WorldWideScience

Sample records for nox reduction catalysts

  1. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  2. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    International Nuclear Information System (INIS)

    Maisuls, S.E.

    2000-01-01

    Among the existing proposed solutions to reduce emission of NOx there is a promising alternative, the so-called (HC-SCR) selective catalytic reduction of NOx using hydrocarbons as reductant. This thesis is part of a worldwide effort devoted to gain knowledge on the selective catalytic reduction of NOx with hydrocarbons with the final goal to contribute to the development of suitable catalysts for the above mentioned process. Chapter 2 describes the details of the experimental set-up and of the analytical methods employed. Among the catalyst for HC-SCR, Co-based catalyst are known to be active and selective, thus, a study on a series of Co-based catalysts, supported on zeolites, was undertaken and the results are presented in Chapter 3. Correlation between catalytic characteristics and kinetic results are employed to understand the working catalyst and this is used as a basis for catalyst optimization. With the intention to prepare a multi-functional catalyst that will preserve the desired characteristics of the individual components, minimizing their negative aspects, catalysts based on Co-Pt, supported on ZSM-5, were investigated. In Chapter 4 the results of this study are discussed. A bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1 wt %) showed a synergistic effect by combining high stability and activity of Pt catalysts with the high N2 selectivity of Co catalysts. Furthermore, it was found to be sulfur- and water-tolerant. Its positive qualities brought us to study the mechanism that takes place over this catalyst during HC-SCR. The results of an in-situ i.r mechanistic study over this catalyst is reported in Chapter 5. From the results presented in Chapter 5 a mechanism operating over the Co-Pt/ZSM-5 catalyst is proposed. The modification of Co catalyst with Pt improved the catalysts. However, further improvement was found to be hindered by high selectivity to N2O. Since Rh catalysts are generally less selective to N2O, the modification of Co

  3. Mechanistic Investigation of the Reduction of NOx over Pt- and Rh-Based LNT Catalysts

    Directory of Open Access Journals (Sweden)

    Lukasz Kubiak

    2016-03-01

    Full Text Available The influence of the noble metals (Pt vs. Rh on the NOx storage reduction performances of lean NOx trap catalysts is here investigated by transient micro-reactor flow experiments. The study indicates a different behavior during the storage in that the Rh-based catalyst showed higher storage capacity at high temperature as compared to the Pt-containing sample, while the opposite is seen at low temperatures. It is suggested that the higher storage capacity of the Rh-containing sample at high temperature is related to the higher dispersion of Rh as compared to Pt, while the lower storage capacity of Rh-Ba/Al2O3 at low temperature is related to its poor oxidizing properties. The noble metals also affect the catalyst behavior upon reduction of the stored NOx, by decreasing the threshold temperature for the reduction of the stored NOx. The Pt-based catalyst promotes the reduction of the adsorbed NOx at lower temperatures if compared to the Rh-containing sample, due to its superior reducibility. However, Rh-based material shows higher reactivity in the NH3 decomposition significantly enhancing N2 selectivity. Moreover, formation of small amounts of N2O is observed on both Pt- and Rh-based catalyst samples only during the reduction of highly reactive NOx stored at 150 °C, where NOx is likely in the form of nitrites.

  4. Reduce NOx Emissions by Adsorber-Reduction Catalyst on Lean Burn Gasoline Engine

    Directory of Open Access Journals (Sweden)

    Dongpeng Yue

    2013-09-01

    Full Text Available The effect of a new catalyst system composed of traditional three way catalyst converter and adsorber-reduction catalysis converter on the emission characteristics and BSFC (Breake Specific Fuel Consumption- BSFCof a lean burn gasoline engine operated were investigated in this paper under different schemes of catalyst converter arrangement and different speeds and loads. The results show that the position of Three Way Catalyst is before the NOx adsorber Catalyst was the best scheme of catalyst converter arrangement. Which has the highest converter efficiency of reduction NOx emission in lean burn gasoline engine. The effects of speed on the exhaust emission and BSFC were also related to the ratio of lean burn time to rich burn time and the absolute value of both time of the adsorber-reduction catalyst converter. The load of the engine was the main influential factor to the exhaust emission characteristics and BSFC of lean burn gasoline engine, and the more load of the engine was, the more NOx emission , the less NOx conversion rate (CNOx and the better BSFC were.

  5. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    NARCIS (Netherlands)

    Maisuls, S.E.

    2000-01-01

    The combustion of fuels, to meet the society demands for energy, result in the emissi of large quantities of nitrogen oxides (NOx) to the environment. These pollutants cause severe environmental problems and present a serious hazard to the health. Nowadays, two methods for the control of NOx

  6. Sulfur and Water Resistance of Mn-Based Catalysts for Low-Temperature Selective Catalytic Reduction of NOx: A Review

    Directory of Open Access Journals (Sweden)

    Chen Gao

    2018-01-01

    Full Text Available Selective catalytic reduction (SCR with NH3 is the most efficient and economic flue gas denitrification technology developed to date. Due to its high low-temperature catalytic activity, Mn-based catalysts present a great prospect for application in SCR de-NOx at low temperatures. However, overcoming the poor resistance of Mn-based catalysts to H2O and SO2 poison is still a challenge. This paper reviews the recent progress on the H2O and SO2 resistance of Mn-based catalysts for the low-temperature SCR of NOx. Firstly, the poison mechanisms of H2O and SO2 are introduced in detail, respectively. Secondly, Mn-based catalysts are divided into three categories—single MnOx catalysts, Mn-based multi-metal oxide catalysts, and Mn-based supported catalysts—to review the research progress of Mn-based catalysts for H2O and SO2 resistance. Thirdly, several strategies to reduce the poisonous effects of H2O and SO2, such as metal modification, proper support, the combination of metal modification and support, the rational design of structure and morphology, are summarized. Finally, perspectives and future directions of Mn-based catalysts for the low-temperature SCR of NOx are proposed.

  7. Effect of K loadings on nitrate formation/decomposition and on NOx storage performance of K-based NOx storage-reduction catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos; Kwak, Ja Hun; Zhu, Haiyang; Peden, Charles HF

    2013-10-25

    We have investigated nitrate formation and decomposition processes, and measured NOx storage performance on Pt-K2O/Al2O3 catalysts as a function of potassium loading. After NO2 adsorption at room temperature, ionic and bidentate nitrates were observed by fourier transform infra-red (FTIR) spectroscopy. The ratio of the former to the latter species increased with increasing potassium loading up to 10 wt%, and then stayed almost constant with additional K, demonstrating a clear dependence of loading on the morphology of the K species. Although both K2O(10)/Al2O3 and K2O(20)/Al2O3 samples have similar nitrate species after NO2 adsorption, the latter has more thermally stable nitrate species as evidenced by FTIR and NO2 temperature programmed desorption (TPD) results. With regard to NOx storage performance, the temperature of maximum NOx uptake (Tmax) is 573 K up to a potassium loading of 10 wt%. As the potassium loading increases from 10 wt% to 20 wt%, Tmax shifted from 573 K to 723 K. Moreover, the amount of NO uptake (38 cm3 NOx/g catal) at Tmax increased more than three times, indicating that efficiency of K in storing NOx is enhanced significantly at higher temperature, in good agreement with the NO2 TPD and FTIR results. Thus, a combination of characterization and NOx storage performance results demonstrates an unexpected effect of potassium loading on nitrate formation and decomposition processes; results important for developing Pt-K2O/Al2O3 for potential applications as high temperature NOx storage-reduction catalysts.

  8. Role of iron oxide catalysts in selective catalytic reduction of NOx and soot from vehicular emission

    International Nuclear Information System (INIS)

    Anjuman, S.; Tahira, S.; Hizbullah, K.; Hizbullah, K.

    2011-01-01

    This study deals with Iron containing catalysts i.e Iron oxide Fe/sub 2/O/sub 3/) Iron potassium oxide Fe/sub 1.9/K/sub 0.1/O/sub 3/, copper iron oxide Cu/sub 0.9/K/sub 0.1/, Fe/sub 2/O/sub 3/, nickel iron oxide Ni Fe/sub 2/O/sub 4/, and Nickel potassium iron oxide Ni/sub 0.95/K/sub 0.05/ Fe/sub 2/O/sub 4/ catalyst were synthesized by using PVA technique. By X-ray Diffraction technique these catalysts were characterized to ensure the formation of crystalline structure. Energy Dispersive X-rays analysis (EDX) was used for the confirmation of presence of different metals and Scanning Electron Microscopy (SEM) for Surface Morphology. Then the catalytic investigations of the prepared catalyst were carried out for their activity measurement toward simultaneous conversion of NOx and Soot from an engine exhaust. Some Iron containing oxide catalysts were partially modified by alkali metal potassium and were used for NOx -Soot reaction in a model exhaust gas. Fe/sub 1.9 K /sub 0.1/O/sub 3/ show high catalytic performance for N/sub 2/ formation in the prepared catalyst. Further studies have shown that Fe/sub 1.9/ K/sub 0.1/ O/sub 3/ was deactivated in a substantial way after about 20 Temperature. Temperature Programmed Reaction (TPR) experiments due to agglomeration of the promoter potassium. Experiments carried out over the aged Fe/sub 1.9/K/sub 0.1/O/sub 3/ catalyst have shown that NOx-soot reaction was suppressed at higher oxygen concentration, since O/sub 2/-soot conversion was kindly favored. More over nitrite species formed at the catalyst surface might play an important role in NOx-soot conversion. (author)

  9. Ambient Temperature Hydrocarbon Selective Catalytic Reduction of NOx Using Atmospheric Pressure Nonthermal Plasma Activation of a Ag/Al2O3 Catalyst

    OpenAIRE

    Stere, Cristina E.; Adress, Wameedh; Burch, Robbie; Chansai, Sarayute; Goguet, Alexandre; Graham, William G.; De Rosa, Fabio; Palma, Vincenzo; Hardacre, Christopher

    2014-01-01

    Atmospheric pressure nonthermal-plasma-activated catalysis for the removal of NOx using hydrocarbon selective catalytic reduction has been studied utilizing toluene and n-octane as the hydrocarbon reductant. When the plasma was combined with a Ag/Al2O3 catalyst, a strong enhancement in activity was observed when compared with conventional thermal activation with high conversions of both. NOx and hydrocarbons obtained at temperature at temperature ≤250 °C, where the silver catalyst is normally...

  10. Sustained Low Temperature NOx Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zha, Yuhui

    2017-04-05

    Increasing regulatory, environmental, and customer pressure in recent years led to substantial improvements in the fuel efficiency of diesel engines, including the remarkable breakthroughs demonstrated through the Super Truck program supported by the U.S. Department of Energy (DOE). On the other hand, these improvements have translated into a reduction of exhaust gas temperatures, thus further complicating the task of controlling NOx emissions, especially in low power duty cycles. The need for improved NOx conversion over these low temperature duty cycles is also observed as requirements tighten with in-use emissions testing. Sustained NOx reduction at low temperatures, especially in the 150-200oC range, shares some similarities with the more commonly discussed cold-start challenge, however poses a number of additional and distinct technical problems. In this project we set a bold target of achieving and maintaining a 90% NOx conversion at the SCR catalyst inlet temperature of 150oC. The project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015. Through this collaboration, we are exploring catalyst formulations and catalyst architectures with enhanced catalytic activity at 150°C; opportunities to approach the desirable ratio of NO and NO2 in the SCR feed gas; options for robust low-temperature reductant delivery; and the requirements for overall system integration. The program is expected to deliver an on-engine demonstration of the technical solution and an assessment of its commercial potential. In the SAE meeting, we will share the initial performance data on engine to

  11. Preparation Effects on the Performance of Silica-Doped Hydrous Titanium Oxide (HTO:Si)-Supported Pt Catalysts for Lean-Burn NOx Reduction by Hydrocarbons; TOPICAL

    International Nuclear Information System (INIS)

    GARDNER, TIMOTHY J.; MCLAUGHLIN, LINDA I.; MOWERY, DEBORAH L.; SANDOVAL, RONALD S.

    2002-01-01

    This report describes the development of bulk hydrous titanium oxide (HTO)- and silica-doped hydrous titanium oxide (HTO:Si)-supported Pt catalysts for lean-burn NOx catalyst applications. The effects of various preparation methods, including both anion and cation exchange, and specifically the effect of Na content on the performance of Pt/HTO:Si catalysts, were evaluated. Pt/HTO:Si catalysts with low Na content ( and lt; 0.5 wt.%) were found to be very active for NOx reduction in simulated lean-burn exhaust environments utilizing propylene as the major reductant species. The activity and performance of these low Na Pt/HTO:Si catalysts were comparable to supported Pt catalysts prepared using conventional oxide or zeolite supports. In ramp down temperature profile test conditions, Pt/HTO:Si catalysts with Na contents in the range of 3-5 wt.% showed a wide temperature window of appreciable NOx conversion relative to low Na Pt/HTO:Si catalysts. Full reactant species analysis using both ramp up and isothermal test conditions with the high Na Pt/HTO:Si catalysts, as well as diffuse reflectance FTIR studies, showed that this phenomenon was related to transient NOx storage effects associated with NaNO(sub 2)/NaNO(sub 3) formation. These nitrite/nitrate species were found to decompose and release NOx at temperatures above 300 C in the reaction environment (ramp up profile). A separate NOx uptake experiment at 275 C in NO/N(sub 2)/O(sub 2) showed that the Na phase was inefficiently utilized for NOx storage. Steady state tests showed that the effect of increased Na content was to delay NOx light-off and to decrease the maximum NOx conversion. Similar results were observed for high K Pt/HTO:Si catalysts, and the effects of high alkali content were found to be independent of the sample preparation technique. Catalyst characterization (BET surface area, H(sub 2) chemisorption, and transmission electron microscopy) was performed to elucidate differences between the HTO- and HTO

  12. deNOx catalysts for biomass combustion

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus

    The present thesis revolves around the challenges involved in removal of nitrogen oxides in biomass fired power plants. Nitrogen oxides are unwanted byproducts formed to some extent during almost any combustion. In coal fired plants these byproducts are removed by selective catalytic reduction......, however the alkali in biomass complicate matters. Alkali in biomass severely deactivates the catalyst used for the selective catalytic reduction in matter of weeks, hence a more alkali resistant catalyst is needed. In the thesis a solution to the problem is presented, the nano particle deNOx catalyst...

  13. Combined fast selective reduction using Mn-based catalysts and nonthermal plasma for NOx removal.

    Science.gov (United States)

    Chen, Jun Xiang; Pan, Kuan Lun; Yu, Sheng Jen; Yen, Shaw Yi; Chang, Moo Been

    2017-09-01

    In this study, the concept of fast SCR for NO reduction with NH 3 as reducing agent is realized via the combination of nonthermal plasma (NTP) with Mn-based catalyst. Experimental results indicate that 10% wt. Mn-Ce-Ni/TiO 2 possesses better physical and chemical properties of surface, resulting in higher NO removal efficiency if compared with 10% wt. Mn-Ce/TiO 2 and 10% wt. Mn-Ce-Cu/TiO 2 . Mn-Ce-Ni/TiO 2 of 10% wt. achieves 100% NO x conversion at 150 °C, while 10% wt. Mn-Ce/TiO 2 and 10% wt. Mn-Ce-Cu/TiO 2 need to be operated at a temperature above 200 °C for 100% NO x conversion. However, NO conversion achieved with 10% wt. Mn-Ce-Ni/TiO 2 is significantly reduced as H 2 O (g) and SO 2 are introduced into the SCR system simultaneously. Further, two-stage system (SCR with DBD) is compared with the catalyst-alone for NO x conversion and N 2 selectivity. The results indicate that 100% NO x conversion can be achieved with two-stage system at 100 °C, while N 2 selectivity reaches 80%. Importantly, NO x conversion achieved with two-stage system could maintain >95% in the presence of C 2 H 4 , CO, SO 2 , and H 2 O (g) , indicating that two-stage system has better tolerance for complicated gas composition. Overall, this study demonstrates that combining NTP with Mn-based catalyst is effective in reducing NO x emission at a low temperature (≤200 °C) and has good potential for industrial application.

  14. Modeling Deactivation of Catalysts for Selective Catalytic Reduction of NOx by KCl Aerosols

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard; Castellino, Francesco; Jensen, Anker Degn

    2017-01-01

    A detailed model for the deactivation of a V2O5–WO3/TiO2-based SCR monolith catalyst by potassium poisoning has been developed and validated. The model accounts for deposition of KCl aerosol particles present in the flue gas on the external catalyst surface, the reaction of the deposited particles...... with the catalyst at the surface of the monolith wall, the transport and accumulation of potassium, bound to Brønsted acid sites, throughout the catalyst wall, and the resulting loss in SCR activity. Using an experimentally measured KCl aerosol size distribution as input, the model can replicate the observed...... deactivation rate of a 3 wt % V2O5-7 wt % WO3/TiO2 monolith catalyst, exposed to a KCl aerosol at 350 °C for about 1000 h, as well as the resulting potassium-to-vanadium molar ratios in the catalyst wall. Simulations show that the particle deposition rate, as well as the deactivation rate, decreases...

  15. Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

    Energy Technology Data Exchange (ETDEWEB)

    Harold, Michael [Univ. of Houston, TX (United States); Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States); Balakotaiah, Vemuri [Univ. of Houston, TX (United States); Luss, Dan [Univ. of Houston, TX (United States); Choi, Jae-Soon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dearth, Mark [Ford Motor Company, Dearborn, MI (United States); McCabe, Bob [Ford Motor Company, Dearborn, MI (United States); Theis, Joe [Ford Motor Company, Dearborn, MI (United States)

    2013-09-30

    Oxides of nitrogen in the form of nitric oxide (NO) and nitrogen dioxide (NO2) commonly referred to as NOx, is one of the two chemical precursors that lead to ground-level ozone, a ubiquitous air pollutant in urban areas. A major source of NOx} is generated by equipment and vehicles powered by diesel engines, which have a combustion exhaust that contains NOx in the presence of excess O2. Catalytic abatement measures that are effective for gasoline-fueled engines such as the precious metal containing three-way catalytic converter (TWC) cannot be used to treat O2-laden exhaust containing NOx. Two catalytic technologies that have emerged as effective for NOx abatement are NOx storage and reduction (NSR) and selective catalytic reduction (SCR). NSR is similar to TWC but requires much larger quantities of expensive precious metals and sophisticated periodic switching operation, while SCR requires an on-board source of ammonia which serves as the chemical reductant of the NOx. The fact that NSR produces ammonia as a byproduct while SCR requires ammonia to work has led to interest in combining the two together to avoid the need for the cumbersome ammonia generation system. In this project a comprehensive study was carried out of the fundamental aspects and application feasibility of combined NSR/SCR. The project team, which included university, industry, and national lab researchers, investigated the kinetics and mechanistic features of the underlying chemistry in the lean NOx trap (LNT) wherein NSR was carried out, with particular focus on identifying the operating conditions such as temperature and catalytic properties which lead to the production of ammonia in the LNT. The performance features of SCR on both model and commercial catalysts focused on the synergy between the LNT and SCR converters in terms of utilizing the upstream-generated ammonia and

  16. Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NOx removal using low-temperature SCR with Mn-V2O5/TiO2 catalyst.

    Science.gov (United States)

    Choi, Sung-Woo; Choi, Sang-Ki; Bae, Hun-Kyun

    2015-04-01

    A hybrid selective noncatalytic reduction/selective catalytic reduction (SNCR/SCR) system that uses two types of technology, low-temperature SCR process and SNCR process, was designed to develop nitrogen oxide (NOx) reduction technology. SCR was conducted with space velocity (SV)=2400 hr(-1) and hybrid SNCR/SCR with SV=6000 hr(-1), since the study focused on reducing the amount of catalyst and both achieved 98% NOx reduction efficiency. Characteristics of NOx reduction by NH3 were studied for low-temperature SCR system at 150 °C using Mn-V2O5/TiO2 catalyst. Mn-added V2O5/TiO2 catalyst was produced, and selective catalyst reduction of NOx by NH3 was experimented. NOx reduction rate according to added Mn content in Mn-V2O5/TiO2 catalyst was studied with varying conditions of reaction temperature, normalized stoichiometric ratio (NSR), SV, and O2 concentration. In the catalyst experiment according to V2O5 concentration, 1 wt.% V2O5 catalyst showed the highest NOx reduction rate: 98% reduction at temperature window of 200~250 °C. As a promoter of the V2O5 catalyst, 5 wt.% Mn was added, and the catalyst showed 47~90% higher efficiency even with low temperatures, 100~200 °C. Mn-V2O5/TiO2 catalyst, prepared by adding 5 wt.% Mn in V2O5/TiO2 catalyst, showed increments of catalyst activation at 150 °C as well as NOx reduction. Mn-V2O5/TiO2 catalyst showed 8% higher rate for NOx reduction compared with V2O5/TiO2 catalyst in 150 °C SCR. Thus, (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst was applied in SCR of hybrid SNCR/SCR system of low temperature at 150 °C. Low-temperature SCR hybrid SNCR/SCR (150 °C) system and hybrid SNCR/SCR (350 °C) showed 91~95% total reduction rate with conditions of SV=2400~6000 hr(-1) SCR and 850~1050 °C SNCR, NSR=1.5~2.0, and 5% O2. Hybrid SNCR/SCR (150 °C) system proved to be more effective than the hybrid SNCR/SCR (350 °C) system at low temperature. NOx control is very important, since they are the part of greenhouse gases as well as the

  17. NOx reduction and N2O emissions in a diesel engine exhaust using Fe-zeolite and vanadium based SCR catalysts

    International Nuclear Information System (INIS)

    Cho, Chong Pyo; Pyo, Young Dug; Jang, Jin Young; Kim, Gang Chul; Shin, Young Jin

    2017-01-01

    Highlights: • NO x reduction and N 2 O emission of urea-SCR catalysts with the oxidation precatalysts were investigated. • Fe-zeolite and V-based catalysts were noticeably affected by the NO 2 /NOx ratio. • Remarkable N 2 O formation was observed only for the Fe-zeolite catalyst. - Abstract: Among various approaches used to comply with strict diesel engine exhaust regulations, there is increasing interest in urea based selective catalytic reduction (SCR) as a NO x reduction technology, due to its high reduction and excellent fuel efficiencies. NO x reduction by SCR catalysts is affected by variations in the NO 2 /NO x ratio, caused by oxidation catalysts such as the diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) installed in diesel engines. Recently, it has been reported that the greenhouse gas (GHG) variant N 2 O, which is a by-product of the NO x conversion process in the after-treatment system, will be subject to regulation. Using a real diesel engine installed with DOC and DPF, the NO x reduction and N 2 O emission performances of commonly used Fe-zeolite and V 2 O 5 -WO 3 /TiO 2 catalysts were investigated under various operating conditions. The exhaust of the diesel engine used in this study had a NO 2 /NO x ratio of over 50% for temperatures below 400 °C due to the oxidation catalysts, while the NO 2 /NO x ratio was significantly lower for temperatures above 400 °C. Under such conditions, it was found that the Fe-zeolite and V 2 O 5 -WO 3 /TiO 2 catalysts were noticeably affected by the NO 2 /NOx ratio and exhaust temperature. Although both catalysts showed satisfactory NO conversions, the V 2 O 5 -WO 3 /TiO 2 catalyst showed decreasing NO 2 conversion rates between 250 °C and 320 °C. The V 2 O 5 -WO 3 /TiO 2 catalyst exhibited NH 3 slip relatively frequently because of its low NH 3 storage capacity. For the Fe-zeolite catalyst, a significant increase in the amount of generated N 2 O was observed for high NO x conversion

  18. Catalytic reduction of NOx in gasoline engine exhaust over copper- and nickel-exchanged X-zeolite catalysts

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Das, R.K.

    2001-01-01

    Catalytic removal of NO x in engine exhaust gases can be accomplished by non-selective reduction, selective reduction and decomposition. Noble metals are extensively used for non-selective reduction of NO x and up to 90% of engine NO x emissions can be reduced in a stoichiometric exhaust. This requirement of having the stoichiometric fuel-air ratio acts against efficiency improvement of engines. Selective NO x reduction in the presence of different reductants such as, NH 3 , urea or hydrocarbons, requires close control of the amount of reductant being injected which otherwise may be emitted as a pollutant. Catalytic decomposition is the best option for NO x removal. Nevertheless, catalysts which are durable, economic and active for NO x reduction at normal engine exhaust temperature ranges are still being investigated. Three catalysts based on X-zeolite have been developed by exchanging the Na+ ion with copper, nickel and copper-nickel metal ions and applied to the exhaust of a stationary gasoline engine to explore their potential for catalytic reduction of NO x under a wide range of engine and exhaust conditions. Some encouraging results have been obtained. The catalyst Cu-X exhibits much better NO x reduction performance at any temperature in comparison to Cu-Ni-X and Ni-X; while Cu-Ni-X catalyst exhibits slightly better performance than Ni-X catalyst. Maximum NO x efficiency achieved with Cu-X catalyst is 59.2% at a space velocity (sv) of 31 000 h -1 ; while for Cu-Ni-X and Ni-X catalysts the equivalent numbers are 60.4% and 56% respectively at a sv of 22 000 h -1 . Unlike noble metals, the doped X-zeolite catalysts exhibit significant NO x reduction capability for a wide range of air/fuel ratio and with a slower rate of decline as well with increase in air/fuel ratio. (author)

  19. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes

    2012-01-01

    Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared...

  20. Heteropoly acid promoted catalyst for SCR of NOx with ammonia

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gases. In particular, the invention concerns a process, a highly alkali metal resistant heteropoly acid promoted catalyst and the use of said catalyst for removal of NOx from exhaust or flue gases, said gases...... comprising alkali or earth alkali metals. Such gases comprise for example flue gases arising from the burning of biomass, combined biomass and fossil fuel, and from waste incineration units. The process comprises the selective catalytic reduction (SCR) of NOx, such as nitrogen dioxide (NO2) and nitrogen...

  1. Preparation and Performance of Modified Red Mud-Based Catalysts for Selective Catalytic Reduction of NOx with NH3

    Directory of Open Access Journals (Sweden)

    Jingkun Wu

    2018-01-01

    Full Text Available Bayer red mud was selected, and the NH3-SCR activity was tested in a fixed bed in which the typical flue gas atmosphere was simulated. Combined with XRF, XRD, BET, SEM, TG and NH3-Temperature Programmed Desorption (TPD characterization, the denitration characteristics of Ce-doped red mud catalysts were studied on the basis of alkali-removed red mud. The results showed that typical red mud was a feasible material for denitration catalyst. Acid washing and calcining comprised the best treatment process for raw red mud, which reduced the content of alkaline substances, cleared the catalyst pore and optimized the particle morphology with dispersion. In the temperature range of 300–400 °C, the denitrification efficiency of calcined acid washing of red mud catalyst (ARM was more than 70%. The doping of Ce significantly enhanced NH3 adsorption from weak, medium and strong acid sites, reduced the crystallinity of α-Fe2O3 in ARM, optimized the specific surface area and broadened the active temperature window, which increased the NOx conversion rate by an average of nearly 20% points from 250–350 °C. The denitration efficiency of Ce0.3/ARM at 300 °C was as high as 88%. The optimum conditions for the denitration reaction of the Ce0.3/ARM catalyst were controlled as follows: Gas Hourly Space Velocity (GHSV of 30,000 h−1, O2 volume fraction of 3.5–4% and the NH3/NO molar ratio ([NH3/NO] of 1.0. The presence of SO2 in the feed had an irreversible negative effect on the activity of the Ce0.3/ARM catalyst.

  2. Modeling the selective catalytic reduction of NOx by ammonia over a Vanadia-based catalyst from heavy duty diesel exhaust gases

    International Nuclear Information System (INIS)

    Yun, Byoung Kyu; Kim, Man Young

    2013-01-01

    A numerical simulation for prediction of NO X conversion over a commercial V 2 O 5 catalyst with NH 3 as a reductant was performed for a heavy duty diesel engine applications. The chemical behaviors of the SCR reactor are described by using the global NO X kinetics including standard, fast, and NH 3 oxidation reactions with the Langmuir–Hinshelwood (LH) mechanism incorporated into the commercial Boost code. After introducing mathematical models for the SCR reaction with specific reaction parameters, the effects of various parameters such as space velocities, the O 2 , H 2 O, NO 2 , and NH 3 concentrations on the NOx conversion are thoroughly studied and validated by comparing with the experimental data available in the literature. It is found that NO X conversion increases with decreasing space velocity, H 2 O concentration, and NH 3 /NO X ratio, and increasing O 2 concentration and NO 2 /NO X ratio. The study shows that not only is the present approach adopted is flexible in treating performance of the commercial V 2 O 5 based SCR catalyst, it is also accurate and efficient for the prediction of NO X conversion in diesel exhaust environments. - Highlights: ► To find the reaction parameters for LH mechanism over a commercial V2O5 catalyst. ► To investigate the effects of various parameters on the SCR NO X conversion. ► To present benchmark solutions on SCR behavior with diesel exhaust environments.

  3. Reduction of nitrogen oxides (NOx) by superalkalis

    Science.gov (United States)

    Srivastava, Ambrish Kumar

    2018-03-01

    NOx are major air pollutants, having negative impact on environment and consequently, human health. We propose here the single-electron reduction of NOx (x = 1, 2) using superalkalis. We study the interaction of NOx with FLi2, OLi3 and NLi4 superalkalis using density functional and single-point CCSD(T) calculations, which lead to stable superalkali-NOx ionic complexes with negatively charged NOx. This clearly reveals that the NOx can successfully be reduced to NOx- anion due to electron transfer from superalkalis. It has been also noticed that the size of superalkalis plays a crucial in the single-electron reduction of NOx.

  4. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William [Univ. of Notre Dame, IN (United States)

    2014-12-29

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  5. Alternative deNOx catalysts and technologies

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    . The commercial catalyst used for the selective catalytic reduction (SCR) of nitrogen oxides exhibits high activity and selectivity towards N2. However, the vanadia-titania-based catalyst used is very sensitive to deactivation by alkali-species (primarily potassium), which are typically present in high amounts...... a catalyst less susceptible to the poisons present in the flue gas, a number of catalysts have been synthesized and tested in the present work, all based on commercially available supports. A highly acidic support consisting of sulfated zirconia was chosen based on preliminary studies. A number of different...... active species distributed on the support were investigated, such as iron, copper and vanadium oxides. However, based on the catalysts performance in the SCR reaction and their resistances towards potassium, the most promising candidate of the formulations studied was the vanadia-loaded catalyst, i.e. V2...

  6. SELECTIVE CATALYTIC REDUCTION OF DIESEL ENGINE NOX EMISSIONS USING ETHANOL AS A REDUCTANT

    Energy Technology Data Exchange (ETDEWEB)

    (1)Kass, M; Thomas, J; Lewis, S; Storey, J; Domingo, N; Graves, R (2) Panov, A

    2003-08-24

    NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400 C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.

  7. Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials expecting diesel-auto emission regulation

    International Nuclear Information System (INIS)

    Komatsu, Tamikuni; Tomokuni, Keizou; Yamada, Issaku

    2006-01-01

    Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials, which does not rely on the conventional NOx-absorption-reduction-catalysts, is presented for the purpose of de-NOx of diesel-auto emissions. The established catalysts basically consist of mesoporous silica or metal-substituted mesoporous silicates for supports and platinum for active species, which is operated under lean- and rich-conditions. The new catalysts are very active at 150-200 o C and free from difficult problems of SOx-deactivation and hydrothermal ageing of the NOx-absorption-reduction catalyst. (author)

  8. NOx reduction methods and apparatuses

    Energy Technology Data Exchange (ETDEWEB)

    Tonkyn, Russell G.; Barlow, Stephan E.; Balmer, M. Lou; Maupin, Gary D.

    2004-10-26

    A NO.sub.x reduction method includes treating a first gas containing NO.sub.x, producing a second gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the second gas to N.sub.2, and producing a third gas containing less NO.sub.x than the first gas, substantially all of the third gas NO.sub.x being NO. The method also includes treating the third gas, producing a fourth gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the fourth gas to N.sub.2, and producing a fifth gas containing less NO.sub.x than the third gas, substantially all of the fifth gas NO.sub.x being NO. Treating the first and/or third gas can include treatment with a plasma. Reducing a portion of the NO.sub.2 in the second and/or fourth gas can include reducing with a catalyst. The method can further include controlling energy consumption of the plasmas independent of each other.

  9. Electrochemical Removal of NOx on Ceria-Based Catalyst-Electrodes

    Directory of Open Access Journals (Sweden)

    Xi Wang

    2017-02-01

    Full Text Available This study reports the electrochemical properties for NOx reduction of a ceria-based mixed ionic electronic conducting porous electrode promoted by Pt nanoparticles, as efficient catalyst for NO oxidation, and BaO, as sorbent to store NOx. This catalytic layer was deposited by screen-printing on a dense membrane of gadolinia-doped ceria, an O2− ionic conductor. The targeted Ba and Pt loadings were 150 and 5 μg/cm2, respectively. The NOx selective electrochemical reduction was performed between 400 °C and 500 °C with and without oxygen in the feed. Variations of the open-circuit voltage with time were found to be a good sensor of the NOx storage process on the ceria-based catalyst-electrode. However, no N2 production was observed in the presence of O2 phase in spite of nitrates formation.

  10. Determination of the NOx Loading of an Automotive Lean NOx Trap by Directly Monitoring the Electrical Properties of the Catalyst Material Itself

    Science.gov (United States)

    Fremerey, Peter; Reiß, Sebastian; Geupel, Andrea; Fischerauer, Gerhard; Moos, Ralf

    2011-01-01

    Recently, it has been shown that the degree of loading of several types of automotive exhaust aftertreatment devices can be directly monitored in situ and in a contactless way by a microwave-based method. The goal of this study was to clarify whether this method can also be applied to NOx storage and reduction catalysts (lean NOx traps) in order to obtain further knowledge about the reactions occurring in the catalyst and to compare the results with those obtained by wirebound NOx loading sensors. It is shown that both methods are able to detect the different catalyst loading states. However, the sensitivity of the microwave-based method turned out to be small compared to that previously observed for other exhaust aftertreatment devices. This may limit the practical applicability of the microwave-based NOx loading detection in lean NOx traps. PMID:22164074

  11. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH3 at low temperature

    International Nuclear Information System (INIS)

    Wang, Peng; Sun, Hong; Quan, Xie; Chen, Shuo

    2016-01-01

    Highlights: • Nano-ceria was successfully encapsulated into MIL-100(Fe) for the SCR of NO x . • The incorporated ceria in MIL-100(Fe) showed high content of chemisorbed oxygen. • The added ceria into MIL-100(Fe) improved the formation of adsorbed NO 2 species. • The addition of ceria into MIL-100(Fe) enhanced SCR activity at low temperature. - Abstract: The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO 2 and H 2 O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO 2 /MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NO x conversion ranges from 196 to 300 °C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO 2 species responsible for fast SCR reactions.

  12. Plasma and catalyst for the oxidation of NOx

    DEFF Research Database (Denmark)

    Jögi, I.; Erme, K.; Levoll, E.

    2017-01-01

    The removal of NOx from the exhaust gases requires the oxidation of most abundant NO to NO2 or N2O5. The oxidation can be done by non-thermal plasma but the efficiency is limited due to the back-reaction of NO2 to NO by O radicals. Present contribution investigates the role of catalysts in the im......The removal of NOx from the exhaust gases requires the oxidation of most abundant NO to NO2 or N2O5. The oxidation can be done by non-thermal plasma but the efficiency is limited due to the back-reaction of NO2 to NO by O radicals. Present contribution investigates the role of catalysts...... in the improvement of oxidation efficiency based on the stationary and time-dependent studies of the NOx oxidation at different reactor configurations and experimental conditions. The plasma produced active oxygen species (O, O3) were shown to play an important role in the reactions taking place on the catalyst...... surfaces while the exact mechanism and extent of the effect depended on the reactor configuration. The effect of catalyst at different experimental conditions was quantitatively described with the aid of analytical lumped kinetic models derived for the NOx oxidation when the catalyst was directly...

  13. Highly selective NOx reduction for diesel engine exhaust via an electrochemical system

    DEFF Research Database (Denmark)

    Shao, Jing; Tao, Youkun; Kammer Hansen, Kent

    2016-01-01

    It is challenging to reduce the nitrogen oxides (NOx) in diesel engine exhaust due to the inhibiting effect of excess oxygen. In this study, a novel electrochemical deNOx system was developed, which eliminated the need for additional reducing materials or a sophisticated controlling system as used...... in current diesel after-treatment techniques. The electrochemical system consisted of an electrochemical cell modified with NOx adsorbents and a diesel oxidation catalyst placed upstream of the cell. The system offers highly selective NOx reduction and a strong resistance to oxygen interference with almost...

  14. Continuous reduction of cyclic adsorbed and desorbed NO(x) in diesel emission using nonthermal plasma.

    Science.gov (United States)

    Kuwahara, Takuya; Nakaguchi, Harunobu; Kuroki, Tomoyuki; Okubo, Masaaki

    2016-05-05

    Considering the recent stringent regulations governing diesel NO(x) emission, an aftertreatment system for the reduction of NO(x) in the exhaust gas has been proposed and studied. The proposed system is a hybrid method combining nonthermal plasma and NOx adsorbent. The system does not require precious metal catalysts or harmful chemicals such as urea and ammonia. In the present system, NO(x) in diesel emission is treated by adsorption and desorption by adsorbent as well as nonthermal plasma reduction. In addition, the remaining NO(x) in the adsorbent is desorbed again in the supplied air by residual heat. The desorbed NO(x) in air recirculates into the intake of the engine, and this process, i.e., exhaust gas components' recirculation (EGCR) achieves NO(x) reduction. Alternate utilization of two adsorption chambers in the system can achieve high-efficiency NO(x) removal continuously. An experiment with a stationary diesel engine for electric power generation demonstrates an energy efficiency of 154 g(NO2)/kWh for NO(x) removal and continuous NO(x) reduction of 70.3%. Considering the regulation against diesel emission in Japan, i.e., the new regulation to be imposed on vehicles of 3.5-7.5 ton since 2016, the present aftertreatment system fulfills the requirement with only 1.0% of engine power. Copyright © 2016. Published by Elsevier B.V.

  15. E. Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephan E.; Ebeling, Ana C.; Maupin, Gary D.; Balmer, M Lou; Panov, Alexander G.; Peden, Charles HF; Tonkyn, Russell G.; Epping, Kathy; Hoard, John W.; Cho, Byong; Schmieg, Steven J.; Brooks, David; Nunn, Steven; Davis, Patrick

    2001-11-19

    In this program, we have been developing a novel plasma/catalyst technology for the remediation of NOx under lean (excess oxygen) conditions, specifically for compression ignition direct injection (CIDI) diesel engines that have significant fuel economy benefits over conventional stoichiometric gasoline engines. Our previous work has shown that a non-thermal plasma in combination with an appropriate catalyst can provide NOx emission reduction efficiency of 60-80% using a simulated diesel exhaust. Based on these levels of NOx reduction obtained in the lab, a simple model was developed in this program last year that allows for the estimation of the fuel economy penalty that would be incurred by operating a plasma/catalyst system. Results obtained from this model suggest that a 5% fuel economy penalty is achievable with the then current state-of-the-art catalyst materials and plasma reactor designs.

  16. Sulfur Deactivation of NOx Storage Catalysts: A Multiscale Modeling Approach

    Directory of Open Access Journals (Sweden)

    Rankovic N.

    2013-09-01

    Full Text Available Lean NOx Trap (LNT catalysts, a promising solution for reducing the noxious nitrogen oxide emissions from the lean burn and Diesel engines, are technologically limited by the presence of sulfur in the exhaust gas stream. Sulfur stemming from both fuels and lubricating oils is oxidized during the combustion event and mainly exists as SOx (SO2 and SO3 in the exhaust. Sulfur oxides interact strongly with the NOx trapping material of a LNT to form thermodynamically favored sulfate species, consequently leading to the blockage of NOx sorption sites and altering the catalyst operation. Molecular and kinetic modeling represent a valuable tool for predicting system behavior and evaluating catalytic performances. The present paper demonstrates how fundamental ab initio calculations can be used as a valuable source for designing kinetic models developed in the IFP Exhaust library, intended for vehicle simulations. The concrete example we chose to illustrate our approach was SO3 adsorption on the model NOx storage material, BaO. SO3 adsorption was described for various sites (terraces, surface steps and kinks and bulk for a closer description of a real storage material. Additional rate and sensitivity analyses provided a deeper understanding of the poisoning phenomena.

  17. Alkali resistant Cu/zeolite deNOx catalysts for flue gas cleaning in biomass fired applications

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Riisager, Anders; Fehrmann, Rasmus

    2011-01-01

    Cu/zeolite catalysts have been prepared by wet impregnation and characterized by N2 physisorption, EPR, H2-TPR and NH3-TPD methods. The Cu content was varied to optimize the loading as well as surface acidity. Optimized Cu/zeolite catalysts showed high surface acidity and excellent activity...... in the selective catalytic reduction (SCR) of NO with NH3. Furthermore, Cu/zeolite catalysts showed high SCR activity even after doping with potassium (0–500μmol/g) compared to a commercial vanadium catalyst which deactivated at lower potassium content. Fresh and deactivated catalysts were further examined...... to investigate the redox and acidic properties of the catalysts. The poisoning resistivity seems to be due to a combination of high surface area and strong acidity of the Cu/zeolite catalysts. The catalysts might be attractive alternatives to conventional catalysts for deNOx of flue gases from biomass fired...

  18. NOx Selective Catalytic Reduction (SCR) on Self-Supported V-W-doped TiO2 Nanofibers

    DEFF Research Database (Denmark)

    Marani, Debora; Silva, Rafael Hubert; Dankeaw, Apiwat

    2017-01-01

    Electrospun V–W–TiO2 catalysts, resulting in a solid solution of V and W in the anatase phase, are prepared as nonwoven nanofibers for NOx selective catalytic reduction (SCR). Preliminary catalytic characterization indicates their superior NOx conversion efficiency to the-state-of-the-art material...

  19. NOx from cement production - reduction by primary measures

    DEFF Research Database (Denmark)

    Jensen, Lars Skaarup

    1999-01-01

    , calciner operation, fuel properties and on the NOx level from the rotary kiln. The low-NOx calciner types presently marketed are based on combinations of reburning, air staging and temperature control and seem equivalent in their ability to restrict NOx formation. If fuels with a significant volatile...... is the most energy demanding process, takes place at lower temperature in the calciner. When dealing with NOx from solid fuel combustion it is important to consider reactions of volatile contents and char separately.Chapter 4 presents an overview of NOx from cement production. Thermal NOx dominates from...... content (> 25%) are used, net reduction of kiln NOx typically takes place in calciners, whereas net NOx formation takes place when low-volatile fuels (...

  20. Reduction of Nitrogen Oxides using zeolite catalysts exchanged with cobalt

    International Nuclear Information System (INIS)

    Garcia M, E.A.; Bustamante L, F.; Montes de C, C.

    1999-01-01

    The Selective Catalytic Reduction (SCR) of NOx by methane in excess oxygen was studied over several zeolite catalysts; namely cobalt loaded mordenite, ferrierite, SM-5 and the corresponding acid forms. When NO2 predominated n the NOx mixture the acid forms showed the highest N2 formation rates under dry conditions. Mordenite supported catalysts were the most active ones followed by ferrierite and ZSM-5. The most active Co-Mordenite catalyst was tested using a NOx mixture, containing mostly NO, under dry conditions and in the presence of water and SO2. The addition of 8 % water to the reaction mixture lead to a reversible deactivation, mainly at low temperatures. When the reaction mixture contained 60 ppm SO2, the N2 formation rate decreased about a half likely due to SO2 poisoning

  1. Pilot‐scale investigation and CFD modeling of particle deposition in low‐dust monolithic SCR DeNOx catalysts

    DEFF Research Database (Denmark)

    Heiredal, Michael Lykke; Jensen, Anker Degn; Thøgersen, Joakim Reimer

    2013-01-01

    Deposition of particles in selective catalytic reduction DeNOx monolithic catalysts was studied by low‐dust pilot‐scale experiments. The experiments showed a total deposition efficiency of about 30%, and the deposition pattern was similar to that observed in full‐scale low‐dust applications. On e...

  2. Characteristics of Pt-K/MgAl2O4 lean NOx trap catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos; Zhu, Haiyang; Kwak, Ja Hun; Peden, Charles HF

    2012-04-30

    We report the various characteristics of Pt-K/MgAl{sub 2}O{sub 4} lean NOx trap (LNT) catalysts including the effect of K loading on nitrate formation/decomposition, NOx storage activity and durability. Upon the adsorption of NO{sub 2} on K/MgAl{sub 2}O{sub 4} samples, potassium nitrates formed on Mg-related sites in MgAl{sub 2}O{sub 4} support are observed, in addition to the typical two potassium nitrates (ionic and bidentate) formed also on Al{sub 2}O{sub 3} supported sample. Based on NO{sub 2} TPD and FTIR results, the Mg-bound KNO{sub 3} thermally decompose at higher temperature than Al-bound KNO{sub 3}, implying its superior thermal stability. At a potassium loading of 5wt%, the temperature of maximum NOx uptake (T{sub max}) is 300 C. Increasing the potassium loading from 5wt% to 10 wt%, the T{sub max} gradually shifted from 300 C to 450 C, indicating the dependence of T{sub max} on the potassium loading. However, increase in potassium loading above 10 wt% only gives rise to the reduction in the overall NOx storage capacity. This work also underlines the obstacles these materials have prior to their practical application (e.g., durability and sulfur poisoning/ removal). This work provides fundamental understanding of Pt-K/MgAl{sub 2}O{sub 4}-based lean NOx trap catalysts, which could be good candidates for high temperature LNT applications.

  3. NOx reduction by ozone injection and direct plasma treatment

    DEFF Research Database (Denmark)

    Stamate, Eugen; Salewski, Mirko

    2012-01-01

    NOx reduction by ozone injection and direct plasma treatment is investigated for different process parameters in a 6 m long serpentine reactor. Several aspects including the role of mixing scheme, water vapours, steep temperature gradient and time dependet NOx levels are taken into consideration...

  4. In situ XANES cell used for the study of lanthanum strontium cuprate deNOx catalysts

    DEFF Research Database (Denmark)

    Hagen, Anke

    2011-01-01

    The potential NOx-reduction electro catalyst lanthanum strontium cuprate has been characterized with an in situ X-ray spectrochemical gas reaction cell. In a series of samples with increasing substitution of trivalent lanthanum by divalent strontium ions, the oxidation state of copper increased......, maintaining charge neutrality, with the concentration of oxygen vacancies likely increasing at substitution ratios larger than Sr/La>0.08. During heating in air, the valence of copper ions in the structure increased. Upon exposure to NO at 500 °C the valence of copper ions in a lanthanum strontium cuprate...

  5. Sulfur poisoning and regeneration of the Ag/γ-Al2O3 catalyst for H2-assisted SCR of NOx by ammonia

    DEFF Research Database (Denmark)

    Doronkin, Dmitry E.; Khan, Tuhin Suvra; Bligaard, Thomas

    2012-01-01

    Sulfur poisoning and regeneration mechanisms for a 2% Ag/γ-Al2O3 catalyst for the H2-assisted selective catalytic reduction of NOx by NH3 are investigated. The catalyst has medium sulfur tolerance at low temperatures, however a good capability of regeneration at 670°C under lean conditions when H2...

  6. Interaction of NO2 with model NSR catalysts: metal-oxide interaction controls initial NOx storage mechanism.

    Science.gov (United States)

    Desikusumastuti, Aine; Staudt, Thorsten; Qin, Zhihui; Happel, Markus; Laurin, Mathias; Lykhach, Yaroslava; Shaikhutdinov, Shamil; Rohr, Friedemann; Libuda, Jörg

    2008-10-24

    Using scanning tunneling microscopy (STM), molecular-beam (MB) methods and time-resolved infrared reflection absorption spectroscopy (TR-IRAS), we investigate the mechanism of initial NO(x) uptake on a model nitrogen storage and reduction (NSR) catalyst. The model system is prepared by co-deposition of Pd metal particles and Ba-containing oxide particles onto an ordered alumina film on NiAl(110). We show that the metal-oxide interaction between the active noble metal particles and the NO(x) storage compound in NSR model catalysts plays an important role in the reaction mechanism. We suggest that strong interaction facilitates reverse spillover of activated oxygen species from the NO(x) storage compound to the metal. This process leads to partial oxidation of the metal nanoparticles and simultaneous stabilization of the surface nitrite intermediate.

  7. Experimental research of technology activating catalysts for SCR DeNOx in boiler

    Science.gov (United States)

    Zeng, Xi; Yang, Zhengde; Li, Yan; Chen, Donglin

    2018-01-01

    In order to improve activity of the catalysts used in SCR DeNOx system of flue gas, a series of catalysts activated by different activating liquids under varied conditions in boiler directly were conducted. Then these catalysts were characterized by SEM, FT-IR and BET technology. And NO conversions of the activated catalysts were studied and compared with that of inactivated catalyst. The above experiment shows that NO conversion of the activated catalyst can be up to 99%, which 30% higher than that of inactivated catalyst, so activity of catalysts were improved greatly. Furthermore, optimal activating liquid labeled L2 and effective technology parameters were gained in the experiment.

  8. Alkali deactivation of high-dust SCR catalysts used for NOx reduction exposed to flue gas from 100MW-scale biofuel and peat fired boilers. Influence of flue gas composition

    International Nuclear Information System (INIS)

    Kling, AAsa; Andersson, Christer; Myringer, AAse; Eskilsson, David; Jaeraas, Sven G.

    2007-01-01

    Deactivation of vanadium-titanium deNO x SCR (selective catalytic reduction) catalysts in high-dust position have been investigated in three 100MW-scale boilers during biofuel and peat combustion. The deactivation of the catalyst samples has been correlated to the corresponding flue gas composition in the boilers. To investigate the effect on catalyst deactivation a sulphate-containing additive was sprayed into one of the furnaces. Increased alkali content on the SCR catalyst samples decreased the catalytic deNO x activity. The study has shown a linear correlation between exposure time in the boilers and alkali concentration (mainly potassium) on the samples. The results imply that mainly alkali in ultra fine particles (<100nm) in the flue gas increased the alkali accumulation on the catalyst samples. Low correlation was found between particles larger than 100nm and the catalyst deactivation. It was not possible to decrease the deactivation of the catalyst samples by the sulphate-containing additive. Although the additive had an effect in sulphating potassium chloride to potassium sulphate, it did not decrease the amount of potassium in ultra fine particles or the deactivation of the catalyst samples. (author)

  9. Soot oxidation over NOx storage catalysts. Activity and deactivation

    International Nuclear Information System (INIS)

    Krishna, K.; Makkee, M.

    2006-01-01

    Soot oxidation activity and deactivation of NO x storage and reduction (NSR) catalysts containing Pt, K, and Ba supported on Al 2 O 3 , are studied under a variety of reaction conditions. K-containing catalysts decrease soot oxidation temperature with O 2 alone and the presence of Pt further enhance the activity due to synergetic effect. The active species responsible for synergism on Pt/K-Al 2 O 3 are unstable and cannot be regenerated. Soot oxidation temperature decreases by about 150 o C with NO+O 2 exhaust feed gas and under lean conditions NSR system acts as catalysed soot filter (CSF). The reactions that are mainly responsible for decreasing soot oxidation temperature are: (1) soot oxidation with NO 2 followed by NO recycles to NO 2 , and (2) soot oxidation with O 2 assisted by NO 2 . Only a part of the stored NO x that is decomposed at high temperatures under lean conditions is found to be useful for soot oxidation. NO x storage capacity of NSR catalysts decreases upon ageing under soot oxidising conditions. This will lead to a decreased soot oxidation activity on stored nitrate decomposition. Pt/K-Al 2 O 3 catalyst is more active, but least stable compared with Pt/Ba-Al 2 O 3 . (author)

  10. Physico-Chemical and Structural Properties of DeNOx and SO2 Oxidation Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen Grenville; Oehlers, Cord; Nielsen, Kurt

    1996-01-01

    Commercial catalysts for NOx removal and SO2 oxidation and their model systems have been investigated by spectroscopic, thermal, electrochemical and X-ray methods. Structural information on the vanadium complexes and compounds as well as physico-chemical properties for catalyst model systems have...

  11. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    Science.gov (United States)

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  12. Direct plasma NOx reduction using single surface dielectric barrier discharge

    DEFF Research Database (Denmark)

    Kroushawi, Feisal; Stamate, Eugen

    2014-01-01

    NOx reduction using direct atmospheric barrier discharge in air-NO mixture at different voltages and flow rates is inversigated. Reduction rate of 80% is achieved at 3.18 W/cm2 power density and gas mixture of 20 slm air and 0.006 slm NO. The ozone for NO reduction is produced by a honeycomb...... structured DBD with a total surface of 12.56 cm2. The reduction process is investigated by FTIR spectroscopy, chemiluminsecence, mass spectrometry and optical emission spectroscopy....

  13. NOx reduction in Opole power plant

    International Nuclear Information System (INIS)

    Higgins, B.; Gong, B.; Pozzobon, E.; Kinal, E.; Pilipionek, J.

    2010-01-01

    In 2008 PGE Elektrownia Opole ordered a 'turn-key' retrofit execution of the combustion system to reduce NO x emission at BP-1150 boiler. The project includes modifications of burners as a first stage, and then ROFA system installation for combustion optimization and primary reduction of NO x , and Rotamix system installation for the further, secondary NO x reduction. The condition to install ROFA and Rotamix systems was keeping the same parameters of the power unit operation, in particular CO emission level, fly ash LOI and bottom ash LOI, ammonia slip, ambient noise, boiler availability and efficiency, material wastage rate, steam flow rate and temperature, as well as consumption of urea, water, electricity and compressed air. The work for this project was performed by a consortium that included Nalco Mobotec, Remak-Rozruch (a Consortium Leader) and SEFAKO

  14. High-Potential Electrocatalytic O2 Reduction with Nitroxyl / NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, James B.; Stahl, Shannon S.

    2015-07-15

    Efficient reduction of O2 to water is a central challenge in energy conversion and aerobic oxidation catalysis. In the present study, we investigate the electrochemical reduction of O2 with soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl), nor NOx species, such as sodium nitrite, are effective mediators of electrochemical O2 reduction. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction at electrochemical potentials of 0.19–0.33 V (vs. Fc/Fc+) in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The high potentials observed with this ORR system benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  15. NOx reduction by compact electron beam processing

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Hsiao, M.C.; Merritt, B.T.; Wallman, P.H.; Vogtlin, G.E.

    1995-01-01

    Among the new methods being investigated for the post-combustion removal of nitrogen oxides (NO x ) are based on non-thermal plasmas. These plasmas can be produced by electrical discharge methods or electron beam irradiation. The application of electron beam irradiation for NO x removal in power plant flue gases has been investigated since the early 1970's in both laboratory- and pilot-scale experiments. Electrical discharge methods are relatively new entrants in the field of flue gas cleanup. Pulsed corona and dielectric-barrier discharge techniques are two of the more commonly used electrical discharge methods for producing nonthermal plasmas at atmospheric pressure. There are basically two types of reactions responsible for the depletion of NO by non-thermal plasmas: oxidation and reduction

  16. Carbonates-based noble metal-free lean NOx trap catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) with superior catalytic performance

    Science.gov (United States)

    Zhang, Yuxia; You, Rui; Liu, Dongsheng; Liu, Cheng; Li, Xingang; Tian, Ye; Jiang, Zheng; Zhang, Shuo; Huang, Yuying; Zha, Yuqing; Meng, Ming

    2015-12-01

    A series of base metal-based lean NOx trap (LNT) catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) were synthesized by successive impregnations and employed for the storage and reduction of NOx in the emissions of lean-burn engines at 350 °C. The XRD and XANES/EXAFS results reveal that the active phases in the corresponding catalysts exist as CeO2, Fe2O3, CuO and Co3O4, respectively. Among all the catalysts, CoOx-K2CO3/K2Ti8O17 exhibits the best performance, which cannot only trap the NOx quickly and completely at lean condition, giving the highest storage capacity (3.32 mmol/g) reported so far, but also reduce the NOx at rich condition, showing a NOx reduction percentage as high as 99.0%. Meanwhile, this catalyst displays an ultralow NOx to N2O selectivity (0.3%) during NOx reduction. The excellent performance of CoOx-K2CO3/K2Ti8O17 results from its largest amount of surface active oxygen species as revealed by XPS, O2-TPD and NO-TPD. HRTEM, FT-IR and CO2-TPD results illustrate that several kinds of K species such as sbnd OK groups, K2O, surface carbonates and bulk or bulk-like carbonates coexist in the catalysts. Based upon the in situ DRIFTS results, the participation of K2CO3 in NOx storage is confirmed, and the predominant NOx storage species is revealed as bidentate nitrites formed via multiple kinetic pathways. The low cost and high catalytic performance of the CoOx-based LNT catalyst make it most promising for the substitution of noble metal-based LNT catalysts.

  17. Chemically enhanced biological NOx removal from flue gases : nitric oxide and ferric EDTA reduction in BioDeNox reactors

    NARCIS (Netherlands)

    Maas, van der P.M.F.

    2005-01-01

    The emission of nitrogen oxides (NOx) to the atmosphere is a major environmental problem. To abate NOx emissions from industrial flue gases, to date, mainly chemical processes like selective catalytic reduction (SCR) are applied. All these processes require high temperatures (>300 °C) and

  18. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.

    Science.gov (United States)

    Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L

    2009-05-15

    research with control optimization, urea distribution and possible use of oxidation catalysts is recommended to improve the NOx reduction capabilities while minimizing ammonia slip.

  19. Reconciling NOx emissions reductions and ozone trends in ...

    Science.gov (United States)

    Dynamic evaluation seeks to assess the ability of photochemical models to replicate changes in air quality as emissions and other conditions change. When a model fails to replicate an observed change, a key challenge is to discern whether the discrepancy is caused by errors in meteorological simulations, errors in emission magnitudes and changes, or inaccurate responses of simulated pollutant concentrations to emission changes. In this study, the Community Multiscale Air Quality (CMAQ) model is applied to simulate the ozone (O3) change after the NOx SIP Call and mobile emission controls substantially reduced nitrogen oxides (NOx) emissions in the eastern U.S. from 2002 to 2006. For both modeled and observed O3, changes in episode average daily maximal 8-h O3 were highly correlated (R2 = 0.89) with changes in the 95th percentile, although the magnitudes of reductions increased nonlinearly at high percentile O3 concentrations. Observed downward changes in mean NOx (−11.6 to −2.5 ppb) and 8-h O3 (−10.4 to −4.7 ppb) concentrations in metropolitan areas in the NOx SIP Call region were under-predicted by 31%–64% and 26%–66%, respectively. The under-predicted O3 improvements in the NOx SIP Call region could not be explained by adjusting for temperature biases in the meteorological input, or by considering uncertainties in the chemical reaction rate constants. However, the under-prediction in O3 improvements could be alleviated by 5%–31% by constraining NO

  20. Plasma and catalyst for the oxidation of NOx

    DEFF Research Database (Denmark)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik

    2018-01-01

    . In the case of indirect oxidation, only ozone could reach the catalyst surface and improve the oxidation of NO2 to N2O5. The effect of catalyst at different experimental conditions was quantitatively described with the aid of simple global chemical kinetic models derived for the NO x oxidation either...... by plasma or ozone. The models allowed to compare the effect of different catalysts and to analyze the limitations for the efficiency improvement by catalyst....... to NO mediated by O radicals in plasma. Indirect NO oxidation by plasma produced ozone allows to circumvent the back-reaction and further oxidize NO2 to N2O5 but the slow reaction rate for the latter process limits the efficiency of this process. Present paper gives an overview of the role of metal...

  1. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    Science.gov (United States)

    Park, Paul W.

    2004-03-16

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  2. Plasma and catalyst for the oxidation of NOx

    Science.gov (United States)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Raud, Jüri; Stamate, Eugen

    2018-03-01

    Efficient exhaust gas cleaning from NO x (NO and NO2) by absorption and adsorption based methods requires the oxidation of NO. The application of non-thermal plasma is considered as a promising oxidation method but the oxidation of NO by direct plasma remains limited due to the back-reaction of NO2 to NO mediated by O radicals in plasma. Indirect NO oxidation by plasma produced ozone allows to circumvent the back-reaction and further oxidize NO2 to N2O5 but the slow reaction rate for the latter process limits the efficiency of this process. Present paper gives an overview of the role of metal-oxide catalysts in the improvement of oxidation efficiency for both direct and indirect plasma oxidation of NO x . The plasma produced active oxygen species (O, O3) were shown to play an important role in the reactions taking place on the catalyst surfaces while the exact mechanism and extent of the effect were different for direct and indirect oxidation. In the case of direct plasma oxidation, both short and long lifetime oxygen species could reach the catalyst and participate in the oxidation of NO to NO2. The back-reaction in the plasma phase remained still important factor and limited the effect of catalyst. In the case of indirect oxidation, only ozone could reach the catalyst surface and improve the oxidation of NO2 to N2O5. The effect of catalyst at different experimental conditions was quantitatively described with the aid of simple global chemical kinetic models derived for the NO x oxidation either by plasma or ozone. The models allowed to compare the effect of different catalysts and to analyze the limitations for the efficiency improvement by catalyst.

  3. Catalytic Reduction of NO and NOx Content in Tobacco Smoke

    Directory of Open Access Journals (Sweden)

    Cvetkovic N

    2014-12-01

    Full Text Available In order to reduce the nitric oxide (NO and nitrogen oxides (NO content in mainstream tobacco smoke, a new class of catalyst based on Cu-ZSM-5 zeolite has been synthesized. The effectiveness of the new catalyst (degree of reduction and specific catalytic ability was tested both by adding Cu-ZSM-5 zeolite directly to the tobacco blend and by addition to the filter. We have determined that adding the catalyst to the tobacco blend does not cause any changes in the physical, chemical or organoleptic properties of the cigarette blend. But, the addition reduces the yield of nitrogen oxides while having no influence on nicotine and “tar” content in the tobacco smoke of the modified blend. The catalyst addition increases the static burning rate (SBR. The changes in the quantity of NO and NOmay be explained by changes in burning conditions due to the increase of Oobtained from catalytic degradation of NO and NO, and adsorptive and diffusive properties of the catalyst. The changes in mainstream smoke analytes are also given on a puff-by-puff basis.

  4. Evaluating the NOx Storage Catalysts (NSC Aging: A Preliminary Analytical Study with Electronic Microscopy

    Directory of Open Access Journals (Sweden)

    Leonarda Bellebuono

    2017-10-01

    Full Text Available This paper describes an expeditious and reliable method for determining the thermal effects in a static condition of commercial NOx storage catalysts (NSCs using scanning electron microscopy with an energy dispersive X-ray analytical system (SEM/EDS. It is worth remarking that possible changes in the morphology and in the elemental composition of the catalyst may be considered as the most important causes of the lower conversion of NOx. The information attained in this work indicates that Pt nanoparticle sintering is strongly increased by the oxygen exposure, and this can be considered a very useful preliminary investigation for the studies already present in the literature on the efficiency of NSCs.

  5. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    Science.gov (United States)

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-02

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general.

