride levels do not change. However, TNF inhibits gastric emptying, which results in a marked decrease in fat absorption in TNF-treated animals. It is likely that a decrease in the dietary contribution to serum triglyceride levels during high-triglyceride feeding counterbalances the increased hepatic contribution induced by TNF treatment. In animals fasted before TNF administration there was no acute change in either serum lipid levels, hepatic fatty acid synthesis, or the quantity of labeled fatty acids in the serum. Thus, TNF stimulates hepatic fatty acid synthesis and increases serum triglyceride levels under many diverse dietary conditions, suggesting that there is a strong linkage between the immune system and lipid metabolism that is independent of most dietary manipulations and may be of fundamental importance in the body's response to infection

  5. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease

    NARCIS (Netherlands)

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M.; Tan, Huiling; Brown, Peter

    Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been

  6. Lack of effect of somatostatin on the stimulation of hepatic glycogenolysis by epinephrine in isolated canine hepatocytes.

    Science.gov (United States)

    Stevenson, R W; Steiner, K E; Green, D R; Cherrington, A D

    1984-08-17

    The effects of somatostatin on epinephrine's ability to stimulate glucose output have been examined in hepatocytes isolated from dogs fasted overnight. Half-maximal stimulation of phosphorylase a activity and glucose output occurred at an epinephrine concentration of approx. 5 X 10(-9) M. Somatostatin at 10, 100 or 1000 ng/ml had no effect on the ability of a maximal (1 X 10(-7) M) and a submaximal (1 X 10(-8) M) dose of epinephrine to activate phosphorylase at 2 min, or to stimulate glucose output over 20 min. Since the doses of somatostatin used in the present study are up to 50-fold higher than the blood concentrations commonly found when somatostatin is used in vivo to inhibit pancreatic hormone secretion, it seems unlikely that use of somatostatin in this way would affect stimulation of hepatic glycogenolysis by epinephrine in vivo.

  7. Effects of electrical stimulation at different locations in the central nucleus of amygdala on gastric motility and spike activity.

    Science.gov (United States)

    He, Feng; Ai, Hong-Bin

    2016-11-08

    The aim of the study was to determine the effects of electrical stimulation of different locations in the central nucleus of amygdala (CNA) on gastric motility and spike activity in dorsal vagal complex. Gastric motility index (GMI) and firing rate (FR) of dorsal vagal complex neurons were measured in adult Wistar rats respectively. Neuronal spikes in dorsal vagal complex (DVC) were recorded extracellularly with single-barrel glass microelectrodes. Each type of responses elicited by electrical stimulation in medial (CEM) and lateral (CEL) subdivisions of CNA were recorded, respectively. GMI was significantly increased after stimulation of CEM (pmNST) decreased by 31.6 % (pmNST increased (p<0.01) and that in DMNV decreased in response to CEL stimulation (p<0.05). In conclusions, our findings indicated that different loci of CNA may mediate differential effects on gastric activity via changes in the firing of brainstem neurons controlling gut activity.

  8. Long-term functional side-effects of stimulants and sedatives in Drosophila melanogaster.

    Science.gov (United States)

    Matsagas, Kennedy; Lim, David B; Horwitz, Marc; Rizza, Cristina L; Mueller, Laurence D; Villeponteau, Bryant; Rose, Michael R

    2009-08-11

    Small invertebrate animals, such as nematodes and fruit flies, are increasingly being used to test candidate drugs both for specific therapeutic purposes and for long-term health effects. Some of the protocols used in these experiments feature such experimental design features as lifelong virginity and very low densities. By contrast, the ability of both fruit flies and nematodes to resist stress is frequently correlated with their longevity and other functional measures, suggesting that low-stress assays are not necessarily the only useful protocol for testing the long-term effects of drugs. Here we report an alternative protocol for fruit fly drug-testing that maximizes reproductive opportunities and other types of interaction, with moderately high population densities. We validate this protocol using two types of experimental tests: 1. We show that this protocol detects previously well-established genetic differences between outbred fruit fly populations. 2. We show that this protocol is able to distinguish among the long-term effects of similar types of drugs within two broad categories, stimulants and tranquilizers. Large-scale fly drug testing can be conducted using mixed-sex high-density cage assays. We find that the commonly-used stimulants caffeine and theobromine differ dramatically in their chronic functional effects, theobromine being more benign. Likewise, we find that two generic pharmaceutical tranquilizers, lithium carbonate and valproic acid, differ dramatically in their chronic effects, lithium being more benign. However, these findings do not necessarily apply to human subjects, and we thus do not recommend the use of any one substance over any other.