  6. NOx emissions in gas turbines: formation mechanism and reduction; Emissoes de NOx em turbinas a gas: mecanismos de formacao e algumas tecnologias de reducao

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, Antonio Garrido; Martins, Gilberto; Gallo, Waldyr L.R. [Universidade Metodista de Piracicaba, SP (Brazil)]. E-mails: agallego@unimep.br; gmartins@unimep.br; gallo@fem.unicamp.br

    2000-06-01

    Some aspects related to the NOx emissions from industrial gas turbines are studied. Brazilian and international emission regulations are discussed. The main oxide formation mechanisms inside the combustion chamber are presented, and the main strategies for the reduction of NOx emission are explored (including water and steam injection, staged combustion, low-NOx burners and catalytic reduction). The need for a revision on Brazilian regulations for NOx is evidenced. (author)

  7. Multifunctional Low Pressure Turbine for Core Noise Reduction, Improved Efficiency, and NOx Reduction

    Science.gov (United States)

    Miller, Chris; Shyam, Vikram; Rigby, David; Acosta, Waldo

    2013-01-01

    Determining the feasibility of the induced synthetic jet is key, and is still TBD. center dot Available LPT vane volume is sufficient for tens of resonators per span-wise hole spacing, so physically feasible. center dot Determination of acoustic attenuation requires accurate model of vane, resonator locations, flow field and incident waves. (TBD) center dot Determination of NOx reduction is also TBD.

  8. The Use of Amine Reclaimer Wastes as a NOx Reduction Agent

    DEFF Research Database (Denmark)

    Botheju, Deshai; Glarborg, Peter; Tokheim, Lars-Andre

    2013-01-01

    scale experimental trials carried out in this study using ARW and pure monoethanolamine (MEA) confirmed the possibility of utilizing ARW as a potential reagent for the selective non-catalytic reduction (SNCR) of NOx in combustion flue gases. Even though the effectiveness of ARW is lower than...... that of aqueous ammonia, i.e. the most common SNCR chemical reagent used in industry (above 60% NOx reduction efficiency), ARW is nonetheless shown to possess valuable SNCR qualities (at least 20% NOx reduction efficiency) considering its availability as a waste product which has to be safely disposed. A series...... generated in CCS, and emission of NOx a class of highly active greenhouse gases....

  9. DeNOx Abatement over Sonically Prepared Iron-Substituted Y, USY and MFI Zeolite Catalysts in Lean Exhaust Gas Conditions

    Science.gov (United States)

    Stachurska, Patrycja; Kuterasiński, Łukasz; Dziedzicka, Anna; Górecka, Sylwia; Chmielarz, Lucjan; Łojewska, Joanna; Sitarz, Maciej

    2018-01-01

    Iron-substituted MFI, Y and USY zeolites prepared by two preparation routes—classical ion exchange and the ultrasound modified ion-exchange method—were characterised by micro-Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet (UV)/visible diffuse reflectance spectroscopy (UV/Vis DRS). Ultrasound irradiation, a new technique for the preparation of the metal salt suspension before incorporation to the zeolite structure, was employed. An experimental study of selective catalytic reduction (SCR) of NO with NH3 on both iron-substituted reference zeolite catalysts and those prepared through the application of ultrasound conducted during an ion-exchange process is presented. The prepared zeolite catalysts show high activity and selectivity in SCR deNOx abatement. The MFI-based iron catalysts, especially those prepared via the sonochemical method, revealed superior activity in the deNOx process, with almost 100% selectivity towards N2. The hydrothermal stability test confirmed high stability and activity of MFI-based catalysts in water-rich conditions during the deNOx reaction at 450 °C. PMID:29301370

  10. On the Effect of Preparation Methods of PdCe-MOR Catalysts as NOx CH4-SCR System for Natural Gas Vehicles Application

    Directory of Open Access Journals (Sweden)

    Acácio Nobre Mendes

    2015-10-01

    Full Text Available In the present work, the effect of several parameters involved in the preparation of PdCe-HMOR catalysts active for NOx selective catalytic reduction with methane (NOx CH4-SCR was studied. Results show that the catalytic performance of Pd-HMOR is better when palladium is introduced by ion-exchange, namely at room temperature. It was also shown that Pd loading does not influence the formation of cerium species, namely surface Ce4+ (CeO2 species and CeO2 species in interaction with Pd. However, when Ce is introduced before Pd, more surface CeO2 species are stabilized in the support and less CeO2 become in interaction with Pd, which results in a worse NOx CH4-SCR catalytic performance.

  11. Tungstated zirconia as promising carrier for DeNOx catalysts with improved resistance towards alkali poisoning

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Kustov, Arkadii; Rasmussen, Søren Birk

    2006-01-01

    of new alternative catalysts that are more resistant towards poisoning with potassium. Vanadia-based catalysts supported on traditional and tungstated zirconia has been prepared and tested in selective catalytic reduction of NO with ammonia. All prepared catalysts were characterized using N2-BET, XRD...... on the crystallinity of the zirconia and on the surface acidity. Vanadia supported on tungstated zirconia calcined at 700 8C revealed superior catalytic performance and resistance towards alkali poisoning in comparison with a traditional catalyst. The improved poisoning resistance of the samples based on tungstated...

  12. Investigation of NOx Reduction by Low Temperature Oxidation Using Ozone Produced by Dielectric Barrier Discharge

    DEFF Research Database (Denmark)

    Stamate, Eugen; Irimiea, Cornelia; Salewski, Mirko

    2013-01-01

    NOx reduction by low temperature oxidation using ozone produced by a dielectric barrier discharge generator is investigated for different process parameters in a 6m long reactor in serpentine arrangement using synthetic dry flue gas with NOx levels below 500 ppm, flows up to 50 slm and temperatures...

  13. Storage of Nitrous Oxide (NOx in Diesel Engine Exhaust Gas using Alumina-Based Catalysts: Preparation, Characterization, and Testing

    Directory of Open Access Journals (Sweden)

    A. Alsobaai

    2017-03-01

    Full Text Available This work investigated the nitrous oxide (NOx storage process using alumina-based catalysts (K2 O/Al2 O3 , CaO/Al2 O3,  and BaO/Al2 O3 . The feed was a synthetic exhaust gas containing 1,000 ppm of nitrogen monoxide (NO, 1,000 ppm i-C4 H10 , and an 8% O2  and N2  balance. The catalyst was carried out at temperatures between 250–450°C and a contact time of 20 minutes. It was found that NOx was effectively adsorbed in the presence of oxygen. The NOx storage capacity of K2 O/Al2 O3 was higher than that of BaO/Al2 O3.  The NOx storage capacity for K2 O/Al2 O3  decreased with increasing temperature and achieved a maximum at 250°C. Potassium loading higher than 15% in the catalyst negatively affected the morphological properties. The combination of Ba and K loading in the catalyst led to an improvement in the catalytic activity compared to its single metal catalysts. As a conclusion, mixed metal oxide was a potential catalyst for de-NOx process in meeting the stringent diesel engine exhaust emissions regulations. The catalysts were characterized by a number of techniques and measurements, such as X-ray diffraction (XRD, electron affinity (EA, a scanning electron microscope (SEM, Brunner-Emmett-Teller (BET to measure surface area, and pore volume and pore size distribution assessments.

  14. Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration

    Science.gov (United States)

    Zhang, Lei; Wen, Xin; Lei, Zhang; Gao, Long; Sha, Xiangling; Ma, Zhenhua; He, Huibin; Wang, Yusu; Jia, Yang; Li, Yonghui

    2018-04-01

    Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction) was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction), SEM (scanning electron microscope), BET test and transient test. The experiments show that: * The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. * The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. * The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.

  15. Bifunctional Catalysts for CO2 Reduction

    Science.gov (United States)

    2014-09-30

    dioxide reduction catalysis . (SA 1 – Catalyst candidate synthesis) As outlined in the original proposal, ligand platforms have been synthesized to...was limited to outer-sphere electron transfer (necessary oxidation potentials for catalysis > –2.1 V vs. [Cp2Fe] +/0). Thus, we pursued two...high altitude air travel is the transportation of the fuel itself. Our targeted strategy is to transform CO2 into viable building blocks for synthetic

  16. Reduction of NOx Emission of a Diesel Engine with a Multiple Injection Pump by SCR Catalytic Converter

    Directory of Open Access Journals (Sweden)

    Vít Marek

    2016-01-01

    Full Text Available This paper deals with reduction of NOx-emission of a diesel engine with multiple injection pump by SCR catalytic converter. Main aim of the measurement was the detection of SCR catalyst converter efficiency. Tests were realized at the Research and Development workplace of Zetor Tractor a.s. Used engine was equipped with a multiple injection pump with electromagnetic regulator of a fuel charge. During the experiment selective catalytic reduction and diesel particulate filter were used as an after treatment of harmful pollutants reduction. Testing cycle of the eight-point test was chosen and Non-Road Steady Cycle (NRSC was maintained according to 97/68/EC directive. Results confirmed the dependencies between temperatures of SCR catalyst and exhaust gases and the volume of exhaust gases on efficiency of SCR catalyst. During the operation load of the engine, selective catalytic reduction reached efficiency over 90 %. Used after treatment system is suitable for reduction of harmful pollutants according to the Tier 4f norm.

  17. Methodology for Analysing the NOx-NH3 Trade-off for the Heavy-duty Automotive SCR Catalyst

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens

    2017-01-01

    This paper presents a methodology where pareto fronts were used to analyse how changes in the control structure for the urea dosing to the automotive SCR catalyst can improve the trade-o_ between NOx slip and NH3 slip. A previously developed simulation model was used to simulate the European...

  18. The Reduction of NOx Emissions from Marine Power Plants

    National Research Council Canada - National Science Library

    Urbach, Herman

    1997-01-01

    .... EPA studies show that two-cycle marine diesel configurations combining exhaust-gas recirculation, retardation of the timing of injection, intercooling, and an oxidation catalyst for combustion...

  19. A Synthetic Pseudo-Rh: NOx Reduction Activity and Electronic Structure of Pd-Ru Solid-solution Alloy Nanoparticles.

    Science.gov (United States)

    Sato, Katsutoshi; Tomonaga, Hiroyuki; Yamamoto, Tomokazu; Matsumura, Syo; Zulkifli, Nor Diana Binti; Ishimoto, Takayoshi; Koyama, Michihisa; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi; Nagaoka, Katsutoshi

    2016-06-24

    Rh is one of the most important noble metals for industrial applications. A major fraction of Rh is used as a catalyst for emission control in automotive catalytic converters because of its unparalleled activity toward NOx reduction. However, Rh is a rare and extremely expensive element; thus, the development of Rh alternative composed of abundant elements is desirable. Pd and Ru are located at the right and left of Rh in the periodic table, respectively, nevertheless this combination of elements is immiscible in the bulk state. Here, we report a Pd-Ru solid-solution-alloy nanoparticle (PdxRu1-x NP) catalyst exhibiting better NOx reduction activity than Rh. Theoretical calculations show that the electronic structure of Pd0.5Ru0.5 is similar to that of Rh, indicating that Pd0.5Ru0.5 can be regarded as a pseudo-Rh. Pd0.5Ru0.5 exhibits better activity than natural Rh, which implies promising applications not only for exhaust-gas cleaning but also for various chemical reactions.

  20. DRIFT study of CuO-CeO₂-TiO₂ mixed oxides for NOx reduction with NH₃ at low temperatures.

    Science.gov (United States)

    Chen, Lei; Si, Zhichun; Wu, Xiaodong; Weng, Duan

    2014-06-11

    A CuO-CeO2-TiO2 catalyst for selective catalytic reduction of NOx with NH3 (NH3-SCR) at low temperatures was prepared by a sol-gel method and characterized by X-ray diffraction, Brunner-Emmett-Teller surface area, ultraviolet-visible spectroscopy, H2 temperature-programmed reduction, scanning electron microscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS). The CuO-CeO2-TiO2 ternary oxide catalyst shows excellent NH3-SCR activity in a low-temperature range of 150-250 °C. Lewis acid sites generated from Cu(2+) are the main active sites for ammonia activation at low temperature, which is crucial for low temperature NH3-SCR activity. The introduction of ceria results in increased reducibility of CuO species and strong interactions between CuO particles with the matrix. The interactions between copper, cerium and titanium oxides lead to high dispersion of metal oxides with increased active oxygen and enhanced catalyst acidity. Homogeneously mixed metal oxides facilitate the "fast SCR" reaction among Cu(2+)-NO, nitrate (coordinated on cerium sites) and ammonia (on titanium sites) on the CuO-CeO2-TiO2 catalyst at low temperatures.

  1. Catalyst for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C.

    2010-04-06

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  2. DeNOx study in diesel engine exhaust using barrier discharge corona assisted by V2O5/TiO2 catalyst

    International Nuclear Information System (INIS)

    Rajanikanth, B.S.; Ravi, V.

    2004-01-01

    A plasma-assisted catalytic reactor was used to remove nitrogen oxides (NOx) from diesel engine exhaust operated under different load conditions. Initial studies were focused on plasma reactor (a dielectric barrier discharge reactor) treatment of diesel exhaust at various temperatures. The nitric oxide (NO) removal efficiency was lowered when high temperature exhaust was treated using plasma reactor. Also, NO removal efficiency decreased when 45% load exhaust was treated. Studies were then made with plasma reactor combined with a catalytic reactor consisting of a selective catalytic reduction (SCR) catalyst, V 2 O 5 /TiO 2 . Ammonia was used as a reducing agent for SCR process in a ratio of 1:1 to NOx. The studies were focused on temperatures of the SCR catalytic reactor below 200 degree C. The plasma-assisted catalytic reactor was operated well to remove NOx under no-load and load conditions. For an energy input of 96 J/1, the NOx removal efficiencies obtained under no-load and load conditions were 90% and 72% respectively at an exhaust temperature of 100 degree C. (authors)

  3. Selective catalyst reduction light-off strategy

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-10-18

    An emissions control system includes a temperature determination module and an emissions control module. The temperature determination module determines a first temperature of a heater element of a diesel particulate filter (DPF) assembly in an exhaust system and determines a second temperature of a catalyst of the DPF assembly. The emissions control module selectively activates the heater element, selectively initiates a predefined combustion process in an engine based upon the first temperature, and selectively starts a reductant injection process based upon the second temperature.

  4. NOx reduction on ag electrochemical cells with a K-Pt-Al 2O3 adsorption layer

    DEFF Research Database (Denmark)

    Shao, Jing; Kammer Hansen, Kent

    2013-01-01

    and a microstructure characterization. The blank Ag cell was incapable of converting NOx to N2 under any of the investigated conditions. In contrast, the Ag cell with an adsorption layer showed good NOx reduction activity. An 82% NOx conversion with 100% N2 selectivity and 7.7% current efficiency was achieved at -1...

  5. Filter bag De-NOx system with powder type catalysts at low temperature

    International Nuclear Information System (INIS)

    Kim, Byung-Hwan; Kim, Jeong-Heon; Kang, Pil-Sun; Yoo, Seung-Kwan; Yoon, Kyoon-Duk

    2010-01-01

    Combustion of carbon source materials (MSW, RDF, sludge, coal etc.) leads to the emission of harmful gaseous pollutants such as SO x , NO x , mercury, particulate matter, and dioxins etc. In particular, the emission of nitrogen oxides (NO x ) from the solid waste incinerator remains a serious air pollution problem. The previous research concerns have focused mainly on NO x reduction of stationary sources at high temperature SCR or SNCR process. Selective catalytic reduction (SCR) with NH 3 is the most widespread system used to control NO x emissions. However, this process suffers from several disadvantages due to the use of thermo fragile honeycomb type module and high temperature (about 300 degree Celsius) operation which consumes additional heating energy. To overcome this hurdle, filter bag De-NO x system with powder type catalysts at low temperature (less than 200 degree Celsius) has been under investigation in recent years and looks interesting because neither additional heat nor honeycomb type modules are required. Filter bag and powder type catalysts are cheap and effective materials to remove NO x at low temperature. In this study, the selective catalytic reduction of NO x was carried out on a filter support reactor with 300 mesh powder type catalysts at low temperature. The experiments were performed by powder type MnO x and V 2 O 5 / TiO 2 catalyst at low temperature ranging between 130 and 250 degree Celsius. Also, the effect of SO 2 and H 2 O on the NO conversion was investigated under our test conditions. The powder type catalysts were characterized by X-ray photoelectron spectrum (XPS) for measuring the state of oxygen on the catalyst surface and X-ray diffraction (XRD). It was observed that NO conversion of the powder type V 2 O 5 / TiO 2 catalyst was 85 % at 200 degree Celsius under presence of oxygen and that of MnO x was 50 % at the same condition. From these results, the powder type V 2 O 5 / TiO 2 catalyst showed an excellent performance on the

  6. Nonprecious Metal Catalysts for Oxygen Reduction in Heterogeneous Aqueous Systems.

    Science.gov (United States)

    Gewirth, Andrew A; Varnell, Jason A; DiAscro, Angela M

    2018-01-31

    A comprehensive review of recent advances in the field of oxygen reduction electrocatalysis utilizing nonprecious metal (NPM) catalysts is presented. Progress in the synthesis and characterization of pyrolyzed catalysts, based primarily on the transition metals Fe and Co with sources of N and C, is summarized. Several synthetic strategies to improve the catalytic activity for the oxygen reduction reaction (ORR) are highlighted. Recent work to explain the active-site structures and the ORR mechanism on pyrolyzed NPM catalysts is discussed. Additionally, the recent application of Cu-based catalysts for the ORR is reviewed. Suggestions and direction for future research to develop and understand NPM catalysts with enhanced ORR activity are provided.

  7. Preparation and screening of various multi-component catalysts for NOx conversion under lean-burn conditions : An active and heat-resistant RhPt-NaMn-Ce/Al2O3 catalyst

    OpenAIRE

    Kaneeda, M.; Iizuka, H.; Hiratsuka, T.; Shinotsuka, N.; Kitahara, Y.; Arai, M.

    2010-01-01

    The present work has been undertaken to improve the thermal stability of an RhPt-NaTi/Al2O3 catalyst, which is one of promising lean NOx trap catalysts for practical NOx conversion. For this purpose, we mainly directed our attention to the component of Na that acts as NOx trapping sites and intended to improve the thermal stability of this Na species by using various additives. After screening of various RhPt-Naα/Al2O3 (α = Ti, Si, Mg, Ca, Mn, Co, Ni, La, and Nd) catalysts, Mn addition was fo...

  8. Multi-Stage Selective Catalytic Reduction of NOx in Lean-Burn Engine Exhaust

    National Research Council Canada - National Science Library

    Penetrante, B

    1997-01-01

    .... A plasma can also be used to oxidize NO to NO2. This paper compares the multi-stage catalytic scheme with the plasma-assisted catalytic scheme for reduction of NOx in lean-burn engine exhausts. The advantages of plasma oxidation over catalytic oxidation are presented.

  9. Investigation of NOx Reduction by Low Temperature Oxidation Using Ozone Produced by Dielectric Barrier Discharge

    Science.gov (United States)

    Stamate, Eugen; Irimiea, Cornelia; Salewski, Mirko

    2013-05-01

    NOx reduction by low temperature oxidation using ozone produced by a dielectric barrier discharge generator is investigated for different process parameters in a 6 m long reactor in serpentine arrangement using synthetic dry flue gas with NOx levels below 500 ppm, flows up to 50 slm and temperatures up to 80 °C. The role of different mixing schemes and the impact of a steep temperature gradient are also taken into consideration. The process chemistry is monitored by Fourier transform infrared spectroscopy, chemiluminescence and absorption spectroscopy. The kinetic mechanism during the mixing in a cross flow configuration is investigated using three-dimensional simulations.

  10. [Low-temperature catalytic reduction of NO over Fe-MnOx-CeO2/ZrO2 catalyst].

    Science.gov (United States)

    Liu, Rong; Yang, Zhi-Qin

    2012-06-01

    Fe-MnOx-CeO2/ZrO2 catalysts were prepared through impregnation method with nanometer ZrO2 as a carrier and used in selective catalytic reduction of NO with NH3 at low temperature. Effects of active component ratio and loading of promoter on the catalyst activity were investigated. The catalysts were characterized by means of XRD, SEM, EDS and BET. The effects of temperature, SO2 and H2O on NO conversion were studied and the results showed that in the absence of SO2 and H2O, the catalyst of 8% Fe-10% MnOx-CeO2/ZrO2 had good activity and stability as well as the NOx removal efficiency reached 85.23% at 120 degrees C and 92.0% at 180 degrees C. The presence of SO2 and H2O results in the catalyst deactivated. Properties of the catalyst on different reaction stages were characterized by FT-IR to study the inactivation mechanism of the catalyst. The results showed that the catalyst deactivation was due to the deposition of ammonium sulfate on the catalyst and the sulphation of the catalyst.

  11. IR and UV gas absorption measurements during NOx reduction on an industrial natural gas fired power plant

    DEFF Research Database (Denmark)

    Stamate, Eugen; Chen, Weifeng; Jørgensen, L.

    2010-01-01

    NOx reduction of flue gas by plasma-generated ozone was investigated in pilot test experiments on an industrial power plant running on natural gas. Reduction rates higher than 95% have been achieved for a molar ratio O3:NOx slightly below two. Fourier transform infrared and ultraviolet absorption...... spectroscopy were used for spatial measurements of stable molecules and radicals along the reduction reactor. Reactions of O3 injected in the flue gas in the reduction reactor were also modeled. Experiments are in good agreement with numerical simulations. The operation costs for NOx reduction were estimated...

  12. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite Structures throughout the Catalyst Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Fabio; Delgass, Nick; Gounder, Rajmani; Schneider, William F.; Miller, Jeff; Yezerets, Aleksey; McEwen, Jean-Sabin; Peden, Charles HF; Howden, Ken

    2014-12-09

    Oxides of nitrogen (NOx) compounds contribute to acid rain and photochemical smog and have been linked to respiratory ailments. NOx emissions regulations continue to tighten, driving the need for high performance, robust control strategies. The goal of this project is to develop a deep, molecular level understanding of the function of Cu-SSZ-13 and Cu-SAPO-34 materials that catalyze the SCR of NOx with NH3.

  13. Selective catalytic reduction of NOx over pyrolyzed sludge char

    International Nuclear Information System (INIS)

    Ko, Jeong Huy; Heo, Hyeon Su; Park, Hye Jin; Bae, Yoon Ju; Kim, Jung Hwan; Cho, Hye Jung; Park, Young Kwon

    2010-01-01

    Full text: In this study, applicability of the activated pyrolyzed sludge char as a De-NO x catalyst was investigated. Sludge chars were generated by the pyrolysis condition, such as temperature, heating rate and reaction time. As pyrolysis temperature increased from 300 to 600 degree Celsius, the specific surface area and porosity of sludge chars were increased but were reduced at 700 degree Celsius, and thereafter were increased at 800 degree Celsius again. However, the pyrolysis heating rate and reaction time had an no large effect on the specific area and porosity of sludge chars. Considering these results, the pyrolysis temperature was the most parameter to affecting the specific area and porosity of sludge chars. In order to enhance the physical characteristics of sludge chars, they were activated by the physical and chemical activation methods with steam and KOH, respectively, and the effects of the activation temperature, moisture concentration and KOH/ char ratio on the physical characteristics of sludge chars were also studied. Chemically activated sludge chars showed the higher NO x removal efficiency than physically ones. Especially, the sludge char activated under the condition of a KOH/ Char ratio 2.0 and temperature 600 degree Celsius exhibited the highest NO x removal efficiency of 84.2% at 250 degree Celsius, which was even higher than 35.6% over a commercial activated carbon. (author)

  14. Numerical analysis of NOx reduction for compact design in marine urea-SCR system

    Directory of Open Access Journals (Sweden)

    Cheolyong Choi

    2015-11-01

    Full Text Available In order to design a compact urea selective catalytic reduction system, numerical simulation was conducted by computational fluid dynamics tool. A swirl type static mixer and a mixing chamber were considered as mixing units in the system. It had great influence on flow characteristics and urea decomposition into ammonia. The mixer caused flow recirculation and high level of turbulence intensity, and the chamber increased residence time of urea- water-solution injected. Because of those effects, reaction rates of urea decomposition were enhanced in the region. When those mixing units were combined, it showed the maximum because the recirculation zone was significantly developed. NH3 conversion was maximized in the zone due to widely distributed turbulence intensity and high value of uniformity index. It caused improvement of NOx reduction efficiency of the system. It was possible to reduce 55% length of the chamber and connecting pipe without decrease of NOx reduction efficiency.

  15. Numerical analysis of NOx reduction for compact design in marine urea-SCR system

    Science.gov (United States)

    Choi, Cheolyong; Sung, Yonmo; Choi, Gyung Min; Kim, Duck Jool

    2015-11-01

    In order to design a compact urea selective catalytic reduction system, numerical simulation was conducted by computational fluid dynamics tool. A swirl type static mixer and a mixing chamber were considered as mixing units in the system. It had great influence on flow characteristics and urea decomposition into ammonia. The mixer caused flow recirculation and high level of turbulence intensity, and the chamber increased residence time of urea-water-solution injected. Because of those effects, reaction rates of urea decomposition were enhanced in the region. When those mixing units were combined, it showed the maximum because the recirculation zone was significantly developed. NH3 conversion was maximized in the zone due to widely distributed turbulence intensity and high value of uniformity index. It caused improvement of NOx reduction efficiency of the system. It was possible to reduce 55% length of the chamber and connecting pipe without decrease of NOx reduction efficiency.

  16. Reduction of a Ni/Spinel Catalyst for Methane Reforming

    DEFF Research Database (Denmark)

    Kehres, Jan; Andreasen, Jens Wenzel; Fløystad, Jostein Bø

    2015-01-01

    microscopy (HRTEM) was performed on the fresh catalyst sample. The Ni particles in the fresh catalyst sample were observed to exhibit a Ni/NiO core/shell structure. A decrease of the Ni lattice parameter is observed during the reduction in a temperature interval from 413 – 453 K, which can be related...

  17. Enantioselective Reduction of Prochiral Ketones using Spiroborate Esters as Catalysts

    Science.gov (United States)

    Stepanenko, Viatcheslav; De Jesus, Melvin; Correa, Wildeliz; Guzman, Irisbel; Vazquez, Cindybeth; de la Cruz, Wilanet; Ortiz-Marciales, Margarita; Barnes, Charles L.

    2009-01-01

    Novel spiroborate esters derived nonracemic 1,2-aminoalcohols and ethylene glycol are reported as highly effective catalysts for the asymmetric borane reduction of a variety of prochiral ketones with borane-dimethyl sulfide complex at room temperature. Optically active alcohols were obtained in excellent chemical yields using 0.1 to 10 mol % of catalysts with up to 99% ee. PMID:19554205

  18. DEVELOPMENT OF HIGH ACTIVITY, CATALYTIC SYSTEMS FOR NOx REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-12-01

    This project was directed at an investigation of catalytic NO{sub x} reduction on carbonaceous supports at low temperatures. The experimental work was conducted primarily in a packed bed reactor/gas flow system that was constructed for this work. The analytical techniques employed were mass spectrometry, NO{sub x} chemiluminescence, and gas chromatography. The experimental plan was focused on steady-state reactivity experiments, followed by temperature programmed desorption (TPD) of surface intermediates, and also selected temperature-programmed reaction (TPR) experiments. Both uncatalyzed and catalyzed (potassium-promoted) phenolic resin char, were investigated as well as the catalytic effect of additional CO in the gas phase.

  19. Selective catalytic reduction of NOx by hydrocarbons over Fe/ZSM5 prepared by sublimation of FeCl3

    NARCIS (Netherlands)

    Battiston, A.A.

    2003-01-01

    Selective Catalytic Reduction of NOx by Hydrocarbons over Fe/ZSM5 Prepared by Sublimation of FeCl3. Characterization and Catalysis Nitrogen oxides (NOx) are unwanted by-products of combustion. They are generated primarily from motor vehicles and stationary sources, like power stations and

  20. Reduction of Fe(III)EDTA by Klebsiella sp. strain FD-3 in NOx scrubber solutions.

    Science.gov (United States)

    Zhou, Zuoming; Jing, Guohua; Zheng, Xiangjiao

    2013-03-01

    Biological reduction of Fe(III) to Fe(II) is a key step in nitrogen oxides (NOx) removal by the integrated chemical absorption-biological reduction method, which determines the concentration of Fe(II) in the scrubbing liquid. A new Fe(III)EDTA reduction strain, named as FD-3, was isolated from mixed cultures used in the integrated NOx removal process and identified as Klebsiella sp. by 16S rDNA sequence analysis. The reduction abilities of FD-3 and the influence of nitrogen-containing compounds (Fe(II)EDTA-NO, NO3(-) and NO2(-)) and sulfur-containing compounds (SO4(2-), SO3(2-)) on the Fe(III)EDTA reduction were investigated. The results indicated that strain FD-3 could reduce Fe(III)EDTA efficiently. NO3(-), NO2(-) and Fe(II)EDTA-NO inhibit the reduction of Fe(III)EDTA and could also serve as electron acceptor for strain FD-3. SO3(2-) inhibited Fe(III)EDTA reduction while SO4(2-) had no obviously effect on Fe(III)EDTA reduction. The relationship between cell growth and Fe(III)EDTA reduction could be described by the models based on Logistic equation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Reduction of NOx emissions when burning low heating value gas

    International Nuclear Information System (INIS)

    Gustafsson, R.; Oskarsson, J.; Waldheim, L.

    1993-09-01

    On the gasification of nitrogen-rich fuel the nitrogen from the fuel goes into the gas phase in the form of ammonia and hydrogen cyanide and also nitrogen containing tars. When the gas is combusted the nitrogen compounds are oxidized to a great extent to NO x and, therefore, high NO x emissions can be found on the combustion of low heating value gas produced from energy forest wood chips as is also the case with direct combustion of nitrogen rich fuels. An experimental study has been carried out where the important parameters for designing a combustion chamber for low heating value gases have been studied in order to obtain maximum reduction of NO x emissions. The effect of tar cracking using dolomite on these emissions and the effect of parameters such as the addition of steam has also been tested. The tests were carried out with energy forest wood chips with 0.3% nitrogen. The gasification was carried out in a pyrolysis reactor, operated to yield a low heating value gas, and which was coupled to a simplified gas turbine combustion chamber at atmospheric pressure. The results show that the main part of the nitrogen in the fuel is found as ammonia in the low heating value gas. With this type of gasification the conversion of fuel nitrogen to ammonia in the gas is equivalent to 500-600 mg/MJ, calculated as NO 2 . Only very low amounts of hydrogen cyanide have been noted and no nitrogen containing tar components have been found. No apparent effect of steam additions has been noted. On the other hand the distribution of air in the combustion chamber and residence time during the under stoichiometric conditions are of great importance for the NO x reduction. Depending on the air distribution the emissions of NO 2 varied between 100 and 250 mg/MJ, calculated as NO 2 . 23 refs, 11 figs, 2 tabs

  2. Selective Photocatalytic Reduction of NOx with Fe-doped TiO2 : A New Approach Towards Photocatalyst Design

    NARCIS (Netherlands)

    Wu, Q.

    2012-01-01

    Conventional TiO2 based photocatalysts oxidize NOx to nitrates which do not automatically desorb and have to be washed away from the catalyst surface. To avoid this, the research described in this thesis aims to design new photocatalysts that can photo-reduce NO into N2 and O2. Previous efforts in

  3. Effect of sulfur loading on the desulfation chemistry of a commercial lean NOx trap catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heui; Yezerets, Aleksey; Li, Junhui; Currier, Neal; Chen, Haiying; Hess, Howard ..; Engelhard, Mark H.; Muntean, George G.; Peden, Charles HF

    2012-12-15

    We investigate the effects of initial sulfur loadings on the desulfation chemistry and the subsequent final activity of a commercial LNT catalyst. Identical total amounts of SO2 are applied to the samples, albeit with the frequency of desulfation varied. The results indicate that performance is better with less frequent desulfations. The greater the amount of sulfur deposited before desulfation, the more amount of SO2 evolution before H2S is observed during desulfation, which can be explained by two sequential reactions; initial conversion of sulfate to SO2, followed by the reduction of SO2 to H2S. After completing all sulfation/desulfation steps, the sample with only a single desulfation results in a fairly uniform sulfur distribution along the z-axis inside of the monolith. We expect that the results obtained in this study will provide useful information for optimizing regeneration strategies in vehicles that utilize the LNT technology.

  4. Fe-BEA Zeolite Catalysts for NH3-SCR of NOx

    DEFF Research Database (Denmark)

    Frey, Anne Mette; Mert, Selcuk; Due-Hansen, Johannes

    2009-01-01

    Iron-containing zeolites are known to be promising catalysts for the NH3-SCR reaction. Here, we will investigate the catalytic activity of iron-based BEA catalysts, which was found to exhibit improved activities compared to previously described iron-containing zeolite catalysts, such as ZSM-5...

  5. Alkali resistivity of Cu based selective catalytic reduction catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2012-01-01

    The deactivation of V2O5–WO3–TiO2, Cu–HZSM5 and Cu–HMOR plate type monolithic catalysts was investigated when exposed to KCl aerosols in a bench-scale reactor. Fresh and exposed catalysts were characterized by selective catalytic reduction (SCR) activity measurements, scanning electron microscope...... and Cu–HMOR catalysts only experienced a slight loss of acidity while the V2O5–WO3–TiO2 catalyst lost most of the acidity. High alkali resistivity seems to be characteristic of the zeolite supported SCR catalysts which thus could be attractive for flue gas cleaning in biomass plants....

  6. The effect of frequency on NOx reduction by superimposing surface and silent discharges

    International Nuclear Information System (INIS)

    Nomura, T.; Kishida, H.; Ehara, Y.; Ito, T.

    1996-01-01

    An experimental investigation has been conducted to reduce NO from the simulated exhaust gas by superimposing discharges. In this experiment, the simulated exhaust gas closely similar to the gas exhaust from diesel engine was supplied from two gas cylinders, and the mixed gas as the model gas was used. The initial density of NO and NOx(NO+NO 2 ) were set at 1700 ppm and 1830 ppm, respectively. The reduction rate of NO at superimposed discharges is higher than that of the single discharge at the same applied voltage. The reduction rate is not dependent on frequency and decided by discharge power

  7. Kinetic experiments and modeling of NO oxidation and SCR of NOx with decane over Cu- and Fe-MFI catalysts

    Czech Academy of Sciences Publication Activity Database

    Čapek, Libor; Vradman, L.; Sazama, Petr; Herskowitz, M.; Wichterlová, Blanka; Zukerman, R.; Brosius, R.; Martens, J. A.

    2007-01-01

    Roč. 70, 1-4 (2007), s. 53-57 ISSN 0926-3373 Grant - others:European Union(XE) GR5D-CT 2001-00595 Institutional research plan: CEZ:AV0Z40400503 Source of funding: O - operačné programy Keywords : NO oxidation * Nox reduction with hydrocarbons * heterogeneous kinetics * iron zeolite Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.651, year: 2007

  8. Enhanced Low Temperature NO Reduction Performance via MnOx-Fe2O3/Vermiculite Monolithic Honeycomb Catalysts

    Directory of Open Access Journals (Sweden)

    Ke Zhang

    2018-02-01

    Full Text Available Selective catalytic reduction of NOx by ammonia (NH3-SCR was the most efficient and economic technology for De-NOx applications. Therefore, a series of MnOx/vermiculite (VMT and MnOx-Fe2O3/VMT catalysts were prepared by an impregnation method for the selective catalytic reduction (SCR of nitrogen oxides (NOx. The MnOx-Fe2O3/VMT catalysts provided an excellent NO conversion of 96.5% at 200 °C with a gas hourly space velocity (GHSV of 30,000 h−1 and an NO concentration of 500 ppm. X-ray photoelectron spectroscopy results indicated that the Mn and Fe oxides of the MnOx-Fe2O3/VMT catalyst were mainly composed of MnO2 and Fe2O3. However, the MnO2 and Fe2O3 components were well dispersed because no discernible MnO2 and Fe2O3 phases were observed in X-ray powder diffraction spectra. Corresponding MnOx-Fe2O3/VMT monolithic honeycomb catalysts (MHCs were prepared by an extrusion method, and the MHCs achieved excellent SCR activity at low temperature, with an NO conversion greater than 98.6% at 150 °C and a GHSV of 4000 h−1. In particular, the MnOx-Fe2O3/VMT MHCs provided a good SCR activity at room temperature (20 °C, with an NO conversion of 62.2% (GHSV = 1000 h−1. In addition, the NO reduction performance of the MnOx-Fe2O3/VMT MHCs also demonstrated an excellent SO2 resistance.

  9. Alternative catalysts and technologies for NOx removal from biomass- and wastefired plants

    DEFF Research Database (Denmark)

    Schill, Leonhard

    the VWT catalyst very rapidly. Firing of biomass increased strongly over the past decade and is expected to increase even further in the near future. Also waste incineration creates ue gases that are very challenging to the SCR catalyst. Therefore, SCR units in waste incineration plants are commonly...... heavily deactivate the Ag/Al2O3 catalyst. Therefore we concluded that HC-SCR is unt for potassium containing ue gases. The eorts at developing a catalyst to be used at the tail end position were more fruitful and culminated in a patent application due to which only limited information can be disclosed...

  10. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Directory of Open Access Journals (Sweden)

    Markus Dietrich

    2017-07-01

    Full Text Available The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13 was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  11. Neutron studies of nanostructured CuO-Al2O3 NOx removal catalysts

    International Nuclear Information System (INIS)

    Ozawa, Masakuni; Loong Chun-Keung

    1997-01-01

    Nanostructured powders of automotive catalytic system CuO0Al 2 O 3 , targeted for nitrogen oxides (NOx) removal under lean-burn engine conditions, were investigated using neutron diffraction and small-angle neutron scattering. The crystal phases, structural transformations and microstructure of 10 mol% Cu-Al 2 O 3 powders are characterized according to the heat-treatment conditions. These properties are correlated with the pore structure and NOx removal efficiency determined by nitrogen adsorption isotherm, electron spin resonance, and temperature programmed reaction measurements. The γ-(Cu, Al) 2 O 3 phase and the mass-fractal-like aggregate of particles (size ∼ 26 nm) at annealing temperatures below 900 degrees C were found to be crucial to the high NOx removal performance. The transformation to bulk crystalline phases of α-Al 2 O 3 + CuAl 2 O 4 spinel above ∼1050 degrees C corresponds to a drastic drop of Nox removal efficiency. The usefulness of neutron-scattering techniques as well as their complementarity with other traditional methods of catalytic research are discussed

  12. A New Dynamic Injection System of Urea-Water Solution for a Vehicular Select Catalyst Reduction System

    Directory of Open Access Journals (Sweden)

    Long Li

    2016-12-01

    Full Text Available Since the Euro-ІІІ standard was adopted, the main methods to inhibit NOx production in diesel engines are exhaust gas recirculation (EGR and select catalyst reduction (SCR. On these methods SCR offers great fuel economy, so it has received wide attention. However, there also exists a trade-off law between NOx conversion efficiency and NH3 slip under dynamic conditions. To inhibit NH3 slip with high NOx conversion efficiency, a dynamic control method for a urea water solution (UWS injection was investigated. The variation phenomena of SCR conversion efficiency with respect to the cross-sensitivity characteristics of the NOx sensor to NH3 have been thoroughly analyzed. The methodology of “uncertain conversion efficiency curve tangent analysis” has been applied to estimate the concentration of the slipped NH3. The correction factor “φ” of UWS injection is obtained by a comparative calculation of the NOx conversion ability and subsequent NH3 slip. It also includes methods of flow compensation and flow reduction. The proposed control method has been authenticated under dynamic conditions. In low frequency dynamic experiments, this control method has accurately justified the NH3 slip process and inhibits the NH3 emission to a lower level thereby improving the conversion efficiency to a value closer to the target value. The results of European transient cycle (ETC experiments indicate that NH3 emissions are reduced by 90.8% and the emission level of NOx is close to the Euro-Ѵ standard.

  13. Supported, Alkali-Promoted Cobalt Oxide Catalysts for NOx Removal from Coal Combustion Flue Gases

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle

    2005-12-31

    A series of cobalt oxide catalysts supported on alumina ({gamma}-Al{sub 2}O{sub 3}) were synthesized with varying contents of cobalt and of added alkali metals, including lithium, sodium, potassium, rubidium, and cesium. Unsupported cobalt oxide catalysts and several cobalt oxide catalysts supported ceria (CeO{sub 2}) with varying contents of cobalt with added potassium were also prepared. The catalysts were characterized with UV-visible spectroscopy and were examined for NO{sub x} decomposition activity. The CoO{sub x}/Al{sub 2}O{sub 3} catalysts and particularly the CoO{sub x}/CeO{sub 2} catalysts show N{sub 2}O decomposition activity, but none of the catalysts (unsupported Co{sub 3}O{sub 4} or those supported on ceria or alumina) displayed significant, sustained NO decomposition activity. For the Al{sub 2}O{sub 3}-supported catalysts, N{sub 2}O decomposition activity was observed over a range of reaction temperatures beginning about 723 K, but significant (>50%) conversions of N{sub 2}O were observed only for reaction temperatures >900 K, which are too high for practical commercial use. However, the CeO{sub 2}-supported catalysts display N{sub 2}O decomposition rates similar to the Al{sub 2}O{sub 3}-supported catalysts at much lower reaction temperatures, with activity beginning at {approx}573 K. Conversions of >90% were achieved at 773 K for the best catalysts. Catalytic rates per cobalt atom increased with decreasing cobalt content, which corresponds to increasing edge energies obtained from the UV-visible spectra. The decrease in edge energies suggests that the size and dimensionality of the cobalt oxide surface domains increase with increasing cobalt oxide content. The rate data normalized per mass of catalyst that shows the activity of the CeO{sub 2}-supported catalysts increases with increasing cobalt oxide content. The combination of these data suggest that supported cobalt oxide species similar to bulk Co{sub 3}O{sub 4} are inherently more active than

  14. Reduction of NOx emission in tangential fired - furnace by changing the, mode of operation

    International Nuclear Information System (INIS)

    Chudnovsky, B.; Talanker, A.; Levin, L.; Kahana, S

    1998-01-01

    The present work analyses tile results of tests on 575 MW units with tangential firing furnace arrangement in sub-stoichiometric combustion. Tangential firing provides good conditions for implementing sub-stoichiometric combustion owing to the delivery scheme of pulverized coal and air. The furnace was tested in several different modes of operation (Over Fire Air, Bunkers Out Of Service, Excess air, Tilt etc.) to achieve low cost NOx reduction. Actual performance data are presented based on experiments made on lEC's boiler in M.D. 'B' power station

  15. Promotional effect of tungsten-doped CeO{sub 2}/TiO{sub 2} for selective catalytic reduction of NOx with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Dong Wook; Hong, Sung Chang, E-mail: schong@kgu.ac.kr

    2015-11-30

    Graphical abstract: - Highlights: • Catalysts were prepared by adding various metals to Ce/Ti to improve the activity. • The Ce{sup 3+} ratio of 10Ce/Me/Ti was proportional to the SCR activity of the catalyst. • When tungsten was added to 10Ce/Ti, an excellent SO{sub 2} resistance was displayed. - Abstract: We examined the effects that the physicochemical properties of Ce/Me/Ti catalysts had on the selective catalytic reduction (SCR) activity after various metals (W, Mo, and La) were added to non-vanadium-based catalysts in order to improve NH{sub 3}–SCR activity. We studied the properties of the catalysts through the use of physiochemical techniques, including Brunauer–Emmett–Teller (BET) surface area analysis, X-ray diffraction (XRD), H{sub 2} temperature-programmed reduction (H{sub 2}-TPR), X-ray photoelectron spectroscopy (XPS) transmission infrared spectroscopy (IR), and inductively coupled plasma optic emission spectroscopy (ICP). The catalytic activity tests of the Ce/Ti catalysts with various ceria loadings revealed that the Ce/Ti with 10 wt.% ceria (10Ce/Ti) exhibited excellent activity. Thus, various metals were added to the 10Ce/Ti. The tungsten-doped 10Ce/Ti catalyst exhibited the highest activity (10Ce/W/Ti: Ce was deposited after tungsten had been deposited on TiO{sub 2}). We investigated the correlation between the catalyst's Ce valence state and its activity. Different Ce{sup 3+} ratios were observed when various metals were added to Ce/Ti. The highest Ce{sup 3+} ratio was observed in 10Ce/W/Ti at 0.3027, and the catalyst efficiency had a positive correlation with higher Ce{sup 3+} ratios. The SCR activity was found to increase as the Ce{sup 3+} ratio increased when tungsten was added to 10Ce/W/Ti. Furthermore, in the case of 10Ce/W/Ti, it seemed that the Brønsted acid sites were more abundant relative to those on 10Ce/Ti. Upon the injection of SO{sub 2} in the SCR reaction, 10Ce/Ti was rapidly deactivated. However, the 10Ce

  16. Coupling of a NOx-trap and a DPF for emission reduction of a 6-cylinder HD engine; Verbindung eines NOx-Speicherkatalysators mit einem Diesel Partikel Filter zur Emissions-Reduzierung an einem 6 Zylinder Nfz Motor

    Energy Technology Data Exchange (ETDEWEB)

    Colliou, T.; Lavy, J.; Martin, B.; Dementhon, J.B. [IFP, Lyon (France); Pichon, G.; Chandes, K.; Pierron, L. [Renault Trucks., St Priest (France)

    2003-07-01

    To ensure overall optimization of engine performance (NOx, particulates, efficiency), the use of a NOx after-treatment system appears necessary to meet the European heavy duty vehicle EURO IV emissions standards. Among the identified means, the NOx-trap should offer efficiency comparable to that of reduction by urea, without having the same constraints. The trap works on the basis of the alternation of operating phases with a lean mixture during which NOx are stored and rich phases during which nitrates are destored and treated. The study has been performed on a RENAULT TRUCKS 6-cylinder 6,2 liters heavy-duty engine. A first investigation with a NOx-trap only has been carried out to evaluate and optimise the storage, destorage and reduction phases from the NOx conversion efficiency and fuel penalty trade-off. The equivalence ratio level, which affects the regeneration phase duration and efficiency, the fuel penalty and the temperature level of the NOx-trap have been shown as a key parameter. From the results obtained, high equivalence ratio regeneration (around 1.18) provides the best results. The necessity to run in rich condition, even for a short time, leads to an increase of particulate emission level and a DPF is therefore required. The different possible arrangements of the two after-treatment systems (NOx-trap and Catalysed DPF) have been evaluated in a second part of the study. The NOx-trap upstream the CDPF provides the best NOx / fuel penalty trade-off since it allows NOx slip reduction (reaction with the slipped reductants inside the CDPF) and do not disturb the rich pulses. For low NOx target, the requirement of NOx-trap regeneration frequency reduces the CRT effect efficiency. Thus, for these conditions, specific DPF regeneration strategies are required. The implementation of the CDPF upstream the NOx-trap can eliminate this drawback up to 1 g/kW.h NOx target without any CDPF loading process. Furthermore, the implementation of the CDPF upstream is

  17. Catalysts, systems and methods to reduce NOX in an exhaust gas stream

    Science.gov (United States)

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard

    2010-07-20

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

  18. New catalyst developed at Argonne National Laboratory could help diesels meet NOx deadlines

    CERN Multimedia

    2003-01-01

    "A new catalyst could help auto makers meet the U.S. Environmental Protection Agency's deadline to eliminate 95 percent of nitrogen-oxide from diesel engine exhausts by 2007, while saving energy" (1 page).

  19. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Rodney

    2007-08-08

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  20. Ruthenium catalysts for reduction of N-nitrosamine water contaminants.

    Science.gov (United States)

    Huo, Xiangchen; Liu, Jinyong; Strathmann, Timothy J

    2018-03-01

    N-nitrosamines have raised extensive concern due to their high toxicity and detection in treated wastewater and drinking water. Catalytic reduction is a promising alternative technology to treat N-nitrosamines, but to advance this technology pathway, there is a need to develop more efficient and cost-effective catalysts. We have previously discovered that commercial catalysts containing ruthenium (Ru) are unexpectedly active in reducing nitrate. This study evaluated supported Ru activity for catalyzing reduction of N-nitrosamines. Experiments with N-nitrosodimethylamine (NDMA) show that contaminant is rapidly reduced on both commercial and in-house prepared Ru/Al2O3 catalysts, with the commercial material yielding an initial metal weight-normalized pseudo-first-order rate constant (k0) of 1103±133 L•gRu-1•h-1 and an initial turnover frequency (TOF0) of 58.0±7.0 h-1. NDMA is reduced to dimethylamine (DMA) and ammonia end-products, and a small amount of 1,1-dimethylhydrazine (UDMH) was detected as a transient intermediate. Experiment with a mixture of five N-nitrosamines spiked into tap water (1 μg L-1 each) demonstrates that Ru catalysts are very effective in reducing a range of N-nitrosamine structures at environmentally relevant concentrations. Cost competitiveness and high catalytic activities with a range of contaminants provide strong argument for developing Ru catalysts as part of the water purification and remediation toolbox.

  1. Reduction and reoxidation of cobalt Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hilmen, Anne-Mette

    1996-12-31

    The Fischer-Tropsch synthesis involves the hydrogenation of carbon monoxide to produce mainly hydrocarbons, water and carbon dioxide, but also alcohols, aldehydes and acids are formed. The distribution of these products is determined by the choice of catalyst and synthesis conditions. This thesis studies the reduction and reoxidation of 17%Co/Al{sub 2}O{sub 3} and 17%Co-1%Re/Al{sub 2}O{sub 3} by means of several characterization techniques. The effect of small amounts of Re on the reduction properties of Al{sub 2}O{sub 3}-supported Co catalysts has been studied by temperature-programmed reduction (TPR). An intimate mixture of CoAl{sub 2}O{sub 3} and Re/Al{sub 2}O{sub 3} catalysts showed a promoting effect of Re similar to that for co impregnated CoRe/Al{sub 2}O{sub 3}. A loose mixture of Co/Al{sub 2}O{sub 3} + Re/Al{sub 2}O{sub 3} did not show any effect of Re on the reduction of Co. But a promoting effect was observed if the mixture had been pre-treated with Ar saturated with water before the TPR. It is suggested that Re promotes the reduction of Co oxide by hydrogen spillover. It is shown that a high temperature TPK peak at 1200K assigned to Co aluminate is mainly caused by the diffusion of Co ions during the TPR and not during calcination. The Co particle size measured by x-ray diffraction on oxidized catalysts decreased compared to the particle size on the calcined catalysts, while the dispersion measured by volumetric chemisorption decreased somewhat after the oxidation-reduction treatment. The role of water in the deactivation of Co/Al{sub 2}O{sub 3} and CoRe/Al{sub 2}O{sub 3} Fischer-Tropsch catalysts has been extensively studied. There were significant differences in the reducibility of the phases formed for the two catalysts during exposure to H{sub 2}O/He. 113 refs., 76 figs., 18 tabs.

  2. Apparatus for Screening Multiple Oxygen-Reduction Catalysts

    Science.gov (United States)

    Whitacre, Jay; Narayanan, Sekharipuram

    2009-01-01

    An apparatus that includes an array of multiple electrodes has been invented as a means of simultaneously testing multiple materials for their utility as oxygen-reduction catalysts in fuel cells. The apparatus ensures comparability of test results by exposing all the catalyst-material specimens to the same electrolytic test solution at the same potential. Heretofore, it has been possible to test only one specimen at a time, using a precise rotating disk electrode that provides a controlled flux of solution to the surface of the specimen.

  3. Heterogeneous photocatalysis on construction materials: effect of catalyst properties on the efficiency for degrading NOx and self cleaning

    Directory of Open Access Journals (Sweden)

    Bengtsson, N.

    2014-05-01

    Full Text Available This paper analyzes the effect of some properties of different catalysts on the photocatalytic activity. The efficiency has been determined for two different processes: NOx abatement and self-cleaning for Rhodamine B and tobacco extract being, the TiO2 based photocatalyst, supported as coatings on white mortar. Eight different catalysts were tested, seven commercial ones and one home-made catalyst with improved visible light absorption properties. Additionally, some of them were submitted to exposition to water and/or calcinations to alter their physical properties. A kinetic approach was used to evaluate the photocatalytic activity, being the first reaction constant (for NO and just empirical constants (for self-cleaning the parameters used for the comparison of the different materials. As a result, the efficiency, even for ranking, is dependent on the type of contaminant used in the experiment. In general, NO oxidation and tobacco followed similar trends while no clear relations were found for Rhodamine B.En este trabajo se analiza el efecto de las propiedades de distintos catalizadores en la actividad fotocatalítica de degradación de NOx y autolimpieza, para Rodamina B y extracto de tabaco. Se han ensayado ocho fotocatalizadores, basados en TiO2 y soportados sobre mortero blanco; siete de ellos comerciales y uno sintetizado en el laboratorio con absorción mejorada en el visible. Adicionalmente, las propiedades físicas de algunos de ellos se alteraron mediante tratamientos con agua y/o por calcinación. La actividad fotocatalítica se ha evaluado mediante aproximación cinética, siendo la constante de reacción de primer orden (para NO y constantes empíricas de ajuste (para autolimpieza los parámetros de comparación entre materiales. Como resultado, la eficiencia depende del contaminante utilizado en el experimento de evaluación. En general, en este estudio, oxidación de NO y de extracto de tabaco presentan tendencias similares

  4. CFD analysis of NOx reduction by domestic natural gas added to coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Ziv, E.; Yasur, Y.; Chudnovsky, B. [Ben-Gurion University of the Negev, Beer-Sheva (Israel). Dept. of Mechanical Engineering and Inst. for Applied Research

    2004-07-01

    To date, Israel's electrical energy has been based only on imported fuels. However, with the recently discovered natural gas in the Ashqulon shores, Israel can examine the benefits to its energy resources, environment, and economy of blending its domestic natural gas with imported coal. As for using natural gas, the proposal is to burn it in existing IEC coal-fired boilers in order to significantly reduce NOx emission by reburning. An important aspect is to provide retrofitting in existing IEC boilers by replacing a fraction of the coal by natural gas. This would allow the purchase of coal with a wide range of parameters, which is less expensive. Hence, mixed gas-coal burning would benefit Israel. The authors have made numerical simulations in order to study the optimal conditions of operation and evaluate the economic as well as environmental benefits. Indeed, extensive simulations have shown that there is a significant reduction of NOx emission, as expected, with the addition of relatively small amounts of natural gas. Experiments will now be carried out in a test facility that will provide accurate physicochemical properties of the mixed fuel for more reliable simulations. 19 refs., 6 figs., 1 tab.

  5. Diesel Emission Control- Sulfur Effects (DECSE) Program- Phase II Summary Report: NOx Adsorber Catalysts; FINAL

    International Nuclear Information System (INIS)

    None

    2000-01-01

    The investigations performed in this project demonstrated the ability to develop a NO(sub x) regeneration strategy including both an improved lean/rich modulation cycle and rich engine calibration, which resulted in a high NO(sub x) conversion efficiency over a range of operating temperatures. A high-temperature cycle was developed to desulfurize the NO(sub x) absorber catalyst. The effectiveness of the desulfurization process was demonstrated on catalysts aged using two different sulfur level fuels. The major findings of this project are as follows: (1) The improved lean/rich engine calibration achieved as a part of this test project resulted in NO(sub x) conversion efficiencies exceeding 90% over a catalyst inlet operating temperature window of 300 C-450 C. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (2) The desulfurization procedure developed showed that six catalysts, which had been exposed to fuel sulfur levels of 3-, 16-, and 30-ppm for as long as 250 hours, could be recovered to greater than 85% NO(sub x) conversion efficiency over a catalyst inlet operating temperature window of 300 C-450 C, after a single desulfurization event. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (3) The desulfurization procedure developed has the potential to meet in-service engine operating conditions and provide acceptable driveability conditions. (4) Although aging with 78-ppm sulfur fuel reduced NO(sub x) conversion efficiency more than aging with 3-ppm sulfur fuel as a result of sulfur contamination, the desulfurization events restored the conversion efficiency to nearly the same level of performance. However, repeatedly exposing the catalyst to the desulfurization procedure developed in this program caused a continued decline in the catalyst's desulfurized performance. Additional work will be

  6. Reduction of NOx and PM in marine diesel engine exhaust gas using microwave plasma

    Science.gov (United States)

    Balachandran, W.; FInst, P.; Manivannan, N.; Beleca, R.; Abbod, M.

    2015-10-01

    Abatement of NOx and particulate matters (PM) of marine diesel exhaust gas using microwave (MW) non-thermal plasma is presented in this paper. NOx mainly consist of NO and less concentration of NO2 in a typical two stoke marine diesel engine and microwave plasma generation can completely remove NO. MW was generated using two 2kW microwave sources and a saw tooth passive electrode. Passive electrode was used to generate high electric field region within microwave environment where high energetic electrons (1-3eV) are produced for the generation of non-thermal plasma (NTP). 2kW gen-set diesel exhaust gas was used to test our pilot-scale MW plasma reactor. The experimental results show that almost 100% removal of NO is possible for the exhaust gas flow rate of 60l/s. It was also shown that MW can significantly remove soot particles (PM, 10nm to 365nm) entrained in the exhaust gas of 200kW marine diesel engine with 40% engine load and gas flow rate of 130l/s. MW without generating plasma showed reduction up to 50% reduction of PM and with the plasma up to 90% reduction. The major challenge in these experiments was that igniting the desired plasma and sustaining it with passive electrodes for longer period (10s of minutes) as it required fine tuning of electrode position, which was influenced by many factors such as gas flow rate, geometry of reactor and MW power.

  7. Power generation systems for NOx reduction. CRADA final report for CRADA Number Y-1292-0111

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.J. [Lockheed Martin Energy Research Corp., Oak Ridge, TN (United States); Berenyi, S.G. [General Motors Corp., Indianapolis, IN (United States). Allison Gas Turbine Div.

    1996-04-30

    The Cooperative Research and Development Agreement (CRADA) No. Y1292-0111, between Allison Gas Turbine Division of General Motors Corporation and Lockheed Martin Energy Systems, under contract to the US Department of Energy, is entitled ``Power Generation Systems for NOx Reduction``. The objective of this effort was to design, develop, and demonstrate an integrated turbine genset suitable for high efficiency power generation requirements. The result of this effort would have been prototype generator hardware including controllers for testing and evaluation by Allison Gas Turbine Division. The generator would have been coupled to a suitably sized and configured gas turbine engine, which would operate on a laboratory load bank. This effort leads to extensive knowledge and design capability in the most efficient and high power density generator design for mobile power generation and potentially to commercialization of these advanced technologies.

  8. Study on the Noise Reduction of Vehicle Exhaust NOX Spectra Based on Adaptive EEMD Algorithm

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2017-01-01

    Full Text Available It becomes a key technology to measure the concentration of the vehicle exhaust components with the transmission spectra. But in the conventional methods for noise reduction and baseline correction, such as wavelet transform, derivative, interpolation, polynomial fitting, and so forth, the basic functions of these algorithms, the number of decomposition layers, and the way to reconstruct the signal have to be adjusted according to the characteristics of different components in the transmission spectra. The parameter settings of the algorithms above are not transcendental, so with them, it is difficult to achieve the best noise reduction effect for the vehicle exhaust spectra which are sharp and drastic in the waveform. In this paper, an adaptive ensemble empirical mode decomposition (EEMD denoising model based on a special normalized index optimization is proposed and used in the spectral noise reduction of vehicle exhaust NOX. It is shown with the experimental results that the method can effectively improve the accuracy of the spectral noise reduction and simplify the denoising process and its operation difficulty.

  9. NOx reduction over metal-ion exchanged novel zeolite under lean conditions. Activity and hydrothermal stability

    International Nuclear Information System (INIS)

    Subbiah, Ayyappan; Gujar, Amit; Price, Geoffrey L.; Cho, Byong K.; Blint, Richard J.; Yie, Jae E.

    2003-01-01

    Zeolite SUZ-4 was synthesized and tested for its hydrothermal stability using a standard aging procedure coupled with NMR spectroscopy, and was identified as a promising support for lean-NO x catalysts for high temperature applications. Various metals such as Cu, Ag, Fe, Co were ion exchanged onto the SUZ-4 zeolite, and their catalytic activity for NO/NO x conversion was measured in the presence of excess oxygen using ethylene as the reducing agent. Among the metal-ions exchanged, copper proved to be the best metal cation for lean-NO x catalysis with the optimum level of exchange at 29-42%. The optimized, fresh Cu/SUZ-4 catalyst achieved 70-80% of NO/NO x conversion activity over a wide range of temperature from 350 to 600C with the maximum conversion temperature at 450C. The presence of H 2 O and SO 2 reduced the NO/NO x conversion by about 30% of the fresh Cu/SUZ-4 catalyst due possibly to the blocking of active sites for NO/NO x adsorption. Substitution of gasoline vapor for ethylene as the reductant improved the NO x reduction activity of the fresh Cu/SUZ-4 catalyst at high temperatures above 350C. Aging the Cu/SUZ-4 catalyst resulted in a slight shift of activity profile toward higher temperatures, yielding an increase of NO conversion by 16% and a decrease of NO x conversion by 15% at 525C. The effect of H 2 O and SO 2 on the aged catalyst was to reduce the NO activity by 20% and NO x activity by 30% at 500C. The effect of space velocity change was not significant except in the low temperature range where the reaction light-off occurs. Adsorption/desorption measurements indicate that aging Cu/SUZ-4 results in partial migration/agglomeration of Cu particles in the pores thereby reducing the NO/NO x activity. Overall, the NO x conversion efficiency of Cu/SUZ-4, for both fresh and aged, is much better than the benchmark Cu/ZSM-5 in the presence of H 2 O and/or SO 2

  10. Mercury Oxidation over Selective Catalytic Reduction (SCR) Catalysts - Ph.d. thesis Karin Madsen

    DEFF Research Database (Denmark)

    Madsen, Karin

    The vanadium-based SCR catalyst used for NOx-control promotes the oxidation of elemental mercury Hg0 to Hg2+ in flue gases from coal-fired power plants. Hg2+ is water soluble and can effectively be captured in a wet scrubber. This means that the combination of an SCR with a wet FGD can offer an e...

  11. Efficiency Analysis of Technological Methods for Reduction of NOx Emissions while Burning Hydrocarbon Fuels in Heat and Power Plants

    Directory of Open Access Journals (Sweden)

    S. M. Kabishov

    2013-01-01

    Full Text Available The paper contains a comparative efficiency analysis pertaining to application of existing technological methods for suppression of nitric oxide formation in heating boilers of heat generators. A special attention has been given to investigation of NOx  emission reduction while burning hydrocarbon fuel with the help of oxygen-enriched air. The calculations have demonstrated that while enriching oxidizer with the help of oxygen up to 50 % (by volume it is possible to reduce volume of NOx formation (while burning fuel unit by 21 %.

  12. Catalyst and method for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C [Los Alamos, NM

    2008-05-27

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  13. Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas.

    Science.gov (United States)

    Zhao, Lingkui; Li, Caiting; Zhang, Xunan; Zeng, Guangming; Zhang, Jie; Xie, Yin'e

    2016-01-01

    In order to reduce the costs, the recycle of spent TiO2-based SCR-DeNOx catalysts were employed as a potential catalytic support material for elemental mercury (Hg(0)) oxidation in simulated coal-fired flue gas. The catalytic mechanism for simultaneous removal of Hg(0) and NO was also investigated. The catalysts were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) method. Results indicated that spent TiO2-based SCR-DeNOx catalyst supported Ce-Mn mixed oxides catalyst (CeMn/SCR1) was highly active for Hg(0) oxidation at low temperatures. The Ce1.00Mn/SCR1 performed the best catalytic activities, and approximately 92.80% mercury oxidation efficiency was obtained at 150 °C. The inhibition effect of NH3 on Hg(0) oxidation was confirmed in that NH3 consumed the surface oxygen. Moreover, H2O inhibited Hg(0) oxidation while SO2 had a promotional effect with the aid of O2. The XPS results illustrated that the surface oxygen was responsible for Hg(0) oxidation and NO conversion. Besides, the Hg(0) oxidation and NO conversion were thought to be aided by synergistic effect between the manganese and cerium oxides.

  14. Design Principles for Oxygen Reduction and Evolution on Oxide Catalysts

    Science.gov (United States)

    Shao-Horn, Yang

    2012-02-01

    Driven by growing concerns about global warming and the depletion of petroleum resources, developing renewable energy production and storage technologies represent one of the major scientific challenges of the 21^st century. A critical element in pursuit of this quest is the discovery of efficient and cost-effective catalysts used in solar fuel production via electrochemical energy conversion processes such as oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), both of which are central to the efficiencies of direct-solar and electrolytic water-splitting devices, fuel cells, and metal-air batteries. Although the Sabatier's principle provides a qualitative argument in tuning catalytic activity by varying the bond strength between catalyst surface and reactant/product (neither too strong nor too weak leading to the maximum activity at moderate bond strength), it has no predictive power to find catalysts with enhanced activity. Identifying a ``design principle'' that links catalyst properties to the catalytic activity is critical to accelerate the search for highly active catalysts based on abundant elements, and minimize the use of precious metals. Here we establish a molecular principle that governs the activities of oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) for oxide catalysts, where the activities primarily correlate to the σ* orbital (``eg'') occupation of surface transition-metal cations established by systematic examination of more than ten to fifteen transition-metal oxides. The intrinsic ORR and OER activities exhibit a volcano-shaped dependence on the eg occupancy and the activities peak at an eg occupancy close to unity. Our findings reflect the critical influence of the σ* orbital on the energetics of surface reaction intermediates on surface transition metal ions such as the O2^2-/OH^- displacement and the OH^- regeneration, and thus highlight the importance of surface oxide electronic structure in controlling

  15. Effects of NOX Storage Component on Ammonia Formation in TWC for Passive SCR NOX Control in Lean Gasoline Engines

    Energy Technology Data Exchange (ETDEWEB)

    Prikhodko, Vitaly Y. [ORNL; Pihl, Josh A. [ORNL; Toops, Todd J. [ORNL; Parks, II, James E. [ORNL

    2018-04-01

    A prototype three-way catalyst (TWC) with NOX storage component was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly-rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. Adding a NOX storage component to a TWC provides two benefits in the context of a passive SCR system: (1) enabling longer lean operation by storing NOX upstream and preserving NH3 inventory on the downstream SCR catalyst; and (2) increasing the quantity and rate of NH3 production during rich operation. Since the fuel penalty associated with passive SCR NOX control depends on the fraction of time that the engine is running rich rather than lean, both benefits (longer lean times and shorter rich times achieved via improved NH3 production) will decrease the passive SCR fuel penalty. However, these benefits are primarily realized at low to moderate temperatures (300-500 °C), where the NOX storage component is able to store NOX, with little to no benefit at higher temperatures (>500 °C), where NOX storage is no longer effective. This study discusses engine parameters and control strategies affecting the NH3 generation over a TWC with NOX storage component.

  16. Nanostructured nonprecious metal catalysts for oxygen reduction reaction.

    Science.gov (United States)

    Wu, Gang; Zelenay, Piotr

    2013-08-20

    Platinum-based catalysts represent a state of the art in the electrocatalysis of oxygen reduction reaction (ORR) from the point of view of their activity and durability in harnessing the chemical energy via direct electrochemical conversion. However, because platinum is both expensive and scarce, its widespread implementation in such clean energy applications is limited. Recent breakthroughs in the synthesis of high-performance nonprecious metal catalysts (NPMCs) make replacement of Pt in ORR electrocatalysts with earth-abundant elements, such as Fe, Co, N, and C, a realistic possibility. In this Account, we discuss how we can obtain highly promising M-N-C (M: Fe and/or Co) catalysts by simultaneously heat-treating precursors of nitrogen, carbon, and transition metals at 800-1000 °C. The activity and durability of resulting catalysts depend greatly on the selection of precursors and synthesis chemistry. In addition, they correlate quite well with the catalyst nanostructure. While chemists have presented no conclusive description of the active catalytic site for this class of NPMCs, they have developed a designed approach to making active and durable materials, focusing on the catalyst nanostructure. The approach consists of nitrogen doping, in situ carbon graphitization, and the usage of graphitic structures (possibly graphene and graphene oxides) as carbon precursors. Various forms of nitrogen, particularly pyridinic and quaternary, can act as n-type carbon dopants in the M-N-C catalysts, assisting in the formation of disordered carbon nanostructures and donating electrons to the carbon. The CNx structures are likely a crucial part of the ORR active site(s). Noteworthy, the ORR activity is not necessarily governed by the amount of nitrogen, but by how the nitrogen is incorporated into the nanostructures. Apart from the possibility of a direct participation in the active site, the transition metal often plays an important role in the in situ formation of various

  17. Atmospheric pollution reduction effect and regional predicament: An empirical analysis based on the Chinese provincial NOx emissions.

    Science.gov (United States)

    Ding, Lei; Liu, Chao; Chen, Kunlun; Huang, Yalin; Diao, Beidi

    2017-07-01

    Atmospheric pollution emissions have become a matter of public concern in recent years. However, most of the existing researches on NOx pollution are from the natural science and technology perspective, few studies have been conducted from an economic point, and regional differences have not been given adequate attention. This paper adopts provincial panel data from 2006 to 2013 and the LMDI model to analyze the key driving factors and regional dilemmas of NOx emissions. The results show that significant regional disparities still exit on NO x emissions and its reduction effect 27 provinces didn't accomplish their corresponding reduction targets. Economic development factor is the dominating driving factor of NO x emissions during the study period, while energy efficiency and technology improvement factors offset total NO x emissions in the majority of provinces. In addition, the industrial structure factor plays a more significant role in reducing the NO x emissions after 2011. Therefore, the government should consider all these factors as well as regional heterogeneity in developing appropriate pollution mitigating policies. It's necessary to change NOx emissions control attitude from original key areas control to divided-zone control, not only attaches great importance to the reduction of the original key areas, but also emphasizes the new potential hotspots with high NO x emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    The title of my PhD thesis is “Design of Heterogeneous Catalysts”. Three reactions have been investigated: the methanation reaction, the Fischer-Tropsch reaction, and the NH3-based selective catalytic reduction (SCR) of NO. The experimental work performed in connection with the methanation reaction...... hydrogenation. For both systems a maximum in catalytic activity was found for some of the bimetallic catalysts being superior to the monometallic catalysts. This resulted in volcano curves for all investigated systems. In the Fischer-Tropsch reaction promotion of cobalt catalysts with manganese was studied...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  19. Experimental comparison of biomass chars with other catalysts for tar reduction

    NARCIS (Netherlands)

    Abu El-Rub, Z.; Bramer, E.A.; Brem, G.

    2008-01-01

    In this paper the potential of using biomass char as a catalyst for tar reduction is discussed. Biomass char is compared with other known catalysts used for tar conversion. Model tar compounds, phenol and naphthalene, were used to test char and other catalysts. Tests were carried out in a fixed bed

  20. Superior DeNOx activity of V2O5–WO3/TiO2 catalysts prepared by deposition–precipitation method

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Schill, Leonhard; Gardini, Diego

    2014-01-01

    electron microscopy, H2-temperature programmed reduction and NH3-temperature programmed desorption. The catalysts exhibited only crystalline TiO2 phases with the active metal and promoter in highly dispersed or amorphous state. The 3 wt% V2O5–10 wt% WO3/TiO2 catalyst prepared by DP using ammonium carbamate......V2O5–WO3/TiO2 catalysts were prepared by incipient wetness impregnation and deposition–precipitation (DP) methods. The catalysts were characterized by N2 physisorption, X-ray powder diffraction, Fourier transform infra red spectroscopy, electron paramagnetic resonance spectroscopy, transmission...... as a precipitating agent was found to be the most active and selective to N2. The superior activity of the catalyst can be ascribed to the altered acidic and redox properties of vanadium. The catalysts did not show increased potassium resistance with the change in preparation method or with increasing vanadium...

  1. Final Technical Report on Investigation of Selective Non-Catalytic Processes for In-Situ Reduction of NOx and CO Emissions from Marine Gas Turbines and Diesel Engines

    National Research Council Canada - National Science Library

    Bowman, Craig

    1997-01-01

    .... These observations suggest the possibility of utilizing SNCR for reducing NO(x) emissions from marine gas turbines and Diesel engines by direct injection of a reductant species into the combustion chamber, possibly as a fuel...

  2. Numerical simulation of urea based selective non-catalytic reduction deNOx process for industrial applications

    International Nuclear Information System (INIS)

    Baleta, Jakov; Mikulčić, Hrvoje; Vujanović, Milan; Petranović, Zvonimir; Duić, Neven

    2016-01-01

    Highlights: • SNCR is a simple method for the NOx reduction from large industrial facilities. • Capabilities of the developed mathematical framework for SNCR simulation were shown. • Model was used on the geometry of experimental reactor and municipal incinerator. • Results indicate suitability of the developed model for real industrial cases. - Abstract: Industrial processes emit large amounts of diverse pollutants into the atmosphere, among which NOx takes a significant portion. Selective non-catalytic reduction (SNCR) is a relatively simple method for the NOx reduction in large industrial facilities such as power plants, cement plants and waste incinerator plants. It consists of injecting the urea-water solution in the hot flue gas stream and its reaction with the NOx. During this process flue gas enthalpy is used for the urea-water droplet heating and for the evaporation of water content. After water evaporates, thermolysis of urea occurs, during which ammonia, a known NO x reductant, and isocyanic acid are generated. In order to cope with the ever stringent environmental norms, equipment manufacturers need to develop energy efficient products that are at the same time benign to environment. This is becoming increasingly complicated and costly, and one way to reduce production costs together with the maintaining the same competitiveness level is to employ computational fluid dynamics (CFD) as a tool, in a process today commonly known under the term “virtual prototyping”. The aim of this paper is to show capabilities of the developed mathematical framework implemented in the commercial CFD code AVL FIRE®, to simulate physical processes of all relevant phenomena occurring during the SNCR process. First, mathematical models for description of SNCR process are presented and afterwards, models are used on the 3D geometry of an industrial reactor and a real industrial case to predict SNCR efficiency, temperature and velocity field. Influence of the main

  3. AMMONIA-FREE NOx CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2006-06-01

    This report describes a novel NOx control system that has the potential to drastically reduce cost, and enhance performance, operation and safety of power plant NOx control. The new system optimizes the burner and the furnace to achieve very low NOx levels and to provide an adequate amount of CO, and uses the CO for reducing NO both in-furnace and over a downstream AFSCR (ammonia-free selective catalytic reduction) reactor. The AF-SCR combines the advantages of the highly successful SCR technology for power plants and the TWC (three-way catalytic converter) widely used on automobiles. Like the SCR, it works in oxidizing environment of combustion flue gas and uses only base metal catalysts. Like the TWC, the AF-SCR removes NO and excess CO simultaneously without using any external reagent, such as ammonia. This new process has been studied in a development program jointed funded by the US Department of Energy and Foster Wheeler. The report outlines the experimental catalyst work performed on a bench-scale reactor, including test procedure, operating conditions, and results of various catalyst formulations. Several candidate catalysts, prepared with readily available transition metal oxides and common substrate materials, have shown over 80-90% removal for both NO and CO in oxidizing gas mixtures and at elevated temperatures. A detailed combustion study of a 400 MWe coal-fired boiler, applying computational fluid dynamics techniques to model boiler and burner design, has been carried out to investigate ways to optimize the combustion process for the lowest NOx formation and optimum CO/NO ratios. Results of this boiler and burner optimization work are reported. The paper further discusses catalyst scale-up considerations and the conceptual design of a 400 MWe size AF-SCR reactor, as well as economics analysis indicating large cost savings of the ammonia-free NOx control process over the current SCR technology.

  4. Studies on the oxygen reduction catalyst for zinc-air battery electrode

    Science.gov (United States)

    Wang, Xianyou; Sebastian, P. J.; Smit, Mascha A.; Yang, Hongping; Gamboa, S. A.

    In this paper, perovskite type La 0.6Ca 0.4CoO 3 as a catalyst of oxygen reduction was prepared, and the structure and performance of the catalysts was examined by means of IR, X-ray diffraction (XRD), and thermogravimetric (TG). Mixed catalysts doped, some metal oxides were put also used. The cathodic polarization curves for oxygen reduction on various catalytic electrodes were measured by linear sweep voltammetry (LSV). A Zn-air battery was made with various catalysts for oxygen reduction, and the performance of the battery was measured with a BS-9300SM rechargeable battery charge/discharge device. The results showed that the perovskite type catalyst (La 0.6Ca 0.4CoO 3) doped with metal oxide is an excellent catalyst for the zinc-air battery, and can effectively stimulate the reduction of oxygen and improve the properties of zinc-air batteries, such as discharge capacity, etc.

  5. Reduction of NOx and PM in Marine Diesel Engine Exhaust Gas using Microwave Plasma

    OpenAIRE

    Balachandran, W; Beleca, R; Abbod, M; Manivannan, N

    2015-01-01

    Abatement of NOx and particulate matters (PM) of marine diesel exhaust gas using microwave (MW) non-thermal plasma is presented in this paper. NOx mainly consist of NO and less concentration of NO2 in a typical two stoke marine diesel engine and microwave plasma generation can completely remove NO. MW was generated using two 2kW microwave sources and a saw tooth passive electrode. Passive electrode was used to generate high electric field region within microwave environment where high energet...

  6. Conditions for reduction of ironmolybdenum-tungsten catalyst for ammonia synthesis

    International Nuclear Information System (INIS)

    Simulina, N.A.; Karibdzhanyan, N.A.; Lachinov, S.S.; Anfimov, V.A.; Shumlyakovskij, Ts.I.

    1977-01-01

    The reduction of Fe-Mo-W catalyst MB-5, used for synthesis of ammonia, has been studied in the reactor of extracolumn reduction. The results obtained have been compared with similar results for the catalyst CA-1. It has been shown that reduction of the catalyst MB-5 proceeds more intensive and is completed at lower temperature and for a shorter period of time. The samples of the catalyst MB-5 discharged from different layers in the reactor are more active than CA-1 reduced under identical conditions

  7. Evaluation of different catalysts and development of a new catalyst for the reduction of CO2 to graphite

    Science.gov (United States)

    Tschekalinskij, Alexander; Schindler, Matthias; Kretschmer, Wolfgang

    2016-02-01

    We present an evaluation of different catalysts, methods and parameters for the catalytic reduction of CO2 for 14C-AMS graphite targets for radiocarbon measurement at the Physical Institute of the University Erlangen-Nuremberg in Germany. Currently 10 μm iron powder is used as a catalyst to reduce carbon dioxide to graphite following our standard protocol. An optimal catalyst should provide a short reduction time, no additional fractionation effects, a good reduction yield, lack sintering and should not contain any amounts of both "dead" and "modern" carbon. Seven purchasable catalysts have been evaluated regarding this criteria. Further, the method using zinc and titanium hydride instead of hydrogen gas and the water-trap has been applied to our system and the effect of the water-trap temperature on the reduction time has been tested. A self-made catalyst was produced using aluminum oxide impregnated with iron nitrate. The results of this study indicate three good catalysts and show the success of the applied methods on standard samples like Ox II and Alfa graphite.

  8. Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.

    Science.gov (United States)

    Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn

    2015-08-26

    In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.

  9. NOx reduction using amine reclaimer wastes (ARW) generated in post combustion CO2 capture

    DEFF Research Database (Denmark)

    Botheju, Deshai; Glarborg, Peter; Tokheim, Lars-Andre

    2012-01-01

    Amine reclaimer wastes (ARW) generated in CO2 capture processes demand suitable disposal means. Such wastes contain remaining amine, NH3 and other degradation compounds. This study investigated the potential of using ARW as a NOx reducing agent, under laboratory conditions in a flow reactor. A si...... to combustion processes, including cement industry kilns....

  10. Reduction of NOx in Fe-EDTA and Fe-NTA solutions by an enriched bacterial population.

    Science.gov (United States)

    Chandrashekhar, B; Pai, Padmaraj; Morone, Amruta; Sahu, Nidhi; Pandey, R A

    2013-02-01

    An enriched biomass was developed from municipal sewage sludge consisting of three dominant bacteria, representing the genera of Enterobacter, Citrobacter and Streptomyces. The biomass was used in a series of batch experiments in order to determine kinetic constants associated with biomass growth and NOx reduction in aqueous Ferrous EDTA/NTA solutions and Ferric EDTA/NTA solutions using ethanol as organic electron donor. The maximum specific reduction rates of NOx in Ferrous EDTA and Ferrous NTA solutions were 0.037 and 0.047mMolesL(-1)d(-1)mg(-1) biomass, respectively while in Ferric EDTA and Ferric NTA solutions were 0.022 and 0.024mMolesL(-1)d(-1)mg(-1) biomass, respectively. In case of Ferric EDTA/NTA solution, the kinetic constants associated with reduction of Ferric EDTA/NTA to Ferrous EDTA/NTA were also evaluated simultaneously. The maximum specific reduction rates of Ferric EDTA and Ferric NTA were 0.0021 and 0.0026mMolesL(-1)d(-1)mg(-1) biomass. The significance of these observations are presented and discussed in this paper. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. NO reduction by CO over noble-metal catalysts under cycled feedstreams

    International Nuclear Information System (INIS)

    Muraki, H.; Fujitani, Y.

    1986-01-01

    The reduction of NO with CO was studied over α-Al/sub 2/O/sub 3/-supported Pt, Pd, Rh, Ru, and Ir catalysts. The activities were measured by using cycled feeds and steady noncycled feed. The activity sequence of the catalysts tested was Rh > Ru > Ir > Pd > Pt. The activities of Pt and Pd catalysts were increased under the cycled feed. The periodic operation effect on the Pt catalyst was more predominant than that on the Pd catalyst. The order of periodic operation effect corresponded to the order of their susceptibility to CO self-poisoning

  12. Catalysts for Environmental Remediation

    DEFF Research Database (Denmark)

    Abrams, B. L.; Vesborg, Peter Christian Kjærgaard

    2013-01-01

    on titania (V2O5-WO3/TiO2) as the example catalyst. The main photocatalysts examined for mineralization of organic compounds were TiO2 and MoS2. It is important to obtain insight into the catalyst structure-to-activity relationship in order to understand and locate the active site(s). In this chapter......The properties of catalysts used in environmental remediation are described here through specific examples in heterogeneous catalysis and photocatalysis. In the area of heterogeneous catalysis, selective catalytic reduction (SCR) of NOx was used as an example reaction with vanadia and tungsta...

  13. Development of a pilot fluidized bed combustion to NOx reduction using natural gas: characterization and dimensioning; Desenvolvimento de um combustor piloto a leito fluidizado para reducao de NOx usando gas natural: caracterizacao e dimensionamento

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas A.; Lucena, Sergio [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2004-07-01

    At the present time, the operation of combustion systems and the design of combustors continue being important problems in the Engineering, and don't involve just the size increase of combustors, but also changes of characteristics in the details of projects. The combustors applications are directly related to the needs, like: material transformation for heating, drying or incineration; and all have the inconvenience of emanating of pollutant gaseous (such like NOx). In combustion systems of gases, NOx is basically created in the reaction between nitrogen and oxygen to high temperatures ({approx} 1200 deg C). Below such conditions, the contribution of thermal NOx is recognisably small. The efficient reduction, safe control and economical elimination of pollutant emissions in the systems of burning are the main focuses of environmental legislation and concern to several industrialized countries, besides Brazil. Furthermore, in appeal at the Environmental Laws and at the rising consumption of combustible gases (Natural Gas), new technologies more attractive and economically viable have been studied, for example the combustion systems in fluidized bed. In this kind of system is possible to obtain high combustion efficiency at low temperatures ({approx} 900 deg C) with NOx reduction. In this work is intended of characterizing and dimensioning an industrial fluidized bed combustor that uses Natural Gas like feedstock in the combustion system, with smaller amounts of emitted NOx. (author)

  14. Recent increases in nitrogen oxide (NOx) emissions from coal-fired electric generating units equipped with selective catalytic reduction.

    Science.gov (United States)

    McNevin, Thomas F

    2016-01-01

    The most effective control technology available for the reduction of oxides of nitrogen (NOx) from coal-fired boilers is selective catalytic reduction (SCR). Installation of SCR on coal-fired electric generating units (EGUs) has grown substantially since the onset of the U.S. Environmental Protection Agency's (EPA) first cap and trade program for oxides of nitrogen in 1999, the Ozone Transport Commission (OTC) NOx Budget Program. Installations have increased from 6 units present in 1998 in the states that encompass the current Cross-State Air Pollution Rule (CSAPR) ozone season program to 250 in 2014. In recent years, however, the degree of usage of installed SCR technology has been dropping significantly at individual plants. Average seasonal NOx emission rates increased substantially during the Clean Air Interstate Rule (CAIR) program. These increases coincided with a collapse in the cost of CAIR allowances, which declined to less than the cost of the reagent required to operate installed SCR equipment, and was accompanied by a 77% decline in delivered natural gas prices from their peak in June of 2008 to April 2012, which in turn coincided with a 390% increase in shale gas production between 2008 and 2012. These years also witnessed a decline in national electric generation which, after peaking in 2007, declined through 2013 at an annualized rate of -0.3%. Scaling back the use of installed SCR on coal-fired plants has resulted in the release of over 290,000 tons of avoidable NOx during the past five ozone seasons in the states that participated in the CAIR program. To function as designed, a cap and trade program must maintain allowance costs that function as a disincentive for the release of the air pollutants that the program seeks to control. If the principle incentive for reducing NOx emissions is the avoidance of allowance costs, emissions may be expected to increase if costs fall below a critical value, in the absence of additional state or federal

  15. Reduction on NOx emissions on urban areas by changing specific vehicle fleets: effects on NO2 and O3 concentration

    Science.gov (United States)

    Goncalves, M.; Jimenez, P.; Baldasano, J.

    2007-12-01

    The largest amount of NOx emissions in urban areas comes from on-road traffic, which is the largest contributor to urban air pollution (Colvile et al., 2001). Currently different strategies are being tested in order to reduce its effects; many of them oriented to the reduction of the unitary vehicles emissions, by alternative fuels use (such as biofuels, natural gas or hydrogen) or introduction of new technologies (such as hybrid electric vehicles or fuel cells). Atmospheric modelling permits to predict their consequences on tropospheric chemistry (Vautard et al., 2007). Hence, this work assesses the changes on NO2 and O3 concentrations when substituting a 10 per cent of the urban private cars fleets by petrol hybrid electric cars (HEC) or by natural gas cars (NGC) in Madrid and Barcelona urban areas (Spain). These two cities are selected in order to highlight the different patterns of pollutants transport (inland vs. coastal city) and the different responses to emissions reductions. The results focus on a typical summertime episode of air pollution, by means of the Eulerian air quality model ARW- WRF/HERMES/CMAQ, applied with high resolution (1-hr, 1km2) since of the complexity of both areas under study. The detailed emissions scenarios are implemented in the HERMES traffic emissions module, based on the Copert III-EEA/EMEP-CORINAIR (Nztiachristos and Samaras, 2000) methodology. The HEC introduction reduces NOx emissions from on-road traffic in a 10.8 per cent and 8.2 per cent; and the NGC introduction in a 10.3 per cent and 7.8 per cent, for Madrid and Barcelona areas, respectively. The scenarios also affect the NMVOCs reduction (ranging from -3.1 to -6.9 per cent), influencing the tropospheric photochemistry through the NOx/NMVOCs ratio. The abatement of the NO photooxidation but also to the reduction on primary NO2 involves a decrease on NO2 levels centred on urban areas. For example, the NO2 24-hr average concentration in downtown areas reduces up to 8 per

  16. Reduction and Analysis of Low Temperature Shift Heterogeneous Catalyst for Water Gas Reaction in Ammonia Production

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2013-09-01

    Full Text Available In order to obtain additional quantities of hydrogen after the reforming reactions of natural gas and protect the ammonia synthesis catalyst, it is crucial to achieve and maintain maximum possible activity, selectivity and stability of the low temperature shift catalyst for conversion of water gas reaction during its lifetime. Whereas the heterogeneous catalyst comes in oxidized form, it is of the utmost importance to conduct the reduction procedure properly. The proper reduction procedure and continuous analysis of its performance would ensure the required activity, selectivity and stability throughout the catalyst’s service time. For the proper reduction procedure ofthe low temperature shift catalyst, in addition to process equipment, also necessary is a reliable and realistic system for temperature measurements, which will be effective for monitoring the exothermal temperature curves through all catalyst bed layers. For efficiency evaluation of low shift temperature catalyst reduction and its optimization, it is necessary to determine at regular time intervals the temperature approach to equilibrium and temperature profiles of individual layers by means of "S" and "die off" temperature exothermal curves. Based on the obtained data, the optimum inlet temperature could be determined, in order to maximally extend the service life of the heterogeneous catalyst as much as possible, and achieve the optimum equilibrium for conversion of the water gas. This paper presents the methodology for in situ reduction of the low temperature shift heterogeneous catalyst and the developed system for monitoring its individual layers to achieve the minimum possible content of carbon monoxide at the exit of the reactor. The developed system for temperature monitoring through heterogeneous catalyst layers provides the proper procedure for reduction and adjustment of optimum process working conditions for the catalyst by the continuous increase of reactor inlet

  17. Electrocatalytic Reduction-oxidation of Chlorinated Phenols using a Nanostructured Pd-Fe Modified Graphene Catalyst

    International Nuclear Information System (INIS)

    Shi, Qin; Wang, Hui; Liu, Shaolei; Pang, Lei; Bian, Zhaoyong

    2015-01-01

    A Pd-Fe modified graphene (Pd-Fe/G) catalyst was prepared by the Hummers oxidation method and bimetallic co-deposition method. The catalyst was then characterized by various characterization techniques and its electrochemical property toward the electrocatalytic reduction-oxidation of chlorinated phenols was investigated by using cyclic voltammetry and differential pulse voltammetry. The results of the characterization show that the Pd-Fe/G catalyst in which the weight proportion of Pd and Fe is 1:1 has an optimal surface performance. The diameter of the Pd-Fe particles is approximately 5.2 ± 0.3 nm, with a uniform distribution on the supporting graphene. This is smaller than the Pd particles of a Pd-modified graphene (Pd/G) catalyst. The Pd-Fe/G catalyst shows a higher electrocatalytic activity than the Pd/G catalyst for reductive dechlorination when feeding with hydrogen gas. The reductive peak potentials of −0.188 V, −0.836 V and −0.956 V in the DPV curves are attributed to the dechlorination of ortho-Cl, meta-Cl, and para-Cl in 2-chlorophenol, 3-chlorophenol and 4-chlorophenol, respectively. In accordance with an analysis of the frontier orbital theory, the order of ease of dechlorination with Pd-Fe/G catalyst is 2-chlorophenol > 3-chlorophenol > 4-chlorophenol. The Pd-Fe/G catalyst has a greater activity than the Pd/G catalyst in accelerating the two-electron reduction of O 2 to H 2 O 2 , which is attributed to the higher current of the reduction peak at approximately −0.40 V when feeding with oxygen gas. Therefore, the Pd-Fe/G catalyst exhibits a higher electrocatalytic activity than the Pd/G catalyst for the reductive dechlorination and acceleration of the two-electron reduction of O 2 to H 2 O 2 .

  18. Cobalt nanoparticles as reusable catalysts for reduction of 4 ...

    Indian Academy of Sciences (India)

    nanoparticles as catalysts for the hydrogenation of 4-NP in the presence of NaBH4 [23,25–27]. Metal-oxide-supported metal nanoparticles have been tested as catalysts for the con- version of p-nitrophenol to p-aminophenol. Pd nanoparticles dispersed in alumina have been reported [28] with NaBH4 as the reducing agent.

  19. beads immobilized metal nanoparticle catalysts for the reduction of ...

    Indian Academy of Sciences (India)

    economic advantage. Further, the existing catalyst cannot be continuously packed into ... neous NP catalysts with higher efficiency, stability, economy, easy synthesis and reusability for potential degradation ... then the solution was refluxed in an oil bath at 80◦C. The reaction mixture has been protected from light to avoid the.

  20. Photocatalytic oxidation of NOx over TiO2/HZSM-5 catalysts in the presence of water vapor: Effect of hydrophobicity of zeolites.

    Science.gov (United States)

    Guo, Gaofei; Hu, Yun; Jiang, Shumei; Wei, Chaohai

    2012-07-15

    TiO(2) hybridized with HZSM-5 zeolites photocatalysts were prepared by a simple solid state dispersion method. The physicochemical properties of the catalysts were characterized by X-ray diffraction, UV-vis diffuse reflectance and FT-IR spectroscopy. The photocatalytic oxidation of NO(x) over TiO(2)/HZSM-5 having different Si/Al ratios was carried out under various levels of humidity and different pre-adsorption times in dark. The TiO(2)/HZSM-5 composite catalysts exhibited higher NO conversion and lower NO(2) formation than pure TiO(2). Pre-adsorption with water vapor and the high humidity during the photoreaction were harmful to the reactivity of TiO(2) hybridized with hydrophilic HZSM-5 zeolite. However, the photocatalytic reactivity of TiO(2) hybridized with hydrophobic zeolite varied little with increase in humidity. The results indicated that the high photocatalytic reactivity of TiO(2)/HZSM-5 catalysts is largely depended on the hydrophobicity of the zeolites. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Aqueous reductive amination using a dendritic metal catalyst in a dialysis bag

    OpenAIRE

    Willemsen, J.S.; Hest, J.C.M. van; Rutjes, F.P.J.T.

    2013-01-01

    Summary Water-soluble dendritic iridium catalysts were synthesized by attaching a reactive metal complex to DAB-Am dendrimers via an adapted asymmetric bipyridine ligand. These dendritic catalysts were applied in the aqueous reductive amination of valine while contained in a dialysis bag. Comparable conversions were observed as for the noncompartmentalized counterparts, albeit with somewhat longer reaction times. These results clearly show that the encapsulated catalyst system is suitable to ...

  2. Development of Catalyst for Selective Reduction of NOx and Oxidation of CO and Hydrocarbons

    National Research Council Canada - National Science Library

    Lyon, Richard

    1998-01-01

    DOD's plan to make all U.S. military equipment run on a single fuel, logistics fuel, has obvious logistics advantages, but will require replacement of spark ignition engines with diesel engines or gas turbines...

  3. Use of Strontium-Lanthanum Cobaltate as a High Temperature Catalyst for NOx Reduction

    National Research Council Canada - National Science Library

    Wirtz, Gerald

    1998-01-01

    .... From XRD, DTA and simultaneous TGA/DSC measurements the A-site deficient composition was found to be chemically and structurally stable over a wide range of temperatures in air and simulated exhausts...

  4. Exhaust Recirculation Control for Reduction of NOx from Large Two-Stroke Diesel Engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder

    the automotive industry, but have only recently been introduced commercially to large two-stroke diesel engines. Recirculation of exhaust gas to the cylinders lowers the oxygen availability and increases the heat capacity during combustion, which in turn leads to less formation of NOx. Experience shows...... for the scavenge oxygen fraction is designed. This observer compensates for a significant delay in the oxygen sensor, and observer errors are proven to converge exponentially. By inverting part of the reduced model and using the parameter observer, a novel scavenge oxygen controller based on nonlinear adaptive...

  5. Characterization of proton exchange membrane fuel cell cathode catalysts prepared by alcohol-reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, T.A.B.; Neto, A.O.; Chiba, R.; Seo, E.S.M., E-mail: tsantoro@ipen.br, E-mail: aolivei@ipen.br, E-mail: rchiba@ipen.br, E-mail: esmiyseo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Franco, E.G., E-mail: egberto@iee.usp.br [Universidade de Sao Paulo (IEE/USP), Sao Paulo, SP (Brazil). Instituto de Eletrotecnica e Energia

    2009-07-01

    Pt/rare-earth cathode catalysts were synthesized by the alcohol-reduction process and its structure was investigated by transmission electron microscopy (TEM), energy dispersive analyses (EDS), X-ray Diffraction (XRD). The electrochemical behavior of the cathode catalyst was analyzed by cyclic voltammetry (CV) chronoamperommetry (CA). (author)

  6. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Haibin Jiang

    2016-06-01

    Full Text Available Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed.

  7. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust

    International Nuclear Information System (INIS)

    Guan, Bin; Zhan, Reggie; Lin, He; Huang, Zhen

    2014-01-01

    Increasingly stringent emission legislations, such as US 2010 and Euro VI, for NO x in mobile applications will require the use of intensification of NO x reduction aftertreatment technologies, such as the selective catalytic reduction (SCR). Due to the required higher deNO x efficiency, a lot of efforts have recently been concentrated on the optimization of the SCR systems for broadening the active deNO x temperature window as widely as possible, especially at low temperatures, enhancing the catalysts durability, and reducing the cost of the deNO x system. This paper provides a comprehensive overview of the state-of-the-art SCR technologies, including the alternative ammonia generation from the solid reductants, Vanadium-based, Cu-zeolite (CuZ) and Fe-zeolite (FeZ) based, and the novel chabazite zeolite with small pore size SCR catalysts. Furthermore, the progresses of the highly optimized hybrid approaches, involving combined CuZ and FeZ SCR, passive SCR, integration of DOC + (DPF, SCR), as well as SCR catalyst coated on DPF (referred as SCRF hereinafter) systems are well discussed. Even though SCR technology is considered as the leading NO x aftertreatment technology, attentions have been paid to the adverse by-products, such as NH 3 and N 2 O. Relevant regulations have been established to address the issues. - Highlights: •The review of state of the art technologies of selective catalytic reduction of NO x . •The mainstream V-based, Cu- and Fe-zeolite, and chabazite catalysts are illustrated. •The development of highly optimized hybrid integration SCR systems are analyzed. •The by-products of SCR systems and the corresponding regulations are discussed. •The future perspectives of the advanced SCR technologies are described

  8. Structure, Stability and Emissions of Lean Direct Injection Combustion, including a Novel Multi-Point LDI System for NOx Reduction

    Science.gov (United States)

    Villalva Gomez, Rodrigo

    Experimental research on Lean Direct Injection (LDI) combustors for gas turbine applications is presented. LDI combustion is an alternative to lean premixed combustion which has the potential of equivalent reduction of oxides of nitrogen (NOx) emissions and of peak combustor exit temperatures, but without some drawbacks of premixed combustors, such as flashback and autoignition. Simultaneous observations of the velocity field and reaction zone of an LDI swirl-stabilized combustor with a mixing tube at atmospheric conditions, with the goal of studying the flame stabilization mechanism, are shown. The flame was consistently anchored at the shear layer formed by the high-speed reactants exiting the mixing tube and the low speed recirculation region. Individual image analysis of the location of the tip of the recirculation zone and tip of the reaction region confirmed previously observed trends, but showed that calculation of the distance between these two points for corresponding image pairs yields results no different than when calculated from random image pairs. This most likely indicates a lag in the anchoring of the flame to changes in the recirculation zone, coupled with significant stochastic variation. An alternate LDI approach, multi-point LDI (MLDI), is also tested experimentally. A single large fuel nozzle is replaced by multiple small fuel nozzles to improve atomization and reduce the total volume of the high-temperature, low velocity recirculation zones, reducing NOx formation. The combustor researched employs a novel staged approach to allow good performance across a wide range of conditions by using a combination of nozzle types optimized to various power settings. The combustor has three independent fuel circuits referenced as pilot, intermediate, and outer. Emissions measurements, OH* chemiluminescence imaging, and thermoacoustic instability studies were run in a pressurized combustion facility at pressures from 2.0 to 5.3 bar. Combustor performance

  9. Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2014-01-01

    Nonprecious metal catalysts for the oxygen reduction reaction are the ultimate materials and the foremost subject for low‐temperature fuel cells. A novel type of catalysts prepared by high‐pressure pyrolysis is reported. The catalyst is featured by hollow spherical morphologies consisting...... of uniform iron carbide (Fe3C) nanoparticles encased by graphitic layers, with little surface nitrogen or metallic functionalities. In acidic media the outer graphitic layers stabilize the carbide nanoparticles without depriving them of their catalytic activity towards the oxygen reduction reaction (ORR...

  10. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES; FINAL

    International Nuclear Information System (INIS)

    Jerry B. Urbas

    1999-01-01

    The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO(sub x) control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO(sub x) while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO(sub x) reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO(sub x) reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO(sub x) emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO(sub x) reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm(sup 3) (8 ppm) at the catalyst inlet. After resolving the stratification problem

  11. Analysis and study on the performance variation of SCR DeNOx catalyst of Coal-Fired Boilers

    International Nuclear Information System (INIS)

    Jianxing, Ren; Fangqin, Li; Jiang, Wu; Qingrong, Liu; Yongwen, Yang; Zhongzhu, Qiu

    2010-01-01

    Nitrogen oxides (NO x ) are one kind of harmful substances from the burning process of fossil fuel and air at high temperature. NO x emissions cause serious pollution on atmospheric environment. In this paper, coal-fired utility boilers were chosen as the object, NO x formation mechanism and control were studied, and SCR deNO x technology was used to control NO x emissions from coal-fired boilers. Analyzed the relationship between deNO x efficiency and characteristics of SCR DeNO x catalyst. Through analysis, affecting SCR DeNO x catalyst failure factors, change law of catalytic properties and technical measures to extend the service life of the catalyst were gotten. (author)

  12. Process of activation of a palladium catalyst system

    Science.gov (United States)

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  13. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng

    2012-03-06

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  14. Reduction of amine and biological antioxidants on NOx emissions powered by mango seed biodiesel

    Directory of Open Access Journals (Sweden)

    Velmurugan Kolanjiappan

    2017-01-01

    Full Text Available Este estudio analiza la influencia de la amina y algunos antioxidantes biológicos en la reducción de las emisiones de NOx en un motor diesel alimentado con B100 (100% volumen de éster metílico de semillas de mango y B20 (20% en volumen de semillas de mango y 80% en volumen de mezcla de combustible diesel, Se probaron tres antioxidantes de amina, p-fenilendiamina (PPD, etilendiamina (EDA y N, N’-difenil-1,4-fenilendiamina (DPPD y tres antioxidantes biológicos, diclorometano (DCM, acetato de alfa-tocoferol ( α -T y ácido L-ascórbico (L-asc.acid en un motor diesel kirloskar de cuatro tiempos refrigerado por agua, 5,9 KW de potencia. Hay cinco concentraciones usadas en la mezcla antioxidante de mezclas de biodiesel. Es decir, 0,005% -m, 0,010% -m, 0,025% -m, 0,05% -m y 0,1%, valores en los cuales %-m corresponde a la concentración molar empleada en la mezcla antioxidante. Los resultados muestran que la reducción consiguiente de NOx podría ser adquirida por la adhesión de aditivo antioxidante DPPD con la concentración de 0,025% de combustible B20 en un 15,4% y combustible B100 en un 39%. El aditivo DPPD aumentó las emisiones de CO más de 7,42% para el combustible B100 y 6,44% para el combustible B20. El DCM antioxidante biológico exhibe 0,235 g/kWh para combustible B100 y 0,297 g/kWh para combustible B20. Se ha comprobado que la emisión de humo ha aumentado con la adición de antioxidantes. Un ligero incremento en la eficiencia térmica del freno (0,91% se logra con la adición de antioxidantes a plena carga. Los resultados experimentales se comparan con el análisis de varianza y el resultado es simplemente el mismo que el de la experimentación.

  15. The Poisoning Effect of Na Doping over Mn-Ce/TiO2 Catalyst for Low-Temperature Selective Catalytic Reduction of NO by NH3

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2014-01-01

    Full Text Available Sodium carbonate (Na2CO3, sodium nitrate (NaNO3, and sodium chloride (NaCl were chosen as the precursors to prepare the Na salts deposited Mn-Ce/TiO2 catalysts through an impregnation method. The influence of Na on the performance of the Mn-Ce/TiO2 catalyst for low-temperature selective catalytic reduction of NOx by NH3 was investigated. Experimental results showed that Na salts had negative effects on the activity of Mn-Ce/TiO2 and the precursors of Na salts also affected the catalytic activity. The precursor Na2CO3 had a greater impact on the catalytic activity, while NaNO3 had minimal effect. The characterization results indicated that the significant changes in physical and chemical properties of Mn-Ce/TiO2 were observed after Na was doped on the catalysts. The significant decreases in surface areas and NH3 adsorption amounts were observed after Na was doped on the catalysts, which could be considered as the main reasons for the deactivation of Na deposited Mn-Ce/TiO2.

  16. Ammonia and water sorption properties of the mineral-layered nanomaterials used as the catalysts for NOx removal from exhaust gases

    International Nuclear Information System (INIS)

    Olszewska, D.

    2006-01-01

    The object of the study is the influence of acidity and hydrophilic properties of the surface of catalyst of the selective catalytic reduction (SCR) of nitrogen oxides by NH 3 . A series of catalysts prepared with the ZrO 2 -pillared montmorillonite from Jelsovy Potok have been promoted with manganese oxides. A part of the Na + -montmorillonite form has provisionally been treated with the 20% HCl. The acidity of materials was studied by the ammonia adsorption method at the temperature of 273 and 373K. Acidic properties of catalysts depend on the step of the support preparation-the acidic activation. The activity of the SCR reaction of acid untreated support and the catalyst with MnO x which had few stronger acid centres was lower than the activity of the acid pre-treated catalyst. In this case the support had more strong acid centres. The active material of MnO x increased the NO conversion but not the influence on the amount of ammonia sorption. These centres are probably not acidic centers. The hydrophilic properties were studied by water vapour sorption at the temperature of 298K. All the samples adsorbed the same amount of water, which suggests that the NO conversion does not influence hydrophilic properties. Water molecules were physically sorbed on the surface of materials and they were replaced with NH 3 in the presence of ammonia. (author)

  17. Activity and Stability of Nanoscale Oxygen Reduction Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Shao-Horn, Yang

    2015-07-28

    Design of highly active and stable nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. The amount and instability of Pt-based catalysts in the cathode limits the cost, efficiency and lifetime of proton exchange membrane fuel cells. We developed a microscopic understanding of the factors governing activity and stability in Pt and PtM alloys. Experimental efforts were focused on probing the size and shape dependence of ORR activity of Pt-based nanoparticles supported on carbon nanotubes. A microscopic understanding of the activity was achieved by correlating voltammetry and rotating ring disk electrodes to surface atomic and electronic structures, which were elucidated predominantly by high-resolution transmission electron microscopy (HRTEM), Scanning transmission electron microscopy energy dispersive X-ray Spectroscopy (STEM-EDS) and synchrotron X-ray absorption spectroscopy (XAS).

  18. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol

    DEFF Research Database (Denmark)

    Studt, Felix; Sharafutdinov, Irek; Abild-Pedersen, Frank

    2014-01-01

    The use of methanol as a fuel and chemical feedstock could become very important in the development of a more sustainable society if methanol could be efficiently obtained from the direct reduction of CO 2 using solar-generated hydrogen. If hydrogen production is to be decentralized, small-scale CO...... 2 reduction devices are required that operate at low pressures. Here, we report the discovery of a Ni-Ga catalyst that reduces CO 2 to methanol at ambient pressure. The catalyst was identified through a descriptor-based analysis of the process and the use of computational methods to identify Ni......-Ga intermetallic compounds as stable candidates with good activity. We synthesized and tested a series of catalysts and found that Ni 5 Ga 3 is particularly active and selective. Comparison with conventional Cu/ZnO/Al 2 O 3 catalysts revealed the same or better methanol synthesis activity, as well as considerably...

  19. Effect of Fe state on electrocatalytic activity of Pd-Fe/C catalyst for oxygen reduction

    International Nuclear Information System (INIS)

    Tang Yawen; Cao Shuang; Chen Yu; Lu Tianhong; Zhou Yiming; Lu Lude; Bao Jianchun

    2010-01-01

    The carbon-supported Pd-Fe catalyst (Pd-Fe/C) is prepared in the H 2 O/tetrahydrofuran (THF) mixture solvent under the low temperature. The homemade Pd-Fe/C catalyst contains two forms of iron species, alloying and non-alloying Fe. The alloying Fe species is hardly dissolved in 0.5 M H 2 SO 4 solution, while the non-alloying Fe species is easily dissolved in 0.5 M H 2 SO 4 solution. The electrochemical measurements show the electrocatalytic activity of the Pd-Fe/C catalyst with the acid treatment for the oxygen reduction is higher than that of the Pd-Fe/C catalyst without the acid treatment, illustrating that the non-alloying Fe species suppresses the electrocatalytic activity of the Pd-Fe/C catalyst. In contrast, the alloying Fe species promotes the electrocatalytic activity of the Pd-Fe/C catalyst for the oxygen reduction, which is likely attributed to the change of the electron structure of Pd atom and/or bond length of Pd-Pd in the Pd-Fe/C catalyst.

  20. Control and reduction of NOx emissions on light hydrocarbons combustion in fluidized bed combustors: a technological prospection surveys; Controle e reducao de emissoes de NOx durante queima de hidrocarbonetos leves em combustores a leito fluidizado: um estudo de prospeccao tecnologica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas Alves; Winter, Eduardo [Instituto Nacional da Propriedade Industrial (INPI), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The present paper aims a technological prospecting study of the main technological agents involved in industrial light hydrocarbons combustion process. More specifically, the work approaches technologies applied to nitrogen oxides emissions control and reduction. Nitrogen oxides are typically known as 'NOx' (NO, N{sub 2}O, NO{sub 2}). 'NOx' are byproducts from fuel burning in combustion systems, including also in fluidized bed combustion systems. The technological prospecting study employed 'technology foresight' as tool for evaluating the technological perspectives of the thermal generation, basis on environment protection. Such technological perspectives of the thermal generation were evaluated through invention patent documents. The query methodology for obtaining of patent documents employed a free patent base, known as ESPACENET. Additionally, the documents obtained were evaluated, considering beyond the countries and the publication dates, technological perspectives employed to 'NOx' emissions control and reduction. It is very important to highlight around 70% of the industrial technological information are just found in invention patent documents. (author)

  1. Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures

    DEFF Research Database (Denmark)

    Hu, Yang; Jiang, Yiliang; Jensen, Jens Oluf

    2018-01-01

    temperatures and hence is not suitable for catalyst evaluation for HT-PEMFCs. In this study, we have designed and constructed a half-cell setup to measure the intrinsic activities of catalysts towards the oxygen reduction reaction (ORR) in conditions close to HT-PEMFC cathodes. By optimization......-cell electrode than that observed in fuel cells, indicating the feasibility of the technique as well as the potential for further improvement of fuel cell electrode performance....

  2. Catalysts for the reduction of SO{sub 2} to elemental sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y.; Yu, Q.Q.; Chang, S.G. [Lawrence Berkeley Lab., Berkeley, CA (United States)

    1995-11-01

    Catalysts have been prepared for the reduction of SO{sub 2} to elemental sulfur by synthesis gas. A catalyst allows to obtain more than 97% yield of elemental sulfur with a single-stage reactor at 540{degrees}C. A lifetime test has been successfully performed. The mass balance of sulfur and carbon has been checked. The effect of H{sub 2}S, COS, and H{sub 2}O has been studied.

  3. Spatiotemporal distribution of NOx storage and impact on NH3 and N2O selectivities during lean/rich cycling of a Ba-based lean NOx trap catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Soon [ORNL; Partridge Jr, William P [ORNL; Pihl, Josh A [ORNL; Kim, Miyoung [ORNL; Koci, Petr [Institute of Chemical Technology, Prague, Czech Republic; Daw, C Stuart [ORNL

    2012-01-01

    We summarize results from an investigation of the spatiotemporal distribution of NO{sub x} storage and intermediate gas species in determining the performance of a fully formulated, Ba-based, lean NO{sub x} trap catalyst under lean/rich cycling conditions. By experimentally resolving spatiotemporal profiles of gas composition, we found that stored NO{sub x} was significantly redistributed along the monolith axis during the rich phase of the cycle by release and subsequent downstream re-adsorption. Sulfur poisoning of upstream NO{sub x} storage sites caused the active NO{sub x}-storage zone to be displaced downstream. This axial displacement in turn influenced rich-phase NO{sub x} release and re-adsorption. As sulfur poisoning increased, NH3 slip at the catalyst exit also increased due to its formation closer to the catalyst outlet and decreased exposure to downstream oxidation by surface oxygen. N{sub 2}O formation was found to be associated with nitrate reduction rather than oxidation of NH3 by stored oxygen. We propose that the observed evolution of N{sub 2}O selectivity with sulfation can be explained by changes in the spatiotemporal distribution of NO{sub x} storage resulting in either increased or decreased number of precious-metal sites surrounded by nitrates.

  4. Significance of the structural properties of CaO catalyst in the production of biodiesel: An effect on the reduction of greenhouse gases emission

    Directory of Open Access Journals (Sweden)

    Ljupković Radomir B.

    2014-01-01

    Full Text Available The influence of the physicochemical properties of a series of CaO catalysts activated at different temperatures on the biodiesel production was investigated. These catalysts show dissimilar yields in the transesterification of triglycerides with methanol. We have found significant relationships between structural properties (the type of the pore system, the typical CaO crystal phase and the sizes of crystallites (up to 25 nm, the minimal weight percentage of CaO phase, the total surface basicity and potential existence of two types of basic active sites of CaO prepared and activated by means of thermal treatment at highest temperature and catalytic efficiency. Benefits of this catalyst are short contact time, standard operating temperature and atmospheric conditions, relatively low molar ratios and small catalyst loading. These all together resulted in a very high biodiesel yield of high purity. The properties of different biodiesel (obtained with the use of the prepared CaO catalyst blends with different diesel and biodiesel ratios indicate that the higher the fraction of biodiesel fuel the better the achieved fuel properties according to the EU standards. A significant reduction of CO2 and CO emissions and only a negligible NOx increase occurred when blends with an increased biodiesel portion was used. The use of biodiesel derived blends, and the eventual complete replacement of fossil fuels with biodiesel as a renewable, alternative fuel for diesel engines, would greatly contribute to the reduction of greenhouse gases emissions. [Projekat Ministarstva nauke Republike Srbije, br. ON 172061 i TR 34008

  5. Numerical modeling of NOx reduction using pyrolysis products from biomass-based materials

    International Nuclear Information System (INIS)

    Pisupati, Sarma V.; Bhalla, Sumeet

    2008-01-01

    Pyrolysis products of biomass (bio-oils) have been shown to cause a reduction in NO x emissions when used as reburn fuel in combustion systems. When these bio-oils are processed with lime, calcium is ion-exchanged and the product is called BioLime TM . BioLime TM , when introduced into a combustion chamber, causes oils to pyrolyze and reduce NO x emissions through reburn mechanisms while simultaneously causing Ca to react with SO 2 . Thus NO x and SO 2 emissions are reduced at the same time. The devolatilization rates of two biomass-based materials were studied using TGA and were related to the yield of pyrolysis gases and char during flash pyrolysis. Numerical simulations using CHEMKIN to model NO reduction through homogeneous gas phase reactions were reported. The numerical predictions were then compared to NO x emission levels from experiments in a down-fired combustor (DFC) to validate the model. A difference in NO reduction was observed by use of different bio-oils under similar operating conditions. This is believed to be due to the difference in yield of flash pyrolysis products of bio-oils. Also, different pyrolysis gases have different NO x reduction potentials. Knowledge of the relative contribution of pyrolysis gases in NO reduction will help choose a feedstock of biomass that will aid in increasing the yield of the desired species. A parametric analysis was done using the model to study the effect of varying concentrations of hydrocarbons, CO 2 , CO, and H 2 , and the results were then verified using a flow reactor. The analysis showed that hydrocarbons were mainly responsible for causing reduction in emissions of NO, whereas CO 2 , CO, and H 2 have very little effect on NO reduction

  6. Reduction of NOx emissions in regenerative fossil fuel fired glass furnaces: a review of literature and experimental studies

    NARCIS (Netherlands)

    Beerkens, R.G.C.; Limpt, J.A.C. van

    2008-01-01

    The mechanism of nitrogen oxide (NOx) formation in combustion chambers of glass furnaces is briefly described. The most important parameters governing the NOx emissions of glass furnaces are discussed. Elimination or minimisation of conditions that cause the formation of nitrogen oxides in

  7. Extraction of NOx and Determination of Nitrate by Acid Reduction in ...

    African Journals Online (AJOL)

    Nitrite is determined by Griess reaction, and removed from samples by urea treatment to obviate any interference by nitrite in nitrate determination. Nitrate is determined by acid reduction method with minimum detection limit 0.5 ppm as N. The methods have been applied to selected environmental samples including food ...

  8. Reactivity of Aryl Halides for Reductive Dehalogenation in (Seawater Using Polymer-Supported Terpyridine Palladium Catalyst

    Directory of Open Access Journals (Sweden)

    Toshimasa Suzuka

    2015-05-01

    Full Text Available A polymer-supported terpyridine palladium complex was prepared. The complex was found to promote hydrodechlorination of aryl chlorides with potassium formate in seawater. Generally, reductive cleavage of aryl chlorides using transition metal catalysts is more difficult than that of aryl bromides and iodides (reactivity: I > Br > Cl; however, the results obtained did not follow the general trend. Therefore, we investigated the reaction inhibition agents and found a method to remove these inhibitors. The polymeric catalysts showed high catalytic activity and high reusability for transfer reduction in seawater.

  9. Catalytic reduction of N2O over Ag-Pd/Al2O3 bimetallic catalysts.

    Science.gov (United States)

    Tzitzios, V K; Georgakilas, V

    2005-05-01

    A study of the catalytic conversion of N2O to N2 over a bimetallic Ag-Pd catalyst is described in this article. Several Ag-Pd catalytic systems were prepared supported on Al2O3 with different ratios and their catalytic activity for the direct decomposition of N2O and their reduction with CO was measured. Based on the experimental results, it was observed that Ag-Pd bimetallic catalyst (5-0.5%) was the most active for both nitrous oxide reduction and direct decomposition. This high activity seems to be connected with a synergistic effect between Ag and Pd.

  10. Modeling analysis of urea direct injection on the NOx emission reduction of biodiesel fueled diesel engines

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Li, J.; Zhou, D.Z.

    2015-01-01

    Highlights: • The effects of urea direct injection on NO x emissions reduction was investigated. • Aqueous urea solution was proposed to be injected after the fuel injection process. • The optimized injection strategy achieved a reduction efficiency of 58%. • There were no severe impacts on the CO emissions and BSFC. - Abstract: In this paper, a numerical simulation study was conducted to explore the possibility of an alternative approach: direct aqueous urea solution injection on the reduction of NO x emissions of a biodiesel fueled diesel engine. Simulation studies were performed using the 3D CFD simulation software KIVA4 coupled with CHEMKIN II code for pure biodiesel combustion under realistic engine operating conditions of 2400 rpm and 100% load. The chemical behaviors of the NO x formation and urea/NO x interaction processes were modeled by a modified extended Zeldovich mechanism and urea/NO interaction sub-mechanism. To ensure an efficient NO x reduction process, various aqueous urea injection strategies in terms of post injection timing, injection angle, and injection rate and urea mass fraction were carefully examined. The simulation results revealed that among all the four post injection timings (10 °ATDC, 15 °ATDC, 20 °ATDC and 25 °ATDC) that were evaluated, 15 °ATDC post injection timing consistently demonstrated a lower NO emission level. The orientation of the aqueous urea injection was also shown to play a critical role in determining the NO x removal efficiency, and 50 degrees injection angle was determined to be the optimal injection orientation which gave the most NO x reduction. In addition, both the urea/water ratio and aqueous urea injection rate demonstrated important roles which affected the thermal decomposition of urea into ammonia and the subsequent NO x removal process, and it was suggested that 50% urea mass fraction and 40% injection rate presented the lowest NO emission levels. At last, with the optimized injection

  11. Pt Monolayer Shell on Nitrided Alloy Core—A Path to Highly Stable Oxygen Reduction Catalyst

    Directory of Open Access Journals (Sweden)

    Jue Hu

    2015-07-01

    Full Text Available The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC. Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared PtMLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability of the PtMLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.

  12. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    Science.gov (United States)

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  13. Influence of BaO in perovskite electrodes for the electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Simonsen, Vibe Louise Ernlund; Johnsen, M.M.; Kammer Hansen, Kent

    2007-01-01

    Using the point electrode method, the effect of BaO on electrochemical reduction of NO (x) was investigated using the perovskites La0.85Sr0.15MnO3 (LSM15) and La0.85Sr0.15CoO3 (LSCo15) as electrode materials. The experiments were carried out in the temperature range 400-600 degrees C in 1% NO and...

  14. Nanostructured Mn{sub x}O{sub y} for oxygen reduction reaction (ORR) catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Delmondo, Luisa, E-mail: luisa.delmondo@polito.it [Department of Applied Science and Technology—DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Salvador, Gian Paolo; Muñoz-Tabares, José Alejandro; Sacco, Adriano; Garino, Nadia; Castellino, Micaela [Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy); Gerosa, Matteo; Massaglia, Giulia [Department of Applied Science and Technology—DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy); Chiodoni, Angelica; Quaglio, Marzia [Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy)

    2016-12-01

    Highlights: • Good performance catalysts for oxygen reduction reaction. • Nanostructured low-cost catalysts respect to platinum ones. • Synthesis using environmental benign chemical reagents. - Abstract: In the field of fuel cells, oxygen plays a key role as the final electron acceptor. To facilitate its reduction (Oxygen Reduction Reaction—ORR), a proper catalyst is needed and platinum is considered the best one due to its low overpotential for this reaction. By considering the high price of platinum, alternative catalysts are needed and manganese oxides (Mn{sub x}O{sub y}) can be considered promising substitutes. They are inexpensive, environmental friendly and can be obtained into several forms; most of them show significant electro-catalytic performance, even if strategies are needed to increase their efficiency. In particular, by developing light and high-surface area materials and by optimizing the presence of catalytic sites, we can obtain a cathode with improved electro-catalytic performance. In this case, nanofibers and xerogels are two of the most promising nanostructures that can be used in the field of catalysis. In this work, a study of the morphological and catalytic behavior of Mn{sub x}O{sub y} nanofibers and xerogels is proposed. Nanofibers were obtained by electrospinning, while xerogels were prepared by sol-gel and freeze drying techniques. Despite of the different preparation approaches, the obtained nanostructured manganese oxides exhibited similar catalytic performance for the ORR, comparable to those obtained from Pt catalysts.

  15. Use of Biomass as a Sustainable and Green Fuel with Alkali-Resistant DeNOx Catalysts based on Sulfated or Tungstated Zirconia

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Fehrmann, Rasmus; Christensen, Claus H.

    Use of biomass as an alternative to fossil fuels has achieved increasing interest since it does not contribute to CO2 accumulation in the atmosphere. Over the past 10-15 years, heat and electricity production from biomass has increased to almost 7% of all energy supply in the European Union...... and is expected to increase further. The by far most efficient use of solid bio-resources in energy production is combustion in combined biomass and coal or oil-fired power plants. However, in such applications nitrogen oxides are inevitably present in the flue gases. Selective catalytic reduction (SCR...... of alternative catalysts that are more resistant towards poisoning with potassium. Since deactivation with alkali additives generally occurs due to strong acid-base interaction with the V-OH sites responsible for the activated ammonia adsorption, one possible way to increase catalyst resistance to alkaline...

  16. Observations of the Temperature Dependent Response of Ozone to NOx Reductions in an Urban Plume

    Energy Technology Data Exchange (ETDEWEB)

    LaFranchi, B W; Goldstein, A H; Cohen, R C

    2011-01-25

    Observations of NO{sub x} in the Sacramento, CA region show that mixing ratios decreased by 30% between 2001 and 2008. Here we use an observation-based method to quantify net ozone production rates in the outflow from the Sacramento metropolitan region and examine the O{sub 3} decrease resulting from reductions in NO{sub x} emissions. This observational method does not rely on assumptions about detailed chemistry of ozone production, rather it is an independent means to verify and test these assumptions. We use an instantaneous steady-state model as well as a detailed 1-D plume model to aid in interpretation of the ozone production inferred from observations. In agreement with the models, the observations show that early in the plume, the NO{sub x} dependence for O{sub x} (O{sub x} = O{sub 3}+NO{sub 2}) production is strongly coupled with temperature, suggesting that temperature dependent biogenic VOC emissions can drive O{sub x} production between NO{sub x}-limited and NO{sub x}-suppressed regimes. As a result, NO{sub x} reductions were found to be most effective at higher temperatures over the 7 year period. We show that violations of the California 1-hour O{sub 3} standard (90 ppb) in the region have been decreasing linearly with decreases in NO{sub x} (at a given temperature) and predict that reductions of NO{sub x} concentrations (and presumably emissions) by an additional 30% (relative to 2007 levels) will eliminate violations of the state 1 hour standard in the region. If current trends continue, a 30% decrease in NO{sub x} is expected by 2012, and an end to violations of the 1 hour standard in the Sacramento region appears to be imminent.

  17. Pressure pyrolysed non-precious oxygen reduction catalysts for proton exchange membrane fuel cells

    Science.gov (United States)

    Nallathambi, Vijayadurga

    2011-12-01

    Worldwide energy demand has driven long-term efforts towards developing a clean, hydrogen-based energy economy. Polymer electrolyte membrane fuel cells (PEMFC) are low emissions and high efficiency devices that utilize the power of hydrogen and are a key enabling technology for the hydrogen economy. Carbon supported platinum-black is the state-of the art catalyst for oxygen reduction in a PEMFC because it can withstand the acidic environment. However, the high cost and low abundance of this precious metal has limited large-scale commercialization of PEMFCs. Current efforts focus on developing alternative inexpensive, non-noble metal-based catalysts for oxygen reduction with performance comparable to conventional platinum based electrocatalysts. In this work, inexpensive metal-nitrogen-carbon (MNC) catalysts have been synthesized by pyrolyzing transition metal and nitrogen precursors together with high surface area carbon materials in a closed, constant-volume quartz tube. High pressure generated due to nitrogen precursor evaporation lead to increased surface nitrogen content in the catalysts post-pyrolysis. Electrochemical oxygen reduction activity of MNC catalysts was analyzed using half-cell Rotating Ring Disc Electrode (RRDE) studies. The effect of nitrogen precursor morphology on the generation of active sites has been explored in detail. By increasing the Nitrogen/Carbon ratio of the nitrogen precursor, the accessible active site density increased by reducing carbon deposition in the pores of the carbon support during pyrolysis. The most active catalysts were obtained using melamine, having a N/C ratio of 2. Single PEMFC measurements employing MNC catalysts as cathodes indicated kinetic current density as high as 15 A cm-3 at 0.8 ViR-free and over 100 h of stable current at 0.5 V were observed. Effects of carbon free ammonia generating solid nitrogen precursors such as urea and ammonium carbamate were also studied. These precursors etched the carbon support

  18. OPTIMIZED FUEL INJECTOR DESIGN FOR MAXIMUM IN-FURNACE NOx REDUCTION AND MINIMUM UNBURNED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    SAROFIM, A F; LISAUSKAS, R; RILEY, D; EDDINGS, E G; BROUWER, J; KLEWICKI, J P; DAVIS, K A; BOCKELIE, M J; HEAP, M P; PERSHING, D

    1998-01-01

    Reaction Engineering International (REI) has established a project team of experts to develop a technology for combustion systems which will minimize NO x emissions and minimize carbon in the fly ash. This much need technology will allow users to meet environmental compliance and produce a saleable by-product. This study is concerned with the NO x control technology of choice for pulverized coal fired boilers,"in-furnace NOx control," which includes: staged low-NOx burners, reburning, selective non-catalytic reduction (SNCR) and hybrid approaches (e.g., reburning with SNCR). The program has two primary objectives: 1) To improve the performance of "in-furnace" NOx control, processes. 2) To devise new, or improve existing, approaches for maximum "in-furnace" NOx control and minimum unburned carbon. The program involves: 1) fundamental studies at laboratory- and bench-scale to define NO reduction mechanisms in flames and reburning jets; 2) laboratory experiments and computer modeling to improve our two-phase mixing predictive capability; 3) evaluation of commercial low-NOx burner fuel injectors to develop improved designs, and 4) demonstration of coal injectors for reburning and low-NOx burners at commercial scale. The specific objectives of the two-phase program are to: 1 Conduct research to better understand the interaction of heterogeneous chemistry and two phase mixing on NO reduction processes in pulverized coal combustion. 2 Improve our ability to predict combusting coal jets by verifying two phase mixing models under conditions that simulate the near field of low-NOx burners. 3 Determine the limits on NO control by in-furnace NOx control technologies as a function of furnace design and coal type. 5 Develop and demonstrate improved coal injector designs for commercial low-NOx burners and coal reburning systems. 6 Modify the char burnout model in REI's coal

  19. Fuel cell electrocatalsis : oxygen reduction on Pt-based nanoparticle catalysts

    NARCIS (Netherlands)

    Vliet, Dennis Franciscus van der

    2010-01-01

    The thesis contains a discussion on the subject of the Oxygen Reduction Reaction (ORR) on Pt-alloy nanoparticle catalysts in the Rotating Disk Electrode (RDE) method. An insight in some of the difficulties of this method is given with proper solutions and compensations for these problems. Pt3Co,

  20. Activity and selectivity control in reductive amination of butyraldehyde over noble metal catalysts.

    NARCIS (Netherlands)

    Bodis, E.; Lefferts, Leonardus; Muller, T.E.; Pestman, R.; Lercher, J.A.