  9. Long-term functional side-effects of stimulants and sedatives in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Kennedy Matsagas

    2009-08-01

    Full Text Available Small invertebrate animals, such as nematodes and fruit flies, are increasingly being used to test candidate drugs both for specific therapeutic purposes and for long-term health effects. Some of the protocols used in these experiments feature such experimental design features as lifelong virginity and very low densities. By contrast, the ability of both fruit flies and nematodes to resist stress is frequently correlated with their longevity and other functional measures, suggesting that low-stress assays are not necessarily the only useful protocol for testing the long-term effects of drugs.Here we report an alternative protocol for fruit fly drug-testing that maximizes reproductive opportunities and other types of interaction, with moderately high population densities. We validate this protocol using two types of experimental tests: 1. We show that this protocol detects previously well-established genetic differences between outbred fruit fly populations. 2. We show that this protocol is able to distinguish among the long-term effects of similar types of drugs within two broad categories, stimulants and tranquilizers.Large-scale fly drug testing can be conducted using mixed-sex high-density cage assays. We find that the commonly-used stimulants caffeine and theobromine differ dramatically in their chronic functional effects, theobromine being more benign. Likewise, we find that two generic pharmaceutical tranquilizers, lithium carbonate and valproic acid, differ dramatically in their chronic effects, lithium being more benign. However, these findings do not necessarily apply to human subjects, and we thus do not recommend the use of any one substance over any other.

  10. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation.

    Science.gov (United States)

    Reis, Janine; Schambra, Heidi M; Cohen, Leonardo G; Buch, Ethan R; Fritsch, Brita; Zarahn, Eric; Celnik, Pablo A; Krakauer, John W

    2009-02-03

    Motor skills can take weeks to months to acquire and can diminish over time in the absence of continued practice. Thus, strategies that enhance skill acquisition or retention are of great scientific and practical interest. Here we investigated the effect of noninvasive cortical stimulation on the extended time course of learning a novel and challenging motor skill task. A skill measure was chosen to reflect shifts in the task's speed-accuracy tradeoff function (SAF), which prevented us from falsely interpreting variations in position along an unchanged SAF as a change in skill. Subjects practiced over 5 consecutive days while receiving transcranial direct current stimulation (tDCS) over the primary motor cortex (M1). Using the skill measure, we assessed the impact of anodal (relative to sham) tDCS on both within-day (online) and between-day (offline) effects and on the rate of forgetting during a 3-month follow-up (long-term retention). There was greater total (online plus offline) skill acquisition with anodal tDCS compared to sham, which was mediated through a selective enhancement of offline effects. Anodal tDCS did not change the rate of forgetting relative to sham across the 3-month follow-up period, and consequently the skill measure remained greater with anodal tDCS at 3 months. This prolonged enhancement may hold promise for the rehabilitation of brain injury. Furthermore, these findings support the existence of a consolidation mechanism, susceptible to anodal tDCS, which contributes to offline effects but not to online effects or long-term retention.

  11. Effects of different frequencies of transcutaneous electrical nerve stimulation on venous vascular reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Franco, O.S.; Paulitsch, F.S.; Pereira, A.P.C.; Teixeira, A.O. [Universidade Federal do Rio Grande, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Martins, C.N. [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Fisiologia Animal Comparada, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Silva, A.M.V. [Universidade Federal de Santa Maria, Departamento de Fisioterapia e Reabilitação, Santa Maria, RS, Brasil, Departamento de Fisioterapia e Reabilitação, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Plentz, R.D.M. [Universidade Federal de Ciências da Saúde de Porto Alegre, Programa de Pós-Graduação em Ciências da Reabilitação, Programa de Pós-Graduação em Ciências da Saúde, Porto Alegre, RS, Brasil, Programa de Pós-Graduação em Ciências da Saúde, Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Irigoyen, M.C. [Faculdade de Medicina, Universidade de São Paulo, Instituto do Coração, Unidade de Hipertensão, São Paulo, SP, Brasil, Unidade de Hipertensão, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Signori, L.U. [Universidade Federal do Rio Grande, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Fisiologia Animal Comparada, Rio Grande, RS, Brasil, Programa de Pós-Graduação em Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS (Brazil); Universidade Federal de Santa Maria, Departamento de Fisioterapia e Reabilitação, Santa Maria, RS, Brasil, Departamento de Fisioterapia e Reabilitação, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2014-04-04

    Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia.