    2005-01-01

    Approaches to control selectivity and activity in the catalytic reductive amination of butyraldehyde with ammonia over carbon supported noble metal catalysts (Ru, Rh, Pd, and Pt) were explored. Detailed analysis of the reaction network shows that the Schiff base N-[butylidene]butan-1-amine is the

  1. Comparison of Bimetallic and Trimetallic Catalyst in Reductive Dechlorination; Influence of Copper Addition

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, František; Kaštánek, Petr; Maléterová, Ywetta; Kallistová, A.; Šolcová, Olga

    2015-01-01

    Roč. 2, č. 7 (2015), s. 1954-1958 E-ISSN 3159-0040 R&D Projects: GA TA ČR TA04020700 Institutional support: RVO:67985858 ; RVO:67985831 Keywords : PCB * reductive dechlorination * bimetallic and trimetallic catalysts Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.jmest.org/wp-content/uploads/JMESTN42350950.pdf

  2. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Bergqvist, R. S.; Hjuler, H. A.

    1999-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and PBI polymer electrolytes in a temperature range from 80 to 190°C. Compared with pure H3PO4, using the H3PO4 doped Nafion and PBI polymer electrolytes can significantly improve the oxygen...

  3. Reduction of CO2 by nickel (II) macrocycle catalyst at HMDE

    Indian Academy of Sciences (India)

    Unknown

    These complexes can efficiently mediate the electron transfer from the cathode to the substrate, CO2. In addition to lowering the overpotential, a good catalyst must increase the selectivity of the product being produced and yield high current efficiencies for a single product. When considering CO as the primary reduction ...

  4. Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Wang, Xiao Xia; Cullen, David A; Pan, Yung-Tin; Hwang, Sooyeon; Wang, Maoyu; Feng, Zhenxing; Wang, Jingyun; Engelhard, Mark H; Zhang, Hanguang; He, Yanghua; Shao, Yuyan; Su, Dong; More, Karren L; Spendelow, Jacob S; Wu, Gang

    2018-03-01

    Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN 4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm -2 ). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN 4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells.

    Science.gov (United States)

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-02-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells.

  6. Evaluation of mechanical properties in metal wire mesh supported selective catalytic reduction (SCR) catalyst structures

    Science.gov (United States)

    Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar

    2018-04-01

    The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.

  7. Oxygen reduction reaction catalysts of manganese oxide decorated by silver nanoparticles for aluminum-air batteries

    International Nuclear Information System (INIS)

    Sun, Shanshan; Miao, He; Xue, Yejian; Wang, Qin; Li, Shihua; Liu, Zhaoping

    2016-01-01

    In this paper, the hybrid catalysts of manganese oxide decorated by silver nanoparticles (Ag-MnO x ) are fully investigated and show the excellent oxygen reduction reaction (ORR) activity. The Ag-MnO 2 is synthesized by a facile strategy of the electroless plating of silver on the manganese oxide. The catalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Then, the ORR activities of the catalysts are systematically investigated by the rotating disk electrode (RDE) and aluminum-air battery technologies. The Ag nanoparticles with the diameters at about 10 nm are anchored on the surface of α-MnO 2 and a strong interaction between Ag and MnO 2 components in the hybrid catalyst are confirmed. The electrochemical tests show that the activity and stability of the 50%Ag-MnO 2 composite catalyst (the mass ratio of Ag/MnO 2 is 1:1) toward ORR are greatly enhanced comparing with single Ag or MnO 2 catalyst. Moreover, the peak power density of the aluminum-air battery with 50%Ag-MnO 2 can reach 204 mW cm −2 .

  8. Reactivity of Surface Nitrates in H2-Assisted SCR of NOx Over Ag/Al2O3 Catalyst

    DEFF Research Database (Denmark)

    Sadokhina, N. A.; Doronkin, Dmitry E.; Baeva, G. N.

    2013-01-01

    The role of nitrate ad-species in H2-assisted SCR over Ag/Al2O3 was compared in NH3-SCR and n-C6H14-SCR processes. It was found that nitrates could be reduced by NH3 or n-C6H14 at similar rates with H2 co-feeding which indicates a common rate-limiting step. However, contributions of surface nitrate...... reduction to the overall NH3-SCR or n-C6H14-SCR are different as revealed by comparing the rates of nitrate reduction with the rates of steady-state processes. The rate of the steady-state n-C6H14-SCR is virtually identical to the rate of surface nitrate reduction suggesting a significant contribution...

  9. Cobalt nanoparticles as reusable catalysts for reduction of 4 ...

    Indian Academy of Sciences (India)

    Abstract. Facile reduction of p-nitrophenol to p-aminophenol by sodium borohydride catalysed by cobalt nanopar- ticles (CoNPs) has been discussed. A simple approach has been made to synthesize highly active and ordered structures of CoNPs. The air-stable nanoparticles were prepared from cobalt sulphate using ...

  10. Influence of Reduction Promoters on Stability of Cobalt/g-Alumina Fischer-Tropsch Synthesis Catalysts

    OpenAIRE

    Gary Jacobs; Wenping Ma; Burtron H. Davis

    2014-01-01

    This focused review article underscores how metal reduction promoters can impact deactivation phenomena associated with cobalt Fischer-Tropsch synthesis catalysts. Promoters can exacerbate sintering if the additional cobalt metal clusters, formed as a result of the promoting effect, are in close proximity at the nanoscale to other cobalt particles on the surface. Recent efforts have shown that when promoters are used to facilitate the reduction of small crystallites with the aim of increasing...

  11. Simultaneous reduction of NOx and smoke in a dual fuel DI diesel engine

    International Nuclear Information System (INIS)

    Barik, Debabrata; Murugan, S.

    2014-01-01

    Highlights: • A solution to use the de-oiled cakes disposed from oil industries. • Biogas produced from Karanja de-oiled cakes contains about 73% methane. • Simultaneous reduction of NO and smoke is possible with KME–biogas dual fuel operation. • Up to 30% replacement of KME is possible with induction of biogas at 0.9 kg/h. • Improved part load performance and emission with KME–biogas dual fuel. - Abstract: This paper presents the results of an experimental investigation conducted on a compression ignition (CI) engine, modified to run on dual fuel mode, using biogas as a primary fuel and KME (Karanja methyl ester) as a pilot fuel. The biogas was produced by anaerobic digestion of Pongamia pinnata (Karanja) seed cakes. In dual fuel mode, the biogas was inducted at four different flow rates, viz. 0.3 kg/h, 0.6 kg/h, 0.9 kg/h and 1.2 kg/h through the intake manifold of the engine. The biogas flow rate of 0.9 kg/h gave a better performance and lower emissions, than those of the other flow rates. The NO and smoke emissions were found to be lower by about 34% and 14%, than those of KME operation, at full load. The ignition delay was longer by about 1–2 °CA in the dual fuel operation, than that of KME at full load. The part load performance was found to be better in dual fuel operation, with reduced emissions of NO and smoke, in comparison with KME. The ignition delay at part load in dual fuel operation was also lower than that of KME operation

  12. Assessing the impact of primary measures for NOx reduction on the thermal power plant steam boiler

    International Nuclear Information System (INIS)

    Stupar, Goran; Tucaković, Dragan; Živanović, Titoslav; Belošević, Srdjan

    2015-01-01

    The European normatives prescribe content of 200 mg/Nm 3 NO x for pulverized coal combusting power plants. In order to reduce content of NO x in Serbian thermal power plant (TPP) 'Kostolac B' it's necessary to implement particular measures until 2016. The mathematical model of lignite combustion in the steam boiler furnace is defined and applied to analyze the possibility of implementing certain primary measures for reducing nitrogen oxides and their effects on the steam boiler operation. This model includes processes in the coal-fired furnace and defines radiating reactive two-phase turbulent flow. The model of turbulent flow also contains sub-model of fuel and thermal NO x formation and destruction. This complex mathematical model is related to thermal and aerodynamic calculations of the steam boiler within a unified calculation system in order to analyze the steam boiler overall work. This system provides calculations with a number of influential parameters. The steam boiler calculations for unit 1 (350 MWe) of TPP 'Kostolac B' are implemented for existing and modified combustion system in order to achieve effective, reliable and ecological facility work. The paper presents the influence analysis of large number of parameters on the steam boiler operation with an accepted concept of primary measures. Presented system of calculations is verified against measurements in TPP 'Kostolac B'. - Highlights: • Modern steam boilers need to operate according to ecological standards. • Possibility of applying some of the primary measures of NO x reduction. • Conventional calculations have no possibility to estimate sub-stoichiometric combustion. • Develop a new method of connecting the calculations. • Analysis shows the most favorable operation boiler regime (efficiency and ecology)

  13. Preparation and Characterisation of Ag/Alumina Catalysts for the Removal of NOx Emissions under Oxygen Rich Conditions

    Czech Academy of Sciences Publication Activity Database

    Arve, K.; Čapek, Libor; Klingstedt, F.; Eränen, K.; Lindfors, L. E.; Murzin, D. Yu.; Dědeček, Jiří; Sobalík, Zdeněk; Wichterlová, Blanka

    30-31, 1/4 (2004), s. 91-95 ISSN 1022-5528 Grant - others:AMMONORE G5RD-CT(XE) 2001-00595 Institutional research plan: CEZ:AV0Z4040901 Keywords : Ag/alumina * NO reduction * HC-SCR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.493, year: 2004

  14. Reversible and irreversible deactivation of Cu-CHA NH3-SCR catalysts by SO2 and SO3

    DEFF Research Database (Denmark)

    Hammershøi, Peter S.; Jangjou, Yasser; Epling, William S.

    2018-01-01

    Abstract Sulfur oxides are a common source for the deactivation of Cu-exchanged CHA zeolite based catalysts used for NOx reduction in diesel exhausts by selective catalytic reduction with NH3 (NH3-SCR). Since water and possible formation of SO3 affect the deactivation of Cu-CHA catalysts, the dea...

  15. Highly active Pd–In/mesoporous alumina catalyst for nitrate reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Werth, Charles J. [Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 East Dean Keeton St., Stop C1786, Austin, TX 78712 (United States); Zhang, Yalei, E-mail: zhangyalei2003@163.com [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhou, Xuefei, E-mail: zhouxuefei@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China)

    2015-04-09

    Highlights: • Pd–In nanoparticles (6–7 nm) uniformly form in the mesopores of alumina (4 nm). • Pd–In nanoparticles aggregation is prevented during the synthesis process. • The reduction rate of nitrate is efficient by using the obtained catalyst. • The selectivity toward N{sub 2} is ideal by using the obtained catalyst. - Abstract: The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd–In/Al{sub 2}O{sub 3} with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO{sub 2}-buffered water and under continuous H{sub 2} as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd–In ratio of 4, with a first-order rate constant (k{sub obs} = 0.241 L min{sup −1} g{sub cata}{sup −1}) that was 1.3× higher than that of conventional Pd–In/Al{sub 2}O{sub 3} (5 wt% Pd; 0.19 L min{sup −1} g{sub cata}{sup −1}). The Pd–In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate.

  16. Location of adsorbed species in NO-reduction catalysts by high resolution neutron powder diffraction

    International Nuclear Information System (INIS)

    Fowkes, A.J.; Rosseinsky, M.J.

    1999-01-01

    Complete text of publication follows. Catalysts containing copper ion exchanged into zeolites are attracting considerable attention due to their efficiency for both NO decomposition and the selective catalytic reduction of NO x in so-called lean-burn conditions in automotive exhausts. This presentation will describe the application of in-situ high resolution neutron powder diffraction to study active sites in a Cu-zeolite Y catalyst active for NO decomposition. The study under NO pressure reveals the location of two distinct copper sites for sorption. The influence of copper oxidation state on the structure of both the pristine and NO-loaded zeolites will be discussed. (author)

  17. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol.

    Science.gov (United States)

    Studt, Felix; Sharafutdinov, Irek; Abild-Pedersen, Frank; Elkjær, Christian F; Hummelshøj, Jens S; Dahl, Søren; Chorkendorff, Ib; Nørskov, Jens K

    2014-04-01

    The use of methanol as a fuel and chemical feedstock could become very important in the development of a more sustainable society if methanol could be efficiently obtained from the direct reduction of CO2 using solar-generated hydrogen. If hydrogen production is to be decentralized, small-scale CO2 reduction devices are required that operate at low pressures. Here, we report the discovery of a Ni-Ga catalyst that reduces CO2 to methanol at ambient pressure. The catalyst was identified through a descriptor-based analysis of the process and the use of computational methods to identify Ni-Ga intermetallic compounds as stable candidates with good activity. We synthesized and tested a series of catalysts and found that Ni5Ga3 is particularly active and selective. Comparison with conventional Cu/ZnO/Al2O3 catalysts revealed the same or better methanol synthesis activity, as well as considerably lower production of CO. We suggest that this is a first step towards the development of small-scale low-pressure devices for CO2 reduction to methanol.

  18. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol

    Science.gov (United States)

    Studt, Felix; Sharafutdinov, Irek; Abild-Pedersen, Frank; Elkjær, Christian F.; Hummelshøj, Jens S.; Dahl, Søren; Chorkendorff, Ib; Nørskov, Jens K.

    2014-04-01

    The use of methanol as a fuel and chemical feedstock could become very important in the development of a more sustainable society if methanol could be efficiently obtained from the direct reduction of CO2 using solar-generated hydrogen. If hydrogen production is to be decentralized, small-scale CO2 reduction devices are required that operate at low pressures. Here, we report the discovery of a Ni-Ga catalyst that reduces CO2 to methanol at ambient pressure. The catalyst was identified through a descriptor-based analysis of the process and the use of computational methods to identify Ni-Ga intermetallic compounds as stable candidates with good activity. We synthesized and tested a series of catalysts and found that Ni5Ga3 is particularly active and selective. Comparison with conventional Cu/ZnO/Al2O3 catalysts revealed the same or better methanol synthesis activity, as well as considerably lower production of CO. We suggest that this is a first step towards the development of small-scale low-pressure devices for CO2 reduction to methanol.

  19. Molecular polypyridine-based metal complexes as catalysts for the reduction of CO2.

    Science.gov (United States)

    Elgrishi, Noémie; Chambers, Matthew B; Wang, Xia; Fontecave, Marc

    2017-02-06

    Polypyridyl transition metal complexes represent one of the more thoroughly studied classes of molecular catalysts towards CO 2 reduction to date. Initial reports in the 1980s began with an emphasis on 2nd and 3rd row late transition metals, but more recently the focus has shifted towards earlier metals and base metals. Polypyridyl platforms have proven quite versatile and amenable to studying various parameters that govern product distribution for CO 2 reduction. However, open questions remain regarding the key mechanistic steps that govern product selectivity and efficiency. Polypyridyl complexes have also been immobilized through a variety of methods to afford active catalytic materials for CO 2 reductions. While still an emerging field, materials incorporating molecular catalysts represent a promising strategy for electrochemical and photoelectrochemical devices capable of CO 2 reduction. In general, this class of compounds remains the most promising for the continued development of molecular systems for CO 2 reduction and an inspiration for the design of related non-polypyridyl catalysts.

  20. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.

    Science.gov (United States)

    Chakraborty, Sumit; Bhattacharya, Papri; Dai, Huiguang; Guan, Hairong

    2015-07-21

    The reductions of aldehydes, ketones, and esters to alcohols are important processes for the synthesis of chemicals that are vital to our daily life, and the reduction of CO2 to methanol is expected to provide key technology for carbon management and energy storage in our future. Catalysts that affect the reduction of carbonyl compounds often contain ruthenium, osmium, or other precious metals. The high and fluctuating price, and the limited availability of these metals, calls for efforts to develop catalysts based on more abundant and less expensive first-row transition metals, such as nickel and iron. The challenge, however, is to identify ligand systems that can increase the thermal stability of the catalysts, enhance their reactivity, and bypass the one-electron pathways that are commonly observed for first-row transition metal complexes. Although many other strategies exist, this Account describes how we have utilized pincer ligands along with other ancillary ligands to accomplish these goals. The bis(phosphinite)-based pincer ligands (also known as POCOP-pincer ligands) create well-defined nickel hydride complexes as efficient catalysts for the hydrosilylation of aldehydes and ketones and the hydroboration of CO2 to methanol derivatives. The hydride ligands in these complexes are substantially nucleophilic, largely due to the enhancement by the strongly trans-influencing aryl groups. Under the same principle, the pincer-ligated nickel cyanomethyl complexes exhibit remarkably high activity (turnover numbers up to 82,000) for catalytically activating acetonitrile and the addition of H-CH2CN across the C═O bonds of aldehydes without requiring a base additive. Cyclometalation of bis(phosphinite)-based pincer ligands with low-valent iron species "Fe(PR3)4" results in diamagnetic Fe(II) hydride complexes, which are active catalysts for the hydrosilylation of aldehydes and ketones. Mechanistic investigation suggests that the hydride ligand is not delivered to the

  1. Controllable synthesis of Co3O4 nanocrystals as efficient catalysts for oxygen reduction reaction

    Science.gov (United States)

    Li, Baoying; Zhang, Yihe; Du, Ruifeng; Liu, Lei; Yu, Xuelian

    2018-03-01

    The electrochemical oxygen reduction reaction (ORR) has received great attention due to its importance in fuel cells and metal–air batteries. Here, we present a simple approach to prepare non-noble metal catalyst-Co3O4 nanocrystals (NCs). The particle size and shape were simply controlled by different types and concentrations of metal precursor. Furthermore, different sizes and shapes of Co3O4 NCs are explored as electrocatalysts for ORR, and it has been observed that particles with a similar shape, and smaller particle size led to greater catalytic current densities because of the greater surface area. For particles with a comparable size, the shape or crystalline structure governed the activity of the electrocatalytic reactions. Most importantly, the 9 nm-Co3O4 were demonstrated to act as low-cost catalysts for the ORR with a similar performance to that of Pt catalysts.

  2. A proposed agglomerate model for oxygen reduction in the catalyst layer of proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Zhang, Xiaoxian; Gao, Yuan; Ostadi, Hossein; Jiang, Kyle; Chen, Rui

    2014-01-01

    Highlights: • We developed a new agglomerate model to describe oxygen reduction reaction. • We showed how to calculate the model parameters from catalyst layer structure. • We verified the agglomerate model. - Abstract: Oxygen diffusion and reduction in the catalyst layer of PEM fuel cell is an important process in fuel cell modelling, but models able to link the reduction rate to catalyst-layer structure are lack; this paper makes such an effort. We first link the average reduction rate over the agglomerate within a catalyst layer to a probability that an oxygen molecule, which is initially on the agglomerate surface, will enter and remain in the agglomerate at any time in the absence of any electrochemical reaction. We then propose a method to directly calculate distribution function of this probability and apply it to two catalyst layers with contrasting structures. A formula is proposed to describe these calculated distribution functions, from which the agglomerate model is derived. The model has two parameters and both can be independently calculated from catalyst layer structures. We verify the model by first showing that it is an improvement and able to reproduce what the spherical model describes, and then testing it against the average oxygen reductions directly calculated from pore-scale simulations of oxygen diffusion and reaction in the two catalyst layers. The proposed model is simple, but significant as it links the average oxygen reduction to catalyst layer structures, and its two parameters can be directly calculated rather than by calibration

  3. Temperature-programmed reduction and cyclic voltammetry of Pt/carbon-fibre paper catalysts for methanol electrooxidation

    International Nuclear Information System (INIS)

    Attwood, P.A.; McNicol, B.D.; Short, R.T.

    1981-01-01

    Temperature-programmed reduction (TPR) and cyclic voltammetry (CV) studies of platinum catalysts supported on pyrographite-coated carbon-fibre paper, and prepared by either ion exchange or impregnation, clearly demonstrate the nature of the interactions between the platinum species and the support. After drying the above catalysts at 120 0 C, the ion-exchanged preparation exhibits the stronger interaction with the carbon support, as might be expected since a chemical interaction with carbon surface groups is known to occur in such catalysts. The presence of a fraction of bulk Pt(NH 3 ) 4 (OH) 2 impregnating salt in the impregnated catalyst has been detected using TPR. After air activation at 300 0 C, subambient reduction peaks were observed and the strength of binding of Pt in the ion-exchanged catalyst was reflected by its increased difficulty of reduction in comparison with that of the impregnated catalyst. The stoichiometry of reduction in ion-exchanged catalysts corresponds to Pt 2+ → Pt 0 in both dried and activated catalysts, with a small amount of Pt 4+ present in the latter. Upon activation the impregnated catalyst showed the presence of some Pt metal, which was thought to arise from the decomposition of the fraction of bulk Pt(NH 3 ) 4 (OH) 2 in the dried catalyst. Activation of ion-exchanged catalysts at temperatures higher than 300 0 C led to a progressive weakening of the Pt-support interaction and consequent smaller Pt surface areas. Activation at 500 0 C in air produced Pt metal exclusively and very low Pt surface areas. The strong interaction between Pt and the carbon support upon activation of the ion-exchanged catalyst at 300 0 C is thought to be the origin of the large metal surface area and the high catalytic activity for methanol electrooxidation found upon reduction

  4. Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures

    Science.gov (United States)

    Hu, Yang; Jiang, Yiliang; Jensen, Jens Oluf; Cleemann, Lars N.; Li, Qingfeng

    2018-01-01

    Phosphoric acid is the common electrolyte for high-temperature polymer electrolyte fuel cells (HT-PEMFCs) that have advantages such as enhanced CO tolerance and simplified heat and water management. The currently used rotating disk electrode technique is limited to tests in dilute solutions at low temperatures and hence is not suitable for catalyst evaluation for HT-PEMFCs. In this study, we have designed and constructed a half-cell setup to measure the intrinsic activities of catalysts towards the oxygen reduction reaction (ORR) in conditions close to HT-PEMFC cathodes. By optimization of the hydrophobic characteristics of electrodes and the catalyst layer thickness, ORR activities of typical Pt/C catalysts are successfully measured in concentrated phosphoric acid at temperatures above 100 °C. In terms of mass-specific activities, the catalyst exhibits about two times higher activity in the half-cell electrode than that observed in fuel cells, indicating the feasibility of the technique as well as the potential for further improvement of fuel cell electrode performance.

  5. Reduction of NOx and particulate emissions from coal-fired boilers by modification of coal nozzles and combustion tuning

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, B.; Talanker, A.; Mugenstein, A.; Shpon, G.; Vikhansky, A.; Elperin, T.; Bar-Ziv, E.; Bockelie, M.; Eddings, E.; Sarofim, A.F. [Israel Electric Corporation, Haifa (Israel). Engineering Division

    2001-07-01

    In the present paper two issues are discussed: the effect of the burner replacement on boiler performance and NOx emissions and the effect of the burner replacement on performance and efficiency of electrostatic precipitators (ESP). We also have experimented with different coal types and found the coals that together with combustion tuning met commonly accepted emission limits for NOx (less than 600 mg/dNm{sup 3}) and levels of carbon in fly ash (LOI) (approximately 5-6%) for existing boilers without low NOx burners. Our measurements were accompanied by computer simulations of the combustion of the combustion process in the boiler. Special attention was paid to detailed simulation of the flow and ignition in the near-burner zone. 7 refs., 12 figs., 5 tabs.

  6. Sulfate Promoted Zirconia as Promising Alkali-Resistant Support for Catalytic NOx Removal

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Kustov, Arkadii; Christensen, Claus H.

    is the most efficient method to eliminate NOx from flue gases in stationary sources. The traditional SCR catalyst suffers significant deactivation with time due to the presence of relative large amounts of potassium in bio-fuels. A possible solution to this problem is use of highly acidic supports, which......The use of bio-fuels as alternatives to traditional fossil fuels has attracted much attention recent years since bio-fuels belong to a family of renewable types of energy sources and do not contribute to the green-house effect. Selective catalytic reduction (SCR) of NOx with ammonia as reductant...

  7. Optimization of the Pd-Fe-Mo Catalysts for Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells

    International Nuclear Information System (INIS)

    Lee, Yeayeon; Jang, Jeongseok; Lee, Jin Goo; Jeon, Ok Sung; Kim, Hyeong Su; Hwang, Ho Jung; Shul, Yong Gun

    2016-01-01

    Highlights: • Pd-Mo-Fe catalysts show high catalytic activity and stability for oxygen-reduction reactions in acid media. • The optimum compositions were 7.5:1.5:1.0 for Pd-Fe-Mo, and the optimum temperatures were 500 °C. • The Pd-Fe-Mo catalysts were successfully applied to the PEMFC cathode, showing ∼500 mA cm −1 at 0.6 V. • The lattice constant was strongly related to the activity and stability of the catalysts for oxygen-reduction reactions. - Abstract: Highly active and durable non-platinum catalysts for oxygen-reduction reaction (ORR) have been developed for energy conversion devices such as proton-exchange membrane fuel cells (PEMFCs). In this study, Pd-Fe-Mo catalyst is reported as a non-platinum catalyst for ORR. The atomic ratio and annealing temperatures are controlled on the catalysts to understand interplay between their physical and chemical properties and electrochemical activities. The Pd-Fe-Mo catalyst optimized with 7.5:1.5:1.0 of the atomic ratio and 500 °C of the annealing temperature shows 32.18 mA mg −1 PGM (PGM: platinum group metal) of the kinetic current density at 0.9 V for ORR, which is comparable to that of commercial Pt/C catalyst. The current density is degraded to 6.20 mA mg −1 PGM after 3000 cycling of cyclic voltammetry, but it is greatly enhanced value compared to other non-platinum catalysts. In actual application to PEMFCs, the 20% Pd-Fe-Mo catalyst supported on carbons exhibits a high performance of 506 mA cm −2 at 0.6 V. The results suggest that the Pd-Fe-Mo catalyst can be a good candidate for non-platinum ORR catalysts.

  8. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu; Feng, Zhenxing; Karakalos, Stavros; Luo, Langli; Qiao, Zhi; Xie, Xiaohong; Wang, Chongmin; Su, Dong; Shao, Yuyan; Wu, Gang (BNL); (Oregon State U.); (SC); (PNNL); (Buffalo)

    2017-09-26

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability

  9. A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Cicero W.B. [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC, V6T 1W5 (Canada); Department of Chemistry, Universidade Federal do Maranhao, Av. dos Portugueses, S/N 65.080-040 Sao Luis, MA (Brazil); Zhang, Lei; Lee, Kunchan; Liu, Hansan; Wang, Haijiang; Zhang, Jiujun [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC, V6T 1W5 (Canada); Marques, Aldalea L.B. [Department of Technology Chemistry, Universidade Federal do Maranhao, Sao Luis, MA (Brazil); Marques, Edmar P. [Department of Chemistry, Universidade Federal do Maranhao, Av. dos Portugueses, S/N 65.080-040 Sao Luis, MA (Brazil)

    2008-06-01

    This paper reviews over 100 articles related to heat-treated Fe- and Co-N/C catalysts for the oxygen reduction reaction. The literature shows that through several decades' effort in the development of non-noble catalysts such as heat-treated Fe- and Co-N/C catalysts, tremendous progress has been made in catalyst synthesis methodologies and the understanding of the mechanism. A heat-treatment step has been identified as necessary for catalyst activity and stability improvement. The enhanced performance of the catalysts is strongly dependent on the carbon support, the source of metal and nitrogen, and the thermal treatment conditions. The metal content in these catalysts also plays an important role in their activity and stability. A saturated metal content has been identified as a major limiting factor for further improvement of catalyst activity. The nitrogen content and the presence of a disordered or heterogeneous phase on the carbon-support surface seem to be the main requirements for an effective catalyst. The mechanisms by which activity and stability are enhanced after the heat treatment of these Fe- and Co-N/C catalysts are not fully understood yet. It is necessary to answer the question of whether or not the metal is part of the active catalytic site, as well as to identify the nature of the catalytic site. A more fundamental understanding will be of great help in designing alternative and innovative routes for catalyst synthesis. In general, the catalytic activity and stability of Fe- and Co-N/C catalysts are still below those of a Pt-based catalyst. However, under the strong driving force of fuel cell commercialization, Pt-free cathode catalysts with methanol tolerance, such as Fe- and Co-N/C, are attractive candidates for solving the problem of the cost of fuel cell catalysts. (author)

  10. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts.

    Science.gov (United States)

    Varnell, Jason A; Tse, Edmund C M; Schulz, Charles E; Fister, Tim T; Haasch, Richard T; Timoshenko, Janis; Frenkel, Anatoly I; Gewirth, Andrew A

    2016-08-19

    The widespread use of fuel cells is currently limited by the lack of efficient and cost-effective catalysts for the oxygen reduction reaction. Iron-based non-precious metal catalysts exhibit promising activity and stability, as an alternative to state-of-the-art platinum catalysts. However, the identity of the active species in non-precious metal catalysts remains elusive, impeding the development of new catalysts. Here we demonstrate the reversible deactivation and reactivation of an iron-based non-precious metal oxygen reduction catalyst achieved using high-temperature gas-phase chlorine and hydrogen treatments. In addition, we observe a decrease in catalyst heterogeneity following treatment with chlorine and hydrogen, using Mössbauer and X-ray absorption spectroscopy. Our study reveals that protected sites adjacent to iron nanoparticles are responsible for the observed activity and stability of the catalyst. These findings may allow for the design and synthesis of enhanced non-precious metal oxygen reduction catalysts with a higher density of active sites.

  11. Simultaneous Elimination of Soot and NOX through Silver-Barium Based Catalytic Materials

    Directory of Open Access Journals (Sweden)

    Ganesh Chandra Dhal

    2017-04-01

    Full Text Available In this research paper, the nanometric size effect, the effects of the intrinsic factors including structure, and the redox properties of three systems of nanometric of silver-based catalysts were summarized. In this work, these catalysts were investigated for the simultaneous removal of particulate matter (diesel soot, and NOX was compared with that of a model of Pt-Ba/Al2O3 catalyst. The Silver-Barium based catalytic materials of Ag (5 wt%-Ba(10 wt%/MO (MO=Al2O3, CeO2, ZrO2, and Ag (5 wt%-Sr (10 wt%/CeO2 catalysts have been prepared by wetness impregnation method and characterized by BET, XRD, HRTEM, XPS and TPR (temperature-programmed reduction experiments. The behavior of the catalyst in the soot combustion (under tight conditions and NOX elimination has been separately analyzed by means of temperature programmed oxidation and isothermal concentration step change experiments, respectively. The results showed that all the catalysts were active in soot combustion with an indicative decrease of oxidation onset temperature compared to uncatalyzed soot oxidation. The removal of NOX in the presence and in the absence of soot was investigated under cycling conditions, i.e. alternating lean-rich phases according to the LNT approach. It has been found that the Ag-based samples were able to simultaneously remove soot and NOX. In particular, studying the behavior of the prepared catalysts, the Ba-containing systems exhibited higher NOX storage capacity than Sr-catalyst; also, the nitrogen selectivity increased even if resulted lower than the traditional LNT Pt-based catalyst. An adverse effect of soot on the NOX storage activity has been also observed. Copyright © 2017 BCREC GROUP. All rights reserved Received: 18th August 2016; Revised: 19th October 2016; Accepted: 19th October 2016 How to Cite: Dhal, G.C., Dey, S., Prasad, R., Mohan, D. (2017. Simultaneous Elimination of Soot and NOX through Silver-Barium Based Catalytic Materials. Bulletin of

  12. A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Cicero W.B. [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC V6T 1W5 (Canada); Department of Chemistry, Universidade Federal do Maranhao, Av. dos Portugueses, S/N 65.080-040 Sao Luis, MA (Brazil); Zhang, Lei; Liu, Hansan; Lee, Kunchan; Wang, Haijiang; Zhang, Jiujun [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC V6T 1W5 (Canada); Marques, Aldalea L.B. [Department of Technology Chemistry, Universidade Federal do Maranhao, Sao Luis, MA (Brazil); Marques, Edmar P. [Department of Chemistry, Universidade Federal do Maranhao, Av. dos Portugueses, S/N 65.080-040 Sao Luis, MA (Brazil)

    2007-11-15

    This paper reviews over 120 papers regarding the effect of heat treatment on the catalytic activity and stability of proton exchange membrane (PEM) fuel cell catalysts. These catalysts include primarily unsupported and carbon-supported platinum (Pt), Pt alloys, non-Pt alloys, and transition metal macrocycles. The heat treatment can induce changes in catalyst properties such as particle size, morphology, dispersion of the metal on the support, alloying degree, active site formation, catalytic activity, and catalytic stability. The optimum heat-treatment temperature and time period are strongly dependent on the individual catalyst. With respect to Pt-based catalysts, heat treatment can induce particle-size growth, better alloying degree, and changes in the catalyst surface morphology from amorphous to more ordered states, all of which have a remarkable effect on oxygen reduction reaction (ORR) activity and stability. However, heat treatment of the catalyst carbon supports can also significantly affect the ORR catalytic activity of the supported catalyst. Regarding non-noble catalysts, in particular transition metal macrocycles, heat treatment is also important in ORR activity and stability improvement. In fact, heat treatment is a necessary step for introducing more active catalytic sites. For metal chalcogenide catalysts, it seems that heat treatment may not be necessary for catalytic activity and stability improvement. More research is necessary to improve our fundamental understanding and to develop a new strategy that includes innovative heat-treatment processes for enhancing fuel cell catalyst activity and stability. (author)

  13. A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction

    Science.gov (United States)

    Bezerra, Cicero W. B.; Zhang, Lei; Liu, Hansan; Lee, Kunchan; Marques, Aldaléa L. B.; Marques, Edmar P.; Wang, Haijiang; Zhang, Jiujun

    This paper reviews over 120 papers regarding the effect of heat treatment on the catalytic activity and stability of proton exchange membrane (PEM) fuel cell catalysts. These catalysts include primarily unsupported and carbon-supported platinum (Pt), Pt alloys, non-Pt alloys, and transition metal macrocycles. The heat treatment can induce changes in catalyst properties such as particle size, morphology, dispersion of the metal on the support, alloying degree, active site formation, catalytic activity, and catalytic stability. The optimum heat-treatment temperature and time period are strongly dependent on the individual catalyst. With respect to Pt-based catalysts, heat treatment can induce particle-size growth, better alloying degree, and changes in the catalyst surface morphology from amorphous to more ordered states, all of which have a remarkable effect on oxygen reduction reaction (ORR) activity and stability. However, heat treatment of the catalyst carbon supports can also significantly affect the ORR catalytic activity of the supported catalyst. Regarding non-noble catalysts, in particular transition metal macrocycles, heat treatment is also important in ORR activity and stability improvement. In fact, heat treatment is a necessary step for introducing more active catalytic sites. For metal chalcogenide catalysts, it seems that heat treatment may not be necessary for catalytic activity and stability improvement. More research is necessary to improve our fundamental understanding and to develop a new strategy that includes innovative heat-treatment processes for enhancing fuel cell catalyst activity and stability.

  14. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2000-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and polybenzimidazole (PBI) polymer electrolytes in a temperature range up to 190 degrees C. Compared with pure H3PO4, the combination of H3PO4 and polymer electrolytes can significantly...... membrane fuel cell based on H3PO4-doped PBI for operation at temperatures between 150 and 200 degrees C. (C) 2000 Elsevier Science Ltd. All rights reserved....

  15. Highly Selective TiN-Supported Highly Dispersed Pt Catalyst: Ultra Active toward Hydrogen Oxidation and Inactive toward Oxygen Reduction.

    Science.gov (United States)

    Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun

    2018-01-31

    The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.

  16. New insights into the active surface species of silver alumina catalysts in the selective catalytic reduction of NO

    NARCIS (Netherlands)

    Korhonen, S.T.|info:eu-repo/dai/nl/326090606; Beale, A.M.|info:eu-repo/dai/nl/325802068; Newton, M.A.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    The performance of silver alumina catalysts and silver aluminate was studied in the selective catalytic reduction (SCR) of NO by propene. The use of boehmite during the impregnation step ensured a strong interaction between the silver species and the alumina surface in the final calcined catalyst.

  17. Graphene layer encapsulated metal nanoparticles as a new type of non-precious metal catalysts for oxygen reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Zhong, Lijie; Jensen, Jens Oluf

    2016-01-01

    Cheap and efficient non-precious metal catalysts for oxygen reduction have been a focus of research in the field of low-temperature fuel cells. This review is devoted to a brief summary of the recent work on a new type of catalysts, i.e., the graphene layer encapsulated metal nanoparticles...

  18. Antioxidant (A-tocopherol acetate) effect on oxidation stability and NOx emission reduction in methyl ester of Annona oil operated diesel engine

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-05-01

    There is a major drawback while using biodiesel as a alternate fuel for compression ignition diesel engine due to lower heating value, higher viscosity, higher density and higher oxides of nitrogen emission. To minimize these drawbacks, fuel additives can contribute towards engine performance and exhaust emission reduction either directly or indirectly. In this current work, the test was conducted to investigate the effect of antioxidant additive (A-tocopherol acetate) on oxidation stability and NOx emission in a of Annona methyl ester oil (MEAO) fueled diesel engine. The A-tocopherol acetate is mixed in different concentrations such as 0.01, 0.02, 0.03 and 0.04% with 100% by vol MEAO. It is concluded that the antioxidant additive very effective in increasing the oxidation stability and in controlling the NOx emission. Further, the addition of antioxidant additive is slight increase the HC, CO and smoke emissions. Hence, A-tocopherol acetate is very effective in controlling the NOx emission with MEAO operated diesel engine without any major modification.

  19. Effect of SO2 on the performance of Ag-Pd/Al2O3 for the selective catalytic reduction of NOx with C2H5OH.

    Science.gov (United States)

    Xie, Shu-xia; Yu, Yun-bo; Wang, Jin; He, Hong

    2006-01-01

    The influence of SO2 on the performance of Ag-Pd/Al2O3 for the selective catalytic reduction (SCR) of NOx with C2H5OH was investigated experimentally. The activity test results suggest that Ag-Pd/Al203 shows a small activity loss in the presence of SO2 when using C2H5OH as a reductant. In situ DRIFTS spectra show that the activity loss originates from the formation of surface sulphate species on the Ag-Pd/Al2O3. The surface sulphate species formation inhibits the formation of nitrate, whereas hardly changes the partial oxidation of C2HsOH. Compared with the NOx reduction by C3H6 an obvious suppression of the surface sulphate species formation was observed by DRIFTS experiment when using C2H50H as a reductant. This phenomenon reveals the better catalytic performance and strong SO2 tolerance of Ag-Pd/Al2O3-C2H5OH system.

  20. Silver nanowire catalysts on carbon nanotubes-incorporated bacterial cellulose membrane electrodes for oxygen reduction reaction.

    Science.gov (United States)

    Kim, Bona; Choi, Youngeun; Cho, Se Youn; Yun, Young Soo; Jin, Hyoung-Joon

    2013-11-01

    Silver nanowires have unique electrical, thermal and optical properties, which support their potential application in numerous fields including catalysis, electronics, optoelectronics, sensing, and surface-enhanced spectroscopy. Especially, their application such as catalysts for alkaline fuel cells (AFCs) have attracted much interest because of their superior electrical conductivity over that of any metal and their lower cost compared to Pt. In this study, multiwalled carbon nanotubes (MWCNTs)-incorporated bacterial cellulose (BC) membrane electrode with silver nanowire catalyst was prepared. First, acid-treated MWCNTs were incorporated into BC membranes and then freeze-dried after solvent exchange to tert-butanol in order to maintain the 3D-network macroporous structure. Second, silver nanowires synthesized by polyol process were introduced onto the surface of the MWCNTs-incorporated BC membrane through easy vacuum filtration. Finally, thermal treatment was carried out to confirm the effect of the PVP on the silver nanowire catalysts toward oxygen reduction reaction. The electrode with thermally treated silver nanowire had great electrocatalytic activity compared with non-treated one. These results suggest that the MWCNTs-incorporated BC electrode with silver nanowire catalysts after thermal treatment could be potentially used in cathodes of AFCs.

  1. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    Science.gov (United States)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  2. Core-shell catalysts consisting of nanoporous cores for oxygen reduction reaction.

    Science.gov (United States)

    Shao, Minhua; Smith, Brandon H; Guerrero, Sandra; Protsailo, Lesia; Su, Dong; Kaneko, Keiichi; Odell, Jonathan H; Humbert, Michael P; Sasaki, Kotaro; Marzullo, Jesse; Darling, Robert M

    2013-09-28

    A comprehensive experimental study was conducted on the dealloying of PdNi6 nanoparticles under various conditions. A two-stage dealloying protocol was developed to leach >95% of Ni while minimizing the dissolution of Pd. The final structure of the dealloyed particle was strongly dependent on the acid used and temperature. When H2SO4 and HNO3 solutions were used in the first stage of dealloying, solid and porous particles were generated, respectively. The porous particles have a 3-fold higher electrochemical surface area per Pd mass than the solid ones. The dealloyed PdNi6 nanoparticles were then used as a core material for the synthesis of core-shell catalysts. These catalysts were synthesized in gram-size batches and involved Pt displacement of an underpotentially deposited (UPD) Cu monolayer. The resulting materials were characterized by scanning transmission electron microscopy (STEM) and in situ X-ray diffraction (XRD). The oxygen reduction reaction (ORR) activity of the core-shell catalysts is 7-fold higher than the state-of-the-art Pt/C. The high activity was confirmed by a more than 40 mV improvement in fuel cell performance with a Pt loading of 0.1 mg cm(-2) by using the core-shell catalysts.

  3. Influence of Reduction Promoters on Stability of Cobalt/g-Alumina Fischer-Tropsch Synthesis Catalysts

    Directory of Open Access Journals (Sweden)

    Gary Jacobs

    2014-03-01

    Full Text Available This focused review article underscores how metal reduction promoters can impact deactivation phenomena associated with cobalt Fischer-Tropsch synthesis catalysts. Promoters can exacerbate sintering if the additional cobalt metal clusters, formed as a result of the promoting effect, are in close proximity at the nanoscale to other cobalt particles on the surface. Recent efforts have shown that when promoters are used to facilitate the reduction of small crystallites with the aim of increasing surface Co0 site densities (e.g., in research catalysts, ultra-small crystallites (e.g., <2–4.4 nm formed are more susceptible to oxidation at high conversion relative to larger ones. The choice of promoter is important, as certain metals (e.g., Au that promote cobalt oxide reduction can separate from cobalt during oxidation-reduction (regeneration cycles. Finally, some elements have been identified to promote reduction but either poison the surface of Co0 (e.g., Cu, or produce excessive light gas selectivity (e.g., Cu and Pd, or Au at high loading. Computational studies indicate that certain promoters may inhibit polymeric C formation by hindering C-C coupling.

  4. A comparative study of metal oxide and sulfate catalysts for selective catalytic reduction of NO with NH3.

    Science.gov (United States)

    Zhu, Lin; Zhong, Zhaoping; Yang, Han; Wang, Chunhua

    2017-05-01

    The properties and characteristics of metal oxide and sulfate catalysts with different active elements for selective catalytic reduction of NO with NH 3 were investigated. Cerium-based oxide catalyst showed the widest temperature window for NO x removal and manganese-based oxide catalyst exhibited the best catalytic performance at low temperature. For all the catalysts, the SCR activities at low temperature were directly related with the redox abilities of catalysts. The existence of sulfate groups inhibited the redox abilities of active species for sulfate catalysts compared with the metal oxide catalysts. The catalytic activities of CeWTi-S and MnWTi-S were seriously decreased in contrast to CeWTi-N and MnWTi-N. The temperature window of CuWTi-S was shifted toward higher temperature comparing with CuWTi-N. The FeWTi-N and FeWTi-S catalysts both showed high NO x conversion in the temperature range between 300°C and 400°C and N 2 O concentrations for iron-based samples were least among the same kind of catalysts. The abundance of acid sites and weak stability of surface sulfate groups for iron- and copper-based sulfate catalysts might be the main reasons accounting for the better NO x conversion in the medium-temperature range.

  5. Combustion system optimization of a P-62 lignite boiler in ContourGlobal Maritsa East 3 with NOx-reduction and efficiency improvement

    International Nuclear Information System (INIS)

    Petkov, Ch.; Thierbach, Hans-Ulrich; Totev, T.

    2013-01-01

    Steinmueller Engineering GmbH, Gummersbach, Germany, successfully concluded in consortium with Siemens EOOD, Sofia, the combustion system modification of a P62 lignite fired boiler in TPP ContourGlobal Maritsa East 3, which was targeting mainly the reduction of the NOx emissions below 180 mg/Nm 3 at 6 % O 2 . The modification is part of an EPC contract covering the design, fabrication, installation and commissioning works needed to upgrade the boilers at the power station. The Modification concept involves optimization of PF- and Vapor distribution, replacement of the coal burners, installation of new Over-fire air (OFA) system and Side-wall air (SWA) system and minor modification of the existing control system to allow control of the OFAflow. The main results of the modification are: Reduction of the NOx emissions (at ESP exit) from approximately 390 g/Nm³ to below 180 mg/Nm³ at 6% O 2 , Efficiency increase of the furnace by reduction of the excess air ratio from 1.2 to 1.15 (at furnace outlet) and overall increase of the boiler efficiency. (authors)

  6. Palladium nanoparticles as catalysts for reduction of Cr(VI) and Suzuki coupling reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lilan; Guo, Yali; Iqbal, Anam; Li, Bo; Deng, Min; Gong, Deyan; Liu, Weisheng; Qin, Wenwu, E-mail: qinww@lzu.edu.cn [Lanzhou University, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering (China)

    2017-04-15

    Herein, six kinds of PdNPs (including icosahedron, sphere, spindle, cube, rod, and wire) were synthesized via simple methods. The catalytic activities were investigated by the reduction reaction of Cr(VI) and Suzuki coupling reaction. Chemically synthesized morphologies of the six catalysis were characterized by transmission electron microscopy, field emission scanning electron microscopy, and X-ray diffraction, etc. Pd icosahedron shows a better catalytic property than other PdNPs with a rate constants 0.42 min{sup −1} for the reduction of Cr(VI). Moreover, the electrocatalyst shows that Pd icosahedron possesses a bigger surface area of 8.56 m{sup 2}/g than other nanoparticles, which is attributed to the better catalyst. The Pd icosahedron possesses a better catalytic property, attributing to the abundant exposed {111} facets with high activity on Pd icosahedron. The catalytic activities are closely related to the surface area with the following order: icosahedrons ≥ sphere > rod > spindle > cube > wire. The Pd icosahedron catalyst represents a strong activity for Suzuki coupling reaction as well, outweighting is 80%. The results reveal that Pd icosahedron acts as an efficient catalyst compared to other PdNPs (wire, rod, sphere, spindle, and cube).

  7. Palladium nanoparticles as catalysts for reduction of Cr(VI) and Suzuki coupling reaction

    Science.gov (United States)

    Zhang, Lilan; Guo, Yali; Iqbal, Anam; Li, Bo; Deng, Min; Gong, Deyan; Liu, Weisheng; Qin, Wenwu

    2017-04-01

    Herein, six kinds of PdNPs (including icosahedron, sphere, spindle, cube, rod, and wire) were synthesized via simple methods. The catalytic activities were investigated by the reduction reaction of Cr(VI) and Suzuki coupling reaction. Chemically synthesized morphologies of the six catalysis were characterized by transmission electron microscopy, field emission scanning electron microscopy, and X-ray diffraction, etc. Pd icosahedron shows a better catalytic property than other PdNPs with a rate constants 0.42 min-1 for the reduction of Cr(VI). Moreover, the electrocatalyst shows that Pd icosahedron possesses a bigger surface area of 8.56 m2/g than other nanoparticles, which is attributed to the better catalyst. The Pd icosahedron possesses a better catalytic property, attributing to the abundant exposed {111} facets with high activity on Pd icosahedron. The catalytic activities are closely related to the surface area with the following order: icosahedrons ≥ sphere > rod > spindle > cube > wire. The Pd icosahedron catalyst represents a strong activity for Suzuki coupling reaction as well, outweighting is 80%. The results reveal that Pd icosahedron acts as an efficient catalyst compared to other PdNPs (wire, rod, sphere, spindle, and cube).

  8. Investigation of Mixed Oxide Catalysts for NO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Szanyi, Janos; Karim, Ayman M.; Pederson, Larry R.; Kwak, Ja Hun; Mei, Donghai; Tran, Diana N.; Herling, Darrell R.; Muntean, George G.; Peden, Charles HF; Howden, Ken; Qi, Gongshin; Li, Wei

    2014-12-09

    The oxidation of engine-generated NO to NO2 is an important step in the reduction of NOx in lean engine exhaust because NO2 is required for the performance of the LNT technology [2], and it enhances the activities of ammonia selective catalytic reduction (SCR) catalysts [1]. In particular, for SCR catalysts an NO:NO2 ratio of 1:1 is most effective for NOx reduction, whereas for LNT catalysts, NO must be oxidized to NO2 before adsorption on the storage components. However, NO2 typically constitutes less than 10% of NOx in lean exhaust, so catalytic oxidation of NO is essential. Platinum has been found to be especially active for NO oxidation, and is widely used in DOC and LNT catalysts. However, because of the high cost and poor thermal durability of Pt-based catalysts, there is substantial interest in the development of alternatives. The objective of this project, in collaboration with partner General Motors, is to develop mixed metal oxide catalysts for NO oxidation, enabling lower precious metal usage in emission control systems. [1] M. Koebel, G. Madia, and M. Elsener, Catalysis Today 73, 239 (2002). [2] C. H. Kim, G. S. Qi, K. Dahlberg, and W. Li, Science 327, 1624 (2010).

  9. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang [Department; Hwang, Sooyeon [Center; Wang, Maoyu [School; Feng, Zhenxing [School; Karakalos, Stavros [Department; Luo, Langli [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Qiao, Zhi [Department; Xie, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wang, Chongmin [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Su, Dong [Center; Shao, Yuyan [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wu, Gang [Department

    2017-09-26

    To significantly reduce the cost of proton exchange membrane (PEM) fuel cells, current Pt must be replaced by platinum-metal-group (PGM)-free catalysts for the oxygen reduction reaction (ORR) in acid. We report here a new class of high-performance atomic iron dispersed carbon catalysts through controlled chemical doping of iron ions into zinc-zeolitic imidazolate framework (ZIF), a type of metal-organic framework (MOF). The novel synthetic chemistry enables accurate size control of Fe-doped ZIF catalyst particles with a wide range from 20 to 1000 nm without changing chemical properties, which provides a great opportunity to increase the density of active sites that is determined by the particle size. We elucidated the active site formation mechanism by correlating the chemical and structural changes with thermal activation process for the conversion from Fe-N4 complex containing hydrocarbon networks in ZIF to highly active FeNx sites embedded into carbon. A temperature of 800oC was identified as the critical point to start forming pyridinic nitrogen doping at the edge of the graphitized carbon planes. Further increasing heating temperature to 1100oC leads to increase of graphitic nitrogen, generating possible synergistic effect with FeNx sites to promote ORR activity. The best performing catalyst, which has well-defined particle size around 50 nm and abundance of atomic FeNx sites embedded into carbon structures, achieve a new performance milestone for the ORR in acid including a half-wave potential of 0.85 V vs RHE and only 20 mV loss after 10,000 cycles in O2 saturated H2SO4 electrolyte. The new class PGM-free catalyst with approaching activity to Pt holds great promise for future PEM fuel cells.

  10. Structure, activity, and stability of platinum alloys as catalysts for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg

    In this thesis I present our work on theoretical modelling of platinum alloys as catalysts for the Oxygen Reduction Reaction (ORR). The losses associated with the kinetics of the ORR is the main bottleneck in low-temperature fuel cells for transport applications, and more active catalysts...... and dealloying due to kinetic barriers, despite the thermodynamic driving force for dissolution. This is followed by our results on trying to decouple the strain and ligand effects for platinum skin structures, and determining whether there is any correlation between adsorption energy and surface stability......), depending on the length and time scales involved. Using DFT, we show how diffusion barriers in transition metal alloys in the L12 structure depend on the alloying energy, supporting the assumption that an intrinsically more stable alloy is also more stable towards diffusion-related degradation...

  11. Heterogeneous electrochemical CO2 reduction using nonmetallic carbon-based catalysts: current status and future challenges.

    Science.gov (United States)

    Ma, Tao; Fan, Qun; Tao, Hengcong; Han, Zishan; Jia, Mingwen; Gao, Yunnan; Ma, Wangjing; Sun, Zhenyu

    2017-11-24

    Electrochemical CO 2 reduction (ECR) offers an important pathway for renewable energy storage and fuels production. It still remains a challenge in designing highly selective, energy-efficient, robust, and cost-effective electrocatalysts to facilitate this kinetically slow process. Metal-free carbon-based materials have features of low cost, good electrical conductivity, renewability, diverse structure, and tunability in surface chemistry. In particular, surface functionalization of carbon materials, for example by doping with heteroatoms, enables access to unique active site architectures for CO 2 adsorption and activation, leading to interesting catalytic performances in ECR. We aim to provide a comprehensive review of this category of metal-free catalysts for ECR, providing discussions and/or comparisons among different nonmetallic catalysts, and also possible origin of catalytic activity. Fundamentals and some future challenges are also described.

  12. Heterogeneous electrochemical CO2 reduction using nonmetallic carbon-based catalysts: current status and future challenges

    Science.gov (United States)

    Ma, Tao; Fan, Qun; Tao, Hengcong; Han, Zishan; Jia, Mingwen; Gao, Yunnan; Ma, Wangjing; Sun, Zhenyu

    2017-11-01

    Electrochemical CO2 reduction (ECR) offers an important pathway for renewable energy storage and fuels production. It still remains a challenge in designing highly selective, energy-efficient, robust, and cost-effective electrocatalysts to facilitate this kinetically slow process. Metal-free carbon-based materials have features of low cost, good electrical conductivity, renewability, diverse structure, and tunability in surface chemistry. In particular, surface functionalization of carbon materials, for example by doping with heteroatoms, enables access to unique active site architectures for CO2 adsorption and activation, leading to interesting catalytic performances in ECR. We aim to provide a comprehensive review of this category of metal-free catalysts for ECR, providing discussions and/or comparisons among different nonmetallic catalysts, and also possible origin of catalytic activity. Fundamentals and some future challenges are also described.

  13. The role of reticular chemistry in the design of CO2 reduction catalysts

    Science.gov (United States)

    Diercks, Christian S.; Liu, Yuzhong; Cordova, Kyle E.; Yaghi, Omar M.

    2018-02-01

    The problem with current state-of-the-art catalysts for CO2 photo- or electroreduction is rooted in the notion that no single system can independently control, and thus optimize, the interplay between activity, selectivity and efficiency. At its core, reticular chemistry is recognized for its ability to control, with atomic precision, the chemical and structural features (activity and selectivity) as well as the output optoelectronic properties (efficiency) of porous, crystalline materials. The molecular building blocks that are in a reticular chemist's toolbox are chosen in such a way that the structures are rationally designed, framework chemistry is performed to integrate catalytically active components, and the manner in which these building blocks are connected endows the material with the desired optoelectronic properties. The fact that these aspects can be fine-tuned independently lends credence to the prospect of reticular chemistry contributing to the design of next-generation CO2 reduction catalysts.

  14. Electro and photo-assisted carbon dioxide reduction on molecular catalysts

    International Nuclear Information System (INIS)

    Stanbury, Matthew

    2016-01-01

    The general context of this thesis is on CO 2 valorisation, and recounts fundamental research aimed at finding new molecular catalysts in order to achieve CO 2 conversion. The results obtained provide additional knowledge in view of developing an efficient and selective catalytic CO 2 reduction process. The first chapter begins with the general picture of CO 2 utilisation and contains a bibliographical overview on the use of molecular catalysts for CO 2 photo- and electroreduction. This short review demonstrates the wide variety of transition metal complexes used as catalysts, in particularly those based on rhenium. An analysis on the current state of CO 2 reduction research using molecular catalyst complexes of the manganese carbonyl type is then reported. In Chapter II, the discussion begins with a brief overview of the research developed during this thesis relating to new complexes of the general formula: [Mn(L)(CO) 3 (X)] (X = Br, n = 0 ou CH 3 CN, n = 1; L = terpyridine derivatives). The interest in these complexes is twofold, as their physico-chemical properties give them potential catalytic CO 2 reduction applications, as well as applications in the field relating to controlled CO release molecules. Developing new complexes based on ligands derived from terpy is one of the main routes that were chosen for catalyst performance optimisation and improvement. In this context, Mn complexes were synthesised, their photo- and electrochemical properties were studied in detail, before testing their activity with respect to catalytic CO 2 reduction. The most remarkable result comes from the unique ability of these species to release one of their carbonyl ligands in a controlled fashion, which led to the discovery of novel Mn dicarbonyl complexes which are selective catalysts for CO 2 reduction, and also to new molecules which are applicable in the release of small quantities of CO for therapeutic purposes. Chapter III covers the study of the complex [Mn

  15. Enhancement of NOx removal performance for (La0.85Sr0.15)0.99MnO3/Ce0.9Gd0.1O1.95 electrochemical cells by NOx storage/reduction adsorption layers

    DEFF Research Database (Denmark)

    Shao, Jing; Kammer Hansen, Kent

    2013-01-01

    This study investigated the effect of adding a NOx adsorption layer to the cathode of an electrochemical cell on the removal of NOx from gaseous mixtures. The cathode was a composite of (La0.85Sr0.15)0.99MnO3 (LSM15) and Ce0.9Gd0.1O1.95 (CGO10). Two different kinds of adsorption layers, K–Pt–Al2O...... reaction path for NOx reduction. A stronger capability for oxidizing NO and/or trapping NOx under the test conditions may have contributed to the superior performance of the K–Pt–Al2O3 adsorption layer relative to the Ba–Pt–Al2O3 layer. © 2012 Elsevier Ltd. All rights reserved....

  16. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  17. Impact of transition metal on nitrogen retention and activity of iron-nitrogen-carbon oxygen reduction catalysts.

    Science.gov (United States)

    Ganesan, Selvarani; Leonard, Nathaniel; Barton, Scott Calabrese

    2014-03-14

    Iron based nitrogen doped carbon (FeNC) catalysts are synthesized by high-pressure pyrolysis of carbon and melamine with varying amounts of iron acetate in a closed, constant-volume reactor. The optimum nominal amount of Fe (1.2 wt%) in FeNC catalysts is established through oxygen reduction reaction (ORR) polarization. Since the quantity of iron used in FeNCs is very small, the amount of Fe retained in FeNC catalysts after leaching is determined by UV-VIS spectroscopy. As nitrogen is considered to be a component of active sites, the amount of bulk and surface nitrogen retention in FeNC catalysts are measured using elemental analysis and X-ray photoelectron spectroscopy, respectively. It is found that increasing nominal Fe content in FeNC catalysts leads to a decreased level of nitrogen retention. Thermogravimetric analysis demonstrates that increasing nominal Fe content leads to increased weight loss during pyrolysis, particularly at high temperatures. Catalysts are also prepared in the absence of iron source, and with iron removed by washing with hot aqua regia post-pyrolysis. FeNC catalysts prepared with no Fe show high retained nitrogen content but poor ORR activity, and aqua regia washed catalysts demonstrate similar activity to Fe-free catalysts, indicating that Fe is an active site component.

  18. Impact of catalyst reduction mode on selective hydrogenation of cinnamaldehyde over Ru-Sn sol-gel catalysts

    Czech Academy of Sciences Publication Activity Database

    Hájek, J.; Kumar, N.; Salmi, T.; Murzin, DY.; Karhu, H.; Väyrynen, J.; Červený, L.; Paseka, Ivo

    2003-01-01

    Roč. 42, č. 2 (2003), s. 295-305 ISSN 0888-5885 R&D Projects: GA ČR GA104/00/1009 Institutional research plan: CEZ:AV0Z4032918 Keywords : Supported ruthenium catalysts * Ru-Sn-Al2O3 catalysts * benzene Subject RIV: CA - Inorganic Chemistry Impact factor: 1.317, year: 2003

  19. Reduction and Immobilization of Potassium Permanganate on Iron Oxide Catalyst by Fluidized-Bed Crystallization Technology

    Directory of Open Access Journals (Sweden)

    Guang-Xia Li

    2012-03-01

    Full Text Available A manganese immobilization technology in a fluidized-bed reactor (FBR was developed by using a waste iron oxide (i.e., BT-3 as catalyst which is a by-product from the fluidized-bed Fenton reaction (FBR-Fenton. It was found that BT-3 could easily reduce potassium permanganate (KMnO4 to MnO2. Furthermore, MnO2 could accumulate on the surface of BT-3 catalyst to form a new Fe-Mn oxide. Laboratory experiments were carried out to investigate the KMnO4-reduction mechanism, including the effect of KMnO4 concentration, BT-3 dosage, and operational solution pH. The results showed that the pH solution was a significant factor in the reduction of KMnO4. At the optimum level, pHf 6, KMnO4 was virtually reduced in 10 min. A pseudo-first order reaction was employed to describe the reduction rate of KMnO4.

  20. Promotional effect of Al2O3 on WO3/CeO2-ZrO2 monolithic catalyst for selective catalytic reduction of nitrogen oxides with ammonia after hydrothermal aging treatment

    Science.gov (United States)

    Xu, Haidi; Liu, Shuang; Wang, Yun; Lin, Qingjin; Lin, Chenlu; Lan, Li; Wang, Qin; Chen, Yaoqiang

    2018-01-01

    Hydrothermal stability of catalysts for selective catalytic reduction of NOx with NH3 (NH3-SCR) has always been recognized as a challenge in development of candidate catalysts for applications in diesel engine emissions. In this study, Al2O3 was introduced into CeO2-ZrO2 to improve the NH3-SCR activity of WO3/CeO2-ZrO2 after hydrothermal aging (HA) treatment at 800 °C for 12 h. The activity results indicated that the NH3-SCR activity of WO3/CeO2-ZrO2-HA was obviously improved in the whole reaction temperature range after doping Al2O3 into CeO2-ZrO2, for example, the average and maximum NOx conversion were separately increased by ca. 20% and 25% after HA treatment. XRD, Raman, TEM and EDX results revealed that the introduction of Al2O3 inhibited the sintering and agglomeration of CeO2-ZrO2 and WO3 and the formation of Ce2(WO4)3 after HA treatment. Accordingly, WO3/CeO2-ZrO2-Al2O3-HA showed remarkably improved structural stability and reducibility, increased surface acidity, and facilitated the reactivity between adsorbed NH3 and nitrate species, which together contributed to its better catalytic performance after hydrothermal aging treatment.

  1. Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media.

    Science.gov (United States)

    Gupta, Shiva; Kellogg, William; Xu, Hui; Liu, Xien; Cho, Jaephil; Wu, Gang

    2016-01-01

    Oxygen electrocatalysis, namely of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), governs the performance of numerous electrochemical energy systems such as reversible fuel cells, metal-air batteries, and water electrolyzers. However, the sluggish kinetics of these two reactions and their dependency on expensive noble metal catalysts (e.g, Pt or Ir) prohibit the sustainable commercialization of these highly innovative and in-demand technologies. Bifunctional perovskite oxides have emerged as a new class of highly efficient non-precious metal catalysts (NPMC) for oxygen electrocatalysis in alkaline media. In this review, we discuss the state-of-the-art understanding of bifunctional properties of perovskites with regards to their OER/ORR activity in alkaline media and review the associated reaction mechanisms on the oxides surface and the related activity descriptors developed in the recent literature. We also summarize the present strategies to modify their electronic structure and to further improve their performance for the ORR/OER through highlighting the new concepts relating to the role of surface redox chemistry and oxygen deficiency of perovskite oxides for the ORR/OER activity. In addition, we provide a brief account of recently developed advanced perovskite-nanocarbon hybrid bifunctional catalysts with much improved performances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Organic, Organometallic and Bioorganic Catalysts for Electrochemical Reduction of CO2.

    Science.gov (United States)

    Apaydin, Dogukan Hazar; Schlager, Stefanie; Portenkirchner, Engelbert; Sariciftci, Niyazi Serdar

    2017-11-17

    A broad review of homogeneous and heterogeneous catalytic approaches toward CO 2 reduction using organic, organometallic, and bioorganic systems is provided. Electrochemical, bioelectrochemical and photoelectrochemical approaches are discussed in terms of their faradaic efficiencies, overpotentials and reaction mechanisms. Organometallic complexes as well as semiconductors and their homogeneous and heterogeneous catalytic activities are compared to enzymes. In both cases, their immobilization on electrodes is discussed and compared to homogeneous catalysts in solution. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Low-temperature Selective Catalytic Reduction of NO with NH3 over CuOx/CNTs Catalyst

    Science.gov (United States)

    Ren, B. N.

    2017-12-01

    The metal oxide catalyst was prepared by loading CuOx on carbon nanotubes (CNTs) with impregnation method. The catalyst was characterized by BET, TEM and XPS, and the catalytic activity of the catalyst for selective catalytic reduction (SCR) of NO was investigated. The results showed that the species of active components loaded on the catalyst was given priority to with CuO. The NO conversion was improved with temperature increase under the range of 150 to 300°C. The oxygen content had an outstanding influence on the NO conversion of catalysts at lower concentration range. Once the oxygen content was enhanced over 5%, there was no significant increase. Increasing of mole ratio of NH3/NO could increase the NO conversion. When mole ratio of NH3/NO was continued to exceed 1.1, the NO conversion decreased. With the increasing of space velocity, the NO conversion was decreased under the reaction conditions.

  4. Electrodeposited ultrafine TaOx/CB catalysts for PEFC cathode application: Their oxygen reduction reaction kinetics

    KAUST Repository

    Seo, Jeongsuk

    2014-12-01

    Ultrafine TaOx nanoparticles were electrodeposited on carbon black (CB) powder in a nonaqueous Ta complex solution at room temperature, and the resultant TaOx/CB catalysts were assessed as oxygen reduction reaction (ORR) electrocatalysts for polymer electrolyte fuel cell (PEFC) cathodes. The Ta electrodeposition process was scaled up using a newly designed working electrode containing a CB dense layer, without introducing any binder such as the ionomer Nafion in the electrode for electrodeposition. The electrodeposited TaOx/CB powders were removed from the deposition electrode and subsequent H2 treatment at varying temperatures between 523 and 1073 K was attempted to increase the ORR performance. The TaOx/CB samples were characterized by SEM, STEM, XPS, and EELS measurements. XPS and EELS results indicated the reduced nature of the Ta species caused by the high-temperature treatment in H2, while STEM images clearly revealed that the TaOx particles aggregated as the treatment temperature increased. When the TaOx/CB catalyst, which was treated at 873 K for 2 h, was deposited on a glassy carbon substrate with Nafion ionomer, it resulted in the highest activity among the samples investigated, giving an onset potential of 0.95 VRHE at -2 μA cm-2 in a 0.1 M H2SO4 solution. Moreover, the long-term stability test with 10,000 cycles of the voltammetry only led to a 6% loss in the ORR currents, demonstrating the high stability of the TaOx/CB catalysts. Kinetic analysis by R(R)DE indicated that the four-electron transfer pathway in the ORR process was dominant for this TaOx/CB catalyst, and Tafel plots showed a slope corresponding to a one-electron reaction for the rate-determining step.

  5. Tracking the Structural and Electronic Configurations of a Cobalt Proton Reduction Catalyst in Water

    Energy Technology Data Exchange (ETDEWEB)

    Moonshiram, Dooshaye; Gimbert-Suriñach, Carolina [Institute; Guda, Alexander [International; Picon, Antonio; Lehmann, C. Stefan; Zhang, Xiaoyi; Doumy, Gilles; March, Anne Marie; Benet-Buchholz, Jordi [Institute; Soldatov, Alexander [International; Llobet, Antoni [Institute; Departament; Southworth, Stephen H.

    2016-08-09

    Time resolved X-ray absorption spectroscopy (X-TAS) has been used to study the light induced hydrogen evolution reaction catalyzed by a highly stable cobalt complex, [Ru(bpy)3]2+ photosensitizer and an equimolar mixture of sodium ascorbate/ascorbic acid electron donor in pure water. XANES and EXAFS analysis of a binary mixture of the octahedral Co(III) pre-catalyst and [Ru(bpy)3]2+ after illumination, revealed in-situ formation of a square pyramidal Co(II) intermediate, with electron transfer kinetics of 51 ns. On the other hand, X-TAS experiments of the complete photocatalytic system in the presence of the electron donor showed the formation of a square planar Co(I) intermediate species within a few nanoseconds followed by its decay in the microsecond timescales. The Co(I) structural assignment is supported by calculations based on density functional theory (DFT). At longer reaction times, we observe the formation of the initial Co(III) species concomitant to the decay of Co(I), thus closing the catalytic cycle. The experimental X-ray absorption spectra of the molecular species formed along the catalytic cycle are modeled using a combination of molecular orbital DFT calculations (DFT-MO) and Finite Difference Method (FDM). These findings allowed us to unequivocally assign the full mechanistic pathway followed by the catalyst as well as to determine the rate limiting step of the process, which consists in the protonation of the Co(I). This study provides a complete kinetics scheme for the hydrogen evolution reaction by a cobalt catalyst, revealing unique information for the development of better catalysts for the reductive side of hydrogen fuel cells.

  6. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    Science.gov (United States)

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  7. In-line localized monitoring of catalyst activity in selective catalytic NO.sub.x reduction systems

    Science.gov (United States)

    Muzio, Lawrence J [Laguna Niguel, CA; Smith, Randall A [Huntington Beach, CA

    2009-12-22

    Localized catalyst activity in an SCR unit for controlling emissions from a boiler, power plant, or any facility that generates NO.sub.x-containing flue gases is monitored by one or more modules that operate on-line without disrupting the normal operation of the facility. Each module is positioned over a designated lateral area of one of the catalyst beds in the SCR unit, and supplies ammonia, urea, or other suitable reductant to the catalyst in the designated area at a rate that produces an excess of the reductant over NO.sub.x on a molar basis through the designated area. Sampling probes upstream and downstream of the designated area draw samples of the gas stream for NO.sub.x analysis, and the catalyst activity is determined from the difference in NO.sub.x levels between the two probes.

  8. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.V. [Global Environmental Solutions, Inc., Morton Grove, IL (United States)

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  9. Enzymatic versus Inorganic Oxygen Reduction Catalysts: Comparison of the Energy Levels in a Free-Energy Scheme

    DEFF Research Database (Denmark)

    Kjærgaard, Christian Hauge; Rossmeisl, Jan; Nørskov, Jens Kehlet

    2010-01-01

    levels of cytochrome c oxidase (CcO) models obtained at physiological pH = 7 to the energy levels at pH = 0, which allows for comparison. Furthermore, we illustrate how different bias voltages will affect the free-energy landscapes of the catalysts. This allows us to determine the so-called theoretical......In this paper, we present a method to directly compare the energy levels of intermediates in enzymatic and inorganic oxygen reduction catalysts. We initially describe how the energy levels of a Pt(111) catalyst, operating at pH = 0, are obtained. By a simple procedure, we then convert the energy...

  10. System and method for controlling an engine based on ammonia storage in multiple selective catalytic reduction catalysts

    Science.gov (United States)

    Sun, MIn; Perry, Kevin L.

    2015-11-20

    A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.

  11. Electrochemical reduction of CO2on graphene supported transition metals - towards single atom catalysts.

    Science.gov (United States)

    He, Haiying; Jagvaral, Yesukhei

    2017-05-10

    In this study, we have investigated the use of single metal atoms supported on defective graphene as catalysts for the electrochemical reduction of CO 2 using the first-principles approach and the computational hydrogen electrode model. Reaction pathways to produce a variety of C 1 products CO, HCOOH, HCHO, CH 3 OH and CH 4 have been studied in detail for five representative transition metals Ag, Cu, Pd, Pt, and Co. Different pathways were revealed in contrast to those found for metallic crystalline surfaces and nanoparticles. These single atom catalysts have demonstrated a general improvement in rate limiting potentials to generate C 1 hydrocarbons. They also show distinct differences in terms of their efficiency and selectivity in CO 2 reduction, which can be correlated with their elemental properties as a function of their group number in the periodic table. Six best candidates for CH 4 production are identified by conducting computational screening of 28 d-block transition metals. Ag has the lowest overpotential (0.73 V), and is followed by Zn, Ni, Pd, Pt and Ru with overpotentials all below 1 V. Cu in the supported single atom form shows a strong preference towards producing CH 3 OH with an overpotential of 0.68 V well below the value of 1.04 V for producing CH 4 .

  12. High Performance Fe Porphyrin/Ionic Liquid Co-catalyst for Electrochemical CO2 Reduction.

    Science.gov (United States)

    Choi, Jaecheol; Benedetti, Tania M; Jalili, Rouhollah; Walker, Ashley; Wallace, Gordon G; Officer, David L

    2016-09-26

    The efficient and selective catalytic reduction of CO2 is a highly promising process for both of the storage of renewable energy as well as the production of valuable chemical feedstocks. In this work, we show that the addition of an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, in an aprotic electrolyte containing a proton source and FeTPP, promotes the in situ formation of the [Fe(0) TPP](2-) homogeneous catalyst at a less negative potential, resulting in lower overpotentials for the CO2 reduction (670 mV) and increased kinetics of electron transfer. This co-catalysis exhibits high Faradaic efficiency for CO production (93 %) and turnover number (2 740 000 after 4 hour electrolysis), with a four-fold increase in turnover frequency (TOF) when compared with the standard system without the ionic liquid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of metal ions doping (M = Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3

    Science.gov (United States)

    Xiong, Yan; Tang, Changjin; Dong, Lin

    2015-04-01

    Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China The abatement of nitrogen oxides (NOx) emission from exhaust gases of diesel and stationary sources is a significant challenge for economic and social development. Ceria-based solid solutions were synthesized and used as supports to prepare MnOx/Ce0.8Ti0.2O2 and MnOx/Ce0.8Sn0.2O2 catalysts (Mn/CeTi and Mn/CeSn) for low temperature selective catalytic reduction of NO by NH3 (NH3-SCR). The effects of Ti or Sn doping on the catalytic performance of MnOx/CeO2 catalyst were investigated. Experimental results show that doping of Ti or Sn increases the NO removal efficiency of MnOx/CeO2. The NO conversion of Mn/CeTi catalyst is more than 90 % at temperature window of 175 ~ 300 °C under a gas hour space velocity of 60,000 mL.g-1.h-1. Modified catalysts are also found to exhibit greatly improved resistance to sulfur-poisoning. NH3-TPD results suggest that NH3 desorption on the catalysts is observed over a wide temperature range, due to the variability of adsorbed NH3 species with different thermal stabilities. Doping of Ti and Sn into Mn/CeO2 greatly increased the NH3 adsorption ability of the composites which could promote the SCR reaction. Characterization results also indicate that doping of Ti or Sn brings about catalysts with higher BET surface area, enhanced oxygen storage capacity and increased surface acidity.

  14. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane.

    Science.gov (United States)

    Zhang, Sheng; Kang, Peng; Bakir, Mohammed; Lapides, Alexander M; Dares, Christopher J; Meyer, Thomas J

    2015-12-29

    Developing sustainable energy strategies based on CO2 reduction is an increasingly important issue given the world's continued reliance on hydrocarbon fuels and the rise in CO2 concentrations in the atmosphere. An important option is electrochemical or photoelectrochemical CO2 reduction to carbon fuels. We describe here an electrodeposition strategy for preparing highly dispersed, ultrafine metal nanoparticle catalysts on an electroactive polymeric film including nanoalloys of Cu and Pd. Compared with nanoCu catalysts, which are state-of-the-art catalysts for CO2 reduction to hydrocarbons, the bimetallic CuPd nanoalloy catalyst exhibits a greater than twofold enhancement in Faradaic efficiency for CO2 reduction to methane. The origin of the enhancement is suggested to arise from a synergistic reactivity interplay between Pd-H sites and Cu-CO sites during electrochemical CO2 reduction. The polymer substrate also appears to provide a basis for the local concentration of CO2 resulting in the enhancement of catalytic current densities by threefold. The procedure for preparation of the nanoalloy catalyst is straightforward and appears to be generally applicable to the preparation of catalytic electrodes for incorporation into electrolysis devices.

  15. Carbon and Mo transformations during the synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction

    Science.gov (United States)

    Wang, Haiyan; Liu, Shida; Liu, Bing; Montes, Vicente; Hill, Josephine M.; Smith, Kevin J.

    2018-02-01

    The synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction is reported. Petroleum coke (petcoke) was activated with KOH at 800 °C to obtain high surface area microporous activated petcoke (APC; 2000 m2/g). The APC was wet impregnated with ammonium heptamolybdate (AHM: 10 wt% Mo), dried and reduced in H2 at temperatures from 400 to 800 °C, to yield Mo2C/APC catalysts. Increased reduction temperature increased the Mo2C yield and the mesoporous volume of the Mo2C/APC. At a reduction temperature of 750 °C the mesopore volume of the catalyst doubled compared to the APC support and accounted for 37% of the total pore volume. Maintaining the final CHR temperature for 90 min further increased the Mo2C yield and mesoporosity of the catalyst. The role of Mo2C in the catalytic hydrogenation of the APC and mesopore generation is demonstrated. The activity of the Mo2C/carbon catalysts in the hydrodeoxygenation of 4-methyl phenol increased with increased CHR temperature and catalyst mesoporosity.

  16. Development of hydrocarbon adsorbents, oxygen storage materials for three-way catalysts and NO{sub x} storage-reduction catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Takaaki [Material Engineering Division 1, Toyota Motor Corporation, 1 Toyota-cyo, Toyota, Aichi 471-8572 (Japan)

    2004-10-05

    Hydrocarbon adsorbents, three-way catalysts and NO{sub x} storage-reduction catalysts for application in gasoline engines have been studied at Toyota in order to meet more stringent environmental regulations.The hydrocarbon adsorption capacity of zeolites has been studied. Hydrocarbon adsorption increased with decreasing aluminum content. Zeolites with a pore size approximately 0.1nm greater than the diameter of the hydrocarbon molecules showed the best performance. Two zeolites with different pore size were mixed, and this strategy succeeded in adsorbing hydrocarbons of carbon number 3 and above. Silver (Ag) ion-exchanged zeolite was used to increase the adsorption of exhaust gas hydrocarbons, including those of carbon number 2.To optimize the performance of three-way catalysts, another development project focused on the heat resistance of CeO{sub 2}-ZrO{sub 2} solid solutions (CZ) with oxygen storage capacity (OSC). We devised a new method of inhibiting the coagulation of the primary CZ particles by placing diffusion barrier layers made of alumina among the primary CZ particles. This material is called 'ACZ'. The OSC and the light-off temperature of the ACZ-added catalyst are improved. For the improvement of NO{sub x} storage-reduction catalysts (NSR catalysts), we focused on the performance deterioration at high temperature via sulfur-poisoning and thermal degradation. A new zirconia-titania complex metal oxide was developed which improves the high-temperature performance and to promotes desorption of sulfur from the supports after aging.

  17. Monothiolation and Reduction of Graphene Oxide via One-Pot Synthesis: Hybrid Catalyst for Oxygen Reduction.

    Science.gov (United States)

    Chua, Chun Kiang; Pumera, Martin

    2015-04-28

    The functionalization of graphene provides diverse possibilities to improve the handling of graphene and enable further chemical transformation on graphene. Graphene functionalized with mainly heteroatom-based functional groups to enhance its chemical and physical properties is intensively pursued but often resulted in grafting of the heteroatoms as various functional groups. Here, we show that graphene oxide can be functionalized with predominantly a single type of sulfur moiety and reduced simultaneously to form monothiol-functionalized graphene. The thiol-functionalized graphene shows a high electrical conductivity and heterogeneous electron transfer rate. Graphene is also embedded with a trace amount of manganese impurities originating from a prior graphite oxidation process, which facilitates the thiol-functionalized graphene to function as a hybrid electrocatalyst for oxygen reduction reactions in alkaline medium with an onset potential lower than for Pt/C. Further characterizations of the graphene are performed with X-ray photoelectron spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, Raman spectroscopy, and electrochemical impedance spectroscopy. This material contributes to the class of hybrids that are highly active electrocatalysts.

  18. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  19. Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review

    Science.gov (United States)

    Chen, Mengjie; Wang, Lei; Yang, Haipeng; Zhao, Shuai; Xu, Hui; Wu, Gang

    2018-01-01

    A reversible fuel cell (RFC), which integrates a fuel cell with an electrolyzer, is similar to a rechargeable battery. This technology lies on high-performance bifunctional catalysts for the oxygen reduction reaction (ORR) in the fuel cell mode and the oxygen evolution reaction (OER) in the electrolyzer mode. Current catalysts are platinum group metals (PGM) such as Pt and Ir, which are expensive and scarce. Therefore, it is highly desirable to develop PGM-free catalysts for large-scale application of RFCs. In this mini review, we discussed the most promising nanocarbon/oxide composite catalysts for ORR/OER bifunctional catalysis in alkaline media, which is mainly based on our recent progress. Starting with the effectiveness of selected oxides and nanocarbons in terms of their activity and stability, we outlined synthetic methods and the resulting structures and morphologies of catalysts to provide a correlation between synthesis, structure, and property. A special emphasis is put on understanding of the possible synergistic effect between oxide and nanocarbon for enhanced performance. Finally, a few nanocomposite catalysts are discussed as typical examples to elucidate the rules of designing highly active and durable bifunctional catalysts for RFC applications.

  20. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  1. Fe-N-Doped Mesoporous Carbon with Dual Active Sites Loaded on Reduced Graphene Oxides for Efficient Oxygen Reduction Catalysts.

    Science.gov (United States)

    Zhang, Chao; Liu, Jun; Ye, Yixing; Aslam, Zabeada; Brydson, Rik; Liang, Changhao

    2018-01-24

    Transition metal/nitrogen/carbon (M-N/C) catalysts are considered as one of the most promising candidates to replace Pt/C catalysts for oxygen reduction reactions (ORRs). Here, we have designed novel reduced graphene oxide (rGO)-supported Fe-N-doped carbon (Fe-N-C/rGO) catalysts via simple pyrolysis of polypyrrole (Ppy)-FeO-GO composites. The as-prepared catalysts induced an onset potential of 0.94 V and a half-wave potential of 0.81 V in alkaline solutions, which is much better than those of the counterpart N-C and N-C/rGO catalysts and comparable to that of Pt/C catalysts. Moreover, the Fe-N-C/rGO catalysts showed improved durability and higher tolerance against methanol crossover than Pt/C in alkaline solutions. This superior ORR performance can be ascribed to the combined catalytic effect of both Fe-based nanoparticles (Fe 3 O 4 , Fe 4 C) and Fe-N x sites, as well as fast mass transfer and accessible active sites benefiting from the mesoporous structure and high specific surface area. This work provides new insight for synthesis of a more promising nonplatinum electrocatalyst for metal-air batteries and fuel-cell applications.

  2. Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan

    International Nuclear Information System (INIS)

    Ohma, Atsushi; Mashio, Tetsuya; Sato, Kazuyuki; Iden, Hiroshi; Ono, Yoshitaka; Sakai, Kei; Akizuki, Ken; Takaichi, Satoshi; Shinohara, Kazuhiko

    2011-01-01

    The biggest issue that must be addressed in promoting widespread use of fuel cell vehicles (FCVs) is to reduce the cost of the fuel cell system. Especially, it is of vital importance to reduce platinum (Pt) loading of catalyst layers (CLs) in the membrane electrode assembly (MEA) of a proton exchange membrane fuel cell (PEMFC). In order to lower the Pt loading of the MEA, mass transport of reactants related to the performance in high current density should be enhanced significantly as well as kinetics of the catalyst, which can result in the better Pt utilization and effectiveness. In this study, we summarized our analytical approach and methods for reduction of Pt loading in CLs. Microstructure, mass transport properties of the reactants, and their relation in CLs were elucidated by applying experimental analyses and computational methods. A simple CL model for I–V performance prediction was then established, where experimentally elucidated parameters of the microstructure and the properties in CLs were taken into account. Finally, we revealed the impact of lowering the Pt loading on the transport properties, polarization, and the I–V performance.

  3. Oxygen Reduction Reaction Activity and Durability of Pt Catalysts Supported on Titanium Carbide

    Directory of Open Access Journals (Sweden)

    Morio Chiwata

    2015-06-01

    Full Text Available We have prepared Pt nanoparticles supported on titanium carbide (TiC (Pt/TiC as an alternative cathode catalyst with high durability at high potentials for polymer electrolyte fuel cells. The Pt/TiC catalysts with and without heat treatment were characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and transmission electron microscopy (TEM. Hemispherical Pt nanocrystals were found to be dispersed uniformly on the TiC support after heat treatment at 600 °C in 1% H2/N2 (Pt/TiC-600 °C. The electrochemical properties (cyclic voltammetry, electrochemically active area (ECA, and oxygen reduction reaction (ORR activity of Pt/TiC-600 °C and a commercial Pt/carbon black (c-Pt/CB were evaluated by the rotating disk electrode (RDE technique in 0.1 M HClO4 solution at 25 °C. It was found that the kinetically controlled mass activity for the ORR on Pt/TiC-600 °C at 0.85 V (507 A g−1 was comparable to that of c-Pt/CB (527 A g−1. Moreover, the durability of Pt/TiC-600 °C examined by a standard potential step protocol (E = 0.9 V↔1.3 V vs. RHE, holding 30 s at each E was much higher than that for c-Pt/CB.

  4. Influence of hydrogen treatment on SCR catalysts

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    reduction (SCR) process, i.e. the catalytic removal of NOx from the flue gas. A series of experiments was conducted to reveal the impact on the NO SCR activity of a industrial DeNOX catalyst (3%V2O5-7%WO3/TiO2) by treatment of H2. Standard conditions were treatment of the SCR catalyst for 60 min with three......Municipal waste flue gas was previously found to deactivate the Pt-based CO oxidation catalyst severely. In the specific case studied, siloxanes were found to cause the deactivation. An on-site method for complete regeneration of the catalysts activity was found without shutdown of the flue gas...... stream, i.e. by in situ treatment of the Pt-catalyst by reductive H2-gas. However, the introduction of H2 gas in the gas stream could also affect other units in the tail pipe gas cleaning system. Of special interest in this study is the effect of hydrogen gas on the performance of the selective catalytic...

  5. Catalytic reduction of SO{sub 2} with methane over molybdenum catalyst. Technical report, March 1--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wiltowski, T.

    1995-12-31

    One of the primary concerns in coal utilization is the emission of sulfur compounds, especially SO{sub 2}. This project deals with catalytic reduction of SO{sub 2} with methane using molybdenum sulfide catalyst supported on different activated carbons: Darco TRS, ROZ-3, and an activated carbon prepared from Illinois coal IBC-110. The work conducted during this quarter included preparation of activated carbons from Illinois coal, preparation of the catalysts on these supports, and experiments on SO{sub 2} reduction with methane at different feed ratio SO{sub 2}: CH{sub 4}. It was found that at the feed ratio 1:1, 10% MoS{sub 2} supported on Darco TRS catalyst has highest activity at low temperatures; at higher temperatures, the catalysts 15% and 20% MoS{sub 2} supported on Darco TRS exhibit high activity in both SO{sub 2} conversion (> 90%) and yield of elemental sulfur (97.4% for 20% MoS{sub 2} at 600 C). For catalyst supported on ROZ-3, this having 10% of MOS{sub 2} showed high activity in the reaction. To determine the effect of feed ratio on the reaction, the catalysts with 15% loading of MoS{sub 2} supported on Darco TRS and ROZ-3 were used. For catalyst supported on ROZ-3 activated carbon, the effect of feed ratio is dramatic, especially at the higher temperatures at which the conversion of SO{sub 2} increases more than twice when the feed contains excess of methane. For catalyst supported on Darco TRS activated carbons, there is practically no difference in SO{sub 2} conversion for feed ratios 1:1 and 1:2 (with respect for methane).

  6. Graphitic Layer Encapsulated Iron Based Non‐precious Catalysts for the Oxygen Reduction Reaction

    DEFF Research Database (Denmark)

    Zhong, Lijie

    Proton exchange membrane fuel cells (PEMFCs) are highly efficient energy conversion devices, which can be in combination with hydrogen fuel providing a clean energy technology to produce electricity. One crucial challenge for this technology is the large cathodic overpotential due to the sluggish...... oxygen reduction reaction (ORR) kinetics. Carbon supported platinum (Pt/C) is the stateof-the-art benchmarking catalyst for PEMFCs since it exhibits the highest activity. However, the high cost and low abundance of noble metals have limited large-scale commercialization of the technology. Current efforts...... of the possible active sites. By systematic investigation of pyrolytic parameters i.e. temperature and duration, the best performance is achieved at 700 oC and 75 minutes, exhibiting a high catalytic activity in acid media (0.1 M HClO4) with an onset potential of 0.85 V at 0.1 mA cm-2 and a mass specific kinetic...

  7. Modelling the aqueous and nonaqueous interfaces for CO2 electro-reduction over Sn catalysts

    Science.gov (United States)

    Sheng, Tian; Sun, Shi-Gang

    2018-01-01

    In CO2 electroreduction, Sn catalysts with a high overpotential for hydrogen evolution reaction and a high selectivity towards formic acid formation are very attractive. Many efforts have been made for improving the catalytic performance and for understanding the mechanisms. In electrochemistry, the role of solvents for surface reactions was deserved to be investigated, in particular for some nonaqueous solvents. Here, we have modeled the aqueous (water) and nonaqueous (acetonitrile and dichloromethane) for investigation of CO2 electroreduction on Sn surface, by constrained ab initio molecular dynamics simulations and thermodynamic integrations, including a number of explicit solvent molecules in computational models. It was found that CO2 reduction is initiated from formate formation and solvents, in particular, water can effectively facilitate the reaction.

  8. Methodology for the effective stabilization of tin-oxide-based oxidation/reduction catalysts

    Science.gov (United States)

    Jordan, Jeffrey D. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Leighty, Bradley D. (Inventor); Watkins, Anthony N. (Inventor); Schryer, Jacqueline L. (Inventor); Oglesby, Donald M. (Inventor); Gulati, Suresh T. (Inventor); Summers, Jerry C. (Inventor)

    2011-01-01

    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.

  9. Effect of solvent on Se-modified ruthenium/carbon catalyst for oxygen reduction

    Directory of Open Access Journals (Sweden)

    Chuanxiang Zhang

    2014-12-01

    Full Text Available Se-modified ruthenium supporting on carbon (Sex–Ru/C electrocatalyst was prepared by solvothermal one-step synthesis method. The reaction mechanism was revealed after discussing impact of different solvents (i-propanol and EG in solvotermal reaction. The result showed that the grain size of Se-modified ruthenium electrocatalyst was as small as 1 to 3 nm and highly dispersed on carbon surface. X-ray photoelectron spectroscopy (XPS presented that selenium mainly existed in the catalyst in the form of elemental selenium and selenium oxides when the solvent was EG and i-propanol, respectively. The oxygen reduction reaction (ORR performance was improved by appearance of selenium oxides.

  10. Catalytic performance of Ag/Al2O3-C2H5OH-Cu/Al2O3 system for the removal of NOx from diesel engine exhaust.

    Science.gov (United States)

    Zhang, Changbin; He, Hong; Shuai, Shijin; Wang, Jianxin

    2007-05-01

    The selective catalytic reduction (SCR) of NOx by C(2)H(5)OH was studied in excess oxygen over Ag/Al(2)O(3) catalysts with different Ag loadings at lab conditions. The 4% Ag/Al(2)O(3) has the highest activity for the C(2)H(5)OH-SCR of NOx with a drawback of simultaneously producing CO and unburned THC in effluent gases. An oxidation catalyst 10% Cu/Al(2)O(3) was directly placed after the Ag/Al(2)O(3) to remove CO and unburned THC. Washcoated honeycomb catalysts were prepared based on the 4% Ag/Al(2)O(3) and 10% Cu/Al(2)O(3) powders and tested for the C(2)H(5)OH-SCR of NOx on a diesel engine at the practical operating conditions. Compared with the Ag/Al(2)O(3) powder, the Ag/Al(2)O(3) washcoated honeycomb catalyst (SCR catalyst) has a similar activity for NOx reduction by C(2)H(5)OH and the drawback of increasing the CO and unburned THC emissions. Using the SCR+Oxi composite catalyst with the optimization of C(2)H(5)OH addition, the diesel engine completely meets EURO III emission standards.

  11. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2005-03-31

    Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia.

  12. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer

    2005-06-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia.

  13. Selective catalytic reduction of nitric oxide with acetaldehyde over NaY zeolite catalyst in lean exhaust feed

    International Nuclear Information System (INIS)

    Schmieg, Steven J.; Cho, Byong K.; Oh, Se H.

    2004-01-01

    Steady-state selective catalytic reduction (SCR) of nitric oxide (NO) was investigated under simulated lean-burn conditions using acetaldehyde (CH 3 CHO) as the reductant. This work describes the influence of catalyst space velocity and the impact of nitric oxide, acetaldehyde, oxygen, sulfur dioxide, and water on NO x reduction activity over NaY zeolite catalyst. Results indicate that with sufficient catalyst volume 90% NO x conversion can be achieved at temperatures relevant to light-duty diesel exhaust (150-350C). Nitric oxide and acetaldehyde react to form N 2 , HCN, and CO 2 . Oxygen is necessary in the exhaust feed stream to oxidize NO to NO 2 over the catalyst prior to reduction, and water is required to prevent catalyst deactivation. Under conditions of excess acetaldehyde (C 1 :N>6:1) and low temperature ( x conversion is apparently very high; however, the NO x conversion steadily declines with time due to catalytic oxidation of some of the stored (adsorbed) NO to NO 2 , which can have a significant impact on steady-state NO x conversion. With 250ppm NO in the exhaust feed stream, maximum NO x conversion at 200C can be achieved with =400ppm of acetaldehyde, with higher acetaldehyde concentrations resulting in production of acetic acid and breakthrough of NO 2 causing lower NO x conversion levels. Less acetaldehyde is necessary at lower NO concentrations, while more acetaldehyde is required at higher temperatures. Sulfur in the exhaust feed stream as SO 2 can cause slow deactivation of the catalyst by poisoning the adsorption and subsequent reaction of nitric oxide and acetaldehyde, particularly at low temperature

  14. Fe/Ni-N-CNFs electrochemical catalyst for oxygen reduction reaction/oxygen evolution reaction in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhuang [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Li, Mian [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Fan, Liquan; Han, Jianan [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xiong, Yueping, E-mail: ypxiong@hit.edu.cn [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-04-15

    Highlights: • Novel Fe/Ni-N-CNFs electrocatalysts are prepared by electrospinning technique. • The Fe1Ni1-N-CNFs catalyst exhibits the excellent ORR and OER catalytic activity. • Synergy of Fe/Ni alloy is responsible for the excellent catalytic performance. - Abstract: The novel of iron, nickel and nitrogen doped carbon nanofibers (Fe/Ni-N-CNFs) as bifunctional electrocatalysts are prepared by electrospinning technique. In alkaline media, the Fe/Ni-N-CNFs catalysts (especially for Fe1Ni1-N-CNFs) exhibit remarkable electrocatalytic performances of oxygen reduction reaction (ORR)/oxygen evolution reaction (OER). For ORR catalytic activity, Fe1Ni1-N-CNFs catalyst offers a higher onset potential of 0.903 V, a similar four-electron reaction pathway, and excellent stability. For OER catalytic activity, Fe1Ni1-N-CNFs catalyst possesses a lower onset potential of 1.528 V and a smaller charge transfer resistance of 48.14 Ω. The unparalleled catalytic activity of ORR and OER for the Fe1Ni1-N-CNFs is attributed to the 3D porous cross-linked microstructures of carbon nanofibers with Fe/Ni alloy, N dopant, and abundant M-N{sub x} and NiOOH as catalytic active sites. Thus, Fe1Ni1-N-CNFs catalyst can be acted as one of the efficient and inexpensive catalysts of metal-air batteries.

  15. Nitrogen and sulfur co-doped carbon with three-dimensional ordered macroporosity: An efficient metal-free oxygen reduction catalyst derived from ionic liquid

    Science.gov (United States)

    Wu, Hui; Shi, Liang; Lei, Jiaheng; Liu, Dan; Qu, Deyu; Xie, Zhizhong; Du, Xiaodi; Yang, Peng; Hu, Xiaosong; Li, Junsheng; Tang, Haolin

    2016-08-01

    The development of efficient and durable catalyst for oxygen reduction reaction (ORR) is critical for the practical application of proton exchange membrane fuel cell (PEMFC). A novel imidazole based ionic liquid is synthesized in this study and used subsequently for the preparation of a N and S co-doped metal-free catalyst with three dimensional ordered microstructure. The catalyst prepared at 1100 °C showed improved ORR catalytic performance and stability compared to commercial Pt/C catalyst. We demonstrate that the high graphitic N content and high degree of graphitization of the synthesized catalyst is responsible for its superb ORR activity. Our results suggest that the N and S co-doped metal-free catalyst reported here is a promising alternative to traditional ORR catalyst based on noble metal. Furthermore, the current study also demonstrate that importance of morphology engineering in the development of high performance ORR catalyst.

  16. Synthesis and Activity of A Single Active Site N-doped Electro-catalyst for Oxygen Reduction

    International Nuclear Information System (INIS)

    Bayati, Maryam; Scott, Keith

    2016-01-01

    Nitrogen doped carbon materials are promising oxygen reduction reaction (ORR) catalysts which could potentially replace platinum. However, despite extensive studies, their active sites are still controversial and their impact on overall ORR remains obscure. Herein, we present a method for preparation of a single active site catalyst based on cycling an iron-inserted N-doped carbon catalyst in a wide potential window firstly in sulfuric acid and later in alkaline solution to study the contribution of the remaining one active group in overall activity. Following preparation of the metal-inserted N-doped carbon catalyst (MINC), its morphology was characterized using X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and the electro-catalytic behavior was investigated by employing linear sweep voltammetry (LSV) using a rotating ring disk electrode (RRDE). XPS revealed that graphitic nitrogen was the only remaining active nitrogen-containing group after elimination the pyridinic and pyrrolic groups and also iron nano-materials removal confirmed from auger peak of Fe LMMa and poisoning reaction with cyanide. The C1 s XPS region data showed an increase in the oxygen reduction intermediate C-OH peak, after the reaction, which indicates electrocatalytic activity of the graphitic carbon. Electrochemical studies revealed no significant changes in limiting current, a small increase in H 2 O 2 production and 47 mV shift in half wave potential for degraded catalyst which is in line with previous theoretical calculations.

  17. A versatile sonication-assisted deposition-reduction method for preparing supported metal catalysts for catalytic applications.

    Science.gov (United States)

    Padilla, Romen Herrera; Priecel, Peter; Lin, Ming; Lopez-Sanchez, Jose Antonio; Zhong, Ziyi

    2017-03-01

    This work aims to develop a rapid and efficient strategy for preparing supported metal catalysts for catalytic applications. The sonication-assisted reduction-precipitation method was employed to prepare the heterogeneous mono- and bi-metallic catalysts for photocatalytic degradation of methyl orange (MO) and preferential oxidation (PROX) of CO in H 2 -rich gas. In general, there are three advantages for the sonication-assisted method as compared with the conventional methods, including high dispersion of metal nanoparticles on the catalyst support, the much higher deposition efficiency (DE) than those of the deposition-precipitation (DP) and co-precipitation (CP) methods, and the very fast preparation, which only lasts 10-20s for the deposition. In the AuPd/TiO 2 catalysts series, the AuPd(3:1)/TiO 2 catalyst is the most active for MO photocatalytic degradation; while for PROX reaction, Ru/TiO 2 , Au-Cu/SBA-15 and Pt/γ-Al 2 O 3 catalysts are very active, and the last one showed high stability in the lifetime test. The structural characterization revealed that in the AuPd(3:1)/TiO 2 catalyst, Au-Pd alloy particles were formed and a high percentage of Au atoms was located at the surface. Therefore, this sonication-assisted method is efficient and rapid in the preparation of supported metal catalysts with obvious structural characteristics for various catalytic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon): Role of catalyst reduction method

    Science.gov (United States)

    Hu, Shuo; Yang, Guangxin; Jiang, Hong; Liu, Yefei; Chen, Rizhi

    2018-03-01

    Selective phenol hydrogenation is a green and sustainable technology to produce cyclohexanone. The work focused on investigating the role of catalyst reduction method in the liquid-phase phenol hydrogenation to cyclohexanone over Pd@CN (N-doped porous carbon). A series of reduction methods including flowing hydrogen reduction, in-situ reaction reduction and liquid-phase reduction were designed and performed. The results highlighted that the reduction method significantly affected the catalytic performance of Pd@CN in the liquid-phase hydrogenation of phenol to cyclohexanone, and the liquid-phase reduction with the addition of appropriate amount of phenol was highly efficient to improve the catalytic activity of Pd@CN. The influence mechanism was explored by a series of characterizations. The results of TEM, XPS and CO chemisorption confirmed that the reduction method mainly affected the size, surface composition and dispersion of Pd in the CN material. The addition of phenol during the liquid-phase reduction could inhibit the aggregation of Pd NPs and promote the reduction of Pd (2+), and then improved the catalytic activity of Pd@CN. The work would aid the development of high-performance Pd@CN catalysts for selective phenol hydrogenation.

  19. pH matters: The influence of the catalyst ink on the oxygen reduction activity determined in thin film rotating disk electrode measurements

    Science.gov (United States)

    Inaba, Masanori; Quinson, Jonathan; Arenz, Matthias

    2017-06-01

    We investigated the influence of the ink properties of proton exchange membrane fuel cell (PEMFC) catalysts on the oxygen reduction reaction (ORR) activity determined in thin film rotating disk electrode (TF-RDE) measurements. It was found that the adaption of a previously reported ink recipe to home-made catalysts does not lead to satisfying results, although reported work could be reproduced using commercial catalyst samples. It is demonstrated that the pH of the catalyst ink, which has not been addressed in previous TF-RDE studies, is an important parameter that needs to be carefully controlled to determine the intrinsic ORR activity of high surface area catalysts.

  20. Catalytic Reductions and Tandem Reactions of Nitro Compounds Using in Situ Prepared Nickel Boride Catalyst in Nanocellulose Solution.

    Science.gov (United States)

    Prathap, Kaniraj Jeya; Wu, Qiong; Olsson, Richard T; Dinér, Peter

    2017-09-15

    A mild and efficient method for the in situ reduction of a wide range of nitroarenes and aliphatic nitrocompounds to amines in excellent yields using nickel chloride/sodium borohydride in a solution of TEMPO-oxidized nanocellulose in water (0.01 wt %) is described. The nanocellulose has a stabilizing effect on the catalyst, which increases the turnover number and enables low loading of nickel catalyst (0.1-0.25 mol % NiCl 2 ). In addition, two tandem protocols were developed in which the in situ formed amines were either Boc-protected to carbamates or further reacted with an epoxide to yield β-amino alcohols in excellent yields.

  1. Graphene hydrogels with embedded metal nanoparticles as efficient catalysts in 4-nitrophenol reduction and methylene blue decolorization

    Directory of Open Access Journals (Sweden)

    Żelechowska Kamila

    2016-12-01

    Full Text Available Synthesis and characterization of the graphene hydrogels with three different metallic nanoparticles, that is Au, Ag and Cu, respectively is presented. Synthesized in a one-pot approach graphene hydrogels with embedded metallic nanoparticles were tested as heterogeneous catalysts in a model reaction of 4-nitrophenol reduction. The highest activity was obtained for graphene hydrogel with Cu nanoparticles and additional reaction of methylene blued degradation was evaluated using this system. The obtained outstanding catalytic activity arises from the synergistic effect of graphene and metallic nanoparticles. The hydrogel form of the catalyst benefits in the easiness in separation from the reaction mixture (for example using tweezers and reusability.

  2. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst.

    Science.gov (United States)

    Li, Hailong; Wu, Shaokang; Wu, Chang-Yu; Wang, Jun; Li, Liqing; Shih, Kaimin

    2015-06-16

    CuO-CeO2/TiO2 (CuCeTi) catalyst synthesized by a sol-gel method was employed to investigate mercury conversion under a selective catalytic reduction (SCR) atmosphere (NO, NH3 plus O2). Neither NO nor NH3 individually exhibited an inhibitive effect on elemental mercury (Hg(0)) conversion in the presence of O2. However, Hg(0) conversion over the CuCeTi catalyst was greatly inhibited under SCR atmosphere. Systematic experiments were designed to investigate the inconsistency and explore the in-depth mechanisms. The results show that the copresence of NO and NH3 induced reduction of oxidized mercury (Hg(2+), HgO in this study), which offset the effect of catalytic Hg(0) oxidation, and hence resulted in deactivation of Hg(0) conversion. High NO and NH3 concentrations with a NO/NH3 ratio of 1.0 facilitated Hg(2+) reduction and therefore lowered Hg(0) conversion. Hg(2+) reduction over the CuCeTi catalyst was proposed to follow two possible mechanisms: (1) direct reaction, in which NO and NH3 react directly with HgO to form N2 and Hg(0); (2) indirect reaction, in which the SCR reaction consumed active surface oxygen on the CuCeTi catalyst, and reduced species on the CuCeTi catalyst surface such as Cu2O and Ce2O3 robbed oxygen from adjacent HgO. Different from the conventionally considered mechanisms, that is, competitive adsorption responsible for deactivation of Hg(0) conversion, this study reveals that oxidized mercury can transform into Hg(0) under SCR atmosphere. Such knowledge is of fundamental importance in developing efficient and economical mercury control technologies for coal-fired power plants.

  3. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Mossin, Susanne L.; Riisager, Anders

    2011-01-01

    Cu/TiO2, Fe/TiO2 and heteropoly acid promoted Cu/TiO2, Fe/TiO2 catalysts were prepared and characterized by N2 physisorption, XRPD, NH3-TPD, H2-TPR and EPR. The catalysts exhibited only crystalline TiO2 phases with the active metals and promoters in highly dispersed state. The acidic properties...... activity and acidity was lower for promoted catalysts than for unpromoted catalysts. In the heteropoly acid promoted catalysts the SCR active Cu and Fe metals were protected from potassium poisons by bonding of the potassium to the Brønsted acid centres. Thus heteropoly acid promoted catalysts might...

  4. Dependence on composition of electronic properties and stability of Pt-Fe/C catalysts for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Malheiro, A.R.; Perez, J.; Villullas, H.M. [Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista - UNESP, Caixa Postal 355, R. Francisco Degni, s/n, CEP 14801-970, Araraquara, SP (Brazil)

    2010-11-01

    This work presents studies of electronic characteristics and alloy stability carried out for Pt-Fe/C catalysts of different compositions (10-50% Fe, in atoms) and same particle size. The electronic properties are characterized by in situ dispersive X-ray absorption spectroscopy (DXAS). The results show a steady decrease in Pt d-band occupancy as the amount of Fe in the alloy increases. The alloy stability is evaluated by prolonged potential cycling up to 1.0 V. Catalysts with Fe content up to 30% show good stabilities and keep their activities for oxygen reduction after prolonged cycling. In contrast, catalysts with Fe content above 30% suffer pronounced Fe leaching. (author)

  5. Durability Improvement of Pt/RGO Catalysts for PEMFC by Low-Temperature Self-Catalyzed Reduction.

    Science.gov (United States)

    Sun, Kang Gyu; Chung, Jin Suk; Hur, Seung Hyun

    2015-12-01

    Pt/C catalyst used for polymer electrolyte membrane fuel cells (PEMFCs) displays excellent initial performance, but it does not last long because of the lack of durability. In this study, a Pt/reduced graphene oxide (RGO) catalyst was synthesized by the polyol method using ethylene glycol (EG) as the reducing agent, and then low-temperature hydrogen bubbling (LTHB) treatment was introduced to enhance the durability of the Pt/RGO catalyst. The cyclic voltammetry (CV), oxygen reduction reaction (ORR) analysis, and transmittance electron microscopy (TEM) results suggested that the loss of the oxygen functional groups, because of the hydrogen spillover and self-catalyzed dehydration reaction during LTHB, reduced the carbon corrosion and Pt agglomeration and thus enhanced the durability of the electrocatalyst.

  6. System and method for controlling ammonia levels in a selective catalytic reduction catalyst using a nitrogen oxide sensor

    Science.gov (United States)

    None

    2017-07-25

    A system according to the principles of the present disclosure includes an air/fuel ratio determination module and an emission level determination module. The air/fuel ratio determination module determines an air/fuel ratio based on input from an air/fuel ratio sensor positioned downstream from a three-way catalyst that is positioned upstream from a selective catalytic reduction (SCR) catalyst. The emission level determination module selects one of a predetermined value and an input based on the air/fuel ratio. The input is received from a nitrogen oxide sensor positioned downstream from the three-way catalyst. The emission level determination module determines an ammonia level based on the one of the predetermined value and the input received from the nitrogen oxide sensor.

  7. Nitrogen-Doped Graphene on Transition Metal Substrates as Efficient Bifunctional Catalysts for Oxygen Reduction and Oxygen Evolution Reactions.

    Science.gov (United States)

    Zhou, Si; Liu, Nanshu; Wang, Zhiyu; Zhao, Jijun

    2017-07-12

    Composites of transition metal and carbon-based materials are promising bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and are widely used in rechargeable metal-air batteries. However, the mechanism of their enhanced bicatalytic activities remains elusive. Herein, we construct N-doped graphene supported by Co(111) and Fe(110) substrates as bifunctional catalysts for ORR and OER in alkaline media. First-principles calculations show that these heterostructures possess a large number of active sites for ORR and OER with overpotentials comparable to those of noble metal benchmark catalysts. The catalytic activity is modulated by the coupling strength between graphene and the metal substrates, as well as the charge distribution in the graphitic sheet, which is delicately mediated by N dopants. These theoretical results uncover the key parameters that govern the bicatalytic properties of hybrid materials and help prescribe the principles for designing multifunctional electrocatalysts of high performance.

  8. Effect of exhaust gases of Exhaust Gas Recirculation (EGR) coupling lean-burn gasoline engine on NOx purification of Lean NOx trap (LNT)

    Science.gov (United States)

    Liu, Lei; Li, Zhijun; Liu, Shiyu; Shen, Boxi

    2017-03-01

    Based on pervious experimental research on the application of Exhaust Gas Recirculation (EGR) and Lean NOx Trap (LNT) with its effects on NOx emission control and secondary development of CHEMKIN software, an integrated NOx purification chemical kinetics mechanism including NOx adsorption, NOx desorption and NOx reduction process of LNT was created based on actual exhaust gases of the lean-burn gasoline engine. The effect of exhaust gases on NOx deterioration of LNT was investigated by modifying H2, O2 and overlap phase in mechanism of NOx desorption and NOx reduction process. Research found that the inlet temperature of LNT around 300 °C possesses the best NOx adsorption performance compared with 200 °C and 400 °C. Pt plays an import role in the process of NOx adsorption and NOx reduction. The reductive capability order of complex compound between Pt, and H2, CO and HC is Pt-H2>Pt-CO>Pt-C3H6. Both CO2 and H2O(g) could deteriorate NOx purification of LNT. The deterioration caused by H2O(g) is not significant as CO2 but harder to be regenerated. O2 could be beneficial to the NOx adsorption process, but it also could weaken the reductive atmosphere in the process of NOx desorption and NOx reduction.

  9. Advantages of MgAlOx over gamma-Al2O3 as a support material for potassium-based high temperature lean NOx traps

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jinyong; Gao, Feng; Karim, Ayman M.; Xu, Pinghong; Browning, Nigel D.; Peden, Charles HF

    2015-08-07

    MgAlOx mixed oxides were employed as supports for potassium-based lean NOx traps (LNTs) targeted for high temperature applications. Effects of support compositions, K/Pt loadings, thermal aging and catalyst regeneration on NOx storage capacity were systematically investigated. The catalysts were characterized by XRD, NOx-TPD, TEM, STEM-HAADF and in-situ XAFS. The results indicate that MgAlOx mixed oxides have significant advantages over conventional gamma-Al2O3-supports for LNT catalysts, in terms of high temperature NOx trapping capacity and thermal stability. First, as a basic support, MgAlOx stabilizes stored nitrates (in the form of KNO3) to much higher temperatures than mildly acidic gamma-Al2O3. Second, MgAlOx minimizes Pt sintering during thermal aging, which is not possible for gamma-Al2O3 supports. Notably, combined XRD, in-situ XAFS and STEM-HAADF results indicate that Pt species in the thermally aged Pt/MgAlOx samples are finely dispersed in the oxide matrix as isolated atoms. This strong metal-support interaction stabilizes Pt and minimizes the extent of sintering. However, such strong interactions result in Pt oxidation via coordination with the support so that NO oxidation activity can be adversely affected after aging which, in turn, decreases NOx trapping ability for these catalysts. Interestingly, a high-temperature reduction treatment regenerates essentially full NOx trapping performance. In fact, regenerated Pt/K/MgAlOx catalyst exhibits much better NOx trapping performance than fresh Pt/K/Al2O3 LNTs over the entire temperature range investigated here. In addition to thermal aging, Pt/K loading effects were systemically studied over the fresh samples. The results indicate that NOx trapping is kinetically limited at low temperatures, while thermodynamically limited at high temperatures. A simple conceptual model was developed to explain the Pt and K loading effects on NOx storage. An optimized K loading, which allows balancing between the

  10. Method and apparatus for combination catalyst for reduction of NO.sub.x in combustion products

    Science.gov (United States)

    Socha, Richard F.; Vartuli, James C.; El-Malki, El-Mekki; Kalyanaraman, Mohan; Park, Paul W.

    2010-09-28

    A method and apparatus for catalytically processing a gas stream passing therethrough to reduce the presence of NO.sub.x therein, wherein the apparatus includes a first catalyst composed of a silver containing alumina that is adapted for catalytically processing the gas stream at a first temperature range, and a second catalyst composed of a copper containing zeolite located downstream from the first catalyst, wherein the second catalyst is adapted for catalytically processing the gas stream at a lower second temperature range relative to the first temperature range.

  11. Tailoring Synthesis Conditions of Carbon Xerogels towards Their Utilization as Pt-Catalyst Supports for Oxygen Reduction Reaction (ORR

    Directory of Open Access Journals (Sweden)

    María Jesús Lázaro

    2012-10-01

    Full Text Available Carbon xerogels characterized by different textural, structural and chemical properties were synthesized and used as supports for Pt catalysts for the application in polymer electrolyte fuel cells. Synthesis conditions were varied in order to synthesize carbon xerogels following the sol-gel method. These included the reactants ratio (precursor/formaldehyde, the catalyst concentration (precursor/catalyst ratio and type (basic and acid, the precursor type (resorcinol and pyrogallol and the solvent (aqueous or acetone based. Stoichiometric mixtures of resorcinol and formaldehyde yielded well polymerized gels and highly developed structures. Slow gelation, favored by the presence of acetone as solvent in the sol and low catalyst concentration, resulted in higher polymerization extent with a highly mesoporous or even macroporous texture and more ordered structure, as evidenced by XPS and Raman spectroscopy. Small Pt particles of ca. 3.5 nm were obtained by using carbon xerogels characterized by an ordered surface structure. The specific activity towards the oxygen reduction reaction, i.e., the limiting catalytic process in low temperature fuel cells, is significantly favored by highly ordered carbon xerogels due to a metal-support enhanced interaction. Nevertheless, surface defects favor the distribution of the metallic particles on the surface of carbon, which in the end influences the effectiveness of the catalyst. Accelerated degradation tests were conducted to evaluate catalyst stability under potential cycling conditions. The observed decay of performance was considerably lower for the catalysts based on ordered carbon xerogels stabilizing Pt particles in a higher extent than the other xerogels and the commercial carbon black support.

  12. New Homogeneous Chromophore/Catalyst Concepts for the Solar-Driven Reduction of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Michael D. [The University of Chicago, Chicago, IL (United States)

    2015-06-22

    One of the major scientific and technical challenges of this century is to develop chemical means to store solar energy in the form of fuels. This can be accomplished by developing light-absorbing and catalytic compounds that function cooperatively to rearrange the chemical bonds of feedstocks in a way that allows solar energy to be stored and released on demand. The research conducted during this project was directed toward addressing fundamental questions that underlie the conversion of CO2 to a solar fuel using homogeneous molecular systems. The research focused particularly on developing methods for extracting the reducing equivalents for these photochemical conversions from H2, which is a renewable molecule sourced to water. The research followed two main lines. One effort focused on understanding the general principles that govern how light-absorbing molecules interact with independent H2 oxidation and CO2 reduction catalysts to produce a functional cycle for driving the energy-storing reverse water-gas-shift reaction with light. The second effort centered on developing the excited-state properties and H2 activation chemistry of tungsten–alkylidyne complexes. These chromophores were found to be powerful excited-state reducing agents, which could be incorporated into light-light-harvesting assemblies, and to hold the potential to be regenerated using H2.

  13. Quaternized chitosan/rectorite/AgNP nanocomposite catalyst for reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yunzhi [State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Zeng, Xianjie [School of Business Administration, South China University of Technology, Guangzhou 510640 (China); Tan, Weirui [State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Jiwen, E-mail: holdit@126.com [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Shijie, E-mail: sjliu@163.com [State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640 (China); China Department of Paper and Bioprocess Engineering, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 (United States)

    2015-10-25

    This study investigated a one-step green fabrication of exfoliated quaternized chitosan/rectorite/AgNP nanocomposites under microwave radiation method. The nanocomposites were characterized by FT-IR, XRD, XPS and TEM. The results revealed that quaternized chitosan and rectorite acted as reducing and stabilizing agents, spherical AgNPs were synthesized greenly and rapidly, meanwhile the layers of rectorite were exfoliated, and when the ratio of quaternized chitosan, rectorite and silver nitrate was 100 mg: 10 mg: 2 mmol, the AgNP content reached the maximum of 2.73%. Then, the quaternized chitosan/rectorite/AgNP nanocomposite was fabricated as a film, which was used in the catalytic reduction from 4-nitrophenol to 4-aminophenol by NaBH{sub 4}. The film showed excellent catalytic efficiency with an activation energy of 29.76 kJ mol{sup −1} and outstanding reusable performance even after catalysis for 10 times. - Graphical abstract: Quaternized chitosan/rectorite/AgNP nanocomposite catalyst was prepared greenly in one pot and fabricated as a film, which showed excellent catalytic efficiency and reusable performance. - Highlights: • Quaternized chitosan and rectorite acted as reducing and stabilizing agents. • Spherical Ag NPs were synthesized greenly and rapidly. • AgNP dispersed well on the surface and the interlayer of exfoliated rectorite. • Quaternized chitosan/rectorite/AgNP nanocomposite was prepared as a film. • The film showed excellent catalytic efficiency and reusable performance.

  14. Zr-SBA-15 Lewis Acid Catalyst: Activity in Meerwein Ponndorf Verley Reduction

    Directory of Open Access Journals (Sweden)

    Jose Iglesias

    2015-11-01

    Full Text Available Zr-SBA-15 Lewis acid catalyst has demonstrated an outstanding catalytic activity in the reduction of several carbonyl compounds by means of Meerwein Ponndorf Verley (MPV reaction, using several secondary alcohols, and showing a very high selectivity towards the desired products. Special focus was addressed in the catalytic activity of Zr-SBA-15 material in the production of furfuryl alcohol from furfural, which is an important reaction for the lignocellulosic biomass valorization. In this transformation, both the reaction temperature and the i-PrOH:Furfural molar ratio exert a positive influence on the rate of the MPV transformation, with the influence of the former being much higher. i-propyl-furfuryl ether, a by-product resulting from the etherification of the target product with the sacrificing alcohol, is also found together with the main product. The production of this side-product is highly influenced by the reaction temperature, so that low temperatures and high sacrificing alcohol to substrate molar ratios have to be applied to keep its production at low levels.

  15. Supramolecular tetracluster-cobalt porphyrin: a four-electron transfer catalyst for dioxygen reduction

    International Nuclear Information System (INIS)

    Winnischofer, Herbert; Otake, Vesper Yoshiyuki; Dovidauskas, Sergio; Nakamura, Marcelo; Toma, Henrique Eisi; Araki, Koiti

    2004-01-01

    Electrocatalysis by CoTCP {CoTCP meso-tetrakis(4-pyridyl)porphynatocobalt(III)} coordinated to four [Ru 3 (μ 3 -O)(μ 2 -CH 3 CO 2 ) 6 (py) 2 ] + complexes in the four-electron reduction of dioxygen, has been unequivocally demonstrated in this work by using two types of electrostatically assembled films of CoTCP and anionic zinc or free-base meso-tetrakis(4-sulfonatophenyl)porphyrins (ZnTPPS or H 2 TPPS), as well as, by employing different electrode materials. An enhanced electrocatalytic activity has been observed, in spite of the fact that the typical bis-coordination of dioxygen to two cobalt porphyrin sites is precluded in such CoTCP/ZnTPPS or CoTCP/H 2 TPPS bilayered films. In addition, negligible ring currents have been observed in ring-disk voltammetry measurements, yielding straight Levich and Koutecky-Levich plots, whose slopes approached the theoretical 4e - curve in air, or in O 2 saturated solutions (pH 3-5). The use of gold instead of glassy carbon (GC) electrodes has not also significantly perturbed the mechanism. By ruling out any influence from the electrode materials, a well known critical point in the catalysis by cobalt porphyrins, the results have shown that CoTCP is acting as a four-electron transfer catalyst for dioxygen reduction. Also, by excluding the possibility of bis-coordination of dioxygen, it was shown that the electronic and supramolecular effects exerted by the peripheral ruthenium cluster complexes should be triggering the four-electron catalytic activity of the cobalt porphyrin center

  16. High performance vanadia-anatase nanoparticle catalysts for the selective catalytic reduction of NO by ammonia

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus; Kunov-Kruse, Andreas Jonas; Riisager, Anders

    2011-01-01

    Highly active nanoparticle SCR deNO(x) catalysts composed of amorphous vanadia on crystalline anatase have been prepared by a sol-gel, co-precipitation method using decomposable crystallization seeds. The catalysts were characterized by means of XRPD, TEM/SEM, FT-IR, nitrogen physisorption and NH(3...

  17. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S

  18. Feasibility of plasma aftertreatment for simultaneous control of NOx and particulates

    International Nuclear Information System (INIS)

    Brusasco, R M; Merritt, B T; Penetrante, B; Pitz, W J; Vogtlin, G E

    1999-01-01

    Plasma reactors can be operated as a particulate trap or as a NOx converter. Particulate trapping in a plasma reactor can be accomplished by electrostatic precipitation. The soluble organic fraction of the trapped particulates can be utilized for the hydrocarbon-enhanced oxidation of NO to NO2 . The NO2 can then be used to non-thermally oxidize the carbon fraction of the particulates. The oxidation of the carbon fraction by NO2 can lead to reduction of NOx or backconversion of NO2 to NO. This paper examines the hydrocarbon and electrical energy density requirements in a plasma for maximum NOx conversion in both heavy-duty and light-duty diesel engine exhaust. The energy density required for complete oxidation of hydrocarbons is also examined and shown to be much greater than that required for maximum NOx conversion. The reaction of NO2 with carbon is shown to lead mainly to backconversion of NO2 to NO. These results suggest that the combination of the plasma with a catalyst will be required to reduce the NOx and oxidize the hydrocarbons. The plasma reactor can be operated occasionally in the arc mode to thermally oxidize the carbon fraction of the particulates

  19. Effect of CaO on NOx Reduction by Selective Non-Catalytic Reduction under Variable Gas Compositions in a Simulated Cement Precalciner Atmosphere.

    Science.gov (United States)

    Sun, Ye; Fan, Weiyi; Zhu, Tianle; Hong, Xiaowei

    2017-11-29

    High-concentration CaO particles and gas compositions have a significant influence on NO x reduction by selective non-catalytic reduction (SNCR) in cement precalciners. The effect of gas composition on NO x reduction by SNCR with NH₃ was studied in a cement precalciner atmosphere with and without CaO at 700-1100 °C. It was found that CaO significantly lowers NO x reduction efficiency between 750 °C and 1000 °C, which is attributed to the catalytic oxidation of NH₃ to NO. Although increasing NH₃ concentration was advantageous to NO x reduction, the existence of CaO led to the opposite result at 750-900 °C. Adding H₂O can suppress the negative effect of CaO on NO x reduction. Decreasing O₂ content from 10% to 1% shifts the temperature range in which CaO has a significant effect from 750-1000 °C to 800-1050 °C. CO has a variety of influences on the CaO effect under different experimental conditions. The influences of NH₃, H₂O, O₂, and CO on the effect of CaO can be attributed to the impacts of the gas compositions on gas-phase NH₃ conversion, gas-solid catalytic NH₃ oxidation, or both processes. A proposed pathway for the effect of gas compositions on NO x reduction in CaO-containing SNCR process was developed that well predicted the CaO-containing SNCR process.

  20. Public Service Co. of Colorado's NOx reduction program for pulverized coal tangentially fired 165 and 370MW utility boilers

    International Nuclear Information System (INIS)

    Hawley, R.R.; Collette, R.J.; Grusha, J.

    1990-01-01

    Public Service Co. of Colorado has made a voluntary corporate commitment to reduce NO x emissions by 20% from their major boilers in the Denver Metro Area before the end of 1991. Their two largest units in the Metro Area were chosen for retrofit with in-furnace low NO x technology - Valmont No. 5 and Cherokee No. 4. Both of these units are tangential coal fired boilers manufactured by ABB Combustion Engineering. As of this writing, Valmont No. 5 has been completed and is discussed herein. Cherokee No. 4 is scheduled to complete its Performance Guarantee testing in December of 1990. The topics of this paper include the commitment to NO x reduction, unit description, project schedule, overview of tangential firing system, pulverized coal NO x formation, low NO x concentric firing system, contribution of overfire air for NO x control, contribution of offset air nozzle tips for NO x control, contribution of flame attachment coal nozzle tips for NO x control, installation experience, performance and testing results

  1. Impact of the initiatives of the CCME [Canadian Council of Ministers of the Environment] management plan with regard to reduction of NOx and VOC [volatile organic compounds] in the Canadian petroleum refining and distribution industry

    International Nuclear Information System (INIS)

    Lafleur, R.