  12. Effects of different frequencies of transcutaneous electrical nerve stimulation on venous vascular reactivity

    International Nuclear Information System (INIS)

    Franco, O.S.; Paulitsch, F.S.; Pereira, A.P.C.; Teixeira, A.O.; Martins, C.N.; Silva, A.M.V.; Plentz, R.D.M.; Irigoyen, M.C.; Signori, L.U.

    2014-01-01

    Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia

  13. Effect of subthalamic stimulation on voice and speech in Parkinson´s disease: for the better or worse ?

    Directory of Open Access Journals (Sweden)

    Sabine eSkodda

    2014-01-01

    Full Text Available Background: Deep brain stimulation of the subthalamic nucleus, although highly effective for the treatment of motor impairment in Parkinson´s disease, can induce speech deterioration in a subgroup of patients. The aim of the current study was to survey 1 if there are distinctive stimulation effects on the different parameters of voice and speech and 2 if there is a special pattern of preexisting speech abnormalities indicating a risk for further worsening under stimulation. Methods: N = 38 patients with Parkinson´s disease had to perform a speech test without medication with stimulation ON and OFF. Speech samples were analysed: 1 according to a four-dimensional perceptual speech score and 2 by acoustic analysis to obtain quantifiable measures of distinctive speech parameters.Results: Quality of voice was ameliorated with stimulation ON, and there were trends to increased loudness and better pitch variability. N = 8 patients featured a deterioration of speech with stimulation ON, caused by worsening of articulation or/and fluency. These patients had more severe overall speech impairment with characteristic features of articulatory slurring and articulatory acceleration already under StimOFF condition.Conclusion: The influence of subthalamic stimulation on Parkinsonian speech differs considerably between individual patients, however, there is a trend to amelioration of voice quality and prosody. Patients with stimulation-associated speech deterioration featured higher overall speech impairment and showed a distinctive pattern of articulatory abnormalities at baseline. Further investigations to confirm these preliminary findings are necessary to allow neurologists to pre-surgically estimate the individual risk of deterioration of speech under stimulation.

  14. Combined effects of cerebellar transcranial direct current stimulation and transcutaneous spinal direct current stimulation on robot-assisted gait training in patients with chronic brain stroke: A pilot, single blind, randomized controlled trial.

    Science.gov (United States)

    Picelli, Alessandro; Chemello, Elena; Castellazzi, Paola; Filippetti, Mirko; Brugnera, Annalisa; Gandolfi, Marialuisa; Waldner, Andreas; Saltuari, Leopold; Smania, Nicola

    2018-01-01

    Preliminary evidence showed additional effects of anodal transcranial direct current stimulation over the damaged cerebral hemisphere combined with cathodal transcutaneous spinal direct current stimulation during robot-assisted gait training in chronic stroke patients. This is consistent with the neural organization of locomotion involving cortical and spinal control. The cerebellum is crucial for locomotor control, in particular for avoidance of obstacles, and adaptation to novel conditions during walking. Despite its key role in gait control, to date the effects of transcranial direct current stimulation of the cerebellum have not been investigated on brain stroke patients treated with robot-assisted gait training. To evaluate the effects of cerebellar transcranial direct current stimulation combined with transcutaneous spinal direct current stimulation on robot-assisted gait training in patients with chronic brain stroke. After balanced randomization, 20 chronic stroke patients received ten, 20-minute robot-assisted gait training sessions (five days a week, for two consecutive weeks) combined with central nervous system stimulation. Group 1 underwent on-line cathodal transcranial direct current stimulation over the contralesional cerebellar hemisphere + cathodal transcutaneous spinal direct current stimulation. Group 2 received on-line anodal transcranial direct current stimulation over the damaged cerebral hemisphere + cathodal transcutaneous spinal direct current stimulation. The primary outcome was the 6-minute walk test performed before, after, and at follow-up at 2 and 4 weeks post-treatment. The significant differences in the 6-minute walk test noted between groups at the first post-treatment evaluation (p = 0.041) were not maintained at either the 2-week (P = 0.650) or the 4-week (P = 0.545) follow-up evalu