    1992-01-01

    The Canadian petroleum refining and distribution industry produces 98,300 tonnes/y of emissions of volatile organic compounds (VOC), or 5.5% of the national inventory. The Canadian Council of Ministers of the Environment (CCME) has formulated plans for controlling emissions of nitrogen oxides (NOx) and VOC, and the Canadian petroleum industry is in broad agreement with the CCME proposals that control measures must be taken to reduce ozone levels in regions with an ozone problem (notably the Windsor-Quebec City corridor and the Fraser Valley) by taking appropriate measures to reduce emissions of ozone precursors NOx and VOC. Three types of NOx reduction initiatives are outlined: increasing energy efficiency, reducing NOx from furnaces and boilers, and modernization of certain refinery processes. Initiatives for reducing VOC include limiting the volatility of petroleum fuels, control of fugitive vapor emissions from storage tanks, recovery of such vapors from service stations and fuel transfer depots, and control of fugitive hydrocarbon emissions from refineries. The economic impacts of these initiatives are evaluated, showing important variations in terms of benefits and efficiency for the options considered. 9 refs., 2 figs., 2 tabs

  2. The Reduction Reaction of Dissolved Oxygen in Water by Hydrazine over Platinum Catalyst Supported on Activated Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Moon, J.S. [Korea Electric Power Research Institute, Taejon (Korea)

    1999-07-01

    The reduction reaction of dissolved oxygen (DO) by hydrazine was investigated on activated carbon fiber (ACF) and Pt/ACF catalysts using a batch reactor with an external circulating loop. The ACF itself showed catalytic activity and this was further improved by supporting platinum on ACF. The catalytic role platinum is ascribed to its acceleration of hydrazine decomposition, based on electric potential and current measurements as well as the kinetic study. (author). 15 refs., 13 figs.

  3. Reduction of nanowire diameter beyond lithography limits by controlled catalyst dewetting

    Science.gov (United States)

    Calahorra, Yonatan; Kerlich, Alexander; Amram, Dor; Gavrilov, Arkady; Cohen, Shimon; Ritter, Dan

    2016-04-01

    Catalyst assisted vapour-liquid-solid is the most common method to realize bottom-up nanowire growth; establishing a parallel process for obtaining nanoscale catalysts at pre-defined locations is paramount for further advancement towards commercial nanowire applications. Herein, the effect of a selective area mask on the dewetting of metallic nanowire catalysts, deposited within lithography-defined mask pinholes, is reported. It was found that thin disc-like catalysts, with diameters of 120-450 nm, were transformed through dewetting into hemisphere-like catalysts, having diameters 2-3 fold smaller; the process was optimized to about 95% yield in preventing catalyst splitting, as would otherwise be expected due to their thickness-to-diameter ratio, which was as low as 1/60. The catalysts subsequently facilitated InP and InAs nanowire growth. We suggest that the mask edges prevent surface migration mediated spreading of the dewetted metal, and therefore induce its agglomeration into a single particle. This result presents a general strategy to diminish lithography-set dimensions for NW growth, and may answer a fundamental challenge faced by bottom-up nanowire technology.

  4. Catalytic reduction of nitrate and nitrite ions by hydrogen : investigation of the reaction mechanism over Pd and Pd-Cu catalysts

    NARCIS (Netherlands)

    Ilinitch, OM; Nosova, LV; Gorodetskii, VV; Ivanov, VP; Trukhan, SN; Gribov, EN; Bogdanov, SV; Cuperus, FP

    2000-01-01

    The catalytic behavior of mono- and bimetallic catalysts with Pd and/or Cu supported over gamma-Al2O3 in the reduction of aqueous nitrate and nitrite ions by hydrogen was investigated. The composition of the supported metal catalysts was analysed using secondary ion mass spectroscopy (SIMS) and

  5. Brief Communication: CATALYST - a multi-regional stakeholder Think Tank for fostering capacity development in disaster risk reduction and climate change adaptation

    NARCIS (Netherlands)

    Terwisscha van Scheltinga, C.T.H.M.; Hare, M.P.; Bers, van C.; Keur, van der P.

    2014-01-01

    This brief communication presents the work and objectives of the CATALYST project on "Capacity Development for Hazard Risk Reduction and Adaptation" funded by the European Commission (October 2011–September 2013). CATALYST set up a multi-regional think tank covering four regions (Central America and

  6. Platinum/nitrogen-doped carbon/carbon cloth: a bifunctional catalyst for the electrochemical reduction and carboxylation of CO2 with excellent efficiency.

    Science.gov (United States)

    Yang, Heng-Pan; Lin, Qing; Zhang, Han-Wen; Li, Guo-Dong; Fan, Liang-Dong; Chai, Xiao-Yan; Zhang, Qian-Ling; Liu, Jian-Hong; He, Chuan-Xin

    2018-03-14

    A novel Pt-NP@NCNF@CC composite was prepared by the electrospinning technique. It is a highly efficient and binder-free catalyst for the direct reduction and carboxylation of CO 2 with halides. Formate with 91% Faradaic efficiency and 2-phenylpropionic acid with 99% yield could be obtained, respectively. Moreover, this catalyst has excellent stability and reusability.

  7. A Best Practices Notebook for Disaster Risk Reduction and Climate Change Adaptation: Guidance and Insights for Policy and Practice from the CATALYST Project

    NARCIS (Netherlands)

    Hare, M.; Bers, van C.; Mysiak, J.; Calliari, E.; Haque, A.; Warner, K.; Yuzva, K.; Zissener, M.; Jaspers, A.M.J.; Timmerman, J.G.

    2014-01-01

    This publication, A Best Practices Notebook for Disaster Risk Reduction and Climate Change Adaptation: Guidance and Insights for Policy and Practice from the CATALYST Project is one of two main CATALYST knowledge products that focus on the transformative approaches and measures that can support

  8. Porous boron doped diamonds as metal-free catalysts for the oxygen reduction reaction in alkaline solution

    Science.gov (United States)

    Suo, Ni; Huang, Hao; Wu, Aimin; Cao, Guozhong; Hou, Xiaoduo; Zhang, Guifeng

    2018-05-01

    Porous boron doped diamonds (BDDs) were obtained on foam nickel substrates with a porosity of 80%, 85%, 90% and 95% respectively by hot filament chemical vapor deposition (HFCVD) technology. Scanning electron microscopy (SEM) reveals that uniform and compact BDDs with a cauliflower-like morphology have covered the overall frame of the foam nickel substrates. Raman spectroscopy shows that the BDDs have a poor crystallinity due to heavily doping boron. X-ray photoelectron spectroscopy (XPS) analysis effectively demonstrates that boron atoms can be successfully incorporated into the crystal lattice of diamonds. Electrochemical measurements indicate that the oxygen reduction potential is unaffected by the specific surface area (SSA), and both the onset potential and the limiting diffusion current density are enhanced with increasing SSA. It is also found that the durability and methanol tolerance of the boron doped diamond catalysts are attenuated as the increasing of SSA. The SSA of the catalyst is directly proportional to the oxygen reduction activity and inversely to the durability and methanol resistance. These results provide a reference to the application of porous boron doped diamonds as potential cathodic catalysts for the oxygen reduction reaction in alkaline solution by adjusting the SSA.

  9. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2.

    Science.gov (United States)

    Ju, Wen; Bagger, Alexander; Hao, Guang-Ping; Varela, Ana Sofia; Sinev, Ilya; Bon, Volodymyr; Roldan Cuenya, Beatriz; Kaskel, Stefan; Rossmeisl, Jan; Strasser, Peter

    2017-10-16

    Direct electrochemical reduction of CO 2 to fuels and chemicals using renewable electricity has attracted significant attention partly due to the fundamental challenges related to reactivity and selectivity, and partly due to its importance for industrial CO 2 -consuming gas diffusion cathodes. Here, we present advances in the understanding of trends in the CO 2 to CO electrocatalysis of metal- and nitrogen-doped porous carbons containing catalytically active M-N x moieties (M = Mn, Fe, Co, Ni, Cu). We investigate their intrinsic catalytic reactivity, CO turnover frequencies, CO faradaic efficiencies and demonstrate that Fe-N-C and especially Ni-N-C catalysts rival Au- and Ag-based catalysts. We model the catalytically active M-N x moieties using density functional theory and correlate the theoretical binding energies with the experiments to give reactivity-selectivity descriptors. This gives an atomic-scale mechanistic understanding of potential-dependent CO and hydrocarbon selectivity from the M-N x moieties and it provides predictive guidelines for the rational design of selective carbon-based CO 2 reduction catalysts.Inexpensive and selective electrocatalysts for CO 2 reduction hold promise for sustainable fuel production. Here, the authors report N-coordinated, non-noble metal-doped porous carbons as efficient and selective electrocatalysts for CO 2 to CO conversion.

  10. Metalloporphyrin catalysts for oxygen reduction developed using computer-aided molecular design

    Energy Technology Data Exchange (ETDEWEB)

    Ryba, G.N.; Hobbs, J.D.; Shelnutt, J.A. [and others

    1996-04-01

    The objective of this project is the development of a new class of metalloporphyrin materials used as catalsyts for use in fuel cell applications. The metalloporphyrins are excellent candidates for use as catalysts at both the anode and cathode. The catalysts reduce oxygen in 1 M potassium hydroxide, as well as in 2 M sulfuric acid. Covalent attachment to carbon supports is being investigated. The computer-aided molecular design is an iterative process, in which experimental results feed back into the design of future catalysts.

  11. Ti and Si doping as a way to increase low temperature activity of sulfated Ag/Al2O3 in H2-assisted NH3-SCR of NOx

    DEFF Research Database (Denmark)

    Doronkin, Dmitry E.; Fogel, Sebastian; Gabrielsson, Pär

    2013-01-01

    Ag/Al2O3 catalysts modified by Si, Ti, Mg and W were studied to obtain higher NOx SCR activity and potentially also higher SO2 resistance than the pure silver-based catalyst for automotive applications. Addition of Ti or Si to the alumina support leads to a better NOx removal at low temperature i......-TPR) and temperature-programmed desorption of ammonia (NH3-TPD). The obtained results suggest a better silver dispersion and better regeneration capability in the case of Ti- and Si-modified Ag/Al2O3 catalysts........e. reduces the SCR onset temperature by about 10°C under the applied conditions. However, it does not increase the SO2 resistance. The catalysts and the supports have been characterized by BET, conventional and synchrotron XRD, X-ray absorption spectroscopy during temperature-programmed reduction (XAS...

  12. A practical synthesis of xylo- and arabinofuranoside precursors by diastereoselective reduction using Corey-Bakshi-Shibata catalyst.

    Science.gov (United States)

    Utley, Lynn M; Maldonado, Jessica; Awad, Ahmed M

    2018-01-02

    The Corey-Bakshi-Shibata (CBS) catalyst provides an efficient mechanism to reduce ketones and achieve desired enantiopure alcohols. Herein, the diastereoselective reduction of C-2' and C-3'-keto ribofuranoside derivatives to the corresponding arabino- and xylofuranosides in greater than 95% diastereomeric excess is reported. The stereo-directed substitution with an azido group as well as the synthesis of prodrugs cytarabine and vidarabine are also described. The reported strategy offers superior diastereoselectivity, shorter reaction times, and obviates cooling required with comparable protocols involving achiral reductants.

  13. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

    2012-10-01

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

  14. Three dimensional metal/N-doped nanoplate carbon catalysts for oxygen reduction, the reason for using a layered nanoreactor.

    Science.gov (United States)

    Yeganeh Ghotbi, Mohammad; Javanmard, Arash; Soleimani, Hassan

    2018-02-21

    A layered nanoreactor (zinc hydroxide gallate/nitrate nanohybrid) has been designed as a nano-vessel to confine the gallate/nitrate reaction inside zinc hydroxide layers for production of metal/nitrogen-doped carbon catalysts. Metals (Fe 2+ , Co 2+ and Ni 2+ ) doped and bare zinc hydroxide nitrates (ZHN) were synthesized as the α-phase hydroxide hosts. By an incomplete ion-exchange process, nitrate anions between the layers of the hosts were then partially replaced by the gallate anions to produce the layered nanoreactors. Under heat-treatment, the reaction between the remaining un-exchanged nitrate anions and the organic moiety inside the basal spacing of each nanohybrid plate resulted in obtaining highly porous 3D metal/nitrogen-doped carbon nanosheets. These catalysts were then used as extremely efficient electrocatalysts for catalyzing oxygen reduction reaction (ORR). This study is intended to show the way to get maximum electrocatalytic activity of the metal/N-doped carbon catalysts toward the ORR. This exceptionally high ORR performance originates from the increased available surface, the best pore size range and the uniform distribution of the active sites in the produced catalysts, all provided by the use of new idea of the layered nanoreactor.

  15. Cellulose-derived nitrogen and phosphorus dual-doped carbon as high performance oxygen reduction catalyst in microbial fuel cell

    Science.gov (United States)

    Liu, Qin; Zhou, Yan; Chen, Shuiliang; Wang, Zejie; Hou, Haoqing; Zhao, Feng

    2015-01-01

    Microbial fuel cells (MFCs) couple functions of waste removal and electricity generation. The future success of MFCs inevitably depends on the increase of performance at decrease of material cost. Therefore, the use of renewable and sustainable materials, e.g. cellulose, to prepare high performance materials for MFCs would be an inevitable trend. In this communication, nitrogen and phosphorus dual-doped carbons were prepared by pyrolysis of cellulose using ammonium phosphate as doping source and employed as oxygen reduction reaction (ORR) catalyst in air-cathode of MFCs. A maximum power density of 2293 ± 50 mW m-2 was generated by the air-cathode using the dual-doped carbon catalyst, which was higher than the air-cathode using Pt/C catalyst with Pt load of 0.5 mg cm-2 (1680 ± 32 mW m-2). This study provided a facile and sustainable way to prepare low-cost and high-efficient ORR catalyst for scaled-up MFC applications.

  16. Superior catalysts for selective catalytic reduction of nitric oxide. Annual technical report, September 30, 1993--September 29, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.P.; Hausladen, M.C.; Yang, R.T.

    1995-03-01

    A delaminated Fe{sub 2}O{sub 3}-pillared clay catalyst was prepared for the selective catalytic reduction (SCR) of NO by NH{sub 3} at above 300{degrees}C. The delaminated pillard clay was characterized by ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy) chemical analysis, XRD (X-ray diffraction) structure and line broadening analyses, micropore size probing, and Moessbauer analysis. These analyses showed that the catalyst contained fragmented Fe{sub 2}O{sub 3}-pillared clay forming {open_quotes}house-of-cards{close_quotes} structure with dispersed Fe{sub 2}O{sub 3} particles approximately 170 {angstrom} in size. The SCR activity of the delaminated pillard clay was higher than the commercial-type V{sub 2}O{sub 5} + WO{sub 3}/TiO{sub 2} catalyst, and also higher than the undelaminated pillard clay and supported Fe{sub 2}O{sub 3} catalysts, under conditions with SO{sub 2}. Infrared measurements of adsorbed NH{sub 3} showed strong Bronsted acidity which was caused possibly by interactions between Fe{sub 2}O{sub 3} and clay.

  17. Study of the "Fast SCR" -like mechanism of H2-assisted SCR of NOx with ammonia over Ag/Al2O3

    DEFF Research Database (Denmark)

    Doronkin, Dmitry E.; Fogel, Sebastian; Tamm, Stefanie

    2012-01-01

    It is shown that Ag/Al2O3 is a unique catalytic system for H2-assisted selective catalytic reduction of NOx by NH3 (NH3-SCR) with both Ag and alumina being necessary components of the catalyst. The ability of Ag/Al2O3 and pure Al2O3 to catalyse SCR of mixtures of NO and NO2 by ammonia is demonstr......It is shown that Ag/Al2O3 is a unique catalytic system for H2-assisted selective catalytic reduction of NOx by NH3 (NH3-SCR) with both Ag and alumina being necessary components of the catalyst. The ability of Ag/Al2O3 and pure Al2O3 to catalyse SCR of mixtures of NO and NO2 by ammonia...... is demonstrated, the surface species occurring discussed, and a "Fast SCR" -like mechanism of the process is proposed. The possibility of catalyst surface blocking by adsorbed NOx and the influence of hydrogen on desorption of NOx were evaluated by FTIR and DFT calculations. © 2011 Elsevier B.V....

  18. CoMn2O4-supported functionalized carbon nanotube: efficient catalyst for oxygen reduction in microbial fuel cells

    Science.gov (United States)

    Zhu, Nengwu; Lu, Yu; Liu, Bowen; Zhang, Taiping; Huang, Jianjian; Shi, Chaohong; Wu, Pingxiao; Dang, Zhi; Wang, Ruixin

    2017-10-01

    Recently, the synthesis of nonprecious metal catalysts with low cost and high oxygen reduction reaction (ORR) efficiency is paid much attention in field of microbial fuel cells (MFCs). Transition metal oxides (AMn2O4, A = Co、Ni, and Zn) supported on carbon materials such as graphene and carbon nanotube exhibit stronger electroconductivity and more active sites comparing to bare AMn2O4. Herein, we demonstrate an easy operating Hummer's method to functionalize carbon nanotubes (CNTs) with poly (diallyldimethylammonium chloride) in order to achieve effective loading of CoMn2O4 nanoparticles, named CoMn2O4/PDDA-CNTs (CMODT). After solvothermal treatment, nanoscale CoMn2O4 particles ( 80 nm) were successfully attached on the noncovalent functionalized carbon nanotube. Results show that such composites possess an outstanding electrocatalytic activity towards ORR comparable to the commercial Pt/C catalyst in neutral media. Electrochemical detections as cyclic voltammogram (CV) and rotating ring-disk electrode tests (RRDE) showed that the potential of oxygen reduction peak of 30% CMODT was at - 0.3 V (vs Ag/AgCl), onset potential was at + 0.4 V. Among them, 30% CMODT composite appeared the best candidate of oxygen reduction via 3.9 electron transfer pathway. When 30% CMODT composite was utilized as cathode catalyst in air cathode MFC, the reactor obtained 1020 mW m-2 of the highest maximum power density and 0.781 V of open circuit voltage. The excellent activity and low cost (0.2 g-1) of the hybrid materials demonstrate the potential of transition metal oxide/carbon as effective cathode ORR catalyst for microbial fuel cells. [Figure not available: see fulltext.

  19. Manganese catalysts with bulky bipyridine ligands for the electrocatalytic reduction of carbon dioxide: eliminating dimerization and altering catalysis.

    Science.gov (United States)

    Sampson, Matthew D; Nguyen, An D; Grice, Kyle A; Moore, Curtis E; Rheingold, Arnold L; Kubiak, Clifford P

    2014-04-09

    With the goal of improving previously reported Mn bipyridine electrocatalysts in terms of increased activity and reduced overpotential, a bulky bipyridine ligand, 6,6'-dimesityl-2,2'-bipyridine (mesbpy), was utilized to eliminate dimerization in the catalytic cycle. Synthesis, electrocatalytic properties, X-ray diffraction (XRD) studies, and infrared spectroelectrochemistry (IR-SEC) of Mn(mesbpy)(CO)3Br and [Mn(mesbpy)(CO)3(MeCN)](OTf) are reported. Unlike previously reported Mn bipyridine catalysts, these Mn complexes exhibit a single, two-electron reduction wave under nitrogen, with no evidence of dimerization. The anionic complex, [Mn(mesbpy)(CO)3](-), is formed at 300 mV more positive potential than the corresponding state is formed in typical Mn bipyridine catalysts. IR-SEC experiments and chemical reductions with KC8 provide insights into the species leading up to the anionic state, specifically that both the singly reduced and doubly reduced Mn complexes form at the same potential. When formed, the anionic complex binds CO2 with H(+), but catalytic activity does not occur until a ~400 mV more negative potential is present. The Mn complexes show high activity and Faradaic efficiency for CO2 reduction to CO with the addition of weak Brønsted acids. IR-SEC experiments under CO2/H(+) indicate that reduction of a Mn(I)-CO2H catalytic intermediate may be the cause of this unusual "over-reduction" required to initiate catalysis.

  20. Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

    2010-08-31

    Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

  1. Selective catalytic reduction of nitric oxide by ethylene over metal-modified ZSM-5- and {gamma}-Al{sub 2}O{sub 3}-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Eraenen, K.; Kumar, N.; Lindfors, L.E. [Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry

    1996-12-31

    Metal-modified ZSM-5 and {gamma}-Al{sub 2}O{sub 3} catalysts were tested in reduction of nitric oxide by ethylene. Different metals were introduced into the ZSM-5 catalyst by ion-exchange and by introduction of metals during the zeolite synthesis. To prepare bimetallic catalysts a combination of these methods was used. The {gamma}-Al{sub 2}O{sub 3} was impregnated with different metals by the incipient wetness technique and by adsorption. Activity measurements showed that the ZSM-5 based catalysts were more active than the {gamma}-Al{sub 2}O{sub 3} based catalysts. The highest conversion was obtained over a ZSM-5 catalyst prepared by introduction of Pd during synthesis of the zeolite and subsequently ion-exchanged with copper. (author)

  2. Poly(neutral red) as a NAD{sup +} reduction catalyst and a NADH oxidation catalyst: Towards the development of a rechargeable biobattery

    Energy Technology Data Exchange (ETDEWEB)

    Arechederra, Marguerite N.; Addo, Paul K. [Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO 63103 (United States); Minteer, Shelley D., E-mail: minteers@slu.ed [Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO 63103 (United States)

    2011-01-01

    In this paper, we have established that poly(neutral red), PNR, functions as an electrocatalyst for the reduction and oxidation of NAD{sup +}/NADH in a rechargeable biobattery environment. The reversibility of this catalyst was possible only with the addition of Zn{sup 2+} for complexation to the redox polymer. The zinc ion complexation with the polymer facilitates electron and proton transfer to/from the substrate and the NAD{sup +}/NADH coenzyme without forming covalent bonds between the nicotinamide and the substrate surface. This research presents use of this reversible catalyst in a rechargeable biobattery. The rechargeable battery includes a Prussian blue cathode and a bioanode including NAD{sup +}-dependent alcohol dehydrogenase and zinc complexed PNR. This bioanode was coupled to the cathode with Nafion 212 acting as the ion exchange membrane separator between the two compartments. The biobattery has an open circuit potential of 0.545({+-}0.009) V when first assembled and 0.053({+-}0.005) V when fully discharged. However, when fully charged, the biobattery has an open circuit potential of 1.263({+-}0.051) V, a maximum power density of 16.3({+-}4.03) {mu}W cm{sup -3} and a maximum current density of 221({+-}13.2) {mu}A cm{sup -3}. The efficiency and stability of the biobattery were studied by cycling continuously at a discharging rate of 1 C and the results obtained showed reasonable stability over 50 cycles.

  3. Simultaneous reduction of NOx, N{sub 2}O, SO{sub 2} emissions from a fluidized bed coal combustor using alternative bed material

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T.; Asazuma, J.; Shinkai, M.; Matsunaga, S.; Yamagiwa, K.; Fujiwara, N. [Niigata University, Niigata (Japan). Dept. of Chemistry & Chemical Engienering

    2003-07-01

    A kind of porous alumina was employed as bed material of bubbling fluidized bed coal combustion instead of non-porous silica sand. The effect of the bed material on emissions of N{sub 2}O and NOx was evaluated using a bench-scale combustor. The present porous alumina suppressed N{sub 2}O emission. This result is explained by the catalytic activity of porous alumina to decompose N{sub 2}O. In addition, NOx emission with porous bed material was nearly the same as or lower than that for the sand bed. Thus the decrease in N{sub 2}O without increasing NOx was attained. A modification of desulfurization by limestone was proposed. Fine limestone particles were employed as sorbent in order to conduct SO{sub 2} capture in the freeboard. By employing fine particles, the contact between volatile matter and limestone, which is known to increase the emission of NOx, was avoided. Thus the increase in NOx emission during limestone feed was avoided.

  4. Noble metal ionic catalysts.

    Science.gov (United States)

    Hegde, M S; Madras, Giridhar; Patil, K C

    2009-06-16

    Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NO(x), and unburned hydrocarbons-need to be fully converted to CO(2), N(2), and H(2)O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al(2)O(3) or SiO(2) promoted by CeO(2). However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce(1-x)M(x)O(2-delta) and Ce(1-x-y)Ti(y)M(x)O(2-delta) (M = Pt, Pd, Rh; x = 0.01-0.02, delta approximately x, y = 0.15-0.25) oxides in fluorite structure. In these oxide catalysts, Pt(2+), Pd(2+), or Rh(3+) ions are substituted only to the extent of 1-2% of Ce(4+) ion. Lower-valent noble metal ion substitution in CeO(2) creates oxygen vacancies. Reducing molecules (CO, H(2), NH(3)) are adsorbed onto electron-deficient noble metal ions, while oxidizing (O(2), NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NO(x) reduction (with >80% N(2) selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO(2) or Ce(1-x)Ti(x)O(2) were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the

  5. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    Directory of Open Access Journals (Sweden)

    Basseem B. Hallac

    2018-02-01

    Full Text Available The extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt % lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe3O4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible light using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe2O3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe+2.57 for the catalyst with no lanthana and Fe+2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe+2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe+2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. The paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.

  6. Dynamical Properties of a Ru/MgAl2O4 Catalyst during Reduction and Dry Methane Reforming

    DEFF Research Database (Denmark)

    Kehres, Jan; Jakobsen, Jon Geest; Andreasen, Jens Wenzel

    2012-01-01

    of the size regime attributed to scattering from Ru/RuO2-particles decreases slightly by about 0.2 nm during the reduction. Dry methane reforming experiments were performed in a temperature interval from 723 to 1023 K by applying a gas mixture of carbon dioxide and methane in molar ratio of 3:1. The catalyst......Combined in situ small- and wide-angle X-ray scattering (SAXS/WAXS) studies were performed in a new laboratory setup to investigate the dynamical properties of a ruthenium/spinel (Ru/MgAl2O4) catalyst, w(Ru) = 4 wt %, during the reduction and subsequent dry methane reforming. The Ru particles...... did not show any deactivation during the experiment of overall 32 h, indicated by stable turnover frequencies for methane. The mean Ru-particle diameter remained constant during the dry methane reforming experiments, revealing a high sintering stability of the Ru/MgAl2O4 catalyst....

  7. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability.

    Science.gov (United States)

    Jackson, Ariel; Strickler, Alaina; Higgins, Drew; Jaramillo, Thomas Francisco

    2018-01-12

    Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1 ), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.

  8. ZIF-67 incorporated with carbon derived from pomelo peels: A highly efficient bifunctional catalyst for oxygen reduction/evolution reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Yin, Feng-Xiang; Chen, Biao-Hua; He, Xiao-Bo; Lv, Peng-Liang; Ye, Cai-Yun; Liu, Di-Jia

    2017-05-01

    Developing carbon catalyst materials using natural, abundant and renewable resources as precursors plays an increasingly important role in clean energy generation and environmental protection. In this work, N-doped pomelo-peel-derived carbon (NPC) materials were prepared using a widely available food waste-pomelo peels and melamine. The synthetic NPC exhibits well-defined porosities and a highly doped-N content (e.g. 6.38 at% for NPC-2), therefore affords excellent oxygen reduction reaction (ORR) catalytic activities in alkaline electrolytes. NPC was further integrated with ZIF-67 to form ZIF-67@NPC hybrids through solvothermal reactions. The hybrid catalysts show substantially enhanced ORR catalytic activities comparable to that of commercial 20 wa Pt/C. Furthermore, the catalysts also exhibit excellent oxygen evolution reaction (OER) catalytic activities. Among all prepared ZIF-67@NPC hybrids, the optimal composition with ZIF-67 to NPC ratio of 2:1 exhibits the best ORR and OER bifunctional catalytic performance and the smallest Delta E (E-OER@10 mA cm(-2)-E-ORR@-1 mA cm(-2)) value of 0.79 V. The catalyst also demonstrated desirable 4-electron transfer pathways and superior catalytic stabilities. The Co-N-4 in ZIF-67, electrochemical active surface area, and the strong interactions between ZIF-67 and NPC are attributed as the main contributors to the bifunctional catalytic activities. These factors act synergistically, resulting in substantially enhanced bifunctional catalytic activities and stabilities; consequently, this hybrid catalyst is among the best of the reported bifunctional electrocatalysts and is promising for use in metal-air batteries and fuel cells. (C) 2016 Elsevier B.V. All rights reserved.

  9. Effect of reduction conditions on electrocatalytic activity of a ternary PtNiCr/C catalyst for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Jeon, Min Ku; Zhang Yuan; McGinn, Paul J.

    2009-01-01

    The effect of reduction conditions on a Pt 28 Ni 36 Cr 36 /C catalyst was investigated by using two different reduction methods: hydrogen reduction and NaBH 4 reduction. In hydrogen reduced catalysts, dissolution of metallic Ni and Cr was observed during cyclic voltammetry (CV) tests, and a larger amount of Ni and Cr was dissolved when reduced at higher temperatures. For methanol electro-oxidation, the highest specific current density of 1.70 A m -2 at 600 s of the chronoamperometry tests was observed in the catalyst reduced at 300 deg. C, which was ∼24 times that of a Pt/C catalyst (0.0685 A m -2 ). In NaBH 4 reduced catalysts, formation of an amorphous phase and a more Pt-rich surface was observed in X-ray diffraction and CV results, respectively, with increasing amounts of NaBH 4 . When reduced by 50 times of the stoichiometric amount of NaBH 4 , the PtNiCr/C catalyst (PtNiCr-50t) showed a current density of 34.1 A g noblemetal -1 , which was 81% higher than the 18.8 A g noblemetal -1 value of a PtRu/C catalyst at 600 s of the chronoamperometry tests. After 13 h of chronoamperometry testing, the activity of the PtNiCr-50t (15.0 A g noblemetal -1 ) was 110% higher than the PtRu/C catalyst (7.15 A g noblemetal -1 ). The PtNiCr/C catalyst shows promise as a Ru-free methanol oxidation catalyst

  10. Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction

    Science.gov (United States)

    Yu, Dingshan; Wei, Li; Jiang, Wenchao; Wang, Hong; Sun, Bo; Zhang, Qiang; Goh, Kunli; Si, Rongmei; Chen, Yuan

    2013-03-01

    Electrocatalysts for anode or cathode reactions are at the heart of electrochemical energy conversion and storage devices. Molecular design of carbon based nanomaterials may create the next generation electrochemical catalysts for broad applications. Herein, we present the synthesis of a three-dimensional (3D) nanostructure with a large surface area (784 m2 g-1) composed of nitrogen doped (up to 8.6 at.%) holey graphene. The holey structure of graphene sheets (~25% of surface area is attributed to pores) engenders more exposed catalytic active edge sites. Nitrogen doping further improves catalytic activity, while the formation of the 3D porous nanostructure significantly reduces graphene nanosheet stacking and facilitates the diffusion of reactants/electrolytes. The three factors work together, leading to superb electrochemical catalytic activities for both hydrazine oxidation (its current generation ability is comparable to that of 10 wt% Pt-C catalyst) and oxygen reduction (its limiting current is comparable to that of 20 wt% Pt-C catalyst) with four-electron transfer processes and excellent durability.Electrocatalysts for anode or cathode reactions are at the heart of electrochemical energy conversion and storage devices. Molecular design of carbon based nanomaterials may create the next generation electrochemical catalysts for broad applications. Herein, we present the synthesis of a three-dimensional (3D) nanostructure with a large surface area (784 m2 g-1) composed of nitrogen doped (up to 8.6 at.%) holey graphene. The holey structure of graphene sheets (~25% of surface area is attributed to pores) engenders more exposed catalytic active edge sites. Nitrogen doping further improves catalytic activity, while the formation of the 3D porous nanostructure significantly reduces graphene nanosheet stacking and facilitates the diffusion of reactants/electrolytes. The three factors work together, leading to superb electrochemical catalytic activities for both

  11. Reductive amination of ethanol to ethylamines over Ni/Al{sub 2}O{sub 3} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Hyun [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Hong, Eunpyo; An, Sang Hee; Shin, Chae-Ho; Lim, Dong-Hee [Chungbuk National University, Chungju (Korea, Republic of)

    2017-10-15

    Ni(x)/Al{sub 2}O{sub 3} (x=wt%) catalysts with Ni loadings of 5-25 wt% were prepared via a wet impregnation method on an γ-Al{sub 2}O{sub 3} support and subsequently applied in the reductive amination of ethanol to ethylamines. Among the various catalysts prepared, Ni(10)/Al2O3 exhibited the highest metal dispersion and the smallest Ni particle size, resulting in the highest catalytic performance. To reveal the effects of reaction parameters, a reductive amination process was performed by varying the reaction temperature (T), weight hourly space velocity (WHSV), and NH{sub 3} and H{sub 2} partial pressures in the reactions. In addition, on/off experiments for NH{sub 3} and H{sub 2} were also carried out. In the absence of NH{sub 3} in the reactant stream, the ethanol conversion and selectivities towards the different ethylamine products were significantly reduced, while the selectivity to ethylene was dominant due to the dehydration of ethanol. In contrast, in the absence of H{sub 2}, the selectivity to acetonitrile significantly increased due to dehydrogenation of the imine intermediate. Although a small amount of catalyst deactivation was observed in the conversion of ethanol up to 10 h on stream due to the formation of nickel nitride, the Ni(10)/Al{sub 2}O{sub 3} catalyst exhibited stable catalytic performance over 90 h under the optimized reaction conditions (i.e., T=190 .deg. C, WHSV=0.9 h{sup -1}, and EtOH/NH{sub 3}/H{sub 2} molar ratio=1/1/6).

  12. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells

    Science.gov (United States)

    Kramm, Ulrike I.; Herranz, Juan; Larouche, Nicholas; Arruda, Thomas M.; Lefèvre, Michel; Jaouen, Frédéric; Bogdanoff, Peter; Fiechter, Sebastian; Abs-Wurmbach, Irmgard; Mukerjee, Sanjeev; Dodelet, Jean-Pol

    2012-01-01

    Fe-based catalytic sites for the reduction of oxygen in acidic medium have been identified by 57Fe Mössbauer spectroscopy of Fe/N/C catalysts containing 0.03 to 1.55 wt% Fe, which were prepared by impregnation of iron acetate on carbon black followed by heat-treatment in NH3 at 950°C. Four different Fe-species were detected at all iron concentrations: three doublets assigned to molecular FeN4-like sites with their ferrous ion in low (D1), medium (D2) or high spin state (D3), and two other doublets assigned to a single Fe-species (D4 and D5) consisting of surface oxidized nitride nanoparticles (FexN, with x≤2.1). A fifth Fe-species appears only in those catalysts with Fe-contents ≥ 0.27 wt%. It is characterized by a very broad singlet, which has been assigned to incomplete FeN4-like sites that quickly dissolve in contact with an acid. Among the five Fe-species identified in these catalysts, only D1 and D3 display catalytic activity for the oxygen reduction reaction (ORR) in the acid medium, with D3 featuring a composite structure with a protonated neighbour basic nitrogen and being by far the most active species, with an estimated turn over frequency for the ORR of 11.4 e− site−1 s−1 at 0.8V vs RHE. Moreover, all D1 sites and between 1/2 to 2/3 of the D3 sites are acid-resistant. A scheme for the mechanism of site formation upon heat-treatment is also proposed. This identification of the ORR-active sites in these catalysts is of crucial importance to design strategies to improve the catalytic activity and stability of these materials. PMID:22824866

  13. Beneficial Role of Copper in the Enhancement of Durability of Ordered Intermetallic PtFeCu Catalyst for Electrocatalytic Oxygen Reduction.

    Science.gov (United States)

    Arumugam, Balamurugan; Tamaki, Takanori; Yamaguchi, Takeo

    2015-08-05

    Design of Pt alloy catalysts with enhanced activity and durability is a key challenge for polymer electrolyte membrane fuel cells. In the present work, we compare the durability of the ordered intermetallic face-centered tetragonal (fct) PtFeCu catalyst for the oxygen reduction reaction (ORR) relative to its counterpart bimetallic catalysts, i.e., the ordered intermetallic fct-PtFe catalyst and the commercial catalyst from Tanaka Kikinzoku Kogyo, TKK-PtC. Although both fct catalysts initially exhibited an ordered structure and mass activity approximately 2.5 times higher than that of TKK-Pt/C, the presence of Cu at the ordered intermetallic fct-PtFeCu catalyst led to a significant enhancement in durability compared to that of the ordered intermetallic fct-PtFe catalyst. The ordered intermetallic fct-PtFeCu catalyst retained more than 70% of its mass activity and electrochemically active surface area (ECSA) over 10 000 durability cycles carried out at 60 °C. In contrast, the ordered intermetallic fct-PtFe catalyst maintained only about 40% of its activity. The temperature of the durability experiment is also shown to be important: the catalyst was more severely degraded at 60 °C than at room temperature. To obtain insight into the observed enhancement in durability of fct-PtFeCu catalyst, a postmortem analysis of the ordered intermetallic fct-PtFeCu catalyst was carried out using scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX) line scan. The STEM-EDX line scans of the ordered intermetallic fct-PtFeCu catalyst over 10 000 durability cycles showed a smaller degree of Fe and Cu dissolution from the catalyst. Conversely, large dissolution of Fe was identified in the ordered intermetallic fct-PtFe catalyst, indicating a lesser retention of Fe that causes the destruction of ordered structure and gives rise to poor durability. The enhancement in the durability of the ordered intermetallic fct-PtFeCu catalyst is ascribed to

  14. Selective catalytic reduction system and process using a pre-sulfated zirconia binder

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A.

    2010-06-29

    A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.

  15. Combining CO2 reduction with propane oxidative dehydrogenation over bimetallic catalysts.

    Science.gov (United States)

    Gomez, Elaine; Kattel, Shyam; Yan, Binhang; Yao, Siyu; Liu, Ping; Chen, Jingguang G

    2018-04-11

    The inherent variability and insufficiencies in the co-production of propylene from steam crackers has raised concerns regarding the global propylene production gap and has directed industry to develop more on-purpose propylene technologies. The oxidative dehydrogenation of propane by CO 2 (CO 2 -ODHP) can potentially fill this gap while consuming a greenhouse gas. Non-precious FeNi and precious NiPt catalysts supported on CeO 2 have been identified as promising catalysts for CO 2 -ODHP and dry reforming, respectively, in flow reactor studies conducted at 823 K. In-situ X-ray absorption spectroscopy measurements revealed the oxidation states of metals under reaction conditions and density functional theory calculations were utilized to identify the most favorable reaction pathways over the two types of catalysts.

  16. NOx Solutions for Biodiesel: Final Report; Report 6 in a Series of 6

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, R. L.; Alvarez, J. R.; Graboski, M. S.

    2003-02-01

    A number of studies have shown substantial particulate matter (PM) reductions for biodiesel, but also a significant increase in nitrogen oxides (NOx) emissions. This study examines a number of approaches for NOx reduction from biodiesel.

  17. Reformer assisted lean NO.sub.x catalyst aftertreatment system and method

    Science.gov (United States)

    Kalyanaraman, Mohan [Media, PA; Park, Paul W [Peoria, IL; Ragle, Christie S [Havana, IL

    2010-06-29

    A method and apparatus for catalytically processing a gas stream passing therethrough to reduce the presence of NO.sub.x therein, wherein the apparatus includes a first catalyst composed of a silver-containing alumina that is adapted for catalytically processing the gas stream at a first temperature range, a second catalyst composed of a copper-containing zeolite located downstream from the first catalyst, wherein the second catalyst is adapted for catalytically processing the gas stream at a lower second temperature range relative to the first temperature range, a hydrocarbon compound for injection into the gas stream upstream of the first catalyst to provide a reductant, and a reformer for reforming a portion of the hydrocarbon compound into H.sub.2 and/or oxygenated hydrocarbon for injection into the gas stream upstream of the first catalyst. The second catalyst is adapted to facilitate the reaction of reducing NOx into N.sub.2, whereby the intermediates are produced via the first catalyst reacting with NOx and hydrocarbons.

  18. Effect of the sol-gel conditions on the morphology and SCR performance of electrospun V-W-TiO2 catalysts

    DEFF Research Database (Denmark)

    Marani, Debora; Silva, Rafael Hubert; Dankeaw, Apiwat

    2018-01-01

    V-W-TiO2 catalysts are prepared as nanofibers for the removal of the NOx in exhausts via the NH3 Selective Catalytic Reduction (SCR) method. By combining electrospinning and soft chemistry, materials are processed as nanofibers with the catalytic components (e. g. V2O5-WO3) incorporated as dopants...

  19. N, S co-doped carbon spheres with highly dispersed CoO as non-precious metal catalyst for oxygen reduction reaction

    Science.gov (United States)

    Chen, Linlin; Guo, Xingpeng; Zhang, Guoan

    2017-08-01

    It is still a great challenge in preparing non-precious metal catalysts with high activity and long-term stability to substitute for precious metal catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we report a novel and facile catalyst-N, S co-doped carbon spheres with highly dispersed CoO (CoO@NS-CSs), where biomass glucose spheres act as carbon precursor and H2S, NH3 derived from the decomposition of thiourea not only provide N, S sources but also can etch carbon spheres to produce nanoporous structure. CoO@NS-CSs catalyst exhibits excellent ORR activity with a high onset potential of 0.946 V vs. RHE (reversible hydrogen electrode) and a half-wave potential of 0.821 V vs. RHE through a four-electron pathway in alkaline solution, which is comparable to commercial Pt/C catalyst (onset potential: 0.926 V vs. RHE, half-wave potential: 0.827 V vs. RHE). Furthermore, both the long-term stability and methanol-tolerance of CoO@NS-CSs catalyst are superior to those of commercial Pt/C catalyst. The excellent ORR performance of CoO@NS-CSs catalyst can be attributed to its micro-mesopore structure, high specific surface area (667 m2 g-1), and highly dispersed CoO. This work manifests that the obtained CoO@NS-CSs catalyst is promising to be applied to fuel cells.

  20. High-performance bimetallic alloy catalyst using Ni and N co-doped composite carbon for the oxygen electro-reduction.

    Science.gov (United States)

    Jung, Won Suk

    2018-03-15

    In this study, a novel synthesis method for the bimetallic alloy catalyst is reported, which is subsequently used as an oxygen reduction catalyst in polymer electrolyte membrane fuel cells (PEMFCs). The support prepared from the Ni-chelate complex shows a mesoporous structure with a specific surface area of ca. 400 m 2  g -1 indicating the suitable support for PEMFC applications. Ethylenediamine is converted to the nitrogen and carbon layers to protect the Ni particles which will diffuse into the Pt lattice at 800 °C. The PtNi/NCC catalyst with PtNi cores and Pt-rich shells is successfully formed when acid-treated as evidenced by line scan profiles. The catalyst particles thus synthesized are well-dispersed on the N-doped carbon support, while the average particle size is ca. 3 nm. In the PEMFC test, the maximum power density of the PtNi/NCC catalyst shows approximately 25% higher than that of the commercial Pt/C catalyst. The mass activity of the PtNi/NCC catalyst showed approximately 3-fold higher than that of the commercial Pt/C catalyst. The mass activity strongly depends on the ratio of Pt to Ni since the strain effect can be strong for catalysts due to the mismatch of lattice parameters of the Ni and Pt. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A simulation method of the reduction of nitrogen oxides over a silver aluminate catalyst in static tests of combustion engines.

    Science.gov (United States)

    Chłopek, Zdzisław; Darkowski, Andrzej

    2002-01-01

    The paper presents a proposition of simulation studies of nitrogen oxide catalytic reduction. The method enables estimating the influence of catalytic reactors on ecological properties of engines in static bench tests (e.g., ECE R49, United Nations Economic Commission for Europe [UN/ECE], 2000; Standard No. ISO 8178-4:1996, International Organization for Standardization [ISO], 1996; Merkisz (1998). An algorithm of simulation studies is shown. A model catalytic reactor for selective catalytic reduction is described. Silver aluminate deposited on steel substrate covered with aluminium phosphate is used as a catalyst. Propene is used as a reductant. The results of reactor studies in a chemical lab are presented. A simulation of the influence of catalytic reactor properties on ecological properties of an engine was done. Unitary emission conversion coefficients of nitrogen oxide in a static test ECE R49 were determined.

  2. Remarkably enhanced density and specific activity of active sites in Al-rich Cu-, Fe- and Co-beta zeolites for selective catalytic reduction of NOx

    Czech Academy of Sciences Publication Activity Database

    Sazama, Petr; Pilař, Radim; Mokrzycki, Lukasz; Vondrová, Alena; Kaucký, Dalibor; Plšek, Jan; Sklenák, Štěpán; Šťastný, Petr; Klein, Petr

    2016-01-01

    Roč. 189, JUL 2016 (2016), s. 65-74 ISSN 0926-3373 R&D Projects: GA TA ČR(CZ) TH01021259 Institutional support: RVO:61388955 Keywords : SCR- NOx * Al-rich beta zeolite (*BEA) * Cobalt Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.446, year: 2016

  3. Remarkably enhanced density and specific activity of active sites in Al-rich Cu-, Fe- and Co-beta zeolites for selective catalytic reduction of NOx

    Czech Academy of Sciences Publication Activity Database

    Sazama, Petr; Pilař, Radim; Mokrzycki, Lukasz; Vondrová, Alena; Kaucký, Dalibor; Plšek, Jan; Sklenák, Štěpán; Šťastný, Petr; Klein, Petr

    2016-01-01

    Roč. 189, JUL 2016 (2016), s. 65-74 ISSN 0926-3373 R&D Projects: GA TA ČR(CZ) TH01021259 Institutional support: RVO:61388955 Keywords : SCR-NOx * Al-rich beta zeolite (*BEA) * Cobalt Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.446, year: 2016

  4. Structural Analysis of Potential Active Sites in Metallo-zeolites for Selective Catalytic Reduction of NOx. An Attempt for the Structure versus Activity Relatioship

    Czech Academy of Sciences Publication Activity Database

    Wichterlová, Blanka

    2004-01-01

    Roč. 28, 1/4 (2004), s. 131-140 ISSN 1022-5528 R&D Projects: GA MŠk 1P04OCD15.20 Institutional research plan: CEZ:AV0Z4040901 Keywords : SCR-NOx * Co-zeolites * Fe-zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.493, year: 2004

  5. Combined Particle Filter and Selective Catalytic Reduction Catalyst for Diesel Engines

    DEFF Research Database (Denmark)

    Hvam, Jeanette

    oxidation of the silicon carbide crystals, ideal for catalyst adhesive layer. The silicon carbide filter, produced with trace amounts of copper, still fulfills the requirements for macroporosity and accessible porosity in excess of 50%, and is thus superior for the purpose of combined diesel particulate...

  6. Nitrogen-doped microporous carbon: An efficient oxygen reduction catalyst for Zn-air batteries

    Science.gov (United States)

    Zhang, Li-Yuan; Wang, Meng-Ran; Lai, Yan-Qing; Li, Xiao-Yan

    2017-08-01

    N-doped microporous carbon as an exceptional metal-free catalyst from waste biomass (banana peel as representative) was obtained via fast catalysis carbonization, followed by N-doping modification. The method achieves a relatively high C conversion efficiency of ∼41.9%. The final carbon materials are doped by N (∼3 at.%) and possess high surface area (∼1097 m2 g-1) and abundant micropores. Compared to commercial Pt/C materials, the as-prepared carbon catalyst exhibits a comparable electrocatalytic activity and much better stability. Furthermore, the metal-free catalyst loaded Zn-air battery possesses higher discharge voltage and power density as compared with that of commercial Pt/C. This novel technique can also be readily applied to produce metal-free carbon catalysts from other typical waste biomass (e.g., orange peel, leaves) as the carbon sources. The method can be developed as a potentially general and effective industrial route to transform waste biomass into high value-added microporous carbon with superior functionalities.

  7. Selective Reduction of CO2 to CH4 by Tandem Hydrosilylation with Mixed Al/B Catalysts

    KAUST Repository

    Chen, Jiawei

    2016-04-04

    This contribution reports the first example of highly selective reduction of CO2 into CH4 via tandem hydrosilylation with mixed main-group organo-Lewis acid (LA) catalysts [Al(C6F5)3 + B(C6F5)3] {[Al] + [B]}. As shown by this comprehensive experimental and computational study, in this unique tandem catalytic process, [Al] effectively mediates the first step of the overall reduction cycle, namely the fixation of CO2 into HCOOSiEt3 (1) via the LA-mediated C=O activation, while [B] is incapable of promoting the same transformation. On the other hand, [B] is shown to be an excellent catalyst for the subsequent reduction steps 2–4, namely the hydrosilylation of the more basic intermediates [1 to H2C(OSiEt3)2 (2) to H3COSiEt3 (3) and finally to CH4] through the frustrated-Lewis-pair (FLP)-type Si–H activation. Hence, with the required combination of [Al] and [B], a highly selective hydrosilylative reduction of CO2 system has been developed, achieving high CH4 production yield up to 94%. The remarkably different catalytic behaviors between [Al] and [B] are attributed to the higher overall Lewis acidity of [Al] derived from two conflicting factors (electronic and steric effects), which renders the higher tendency of [Al] to form stable [Al]–substrate (intermediate) adducts with CO2 as well as subsequent intermediates 1, 2 and 3. Overall, the roles of [Al] and [B] are not only complementary but also synergistic in the total reduction of CO2, which render both [Al]-mediated first reduction step and [B]-mediated subsequent steps catalytic.

  8. Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells

    Science.gov (United States)

    Ma, Ming; You, Shijie; Gong, Xiaobo; Dai, Ying; Zou, Jinlong; Fu, Honggang

    2015-06-01

    Biofilms from anode heterotrophic bacteria are inevitably formed over cathodic catalytic sites, limiting the performances of single-chamber microbial fuel cells (MFCs). Graphitic carbon (GC) - based nano silver/iron oxide (AgNPs/Fe3O4/GC) composites are prepared from waste pomelo skin and used as antibacterial oxygen reduction catalysts for MFCs. AgNPs and Fe3O4 are introduced in situ into the composites by one-step carbothermal reduction, enhancing their conductivity and catalytic activity. To investigate the effects of Fe species on the antibacterial and catalytic properties, AgNPs/Fe3O4/GC is washed with sulfuric acid (1 mol L-1) for 0.5 h, 1 h, and 5 h and marked as AgNPs/Fe3O4/GC-x (x = 0.5 h, 1 h and 5 h, respectively). A maximum power density of 1712 ± 35 mW m-2 is obtained by AgNPs/Fe3O4/GC-1 h, which declines by 4.12% after 17 cycles. Under catalysis of all AgNP-containing catalysts, oxygen reduction reaction (ORR) proceeds via the 4e- pathway, and no toxic effects to anode microorganisms result from inhibiting the cathodic biofilm overgrowth. With the exception of AgNPs/Fe3O4/GC-5 h, the AgNPs-containing composites exhibit remarkable power output and coulombic efficiency through lowering proton transfer resistance and air-cathode biofouling. This study provides a perspective for the practical application of MFCs using these efficient antibacterial ORR catalysts.

  9. The shape conversion of silver nanoparticles through heating and its application as homogeneous catalyst in reduction of 4- nitrophenol

    Science.gov (United States)

    Ariyanta, H. A.; Yulizar, Y.

    2016-02-01

    The shape conversion of silver nanoparticles (AgNPs) through heating and its application as a homogeneous catalyst in the reduction of 4-nitrophenol is reported here. Synthesis of AgNPs by reduction of AgNO3 using NaBH4 and sodium citrate as reducing agent were successfully conducted. The addition of PVP was used as stabilizing agent. The synthesized AgNPs were heated at 95 °C and observed using UV-Vis spectrophotometer, transmission electron microscopy (TEM), Fourier-transformed infrared (FTIR) spectroscopy and particle size analyzer (PSA). Characteristics of AgNPs before heated were blue with UV- Vis absorbance spectrum at λmax = 786 nm and the shape was pseudo nano prism sized ± 28 nm. During the heating process, the color changed gradually from blue (λmax = 786 nm) to orange (λmax = 486 nm) and also its shape from nano prism to nanodisk. Silver nano prism has a lattice constant, 4.160 Å, larger than the silver nanodisk, 4.081 Å, which was possibly achieved through rearrangement of silver atoms on the surface of AgNPs. Both silver nanodisk and nano prism were tested as a homogeneous catalyst for the reduction of 4-nitrophenol (4- NP) with NaBH4.

  10. Photocatalytic hydrogen generation from water with iron carbonyl phosphine complexes: improved water reduction catalysts and mechanistic insights.

    Science.gov (United States)

    Gärtner, Felix; Boddien, Albert; Barsch, Enrico; Fumino, Koichi; Losse, Sebastian; Junge, Henrik; Hollmann, Dirk; Brückner, Angelika; Ludwig, Ralf; Beller, Matthias

    2011-05-27

    An extended study of a novel visible-light-driven water reduction system containing an iridium photosensitizer, an in situ iron(0) phosphine water reduction catalyst (WRC), and triethylamine as sacrificial reductant is described. The influences of solvent composition, ligand, ligand-to-metal ratio, and pH were studied. The use of monodentate phosphine ligands led to improved activity of the WRC. By applying a WRC generated in situ from Fe(3) (CO)(12) and tris[3,5-bis(trifluoromethyl)phenyl]phosphine (P[C(6)H(3)(CF(3))(2)](3), Fe(3)(CO)(12)/PR(3)=1:1.5), a catalyst turnover number of more than 1500 was obtained, which constitutes the highest activity reported for any Fe WRC. The maximum incident photon to hydrogen efficiency obtained was 13.4% (440 nm). It is demonstrated that the evolved H(2) flow (0.23 mmol H(2) h(-1) mg(-1) Fe(3)(CO)(12)) is sufficient to be used in polymer electrolyte membrane fuel cells, which generate electricity directly from water with visible light. Mechanistic studies by NMR spectroscopy, in situ IR spectroscopy, and DFT calculations allow for an improved understanding of the mechanism. With respect to the Fe WRC, the complex [HNEt(3)](+)[HFe(3)(CO)(11)](-) was identified as the key intermediate during the catalytic cycle, which led to light-driven hydrogen generation from water. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Reduction of NO{sub x} from a pellet burner - a parametric study; Reduktion av NOx fraan en pelletsbraennare - en parameterstudie

    Energy Technology Data Exchange (ETDEWEB)

    Eskilsson, David; Roennbaeck, Marie; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden); Leckner, Bo [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    2000-05-01

    NO{sub x} emissions from small-scale combustion of pellets derive mainly from the fuel nitrogen. A conversion from combustion of oil to pellets will probably lead to increasing NO{sub x}-emissions. Today, pellets are produced mainly from sawdust and wood shavings which consist of pure wood with a low nitrogen content. The expected increase in pellet utilisation will probably lead to that other raw materials with higher nitrogen content will be used. This means that NOx-emissions from small-scale BAKE combustion of pellets can increase dramatically if not 'low-NO{sub x} burners' are developed. This report can be used as a support in the development of new design and automatic control strategies for pellet burners. NH{sub 3} and HCN dominate the nitrogen compounds in the volatiles leaving the pellet during the devolatilisation. The fuel properties, the residence time and the devolatilisation conditions affect the ratio between these two compounds. The transformation of NH{sub 3} to N{sub 2} takes place through a short and relatively uncomplicated reaction path while the reduction of HCN has a much more complex reaction path with a slower chemical kinetics which leads to longer reaction times. The optimal stoichiometry depends on the residence time, mixing and the composition of the devolatilisation gas in the primary zone. The objective with this study has been to, with a modified pellet burner, minimise NOx in practical experiments with a small literature study as background. In the experiments reported in this project, the performance of a modified pellet burner and the emissions have been studied while the ratio between primary- and secondary air and the addition of primary air have been varied. During the experiments, the air flow, the different emissions, the boiler effect and the temperature in the burner have been measured continuously. A few parameters have been identified as crucial for the NO{sub x}-emissions: Addition of primary air: The primary

  12. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  13. Layered Transition Metal Oxynitride Co3Mo2OxN6-x/C Catalyst for Oxygen Reduction Reaction.

    Science.gov (United States)

    An, Li; Xia, Zhonghong; Chen, Peikai; Xia, Dingguo

    2016-11-02

    Transition metal oxynitrides have now garnered growing interest in our quest for highly efficient alternatives to Pt in direct methanol alkaline fuel cells. Herein, carbon supported Co 3 Mo 2 O x N 6-x was synthesized via a simple two-step approach wherein the reactants undergo refluxing and heat treatment in NH 3 . For the as-prepared Co 3 Mo 2 O x N 6-x catalyst, uniformly dispersed on XC-72, with the particle size averaged at 5 nm, the catalytic activities toward oxygen reduction reaction in alkaline media are related to the commercial Pt/C, such as the comparable onset potential (0.9 V vs RHE), half-wave potential (0.8 V vs RHE), and even higher specific activity (82.7 mA cm -2 at 0.7 V). Significantly, the Co 3 Mo 2 O x N 6-x catalyst was highly stable in terms of 95% current retention after 12 h chronoamperometry measurement, indicative of favorable prospect for the non-noble cathodic catalyst in alkaline fuel cell.

  14. A Membrane-Free Neutral pH Formate Fuel Cell Enabled by a Selective Nickel Sulfide Oxygen Reduction Catalyst.

    Science.gov (United States)

    Yan, Bing; Concannon, Nolan M; Milshtein, Jarrod D; Brushett, Fikile R; Surendranath, Yogesh

    2017-06-19

    Polymer electrolyte membranes employed in contemporary fuel cells severely limit device design and restrict catalyst choice, but are essential for preventing short-circuiting reactions at unselective anode and cathode catalysts. Herein, we report that nickel sulfide Ni 3 S 2 is a highly selective catalyst for the oxygen reduction reaction in the presence of 1.0 m formate. We combine this selective cathode with a carbon-supported palladium (Pd/C) anode to establish a membrane-free, room-temperature formate fuel cell that operates under benign neutral pH conditions. Proof-of-concept cells display open circuit voltages of approximately 0.7 V and peak power values greater than 1 mW cm -2 , significantly outperforming the identical device employing an unselective platinum (Pt) cathode. The work establishes the power of selective catalysis to enable versatile membrane-free fuel cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. One-pot Reductive Amination of carbonyl Compounds with Nitro Compounds by Transfer Hydrogenation over Co-Nxas catalyst.

    Science.gov (United States)

    Zhou, Peng; Zhang, Zehui

    2017-05-09

    A new method was developed for the synthesis of secondary amines through the one-pot reductive amination of carbonyl compounds with nitro compounds using formic acid as the hydrogen donor over a heterogeneous non-noble-metal catalyst (Co-N x /C-800-AT, generated by the pyrolysis of the cobalt phthalocyanine/silica composite at 800°C under a N 2 atmosphere and subsequent etching by HF). Both nitrogen and cobalt were of considerable importance in the transfer hydrogenation reactions with formic acid. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Reduction of nitric oxide by carbon monoxide over a silica supported platinum catalyst infrared and kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Lorimer, D' Arcy Harold [Univ. of California, Berkeley, CA (United States)

    1978-07-01

    The reduction of nitric oxide by carbon monoxide over a 4.5 weight precent platinum catalyst supported on silica was studied at 300 C. Reaction rate data was obtained together with in situ infrared spectra of species on the catalyst surface. The kinetics of the system were found to exhibit two distinct trends, depending on the molar ratio of CO/NO in the reactor. For net reducing conditions (CO/NO> 1) the catalyst underwent a transient deactivation, the extent of which was dependent on the specific CO/NO ratio during reaction. Reactivation of the catalyst was obtained with both oxidizing and reducing pretreatments. For molar feed ratios of CO/NO less than one, carbon monoxide conversion was typically 95 to 100%, resulting in strongly oxidizing conditions over the catalyst. Under these conditions no deactivation was apparent. Infrared spectra recorded under reaction conditions revealed intense bands at 2075 and 2300 cm-1 , which were identified as carbon monoxide adsorbed on Pt and Si-NCO, respectively. Isocyanate bands formed under reducing conditions were more intense and exhibited greater stability than those formed under oxidizing conditions. A reaction mechanism based on the dissociation of nitric oxide as the rate-limiting step was used to correlate nitric oxide reaction rates and nitrous oxide selectivities observed under reducing conditions. As part of this mechanism it is assumed that nitrous bxide is formed via a Langmuir-Hinshelwood process in which an adsorbed nitrogen atom reacts with an adsorbed nitric oxide molecule. The nitric oxide reaction rate was found to be first order in nitric oxide partial pressure, and inverse second order in carbon monoxide partial pressure. A mechanism is proposed to qualitatively explain the deactivation process observed under reducing conditions. The essential part of this mechanism is the formation of an isocyanate species on the Pt crystallites of the catalyst and the subsequent transient diffusion of these

  17. Macrodynamic study and catalytic reduction of NO by ammonia under mild conditions over Pt-La-Ce-O/Al2O3 catalysts

    International Nuclear Information System (INIS)

    Wang, Yanhui; Zhu, Jingli; Ma, Runyu

    2007-01-01

    Catalytic reduction of NO using ammonia upon series prepared catalysts under 423-573 K in a fixed bed reactor was investigated. Results showed that the performance of supported platinum catalyst could be improved by addition of La and Ce to it. Experimental studies indicated that the suitable molar ratio of Pt:La:Ce would be 1.0:3.78:3.56, Pt-La-Ce (c). Results also found Pt-La-Ce (c) catalyst had good stability and tolerance to certain amounts of sulfur compounds under the used experimental conditions. Characterization for the fresh and used catalysts showed the Pt-La-Ce (c) catalyst had a stable structure. In addition, based on experimental data and using a nonlinear regression algorithm method, an empirical macrodynamic equation was obtained in this study

  18. Bifunctional Ag/Fe/N/C Catalysts for Enhancing Oxygen Reduction via Cathodic Biofilm Inhibition in Microbial Fuel Cells.

    Science.gov (United States)

    Dai, Ying; Chan, Yingzi; Jiang, Baojiang; Wang, Lei; Zou, Jinlong; Pan, Kai; Fu, Honggang

    2016-03-23

    Limitation of the oxygen reduction reaction (ORR) in single-chamber microbial fuel cells (SC-MFCs) is considered an important hurdle in achieving their practical application. The cathodic catalysts faced with a liquid phase are easily primed with the electrolyte, which provides more surface area for bacterial overgrowth, resulting in the difficulty in transporting protons to active sites. Ag/Fe/N/C composites prepared from Ag and Fe-chelated melamine are used as antibacterial ORR catalysts for SC-MFCs. The structure-activity correlations for Ag/Fe/N/C are investigated by tuning the carbonization temperature (600-900 °C) to clarify how the active-constituents of Ag/Fe and N-species influence the antibacterial and ORR activities. A maximum power density of 1791 mW m(-2) is obtained by Ag/Fe/N/C (630 °C), which is far higher than that of Pt/C (1192 mW m(-2)), only having a decline of 16.14% after 90 days of running. The Fe-bonded N and the cooperation of pyridinic N and pyrrolic N in Ag/Fe/N/C contribute equally to the highly catalytic activity toward ORR. The ·OH or O2(-) species originating from the catalysis of O2 can suppress the biofilm growth on Ag/Fe/N/C cathodes. The synergistic effects between the Ag/Fe heterojunction and N-species substantially contribute to the high power output and Coulombic efficiency of Ag/Fe/N/C catalysts. These new antibacterial ORR catalysts show promise for application in MFCs.

  19. Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature

    International Nuclear Information System (INIS)

    Choi, Dong Hyuck; Park, Jung Eun; Park, Eun Duck

    2015-01-01

    The effect of preparation method on the catalytic activities of the Ni/Al 2 O 3 catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, K 2 CO 3 , and NH 4 OH were compared. The prepared catalysts were characterized by using N 2 physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperature programmed reduction, pulsed H 2 chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the Ni/Al 2 O 3 catalyst prepared by a coprecipitation with KOH or K 2 CO 3 as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The Ni/Al 2 O 3 catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature

  20. Catalysts preparing

    International Nuclear Information System (INIS)

    Normatov, I.Sh.; Mirsaidov, U.M.

    2003-01-01

    One of the base area of zeolites industry using is catalysis. The catalytic properties of zeolites use in the carbonated reactions in the petrochemistry. Last years zeolite catalysts use in oxidative-reduction processes

  1. An Investigation of Palladium Oxygen Reduction Catalysts for the Direct Methanol Fuel Cell

    Directory of Open Access Journals (Sweden)

    G. F. Álvarez

    2011-01-01

    Full Text Available A comparative study of Pd and Pt was carried out in DMFC using different methanol concentrations and under different operating conditions. Cell performance was compared at methanol concentrations of 1, 3, 5, and 7 M and at temperatures of 20, 40, and 60°C. Homemade Pd nanoparticles were prepared on Vulcan XC-72R using ethylene glycol as the reducing agent at pH 11. The resulting catalyst, Pd/C, with metal nanoparticles of approximately 6 nm diameter, was tested as a cathode catalyst in DMFC. At methanol concentrations of 5 M and higher, the Pd cathode-based cell performed better than that with Pt at 60°C with air.

  2. Stability issues in Pd-based catalysts: the role of surface Pt in improving the stability and oxygen reduction reaction (ORR) activity.

    Science.gov (United States)

    Singh, R K; Rahul, R; Neergat, M

    2013-08-21

    Carbon-supported Pd and Pd3Co catalysts have been electrochemically characterized in 0.1 M HClO4 solution and we found that both catalysts were unstable. On repeated potential cycling, the electrochemical surface area of the catalysts decreases and the oxygen reduction reaction (ORR) activity suffers. To stabilize surface Pd atoms of both Pd and Pd3Co catalysts, we deposited Pt using adsorbed hydrogen on the catalytically active Pd sites. The Pt : Pd ratio of Pt-coated Pd and Pt-coated Pd3Co catalysts suggests half-a-monolayer coverage of Pt (two hydrogen atoms required for reducing a Pt(2+) ion). The Pt : Pd ratio of Pt-coated Pd3Co catalyst obtained from the simple geometrical hard sphere model, energy-dispersive X-ray spectroscopy (EDS) line scan and bulk EDS agrees very well with that calculated from the hydrogen desorption (H(des)) charge of Pd3Co. At the same time, the Pt : Pd ratio of Pt-coated Pd calculated from the H(des) charge of Pd catalyst is significantly lower than the ratio obtained from the other methods. Thus, the Pt : Pd ratio of the Pt-coated Pd catalyst estimated from the H(des) region of Pd is an underestimation of the composition. This suggests that Pd forms an electrochemically inactive species from the H(upd) region itself and Co in Pd3Co seems to stabilize Pd against oxidation by delaying the formation of electrochemically inactive species to higher potentials above the H(upd) region. The voltammograms along with the peroxide formation characteristics of the catalysts support the above observations. The deposited Pt on the surface of the Pd and Pd3Co catalysts masks active Pd sites from the electrochemical environment and even partial coverage with Pt improves the stability and ORR activity of the catalysts when compared to that of the respective Pt-free counterparts.

  3. Novel windows for "solar commodities": a device for CO2 reduction using plasmonic catalyst activation.

    Science.gov (United States)

    Navarrete, Alexander; Muñoz, Sergio; Sanz-Moral, Luis M; Brandner, Juergen J; Pfeifer, Peter; Martín, Ángel; Dittmeyer, Roland; Cocero, María J

    2015-01-01

    A novel plasmonic reactor concept is proposed and tested to work as a visible energy harvesting device while allowing reactions to transform CO2 to be carried out. Particularly the reverse water gas shift (RWGS) reaction has been tested as a means to introduce renewable energy into the economy. The development of the new reactor concept involved the synthesis of a new composite capable of plasmonic activation with light, the development of an impregnation method to create a single catalyst reactor entity, and finally the assembly of a reaction system to test the reaction. The composite developed was based on a Cu/ZnO catalyst dispersed into transparent aerogels. This allows efficient light transmission and a high surface area for the catalyst. An effective yet simple impregnation method was developed that allowed introduction of the composites into glass microchannels. The activation of the reaction was made using LEDs that covered all the sides of the reactor allowing a high power delivery. The results of the reaction show a stable process capable of low temperature transformations.

  4. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2004-09-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the July 1 to September 30, 2004 time period.

  5. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer

    2005-09-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the July 1 to September 30, 2005 time period.

  6. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Richard G. Herman

    2004-12-31

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the October 1 to December 30, 2004 time period.

  7. Pre-Reduction of Au/Iron Oxide Catalyst for Low-Temperature Water-Gas Shift Reaction Below 150 °C

    Directory of Open Access Journals (Sweden)

    Takashi Fukuda

    2011-12-01

    Full Text Available Low-temperature water-gas shift reaction (WGS using gold catalyst is expected to be an attractive technique to realize an efficient on-site hydrogen production process. In this paper, Au/Fe3O4 catalysts for promoting the WGS below 150 °C were developed by a preliminary reduction of Au/iron oxide (Fe3+ catalyst utilizing high reactivity of Au nano-particles. The reduction was conducted under a CO, H2, or CO/H2O stream at either 140 or 200 °C, and the effect of reduction conditions on the characteristics of the Au/Fe3O4 catalyst and on the catalytic activity in WGS at 80 °C was investigated. The reaction progress during the pre-reduction treatment was qualitatively analyzed, and it was found that the iron oxide in Au/Fe2O3 calcined at 200 °C was easily reduced to Fe3O4 phase in all reduction conditions. The reduction conditions affected the characteristics of both Au and iron oxide, but all of the reduced catalysts had small Fe3O4 particles of less than 20 nm with Au particles on the surface. The surface area and content of cationic Au were high in the order of CO, H2, CO/H2O, and 140, 200 °C. In the WGS test at 80 °C using the developed catalysts, the activities of the catalysts pre-reduced by CO at 140 or 200 °C and by H2 at 140 °C were very high with 100% CO conversion even at such a low temperature. These results indicated that factors such as higher surface area, crystallized Fe3O4, and cationic Au content contributed to the catalytic activity.

  8. Investigation of Oxygen Reduction Activity of Catalysts Derived from Co and Co/Zn Methyl-Imidazolate Frameworks in Proton Exchange Membrane Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Lina [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai P.R. China; Goenaga, Gabriel A. [Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996 USA; Williams, Kia [University of South Florida, Tampa FL 33620 USA; Barkholtz, Heather M. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Grabstanowicz, Lauren R. [Alcoa Technical Center, New Kensington PA 15068 USA; Brooksbank, Jeremy A. [Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996 USA; Papandrew, Alex B. [Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996 USA; Elzein, Radwan [University of South Florida, Tampa FL 33620 USA; Schlaf, Rudiger [University of South Florida, Tampa FL 33620 USA; Zawodzinski, Thomas A. [Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, TN 37996 USA; Zou, Jianxin [Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai P.R. China; Ma, Shengqian [University of South Florida, Tampa FL 33620 USA; Liu, Di-Jia [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA

    2016-05-31

    We demonstrated that the oxygen reduction reaction (ORR) activity over the catalysts derived from pyrolyzed cobalt zeolitic imidazolate frameworks depends strongly on the imidazole ligand structure and cobalt content. The activity and durability of these catalysts were tested in the proton exchange membrane fuel cell for the first time. The membrane electrode assembly containing a catalyst derived from Co/Zn bimetallic ZIF at cathode achieved an open circuit voltage of 0.93 V, a current density of 28 mA cm-2 at 0.8 ViR-free and a peak power density of 374 mW cm-2.

  9. Understanding and application of an electroplating sludge-derived catalyst with an active texture for improved NO reduction.

    Science.gov (United States)

    Zhang, Chen; Song, Jia; Zhang, Jia; Zhang, Jingyi; Xing, Juanjuan; Hu, Dongli; Peng, Yongqiang; Zhou, Jizhi; Liu, Qiang; Gu, Hui; Qian, Guangren

    2018-03-08

    Industrial sludge has been shown to be a valuable source of transition metals and to be effective in NO reduction. This research has further revealed a characteristic texture (O-Me-C) that promotes effective NO reduction and supports its existence in a sludge-derived catalyst. HRTEM exhibited that the O-Me-C consisted of multi-metal-oxide core, carbon shell and their binding interfaces. Furthermore, pre-treatment of the sludge with aromatic containing wastewater produced a more active texture (O-Me-GO L ), characterized by the presence of multi-metal-oxide core, graphene oxide-like carbon and highly active interfaces (EELS, Mössbauer and Raman). As a result, the hybrid with O-Me-GO L exhibited enhanced activity and was able to remove >45% of NO (1000 ppm) at 200 °C and >99% at 400 °C over a much longer period (from 25 to 180 min) with an hourly gas space velocity of 14,400 h -1 . Besides, the hybrid showed excellent resistance to both SO 2 and O 2 . Therefore, the present work promoted the high value-added utilization of environment waste, and produced efficient catalyst in favor of sustainable development. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Nb-doped TiO2 cathode catalysts for oxygen reduction reaction of polymer electrolyte fuel cells

    KAUST Repository

    Arashi, Takuya

    2014-09-01

    Nb-doped TiO2 particles were studied as electrocatalysts for the oxygen reduction reaction (ORR) under acidic conditions. The Nb-doped TiN nanoparticles were first synthesized by meso-porous C3N4 and then fully oxidized to Nb-doped TiO2 by immersing in 0.1 M H 2SO4 at 353 K for 24 h. Although the ORR activity of the as-obtained sample was low, a H2 treatment at relatively high temperature (1173 K) dramatically improved the ORR performance. An onset potential as high as 0.82 VRHE was measured. No degradation of the catalysts was observed during the oxidation-reduction cycles under the ORR condition for over 127 h. H2 treatment at temperatures above 1173 K caused the formation of a Ti4O7 phase, resulting in a decrease in ORR current. Elemental analysis indicated that the Nb-doped TiO 2 contained 25 wt% residual carbon. Calcination in air at 673 or 973 K eliminated the residual carbon in the catalyst, which was accompanied by a dramatic decrease in ORR activity. This post-calcination process may reduce the conductivity of the sample by filling the oxygen vacancies, and the carbon residue in the particle aggregates may enhance the electrocatalytic activity for ORR. The feasibility of using conductive oxide materials as electrocatalysts is discussed. © 2013 Elsevier B.V.

  11. FeRu/TiO2 and Fe/TiO2 catalysts after reduction and Fischer-Tropsch synthesis studied by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Kraan, A.M. van der; Nonnekens, R.C.H.; Niemantsverdriet, J.W.

    1986-01-01

    A series of TiO 2 -supported bimetallic FeRu catalysts with different Fe:Ru ratios (infinity; 10:1; 3:1; 1:1; 1:3) has been studied by means of in situ Moessbauer spectroscopy. The influence of reduction and Fischer-Tropsch synthesis on the state of iron in the FeRu/TiO 2 catalysts is derived. (Auth.)

  12. Nox and renal disease.

    Science.gov (United States)

    Holterman, Chet E; Read, Naomi C; Kennedy, Chris R J

    2015-04-01

    Since the first demonstration of Nox enzyme expression in the kidney in the early 1990s and the subsequent identification of Nox4, or RENOX, a decade later, it has become apparent that the Nox family of reactive oxygen species (ROS) generating enzymes plays an integral role in the normal physiological function of the kidney. As our knowledge of Nox expression patterns and functions in various structures and specialized cell types within the kidney grows, so does the realization that Nox-derived oxidative stress contributes significantly to a wide variety of renal pathologies through their ability to modify lipids and proteins, damage DNA and activate transcriptional programmes. Diverse studies demonstrate key roles for Nox-derived ROS in kidney fibrosis, particularly in settings of chronic renal disease such as diabetic nephropathy. As the most abundant Nox family member in the kidney, much emphasis has been placed on the role of Nox4 in this setting. However, an ever growing body of work continues to uncover key roles for other Nox family members, not only in diabetic kidney disease, but in a diverse array of renal pathological conditions. The objective of the present review is to highlight the latest novel developments in renal Nox biology with an emphasis not only on diabetic nephropathy but many of the other renal disease contexts where oxidative stress is implicated.

  13. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  14. Reduction of Furfural to Furfuryl Alcohol in Liquid Phase over a Biochar-Supported Platinum Catalyst

    Directory of Open Access Journals (Sweden)

    Ariadna Fuente-Hernández

    2017-02-01

    Full Text Available In this work, the liquid phase hydrogenation of furfural has been studied using a biochar-supported platinum catalyst in a batch reactor. Reactions were performed between 170 °C and 320 °C, using 3 wt % and 5 wt % of Pt supported on a maple-based biochar under hydrogen pressure varying from 500 psi to 1500 psi for reaction times between 1 h and 6 h in various solvents. Under all reactive conditions, furfural conversion was significant, whilst under specific conditions furfuryl alcohol (FA was obtained in most cases as the main product showing a selectivity around 80%. Other products as methylfuran (MF, furan, and trace of tetrahydrofuran (THF were detected. Results showed that the most efficient reaction conditions involved a 3% Pt load on biochar and operations for 2 h at 210 °C and 1500 psi using toluene as solvent. When used repetitively, the catalyst showed deactivation although only a slight variation in selectivity toward FA at the optimal experimental conditions was observed.

  15. From Chlorella to Nestlike Framework Constructed with Doped Carbon Nanotubes: A Biomass-Derived, High-Performance, Bifunctional Oxygen Reduction/Evolution Catalyst.

    Science.gov (United States)

    Wang, Guanghua; Deng, Yijie; Yu, Jinnan; Zheng, Long; Du, Li; Song, Huiyu; Liao, Shijun

    2017-09-20

    The development of effective bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is significant for energy conversion systems, such as Li-air batteries, fuel cells, and water splitting technologies. Herein, a Chlorella-derived catalyst with a nestlike framework, composed of bamboolike nanotubes that encapsulate cobalt nanoparticles, has been prepared through a facile pyrolysis process. It achieves perfect bifunctional catalysis both in ORR and OER on a single catalyst. For our optimal catalyst Co/M-Chlorella-900, its ORR half-wave potential is positively shifted by 40 mV compared to that of a commercial Pt/C catalyst, and the overpotential at 10 mA cm -2 for the OER is 23 mV lower than that of a commercial IrO 2 /C catalyst in an alkaline medium. This superior bifunctional catalytic performance is benefited from the simultaneous increase of pyridinic N sites for ORR and graphitic N sites for OER. In addition, N-doped carbon-encapsulated Co nanoparticles improve both ORR and OER performance by forming new active centers. The unique nestlike carbon nanotube framework not only afforded highly dense ORR and OER active sites but also promoted the electron and mass transfer. Our catalyst also displays notable durability during the ORR and OER, making it promising for use in ORR/OER-related energy conversion systems.

  16. Engineering Favorable Morphology and Structure of Fe-N-C Oxygen-Reduction Catalysts through Tuning of Nitrogen/Carbon Precursors.

    Science.gov (United States)

    Gupta, Shiva; Zhao, Shuai; Ogoke, Ogechi; Lin, Ye; Xu, Hui; Wu, Gang

    2017-02-22

    Structures and morphologies of Fe-N-C catalysts are believed to be crucial because of the number of active sites and local bonding structures governing the overall catalyst performance for the oxygen reduction reaction (ORR). However, the knowledge how to rationally design catalysts is still lacking. By combining different nitrogen/carbon precursors, including polyaniline (PANI), dicyandiamide (DCDA), and melamine (MLMN), we aim to tune catalyst morphology and structure to facilitate the ORR. Instead of the commonly studied single precursors, multiple precursors were used during the synthesis; this provides a new opportunity to promote catalyst activity and stability through a likely synergistic effect. The best-performing Fe-N-C catalyst derived from PANI+DCDA is superior to the individual PANI or DCDA-derived ones. In particular, when compared to the extensively explored PANI-derived catalysts, the binary precursors have an increased half-wave potential of 0.83 V and an enhanced electrochemical stability in challenging acidic media, indicating a significantly increased number of active sites and strengthened local bonding structures. Multiple key factors associated with the observed promotion are elucidated, including the optimal pore size distribution, highest electrochemically active surface area, presence of dominant amorphous carbon, and thick graphitic carbon layers with more pyridinic nitrogen edge sites likely bonded with active atomic iron. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures.

    Science.gov (United States)

    Zhu, Chengzhou; Li, He; Fu, Shaofang; Du, Dan; Lin, Yuehe

    2016-02-07

    Developing a low cost, highly active, durable cathode towards an oxygen reduction reaction (ORR) is one of the high-priority research directions for commercialization of low-temperature polymer electrolyte membrane fuel cells (PEMFCs). However, the electrochemical performance of PEMFCs is still hindered by the high cost and insufficient durability of the traditional Pt-based cathode catalysts. Under these circumstances, the search for efficient alternatives to replace Pt for constructing highly efficient nonprecious metal catalysts (NPMCs) has been growing intensively and has received great interest. Combining with the compositional effects, the accurate design of NPMCs with 3D porous nanostructures plays a significant role in further enhancing ORR performance. These 3D porous architectures are able to provide higher specific surface areas and larger pore volumes, not only maximizing the availability of electron transfer within the nanosized electrocatalyst surface area but also providing better mass transport of reactants to the electrocatalyst. In this Tutorial Review, we focus on the rational design and synthesis of different 3D porous carbon-based nanomaterials, such as heteroatom-doped carbon, metal-nitrogen-carbon nanostructures and a series of carbon/nonprecious metal-based hybrids. More importantly, their enhanced ORR performances are also demonstrated by virtue of their favorably porous morphologies and compositional effects. Finally, the future trends and perspectives for the highly efficient porous NPMCs regarding the material design are discussed, with an emphasis on substantial development of advanced carbon-based NPMCs for ORR in the near future.

  18. Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li-O2 Batteries.

    Science.gov (United States)

    Yoon, Ki Ro; Kim, Dae Sik; Ryu, Won-Hee; Song, Sung Ho; Youn, Doo-Young; Jung, Ji-Won; Jeon, Seokwoo; Park, Yong Joon; Kim, Il-Doo

    2016-08-23

    The development of efficient bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is a key issue pertaining high performance Li-O2 batteries. Here, we propose a heterogeneous electrocatalyst consisting of LaMnO3 nanofibers (NFs) functionalized with RuO2 nanoparticles (NPs) and non-oxidized graphene nanoflakes (GNFs). The Li-O2 cell employing the tailored catalysts delivers an excellent electrochemical performance, affording significantly reduced discharge/charge voltage gaps (1.0 V at 400 mA g(-1) ), and superior cyclability for over 320 cycles. The outstanding performance arises from (1) the networked LaMnO3 NFs providing ORR/OER sites without severe aggregation, (2) the synergistic coupling of RuO2 NPs for further improving the OER activity and the electrical conductivity on the surface of the LaMnO3 NFs, and (3) the use of GNFs providing a fast electronic pathway as well as improved ORR kinetics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Understanding the Performance of Automotive Catalysts via Spatial Resolution of Reactions inside Honeycomb Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Partridge Jr, William P. [ORNL; Choi, Jae-Soon [ORNL

    2017-11-01

    By directly resolving spatial and temporal species distributions within operating honeycomb monolith catalysts, spatially resolved capillary inlet mass spectrometry (SpaciMS) provides a uniquely enabling perspective for advancing automotive catalysis. Specifically, the ability to follow the spatiotemporal evolution of reactions throughout the catalyst is a significant advantage over inlet-and-effluent-limited analysis. Intracatalyst resolution elucidates numerous catalyst details including the network and sequence of reactions, clarifying reaction pathways; the relative rates of different reactions and impacts of operating conditions and catalyst state; and reaction dynamics and intermediate species that exist only within the catalyst. These details provide a better understanding of how the catalyst functions and have basic and practical benefits; e.g., catalyst system design; strategies for on-road catalyst state assessment, control, and on-board diagnostics; and creating robust and accurate predictive catalyst models. Moreover, such spatiotemporally distributed data provide for critical model assessment, and identification of improvement opportunities that might not be apparent from effluent assessment; i.e., while an incorrectly formulated model may provide correct effluent predictions, one that can accurately predict the spatiotemporal evolution of reactions along the catalyst channels will be more robust, accurate, and reliable. In such ways, intracatalyst diagnostics comprehensively enable improved design and development tools, and faster and lower-cost development of more efficient and durable automotive catalyst systems. Beyond these direct contributions, SpaciMS has spawned and been applied to enable other analytical techniques for resolving transient distributed intracatalyst performance. This chapter focuses on SpaciMS applications and associated catalyst insights and improvements, with specific sections related to lean NOx traps, selective catalytic

  20. Asymmetric Volcano Trend in Oxygen Reduction Activity of Pt and Non-Pt Catalysts: In Situ Identification of the Site-Blocking Effect.

    Science.gov (United States)

    Li, Jingkun; Alsudairi, Amell; Ma, Zi-Feng; Mukerjee, Sanjeev; Jia, Qingying

    2017-02-01

    Proper understanding of the major limitations of current catalysts for oxygen reduction reaction (ORR) is essential for further advancement. Herein by studying representative Pt and non-Pt ORR catalysts with a wide range of redox potential (E redox ) via combined electrochemical, theoretical, and in situ spectroscopic methods, we demonstrate that the role of the site-blocking effect in limiting the ORR varies drastically depending on the E redox of active sites; and the intrinsic activity of active sites with low E redox have been markedly underestimated owing to the overlook of this effect. Accordingly, we establish a general asymmetric volcano trend in the ORR activity: the ORR of the catalysts on the overly high E redox side of the volcano is limited by the intrinsic activity; whereas the ORR of the catalysts on the low E redox side is limited by either the site-blocking effect and/or intrinsic activity depending on the E redox .

  1. Solid State Electrochemical DeNOx

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The literature on direct electrochemical reduction of NOx in a solid state cell has been reviewed. It is shown that that the reduction of nitric oxide either occurs on the electrode or on the electrolyte if F-centers are formed. It is also shown that some oxide based electrodes has a high apparent...

  2. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    Science.gov (United States)

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  3. Decreased NOx emissions by use of selective catalytic reduction on a gas turbine in the food-processing sector; Reduction des emissions de NOx par l'application de la reduction catalytique selective a une turbine a gaz dans le secteur de l'agro-alimentaire

    Energy Technology Data Exchange (ETDEWEB)

    Van Esch, F.A.J. [Cerestar Benelux B.V., Sas van Gent (Netherlands)

    2001-07-01

    Cerestar is a company of Eridania Beghin-Say, and manufactures starches and starch derivatives. Its activities are controlled from Paris, France, with sales offices and production facilities located throughout the world. Eridania Beghin-Say is one of the leading companies in the processing of agricultural raw materials into food products such as sugar, starch and derivatives of starch, oils, vegetable proteins and lecithin, consumer products and animal feed. The largest Cerestar plant in Europe is located in Sas van Gent, The Netherlands. Different starches, starch derivatives and glucoses are produced from the raw materials corn and wheat. Cerestar has own cogeneration plants for the production of steam and electricity. This year, the capacity of the plant was doubled, by the construction of a new wheat plant. Together with the wheat plant, a third cogeneration plant was built, with NOx emissions much below the legal limits. (authors)

  4. Efficient oxygen reduction reaction using ruthenium tetrakis(diaquaplatinum)octacarboxyphthalocyanine catalyst supported on MWCNT platform

    CSIR Research Space (South Africa)

    Maxakato, NW

    2011-02-01

    Full Text Available Electrocatalytic reduction of molecular oxygen in alkaline solution using a novel ruthenium tetrakis(diaquaplatinum) octacarboxyphthalocyanine (RuOCPcPt) electrocatalyst supported on multi-walled carbon nanotube electrode has been described. We show...

  5. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-06-30

    This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both 0% and 1% vanadia catalysts. During this quarter, the slipstream reactor at Rockport operated for 720 hours on flue gas. Catalyst exposure time reached 4500 hours since installation. The reactor is out of service at the Rockport plant and plans are being made to move it to the Gadsden Plant. At Gadsden, modifications have begun in preparation for installation of the slipstream reactor next quarter.

  6. Formation of Copper Catalysts for CO2 Reduction with High Ethylene/Methane Product Ratio Investigated with In Situ X-ray Absorption Spectroscopy.

    Science.gov (United States)

    Eilert, André; Roberts, F Sloan; Friebel, Daniel; Nilsson, Anders

    2016-04-21

    Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)-carbonate/hydroxide is also reported. This study highlights the importance of using oxidized copper precursors for constructing selective CO2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation.

  7. Catalytic reduction of SO{sub 2} with methane over molybdenum catalyst. Quarterly technical report, September 1, 1994--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Wiltowski, T.

    1995-03-01

    One of the primary concerns in coal utilization is the emission of sulfur compounds, especially SO{sub 2}. This project deals with catalytic reduction of SO{sub 2} with methane using molybdenum sulfide catalyst supported on different activated carbons: Darco TRS, Norit ROZ-3, and an activated carbon prepared from Illinois coal IBC-110. The work conducted during this quarter has concentrated on catalyst preparation and characterization along with synthesis of activated carbon from IBC-110 coal, as well as, construction of the apparatus for catalytic tests of SO{sub 2} reduction with methane. It was found that Darco TRS supported catalysts have larger surface area than the pure activated carbon, whereas the impregnation of Norit ROZ-3 did not significantly change the BET surface area. Also, the synthesis of activated carbon support from IBC-110 is in progress.

  8. Promotional effect of phosphorus doping on the activity of the Fe-N/C catalyst for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Hu, Yang; Zhu, Jianbin; Lv, Qing

    2015-01-01

    -nitrogen complexes, i.e., M-N/C catalysts, are the most promising candidate. Herein, by comparing the ORR activities of standard Fe-N/C catalysts synthesized with or without the doped phosphorus species, the promotional effect of phosphorus doping is discerned. Such phosphorus doping is achieved by using an acidic...... to that for the undoped Fe-N/C catalyst. The activity and durability of the catalysts are demonstrated in direct methanol fuel cells....

  9. NOx processing on Solar gas turbines; Turbines, traitement des nox sur les turbines a gaz solar

    Energy Technology Data Exchange (ETDEWEB)

    Chausse, X. [Spie Trindel, 95 - Cergy (France). Service TAG

    1997-12-31

    The Solar Company, in cooperation with Tuma Turbomach, has developed the SoLoNOx combustion system with a dry, lean, premixed compound, allowing for reduced NOx and CO emission levels (respectively 42 ppmv and 50 ppmv at 15 pc O{sub 2}). The combustor size is larger than a conventional combustor in order to maintain combustion efficiency and reduce carbon monoxide levels. Leaner combustion occurs at lower temperatures which produce less nitrogen oxides but require more volume to complete the combustion process. New developments should allow for a further reduction of NOx level at 25 ppmv

  10. Impact of FCC regenerator design in the NOx emissions

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Hugo Borges; Sandes, Emanuel Freire; Gilbert, William Richard; Roncolatto, Rodolfo Eugenio; Gobbo, Rodrigo; Casavechia, Luiz Carlos; Candido, William Victor Carlos [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Bridi, Patricia Elaine [Possebon Engenharia, Sao Mateus do Sul, PR (Brazil)

    2012-07-01

    Fluid Catalytic Cracking (FCC) is the main point source of NOx in the refinery and it is responsible for at least 20% of the total NOx emissions from the refineries. The thermal NOx formation in the FCC regenerator is negligible. However, half of the feed nitrogen is converted to coke, and is burned in the regenerator. The majority of coke nitrogen is reduced to N2 and less than 10% is converted to NOx. This number may vary significantly with the oxygen excess in the flue gas and other operational conditions. With the purpose of evaluating the impact of different regenerator designs in NOx formation, several tests were carried out in the PETROBRAS FCC prototype unit. The test unit is equipped with adiabatic insulation and a CO boiler, allowing it to reproduce the heat balance of a commercial FCC and to operate either in full combustion or partial combustion. Two different designs of FCC regenerators were evaluated: single stage regenerator (the existing configuration) and two stage regenerator, with the catalyst bed divided into two sections by a structured packing baffle. It was observed in the tests that the combustion regime had a very strong effect on NOx formation. In full combustion, the effect of the FCC operating variables: excess oxygen, combustion promoter content in catalyst and regenerator design could be identified. The two stage configuration was capable of decreasing NOx emissions by 30%. In partial combustion, the effect of the CO-boiler variables on NOx emissions was overwhelming, but the use of the structured packing baffle was able to improve the catalyst regeneration.(author)

  11. Silver and palladium alloy nanoparticle catalysts: reductive coupling of nitrobenzene through light irradiation.

    Science.gov (United States)

    Peiris, Sunari; Sarina, Sarina; Han, Chenhui; Xiao, Qi; Zhu, Huai-Yong

    2017-08-15

    Silver-palladium (Ag-Pd) alloy nanoparticles strongly absorb visible light and exhibit significantly higher photocatalytic activity compared to both pure palladium (Pd) and silver (Ag) nanoparticles. Photocatalysts of Ag-Pd alloy nanoparticles on ZrO 2 and Al 2 O 3 supports are developed to catalyze the nitroaromatic coupling to the corresponding azo compounds under visible light irradiation. Ag-Pd alloy NP/ZrO 2 exhibited the highest photocatalytic activity for nitrobenzene coupling to azobenzene (yield of ∼80% in 3 hours). The photocatalytic efficiency could be optimized by altering the Ag : Pd ratio of the alloy nanoparticles, irradiation light intensity, temperature and wavelength. The rate of the reaction depends on the population and energy of the excited electrons, which can be improved by increasing the light intensity or by using a shorter wavelength. The knowledge developed in this study may inspire further studies on Ag alloy photocatalysts and organic syntheses using Ag-Pd nanoparticle catalysts driven under visible light Irradiation.

  12. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts.

    Science.gov (United States)

    Yin, Peiqun; Yao, Tao; Wu, Yuen; Zheng, Lirong; Lin, Yue; Liu, Wei; Ju, Huanxin; Zhu, Junfa; Hong, Xun; Deng, Zhaoxiang; Zhou, Gang; Wei, Shiqiang; Li, Yadong

    2016-08-26

    A new strategy for achieving stable Co single atoms (SAs) on nitrogen-doped porous carbon with high metal loading over 4 wt % is reported. The strategy is based on a pyrolysis process of predesigned bimetallic Zn/Co metal-organic frameworks, during which Co can be reduced by carbonization of the organic linker and Zn is selectively evaporated away at high temperatures above 800 °C. The spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurements both confirm the atomic dispersion of Co atoms stabilized by as-generated N-doped porous carbon. Surprisingly, the obtained Co-Nx single sites exhibit superior ORR performance with a half-wave potential (0.881 V) that is more positive than commercial Pt/C (0.811 V) and most reported non-precious metal catalysts. Durability tests revealed that the Co single atoms exhibit outstanding chemical stability during electrocatalysis and thermal stability that resists sintering at 900 °C. Our findings open up a new routine for general and practical synthesis of a variety of materials bearing single atoms, which could facilitate new discoveries at the atomic scale in condensed materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis of self-supported non-precious metal catalysts for oxygen reduction reaction with preserved nanostructures from the polyaniline nanofiber precursor

    DEFF Research Database (Denmark)

    Hu, Yang; Zhao, Xiao; Huang, Yunjie

    2013-01-01

    Non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) are an active subject of recent research on proton exchange membrane fuel cells. In this study, we report a new approach to preparation of self-supported and nano-structured NPMCs using pre-prepared polyaniline (PANI...

  14. Low-temperature synthesis of Mn-based mixed metal oxides with novel fluffy structures as efficient catalysts for selective reduction of nitrogen oxides by ammonia.

    Science.gov (United States)

    Meng, Bo; Zhao, Zongbin; Chen, Yongsheng; Wang, Xuzhen; Li, Yong; Qiu, Jieshan

    2014-10-21

    A series of Mn-based mixed metal oxide catalysts (Co-Mn-O, Fe-Mn-O, Ni-Mn-O) with high surface areas were prepared via low temperature crystal splitting and exhibited extremely high catalytic activity for the low-temperature selective catalytic reduction of nitrogen oxides with ammonia.

  15. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    Science.gov (United States)

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  16. Ethanol-selective catalytic reduction of NO by Ag/Al2O3 catalysts: Activity and deactivation by alkali salts

    DEFF Research Database (Denmark)

    Schill, Leonhard; Putluru, Siva Sankar Reddy; Jacobsen, Casper Funk

    2012-01-01

    Ag/Al2O3 catalysts with and without potassium doping were prepared by incipient wetness impregnation and characterized by N2 physisorption, XRPD, NH3-TPD and SEM. The influence of the Ag content from 1 to 5 wt.% was investigated for the selective catalytic reduction (SCR) of NO with ethanol. The 3...... wt.% Ag/Al2O3 catalyst was found to be the most active and CO2 selective over a wide temperature window (300–500 ◦C). Addition of 500 ppm of H2 has a mild promotional effect on the activity while SO2 has a strong negative influence on the SCR activity. Furthermore, the Ag/Al2O3 ethanol-SCR catalyst......3 ethanol-SCR catalyst compared to the conventional NH3-SCR catalyst. The still low potassium resistance, in combination with the high sensitivity to SO2, seems not to make these catalysts a real option for biomass fired boilers....

  17. Nox2 B-loop Peptide, Nox2ds, Specifically Inhibits Nox2 Oxidase

    OpenAIRE

    Csányi, Gábor; Cifuentes-Pagano, Eugenia; Ghouleh, Imad Al; Ranayhossaini, Daniel J; Egaña, Loreto; Lopes, Lucia R.; Jackson, Heather M.; Kelley, Eric E.; Pagano, Patrick J.

    2011-01-01

    In recent years, reactive oxygen species (ROS) derived from the vascular isoforms of NADPH oxidase, Nox1, Nox2 and Nox4, have been implicated in many cardiovascular pathologies. As a result, the selective inhibition of these isoforms is an area of intense current investigation. In the present study, we postulated that Nox2ds, a peptidic inhibitor that mimics a sequence in the cytosolic B loop of Nox2, would inhibit ROS production by Nox2-, but not by Nox1- and Nox4-oxidase systems. To test ou...

  18. Ebselen: A thioredoxin reductase-dependent catalyst for α-tocopherol quinone reduction

    International Nuclear Information System (INIS)

    Fang Jianguo; Zhong Liangwei; Zhao Rong; Holmgren, Arne

    2005-01-01

    The thioredoxin system, composed of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, is a powerful protein disulfide reductase system with a broad substrate specificity. Recently the selenazol drug ebselen was shown to be a substrate for both mammalian TrxR and Trx. We examined if α-tocopherol quinone (TQ), a product of α-tocopherol oxidation, is reduced by ebselen in the presence of TrxR, since TQ was not a substrate for the enzyme itself. Ebselen reduction of TQ in the presence of TrxR was caused by ebselen selenol, generated from fast reduction of ebselen by the enzyme. TQ has no intrinsic antioxidant activity, while the product of reduction of TQ, α-tocopherolhydroquinone (TQH 2 ), is a potent antioxidant. The thioredoxin system dependence of ebselen to catalyze reduction of other oxidized species, such as hydrogen peroxide, dehydroascorbate, and peroxynitrite, is discussed. The ability of ebselen to reduce TQ via the thioredoxin system is a novel mechanism to explain the effects of the drug as an antioxidant in vivo

  19. Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2014-01-01

    of uniform iron carbide (Fe3C) nanoparticles encased by graphitic layers, with little surface nitrogen or metallic functionalities. In acidic media the outer graphitic layers stabilize the carbide nanoparticles without depriving them of their catalytic activity towards the oxygen reduction reaction (ORR...

  20. Lithium-Vanadium bronzes as model catalysts for the selective reduction of nitric oxide

    NARCIS (Netherlands)

    Bosch, H.; Bongers, Annemie; Enoch, Gert; Snel, Ruud; Ross, Julian R.H.

    1989-01-01

    The effect of alkali metals on the selective reduction of nitric oxide with ammonia has been studied on bulk iron oxide and bulk vanadium oxide. The influence of additions of LiOH, NaOH and KOH on the activity was screened by pulse experiments carried out in the absence of gaseous oxygen; FTIR

  1. Targeted design of α-MnO2 based catalysts for oxygen reduction

    Czech Academy of Sciences Publication Activity Database

    Lehtimäki, M.; Hoffmannová, Hana; Boytsová, O.; Bastl, Zdeněk; Bush, M.; Halck, N. B.; Rossmeisl, J.; Krtil, Petr

    2016-01-01

    Roč. 191, FEB 2016 (2016), s. 452-461 ISSN 0013-4686 EU Projects: European Commission(XE) 214936 - ELCAT Institutional support: RVO:61388955 Keywords : electrocatalysis * oxygen reduction * MnO2 Subject RIV: CG - Electrochemistry Impact factor: 4.798, year: 2016

  2. Covalent versus Charge Transfer Modification of Graphene/Carbon-Nanotubes with Vitamin B1: Co/N/S-C Catalyst toward Excellent Oxygen Reduction.

    Science.gov (United States)

    Vij, Varun; Tiwari, Jitendra N; Kim, Kwang S

    2016-06-29

    High-performance nonprecious cathodic catalysts for oxygen reduction are highly demanded for low-temperature polymer electrolyte membrane fuel cells (PEMFCs). Here, we report a noble-meta- free, nitrogen and sulfur codoped graphene(G)/carbon-nanotube(CNT) material decorated with Co nanoparticles (NPs), which serve as catalytic sites for excellent oxygen reduction reaction (ORR) in basic and acidic media. Out of the cathodic catalysts synthesized by either covalent (cov) or charge transfer (CT) modification of graphen oxide (GO) with thiamine (Th: Vitamin B1), ThG/CNT/Co-cov shows more promising ORR properties than ThG/CNT/Co-CT. Catalyst ThG/CNT/Co-cov exhibits onset/halfwave potentials of 0.95/0.86 V in 0.1 M KOH and 0.92/0.83 V in 0.1 M HClO4, which are comparable to those of commercial catalyst Pt/C (0.95/0.86 V). As compared to Pt/C, our catalyst shows higher current densities of 6.72 mA cm(-2) in basic medium and 7.08 mA cm(-2) in acidic medium at 0.55 V (vs reversible hydrogen electrode (RHE)). It also exhibits better catalytic stability and methanol tolerance. High catalytic efficiency and stability of ThG/CNT/Co-cov show a promising prospect of materialization of PEMFCs for clean energy production.

  3. Improved Oxygen Reduction Activity and Durability of Dealloyed PtCox Catalysts for Proton Exchange Membrane Fuel Cells: Strain, Ligand, and Particle Size Effects

    Science.gov (United States)

    Jia, Qingying; Caldwell, Keegan; Strickland, Kara; Ziegelbauer, Joseph M.; Liu, Zhongyi; Yu, Zhiqiang; Ramaker, David E.; Mukerjee, Sanjeev

    2015-01-01

    The development of active and durable catalysts with reduced platinum content is essential for fuel cell commercialization. Herein we report that the dealloyed PtCo/HSC and PtCo3/HSC nanoparticle (NP) catalysts exhibit the same levels of enhancement in oxygen reduction activity (~4-fold) and durability over pure Pt/C NPs. Surprisingly, ex situ high-angle annular dark field scanning transmission electron microscopy (HAADF STEM) shows that the bulk morphologies of the two catalysts are distinctly different: D-PtCo/HSC catalyst is dominated by NPs with solid Pt shells surrounding a single ordered PtCo core; however, the D-PtCo3/HSC catalyst is dominated by NPs with porous Pt shells surrounding multiple disordered PtCo cores with local concentration of Co. In situ X-ray absorption spectroscopy (XAS) reveals that these two catalysts possess similar Pt–Pt and Pt–Co bond distances and Pt coordination numbers (CNs), despite their dissimilar morphologies. The similar activity of the two catalysts is thus ascribed to their comparable strain, ligand, and particle size effects. Ex situ XAS performed on D-PtCo3/HSC under different voltage cycling stage shows that the continuous dissolution of Co leaves behind the NPs with a Pt-like structure after 30k cycles. The attenuated strain and/or ligand effects caused by Co dissolution are presumably counterbalanced by the particle size effects with particle growth, which likely accounts for the constant specific activity of the catalysts along with voltage cycling. PMID:26413384

  4. Availability of surface boron species in improved oxygen reduction activity of Pt catalysts: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Libo; Zhou, Gang, E-mail: gzhou@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2016-04-14

    The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO{sub 2} is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximate to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs.

  5. The atomistic origin of the extraordinary oxygen reduction activity of Pt3Ni7 fuel cell catalysts.

    Science.gov (United States)

    Fortunelli, Alessandro; Goddard Iii, William A; Sementa, Luca; Barcaro, Giovanni; Negreiros, Fabio R; Jaramillo-Botero, Andrés

    2015-07-01

    Recently Debe et al. reported that Pt 3 Ni 7 leads to extraordinary Oxygen Reduction Reaction (ORR) activity. However, several reports show that hardly any Ni remains in the layers of the catalysts close to the surface ("Pt-skin effect"). This paradox that Ni is essential to the high catalytic activity with the peak ORR activity at Pt 3 Ni 7 while little or no Ni remains close to the surface is explained here using large-scale first-principles-based simulations. We make the radical assumption that processing Pt-Ni catalysts under ORR conditions would leach out all Ni accessible to the solvent. To simulate this process we use the ReaxFF reactive force field, starting with random alloy particles ranging from 50% Ni to 90% Ni and containing up to ∼300 000 atoms, deleting the Ni atoms, and equilibrating the resulting structures. We find that the Pt 3 Ni 7 case and a final particle radius around 7.5 nm lead to internal voids in communication with the exterior, doubling the external surface footprint, in fair agreement with experiment. Then we examine the surface character of these nanoporous systems and find that a prominent feature in the surface of the de-alloyed particles is a rhombic structure involving 4 surface atoms which is crystalline-like but under-coordinated. Using density-functional theory, we calculate the energy barriers of ORR steps on Pt nanoporous catalysts, focusing on the O ad -hydration reaction (O ad + H 2 O ad → OH ad + OH ad ) but including the barriers of O 2 dissociation (O 2ad → O ad + O ad ) and water formation (OH ad + H ad → H 2 O ad ). We find that the reaction barrier for the O ad -hydration rate-determining-step is reduced significantly on the de-alloyed surface sites compared to Pt(111). Moreover we find that these active sites are prevalent on the surface of particles de-alloyed from a Pt-Ni 30 : 70 initial composition. These simulations explain the peak in surface reactivity at Pt 3 Ni 7 , and provide a rational guide to

  6. In-Use NOx Emissions from Diesel and Liquefied Natural Gas Refuse Trucks Equipped with SCR and TWC, Respectively.

    Science.gov (United States)

    Misra, Chandan; Ruehl, Chris; Collins, John; Chernich, Don; Herner, Jorn

    2017-06-20

    The California Air Resources Board (ARB) and the City of Sacramento undertook this study to characterize the in-use emissions from model year (MY) 2010 or newer diesel, liquefied natural gas (LNG), and hydraulic hybrid diesel engines during real-world refuse truck operation. Emissions from five trucks, two diesels equipped with selective catalytic reduction (SCR), two LNG's equipped with three-way catalyst (TWC), and one hydraulic hybrid diesel equipped with SCR, were measured using a portable emissions measurement system (PEMS) in the Sacramento area. Results showed that the brake-specific NOx emissions for the LNG trucks equipped with the TWC catalyst were lowest of all the technologies tested. Results also showed that the brake specific NOx emissions from the conventional diesel engines were significantly higher despite the exhaust temperature being high enough for proper SCR function. Like diesel engines, the brake specific NOx emissions from the hydraulic hybrid diesel also exceeded certification although this can be explained on the basis of the temperature profile. Future studies are warranted to establish whether the below average SCR performance observed in this study is a systemic issue or is it a problem specifically observed during this work.

  7. A novel metal organic framework-derived carbon-based catalyst for oxygen reduction reaction in a microbial fuel cell

    Science.gov (United States)

    Zhang, Lihua; Hu, Yongyou; Chen, Junfeng; Huang, Wantang; Cheng, Jianhua; Chen, Yuancai

    2018-04-01

    To improve the power generation of microbial fuel cell (MFC), the cathode is modified to increase its oxygen reduction reaction (ORR) activity by using a Cu, N-incorporated carbon-based material as catalyst, which obtained from pyrolyzing ORR active Cu (II)-based metal organic framework (MOF; Cu-bipy-BTC, bipy = 2,2‧-bipyridine, BTC = 1,3,5-tricarboxylate). MOF-800 (the product of pyrolyzing Cu-bipy-BTC at 800 °C) shows porous structure with micropores ranging from 0.5 to 1.3 nm and mesopores ranging from 27 to 46 nm. It also exhibits improved ORR electrocatalytic activity with a higher current density of -3.06 mA cm-2 compared to Cu-bipy-BTC. Moreover, the charge transfer resistance of MOF-800 cathode (1.38 Ω) is much smaller than that of Cu-bipy-BTC cathode (176.8 Ω). A maximum power density of 326 ± 11 mW m-2 is achieved by MOF-800-MFC, which is 2.6 times of that of Cu-bipy-BTC-MFC and comparable with Pt/C-MFC (402 ± 17 mW m-2). The results imply the enhancements of ORR catalytic activity and electrical conductivity of MOF-800 are due to the enhanced porous structure and abundant active sites (C-N, Cu-Nχ), which result in the improved power generation of MFC. This study provides technical and theoretical validation for the MFC performance improvement by ORR active MOF-derived catalysts modified cathodes.

  8. State Estimation in the Automotive SCR DeNOx Process

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Jørgensen, John Bagterp; Duwig, Christophe

    2012-01-01

    Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is a widely applied diesel engine exhaust gas after-treatment technology. For effective NOx removal in a transient operating automotive application, controlled dosing of urea can be used to meet the increasingly restrictive legislations...

  9. NOx trade. Case studies

    International Nuclear Information System (INIS)

    Jantzen, J.

    2002-01-01

    Some of the questions with respect to the trade of nitrogen oxides that businesses in the Netherlands have to deal with are dealt with: should a business buy or sell rights for NOx emission; which measures must be taken to reduce NOx emission; how much must be invested; and how to deal with uncertainties with regard to prices. Simulations were carried out with the MOSES model to find the answers to those questions. Results of some case studies are presented, focusing on the chemical sector in the Netherlands. Finally, the financial (dis)advantages of NOx trade and the related uncertainties for a single enterprise are discussed [nl

  10. Cu-ZSM-5 zeolite highly active in reduction of NO with decane - Effect of zeolite structural parameters on the catalyst performance

    Czech Academy of Sciences Publication Activity Database

    Čapek, Libor; Dědeček, Jiří; Wichterlová, Blanka; Cider, L.; Jobson, E.; Tokarová, V.

    2005-01-01

    Roč. 60, 3-4 (2005), s. 147-153 ISSN 0926-3373 R&D Projects: GA ČR GD203/03/H140; GA AV ČR 1ET400400413 Grant - others:European Union(XE) GR5D-CT2001-00595 Institutional research plan: CEZ:AV0Z40400503 Keywords : Cu-ZSM-5 * NO reduction * SCR-NOx * lean burn conditions * decane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.809, year: 2005

  11. Reduction of CO2 by nickel (II) macrocycle catalyst at HMDE

    Indian Academy of Sciences (India)

    Unknown

    desired product formation and reduction in electricity consumption. The nickel (II) complex of 1,3,6,9,11,14-hexaazatricyclo [12⋅2⋅1⋅1]octadecane is a suitable choice due to its geometry, i.e. because square planar structure provides the axial site free for the approach and interaction of CO2 with the metal centre and also ...

  12. One Dimensional Graphitic Carbon Nitrides as Effective Metal-Free Oxygen Reduction Catalysts

    Science.gov (United States)

    Tahir, Muhammad; Mahmood, Nasir; Zhu, Jinghan; Mahmood, Asif; Butt, Faheem K.; Rizwan, Syed; Aslam, Imran; Tanveer, M.; Idrees, Faryal; Shakir, Imran; Cao, Chuanbao; Hou, Yanglong

    2015-07-01

    To explore the effect of morphology on catalytic properties of graphitic carbon nitride (GCN), we have studied oxygen reduction reaction (ORR) performance of two different morphologies of GCN in alkaline media. Among both, tubular GCN react with dissolved oxygen in the ORR with an onset potential close to commercial Pt/C. Furthermore, the higher stability and excellent methanol tolerance of tubular GCN compared to Pt/C emphasizes its suitability for fuel cells.

  13. One Dimensional Graphitic Carbon Nitrides as Effective Metal-Free Oxygen Reduction Catalysts

    Science.gov (United States)

    Tahir, Muhammad; Mahmood, Nasir; Zhu, Jinghan; Mahmood, Asif; Butt, Faheem K.; Rizwan, Syed; Aslam, Imran; Tanveer, M.; Idrees, Faryal; Shakir, Imran; Cao, Chuanbao; Hou, Yanglong

    2015-01-01

    To explore the effect of morphology on catalytic properties of graphitic carbon nitride (GCN), we have studied oxygen reduction reaction (ORR) performance of two different morphologies of GCN in alkaline media. Among both, tubular GCN react with dissolved oxygen in the ORR with an onset potential close to commercial Pt/C. Furthermore, the higher stability and excellent methanol tolerance of tubular GCN compared to Pt/C emphasizes its suitability for fuel cells. PMID:26201998

  14. The Doha Round Declaration on Cotton: A Catalyst for Poverty Reduction in Africa?

    OpenAIRE

    Blasco, Lorea Barron; Devadoss, Stephen; Stodick, Leroy

    2006-01-01

    Cotton plays a strategic role in the development policies and poverty reduction programs of a number of African countries. Several African countries have introduced reforms in the cotton sector to improve its quality and competitiveness. The impact of these reforms has to date been virtually nullified by the fact that certain WTO Members continue to apply support measures and subsidies that distort global market prices. These are the arguments behind the Cotton Initiative raised in 2003 in th...

  15. Molecular Catalysts for N2Reduction: State of the Art, Mechanism, and Challenges.

    Science.gov (United States)

    Roux, Yoann; Duboc, Carole; Gennari, Marcello

    2017-10-06

    Fixation of atmospheric nitrogen is central for the production of ammonia, which is the source of nitrogen fertilizers and is also emerging as a promising renewable fuel. While the development of efficient molecular-based artificial nitrogen fixation systems working under mild conditions is probably a Holy Grail, the catalytic reduction of N 2 by transition-metal complexes is-above all-the main instrument to progress in the mechanistic understanding of N 2 splitting. In this Minireview we first give an overview of molecular-based catalytic systems, including recent breakthroughs, and then we illustrate the alternative pathways for N 2 reduction. We mainly focus on multistep hydrogenation of N 2 by separated proton and electron sources, with a particular attention for the possibility of proton-coupled electron transfer events. Finally, we try to identify the key factors to achieve catalytic reduction of dinitrogen by metal complexes and to enhance their efficiency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Selective catalytic reduction of NO by ammonia using mesoporous Fe-containing HZSM-5 and HZSM-12 zeolite catalysts: An option for automotive applications

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Hansen, T. W.; Kustova, Marina

    2007-01-01

    Mesoporous and conventional Fe-containing ZSM-5 and ZSM-12 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnation method and tested in the selective catalytic reduction (SCR) of NO with NH3. It was found that for both Fe/HZSM-5 and Fe/HZSM-12 catalysts with similar Fe contents......, the activity of the mesoporous samples in NO SCR with NH3 is significantly higher than for conventional samples. Such a difference in the activity is probably related with the better diffusion of reactants and products in the mesopores and better dispersion of the iron particles in the mesoporous zeolite...

  17. Design and implementation of mixing chambers to improve thermal decomposition of urea for NOX abatement

    KAUST Repository

    Lee, Junggil

    2012-10-01

    Urea-selective catalytic reduction (SCR) has been reported as the most promising technique for adherence to NOX emissions regulations. In the urea-SCR process, NH3 is generated by urea thermal decomposition and hydrolysis and is then used as a reductant of NOX in the SCR catalyst. Therefore, improving the NOX conversion efficiency of urea-SCR requires enhancement of thermal decomposition upstream of the SCR catalyst. In the present work, two types of mixing chambers were designed and fabricated to improve urea thermal decomposition, and experiments with and without a mixing chamber were carried out to analyze thermal-decomposition characteristics of urea in the exhaust pipe with respect to inlet velocity (4-12μm/s) and temperature (350°C-500°C). Urea thermal decomposition is greatly enhanced at higher gas temperatures. At an inlet velocity of 6μm/s in the A-type mixing chamber, NH3 concentrations generated along the exhaust pipe were about 171% and 157% greater than those without the mixing chamber for inlet temperatures of 400°C and 500°C, respectively. In the case of the B-type mixing chamber, NH3 concentrations generated at inlet temperatures of 400°C and 500°C were about 147% and 179% greater than those without the mixing chamber, respectively. Note that the implementation of mixing chambers significantly enhanced conversion of urea to NH3 because it increased the residence time of urea in the exhaust pipe and improved mixing between urea and exhaust gas. © 2012, Mary Ann Liebert, Inc.

  18. Wavelength Effect on Photocatalytic Reduction of CO(2) by Ag/TiO(2) Catalyst

    Czech Academy of Sciences Publication Activity Database

    Kočí, K.; Zatloukalová, K.; Obalová, L.; Krejčíková, Simona; Lacný, Z.; Čapek, L.; Hospodková, Alice; Šolcová, Olga

    2011-01-01

    Roč. 32, 5/SI/ (2011), s. 812-815 ISSN 0253-9837. [6th International Conference on Environmental Catalysis (6th ICEC). Beijing, 12.09.2010-15.09.2010] R&D Projects: GA ČR GA104/09/0694 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z10100521 Keywords : silver doping * titania * carbon dioxide reduction * photocatalysis * wavelength Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.171, year: 2011

  19. Molecular Cobalt Catalysts for O 2 Reduction: Low-Overpotential Production of H 2 O 2 and Comparison with Iron-Based Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Heng [Department; Pegis, Michael L. [Department; Mayer, James M. [Department; Stahl, Shannon S. [Department

    2017-11-07

    A series of mononuclear pseudo-macrocyclic cobalt complexes have been investigated as catalysts for O2 reduction. Each of these complexes, with CoIII/II reduction potentials that span nearly 400 mV, mediate highly selective two- electron reduction of O2 to H2O2 (93–99%) using decamethylferrocene (Fc*) as the reductant and acetic acid as the proton source. Kinetic studies reveal that the rate exhibits a first- order dependence on [Co] and [AcOH], but no dependence on [O2] or [Fc*]. A linear correlation is observed between log(TOF) vs. E1/2(CoIII/II) for the different cobalt complexes (TOF = turnover frequency). The thermodynamic potential for+ O2 reduction to H2O2 was estimated by measuring the H /H2 open-circuit potential under the reaction conditions. This value provides the basis for direct assessment of the thermodynamic efficiency of the different catalysts and shows that H2O2 is formed with overpotentials as low as 90 mV. These results are compared with a recently reported series of Fe-porphyrin complexes, which catalyze four-electron reduction of O2 to H2O. The data show that the TOFs of the Co complexes exhibit a shallower dependence on E1/2(MIII/II) than the Fe complexes. This behavior, which underlies the low overpotential, is rationalized on the basis of the catalytic rate law.

  20. Electrocatalysis for dioxygen reduction by a μ-oxo decavanadium complex in alkaline medium and its application to a cathode catalyst in air batteries

    Science.gov (United States)

    Dewi, Eniya Listiani; Oyaizu, Kenichi; Nishide, Hiroyuki; Tsuchida, Eishun

    The redox behavior of a decavanadium complex [(VO) 10(μ 2-O) 9(μ 3-O) 3(C 5H 7O 2) 6] ( 1) was studied using cyclic voltammetry under acidic and basic conditions. The reduction potential of V(V) was found at less positive potentials for higher pH electrolyte solutions. The oxygen reduction at complex 1 immobilized on a modified electrode was examined using cyclic voltammetry and rotating ring-disk electrode techniques in the 1 M KOH solutions. On the basis of measurements using a rotating disk electrode (RDE), the complex 1 was found to be highly active for the direct four-electron reduction of dioxygen at -0.2 V versus saturated calomel electrode (SCE). The complex 1 as a reduction catalyst of O 2 with a high selectivity was demonstrated using rotating ring-disk voltammograms in alkaline solutions. The application of complex 1 as an oxygen reduction catalyst at the cathode of zinc-air cell was also examined. The zinc-air cell with the modified electrode showed a stable discharge potential at approximately 1 V with discharge capacity of 80 mAh g -1 which was about five times larger than that obtained with the commonly used manganese dioxide catalyst.

  1. Dithiothreitol activity by particulate oxidizers of SOA produced from photooxidation of hydrocarbons under varied NOx levels

    Directory of Open Access Journals (Sweden)

    H. Jiang

    2017-08-01

    Full Text Available When hydrocarbons (HCs are atmospherically oxidized, they form particulate oxidizers, including quinones, organic hydroperoxides, and peroxyacyl nitrates (PANs. These particulate oxidizers can modify cellular materials (e.g., proteins and enzymes and adversely modulate cell functions. In this study, the contribution of particulate oxidizers in secondary organic aerosols (SOAs to the oxidative potential was investigated. SOAs were generated from the photooxidation of toluene, 1,3,5-trimethylbenzene, isoprene, and α-pinene under varied NOx levels. Oxidative potential was determined from the typical mass-normalized consumption rate (reaction time t =  30 min of dithiothreitol (DTTt, a surrogate for biological reducing agents. Under high-NOx conditions, the DTTt of toluene SOA was 2–5 times higher than that of the other types of SOA. Isoprene DTTt significantly decreased with increasing NOx (up to 69 % reduction by changing the HC ∕ NOx ratio from 30 to 5. The DTTt of 1,3,5-trimethylbenzene and α-pinene SOA was insensitive to NOx under the experimental conditions of this study. The significance of quinones to the oxidative potential of SOA was tested through the enhancement of DTT consumption in the presence of 2,4-dimethylimidazole, a co-catalyst for the redox cycling of quinones; however, no significant effect of 2,4-dimethylimidazole on modulation of DTT consumption was observed for all SOA, suggesting that a negligible amount of quinones was present in the SOA of this study. For toluene and isoprene, mass-normalized DTT consumption (DTTm was determined over an extended period of reaction time (t =  2 h to quantify their maximum capacity to consume DTT. The total quantities of PANs and organic hydroperoxides in toluene SOA and isoprene SOA were also measured using the Griess assay and the 4-nitrophenylboronic acid assay, respectively. Under the NOx conditions (HC ∕ NOx ratio: 5–36 ppbC ppb−1 applied in

  2. Dithiothreitol activity by particulate oxidizers of SOA produced from photooxidation of hydrocarbons under varied NOx levels

    Science.gov (United States)

    Jiang, Huanhuan; Jang, Myoseon; Yu, Zechen

    2017-08-01

    When hydrocarbons (HCs) are atmospherically oxidized, they form particulate oxidizers, including quinones, organic hydroperoxides, and peroxyacyl nitrates (PANs). These particulate oxidizers can modify cellular materials (e.g., proteins and enzymes) and adversely modulate cell functions. In this study, the contribution of particulate oxidizers in secondary organic aerosols (SOAs) to the oxidative potential was investigated. SOAs were generated from the photooxidation of toluene, 1,3,5-trimethylbenzene, isoprene, and α-pinene under varied NOx levels. Oxidative potential was determined from the typical mass-normalized consumption rate (reaction time t = 30 min) of dithiothreitol (DTTt), a surrogate for biological reducing agents. Under high-NOx conditions, the DTTt of toluene SOA was 2-5 times higher than that of the other types of SOA. Isoprene DTTt significantly decreased with increasing NOx (up to 69 % reduction by changing the HC / NOx ratio from 30 to 5). The DTTt of 1,3,5-trimethylbenzene and α-pinene SOA was insensitive to NOx under the experimental conditions of this study. The significance of quinones to the oxidative potential of SOA was tested through the enhancement of DTT consumption in the presence of 2,4-dimethylimidazole, a co-catalyst for the redox cycling of quinones; however, no significant effect of 2,4-dimethylimidazole on modulation of DTT consumption was observed for all SOA, suggesting that a negligible amount of quinones was present in the SOA of this study. For toluene and isoprene, mass-normalized DTT consumption (DTTm) was determined over an extended period of reaction time (t = 2 h) to quantify their maximum capacity to consume DTT. The total quantities of PANs and organic hydroperoxides in toluene SOA and isoprene SOA were also measured using the Griess assay and the 4-nitrophenylboronic acid assay, respectively. Under the NOx conditions (HC / NOx ratio: 5-36 ppbC ppb-1) applied in this study, the amount of organic hydroperoxides was

  3. Towards ‘greener’ catalyst manufacture: Reduction of wastewater from the preparation of Cu/ZnO/Al2O3 methanol synthesis catalysts

    NARCIS (Netherlands)

    Prieto, G.; de Jong, K.P.|info:eu-repo/dai/nl/06885580X; de Jongh, P.E.|info:eu-repo/dai/nl/186125372

    2013-01-01

    The generation of large volumes of nitrate-containing wastewater is a major issue in the industrial production of solid catalysts such as Cu/ZnO/Al2O3 employed in methanol synthesis. Extensive washing with water is needed to remove nitrate (and sodium) residues in the as-precipitated metal

  4. High-performance oxygen reduction catalysts in both alkaline and acidic fuel cells based on pre-treating carbon material and iron precursor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ping; Barkholtz, Heather M.; Wang, Ying; Xu, Weilin; Liu, Dijia; Zhuang, Lin

    2017-12-01

    We demonstrate a new and simple method for pre-treating the carbon material and iron precursor to prepare oxygen reduction reaction (ORR) catalysts, which can produce super-high performance and stability in alkaline solution, with high performance in acid solution. This strategy using cheap materials is simply controllable. Moreover, it has achieved smaller uniform nanoparticles to exhibit high stability, and the synergetic effect of Fe and N offered much higher performance in ORR than commercial Pt/C, with high maximum power density in alkaline and acid fuel cell test. So it can make this kind of catalysts be the most promising alternatives of Pt-based catalysts with best performance/price.

  5. Easy conversion of protein-rich enoki mushroom biomass to a nitrogen-doped carbon nanomaterial as a promising metal-free catalyst for oxygen reduction reaction

    Science.gov (United States)

    Guo, Chaozhong; Liao, Wenli; Li, Zhongbin; Sun, Lingtao; Chen, Changguo

    2015-09-01

    The search for low-cost, highly active, and stable catalysts to replace the Pt-based catalysts for oxygen reduction reaction (ORR) has recently become a topic of interest. Herein, we report a new strategy to design a nitrogen-doped carbon nanomaterial for use as a metal-free ORR catalyst based on facile pyrolysis of protein-rich enoki mushroom (Flammulina velutipes) biomass at 900 °C with carbon nanotubes as a conductive agent and inserting matrix. We found that various forms of nitrogen (nitrile, pyrrolic and graphitic) were incorporated into the carbon molecular skeleton of the product, which exhibited more excellent ORR electrocatalytic activity and better durability in alkaline medium than those in acidic medium. Remarkably, the ORR half-wave potential measured on our material was around 0.81 V in alkaline medium, slightly lower than that on the commercial 20 wt% Pt/C catalyst (0.86 V). Meanwhile, the ORR followed the desired 4-electron transfer mechanism involving the direct reduction pathway. The ORR performance was also markedly better than or at least comparable to the leading results in the literature based on biomass-derived carbon-based catalysts. Besides, we significantly proposed that the graphitic-nitrogen species that is most responsible for the ORR activity can function as the electrocatalytically active center for ORR, and the pyrrolic-nitrogen species can act as an effective promoter for ORR only. The results suggested a promising route based on economical and sustainable fungi biomass towards the large-scale production of valuable carbon nanomaterials as highly active and stable metal-free catalysts for ORR under alkaline conditions.The search for low-cost, highly active, and stable catalysts to replace the Pt-based catalysts for oxygen reduction reaction (ORR) has recently become a topic of interest. Herein, we report a new strategy to design a nitrogen-doped carbon nanomaterial for use as a metal-free ORR catalyst based on facile pyrolysis of

  6. Re-examination of the Pt Particle Size Effect on the Oxygen Reduction Reaction for Ultrathin Uniform Pt/C Catalyst Layers without Influence from Nafion

    International Nuclear Information System (INIS)

    Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.; Kocha, Shyam S.

    2016-01-01

    Highlights: • Pt particle size effect on ORR was re-evaluated for Pt/C catalysts. • Nafion-free activity of Pt/C catalysts was evaluated using thin-film RDE methods. • Ultrathin-uniform catalyst layers were employed to obtain accurate activity values. • Specific activity increased steeply from 2 to 10 nm and less steeply at over 10 nm. • Re-evaluated effect agrees with a particle model assuming terrace active sites. - Abstract: The platinum ‘particle size effect’ on the oxygen reduction reaction (ORR) has been re-evaluated using commercial Pt/C catalysts (2–10 nm Pt particle) and polycrystalline Pt (poly-Pt) in 0.1 M HClO 4 with a rotating disk electrode method. Nafion-free catalyst layers were employed to obtain specific activities (SA) that were not perturbed (suppressed) by sulfonate anion adsorption/blocking. By using ultrathin uniform catalyst layers, O 2 diffusion limitation was minimized as confirmed from the high SAs of our supported catalysts that were comparable to unsupported sputtered Pt having controlled sizes. The specific activity (SA) steeply increased for the particle sizes in the range ∼2–10 nm (0.8–1.8 mA/cm 2 Pt at 0.9 V vs. RHE) and plateaued over ∼10 nm to 2.7 mA/cm 2 Pt for bulk poly-Pt. On the basis of the activity trend for the range of particle sizes studied, it appears that the effect of carbon support on activity is negligible. The experimental results and the concomitant profile of SA vs. particle size was found to be in an agreement to a truncated octahedral particle model that assumes active terrace sites.

  7. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction

    DEFF Research Database (Denmark)

    Skulason, Egill; Bligaard, Thomas; Gudmundsdottir, Sigrıdur

    2012-01-01

    Theoretical studies of the possibility of forming ammonia electrochemically at ambient temperature and pressure are presented. Density functional theory calculations were used in combination with the computational standard hydrogen electrode to calculate the free energy profile for the reduction...... of N2 admolecules and N adatoms on several close-packed and stepped transition metal surfaces in contact with an acidic electrolyte. Trends in the catalytic activity were calculated for a range of transition metal surfaces and applied potentials under the assumption that the activation energy barrier...... scales with the free energy difference in each elementary step. The most active surfaces, on top of the volcano diagrams, are Mo, Fe, Rh, and Ru, but hydrogen gas formation will be a competing reaction reducing the faradaic efficiency for ammonia production. Since the early transition metal surfaces...

  8. Nanosheet Array-Like Palladium-Catalysts Pdx/rGO@CoAl-LDH via Lattice Atomic-Confined in Situ Reduction for Highly Efficient Heck Coupling Reaction.

    Science.gov (United States)

    Wang, Yanna; Dou, Liguang; Zhang, Hui

    2017-11-08

    A series of novel nanosheet array-like catalysts Pd x /rGO@CoAl-LDH (x = 0.0098-1.9, refers to Pd loading in wt % on ICP, rGO: reduced graphene oxide, LDH: layered double hydroxide) were first prepared via a simple and green lattice atomic-confined in situ reduction of oxidative Pd precursors by the evenly atomic-dispersed reductive Co 2+ sites on LDH layers of a nanohybrid rGO@CoAl-LDH with hexagonal LDH nanoplates (∼73 × 7 nm) interdigitated vertical to the surfaces of rGO layer in both sides, fabricated through a simple citric acid-assisted aqueous-phase coprecipitation method. The as-obtained Pd catalysts possess clean Pd nanoclusters (NCs) with tunable sizes in 1.3-1.8 nm on varied Pd loadings. All the Pd x /rGO@CoAl-LDH catalysts show excellent activities for the Heck reaction, and the Pd 0.0098 /rGO@CoAl-LDH with the ultrafine Pd NCs of 1.3 ± 0.2 nm yields a maximum turnover frequency of 160 000 h -1 over a heterogeneous catalyst so far. The excellent activities can be attributed to the ultrasmall Pd NCs with high dispersion and clean Pd surfaces, increased electron transfer capacity and surface area, and remarkable Pd-CoAl-LDH-rGO three-phase synergistic effect of the present unique nanosheet array-like Pd NCs catalysts. Moreover, the catalyst Pd 0.33 /rGO@CoAl-LDH shows a broad range of substrate applicability and can be reused more than five runs without obvious loss of activity, giving the present catalysts long-term stability. These findings make the rGO@CoAl-LDH hybrid prepared by a facile and scalable synthesis route a universal green platform to support other noble or nonprecious metal NCs via lattice atomic-confined in situ reduction strategy to construct more desired heterogeneous catalysts.

  9. Easy conversion of protein-rich enoki mushroom biomass to a nitrogen-doped carbon nanomaterial as a promising metal-free catalyst for oxygen reduction reaction.

    Science.gov (United States)

    Guo, Chaozhong; Liao, Wenli; Li, Zhongbin; Sun, Lingtao; Chen, Changguo

    2015-10-14

    The search for low-cost, highly active, and stable catalysts to replace the Pt-based catalysts for oxygen reduction reaction (ORR) has recently become a topic of interest. Herein, we report a new strategy to design a nitrogen-doped carbon nanomaterial for use as a metal-free ORR catalyst based on facile pyrolysis of protein-rich enoki mushroom (Flammulina velutipes) biomass at 900 °C with carbon nanotubes as a conductive agent and inserting matrix. We found that various forms of nitrogen (nitrile, pyrrolic and graphitic) were incorporated into the carbon molecular skeleton of the product, which exhibited more excellent ORR electrocatalytic activity and better durability in alkaline medium than those in acidic medium. Remarkably, the ORR half-wave potential measured on our material was around 0.81 V in alkaline medium, slightly lower than that on the commercial 20 wt% Pt/C catalyst (0.86 V). Meanwhile, the ORR followed the desired 4-electron transfer mechanism involving the direct reduction pathway. The ORR performance was also markedly better than or at least comparable to the leading results in the literature based on biomass-derived carbon-based catalysts. Besides, we significantly proposed that the graphitic-nitrogen species that is most responsible for the ORR activity can function as the electrocatalytically active center for ORR, and the pyrrolic-nitrogen species can act as an effective promoter for ORR only. The results suggested a promising route based on economical and sustainable fungi biomass towards the large-scale production of valuable carbon nanomaterials as highly active and stable metal-free catalysts for ORR under alkaline conditions.

  10. Catalytic reduction of SO{sub 2} with methane over molybdenum catalyst. Quarterly report, 1 December 1994--28 February 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wiltowski, T.

    1995-12-31

    One of the primary concerns in coal utilization is the emission of sulfur compounds, especially SO{sub 2}. This project deals with catalytic reduction of SO{sub 2} with methane using molybdenum sulfide catalyst supported on different activated carbons: Darco TRS, Norit ROZ-3, and an activated carbon prepared from Illinois coal IBC-110. The work conducted during this quarter has concentrated on continuation of the synthesis of activated carbon derived from Illinois coal IBC-110, modification and improvement of the apparatus for the catalyst testing, ESCA (XPS) analysis of the catalyst (10% MoS{sub 2} on Darco TRS activated carbon), and experiments in the temperature range of 450{degree}C--600{degree}C for the S0{sub 2}:CH{sub 4} ratio equal 1:1. XPS study confirmed that Mo is present in the form of Mo+4 and S in the form of S-2. The catalytic experiments of SO{sub 2} reduction with CH{sub 4} showed that for both Darco TRS and ROZ-3 supports, S0{sub 2} conversion increases with the temperature. Also, the catalyst having 20% loading of MoS{sub 2} on Darco TRS support shows the highest S0{sub 2} conversion over 10% or 15% loadings on Darco TRS. In contrast, for the ROZ-3 support, the catalyst having a 15% loading shows the highest activity. Additionally, it was observed that conversions of S0{sub 2} at 600{degree}C for both supports are comparable to each other when catalysts with 20% loadings are used; at lower temperatures, the activities are quite different with the conversions being higher for Darco TRS support.

  11. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide.

    Science.gov (United States)

    Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush; Mohamed, Abdul Rahman Bin

    2018-01-01

    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil-5 (ZSM-5), TiO 2 , and Al 2 O 3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir-Hinshelwood or Eley-Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH 3 catalyst are suggested.

  12. Dosimeter-type NOx sensing properties of KMnO4 and its electrical conductivity during temperature programmed desorption.

    Science.gov (United States)

    Groß, Andrea; Kremling, Michael; Marr, Isabella; Kubinski, David J; Visser, Jacobus H; Tuller, Harry L; Moos, Ralf

    2013-04-02

    An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT) for NOx storage catalysts (NSC) enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD). The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1) time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2) during the short-term thermal NOx release.

  13. Dosimeter-Type NOx Sensing Properties of KMnO4 and Its Electrical Conductivity during Temperature Programmed Desorption

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2013-04-01

    Full Text Available An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT for NOx storage catalysts (NSC enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD. The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1 time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2 during the short-term thermal NOx release.

  14. Application of numerical modeling of selective NOx reduction by hydrocarbon under diesel transient conditions in consideration of hydrocarbon adsorption and desorption process

    International Nuclear Information System (INIS)

    Watanabe, Y.; Asano, A.; Banno, K.; Yokota, K.; Sugiura, M.

    2001-01-01

    A model of NO x selective reduction by hydrocarbon (HC) was developed, which takes into account the adsorption and desorption of HC. The model was applied for predicting the performance of a De-NO x catalytic reactor, working under transient conditions such as a legislative driving cycle. Diesel fuel was used as a supplemental reductant. The behavior of HC and NO x reactions and HC adsorption and desorption has been simulated successfully by our numerical approach under the transient conditions of the simulated Japanese 10-15 driving cycle. Our model is expected to optimize the design of selective diesel NO x reduction systems using a diesel fuel as a supplemental reductant

  15. B,N-Codoped graphene as catalyst for the oxygen reduction reaction: Insights from periodic and cluster DFT calculations.

    Science.gov (United States)

    Ricca, Chiara; Labat, Frédéric; Zavala, Claudia; Russo, Nino; Adamo, Carlo; Merino, Gabriel; Sicilia, Emilia

    2018-04-30

    A comprehensive theoretical study of the oxygen reduction reaction (ORR) over B,N-codoped graphene has been carried out in the framework of DFT using two different approaches based on periodic or cluster models. The comparison and integration of the information provided by the two approaches allow achieving a more complete description of the studied phenomena, combining the advantages of both models. On one hand, the analysis of the structure, stability, and electronic properties of this catalyst permits to identify and characterize the active sites and provides insights into the origin of its high catalytic activity that should be found in the synergistic coupling of the opposite effects of the two B and N heteroatoms used as dopants. On the other hand, the study of the reaction mechanisms evidences that the process is thermodynamically favorable due to the overall high exothermicity, and that the 4e - transfer is the favorite ORR pathway, being the OH hydrogenation the rate-determining step. Overall, all the reported results clearly underline the superior catalytic activity of B,N-codoped graphene toward this reaction. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Enhanced photocatalytic CO2 reduction to CH4 over separated dual co-catalysts Au and RuO2

    Science.gov (United States)

    Dong, Chunyang; Hu, Songchang; Xing, Mingyang; Zhang, Jinlong

    2018-04-01

    A spatially separated, dual co-catalyst photocatalytic system was constructed by the stepwise introduction of RuO2 and Au nanoparticles (NPs) at the internal and external surfaces of a three dimensional, hierarchically ordered TiO2‑SiO2 (HTSO) framework (the final photocatalyst was denoted as Au/HRTSO). Characterization by HR-TEM, EDS-mapping, XRD and XPS confirmed the existence and spatially separated locations of Au and RuO2. In CO2 photocatalytic reduction (CO2PR), Au/HRTSO (0.8%) shows the optimal performance in both the activity and selectivity towards CH4; the CH4 yield is almost twice that of the singular Au/HTSO or HRTSO (0.8%, weight percentage of RuO2) counterparts. Generally, Au NPs at the external surface act as electron trapping agents and RuO2 NPs at the inner surface act as hole collectors. This advanced spatial configuration could promote charge separation and transfer efficiency, leading to enhanced CO2PR performance in both the yield and selectivity toward CH4 under simulated solar light irradiation.

  17. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

  18. Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell.

    Science.gov (United States)

    Yuan, Yong; Yuan, Tian; Wang, Dingmei; Tang, Jiahuan; Zhou, Shungui

    2013-09-01

    Sewage sludge (SS) biochars have been prepared under an inert atmosphere at different temperatures. Morphologic and chemical analyses reveal that the surface of the biochar carbonized at 900°C (SS900) has more abundant micropores, and higher nitrogen and iron contents as compared to those carbonized at 500 (SS500) and 700°C (SS700). The electrochemical analyses display that the prepared biochars are active for catalyzing oxygen reduction reaction (ORR). However, more positive peak potential and larger peak current of ORR are found using the SS900 as compared to the SS500 and SS700. In MFCs, the maximum power density of 500±17 mW m(-2) was obtained from the SS900 cathode, which is comparable to the Pt cathode. The proposed cathode exhibited good stability and great tolerance to methanol. Given these results, it is expected that the SS-derived biochar cathode can find application in fuel cell systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Nitrogen stable isotope composition (δ15N) of vehicle-emitted NOx.

    Science.gov (United States)

    Walters, Wendell W; Goodwin, Stanford R; Michalski, Greg

    2015-02-17

    The nitrogen stable isotope ratio of NOx (δ(15)N-NOx) has been proposed as a regional indicator for NOx source partitioning; however, knowledge of δ(15)N values from various NOx emission sources is limited. This study presents a detailed analysis of δ(15)N-NOx emitted from vehicle exhaust, the largest source of anthropogenic NOx. To accomplish this, NOx was collected from 26 different vehicles, including gasoline and diesel-powered engines, using a modification of a NOx collection method used by the United States Environmental Protection Agency, and δ(15)N-NOx was analyzed. The vehicles sampled in this study emitted δ(15)N-NOx values ranging from -19.1 to 9.8‰ that negatively correlated with the emitted NOx concentrations (8.5 to 286 ppm) and vehicle run time because of kinetic isotope fractionation effects associated with the catalytic reduction of NOx. A model for determining the mass-weighted δ(15)N-NOx from vehicle exhaust was constructed on the basis of average commute times, and the model estimates an average value of -2.5 ± 1.5‰, with slight regional variations. As technology improvements in catalytic converters reduce cold-start emissions in the future, it is likely to increase current δ(15)N-NOx values emitted from vehicles.

  20. Iridium-decorated palladium-platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell.

    Science.gov (United States)

    Wang, Chen-Hao; Hsu, Hsin-Cheng; Wang, Kai-Ching

    2014-08-01

    Carbon-supported Pt, Pd, Pd-Pt core-shell (Pt(shell)-Pd(core)/C) and Ir-decorated Pd-Pt core-shell (Ir-decorated Pt(shell)-Pd(core)/C) catalysts were synthesized, and their physical properties, electrochemical behaviors, oxygen reduction reaction (ORR) characteristics and proton exchange membrane fuel cell (PEMFC) performances were investigated herein. From the XRD patterns and TEM images, Ir-decorated Pt(shell)-Pd(core)/C has been confirmed that Pt was deposited on the Pd nanoparticle which had the core-shell structure. Ir-decorated Pt(shell)-Pd(core)/C has more positive OH reduction peak than Pt/C, which is beneficial to weaken the binding energy of Pt-OH during the ORR. Thus, Ir-decorated Pt(shell)-Pd(core)/C has higher ORR activity than Pt/C. The maximum power density of H2-O2 PEMFC using Ir-decorated Pt(shell)-Pd(core)/C is 792.2 mW cm(-2) at 70°C, which is 24% higher than that using Pt/C. The single-cell accelerated degradation test of PEMFC using Ir-decorated Pt(shell)-Pd(core)/C shows good durability by the potential cycling of 40,000 cycles. This study concludes that Ir-decorated Pt(shell)-Pd(core)/C has the low Pt content, but it can facilitate the low-cost and high-efficient PEMFC. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Reductive dehalogenation of aryl halides over palladium catalysts deposited on SBA-15 type molecular sieve modified with amine donor groups

    Czech Academy of Sciences Publication Activity Database

    Štěpnička, P.; Semler, M.; Demel, J.; Zukal, Arnošt; Čejka, Jiří

    2011-01-01

    Roč. 341, č. 1-2 (2011), s. 97-102 ISSN 1381-1169 R&D Projects: GA ČR GA104/09/0561 Institutional research plan: CEZ:AV0Z40400503 Keywords : heterogeneous catalysts * supported catalysts * palladium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.947, year: 2011

  2. Fe3C-based oxygen reduction catalysts: synthesis, hollow spherical structures and applications in fuel cells

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2015-01-01

    We present a detailed study of a novel Fe3C-based spherical catalyst with respect to synthetic parameters, nanostructure formation, ORR active sites and fuel cell demonstration. The catalyst is synthesized by high temperature autoclave pyrolysis using decomposing precursors. Below 500 °C, melamine...

  3. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-03-31

    This is the fifteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At AEP's Gavin Plant, data from the corrosion probes showed that corrosion rate increased as boiler load was increased. During an outage at the plant, the drop in boiler load, sensor temperature and corrosion rate could all be seen clearly. Restarting the boiler saw a resumption of corrosion activity. This behavior is consistent with previous observations made at a 600MWe utility boiler. More data are currently being examined for magnitudes of corrosion rates and changes in boiler operating conditions. Considerable progress was made this quarter in BYU's laboratory study of catalyst deactivation. Surface sulfation appears to partially suppress NO adsorption when the catalyst is not exposed to NH3; NH3 displaces surface-adsorbed NO on SCR catalysts and surface sulfation increases the amount of adsorbed NH3, as confirmed by both spectroscopy and TPD experiments. However, there is no indication of changes in catalyst activity despite changes in the amount of adsorbed NH3. A monolith test reactor (MTR), completed this quarter, provided the first comparative data for one of the fresh and field-exposed monolith SCR catalysts yet developed in this project. Measurements of activity on one of the field-exposed commercial monolith catalysts do not show significant changes in catalyst activity (within experimental error) as compared to the fresh catalyst. The exposed surface of the sample contains large amounts of Ca and Na, neither of which is present in the fresh sample, even after removal of visibly obvious fouling deposits. However, these fouling compounds do

  4. Nanoparticular metal oxide/anatase catalysts

    DEFF Research Database (Denmark)

    2010-01-01

    the catalyst metai oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions...

  5. Unexpected effect of catalyst concentration on photochemical CO2reduction bytrans(Cl)-Ru(bpy)(CO)2Cl2: new mechanistic insight into the CO/HCOO-selectivity.

    Science.gov (United States)

    Kuramochi, Yusuke; Itabashi, Jun; Fukaya, Kyohei; Enomoto, Akito; Yoshida, Makoto; Ishida, Hitoshi

    2015-05-01

    Photochemical CO 2 reduction catalysed by trans (Cl)-Ru(bpy)(CO) 2 Cl 2 (bpy = 2,2'-bipyridine) efficiently produces carbon monoxide (CO) and formate (HCOO - ) in N , N -dimethylacetamide (DMA)/water containing [Ru(bpy) 3 ] 2+ as a photosensitizer and 1-benzyl-1,4-dihydronicotinamide (BNAH) as an electron donor. We have unexpectedly found catalyst concentration dependence of the product ratio (CO/HCOO - ) in the photochemical CO 2 reduction: the ratio of CO/HCOO - decreases with increasing catalyst concentration. The result has led us to propose a new mechanism in which HCOO - is selectively produced by the formation of a Ru(i)-Ru(i) dimer as the catalyst intermediate. This reaction mechanism predicts that the Ru-Ru bond dissociates in the reaction of the dimer with CO 2 , and that the insufficient electron supply to the catalyst results in the dominant formation of HCOO - . The proposed mechanism is supported by the result that the time-course profiles of CO and HCOO - in the photochemical CO 2 reduction catalysed by [Ru(bpy)(CO) 2 Cl] 2 (0.05 mM) are very similar to those of the reduction catalysed by trans (Cl)-Ru(bpy)(CO) 2 Cl 2 (0.10 mM), and that HCOO - formation becomes dominant under low-intensity light. The kinetic analyses based on the proposed mechanism could excellently reproduce the unusual catalyst concentration effect on the product ratio. The catalyst concentration effect observed in the photochemical CO 2 reduction using [Ru(4dmbpy) 3 ] 2+ (4dmbpy = 4,4'-dimethyl-2,2'-bipyridine) instead of [Ru(bpy) 3 ] 2+ as the photosensitizer is also explained with the kinetic analyses, reflecting the smaller quenching rate constant of excited [Ru(4dmbpy) 3 ] 2+ by BNAH than that of excited [Ru(bpy) 3 ] 2+ . We have further synthesized trans (Cl)-Ru(6Mes-bpy)(CO) 2 Cl 2 (6Mes-bpy = 6,6'-dimesityl-2,2'-bipyridine), which bears bulky substituents at the 6,6'-positions in the 2,2'-bipyridyl ligand, so that the ruthenium complex cannot form the dimer due to the

  6. Bio-inspired CO2 reduction by a rhenium tricarbonyl bipyridine-based catalyst appended to amino acids and peptidic platforms: incorporating proton relays and hydrogen-bonding functional groups.

    Science.gov (United States)

    Chabolla, S A; Machan, C W; Yin, J; Dellamary, E A; Sahu, S; Gianneschi, N C; Gilson, M K; Tezcan, F A; Kubiak, C P

    2017-06-02

    Herein, we report a new approach to bio-inspired catalyst design. The molecular catalyst employed in these studies is based on the robust and selective Re(bpy)(CO) 3 Cl-type (bpy = 2,2'-bipyridine) homogeneous catalysts, which have been extensively studied for their ability to reduce CO 2 electrochemically or photochemically in the presence of a photosensitizer. These catalysts can be highly active photocatalysts in their own right. In this work, the bipyridine ligand was modified with amino acids and synthetic peptides. These results build on earlier findings wherein the bipyridine ligand was functionalized with amide groups to promote dimer formation and CO 2 reduction by an alternate bimolecular mechanism at lower overpotential (ca. 250 mV) than the more commonly observed unimolecular process. The bio-inspired catalysts were designed to allow for the incorporation of proton relays to support reduction of CO 2 to CO and H 2 O. The coupling of amino acids tyrosine and phenylalanine led to the formation of two structurally similar Re catalyst/peptide catalysts for comparison of proton transport during catalysis. This article reports the synthesis and characterization of novel catalyst/peptide hybrids by molecular dynamics (MD simulations of structural dynamics), NMR studies of solution phase structures, and electrochemical studies to measure the activities of new bio-inspired catalysts in the reduction of CO 2.

  7. Pt/YSZ electrochemical catalysts prepared by electrostatic spray deposition for selective catalytic reduction of NO by C{sub 3}H{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Lintanf, A.; Djurado, E. [Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces (LEPMI), ENSEEG/INPG/UJF/CNRS Institut National Polytechnique de Grenoble Domaine Universitaire, BP 75, 1130 rue de la Piscine, 38402 St Martin d' Heres Cedex (France); Vernoux, P. [Universite de Lyon, Institut de Recherches sur la Catalyse et l' Environnement de Lyon, UMR 5256, CNRS, Universite Claude Bernard Lyon 1, 2 avenue A. Einstein, 69626 Villeurbanne (France)

    2008-03-15

    Due to the great importance of automotive exhaust gas treatment, the catalytic activity was investigated in selective catalytic reduction of NO by propene on Pt films - with controlled microstructure - deposited on YSZ (8 mol% Y{sub 2}O{sub 3}-doped ZrO{sub 2}) by electrostatic spray deposition. This technique requires low Pt loadings in order to reduce costs and also to achieve high Pt particles dispersion with good reproducibility. This kind of electrochemical catalysts was found to be effective for NO reduction by propene in the presence of oxygen. A dense Pt film was found to be the most suitable. Furthermore, we have demonstrated that these electrochemical catalysts can implement the concept of electrochemical promotion of catalysis (EPOC). (author)

  8. Iron(II) phthalocyanine covalently functionalized graphene as a highly efficient non-precious-metal catalyst for the oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Liu, Ying; Wu, Yan-Ying; Lv, Guo-Jun; Pu, Tao; He, Xing-Quan; Cui, Li-Li

    2013-01-01

    Graphical abstract: The fabricated FePc-Gr catalyst for ORR exhibited high activity, favoring a direct 4-electron process, good stability and selectivity, all of which should be attributed to its high conductivity, the synergistic effect between FePc and graphene, as well as the formation of stable FePc-Gr composite through covalent bonding and π–π interaction. - Abstract: A novel iron(II) phthalocyanine covalently modified graphene (FePc-Gr) was synthesized by reduction of the product obtained through an amidation reaction between carboxyl-functionalized graphene oxide (CFGO) and iron(II) tetra-aminophthalocyanine (FeTAPc). The FePc-Gr hybird was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy (RS) and X-ray photoelectron spectroscopy (XPS), respectively. The electrocatalytic properties of FePc-Gr toward the oxygen reduction reaction (ORR) were evaluated using cyclic voltammetry (CV) and linear sweep voltammetry methods. The peak potential of the ORR on the FePc-Gr catalyst was found to be about −0.12 V vs. SCE in 0.1 M NaOH solution, which was 180 and 360 mV more positive than that on FeTAPc and bare GCE, respectively. The rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) measurements revealed that the ORR mechanism was nearly via a direct four-electron pathway to water on FePc-Gr. The current still remained 83.5% of its initial after chronoamperometric test for 10,000 s. Nevertheless, Pt/C catalyst only retained 40.5% of its initial current. The peak potential and peak current changed slightly when 3 M methanol was introduced. So the FePc-Gr composite catalyst for ORR exhibited high activity, good stability and methanol-tolerance, which could be used as a promising Pt-free catalyst for ORR in alkaline direct methanol fuel cell (DMFC)

  9. Building Selectivity for NO Sensing in a NOx Mixture with Sonochemically Prepared CuO Structures

    Directory of Open Access Journals (Sweden)

    Max R. Mullen

    2015-12-01

    Full Text Available Several technologies are available for decreasing nitrogen oxide (NOx emissions from combustion sources, including selective catalytic reduction methods. In this process, ammonia reacts with nitric oxide (NO and nitrogen dioxide (NO2. As the stoichiometry of the two reactions is different, electrochemical sensor systems that can distinguish between NO and NO2 in a mixture of these two gases are of interest. Since NO and NO2 can be brought to equilibrium, depending on the temperature and the surfaces that they are in contact with, the detection of NO and NO2 independently is a difficult problem and has not been solved to date. In this study, we explore a high surface area sonochemically prepared CuO as the resistive sensing medium. CuO is a poor catalyst for NOx equilibration, and requires temperatures of 500 C to bring about equilibration. Thus, at 300 C, NO and NO2 retain their levels after interaction with CuO surface. In addition, NO adsorbs more strongly on the CuO over NO2. Using these two concepts, we can detect NO with minimal interference from NO2, if the latter gas concentration does not exceed 20% in a NOx mixture over a range of 100–800 ppm. Since this range constitutes most of the range of total NOx concentrations in diesel and other lean burn engines, this sensor should find application in selective detection of NO in this combustion application. A limitation of this sensor is the interference with CO, but with combustion in excess air, this problem should be alleviated.

  10. High-performance Platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Chandran, Priji; Ghosh, Arpita; Ramaprabhu, Sundara

    2018-02-26

    The integration of polymer electrolyte membrane fuel cell (PEMFC) stack into vehicles necessitates the replacement of high-priced platinum (Pt)-based electrocatalyst, which contributes to about 45% of the cost of the stack. The implementation of high-performance and durable Pt metal-free catalyst for both oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) could significantly enable large-scale commercialization of fuel cell-powered vehicles. Towards this goal, a simple, scalable, single-step synthesis method was adopted to develop palladium-cobalt alloy supported on nitrogen-doped reduced graphene oxide (Pd 3 Co/NG) nanocomposite. Rotating ring-disk electrode (RRDE) studies for the electrochemical activity towards ORR indicates that ORR proceeds via nearly four-electron mechanism. Besides, the mass activity of Pd 3 Co/NG shows an enhancement of 1.6 times compared to that of Pd/NG. The full fuel cell measurements were carried out using Pd 3 Co/NG at the anode, cathode in conjunction with Pt/C and simultaneously at both anode and cathode. A maximum power density of 68 mW/cm 2 is accomplished from the simultaneous use of Pd 3 Co/NG as both anode and cathode electrocatalyst with individual loading of 0.5 mg/cm 2 at 60 °C without any backpressure. To the best of our knowledge, the present study is the first of its kind of a fully non-Pt based PEM full cell.

  11. A Platinum Monolayer Core-Shell Catalyst with a Ternary Alloy Nanoparticle Core and Enhanced Stability for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Haoxiong Nan

    2015-01-01

    Full Text Available We synthesize a platinum monolayer core-shell catalyst with a ternary alloy nanoparticle core of Pd, Ir, and Ni. A Pt monolayer is deposited on carbon-supported PdIrNi nanoparticles using an underpotential deposition method, in which a copper monolayer is applied to the ternary nanoparticles; this is followed by the galvanic displacement of Cu with Pt to generate a Pt monolayer on the surface of the core. The core-shell Pd1Ir1Ni2@Pt/C catalyst exhibits excellent oxygen reduction reaction activity, yielding a mass activity significantly higher than that of Pt monolayer catalysts containing PdIr or PdNi nanoparticles as cores and four times higher than that of a commercial Pt/C electrocatalyst. In 0.1 M HClO4, the half-wave potential reaches 0.91 V, about 30 mV higher than that of Pt/C. We verify the structure and composition of the carbon-supported PdIrNi nanoparticles using X-ray powder diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission electron microscopy, and energy dispersive X-ray spectrometry, and we perform a stability test that confirms the excellent stability of our core-shell catalyst. We suggest that the porous structure resulting from the dissolution of Ni in the alloy nanoparticles may be the main reason for the catalyst’s enhanced performance.

  12. Long-range electron transfer over graphene-based catalyst for high-performing oxygen reduction reactions: importance of size, N-doping, and metallic impurities.

    Science.gov (United States)

    Choi, Chang Hyuck; Lim, Hyung-Kyu; Chung, Min Wook; Park, Jong Cheol; Shin, Hyeyoung; Kim, Hyungjun; Woo, Seong Ihl

    2014-06-25

    N-doped carbon materials are considered as next-generation oxygen reduction reaction (ORR) catalysts for fuel cells due to their prolonged stability and low cost. However, the underlying mechanism of these catalysts has been only insufficiently identified, preventing the rational design of high-performing catalysts. Here, we show that the first electron is transferred into O2 molecules at the outer Helmholtz plane (ET-OHP) over a long range. This is in sharp contrast to the conventional belief that O2 adsorption must precede the ET step and thus that the active site must possess as good an O2 binding character as that which occurs on metallic catalysts. Based on the ET-OHP mechanism, the location of the electrode potential dominantly characterizes the ORR activity. Accordingly, we demonstrate that the electrode potential can be elevated by reducing the graphene size and/or including metal impurities, thereby enhancing the ORR activity, which can be transferred into single-cell operations with superior stability.

  13. MnFe/Al2O3 Catalyst Synthesized by Deposition Precipitation for Low-Temperature Selective Catalytic Reduction of NO with NH3

    DEFF Research Database (Denmark)

    Schill, Leonhard; Putluru, Siva Sankar Reddy; Jensen, Anker Degn

    2015-01-01

    to a gas containing 20 vol% H2O at temperatures between 140 and 200 A degrees C and compared to an industrial V2O5-WO3/TiO2 catalyst tested at 220 °C. Both homemade catalysts were severely inhibited by 20 vol% H2O. However, used at 180 °C they match the activity of the industrial reference at 220 °C.......Mn-Fe/Al2O3 and Mn-Fe/TiO2 catalysts have been prepared by impregnation (IMP) and deposition precipitation (DP) and characterized with several techniques including: XRDP, N2-physisorption, NH3-TPD, H2-TPR, TGA and XPS. 40 wt% Mn0.75Fe0.25/Al2O3 prepared with ammonia carbamate as precipitating agent...... showed the same superior low temperature selective catalytic reduction of NO with NH3 as did 25 wt% Mn0.75Fe0.25/TiO2 prepared in the same way. Both catalysts were much more active when prepared by DP instead of IMP. 25 wt% Mn0.75Fe0.25/TiO2 and 40 wt% Mn0.75Fe0.25/Al2O3 prepared by DP were exposed...

  14. Synthesis and kinetics investigation of meso-microporous Cu-SAPO-34 catalysts for the selective catalytic reduction of NO with ammonia.

    Science.gov (United States)

    Liu, Jixing; Yu, Fuhong; Liu, Jian; Cui, Lifeng; Zhao, Zhen; Wei, Yuechang; Sun, Qianyao

    2016-10-01

    A series of meso-microporous Cu-SAPO-34 catalysts were successfully synthesized by a one-pot hydrothermal crystallization method, and these catalysts exhibited excellent NH 3 -SCR performance at low temperature. Their structure and physic chemical properties were characterized by means of X-ray diffraction patterns (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), N 2 sorption-desorption, nuclear magnetic resonance (NMR), Inductively Coupled Plasma-Atomic Emission spectrometer (ICP-AES), X-ray absorption spectroscopy (XPS), Temperature-programmed desorption of ammonia (NH 3 -TPD), Ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS) and Temperature programmed reduction (TPR). The analysis results indicate that the high activities of Cu-SAPO-34 catalysts could be attributed to the enhancement of redox property, the formation of mesopores and the more acid sites. Furthermore, the kinetic results verify that the formation of mesopores remarkably reduces diffusion resistance and then improves the accessibility of reactants to catalytically active sites. The 1.0-Cu-SAPO-34 catalyst exhibited the high NO conversion (>90%) among the wide activity temperature window in the range of 150-425°C. Copyright © 2016. Published by Elsevier B.V.

  15. In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst

    Science.gov (United States)

    Zhang, Qiulin; Fan, Jie; Ning, Ping; Song, Zhongxian; Liu, Xin; Wang, Lanying; Wang, Jing; Wang, Huimin; Long, Kaixian

    2018-03-01

    A series of ceria modified zirconium phosphate catalysts were synthesized for selective catalytic reduction of NO with ammonia (NH3-SCR). Over 98% NOx conversion and 98% N2 selectivity were obtained by the CeO2/ZrP catalyst with 20 wt.% CeO2 loading at 250-425 °C. The interaction between CeO2 and zirconium phosphate enhanced the redox abilities and surface acidities of the catalysts, resulting in the improvement of NH3-SCR activity. The in situ DRIFTS results indicated that the NH3-SCR reaction over the catalysts followed both Eley-Rideal and Langmuir-Hinshelwood mechanisms. The amide (sbnd NH2) groups and the NH4+ bonded to Brønsted acid sites were the important intermediates of Eley-Rideal mechanism.

  16. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  17. Selective catalytic reduction system and process for control of NO.sub.x emissions in a sulfur-containing gas stream

    Science.gov (United States)

    Sobolevskiy, Anatoly

    2015-08-11

    An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.

  18. Regeneration and sulfur poisoning behavior of In/H-BEA catalyst for NO{sub x} reduction by CH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hua; Jian, Yanfei; Yu, Yanke, E-mail: yankeyu@xjtu.edu.cn; He, Chi, E-mail: chi_he@xjtu.edu.cn; Shen, Zhenxing; Liu, Hongxia

    2017-04-15

    Highlights: • Sulfur poisoning mechanism of In/H-BEA was investigated for CH{sub 4}-SCR by in situ DRIFT. • H{sub 2} reduction could reduce In{sub 2}(SO{sub 4}){sub 3} to InO{sup +} via In{sub 2}(SO{sub 4}){sub 3} → In{sub 2}O{sub 3} → In(OH){sub 2}{sup +} → InO{sup +}. • The optimal regeneration parameters of H{sub 2} reduction was 400 °C and 60 min. - Abstract: Sulfur poisoning and regeneration behavior of In/H-BEA catalyst were carried out in NO{sub x} reduction by CH{sub 4}. In/H-BEA catalyst exhibited a poor resistance to sulfur dioxide after addition of 200 ppm SO{sub 2} and 10 vol.% H{sub 2}O into NO reduction with CH{sub 4} at 450 °C for 45 h. Sulfur poisoning of In/H-BEA was attributed to the inhibition of NO{sub x} adsorption on Brønsted acid sites, suppression of reaction intermediates generation on the active sites, and the formation of surface sulfate species. The formation of surface sulfate reduced the availability of surface active sites, blocked the pore structure and decreased the surface area of catalyst. These changes in chemical and textural properties resulted in a severe loss in the activity of sulfated In/H-BEA catalyst for NO reduction with CH{sub 4}. H{sub 2} reduction is a promising technology for regeneration of In/H-BEA deactivated by SO{sub 2} for removing NO{sub x} from lean-burn and diesel exhausts. Indium sulfate could be reduced by H{sub 2} to InO{sup +} with In{sub 2}O{sub 3} and In(OH){sub 2}{sup +} as the intermediates. The optimal parameters of H{sub 2} reduction was regeneration temperature of 400 °C and regeneration time of 60 min which completely recovered the catalytic activity of In/H-BEA.

  19. Elementary steps of the catalytic NO(x) reduction with NH3: cluster studies on reactant adsorption at vanadium oxide substrate.

    Science.gov (United States)

    Gruber, M; Hermann, K

    2013-03-07

    Extended cluster models together with density-functional theory are used to evaluate geometric, energetic, and electronic properties of different adsorbate species that can occur at a vanadium oxide surface where the selective catalytic reduction (SCR) of NO in the presence of ammonia proceeds. Here, we focus on atomic hydrogen, nitrogen, and oxygen, as well as molecular NO and NHx, x = 1, 4, adsorption at a model V2O5(010) surface. Binding sites, oxygen and vanadium, at both the perfect and reduced surface are considered where reduction is modeled by (sub-) surface oxygen vacancies. The reactants are found to bind overall more strongly at oxygen vacancy sites of the reduced surface where they stabilize in positions formerly occupied by the oxygen (substitutional adsorption) compared with weaker binding at the perfect surface. In particular, ammonia, which interacts only weakly with vanadium at the perfect surface, binds quite strongly near surface oxygen vacancies. In contrast, surface binding of the NH4 adsorbate species differs only little between the perfect and the reduced surface which is explained by the dominantly electrostatic nature of the adsorbate interaction. The theoretical results are consistent with experimental findings and confirm the importance of surface reduction for the reactant adsorption forming elementary steps of the SCR process.

  20. Combined effects Na and SO{sub 2} in flue gas on Mn-Ce/TiO{sub 2} catalyst for low temperature selective catalytic reduction of NO by NH{sub 3} simulated by Na{sub 2}SO{sub 4} doping

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Aiyi [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023 (China); Yu, Danqing [School of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Yang, Liu [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023 (China); Sheng, Zhongyi, E-mail: 09377@njnu.edu.cn [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023 (China)

    2016-08-15

    Highlights: • Sodium sulfate (Na{sub 2}SO{sub 4}) was deposited on Mn-Ce/TiO{sub 2} catalyst to simulate the co-existing of sodium and SO{sub 2} in the flue gas. • Na{sub 2}SO{sub 4} had strong and fluctuant influence on Mn-Ce/TiO{sub 2} catalyst’s performance in SCR of NOx with NH{sub 3}, due to the combined effect of the deactivation of sodium salts and the enhanced performance of ceria with surface sulfation. • The changes of the surface chemical species and acid sites on the Na{sub 2}SO{sub 4} deposited catalysts could be considered as the main reasons for the fluctuation changes with the catalytic activity. - Abstract: A series of Mn-Ce/TiO{sub 2} catalysts were synthesized through an impregnation method and used for low temperature selective catalytic reduction (SCR) of NOx with ammonia (NH{sub 3}). Na{sub 2}SO{sub 4} was added into the catalyst to simulate the combined effects of alkali metal and SO{sub 2} in the flue gas. Experimental results showed that Na{sub 2}SO{sub 4} had strong and fluctuant influence on the activity of Mn-Ce/TiO{sub 2}, because the effect of Na{sub 2}SO{sub 4} included pore occlusion and sulfation effect simultaneously. When Na{sub 2}SO{sub 4} loading content increased from 0 to 1 wt.%, the SCR activities of Na{sub 2}SO{sub 4}-doped catalysts decreased greatly. With further increasing amount of Na{sub 2}SO{sub 4}, however, the catalytic activity increased gradually. XRD results showed that Na{sub 2}SO{sub 4} doping could induce the crystallization of MnOx phases, which were also confirmed by TEM and SEM results. BET results showed that the surface areas decreased and a new bimodal mesoporous structure formed gradually with the increasing amount of Na{sub 2}SO{sub 4}. XPS results indicated that part of Ce{sup 4+} and Mn{sup 3+} were transferred to Ce{sup 3+} and Mn{sup 4+} due to the sulfation after Na{sub 2}SO{sub 4} deposition on the surface of the catalysts. When the doped amounts of Na{sub 2}SO{sub 4} increased, NH{sub 3

  1. Cobalt Nanoparticle-Embedded Porous Carbon Nanofibers with Inherent N- and F-Doping as Binder-Free Bifunctional Catalysts for Oxygen Reduction and Evolution Reactions.

    Science.gov (United States)

    Singhal, Richa; Kalra, Vibha

    2017-01-18

    Efficient, low-cost, non-precious metal-based, and stable bifunctional electrocatalysts are key to various energy storage and conversion devices such as regenerative fuel cells and metal-air batteries. In this work, we report cobalt nanoparticle-embedded porous carbon nanofibers with inherent N- and F-doping as binder-free bifunctional electrocatalysts with excellent activity for both the oxygen reduction and oxygen evolution reaction (ORR/OER) in an alkaline medium. Single-step electrospinning of a solution of the polymer mixture (carbon precursor) and the cobalt precursor followed by controlled pyrolysis with an intermediate reduction step in H 2 (to reduce cobalt oxides to cobalt) was utilized to synthesize an integrated freestanding catalyst. The fabricated catalyst with effective structural and electronic interaction between the cobalt metal nanoparticles and the N- and F-doped carbon defect sites showed enhanced catalytic properties compared to the benchmark catalysts for ORR and OER (Pt, Ir, and Ru). The ORR potential at the current density of -3 mA cm -2 was 0.81 V RHE and the OER potential at a current density of 10 mA cm -2 was 1.595 V RHE , resulting in a ΔE of only 0.785 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  3. Environmental Assessment for the Commercial Demonstration of the Low NOx Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Finney County, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    n/a

    2003-03-11

    The U.S. Department of Energy (DOE) proposes to provide partial funding to the Sunflower Electric Power Corporation (Sunflower), to demonstrate the commercial application of Low-NO{sub x} Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve NO{sub x} emission reduction to the level of 0.15 to 0.22 pounds per million British thermal units (lb/MM Btu). The proposed project station is Sunflower's 360 MW coal-fired generation station, Holcomb Unit No. 1 (Holcomb Station). The station, fueled by coal from Wyoming's Powder River Basin, is located near Garden City, in Finney County, Kansas. The period of performance is expected to last approximately 2 years. The Holcomb Station, Sunflower LNB/SOFA integrated system would be modified in three distinct phases to demonstrate the synergistic effect of layering NO{sub x} control technologies. Once modified, the station would demonstrate that a unit equipped with an existing low-NO{sub x} burner system can be retrofitted with a new separated over-fire air (SOFA) system, coal flow measurement and control, and enhanced combustion monitoring to achieve about 45 percent reduction in nitrogen oxides (NO{sub x}) emissions. The proposed project would demonstrate a technology alternative to Selective Catalytic Reduction (SCR) systems. While SCR does generally achieve high reductions in NO{sub x} emissions (from about 0.8 lb/MM to 0.12 lb/MM Btu), it does so at higher capital and operating cost, requires the extensive use of critical construction labor, requires longer periods of unit outage for deployment, and generally requires longer periods of time to complete shakedown and full-scale operation. Cost of the proposed project technology would be on the order of 15-25 percent of that for SCR, with consequential benefits derived from reductions in construction manpower requirements and periods of power outages. This proposed technology demonstration would generally be applicable to boilers using opposed

  4. Synthesis of palladium nanoparticles with leaf extract of Chrysophyllum cainito (Star apple) and their applications as efficient catalyst for C-C coupling and reduction reactions

    Science.gov (United States)

    Majumdar, Rakhi; Tantayanon, Supawan; Bag, Braja Gopal

    2017-10-01

    A simple green chemical method for the one-step synthesis of palladium nanoparticles (PdNPs) has been described by reducing palladium (II) chloride with the leaf extract of Chrysophyllum cainito in aqueous medium. The synthesis of the palladium nanoparticles completed within 2-3 h at room temperature, whereas on heat treatment (70-80 °C), the synthesis of colloidal PdNPs completed almost instantly. The stabilized PdNPs have been characterized in detail by spectroscopic, electron microscopic and light scattering measurements. The synthesized PdNPs have been utilized as a green catalyst for C-C coupling reactions under aerobic and phosphine-free conditions in aqueous medium. In addition, the synthesized PdNPs have also been utilized as a catalyst for a very efficient sodium borohydride reduction of 3- and 4-nitrophenols. The synthesized PdNPs can retain their catalytic activity for several months.

  5. Palladium nanoparticles encapsulated in core-shell silica: A structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants

    KAUST Repository

    Wang, Yin

    2014-10-03

    Noble metal nanoparticles have been applied to mediate catalytic removal of toxic oxyanions and halogenated hydrocarbons in contaminated water using H2 as a clean and sustainable reductant. However, activity loss by nanoparticle aggregation and difficulty of nanoparticle recovery are two major challenges to widespread technology adoption. Herein, we report the synthesis of a core-shell-structured catalyst with encapsulated Pd nanoparticles and its enhanced catalytic activity in reduction of bromate (BrO3-), a regulated carcinogenic oxyanion produced during drinking water disinfection process, using 1 atm H2 at room temperature. The catalyst material consists of a nonporous silica core decorated with preformed octahedral Pd nanoparticles that were further encapsulated within an ordered mesoporous silica shell (i.e., SiO2@Pd@mSiO2). Well-defined mesopores (2.3 nm) provide a physical barrier to prevent Pd nanoparticle (6 nm) movement, aggregation, and detachment from the support into water. Compared to freely suspended Pd nanoparticles and SiO2@Pd, encapsulation in the mesoporous silica shell significantly enhanced Pd catalytic activity (by a factor of 10) under circumneutral pH conditions that are most relevant to water purification applications. Mechanistic investigation of material surface properties combined with Langmuir-Hinshelwood modeling of kinetic data suggest that mesoporous silica shell enhances activity by promoting BrO3- adsorption near the Pd active sites. The dual function of the mesoporous shell, enhancing Pd catalyst activity and preventing aggregation of active nanoparticles, suggests a promising general strategy of using metal nanoparticle catalysts for water purification and related aqueous-phase applications.

  6. Reducción catalítica selectiva de NOx usando nanopartículas de ferritas Cu1-XCoXFe2O4 como catalizador

    Directory of Open Access Journals (Sweden)

    Sarah Briceño1*

    2009-12-01

    Full Text Available Nanostructured catalysts AB2O4 spinel type oxides (A = Co and B = Cu were prepared by the sol-gel self-combustion method using citric acid as precursor. They were characterized by X-ray diffraction (XRD, Scanning Electron Microscopy (SEM, Transmission Electron Microscopy (TEM and Catalytic activity tests, which have proven to be effective for selective catalytic reduction of NOx using hydrocarbon as a reducing agent (SCR-HC in a temperature range 250 - 450 ° C, reaching up to 40% conversion of NO and 100% selectivity towards the formation of N2

  7. Minimising NOx emissions: a symptom of managing change

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J. [UltraMax Corporation (USA)

    2000-07-01

    Minimizing NOx emissions is but a symptom of a bigger issues for utility companies in today's world. The bigger issue is determining how to successfully manage change. The companies that manage change well will solve the environmental issues and solve them profitably. NOx reduction can be achieved. It can be achieved while creating a capability to manage change. Solving the ability to manage change is the best route to take. Reducing NOx can be done but it may create other problems such as increased carbon in ash. The combination of software and hardware solutions have been carefully thought through and efficiently implemented. 7 figs., 2 tabs.

  8. Pilot test and optimization of plasma based deNOx

    DEFF Research Database (Denmark)

    Stamate, Eugen; Chen, Weifeng; Michelsen, Poul

    The NOx reduction of flue gas by plasma generated ozone was investigated in pilot test experiments at two industrial power plants running on natural gas (Ringsted) and biomass (Haslev). Reduction rates higher than 95% have been achieved for a molar ratio O3:NOx of 1.56. Fourier transform infrared...... and ultraviolet absorption spectroscopy were used for spatial measurements of stable molecules and radicals along the reduction reactor. Reactions of O3 injected in the flue gas in the reduction reactor were also modeled including the influence of the flue gas temperature, water droplets and SOx and HCl content...

  9. Automotive Catalyst State Diagnosis Using Microwaves

    Directory of Open Access Journals (Sweden)

    Moos Ralf

    2015-01-01

    Full Text Available The state of catalysts plays a key role in automotive exhaust gas aftertreatment. The soot or ash loading of Diesel particulate filters, the oxygen loading degree in three-way catalysts, the amount of stored ammonia in SCR catalysts, or the NOx loading degree in NOx storage catalysts are important parameters that are today determined indirectly and in a model-based manner with gas sensors installed upstream and/or downstream of the catalysts. This contribution gives an overview on a novel approach to determine the catalyst state directly by a microwave-based technique. The method exploits the fact that the catalyst housing acts as a microwave cavity resonator. As “sensing” elements, one or two simple antennas are mounted inside the catalyst canning. The electrical properties of the catalyst device (ceramic honeycomb plus coating and storage material can be measured. Preferably, the resonance characteristics, e.g., the resonance frequencies, of selected cavity modes are observed. The information on the catalyst interior obtained in such a contactless manner is very well correlated with the catalyst state as will be demonstrated for different exhaust gas aftertreatment systems.

  10. The performance of perovskites and spinels as catalysts for oxygen reduction in solid oxide fuel cell cathodes

    Science.gov (United States)

    Martin, Boris E.

    The lack of understanding of the catalytic process at the state-of-the-art cathode material surface in solid oxide fuel cells, (La0.8Sr 0.2)0.98MnO3+delta (LSM), has hindered the design of better catalysts. The objectives of this study were to design a system enabling the comparison of catalytic activities of different cathode materials independently of morphological factors, as well as to resolve catalytic processes at the LSM surface. The selection and optimization of potential cathode materials were performed on the basis of thermal expansion, four-probe dc-conductivity and thermoelectric power measurements in air. The materials studied as potential cathodes were tungsten, niobium and molybdenum doped barium cobaltite perovskites, copper manganese, cobalt manganese and cobalt ferrite spinels as well as strontium doped lanthanum cobalt ferrites and lanthanum manganite perovskites. The doped barium cobaltites were found lo offer superior electrical conductivity when octahedral site transition metal average valence was mixed 3+ /4+ compared to mixed 2+/3+. On the other hand, the loss of conductivity associated with octahedral site doping rendered these materials inadequate for solid oxide fuel cells (SOFC) cathode applications. Copper manganese spMd was found to exhibit electrical conductivity as high as ˜200 S.cm-1 at 1073 K and thermal expansion ˜ 11 ppm/K between 298 K and 1200 K. Thermal and chrono-potentiometric studies were used to determine the oxygen diffusivity, in cobalt and strontium doped lanthanum iron perovskites (LSCF), and revealed that the activation of strontium doped lanthanum manganese perovskites (LSM) under cathodic bias is kinetically limited by its rate of oxygen surface exchange, suggesting that the cathodic activation of LSM is due to its change in oxygen content under bias. The electronic defect structure of the cubic spinels was resolved in a defect reaction model involving the thermally activated redox of Cu + and Mn4+ to Cu2+ and Mn3

  11. Capturing metal-support interactions in situ during the reduction of a Re promoted Co/γ-Al2O3 catalyst

    DEFF Research Database (Denmark)

    Tsakoumis, N. E.; Johnsen, Rune E.; van Beek, W.

    2016-01-01

    cations into the structure of the support. The non-linear cell expansion coincided with the formation of a CoO phase. In addition, space resolved diffraction at the inlet and the outlet of the reactor evidenced a negative effect of the partial pressure of indigenous H2O(g) on the reduction process.......The reduction of a Re promoted Co/γ-Al2O3 catalyst was monitored in situ by synchrotron X-ray powder diffraction (XRPD) under H2 environment. Whole powder pattern analysis revealed a non-linear expansion of the unit cell of γ-Al2O3 during the reduction process, suggesting the diffusion of Co...

  12. Electrodeposition of Pd based binary catalysts on Carbon paper via surface limited redox-replacement reaction for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Modibedi, RM

    2014-05-01

    Full Text Available attention as it is more abundant and also cheaper than Pt. In this presentation, Electrochemical Atomic Layer Deposition (ECALD) was used in the preparation of binary ORR catalysts. The binary nanoclusters were synthesised via surface-limited redox-replacement...

  13. First-principles study on the Ni@Pt12 Ih core-shell nanoparticles: A good catalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zongxian, E-mail: yzx@henannu.edu.cn [College of Physics and Information Engineering, Henan Normal University, Xinxiang, Henan, 453007 (China); Henan Key Laboratory of Photovoltaic Materials, Xinxiang, 453007 (China); Zhang, Yanxing; Wang, Jinlong; Ma, Shuhong [College of Physics and Information Engineering, Henan Normal University, Xinxiang, Henan, 453007 (China)

    2011-08-15

    The adsorption, diffusion and dissociation properties of O{sub 2} on the icosahedron (Ih) Ni@Pt12 core-shell nanoparticle were investigated using the ab initio density functional theory calculations. It is found that, compared with the Pt(111) surface, the Ih Ni@Pt12 core-shell nanoparticle can enhance the adsorption, diffusion and dissociation of O{sub 2}, as well as the adsorption and diffusion of the atomic O (the dissociation product of O{sub 2}), and therefore serve as a good catalyst for oxygen reduction reaction. Our study gives a reasonable theoretical explanation to the high catalytic activity of the Ni@Pt core-shell nanoparticles for the oxygen reduction reaction. -- Highlights: → The Ni core can enhance the stability of the Ih Ni@Pt12 core-shell nanoparticle. → O{sub 2} prefers the top-bridge-top configuration on the Ih Ni@Pt12. → The Ih Ni@Pt12 can enhance the adsorption, diffusion and the dissociation of O{sub 2}. → The Ih Ni@Pt12 can serve as a good catalyst for the oxygen reduction reaction.

  14. High Performance and Cost-Effective Direct Methanol Fuel Cells: Fe-N-C Methanol-Tolerant Oxygen Reduction Reaction Catalysts.

    Science.gov (United States)

    Sebastián, David; Serov, Alexey; Artyushkova, Kateryna; Gordon, Jonathan; Atanassov, Plamen; Aricò, Antonino S; Baglio, Vincenzo

    2016-08-09

    Direct methanol fuel cells (DMFCs) offer great advantages for the supply of power with high efficiency and large energy density. The search for a cost-effective, active, stable and methanol-tolerant catalyst for the oxygen reduction reaction (ORR) is still a great challenge. In this work, platinum group metal-free (PGM-free) catalysts based on Fe-N-C are investigated in acidic medium. Post-treatment of the catalyst improves the ORR activity compared with previously published PGM-free formulations and shows an excellent tolerance to the presence of methanol. The feasibility for application in DMFC under a wide range of operating conditions is demonstrated, with a maximum power density of approximately 50 mW cm(-2) and a negligible methanol crossover effect on the performance. A review of the most recent PGM-free cathode formulations for DMFC indicates that this formulation leads to the highest performance at a low membrane-electrode assembly (MEA) cost. Moreover, a 100 h durability test in DMFC shows suitable applicability, with a similar performance-time behavior compared to common MEAs based on Pt cathodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Uniform Fe3O4/Nitrogen-Doped Mesoporous Carbon Spheres Derived from Ferric Citrate-Bonded Melamine Resin as an Efficient Synergistic Catalyst for Oxygen Reduction.

    Science.gov (United States)

    Wang, Haitao; Wang, Wei; Gui, Mengxi; Asif, Muhammad; Wang, Zhengyun; Yu, Yang; Xiao, Junwu; Liu, Hongfang

    2017-01-11

    Developing a facile strategy to synthesize an efficient and inexpensive catalyst for the oxygen reduction reaction (ORR) is critical to the commercialization of many sustainable energy storage and conversion techniques. Herein, a novel and convenient strategy was presented to prepare Fe 3 O 4 embedded into nitrogen-doped mesoporous carbon spheres (Fe 3 O 4 /N-MCS) by the polycondensation between methylolmelamines and ammonium ferric citrate (AFC) and subsequent pyrolysis process. In particular, the polycondensation reaction was completely finished within a very short time (6.5 min), and the iron contents can be adjusted and had a great influence on the microstructure. Moreover, the Fe 3 O 4 /N-MCS can be used as a robust catalyst for the ORR in alkaline media, and the catalyst with the iron content of 3.35 wt % exhibited excellent electrochemical performance in terms of more positive onset potential (E 0 = 1.036 V vs RHE) and half-wave potential (E 1/2 = 0.861 V) and much better methanol tolerance and long-term durability, in comparison with that of 20% Pt/C. The remarkable performance was ascribed to the characteristics of large specific surface area, mesoporous structure, high contents of pyridinic N and graphitic N, as well as strong electronic interaction between Fe 3 O 4 and protective N-doped graphitic layers.

  16. One-pot synthesis of a PtPd dendritic nanocube cage superstructure on graphenes as advanced catalysts for oxygen reduction

    Science.gov (United States)

    Zheng, Yuanyuan; Qiao, Junhua; Yuan, Junhua; Shen, Jianfeng; Wang, Ai-Jun; Gong, Peijun

    2018-03-01

    How to use Pt economically and efficiently in the oxygen reduction reaction (ORR) is of theoretical and practical significance for the industrialization of the proton-exchange membrane fuel cells. In order to minimize Pt consumption and optimize the ORR performance, the ORR catalysts are recommended to be designed as a porous nanostructure. Herein, we report a one-pot solvothermal strategy to prepare PtPd dendritic nanocube cages via a galvanic replacement mechanism triggered by an I- ion. These PtPd alloy crystals are nanoporous, and uniformly dispersed on reduced graphene oxides (RGOs). The size of the PtPd dendritic nanocube cages can be easily tuned from 20-80 nm by controlling their composition. Their composition is optimized to be 1:5 Pt/Pd atomic ratio for these RGO-supported PtPd dendritic nanocages. This catalyst shows superior ORR performance with a specific activity of 2.01 mA cm-2 and a mass activity of 4.45 A mg-1 Pt, far above those for Pt/C catalysts (0.288 mA cm-2 for specific activity, and 0.21 A mg-1 Pt for mass activity). In addition to ORR activity, it also exhibits robust durability with almost negligible decay in ORR mass activity after 10 000 voltammetric cycling.

  17. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Noam Lior; Stuart W. Churchill

    2003-10-01

    the Gordon Conference on Modern Development in Thermodynamics. The results obtained are very encouraging for the development of the RCSC as a commercial burner for significant reduction of NO{sub x} emissions, and highly warrants further study and development.

  18. Selective catalytic reduction of nitric oxide with carbon monoxide over alumina-pellet-supported catalysts in the presence of excess oxygen.

    Science.gov (United States)

    Liu, Kaijie; Yu, Qingbo; Qin, Qin; Wang, Chunpeng

    2017-06-26

    Selective catalytic reduction of nitrogen oxides with carbon monoxide (CO-SCR) is a promising technology to remove NO x and CO simultaneously from flue gas. The thermodynamic analyses of catalytic process were performed toward four kinds of active metal oxides (Cu x O y , Co x O y , Mn x O y and Ce x O y ). According to the standard Gibbs free-energy changes calculated, Mn had better resistance to oxygen than Cu, Co and Ce, while Cu and Ce had better resistance to water vapor poisoning, as active metals. Then, a series of binary- and ternary-preformed catalysts with different metal ratios were prepared by the impregnation method using Al 2 O 3 pellets as support and tested in excess oxygen (16 vol%) atmosphere with or without SO 2 . The results of experiment were analyzed based on thermodynamic analyses. Results indicated that the NO conversions of Cu-Co/Al 2 O 3 catalysts increased with the rise of reaction temperature; however, the tendency changed at 160°C for Cu-Mn/Al 2 O 3 . Besides, the NO conversions of Cu-Mn/Al 2 O 3 were better than Cu-Co/Al 2 O 3 . The catalysts with the metal ratio of 1.5 had the best denitrification performance. Among various binary catalysts, Cu-Mn/Al 2 O 3 with the metal ratio Cu:Mn of 1.5 showed promising activity for CO-SCR, giving nearly 90% NO conversion. Besides, the doping of Ce could inhibit the sulfur poisoning and promote the oxide of CO under experimental conditions.

  19. Consideration of the Role of Plasma in a Plasma-Coupled Selective Catalytic Reduction of Nitrogen Oxides with a Hydrocarbon Reducing Agent

    Directory of Open Access Journals (Sweden)

    Byeong Ju Lee

    2017-10-01

    Full Text Available The purpose of this study is to explain how plasma improves the performance of selective catalytic reduction (SCR of nitrogen oxides (NOx with a hydrocarbon reducing agent. In the plasma-coupled SCR process, NOx reduction was performed with n-heptane as a reducing agent over Ag/γ-Al2O3 as a catalyst. We found that the plasma decomposes n-heptane into several oxygen-containing products such as acetaldehyde, propionaldehyde and butyraldehyde, which are more reactive than the parent molecule n-heptane in the SCR process. Separate sets of experiments using acetaldehyde, propionaldehyde and butyraldehyde, one by one, as a reductant in the absence of plasma, have clearly shown that the presence of these partially oxidized compounds greatly enhanced the NOx conversion. The higher the discharge voltage, the more the amounts of such partially oxidized products. The oxidative species produced by the plasma easily converted NO into NO2, but the increase of the NO2 fraction was found to decrease the NOx conversion. Consequently, it can be concluded that the main role of plasma in the SCR process is to produce partially oxidized compounds (aldehydes, having better reducing power. The catalyst-alone NOx removal efficiency with n-heptane at 250 °C was measured to be less than 8%, but it increased to 99% in the presence of acetaldehyde at the same temperature. The NOx removal efficiency with the aldehyde reducing agent was higher as the number of carbons in the aldehyde was more; for example, the NOx removal efficiencies at 200 °C with butyraldehyde, propionaldehyde and acetaldehyde were measured to be 83.5%, 58.0% and 61.5%, respectively, which were far above the value (3% obtained with n-heptane.

  20. Systematic Investigations of the Oxygen Reduction Reaction on Pt Based Catalysts Comparing Transient and Steady State Performance

    DEFF Research Database (Denmark)

    Deng, Yujia

    attransient and steady state conditions. At steady state conditions the dominant potential rangefor the adsorption of the different oxygenated species is elucidated by employing anelectrochemical stripping method. The results indicate that below 0.6 VRHE, the surface of Ptis free from oxygenated species...... the reactive sites for the ORR, thus leading toa decrease in activity as compared to that in HClO4 electrolyte solution. At steady state theORR activity is inhibited in all the three acid electrolyte solutions as compared to transientconditions. The ORR can reach its diffusion limited current in both HClO4...... layers, the strain effectbecomes the predominant factor, thus decreasing the catalytic activity.The last part of this thesis focuses on combining steady state tests and the design of catalysts.Shaped-controlled synthesized tetrahexahedral (THH) Pt nanoparticles are employed asmodel catalysts...